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Abstract Zeuthen-Hicks bargaining provides a dynamic model that explains how
two parties in a negotiation make concessions to reach the Nash bargaining so-
lution. However, it is not clear whether this process will always reach the global
optimum corresponding to the Nash bargaining solution, or could end at a local
optimum, or even in disagreement. In this paper, we analyze different types of
utility functions, both analytically and in a computational study, to determine
under which circumstances convergence to the Nash bargaining solution will be
achieved. We show that non-standard preferences, involving e.g. reference point
effects, might indeed lead to multiple local optima of the Nash bargaining objec-
tive function and thus failure of the bargaining process. This occurs more often if
expectations of parties are mutually incompatible.

Keywords Zeuthen-Hicks · Bargaining · Negotiation process · Utility function ·
Reference point · Nash solution

1 Introduction

Many definitions of negotiations take a process perspective. For example, Kilgour
and Eden (2010, p. 2) define negotiations as “... a process in which two or more
independent, concerned parties make a choice”. Although the process perspective
is thus seen as constituent of the concept of negotiations, actual models that
describe the negotiation process are rare (Vetschera, 2013). This holds for many
dimensions of a negotiation process, and in particular for the substantive level
(Filzmoser et al, 2016) of offers and concession in a negotiation process.
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Formal models of bargaining based on economics and game theory are fre-
quently classified into axiomatic and strategic models (e.g., Sutton, 1986). The
origins of axiomatic bargaining models go back to Nash’s seminal work on the
bargaining problem (Nash, 1950). They are linked to cooperative game theory by
the assumption that any agreement reached by the bargainers is mutually binding
(Kı́bris, 2010). Axiomatic approaches define properties of a bargaining solution
which can be interpreted either descriptively as properties that the outcome of a
bargaining process between rational parties typically will fulfill, or from a prescrip-
tive point of view as properties of bargaining outcomes that are socially desirable
(Kı́bris, 2010; Thompson, 1994). Although Nash’s axioms have been criticized in
literature and many different axiomatic solutions fulfilling alternative sets of ax-
ioms have been proposed in the meantime (for a survey, see e.g., Kı́bris, 2010),
the Nash bargaining solution still remains a widely used concept.

Axiomatic models are only concerned with properties of the outcome of a
bargaining process, but not with the process by which this outcome is reached.
This question is at the focus of strategic models of bargaining, which are typically
based on non-cooperative game theory (Chatterjee, 2010; Sutton, 1986). One of
the most popular strategic models is the bargaining model by Rubinstein (1982),
which assumes that two parties can make alternating offers about the distribution
of a fixed asset. Each party can either accept the opponent’s offer, or, after some
delay, make a counteroffer. Delays between offers are an important element in
this model, since the model assumes that each party has a time discount rate
and thus prefers to receive outcomes sooner rather than later. Consequently, the
model predicts that already the first offer will be accepted, and that the allocation
of outcomes will reflect the parties’ discount rates. Only extensions of the model
considering e.g. incomplete information lead to bargaining processes that actually
involve multiple rounds (Chatterjee, 2010).

There is a close relationship between axiomatic and strategic models. An im-
portant question concerning strategic models is whether the bargaining process
leads to an outcome corresponding to some axiomatic solution. This relationship
between bargaining processes and solutions is also the focus of the current paper.
If a bargaining process consists of several steps (unlike the basic version of the Ru-
binstein model), the structure of the search space becomes an important issue that
so far has been rarely addressed in literature. Axiomatic bargaining solutions are
typically characterized as solutions which maximize some function, in the case of
the Nash bargaining solution, the product of both parties’ utilities. If this function
has multiple local optima, a bargaining process might end in a local rather than
the global optimum. So even if a process can be shown to maximize a function
of which the (global) maximum corresponds to an axiomatic bargaining solution,
one cannot be sure that the process actually leads to the axiomatic solution if it
may converge to a local optimum.

In the present paper, we address this question for the Nash bargaining func-
tion and study for which types of utility functions multiple local optima of the
Nash objective function might exist that could lead a bargaining process to miss
the Nash bargaining solution. Although this question might affect any process
leading to the Nash bargaining solution, we specifically motivate our study by a
particular process model, the Zeuthen-Hicks bargaining model (Harsanyi, 1956;
Bishop, 1964). This model, which we will explain in detail in section 2, actually
precedes the Rubinstein (1982) model and formalizes even earlier descriptions of
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the bargaining process. One specific property of this model is that it describes a
process consisting of several steps, that ultimately maximize the product of both
parties’ utilities (or more precisely the product of increases in utilities above the
disagreement point). Thus, it will converge to the Nash bargaining solution if a
unique optimum exists. Although this model makes clear predictions about which
party makes a concession as well as the size of concessions, it has been rarely tested
empirically (for one exception, see Fandel, 1985) and it has also not been much
extended in theoretical research. For example, the initial paper by Harsanyi (1956)
is cited less than 200 times according to Web of Science, and only few of these ref-
erences deal with the actual bargaining process that the model describes. Besides
the assumption of a specific and mechanical psychological process of the parties,
other limitations of this model include the assumption that both parties are ex-
pected utility maximizers who have perfect information about the probability that
an offer is rejected, which is unlikely in practice.

Nevertheless, the Zeuthen-Hicks bargaining model is one of the few models for
which the question of convergence has to some extent already been discussed in
literature. Since the model involves a comparison of offers to the disagreement
outcome, the process might fail to converge to a unique solution if the two parties’
perceptions of the disagreement outcome are different (Crawford, 1980). Saraydar
(1971) pointed out the impact that different starting offers have on the process:
If parties lack information of their opponent’s preferences, the choice of a starting
offer is not trivial and it could even happen that parties choose a starting offer
that is worse to them than the Nash solution. In that case, they actually should
make reverse concessions (increase their demands) to reach the Nash solution.

Characteristics of the utility functions and the resulting bargaining set have
been studied by Saraydar (1971), who explicitly refers to the assumption that
the utility functions of both parties are concave, and Coddington (2010), who
showed that if the efficient frontier of the bargaining set in utility space is not
convex, the process might fail to converge or the solution may be indeterminate.
However, the question of how multiple local optima of the Nash objective function
are related to characteristics of the bargainer’s utility functions has not yet been
addressed. In our view, this question is particularly important, since the existence
of multiple local optima might not only affect the Zeuthen-Hicks model, but also
other strategic bargaining models that supposedly converge to the Nash bargaining
solution such as a sequential demand game (Thompson, 1994), or modifications of
the Rubinstein game (Chatterjee, 2010).

We therefore study the existence of different local optima for different types of
preferences. In particular, we focus on preferences that deviate from the classical
assumption of decreasing marginal utility, by considering for example reference
point effects as proposed in Prospect Theory (Kahneman and Tversky, 1979).
Since there is considerable empirical evidence that negotiators do not always have
concave utilities (Vetschera, 2006, 2007), studying the effects of non-standard pref-
erences on existence of multiple local optima and thus the viability of the Zeuthen
Hicks bargaining model or similar models is important for the applicability of such
models to actual negotiations. This obviously not only concerns the suitability of
these models as descriptive models of the bargaining process, but also their useful-
ness as tools to support negotiators, e.g. as part of electronic negotiation support
systems (Kersten and Lai, 2010).
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The remainder of the paper is structured as follows: In Section 2, we describe
the Zeuthen-Hicks bargaining model in more detail and illustrate the existence of
multiple local optima. Section 3 provides analytical results for some specifications
of utility functions, which are complemented by a simulation study using more
general classes of functions in Section 4. A discussion of results and an outlook on
future research in Section 5 conclude the paper.

2 Model framework

2.1 The Zeuthen-Hicks two-party bargaining model

The Zeuthen-Hicks bargaining model is based on an analysis of the successive
offers that two parties make during a bargaining process. We refer to the two
parties as Buyer (B) and Seller (S), but the reasoning applies to other two-party
negotiations over a single issue, provided that the parties have opposite preferences
(e.g., management vs. union bargaining over salary increase). The outcome of the
bargaining process should be a value xfinal (the final “price”). The Buyer prefers
lower values (its utility function uB(.) is monotonically decreasing) and the Seller
prefers higher values (its utility function uS(.) is monotonically increasing), but
we do not make further assumptions about differentiability or other properties of
the utility functions:

uS(x+ δ) ≥ uS(x) ∧ uB(x+ δ) ≤ uB(x),∀δ > 0 (1)

Let us examine the problem from the Buyer’s perspective. Within each bar-
gaining step, the Buyer can decide whether to accept the Seller’s offer xS or make
a counteroffer xB . If the opponent’s offer is accepted, the bargaining process ends
with xfinal = xS . If a counteroffer is made, there is the risk that the opponent
terminates the bargaining process, leading to a disagreement outcome d. In the
Zeuthen-Hicks bargaining model, this uncertainty about the opponent’s reaction
is expressed by a probability. Let pS(xB) denote the probability (estimated by
the Buyer) that the Seller will reject an offer xB . Since the Seller prefers a higher
price, pS(xB) is a monotonically decreasing function in xB . The Buyer will make
offer xB only if the expected utility of this gamble is greater than the utility of
accepting the Seller’s offer xS :

pS(xB)uB(d) + (1− pS(xB))uB(xB) > uB(xS) (2)

where uB denotes the Buyer’s utility function for outcomes. Note that this for-
mulation assumes that rejection of one party’s offer leads to a termination of the
negotiation. Here we do not consider extensions of the model that explicitly dis-
tinguish between that case and a stalemate in which both parties hold out on their
offers for a prolonged time (Wagner, 1979). From (2), we can compute a critical
rejection probability for the Buyer as

p∗S =
uB(xB)− uB(xS)

uB(xB)− uB(d)
(3)

As long as pS(xB) < p∗S , the Buyer is willing to take the risk of making a counter-
offer. Therefore, a higher p∗S indicates a stronger bargaining position of the Buyer.
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Similarly, a critical probability p∗B concerning the Buyer’s reaction to offer xS can
be computed from the Seller’s perspective:

p∗B =
uS(xS)− uS(xB)

uS(xS)− uS(d)
(4)

The central assumption of Zeuthen-Hicks bargaining is that the party with the
higher critical probability can afford to run more risks and therefore is less inclined
to accept the offer from the counterpart (Harsanyi (1956) notes this assumption
can be derived from a set of assumptions that include perfect knowledge and
expected-utility maximization, which can be viewed as practical limitations of this
model; this model is also not considering costs incurred for elapsed time in the
negotiation). According to the model, the party who has a lower critical rejection
probability will adjust its offer so that its own critical probability exceeds that of
the opponent. In other words, the Buyer will try to establish

p∗S > p∗B (5)

and the Seller vice versa. After substituting (3) as well as (4) and some simplifi-
cations, (5) is equivalent to

(uB(xB)− uB(d))(uS(xB)− uS(d)) > (uB(xS)− uB(d))(uS(xS)− uS(d)) (6)

Once the Buyer has the higher critical probability, the Seller will adjust its offer to
gain the lead again, so in the course of the negotiation, the actions of both parties
will lead to maximization of

n(x) = (uB(x)− uB(d))(uS(x)− uS(d)) (7)

which is the function that is also maximized in the Nash bargaining solution.
Note that in order to achieve convergence to the Nash bargaining solution, it is
not necessary that both parties have full information about each other’s utility
functions, the model only requires the local information about utilities that is
necessary to determine the concession to be made (Wagner, 1979).

The main questions addressed in this work are whether the successive adjust-
ments of offers to increase the Nash product always lead to regular concessions in
which one party reduces its own utility in favor of the other party’s utility and
whether this process will converge to a global optimum or end in a local optimum.
We assume that a trade is beneficial, i.e., the Buyer’s valuation of the good being
traded is higher than the Seller’s. Without loss of generality, we set the Seller’s
valuation to zero and the Buyer’s to one, which means that the two parties basi-
cally bargain about how to split the surplus of one that is created by the trade. If
bargaining fails, no trade takes place and no value is created, and therefore we con-
sider the disagreement outcome for both parties to be zero (uB(d) = uS(d) = 0),
which allows us to omit the disagreement outcome in (7).

The bargaining process will converge to a global maximum, and both parties
will in their respective steps make regular concessions if the function

n(x) = uS(x) · uB(x) (8)

has a unique maximum at some price xN , and is monotonically increasing for
x < xN and monotonically decreasing for x > xN , i.e., if n(x) is quasiconcave. In
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such conditions, when a party makes an offer that increases the product in (8),
then this party is sure that it is moving in the direction of the global maximum.
Otherwise, if n(.) is not quasiconcave, situations like those depicted in Figure 1
might arise. Suppose that, in the situation depicted on the left part of Figure 1,
the Seller was initially asking for price x0 = 1 and a Buyer eager to close a deal
offered x1 = 0.45. Then, p∗S > p∗B and to reverse this inequality the Seller would
have to at best offer x2 = 0.54. To restore p∗S > p∗B by making a regular concession,
the Buyer would now offer x3 = 0.47, and so on, until they would eventually reach
an agreement at the local optimum x∗ = 0.50. But the reader may note that this is
not the global maximum. In such situations, moving towards the global maximum
would not necessarily imply a concession: instead of moving from x1 = 0.45 to
x3 = 0.47, the Buyer might have restored p∗S > p∗B by decreasing the price offered.
But this party might not be aware of this, even if it had perfect information about
both utility functions in the neighborhood of its offer.

Fig. 1 Illustrative examples with multiple local optima

3 Analysis of specific functions

This section presents results concerning the quasiconcavity of the Nash product
n(x) = uS(x)uB(x) for some families of functions. First, we show that n(x) is
quasiconcave if the Buyer’s and the Seller’s utilities are concave. Next, we show
that two well-known continuous and convex utility functions, the exponential and
the power functions, also lead to a quasiconcave n(x). Finally, we show that if
the utilities are piece-wise linear then n(.) might not be a quasiconcave function,
providing a characterization for the cases where this property holds.
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3.1 Concave utility functions

Let us analyze first the case where uB and uS are both concave. This is the case
of well-known utility functions such as the logarithmic function or the negative

exponential function (e.g., uS(x) = 1−e−αx
1−e−α , with α > 0) and corresponds to the

common economic assumption of decreasing marginal utilities.

We will show that in these conditions the product of the utilities (8) is a
quasiconcave function. As a preliminary step, note that log n(x) = log uS(x) +
log uB(x) is a concave function in the domain where uS(x) > 0 and uB(x) > 0,
since

a) both log uS(x) and log uB(x) are concave when uB and uS are concave (the
logarithm being a concave function as well);

b) the sum of two concave functions is a concave function.

To show that n(.) is quasiconcave amounts to demonstrate that:

n(x) > n(y)⇒ n(λx+ (1− λ)y) ≥ n(y), ∀λ ∈ [0, 1] (9)

As we are working with non-negative utilities, if either uS(y) = 0 or uB(y) = 0
then n(y) = 0 and (9) trivially holds. In the domain where both utilities are strictly
positive, n(λx+ (1− λ)y) < n(y) would imply

log n(λx+ (1− λ)y) < log n(y) < log n(x), (10)

as the logarithm is a strictly increasing function. However this cannot be the true
because log n(.) is concave. Therefore, n(.) is quasiconcave.

3.2 Exponential functions

Let us now consider the utilities of the Seller and the Buyer in the domain [0, 1]
are exponential as defined next, for some positive values s, b > 0:

uS(x) = (esx − 1)/cS (11)

uB(x) = (eb(1−x) − 1)/cB (12)

with cS = es − 1 and cB = eb − 1 denoting two positive constants. Thus, for any
s > 0, the Seller’s utility increases from uS(0) = 0 to uS(1) = 1, whereas for any
b > 0 the Buyer’s utility decreases from uB(0) = 1 to uB(1) = 0.

We can write the product of utilities as:

n(x) = uB(x)uS(x) = (eb(1−x) − 1)(esx − 1)/(cScB)

This is a differentiable function with derivative

n′(x) =
1

cScB

[
sesx(eb(1−x) − 1)− beb(1−x)(esx − 1)

]
=

1

cScB

[
sesxuB(x)− beb(1−x)uS(x)

]



8 Luis C. Dias, Rudolf Vetschera

Since esx = cSuS(x) + 1 and eb(1−x) = cBuB(x) + 1 we can rewrite:

n′(x) =
1

cScB
[s(cSuS(x) + 1)uB(x)− b(cBuB(x) + 1)uS(x)]

=
1

cScB
[scSuS(x)uB(x) + suB(x)− bcBuB(x)uS(x)− buS(x)]

=
1

cScB
[scSn(x) + suB(x)− bcBn(x)− buS(x)]

We will now show that n(x) is quasiconcave for any s, b > 0, i.e., even though
both uB(x) and uS(x) are convex functions. First, we can note that n′(0) = s

cScB
>

0 and n′(1) = −b
cScB

< 0. Function n(x) is initially increasing (positive derivative)
then it attains a maximum and becomes decreasing (negative derivative). We need
to show, however, that there cannot be multiple local maxima, i.e., that once n(x)
starts decreasing it will not increase again. To show this let us analyze the following
function in the domain ]0, 1[ where n(x) > 0:

n′(x)

n(x)
=

1

cScB

[
scS +

s

uS(x)
− bcB −

b

uB(x)

]
The above function is decreasing with x, because uS(x) is increasing and uB(x)

is decreasing. Therefore when n′(x)
n(x) becomes negative, it cannot become positive

for larger values of x. But since n(x) is strictly positive in the domain ]0, 1[, this
means that when n′(x) becomes negative, it cannot become positive for larger
values of x. Therefore, this demonstrates the quasiconcavity of n(x): once n(x)
starts decreasing, it cannot increase for larger values of x.

3.3 Power functions

Consider the case of two individuals with utility function of the shape u(x) = xα

(which can be convex or concave depending on whether α is greater to or lower
than 1). For any α > 0, such a function grows from u(0) = 0 to u(1) = 1. Let us
then define the utilities of the Seller and the Buyer in the domain [0, 1] as follows,
for some positive values s, b > 0:

uS(x) = xs

uB(x) = (1− x)b

We can write the product of utilities as:

n(x) = uB(x)uS(x) = xs(1− x)b

This is a differentiable function in ]0, 1[ with derivative

n′(x) = sxs−1(1− x)b − b(1− x)b−1xs

= xs−1(1− x)b−1[s(1− x)− bx]

We will now show that n(x) is quasiconcave, for any s, b > 0, i.e., even when
both uB(x) or uS(x) are convex functions. As in the previous section, we need to
show that there cannot be multiple local maxima, i.e., that once the n(x) starts
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decreasing it will not increase again. In other words, if n′(x0) is negative for some
x0 ∈]0, 1[, then n′(x) is still negative for x > x0. To see this, let us note that
xs−1(1 − x)b−1 > 0 for x ∈]0, 1[, which means that the sign of s(1 − x) − bx will
determine the sign of n′(x). Therefore, if n′(x0) is negative for some x0 ∈]0, 1[, then
s(1 − x0) − bx0 must also be negative. Since s, b > 0, s(1 − x) − bx decreases with
x, implying that s(1− x)− bx < 0 and consequently n′(x) is negative for x > x0.

3.4 Piecewise linear functions

Let us now analyze the case where uS(x) and uB(x) are piecewise linear func-
tions, one increasing in x (Seller’s utility), uS(x), and one decreasing in x (Buyer’s
utility).

Let us consider a point x = b, possibly a breakpoint in uB(x) and/or uS(x).
Let u1 = uS(b) and let u2 = uB(b). Since uS(x) and uB(x) are piecewise linear
functions, in the vicinity of b we can write, for some slopes lS , rS , lB , rB ≥ 0:

uS(x) =

{
u1 − lS(b− x), if x ≤ b
u1 + rS(x− b), if x ≥ b (13)

uB(x) =

{
u2 + lB(b− x), if x ≤ b
u2 − rB(x− b), if x ≥ b (14)

Then, up to b we have:

n(x) = [u1 − lS(b− x)].[u2 + lB(b− x)] (15)

n′(x) = lS [u2 + lB(b− x)]− lB [u1 − lS(b− x)] (16)

n′′(x) = −2lS lB < 0 (17)

From b onwards:

n(x) = [u1 + rS(x− b)].[u2 − rB(x− b)]
n′(x) = rS [u2 − rB(x− b)]− rB [u1 + rS(x− b)]
n′′(x) = −2rSrB < 0

This brief analysis allows seeing that the n(x) is quasiconcave everywhere ex-
cept possibly at certain breakpoints. Indeed, there is no minimum in any segment
between two breakpoints, where n(x) is the product of two positive linear func-
tions, leading to n′′(x) < 0. To verify if a product of piecewise linear functions,
n(.), is quasiconcave therefore amounts to check only the breakpoints: observ-
ing the one-sided derivatives at each breakpoint x = b, on the left side we have
n′(b) = lSu2 − lBu1 and on the right side of b we have n′(b) = rSu2 − rBu1. There
exists a local minimum of n(x) at b if and only if lSu2− lBu1 ≤ 0∧rSu2−rBu1 ≥ 0
(one of the inequalities being strict). Thus, n(x) is quasiconcave at b if and only
if:

lSu2 > lBu1 ∨ rSu2 < rBu1 ∨ (lSu2 = lBu1 ∧ rSu2 = rBu1) (18)
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Let us note that if lS ≥ rS and lB ≤ rB then (18) holds. Therefore, for b ∈]0, 1[
to be a local minimum requires lS < rS (uS(x) convex at b) or lB > rB (uB(x)
convex at b). This means that not all breakpoints need to be checked: to verify if a
product of piecewise linear functions, n(.), is quasiconcave it is sufficient to check
if condition (18) holds for all breakpoints in uS(x) where this function is convex
and all breakpoints in uB(x) where the latter is convex.

4 Simulation analysis

4.1 Motivation

The analytical models in the preceding section have provided several cases in which
a unique global optimum of n(x) exists. However, the proofs given there cannot be
extended to other types of utility functions. For example, the proof in subsection
3.1 depends on the assumption that both utility functions are concave and does
not necessarily hold otherwise. Likewise, we could show only for a few convex
utility function that n(x) is quasiconcave. This leaves two questions open:

1. Do multiple (local) optima exist for all functions that do not fall into the classes
studied in Section 3?

2. If not, which properties of the utility functions make occurrence of multiple
local optima more likely?

To answer these questions, we resort to a simulation study, in which we analyze
the occurrence of multiple local optima for different, randomly generated utility
functions. In this study, we still focus on specific classes of functions, which are
particularly relevant as models of preferences. Obviously, in a buyer-seller setting,
utility functions are monotonically increasing (for the seller) or decreasing (for the
buyer) functions of price. Furthermore, we consider two specific shapes.

The first class are convex functions. Although risk aversion (and thus concave
utility functions) is a common phenomenon, there are also decision makers who
are risk seeking even for gains (Schoemaker, 1990; Pennings and Smidts, 2003)
and thus have a a convex utility function.

Furthermore, we also consider s-shaped functions, as proposed for example in
Prospect Theory (Kahneman and Tversky, 1979). Prospect Theory postulates that
utility functions (which are called value functions in Prospect Theory) are convex
for outcomes below and concave for outcomes above a reference level. There is
considerable empirical evidence also with respect to expected utility theory that
decision makers are risk seeking in the domain of gains, and risk averse in the
domain of losses (Schoemaker, 1990; Rieger et al, 2015). In contrast to expected
utility theory, Prospect Theory defines “gains” and “losses” not in terms of positive
or negative changes to final wealth, but relative to a reference point. The former
interpretation would mean that in the present problem, all outcomes are seen as
gains since there is no change if no trade takes place, and, by limiting prices to
the zero-one interval, no party is worse off if trade takes place either. However,
we consider it more realistic to assume that each party, at the beginning of the
bargaining process, has some expectations about the outcome, for example a price
that was reached in previous exchanges of the same or a similar good. For the
Seller, a price below that expectation might be considered as a loss (relative to the
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reference point), and a price above the reference point as a gain. For the Buyer,
the opposite holds.

Prospect Theory not only assumes that utility functions are convex below and
concave above the reference level, it also makes more specific assumptions about
the shape of the utility function. In particular, it is assumed that decision makers
are loss averse, i.e. that “losses loom larger than gains” (Kahneman and Tversky,
1979, p.279) and thus the utility function is steeper in the loss domain (see section
4.3 for a formal characterization of this property).

The simulation is based on the pointwise generation of utility functions of these
general types, which are then multiplied at the supporting points to form n(x). By
comparing each such point of the product to neighboring points, we can identify
local maxima and study their number and properties.

4.2 Generation of utility functions

The main goal of the simulation is to study the effect of different shapes of the
two players’ utility functions on the occurrence of multiple local optima of n(x).
Since we want to approximate continuous functions, we need to generate a large
number of points on the utility function in the interval under consideration. As
already stated, we assume without loss of generality that payoffs as well as utilities
are scaled to the [0, 1]-interval.

For simplicity, we present the algorithm we are using to generate arbitrary
utility functions of a given shape for the case of convex functions. An s-shaped
utility function can be obtained by generating a convex function for one part of
the domain, and a concave function for the remainder. The concave part can be
generated by a straightforward adaptation of the algorithm, or by generating a
convex function and then taking its mirror image.

For this exposition, we use the following notation: We represent the utility
function by m+ 2 points, which are equally spaced on the x axis representing the
price. We denote the values on the x-axis by X = (x0 = 0, x1, . . . , xm, xm+1 = 1),
and the corresponding utility values by U = (u(xi)), where u0 = 0 and um+1 = 1.
Thus, m additional utility values u1, . . . um have to be randomly generated.

Since we want to study arbitrary utility functions of the specific shapes, it
is important that the generated functions cover the set of possible functions as
completely as possible. Any point below the diagonal of the unit square (i.e., any
point for which u(x) ≤ x) can be a point on a convex utility function. Therefore,
the utility functions we generate should cover the entire lower triangle of the two
dimensional unit square.

This requirement rules out the straightforward approach to generate random
convex functions, which would proceed as follows: Generate m random values on
the zero-one interval and sort them. Denote the smallest value by r1, and the
largest by rm. Then assign

ui =
i∑

j=1

rj/

m∑
j=1

rj (19)

While this approach obviously generates a convex function, all functions generated
by this approach will be very similar. The value assigned to u(x1) is always the
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smallest of m randomly generated values, and thus likely to be very similar across
runs, and this similarity continues along the entire function.

We therefore use a different approach, which is similar to the bisection method
for arbitrary utility functions described in Dias and Vetschera (2018). In contrast
to Dias and Vetschera (2018), we here generate utility values for a large number
of equidistant points, and not for a small number of predefined attribute values,
and we only generate functions of a specified shape.

In step k of the algorithm, the interval [0, 1] is divided into 2k subintervals of
equal length. The function is evaluated at the endpoints of these subintervals.

The algorithm proceeds as follows. In the first step k = 1, m = 1, X1 =
(0, 1/2, 1) and U1 = (0, r, 1), where r is an arbitrary utility value r < 1/2 (to keep
a convex shape). In subsequent steps k ≥ 2 of the algorithm, 2k−1 new points
are generated so that at the end of step k, the utility function is represented by
2k + 1 points (including the end points u(0) = 0 and u(1) = 1). At the beginning
of each step, new vectors Xk and Uk of length 2k + 1 are created and existing
points are copied to the even-numbered positions in these vectors, i.e. xk2i = xk−1

i

and uk2i = uk−1
i , ∀i ∈ {1, . . . , 2k−1 − 1}. For each of these existing points, a slope

sk2i between the slopes of the neighboring intervals is randomly generated:

sk2i = wk2i · (u
k
2i − u

k
2i−2) + (1− wk2i) · (u

k
2i+2 − u

k
2i) ∀i ∈ {1, . . . , 2

k−1 − 1} (20)

where wk2i is a random number uniformly distributed between zero and one. Since
all intervals are of equal length, we can represent the slope by the difference of
utility values and sk2i is xk2i − x

k
2j−2 times the actual slope.

New points are placed in the middle of the intervals between existing points
and receive odd numbers:

xki = (xki−1 + xki+1)/2 ∀i ∈ {1, 3, . . . 2k − 1}. (21)

For each of these points, a random utility value is generated between the lower
bound

lki = max
(
uki−1 + ski−1/2;uki+1 − s

k
i+1/2

)
∀i ∈ {1, 3, . . . 2k − 1} (22)

and the upper bound

bki = (uki−1 + uki+1)/2 ∀i ∈ {1, 3, . . . 2k − 1} (23)

as
uki = qki · l

k
i + (1− qki )bki ∀i ∈ {1, 3, . . . 2

k − 1}. (24)

In (24), qki is a random value drawn form a uniform distribution in [0, 1]. The utility
value uki thus is constrained from above by the line connecting the neighboring
points and from below by the two slopes at the neighboring points. This ensures
that the slopes are increasing and the utility function has a convex shape. Figure
2 illustrates this approach graphically.

To avoid that the resulting function becomes too close to linear, the random
values used in (24) can be drawn from a subset of the zero-one interval. In the
simulations described below, we used the interval [0.25, 0.75] for variable wkj in

equation (20) and the interval ([0.8, 1] for qki in equation (24). The high value of
qki in equation (24) guarantees a markedly convex shape of the function. Allowing
uki to be close to the straight line connecting uki−1 and uki+1 would force the entire
function to be close to linear in that interval.
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Fig. 2 Random generation of a convex function

4.3 Experimental setup

As explained in the introduction to this section, we want to study three types of
utility functions:

1. Convex utility functions;
2. s-shaped utility functions based on the assumption of loss aversion, which use

a concave function u(x− r) for x ≥ r and −λu(r − x) for x < r, where λ > 1 is
a parameter measuring loss aversion;

3. General s-shaped utility functions, which are composed of a concave function
u1(x) for values x > r above a reference level r and a different convex function
u2(x) for x < r.

For all functions, we used 8,196 (= 213) intervals. We used the following ap-
proaches to generate the involved concave or convex functions:

1. A power function u(x) = xα;
2. A piecewise linear function generated by the algorithm described in 4.2 for

k = 2 (i.e. 4 segments), using linear interpolation within these segments;
3. A general convex or concave function generated by the above algorithm for

k = 13, i.e. each point was individually generated.

Combining these three function types with the three shapes gives 9 types of utility
functions. Note that for the case of a convex power function, we have already shown
in section 3 that n(x) has only one (global) maximum. This already known result
helps to verify correctness of the simulation implementation.

For each such setting, we generated 100,000 problems consisting of one mono-
tonically decreasing utility function for the Buyer and one monotonically increasing
utility function for the Seller. For the two types of s-shaped functions, we randomly
generated reference points for buyers and sellers in the zero-one interval, which
mark the boundary between the convex and the concave parts. All reference points
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were rounded to the nearest subinterval boundary (multiple of 1/8196) so that each
s-shaped utility function was evaluated also exactly at the corresponding reference
point to study how often maxima coincide with the reference point of one party.
For buyers, values x < r are considered as gains and therefore formed the concave
part, and values x > r (losses) are the convex part. For sellers, gains and losses
are reversed.

4.4 Results

Table 1 provides a first overview of the average number and distribution of max-
ima for the different utility functions. As we have already shown analytically, the
convex power function generates a unique maximum. However, this is not true for
convex functions in general, in particular the piecewise linear function with just
four segments has the highest average number of maxima of all functions studied.
According to a Wilcoxon test, all differences between different shapes (within the
same type) and different types (within the same shape) are significant.

Table 1 Distribution (in %) and average number of maxima for different utility functions

N. Maxima
Shape Type 1 2 3 > 3 Mean
Convex Piecewise 25.0 43.6 12.2 19.3 2.258

General 81.8 10.3 4.1 3.9 1.346
Power 100.0 0.0 0.0 0.0 1.000

Loss aversion Piecewise 84.3 12.4 3.1 0.2 1.193
General 78.0 12.0 4.8 5.3 1.434
Power 79.7 18.9 1.5 0.0 1.218

S-Shaped Piecewise 72.8 21.1 5.7 0.4 1.337
General 63.7 22.6 6.9 6.8 1.640
Power 63.5 32.0 4.4 0.0 1.409

Reference points are a characteristic feature of s-shaped utility functions. The
question whether the location of the Buyer’s and the Seller’s reference points has an
impact on the number of maxima is therefore of particular interest when studying
these utility functions. Figures 3 and 4 show the number of maxima depending on
the locations of both reference points. The two axes correspond to the location of
the reference point for the Seller on the horizontal axis and the reference point of
the Buyer on the vertical axis. In the area above the main diagonal of this square,
the reference point for the Buyer is above that of the Seller, this means there exists
an interval of prices which fulfill both expectations (since the Buyer expects to pay
more than the Seller expects to receive).

Both figures show that multiple maxima are much more likely to occur when
rS > rB , i.e., when the expectations of both sides are not compatible. In the
converse case, when expectations are compatible, unique maxima are much more
common. For the power function and the piecewise linear function exhibiting loss
aversion, our simulation results contain no case with more than two maxima in
which expectations are compatible, and the cases with two maxima happen only
in extreme situations in which both parties have very high or both have very low
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Fig. 3 Location of reference points and number of maxima (green=1, yellow=2, red ≥ 3),
utility function with loss aversion
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Fig. 4 Location of reference points and number of maxima (green=1, yellow=2, red ≥ 3),
general s-shaped utility function

reference points (e.g., the situation depicted on the right part of Figure 1). These
are also the regions in which the general function exhibits some cases of three or
more maxima even for compatible expectations.

For general s-shaped functions, the situation is somewhat different. There are
in general more cases with multiple maxima. For the power function, cases with
three or more maxima occur at medium reference levels, when expectations are
compatible. However, in these cases, the Buyer’s reference point is only slightly
above the Seller’s reference point, so the range of prices compatible with both
parties’ expectations is rather narrow. A similar picture can be observed for the
piecewise linear function. In contrast, for the general function, multiple optima
occur mostly when both aspiration levels are extreme, as was the case for utility
functions with loss aversion.

Compatibility of expectations thus seems to be a major issue determining
whether multiple maxima of the Nash objective function exist. Table 2 analyzes
this relationship in more detail.

The distributions of the number of maxima differ drastically when expectations
are compatible and when they are not. For utility functions exhibiting loss aversion,
the fraction of problems with a unique maximum increases from around 60% to
well over 90%, and an even more dramatic change can be observed for general
s-shaped utility functions. A χ2-test shows that these differences are all highly
significant. Still, it has to be noted that compatibility of expectation does not
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Table 2 Distribution of the number of maxima (in %) according to compatibility of expecta-
tions

Number of maxima
Shape Type Compatible 1 2 3 >3 χ2

Loss aversion Piecewise No 68.7 24.6 6.2 0.5 *** 18368.9
Yes 99.9 0.1 0.0 0.0

General No 59.6 21.7 8.8 10.0 *** 19551.5
Yes 96.2 2.4 0.8 0.6

Power No 60.2 36.9 3.0 0.0 *** 23545.3
Yes 99.2 0.8 0.0 0.0

S-Shaped Piecewise No 53.3 35.1 10.9 0.7 *** 19694.9
Yes 92.5 7.0 0.5 0.0

General No 38.3 37.2 12.0 12.5 *** 28164.4
Yes 89.1 8.0 1.8 1.1

Power No 34.4 57.0 8.6 0.0 *** 36809.3
Yes 92.8 7.0 0.2 0.0

guarantee uniqueness of the maximum. There is still a number of cases with two,
and for the general s-shaped utility function even three or more, maxima.

Compatibility of expectations not only changes the number of maxima, but also
where the maxima are located. We distinguish between maxima that are located
in the interval between the two reference points, which in the case of compatible
expectations is also the range of prices that fulfills both expectations. In the case of
incompatible expectations, this is the range of prices in which the expectations of
neither party are fulfilled. The second group of possible locations are those prices
that are above or below both reference points, i.e., outside that middle region.
Here expectations of one party are fulfilled and expectations of the other party
are not fulfilled. Finally, we consider maxima that are located exactly at one of
the reference points.

Loss aversion General s-shaped

Fig. 5 Distribution of locations of maxima according to compatibility of expectations (indi-
cated by “:Yes” or “:No” after the name of the utility function)

Figure 5 shows how the distribution of maxima into these classes changes when
expectations are compatible compared to when they are incompatible, considering
loss-aversion (left) and general s-shaped (right) utility functions. Compatibility
of expectations in all cases drastically reduces the number of maxima that occur
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outside the interval between reference points. For the general and the power func-
tion, the number of maxima in between the reference points increases, partially
offsetting the large decrease in maxima outside that interval. For the piecewise
linear functions, it decreases, but the decrease in the number of maxima outside
the interval is smaller, so the total decrease is about the same for all utility func-
tions. In case of compatibility, there are also fewer maxima located exactly at a
reference point.

5 Conclusions

The Zeuthen-Hicks bargaining model is a strategic bargaining model that describes
a negotiation process between two parties leading to an axiomatic solution via
successive concessions. Since each step in the process increases the product of
utilities, the usual argument in literature is that it will end at the Nash bargaining
solution, even if the parties have only local information about the utility functions.
However, depending on the shape of the utility functions, the outcome may be a
local optimum, rather than the true Nash solution (the global maximum).

In the present paper, we address this potential problem of convergence to a
local optimum and thus missing the true Nash solution. This problem might not
only affect the Zeuthen-Hicks bargaining model, but also any other strategic model
that utilizes only local information and claims that the process will converge to
the Nash bargaining solution. Our work therefore emphasizes a potential problem
in linking strategic and axiomatic approach to bargaining, that so far has received
little attention in literature.

In this work, we were able to characterize some types of utility functions for
which the product of utilities has a single local maximum, which is therefore the
global maximum: if the utility functions are both concave, or if they are both
exponential functions or both power functions (even if convex), then there is a
single optimum and the Nash solution will be reached. We also characterized the
conditions for this to occur if the functions are piece-wise linear.

However, there are other, reasonable types of utility functions for which the
possibility of multiple local optima exists. We therefore applied Monte-Carlo sim-
ulation to study the cases of general convex function and s-shaped functions and
explore under which conditions multiple local optima are most likely to occur for
such functions. For this purpose, we devised a method that generates a wide range
of different functions with a given curvature (concave, convex, or s-shaped).

The simulations showed that the occurrence of 2, 3 or even more local optima
is not uncommon, particularly for the 4-segment piece-wise linear and the gen-
eral utility functions. Concerning shape, s-shaped functions have multiple local
optima more frequently than convex functions. Considering the reference points
in s-shaped functions, which reflect a priori expectations of each party, the results
indicate that the relative location of these reference points has a significant impact
on the number and location of local optima. When the expectations are compati-
ble, unique optima are much more common. Nevertheless, the compatibility of the
expectations does not guarantee the uniqueness of the optimum. When expecta-
tions are compatible, the optima tend to be located in-between the two reference
points, but sometimes they can be located at one of them, or even outside the
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interval defined by the reference points. When the expectations are incompatible,
the number of maxima located outside that interval increases.

Our results provide some insights pertaining to Zeuthen-Hicks and similar bar-
gaining processes, assuming the parties (or a mediator) have only local information
about the utility function. For risk neutral or risk averse parties, the concavity of
their utility functions ensures that any local maximum of the product of utilities
will be the global maximum. The same happens if both parties have an exponen-
tial or a power utility function, even if one or both are convex. In these cases,
a concession aiming at increasing n(.) will surely lead the parties closer to the
Nash bargaining solution. If utilities are not concave, then a party might move
farther away from the Nash solution (the global optimum) even when it makes a
concession increasing n(.). This can happen when the offer goes in the direction of
a local optimum inferior to the global maximum, as illustrated in Figure 1. Even if
the parties perceive how the utility varies for both of them in the neighborhood of
the offers on the table, they have no way of knowing they are converging towards
a sub-optimal solution. If the parties (or a mediator) know their utility functions
are s-shaped, and in particular if they have incompatible reference points, then
they should be aware that multiple local optima are very likely to exist.

There are several possibilities how parties can reduce the danger of being
trapped in a local optimum. One possibility is to make ambitious initial offers,
surely below (for the Buyer) and surely above (for the Seller) the Nash global max-
imum. Subsequently, parties should make concessions in relatively small steps, in
order to have a low risk of jumping from an offer x such that n′(x) > 0 (considering
the Buyer’s perspective) to an offer x+δ that also has n′(x+δ) > 0, without realiz-
ing there was a maximum (possibly the global maximum) in-between x and x+ δ.
Another possibility is to include randomization, to make sure that a large fraction
of the search space is sampled and the process “jumps out” of a possible local
optimum. However, such a strategy would need careful explanation and under-
standing by both parties, otherwise unmotivated and surprising changes in offers
could be considered as a potentially unfair bargaining tactic aiming at confusing
the opponent.

Our research therefore provides a first step towards understanding the poten-
tial problems that arise out of local optima in axiomatic bargaining solutions, and
the implications such local optimal have for the processes in strategic bargain-
ing approaches. Of course, this wider topic can be generalized to other axiomatic
solutions, and other process models. Even in the context of the Nash bargaining
solution and the Zeuthen Hicks model, there is room for additional research con-
sidering e.g. other utility functions, or additional factors that could influence the
number and occurrence of local optima. For instance, it would be interesting to
study the effects of different concession strategies (not necessarily equal for the
two parties) on the likelihood of ending the negotiation in a sub-optimal solution,
in situations such that the shape of their utility functions does not guarantee the
existence of a unique local maximum.
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