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Abstract 14 

 15 

The absence or poor preservation of vertebrae often prevent the application of the anatomical 16 

method for stature estimation. The main objective of this paper was to develop a web app 17 

based on artificial neural network (ANN) models to estimate the vertebral height of absent or 18 

poorly preserved vertebrae from other vertebrae and thus enable the application of 19 

anatomical methods. Artificial neural models were developed based on the vertebral height of 20 

vertebrae C2 to S1 of a sample composed of 56 adult male and 69 adult female individuals. The 21 

skeletons belong to the Identified Skeletal Collection of the University of Coimbra and the ages 22 

at death of these individuals ranged from 22 to 58 years old. Statistical analysis and algorithmic 23 

development were performed with the R language, R Core Team (2018).  24 

Intra- and inter-observer errors regarding the vertebral height were small for all vertebrae 25 

(<.45 mm). Significant models to estimate vertebral height were obtained for both sexes and 26 

for the sex-pooled group, although none with an R2 higher than 0.48 and 0.34 for the C2 and 27 

the S1, respectively. The root mean square error (RMSE) regarding the predicted vertebral 28 

height and the observed vertebral height was almost always smaller than 1.0 mm while most 29 

R2 values were higher than 0.6 although models with worse performances were obtained for 30 

some vertebrae located at the ends of the vertebral column (C3, L4, and L5). The ANN models 31 

have clear potential to predict vertebral height. This mathematical approach may be used to 32 

enable the application of the anatomical method for stature estimation when some vertebrae 33 

are absent or poorly preserved. The application of the ANN models can be carried out by using 34 

the new web based app SPINNE. 35 
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1. Introduction 38 

Stature is one of the four main parameters of the biological profile that can be 39 

estimated through human skeletal remains [1]. This biological parameter has relevance for 40 

forensic anthropology, since it helps narrowing the list of candidates for subsequent positive 41 

identification [2,3]. Stature is also used in the study of past populations, namely as an indicator 42 

of: i) developmental secular trends [4-8]; ii) evolutionary dynamics [9,10,11]; iii) nutritional 43 

stress [4,11,12]; and iv) health status and living conditions [4,12,13].  44 

Essentially, stature can be estimated through skeletal remains via two different 45 

methods. Dwight [14] was the first to develop an anatomical method, which was afterwards 46 

adapted by other authors such as Fully [15] and Raxter et al. [16]. This method is based on a 47 

direct reconstruction of stature by adding the measurements of all bones contributing to it 48 

(cranium, vertebral bones, femur, tibia, talus and calcaneus). The resulting value is then added 49 

to a correction factor representing the soft tissues [15-17]. On the other hand, the 50 

mathematical method is based on linear regression equations that benefit from the significant 51 

correlation between stature and, more often, long bones [16-17]. This potential has been 52 

investigated for numerous bones [18-28]. 53 

In contrast to the anatomical method, the mathematical method has the advantage of 54 

being easier to apply and much less time-consuming. However, inter-individual variability in 55 

body proportions, namely between the length of the limbs and the height of the trunk, is not 56 

taken into account by this method [15,17]. Furthermore, secular changes have been 57 

documented for stature [5-6,8,29-33] as well as for limbs proportions [10,34-35]. These 58 

changes may manifest themselves in an allometric fashion [36] and therefore impair the 59 

application of regression equations that are not specific to the population under study [37].  60 

The problem of population-specificity in stature estimation through regression 61 

equations has been known for quite some time now [20]. Stature is a multifactorial trait 62 

influenced by both genetic and environmental conditions [5,38-41]. This means that 63 

mathematical stature estimation must be preceded by age-at-death, sex and ancestry 64 

estimations [11]. Only then, regression equations may be chosen according to the 65 

characteristics of the subjects under study [42]. In archaeological collections, this problem has 66 

recently been dealt with by developing sample-specific mathematical formulae based on 67 

stature estimations obtained through the anatomical method [43-47].  68 
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The anatomical method is not affected by the problems listed above. It allows a more 69 

precise estimation and should therefore be preferentially used [15-17,48]. However, it is not 70 

free of disadvantages. Besides being more time-consuming, its application requires the 71 

presence of all bones that contribute to stature. Vertebrae represent most of these bones (24 72 

out of 29), but due to their structure and morphology, they often preserve poorly after death 73 

[49-54]. Poor vertebral presentation may have major consequences because the absence or 74 

fragmentation of even a single bone may hinder the application of the anatomical method. 75 

Therefore, although this approach allows us to obtain more precise estimations, its 76 

implementation is much more difficult to achieve than the mathematical approach.  77 

In this paper, we propose to combine both methods into one. Simply put, we 78 

investigated the potential of using artificial neural networks (ANN) to predict the height of 79 

each of the 24 vertebrae that contribute to stature by using the height of other vertebrae as 80 

independent variables. This approach would allow the estimation of the height of poorly 81 

preserved vertebrae using the height of better preserved vertebrae from the same skeleton. 82 

This study partially replicates and was inspired by previous work from Auerbach [55] who 83 

concluded that vertebral height can generally be predicted from contiguous vertebrae, either 84 

as a percentage or by using linear regression equations. According to this author, the option 85 

for one approach or another depends on the specific vertebra being predicted. The regression 86 

approach focused only on the C2, C3, C6, T1, T11, L1, and L5 vertebrae. Other authors before 87 

Auerbach [55] also tried similar approaches [17,56-57]. For instance, Sciulli et al. [57] 88 

estimated the height of missing vertebrae by averaging the heights of adjacent vertebrae. The 89 

predictions obtained through these methods had small standard errors, thus confirming their 90 

reliability. However, they can only be applied if vertebrae adjacent to the missing vertebrae 91 

are available. Expectantly, an artificial neural networks approach, based on the prediction of 92 

the height of a missing vertebra through more vertebrae rather than merely through the 93 

adjacent ones, offers more models thus increasing the applicability of method. Other 94 

advantages of ANN are that it minimizes the normalized root mean squared error for every 95 

output variable simultaneously and, contrary to regression methods such as the one used by 96 

Auerbach [55], it does not assume that the data are linear. 97 

The objectives of this paper were: i) to investigate the correlation between the heights 98 

of all vertebrae contributing to stature in a sample composed of Portuguese individuals; ii) to 99 

develop ANN models that allow to predict the height of any missing or unpreserved vertebra; 100 

and iii) to develop an app that facilitates and simplifies the implementation of those models. 101 

 102 
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 2. Material and Methods 103 

Neural networks models were developed based on the collection of identified 104 

skeletons of the University of Coimbra, henceforth designated as CEIUC [58]. This sample was 105 

composed of vertebrae from 125 adult individuals with ages ranging from 22 to 58 years old 106 

(mean = 36.1; sd = 8.8). It included 69 females with a mean age of 36.2 years old (sd = 9.3) and 107 

56 males with a mean age of 36.1 years old (sd = 8.3). All individuals were of Portuguese 108 

nationality but no further information regarding their ancestry was available.  109 

No signs of exuberant traumas or pathologies that could eventually affect 110 

measurements were present in any of the vertebrae used in this research. As described in 111 

Raxter et al. [16], the maximum vertebral height was taken in mm with a digital calliper 112 

(resolution = .01 mm) for all vertebrae from the second cervical vertebra (C2) to the first sacral 113 

vertebra (S1). Measurements are illustrated in Figure 1. The intra- and inter-observer errors 114 

were calculated by using the technical error of measurement on a random subsample of 20 115 

individuals [59-60]. The second session of measurements to assess intra-observer variation 116 

took place four weeks after the first one. 117 
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 118 

Figure 1 - Illustration of the locations at which the vertebral height measurement. (a) was 119 

taken. The antero-posterior location in superior view is also shown (b). From top to bottom: 120 

axis (C2) and another typical cervical vertebra; thoracic vertebra; lumbar vertebra; first sacral 121 

vertebra (S1). Adapted from Raxter et al. [16]. 122 
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 123 

Mean differences in vertebral height – which is here defined as the summed height of 124 

all vertebrae – between both sexes were tested by computing student’s t-tests for 125 

independent samples (the alpha level used in this study was 0.01). This test was also used to 126 

evaluate differences between two sex-pooled age groups (20-39 years old; 40-59 years-old). 127 

Depending on whether the assumptions for using parametric statistics were met, Pearson 128 

correlations (r) or Spearman’s rank correlations (rho) were calculated to assess if associations 129 

between vertebral heights of all vertebrae involved in this study were statistically significant. 130 

Finally, ANN models to estimate the height of specific vertebrae were developed by using 131 

other vertebrae as independent variables. Models were generated separately for each sex as 132 

well as for pooled sexes. 133 

Artificial neural network modelling was based on the generalized regression neural 134 

network architecture [61]. This type of network relies on a memory-based approach to 135 

statistical learning and like any neural network its estimates can converge to any type of 136 

regression surface, linear or nonlinear. The main difference of this neural model is that it can 137 

learn in one-pass (feed-forward) without relying on derivative-based optimization and 138 

backpropagation. A generalized regression neural network (GRNN) has a simple four layered 139 

structure: an input layer which process input data (i.e. vertebra height), a pattern layer which 140 

compares network input to each example (neuron) pre-stored in memory, a summation layer 141 

and an output layer. The last one operationalizes the final network output or regression 142 

estimate. 143 

The network regression surface and estimates are formed, for each network input (i.e. 144 

individual), through the weighted mean of the output pre-stored in memory. The weights are 145 

dynamically computed by finding the distance (i.e. typically Euclidean) between the target 146 

input and the patterns stored in the network memory and transforming it to a similarity 147 

measure through the application of a radial basis function or a kernel function. The network 148 

output, 𝑌(𝑋)′, is mathematically defined as follows 149 

𝑌(𝑋)′ =  
∑𝑛

𝑖=1 𝑌𝐾(𝑥, 𝑥′)

∑𝑛
𝑖=1 𝐾(𝑥, 𝑥′)

 150 

 151 

where 𝑌 is the output pre-stored in the network memory, 𝑥 is the target input, 𝑥′ is the 152 

network inputs pre-stored in memory and 𝐾(𝑥, 𝑥′) is a radial basis function or a kernel 153 

function. 𝐾(𝑥, 𝑥′) is the squared exponential kernel function and it is mathematically defined 154 

as 155 

 156 
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𝐾(𝑥, 𝑥′)  = 𝑒𝑥𝑝(−(
𝐷(𝑥, 𝑥′)

𝜎
)2)  157 

where 𝐷(𝑥, ′𝑥) is the euclidean distance between two multidimensional vectors with 158 

 159 

𝐷(𝑥, ′𝑥)  = (𝑥 − 𝑥′)𝑇(𝑥 − 𝑥′) 160 

 161 

and 𝜎is the radial basis function (or kernel) function width or smoothing parameter. This 162 

parameter controls the volume of information neighboring each artificial neuron (i.e. a vector 163 

of vertebrae heights pre-stored in memory). Training a GRNN model involves feeding the 164 

network memory with input and output data and finding an optimal value for the smoothing 165 

parameter 𝜎. If the smoothing parameter is too low the network overfits by memorizing 166 

completely the training data because the “associative memory” of the network puts too much 167 

weight on the cases that are exactly equal to the input. If the smoothing parameter is too high 168 

the network underfits because each neuron in the network has a similar weight and the 169 

regression surface converge to the global mean of the output. This network architecture, in a 170 

modified form, has been previously applied in physical anthropology by Navega and 171 

collaborators [62] to model age-at-death estimation from femoral bone mineral density. 172 

 Formulating vertebral height estimation as a regression task comes with the challenge 173 

that at least 24 ANN models can be generated, one for each vertebra missing or poorly 174 

preserved. This computational challenge can be tackled by applying a multi-output regression 175 

framework. That is, if several vertebrae are missing or ill-preserved, their most likely height 176 

can be regressed simultaneously from the available vertebrae without constructing more than 177 

one predictive model. In the current paper we applied such approach by modifying the GRNN 178 

output architecture and cost function to allow for multiple output regression. Under such a 179 

scenario we used the averaged normalized root mean squared error (ANRMSE) to find the 180 

optimal value of the smoothing parameter with the cost function being formally written as 181 

 182 

𝐴𝑁𝑅𝑀𝑆𝐸 =  
1

𝑚
∑

𝑚

𝑖=1

√∑𝑛
𝑗=1 (𝑌𝑖 − 𝑌′𝑖)

2

𝑛

𝐼𝑄𝑅(𝑌𝑖)
 183 

 184 

where 𝑚 is the number of outputs, 𝑌𝑖  is the i-th output, 𝑌′𝑖 is the i-th estimated output and is 185 

interquartile of the i-th output. The prediction interval of each output is computed by applying 186 

the conformal prediction (CP) framework, a machine learning meta-algorithm that allows for 187 

robust heteroscedastic distribution-free error models. For the interested reader, we suggest 188 
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Shafer and Vovk [63] and Norinder et al. [64] as primers on conformal prediction. The value of 189 

network 𝜎 and the parameters necessary for robust conformal prediction were obtained by an 190 

internal leave-one-out cross-validation loop. The performance of the network models were 191 

assessed with an outer K–fold cross-validation loop (𝐾 = 5). Network optimization was 192 

performed using Brent’s algorithm, a simple derivative-free optimization routine.  193 

 To assess the accuracy of the constructed neural models, the following standard 194 

metrics were computed: mean absolute error (MAE), root mean squared error and it 195 

normalized variant (RMSE and NRMSE) and 𝑅2. In addition, bias was evaluated through the 196 

slope of the residuals of each estimated output on known output and efficiency was assessed 197 

by computing the average width of the prediction interval. 198 

 Missing values in the training data set were processed with a simple mean value 199 

imputation. This strategy was adopted because the number of missing values in the training 200 

dataset is low and the noise introduced by mean imputation is minimal when compared to 201 

constructing complex machine learning models from a reduced number of training 202 

observations which would be the case for certain arrangements of input–output 203 

parameterization using case-wise deletion of incomplete data instances. 204 

 205 

3. Results 206 

The intra-observer error was very small for all vertebrae. The absolute technical error 207 

of measurement ranged from .01 to .35 mm while the relative technical error of measurement 208 

ranged from .17% to 1.10%. The coefficient of reliability was always higher than .96. As for the 209 

inter-observer error, the absolute technical error of measurement ranged from .12 to .44 mm 210 

while the relative technical error of measurement ranged from .47% to 2.55%. In this case, the 211 

coefficient of reliability was always higher than .93. Therefore, vertebral height appears to be a 212 

very reliable, replicable and reproducible standard measurement.  213 

Descriptive statistics for vertebral height from the C2 to the S1 in the CEIUC are given 214 

in Table 1. Both females and males presented the same trend. Specifically, the C2 presented 215 

the larger height and this measurement decreased until the C4. Afterwards, an uninterrupted 216 

increment in height was present from the C4 to the S1. Males presented statistically significant 217 

(p < .001) larger dimensions than females in all vertebrae and in the height of the vertebral 218 

column. The only exception was the L2 (p = .01). No significant difference at the .05 level was 219 

found between the sex-pooled 20-39 and the 40-59 age groups. Correlations among vertebrae 220 

were statistically significant in most cases (supporting information: Table S1). However, 221 

significant correlations between one vertebra and another tended to become less frequent as 222 
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the distance between the two, i.e. their relative position within the vertebral column, 223 

augmented. Therefore, thoracic vertebrae tended to present more statistically significant 224 

correlations with other vertebrae than cervical and lumbar vertebrae. In particular, the C2 and 225 

the S1 were the vertebrae presenting less statistically significant correlations with other 226 

vertebrae.  A missing value analysis is given in Table 2. Overall at least one missing value was 227 

detected for most the skeletal elements analysed, exceptions are the T5, T7, T8, L4 where no 228 

missing values were detected. Male individuals presented at least one missing value for most 229 

of the vertebrae. Missing values in female individuals were concentrated on the cervical spine.  230 

Neural networks models with an R2 that explained more than 50% of the variation of 231 

vertebral height were obtained for all vertebrae except for the C2 and the S1. For the former, 232 

the predictor with the largest correlation was T7 (.48), while for the latter it was T3 (.34) for 233 

the latter. Examples of models based on vertebrae adjacent to the predicted vertebra are 234 

given in Tables 3-5. In general, these were the better performing models, i.e. models with 235 

lowest RMSE (< 1.0 mm) and highest R2 (> 0.50) values. The models predicting the height of 236 

thoracic vertebrae were the ones with better performances, i.e. with smaller NRMSE and Bias.  237 

Unsurprisingly, the prediction of C2 and S1 were among the vertebrae presenting the 238 

largest RMSE values, regardless of sex. Even in these cases, RMSE values remained low, usually 239 

near to 2.5 mm although higher values were obtained in some models. Other vertebrae whose 240 

prediction presented worse performance were usually at the ends of the vertebral column 241 

(e.g. C3, L4, and L5). Among other predicted variables, RMSE values were almost always below 242 

1.0 mm while most R2 values were higher than 0.6. Results did not vary much after the 243 

application of most ANN models, whenever adjacency was not used as a criterion. Examples of 244 

poor and good performance of two models regressing C2 and T7, respectively, are given in 245 

Figures 2 to 4. 246 

Reporting coefficients, even for only a fraction of the models, is impracticable. 247 

Therefore, an app was developed to facilitate the application of the ANN models resulting 248 

from this research. It has been named SPINNE, which stands for Spine Proportion through 249 

Implementation of Neural Networks Estimation and can be accessed at 250 

osteomics.com/SPINNE. In some cases, R2 presented negative values which in the case of our 251 

neural network architecture is indicative that the regression surface is converging to the mean 252 

of the target output(s). In such cases, Bias will also have a value near 1, which means that due 253 

to the ill-defined regression surface the predicted value severely over- or under-estimates the 254 

true value. That occurred for sex-pooled models developed from smaller samples that were 255 

more susceptible to outliers.   256 

http://osteomics.com/SPINNE/
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 257 

Table 1 - Descriptive statistics for the vertebral height of each vertebra according to sex in the 258 
collection of identified skeletons of the University of Coimbra. The significance of Student’s t-259 
tests regarding sexual mean differences are also presented.  260 

Measurement 
Female Male 

n mean sd Min. Max. n mean sd Min. Max. 

C2* 60 35.24 2.39 28.89 40.57 54 38.25 2.69 33.06 45.12 

C3* 65 12.71 0.85 10.06 15.15 56 14.23 1.14 11.74 17.24 

C4* 67 12.27 0.93 9.78 14.76 55 13.72 0.97 11.85 15.87 

C5* 67 11.79 0.85 8.94 13.25 55 13.04 1.08 10.80 15.32 

C6* 65 11.96 0.83 9.10 13.46 56 13.25 1.05 11.08 17.27 

C7* 66 13.48 0.93 10.95 15.62 53 14.95 1.00 12.72 16.96 

T1* 66 15.13 1.08 12.49 17.94 55 16.74 0.99 13.82 18.64 

T2* 69 16.89 0.90 14.65 19.52 55 18.36 0.95 15.82 20.19 

T3* 69 17.02 0.81 14.29 19.68 55 18.49 1.06 15.77 20.48 

T4* 69 17.35 0.88 14.78 19.24 55 18.92 1.12 16.16 21.26 

T5* 69 17.91 0.95 15.34 20.14 56 19.55 1.06 16.51 21.30 

T6* 69 18.36 0.99 16.24 20.74 55 20.40 1.08 17.40 22.42 

T7* 69 18.93 0.97 16.57 21.01 56 20.51 0.94 18.48 22.25 

T8* 69 19.29 1.02 16.21 21.50 56 20.76 0.92 18.84 22.75 

T9* 69 19.88 1.16 16.96 22.76 55 21.30 0.94 19.43 22.95 

T10* 69 20.93 1.31 17.18 23.44 55 22.29 1.13 19.43 24.81 

T11* 69 21.58 1.35 18.66 23.96 54 23.00 1.26 20.35 25.69 

T12* 69 23.17 1.52 19.70 26.58 55 24.33 1.36 20.57 27.27 

L1* 69 24.93 1.55 21.51 28.29 54 26.09 1.22 22.86 29.26 

L2* 69 26.27 1.59 23.29 29.66 55 26.93 1.37 23.94 29.71 

L3* 69 26.99 1.55 23.69 31.03 54 27.90 1.39 25.08 31.04 

L4* 69 26.87 1.87 20.24 31.07 56 28.37 1.54 25.66 32.30 

L5* 67 27.24 1.65 24.15 31.13 56 28.39 1.45 25.85 31.80 

S1* 67 31.25 1.89 25.89 34.76 54 32.96 2.05 28.66 37.62 

*significant at the .01 level. 261 
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Table 2: Missing value analysis of vertebrae height. 262 

Vertebra 

Height 

Pooled Males Female 

n Missing 

(n) 

Missing 

(%) 

n Missing 

(n) 

Missing 

(%) 

n Missing 

(n) 

Missing 

(%) 

C2 114 11 8.80 54 2 3.57 60 9 13.04 

C3 121 4 3.20 56 0 0.00 65 4 5.80 

C4 122 3 2.40 55 1 1.79 67 2 2.90 

C5 122 3 2.40 55 1 1.79 67 2 2.90 

C6 121 4 3.20 56 0 0.00 65 4 5.80 

C7 119 6 4.80 53 3 5.36 66 3 4.35 

T1 121 4 3.20 55 1 1.79 66 3 4.35 

T2 124 1 0.80 55 1 1.79 69 0 0.00 

T3 124 1 0.80 55 1 1.79 69 0 0.00 

T4 124 1 0.80 55 1 1.79 69 0 0.00 

T5 125 0 0.00 56 0 0.00 69 0 0.00 

T6 124 1 0.80 55 1 1.79 69 0 0.00 

T7 125 0 0.00 56 0 0.00 69 0 0.00 

T8 125 0 0.00 56 0 0.00 69 0 0.00 

T9 124 1 0.80 55 1 1.79 69 0 0.00 

T10 124 1 0.80 55 1 1.79 69 0 0.00 

T11 123 2 1.60 54 2 3.57 69 0 0.00 

T12 124 1 0.80 55 1 1.79 69 0 0.00 

L1 123 2 1.60 54 2 3.57 69 0 0.00 

L2 124 1 0.80 55 1 1.79 69 0 0.00 

L3 123 2 1.60 54 2 3.57 69 0 0.00 

L4 125 0 0.00 56 0 0.00 69 0 0.00 

L5 123 2 1.60 56 0 0.00 67 2 2.90 

S1 121 4 3.20 54 2 3.57 67 2 2.90 

 263 

 264 
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 265 

 266 

 267 

Figure 2 – Top: prediction analysis of C2 vertebra regressed from C3, C4, C5 and C6 vertebrae, 268 

used as an example of a model with poor performance; bottom: prediction analysis of T7 269 

vertebra regressed from T5, T6, T8, and T9 vertebrae, used as an example of a model with 270 

good performance. 271 

 272 

 273 

 274 
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 275 

Figure 3 - Top: residual analysis of C2 vertebra regressed from C3, C4, C5, and C6 vertebrae, 276 

used as an example of a model with poor performance; bottom: residual analysis of T7 277 

vertebra regressed from T5, T6, T8, and T9 vertebrae, used as an example of a model with 278 

good performance. 279 

 280 

 281 

 282 
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 283 

Figure 4 - Top: predictive interval analysis of C2 vertebra regressed from C3, C4, C5, and C6 284 

vertebrae, used as an example of a model with poor performance; bottom: predictive interval 285 

analysis of T7 vertebra regressed from T5, T6, T8, and T9 vertebrae, used as an example of a 286 

model with good performance. 287 

 288 

 289 

 290 

 291 

 292 

 293 
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 294 

Table 3 – Artificial neural networks models performance for the sex-pooled sample. 295 

Estimated Estimators MAE RMSE NRMSE R2 Bias Coverage PIW 

C2 S1, C3 1.84 2.29 0.62 0.33 0.69 0.94 8.97 

C3 C2, C4 0.68 0.85 0.57 0.52 0.53 0.94 3.89 

C4 C3, C5 0.53 0.69 0.43 0.65 0.42 0.95 2.82 

C5 C4, C6 0.51 0.64 0.42 0.68 0.37 0.94 2.41 

C6 C5, C7 0.52 0.73 0.61 0.57 0.44 0.93 2.72 

C7 C6, T1 0.46 0.59 0.36 0.75 0.31 0.93 2.37 

T1 C7, T2 0.48 0.63 0.34 0.76 0.29 0.96 2.67 

T2 T1, T3 0.43 0.53 0.32 0.8 0.25 0.95 2.09 

T3 T2, T4 0.38 0.47 0.29 0.84 0.22 0.94 1.96 

T4 T3, T5 0.44 0.53 0.29 0.82 0.23 0.94 2.07 

T5 T4, T6 0.39 0.5 0.29 0.85 0.2 0.94 2.11 

T6 T5, T7 0.46 0.59 0.29 0.83 0.22 0.94 2.32 

T7 T6, T8 0.37 0.47 0.26 0.85 0.19 0.93 1.88 

T8 T7, T9 0.43 0.54 0.29 0.8 0.23 0.96 2.35 

T9 T8, T10 0.41 0.55 0.32 0.81 0.24 0.94 2.49 

T10 T9, T11 0.52 0.65 0.32 0.78 0.24 0.94 2.57 

T11 T10, T12 0.56 0.71 0.41 0.77 0.27 0.92 2.50 

T12 T11, L1 0.63 0.82 0.39 0.72 0.34 0.91 3.50 

L1 T12, L2 0.61 0.79 0.4 0.73 0.32 0.95 3.21 

L2 L1, L3 0.71 0.89 0.44 0.65 0.38 0.91 3.43 

L3 L2, L4 0.63 0.79 0.43 0.73 0.28 0.93 3.52 

L4 L3, L5 0.75 1.05 0.37 0.69 0.38 0.94 4.22 

L5 L4, S1 0.78 1.00 0.41 0.63 0.44 0.94 4.48 

S1 L5, C2 1.37 1.78 0.67 0.27 0.77 0.93 7.23 

MAE, mean absolute error; RMSE, root mean squared error; NRMSE, normalized root mean squared error (IQR normalization); R2, 296 
R Squared (Explained Variance); PIW, Predictive Interval Width (Mean). 297 

 298 

 299 
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 300 

Table 4 – Artificial neural networks models performance for the male sample. 301 

Estimated Estimators MAE RMSE NRMSE R2 Bias Coverage PIW 

C2 S1, C3 2.13 2.51 0.68 0.08 0.87 0.91 9.15 

C3 C2, C4 0.73 0.93 0.7 0.33 0.74 0.93 4.11 

C4 C3, C5 0.49 0.66 0.49 0.51 0.56 0.93 2.83 

C5 C4, C6 0.52 0.64 0.4 0.63 0.4 0.96 2.89 

C6 C5, C7 0.51 0.77 0.58 0.46 0.58 0.93 2.88 

C7 C6, T1 0.47 0.59 0.39 0.62 0.38 0.93 2.46 

T1 C7, T2 0.51 0.7 0.55 0.49 0.58 0.95 2.87 

T2 T1, T3 0.49 0.6 0.57 0.59 0.5 0.93 2.35 

T3 T2, T4 0.46 0.58 0.43 0.7 0.34 0.91 2.58 

T4 T3, T5 0.5 0.61 0.48 0.7 0.36 0.91 2.43 

T5 T4, T6 0.46 0.57 0.38 0.71 0.34 0.95 2.19 

T6 T5, T7 0.53 0.64 0.51 0.63 0.46 0.95 2.73 

T7 T6, T8 0.39 0.48 0.33 0.74 0.3 0.93 2.12 

T8 T7, T9 0.45 0.59 0.53 0.58 0.5 0.93 2.41 

T9 T8, T10 0.48 0.61 0.51 0.56 0.46 0.91 2.77 

T10 T9, T11 0.61 0.79 0.55 0.5 0.57 0.93 3.6 

T11 T10, T12 0.64 0.81 0.42 0.57 0.52 0.93 3.95 

T12 T11, L1 0.81 1.01 0.7 0.43 0.63 0.95 4.41 

L1 T12, L2 0.56 0.75 0.46 0.6 0.46 0.93 3.55 

L2 L1, L3 0.67 0.81 0.49 0.64 0.42 0.98 3.8 

L3 L2, L4 0.7 0.87 0.52 0.59 0.47 0.93 3.55 

L4 L3, L5 0.77 0.96 0.46 0.6 0.48 0.91 4.09 

L5 L4, S1 0.78 0.98 0.53 0.53 0.53 0.93 4.67 

S1 L5, C2 1.6 2.01 0.75 -0.02 0.97 0.95 8.03 

MAE, mean absolute error; RMSE, root mean squared error; NRMSE, normalized root mean squared error (IQR normalization); R2, 302 
R Squared (Explained Variance); PIW, Predictive Interval Width (Mean). 303 

 304 
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Table 5 – Artificial Neural Networks models performance for the female sample. 306 

Estimated Estimators MAE RMSE NRMSE R2 Bias Coverage PIW 

C2 S1, C3 1.61 2.04 0.71 0.14 0.89 0.94 8.04 

C3 C2, C4 0.54 0.7 0.66 0.27 0.78 0.94 3.73 

C4 C3, C5 0.55 0.68 0.7 0.44 0.62 0.93 2.79 

C5 C4, C6 0.4 0.53 0.43 0.6 0.51 0.94 2 

C6 C5, C7 0.47 0.61 0.51 0.41 0.65 0.93 2.42 

C7 C6, T1 0.46 0.59 0.55 0.58 0.48 0.91 2.19 

T1 C7, T2 0.58 0.75 0.58 0.49 0.6 0.91 2.75 

T2 T1, T3 0.44 0.56 0.44 0.6 0.47 0.93 2.19 

T3 T2, T4 0.36 0.49 0.53 0.63 0.46 0.94 2.09 

T4 T3, T5 0.4 0.5 0.4 0.68 0.43 0.91 2.01 

T5 T4, T6 0.37 0.49 0.39 0.73 0.36 0.91 1.79 

T6 T5, T7 0.41 0.5 0.37 0.74 0.3 0.88 1.82 

T7 T6, T8 0.35 0.46 0.39 0.77 0.27 0.91 1.91 

T8 T7, T9 0.45 0.55 0.53 0.7 0.36 0.96 2.38 

T9 T8, T10 0.42 0.55 0.35 0.77 0.3 0.94 2.58 

T10 T9, T11 0.44 0.55 0.35 0.82 0.26 0.9 1.88 

T11 T10, T12 0.43 0.54 0.25 0.84 0.2 0.87 2 

T12 T11, L1 0.53 0.68 0.34 0.8 0.28 0.9 2.54 

L1 T12, L2 0.64 0.85 0.41 0.7 0.39 0.93 3.4 

L2 L1, L3 0.73 0.94 0.4 0.64 0.44 0.93 3.53 

L3 L2, L4 0.72 0.89 0.41 0.66 0.42 0.93 5.29 

L4 L3, L5 0.77 1.12 0.47 0.63 0.45 0.91 4.06 

L5 L4, S1 0.85 1.08 0.46 0.55 0.54 0.9 4.26 

S1 L5, C2 1.25 1.64 0.91 0.21 0.77 0.94 7.11 

MAE, mean absolute error; RMSE, root mean squared error; NRMSE, normalized root mean squared error (IQR normalization); R2, 307 
R Squared (Explained Variance); PIW, Predictive Interval Width (Mean). 308 

 309 

 310 
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4. Discussion 312 

Our results demonstrated that it is possible to predict the height of missing or poorly 313 

preserved vertebrae through ANN models based on the height of other vertebrae, although 314 

the precision of the estimates varied quite considerably according to each specific vertebra. In 315 

most cases, however, mean differences between the predictions and the observations were 316 

smaller than 1.0 mm. There seems to be a lot of potential in using this technique to fill 317 

eventual gaps that may arise whenever the application of an anatomical method of stature 318 

estimation is attempted. Therefore, the use of an anatomico-mathematical method, such as 319 

the one recommended by Auerbach [55], appears to be a reliable option. 320 

Predictions tended to worsen as the position of the vertebrae acting as independent 321 

variables became further away from the predicted vertebra. This may affect the performance 322 

of the regression models approach since poorly preserved vertebrae often tend to be 323 

accompanied by contiguous vertebrae presenting the same conditions. For instance, cervical 324 

vertebrae are often in worse conditions than lumbar vertebrae [50,54]. Whenever several 325 

contiguous vertebrae are missing or badly preserved, this basically leaves three choices. The 326 

examiner may: i) attempt making the prediction via a more distant vertebra; ii) use a preserved 327 

vertebra to predict the height of its contiguous vertebra and then use this prediction to predict 328 

the next vertebra in line, and so on until the heights of all vertebrae are predicted; iii) or 329 

predict the total height of the vertebral column, a procedure also made available by the 330 

SPINNE app. 331 

An interesting realization obtained after comparing our results with the ones from 332 

Auerbach [55] is that, in both investigations, the best performing models tended to include 333 

vertebrae that are adjacent to the predicted vertebra. However, the better performing models 334 

presented in both papers generally had different configurations in terms of their independent 335 

variables. This suggests that variability is expected from one population to another and that 336 

the prediction potential of each vertebra may vary among populations. Nonetheless, eventual 337 

sample-specificity of our models should not be a major problem as long as the size proportion 338 

that each vertebrae occupies along the spine is similar across populations. 339 

Since sexual differences have been found regarding vertebral height, the successful 340 

application of this method should be enhanced if the sex of the skeleton under examination is 341 

known, since sex-specific models can be applied. However, differences between sex-pooled 342 

and sex-specific models were rather small. 343 

One obstacle to the application of regression models to estimate vertebral height is 344 

age since these variables maintain a negative correlation [65-66]. Although pathological 345 
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degenerative processes tend to have a greater impact on the elderly, they can occur much 346 

earlier, usually during the fourth decade of life [67]. No statistically significant mean age 347 

differences were present for the two age groups in our sample since it was composed of adult 348 

individuals who were less than 60 years old at time of death and presented no exuberant 349 

pathological conditions of the spine. If older individuals or pathological vertebrae had been 350 

included in the sample, larger prediction errors would surely have occurred.  351 

Another potential obstacle is that the models here presented may be population-352 

specific. This problem may be inflated if the skeleton under examination presents many absent 353 

or unpreserved vertebrae. Until further testing on samples from different populations are 354 

performed, it is advisable to keep this in mind whenever deciding if the SPINNE app should be 355 

applied to a specific skeleton or not. Auerbach [55] did not find large differences when 356 

comparing the accuracies and precisions of the anatomical, mathematical and anatomico-357 

mathematical methods to estimate stature but the latter tended to overestimate stature. 358 

However, Auerbach [55] was only able to base his observations on comparisons with the 359 

anatomically estimated stature so comparisons are not completely enlightening. Nonetheless, 360 

the anatomico-mathematical approach appears to have clear potential to contribute for 361 

stature estimation of partial skeleton remains which are frequently found in both 362 

archaeological and forensic settings [43-47]. The main advantage of our method over others 363 

such as the ones from Sciulli et al. [57] and Auerbach [55] is its flexibility. It is not dependent 364 

on the presence and preservation of vertebrae that are adjacent to the missing vertebra. The 365 

large amount of models made available by the SPINNE app turns it more flexible to the skeletal 366 

preservation observed in a case-by-case basis thus widening its applicability. 367 

The potential number of ANN models to predict vertebral height obtained in this 368 

research is numerous - these can be accessed by using our web app SPINNE. Although we have 369 

illustrated very simple models exploiting vertebral adjacency in this paper, a large number of 370 

possible configurations of input - output can be generated using a multi-output regression 371 

framework with neural networks. It is possible to regress the missing value of two vertebrae 372 

from the remaining 22 or vice-versa. This flexibility however should be explored with caution, 373 

it might not be reasonable to create a neural network to predict the height of C2 and C3 from 374 

the metric parameters of the lumbar spine.  375 

Through SPINNE it is possible to explore data and, primarily, estimate vertebral 376 

heights. To estimate missing vertebral heights, users should access the "estimating missing 377 

values" tab and: 1) Select the "sex of subject" if you wish to use this option or leave it as 378 

“unknown” otherwise; 2) In "input variables", select the vertebra or vertebrae for which 379 

vertebral height is known; 3) Insert their heights in "measurements"; and 4) "Calculate missing 380 
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values". The results give the predictions for the missing vertebrae heights as well as for the 381 

partial total column. The latter is obtained by summing all individual vertebrae predictions and 382 

is not a regression per se in itself. The performance metrics of each model (e.g. adjusted R2; 383 

RMSE) can be used as a decision support system regarding the interpretation of the results. 384 

However, choosing a model is a somewhat subjective decision that depends on the objective 385 

one wishes to fulfil. For example, if SPINNE is used within a forensic case, then the expert 386 

should be especially cautious bearing in mind that performance metrics are merely part of the 387 

decision support system.   388 

 389 

5. Conclusions 390 

The use of regression models to estimate vertebral height has value not only as a 391 

contribution for stature estimation, but it may also be helpful to assess the minimum number 392 

of individuals. For example, more than one individual may be identified if vertebrae in 393 

commingled remains are metrically incompatible with one another.  The neural network 394 

architecture implemented in this paper can also be applied to solve imputation of numerical 395 

predictors or nonlinear regression in other contexts of skeletal analysis and for that reason 396 

source code of the algorithm is available as an R package at https://github.com/dsnavega. 397 

SPINNE is also available as an R package (grnnet - Generalized Regression Neural Network) at 398 

https://github.com/dsnavega and https://github.com/Delvis. 399 
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