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Abstract

Today’s society has had an increasing reliance on Industrial (Automation and) Control Systems,

especially in the control of Critical Infrastructures, such as generation, transmission and distribution

of electrical energy, or water treatment, and where the uninterrupted work of the infrastructure is

essential for the safety and livelihood of a modern society. A disruption of the normal operation

of such infrastructures, due to a fault or an attack, has the potential to create serious consequences,

whereby these systems have strategic significance, which cannot be ignored. These infrastructures

were designed with the assumption that an airgap from the outside world was in place, however, their

increasing reliance on Commercial, Off-The-Shelf equipment, open technologies and open protocols

has exposed them to threats that previously were not a concern.

Several studies have proposed many strategies to secure these infrastructures, which mainly

rely on novel algorithms or domain-adaptations of known algorithms. However, the constraints

of these infrastructures prevent the existence of common datasets from which a comparison of their

performances can bemade. This work aims at presenting some insight on howmany of the most used

algorithms in the literature behave when some of the characteristics of datasets are varied, namely the

size of the traffic captures and the relative size of the attacks within those captures. An insight on the

effects of hyperparameter tuning of the algorithms is also studied. Finally, a generalized framework

for the detection of Man-in-the-Middle attacks is presented based on the Time-To-Response of the

TCP packets within the network.

KEYWORDS: Industrial (Automation and) Control System; Cyber-Physical System; Supervisory

Control And Data Acquisition System
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Resumo

A sociedade atual tem tido uma confiança crescente em Sistemas de Controlo Industrial (e de

Automação), especialmente no controlo de Infraestruturas Críticas, tais como a geração, transmissão

e distribuição de energia elétrica, ou tratamento de águas, onde o trabalho ininterrupto da infraes-

trutura é essencial para a segurança e manutenção de uma sociedade moderna. A disrupção das

operações normais de tais infraestruturas, devido a uma falha ou ataque, tem o potencial de ter sérias

consequências, pelo que estes sistemas têm um significado estratégico que não pode ser ignorado.

Estas infraestruturas foram pensadas assumindo que existia uma separação do mundo exterior, con-

tudo, o crescente uso de equipamentos comerciais, e de tecnologias e protocolos abertos tem-nas

exposto a ameaças que antigamente não eram uma preocupação.

Vários estudos têm proposto várias estratégias para proteger estas infraestruturas, focando-se

principalmente em algoritmos novos ou adaptação de algoritmos já conhecidos ao domínio destas

infraestruturas. Contudo, as restrições das mesmas têm impedido a existência de conjuntos de dados

comuns, dos quais seria possível realizar uma comparação do seu desempenho. Este trabalho procura

apresentar alguma introspeção sobre como os algoritmos mais usados na literatura se comportam

quando algumas das características dos conjuntos de dados variam, nomeadamente o tamanho da

captura de tráfego e o tamanho relativo dos ataques nesses dados. São também estudados os efeitos

da afinação de hiperparâmetros desses algoritmos. Finalmente, é também apresentada uma estrutura

genérica para a deteção de ataques Man-in-the-Middle, baseada nos tempos de resposta dos pacotes

TCP dentro da rede.

PALAVRAS-CHAVE: Sistema de Controlo Industrial (e de Automação); Sistema Ciber-Físico; Sis-

tema de Supervisão e Aquisição de Dados
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Chapter 1. Introduction

Industrial (Automation and) Control Systems (I(A)CSs), often implemented by Supervisory

Control And Data Acquisition (SCADA) systems, play an important role in today’s society, par-

ticularly in the control of Critical Infrastructures (CIs) – such as generation, transmission, and distri-

bution of electrical energy, or water treatment –, where the uninterrupted work of the infrastructure

is essential for the safety and livelihood of a modern society. A disruption of the normal operation

of such infrastructures, due to a fault or an attack, has the potential to create serious consequences,

whereby these systems have strategic significance, which cannot be ignored.

These systems were originally designed for local monitoring and control activities through serial

communications and with the assumption that all the entities were legitimate and operating under

normal circumstances, given their isolation from the outside world, known as airgapping. As a con-

sequence, they were not designed with any protection mechanisms, such as identity and permission

validations, message encryption, or integrity checks, used for protection against deliberate attacks.

However, in recent years, mainly due to cost effectiveness, these systems have been increasingly

dependent on Commercial, Off-The-Shelf (COTS) equipment and open protocols and technologies,

such as the Internet, to distribute the activities over large geographical areas, exposing the control

systems to various threats that were not a concern with the older architectures, endangering their

security [1]. As such, Intrusion Detection Systems (IDSs) are of paramount importance for these

systems. Unfortunately, ”general purpose” Intrusion Detection Systems are often unsuitable for

these scenarios, especially for sophisticated attacks which resort to legitimate commands – these

attacks require a deeper knowledge of the protocols involved, traffic patterns, and the operational

context of each system [2].

1.1 Contextualization

One of the fundamental issues in securing these networks resides in the heterogeneity of the indi-

vidual components of the systems which also have long life cycles and the requirement for rigorous

testing and certification of every update, which dramatically slows down the capability to protect

against new types of attacks. Furthermore, given the high costs of the equipment involved alongside

a mindset of avoiding to disturb systems which are working, many infrastructures still work with

1



Chapter 1. Introduction

components which have already surpassed their support or even their end-of-life expectations.

Research on the topic of protecting these infrastructures has been relatively abundant. Many

works have demonstrated the feasibility of domain-adaptations of IntrusionDetection Systems (IDSs)

built for common communication infrastructures to the CPSs’ domain, since some of the attacks

which they now have to face originated from them. Novel techniques have also been proposed,

while older ones, which were not suitable for common communications infrastructures, have also

been revised with some success, given the many constraints CPSs have compared to them.

Attacks on the availability, confidentiality and integrity of these infrastructures have become

concerns, with attacks such as to Stuxnet [3] or to the Ukrainian power grid [4] having exposed

many of their frailties and consequences. However, research on this topic has mainly focused on

novelty solutions or domain adaptations of known algorithms using proprietary or limited datasets,

which has prevented a proper generalization of their results and real-world applications.

1.2 Goals

This dissertation aims to provide an insight at the frailties of machine learning algorithms in the

classification process, specifically the effects that the datasets have on their performance. While

performance comparisons are already available in published research, they don’t provide insights

about how specific dataset characteristics relate to the performance obtained.

1.3 Research Contributions

The work developed during this dissertation resulted in the following contribution:

• Ivo Frazão, Pedro Henriques Abreu, Tiago Cruz, Hélder Araújo, Paulo Simões. ”Denial of

Service Attacks: Detecting the frailties of machine learning algorithms in the Classification

Process”. Conference: 13th edition of the International Conference on Critical Information

Infrastructures Security (CRITIS) (accepted, 2018).

Furthermore, a survey regarding the state-of-the-art is also being made for a journal publication.

1.4 Document Structure

The remainder of this dissertation is organized as follows: in Chapter 2 is presented the back-

ground knowledge which will be the basis of this work. Chapter 3 presents an overview of the related

2
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work done in this field. Then, Chapter 4 describes the experimental setup and Chapter 5 discusses

the results obtained. Finally, Chapter 6 concludes this dissertation and presents some proposals for

future work.
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Chapter 2. Background Knowledge

In this chapter, an overview of the background knowledge required for the work done in this

dissertation is provided.

2.1 Theoretical Definitions

In this section, a brief definition of the concepts discussed across the work done in this disserta-

tion is presented.

2.1.1 Cyber-Physical Systems

Cyber-Physical Systems (CPSs) are defined as the intertwining of computation and physical

processes and designed as a network of interacting elements with physical input and output where

intelligent mechanisms coordinate them in order to control the process [5]. Smart grids, Industrial

(Automation and) Control System and autonomous driving systems are examples of CPSs.

Some of these CPSs are critical to the functioning of today’s modern societies which are known

as Critical Infrastructures (CIs), of which electrical grids and water treatment plants are examples

[6].

2.1.2 Industrial (Automation and) Control Systems

Industrial (Automation and) Control Systems (I(A)CSs) are control systems found in the indus-

trial sector and in Critical Infrastructures (CIs), being the most common types Supervisory Control

And Data Acquisition (SCADA) systems, frequently used to control geographically dispersed sys-

tems, such as an electrical grid, and Distributed Control Systems (DCSs), frequently used to control

geographically confined systems, such as factories [6]. SCADA is data acquisition and event ori-

ented, i.e., it retrieves data from the system periodically and acts when events occur, such as when a

threshold is surpassed, while DCS is process and process state oriented.

I(A)CS systems are designed to accomplish a set of characteristics required to properly run their

functions, namely [4]:

5



Chapter 2. Background Knowledge

• Availabilty: ensures that the systems and information contained within them are available to

authorised users. This is especially important for industrial systems and critical infrastructures

where access to the data is paramount to maintain proper operations;

• Fault-tolerance: ensures that the systems are robust and can continue operating at a reason-

able level in the event of a failure.

• Performance: ensures that the system is efficient and can carry out its intended tasks timely

and correctly;

• Safety: systems must be able to detect unsafe conditions and trigger actions to reduce unsafe

conditions to safe ones. In most safety-critical operations, human oversight and control of a

potentially dangerous process is an essential part of the safety system;

• Maintainability: it is highly recommended for the system to have adequate diagnosis and

control functionalities to allow correct maintainability;

• Openness: makes use of open standards and technologies in order to increase interoperability

between devices and assets from different systems and infrastructures;

• Security: guarantees that the systems are protected, at least, against the most common threats

that they face (such as unauthorised access or data manipulation), taking into consideration

not only Availability, Integrity and Confidentiality security tenets, but also the Safety needs

as they are cyber-physical devices;

• Usability: the ease-of-use and proper functionality of the systems and related tools and devices.

2.1.3 TCP/IP protocol stack

TCP/IP is the protocol stack for Internet-based communications, which provides end-to-end data

exchange in computer networks. It specifies how the data should be packeted, addressed, transmit-

ted, routed, and received inside the network and is functionally organised in four abstraction layers,

which are, from top to bottom in the stack [7]:

• Application layer, which includes the protocols used by processes to perform communication,

where theMODBUS over TCP/IP fits (see Section 2.1.4). These protocols rely in the transport

layer to provide them the pipes where the communication occurs.

• Transport layer, which includes the protocols that perform end-to-end communication ser-

vices, where the Transmission Control Protocol (TCP) is one of the main protocols, alongside

the User Datagram Protocol (UDP).

6
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• Internet layer, which includes the protocols that exchange data between network boundaries,

namely the Internet Protocol (IP).

• Link layer, which includes the protocols that define the local networking methods and in-

terfaces needed to transmit the information to directly connected hosts. E.g., the Ethernet

protocol and the Address Resolution Protocol (ARP).

2.1.3.1 Address Resolution Protocol

The Address Resolution Protocol (ARP) is a request-response protocol that allows the discovery

of link layer addresses (such as MAC addresses) associated with a given network layer address (such

as an IP address) [8]. When a unknown address is required for transmission, the sender broadcasts

a request to the local network it is connected to and when a host matches that address it responds

to the sender which in turn stores it in a cache and is now able to communicate to it. Even when a

request is not made but a response is received (known as unsolicited is-at messages), the address is

stored in that cache or supersedes an older entry. However, due to the lack of authentication of the

sender of a response, cache poisoning is a real security risk, which allows for Man-in-the-Middle

(MitM) attacks [9].

Man-in-the-Middle As mentioned, the ARP protocol is susceptible to cache poisoning, allowing

for Man-in-the-Middle (MitM) attacks, which have enormous potential, either as a simple source

of private information or of erroneous information. In a MitM attack, the attacker gains access to

the communication between two parties who believe are directly communicating with each other, as

pictured in Figure 2.1. In order for a successful MitM attack to happen, the attacker should be in

the same subnet of the target and it should be able to poison the Address Resolution Protocol (ARP)

caches of the victims, such that it may act as the router that forwards the traffic [10].

Original Connection

A B

Figure 2.1: Representation of a Man-in-the-Middle (MitM) attack.

In [10] (2015), Chen et al. implemented a successful MitM attack as characterised here, using

the open source tool Ettercap [11], enabling them to see the packets being exchanged within the

7
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system, relying in Wireshark [12] as a packet analyser and sniffer. After the MitM was successful,

the authors were able to inject false messages to the system, generated using the libmodbus library

[13], by emulating the MODBUS client, and cause a tripping of one of the breakers of the emulated

power distribution system. The tripping of a single breaker was not catastrophic but resulted in

diminished overall stability of the system and in a transient that affected the functionality of other

protective relays in the system.

2.1.3.2 Internet Control Message Protocol

Internet Control Message Protocol (ICMP) is part of the TCP/IP protocol stack mainly used for

diagnostic and control purposes – such as, verifying if a host is active (known an ping) or to trace

the route of packets within the network – or as response messages to errors that may happen in a

network – such as, being unable to reach a specific destination [14].

This protocol has some security concerns which may make it prejudicial to network safety, e.g.,

the mere acknowledgement that a host is active can make it a target for attacks, or ping flooding

attack, which induces a Denial-of-Service (DoS) by the host as it is overwhelmed by the requests.

2.1.4 MODBUS protocol

The MODBUS protocol is an application layer messaging protocol that has been the de facto

standard in SCADAsystems due to its simplicity and robustness. The protocol uses a simple commu-

nication mode, based in a master/slave relationship between units, where the master device initiates

transactions with the slave devices, which are identified with a transaction ID field [15].

It uses two basic types of communication: unicast and broadcast. In a unicast transaction the

master unit starts a request that the slave unit answers (e.g., by returning the requested value, by

acknowledging after performing the desired action, or by returning an error). In a broadcast transac-

tion the master unit sends a message to all the slaves which do not reply such message (e.g., resetting

the sensors and actuators) [16].

All MODBUS requests and responses are designed in such a way that the recipient can verify

that a message is finished. For function codes where the MODBUS Protocol Data Unit (PDU) has

a fixed length, the function code alone is sufficient. For function codes carrying a variable amount

of data in the request or response, the data field includes a byte count [17].

Being an application layer protocol, MODBUS can be transmitted using multiple types of trans-
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mission protocols, being the most common the asynchronous serial transmission or the TCP/IP pro-

tocol stack.

2.1.4.1 MODBUS over TCP/IP

The MODBUS over TCP/IP messaging service provides client/server communication between

devices connected in a network, where a client makes a request to a server. The specification defines

that the registered TCP/IP listening port number 502 is reserved forMODBUS communications [17].

The protocol specifies an Application Data Unit (ADU) – as seen in Figure 2.2 – which is en-

capsulated as the payload of the TCP/IP protocol stack. As can be seen, a dedicated header is used,

called the MODBUS Application Protocol (MBAP) header, which precedes its Protocol Data Unit

(PDU).

(a) General structure.

(b) Capture of a frame using Wireshark.

Figure 2.2: MODBUS over TCP/IP frames.

The fields of the frame are the following:

• ’Transaction ID’, which identifies the current transaction between the devices and is initialized

by the client;

9
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• ’Protocol ID’, which is always zero for the MODBUS protocol;

• ’Length’, which indicates the number of bytes following the field;

• ’Unit ID’, which is used to communicate via devices such as bridges, routers and gateways

that use a single IP address to support multiple independent MODBUS end units;

• ’Function Code’, which indicates the desired action requested of the server by the client;

• ’Data’, which contains the actual information being transmitted.

2.1.4.2 Security in MODBUS

The MODBUS protocol was not designed with cybersecurity in mind, since it was meant to be

used within an airgapped network, i.e., isolated from the outside world [18]. Consequentially, it

lacks some basic security features, such as data encryption, integrity checks, and mutual authentic-

ation. Furthermore, this protocol was designed for serial connections, namely RS-485 serial buses,

including their data models and APIs, but it has since been ported for use in the TCP/IP protocol

stack, without truly adapting to the new paradigm. Although new technologies and protocols have

emerged, such as DNP3, that solve many of the aforementioned problems, MODBUS is still a widely

used protocol and, as such, was the main focus of this work.

2.1.5 Supervisory Control And Data Acquisition

Supervisory Control And Data Acquisition (SCADA) is a control system architecture with a

significant role in CPSs, consisting of hardware, software and communication components used to

monitor and control physical processes [19]. A generic configuration of a SCADA system is visible

in Figure 2.3.

Field Site 1

Modem PLC

Field Site 2

Modem RTU

Field Site 3

WAN Card IED

Wide Area Network 
 

(WAN) 
Router

HMI

Control Server

Database / Logs

SCADA Control Centre

Figure 2.3: Generic architecture of a SCADA system1[19].

1It does not include any redundancies normally employed in these systems for clarity.

10



Chapter 2. Background Knowledge

The generic SCADA system represented is comprised of a SCADA Control Centre, which per-

forms centralized monitoring and control of the entire system, based on the information received,

especially from the field sites. Those sites contain local devices that control local operations, collect

data from sensors, and monitor local environments [19]. The control centre contains:

• Control Server, which hosts the supervisory control software responsible for communication

with the lower level control devices;

• Human-Machine Interface (HMI), which allows human operators to monitor the state of the

system, change its settings, and manually override automatic control procedures;

• Database/Logs, which stores information used to support different types of analysis.

The field sites, besides the communication component, can contain a wide array of devices,

depending on the activity needed in each site [19]:

• RemoteTerminal Units (RTUs), which are special purpose data acquisition and control units;

• Programmable Logic Controllers (PLCs), which are small industrial computers, designed to

perform logic functions executed by electrical hardware, such as relays, switches, and mech-

anical timers/counters, that have evolved to control complex processes and even substitute

RTUs since they are more economical, versatile, flexible and configurable devices;

• Intelligent Electronic Devices (IEDs), which are sensors/actuators capable of acquiring and

communicating data, as well as perform local processing and control.

The communication architecture of SCADAsystems can be grouped into three main generations:

monolithic, distributed, and networked [20]. In the first generation, these systems were physically

and logically independent of other systems (i.e., isolated from the outside world) therefore security

was not a concern. However, as these systems evolved, they became less isolated from other systems

and dependent on connectivity provided by modern information technologies, which has made these

systems vulnerable to several threats [21, 19, 6].

SCADAsystems are an integral part of the Purdue ReferenceModel [22], a reference architecture

which models enterprises in multiple layers and stages for computer integrated manufacturing. This

model defined the concepts and tasks involved in enterprise integration, using a phased approach,

while also providing informational models to improve understanding and monitorization. It defined

5 levels of integration:

• Level 0, corresponding to the physical process;

11
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• Level 1, corresponding to intelligent devices, such as sensors and actuators;

• Level 2, corresponding to control systems, which supervise, monitor and control the physical

processes, where SCADA systems can play an integral role;

• Level 3, corresponding to manufacturing operations systems, where production work flow is

defined;

• Level 4, corresponding to business logistic systems, where schedules, materials, shipments

and inventory is controlled.

2.1.5.1 Vulnerabilities

Many SCADAsystems were not designed with security in mind, which introduced many vulner-

abilities to them which can be exploited. Some of the most common vulnerabilities of these systems

are [4]:

• Non-existent monitoring process: Without active network monitoring, it is very difficult to

detect suspicious activity, identify potential threats, and quickly react to cyber-attacks, and

Intrusion Detection Systems (IDSs) are not as common as in common IT networks. Further-

more, even if they are in-place they may not be able to fully understand I(A)CS protocols.

This can be partially addressed by implementing anomaly detection systems. Firewalls and

antivirus are more common, but it is not a universal solution and does not cover all the risks;

• Deficient traffic content understanding: Managers need to know what type of traffic is

going through their networks in order to be able to make informed decisions on how to respond

to potential threats and on which kinds of traffic to allow and which to filter. This also helps

to establish proper segregation and network segmentation;

• Staff inexperienced in cyber-security related topics: SCADAsystem staff and operators are

familiar with keeping control systems running. The normal goals of reliability and availability

can initially feel in conflict with security efforts. With a bent for engineering and technical

solutions to problems, the important role of developing security policies can be a foreign

concept to typical SCADA staff. Furthermore, SCADA staff may not be receptive to IT staff

recommendations;

• Operating System vulnerabilities: The whole host of normal IT operating system vulner-

abilities are present in SCADA systems. The difference from an IT system is that patching

may be performed less rigorously. It is usual for a SCADA system operator to have a running

system that is expected to perform without interruptions;
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• Slow / lack of updates: Maintaining I(A)CS/SCADAfirmware and software up-to-date is not

easy, and it can be very complex for critical infrastructure systems, as an update error could

cause severe issues on the whole system. Cyber fragility results from applying a change to the

system without having tested it beforehand and having foreseen its effects;

• Remote Processor operations: Certain classes of remote processors have known security

vulnerabilities. In this case the difficulty is two-fold: First the computation power andmemory

resources of the processors are modest and not suitable for security upgrades. Second, once

they are installed they typically stay in place for ten years or more. The result is vulnerable

equipment that stays vulnerable for a long time;

• SCADA Software features: SCADA applications and software usually provides basic and

modest security features, however these are not always enabled by default, and could act as

additional weaknesses if operators are unaware of the need of enabling these features;

• Inappropriate applications installed on critical SCADA host computers: Because very

few security measures are used in SCADA host computers, this leads to an operator or ad-

ministrator inadvertently installing an inappropriate application on a critical system network

device;

• Lack of knowledge regarding the devices: Sincemost SCADAsystems have been developed

gradually over time, it’s not uncommon to see technology that’s a couple of years old working

alongside an industrial network environment. Knowledge transfer regarding functioning and

maintenance of ageing devices should be ensured;

• Authentication weaknesses: Authentication solutions are designed to keep unauthorized

people away from accessing the SCADA systems. However, this can easily be defeated if

the solution is not properly implemented (e.g. allowing weak passwords, hard-wired pass-

words, user credential sharing, no user logging, etc.), or in the case of older devices, which

make use of weaker, more primitive authentication methods. In some cases moving to two-

factor authentication is limited by work conditions that may impede iris scans or fingerprint

scans because of dirty hands or the wearing of safety goggles. Confidentiality and authentic-

ation is often compromised by the use of clear text transmissions. This weakness eliminates

authentication and accountability validity;

• Unauthenticated PLC/RTU network connections: Older SCADAsystems lack basic secur-

ity features, so it is imperative for organizations that own such systems to insist on vendors to

provide security measures in the form of product patches and upgrades which can protect the

system from unauthenticated PLC/RTU network connections;
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• Remote access supervision: Because of economics for staffing control centres around the

clock, it is not uncommon for SCADA systems to be configured with remote access. This

can include dial-up access or VPN access over the Internet. These scenarios should be con-

trolled and monitored, and should include, at least, the same security measures as internal

connections;

• Interconnection management: The more connections, the more exposure a SCADA system

has. Economic and enterprise pressures often result in the existence of internal connections

between the SCADAnetwork and the business network in order to allow remote access, control

and/or maintenance;

• Wireless connections: SCADAsystems often use microwave, data radios and cellular packet

services for communications. Depending on the implementation, these forms of communica-

tion can be vulnerable to certain types of attacks;

• Available public information: In the past it was not unusual for SCADA system owners

to publish information on the design of their systems, as security was not a top concern and

most devices where not interconnected, required physical access. It is also fairly common

for consultants/contractors to advertise past experience including information regarding the

systems they have worked on. Both these scenarios can result in the exposure of system

vulnerabilities which is more serious as these systems have now become interconnected;

• The wrong belief that SCADA systems have the benefit of security through obscurity:

The use of closed-source proprietary protocols does not provide security, and it can be coun-

terproductive. Security by obscurity is not a good practice, and usually gives users a false

sense of security, while in fact they are at greater risk;

• The wrong belief that SCADA systems are isolated: Just because a SCADA network is not

connected to the internet does not make it secure. Physical access is still possible, and regard-

less of the network size, all connection points should be always controlled and monitored. For

maintenance and support reasons devices belonging to segmented networks are sometimes

exposed to Internet through Virtual Private Networks (VPNs) or remote access connections.

These connections should be controlled, and be enabled on-demand only when required;

• Physical security: SCADA systems are usually distributed over large distances with multiple

unstaffed locations. The physical protection of SCADA devices becomes important in these

cases. But, as pin tumbler locks, master keys and cylinder locks all have reported weaknesses

it is important to be realistic about the level of protection they provide and take it into account

when protecting physical locations.
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2.1.5.2 Examples of Cyberattacks

Given the security vulnerabilities previously mentioned, its possible to describe real attacks

against I(A)CS. As an example, Estonia was targeted by a series of cyberattacks that began 27April

2007 and flooded websites of Estonian organizations (parliament, banks, ministries, and media) due

to the country’s disagreement with Russia about the relocation of a Soviet-era memorial [23]. In

2010, Stuxnet – a trojan designed to attack Siemens Step7 HMI software and S7 PLCs – tempor-

arily set back Iran’s nuclear program. It almost ruined one-fifth of the Iranian nuclear centrifuges

by spinning them out of control while simultaneously replaying recorded system values to fake nor-

mal system behaviour during the attack [3]. More recently, in 2015, a cyberattack on the Ukrainian

power grid left over 230 thousand people without electricity for more than six hours by taking more

than 30 substations and 2 power supply centres offline. The attack had replaced the firmware of

multiple SCADA components, which disabled remote control and required manual control, while

also compromising uninterruptible power supplies of the control centres, effectively making them

unaware of the problems [4].

Industry’s reaction Considering the increasing threat of cyberattacks against these systems, the

industry has reacted by publishing a series of recommendations and standards regarding I(A)CS

cyber-security, namely:

• IEC 62443 series of standards for industrial automation and control systems security (super-

seeding ISA99);

• NIST SP 800-82;

• NERC CIP standards;

• IEEE std 1686-2013, IEEE Standard for Intelligent Electronic Devices Cyber Security Cap-

abilities;

• ENISA guidelines for ICS security.

2.2 Attacks

There are several types of attacks that affect SCADA systems which can be grouped into three

main categories [16]:

• Attacks on availability (also known as a Denial-of-Service (DoS) attacks) where the per-

petrator seeks to make a resource unavailable to its intended users by indefinitely disrupting
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services of a host connected to its users. It may be accomplished by flooding the targeted ma-

chine or resource with superfluous requests preventing legitimate ones from being fulfilled or

even by a malformed packet that causes a crash on a PLC. When the origin of those superflu-

ous requests originates from many different sources, making it impossible to stop the attack

by blocking a single source, it is called a Distributed Denial-of-Service (DDoS) attack;

• Attacks on confidentiality, where the attacker seeks to obtain information about the actors

and the system it is attacking, such as its topology and protocols involved, or the information

that system is communicating, such as the sensor information of a SCADA field device. It is

usually a precursor to more serious attacks, since the attacker can gather enough information

to avoid detection;

• Attacks on integrity, where the attacker may inject unreliable data in the traffic, by either

providing erroneous measurements to the monitoring system, which might react, potentially

harming the system, or by providing malicious commands to the control system [24]. These

attacks usually require that the attacker has sufficient knowledge of the system in order to

avoid suspicions.

SCADAsystems have numerous types of threats/attacks, whereby a taxonomy is of great import-

ance to better understand the risks inherent to these systems and how to prevent them. The following

taxonomy focuses in the MODBUS over TCP/IP protocol and is mainly based in the works made by

Huitsing et al. in [16] (2008), and by Drias, Serhrouchni and Vogel in [25] (2015).

2.2.1 Attacks on availability

MODBUS is particularly susceptible to this type of attack since the protocol does not include any

mechanisms for authentication or integrity validation, whereby the servers cannot identify erroneous

or malicious messages and comply with the requests made.

Some examples of attacks on availability generic to Cyber-Physical Systems:

• Baseline Response Replay, where the attacker replays genuine traffic between a master and

a field device back to the master, interrupting the actual communication between units and

effectively blinding the master to any changes in the system [25, 16];

• Response Delay, where the attacker delays the response messages from the field devices to the

master device so that it receives out-of-date information, which might result in an overreaction

by the automated mechanisms or by the operator [25, 16].
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Some examples of attacks on availability specific to the MODBUS protocol are:

• MODBUSQuery Flooding, where the attacker floods a device withMODBUS queries which

saturates trying to comply with them and ignores the actual control messages from the master;

• RemoteRestart CommandFlooding, where the attacker floods a field device with theMOD-

BUS Remote Restart Command2 which causes the server device to restart and execute its

power-up test, rendering the device inoperable [16];

• Broadcast Message Flooding, where the attacker sends multiple fake broadcast messages to

slave devices, which can become saturated with those messages. It’s particularly hard to detect

if only the communications at the master device are monitored since no response messages

are returned to it [25, 16].

Some examples of attacks on availability specific to the TCP/IP protocol stack are:

• TCPSYN Flooding, where the attacker sends multiple TCP SYN requests (connection estab-

lishment requests) to the target’s system, which will open a new connection for each request

until it cannot handle any more TCP connections and starts to drop new requests, even from

legitimate sources [26, 16];

• TCP FIN/RST Flooding, where the attacker sends spoofed TCP packets with the FIN/RST

flag set in order to close legitimate TCP connections [16];

• Ping Flooding, where the attacker sends multiple ICMP packets in order to overload the vic-

tim.

Some examples of attacks on availability specific to the MODBUS over TCP/IP are:

• Irregular TCPFraming, where the attacker injects improperly framed messages or modifies

legitimate ones in the TCP frame which can cause the closure of that connection (e.g., a single

TCP frame should only carry a single MODBUS message and a unit can be programmed to

close connections that carry improperly framed messages) [16];

• MODBUS TCP Pool Exhaustion, where the attacker floods the two connection pools avail-

able in the devices, which starts to refuse new connections [16].

Several attacks on availability have been made against these systems, of which some examples

are the attacks made in [10] (2015), Chen et al. implemented a TCP SYN Flood attack directed to a

MODBUS Master device, using the Hping tool [27] to produce the TCP SYN requests at a rate of

2Awell-defined command in the specification of the protocol, with function code 08 and sub-function code 01.
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120 spoofed packets per second. To assess the impact of the attack, the authors measured the delay

of the response message to a tripping command during and after the attack was happening. During

the attack, the time difference was approximately 3 seconds, ten times higher than the delay without

the attack. In [26] (2009), Queiroz et al. built a simulated water plant’s SCADA system where they

conducted a DDoS attack through a TCP SYN flood to the RTU of the system in order to affect its

functionalities. With no detection and/or prevention system active, the authors were able to disrupt

the system during the entire time of the attack and partially disrupt afterwards, since the legitimate

connection were only able to be accepted after the connections already established began to close.

In [28] (2016), Miciolino et al. performed a MODBUS flooding attack, using the nping tool [29],

against a PLC which received 100 thousand fake MODBUS queries with a small delay between

them and tried to reply to every request until saturation. Even after the attack had ended, the PLC

replies presented slight delays compared to the base scenario. In [30] (2016), Cazorla, Alcaraz and

Lopez performed a ping flooding attack on a testbed simulating a water system of a small city. The

first objective was to measure the effect of the size of the packets used for the ping flooding on the

network usage, finding that for 8 kB the network3 had 100% usage, disrupting the normal operation

of the system. Even when the usage was lower, it was measurable some delays in the exchange of

information between the system.

2.2.2 Attacks on confidentiality

MODBUS is also particularly susceptible to this type of attack since it has no encryption built-in

whereby the information is transmitted in plain text across the communication network and has no

mutual authentication feature, allowing for spoofed requests of information.

Examples of attacks on confidentiality against MODBUS are:

• MODBUS Network Scanning, where the attacker sends benign messages to all possible ad-

dresses on a MODBUS network to obtain information about the devices [16];

• Passive Reconnaissance, where the attacker passively reads the traffic of the system in order

to obtain knowledge of said system [25, 16];

• MODBUS Slave Reconnaissance, where the attacker sends the Return Status Information4

to a slave device which complies, divulging its information [16].

Rosa et al. defined, in [9], how to perform a reconnaissance attack to a network using MODBUS

over TCP/IP. First, a TCP scan for hosts should be made, using available strategies such as half-open

3The target machine was connected to a switch port limited to 10Mbit/s
4Awell-defined command in the specification of the protocol, with function code 17.
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SYN or FIN flag scanning. At last, an enumeration of all MODBUS devices should be made using

malformed requests to every ’unitID’ possible and wait for replies from the devices which matched

those IDs. This second and final step was necessary because of possible field devices ”hidden”

behind gateways in the system.

2.2.3 Attacks on integrity

Given the lack of security mechanisms, namely authentication, MODBUS is unable to distin-

guish correct from erroneous commands, being particularly susceptible to this attack.

Example of attacks on integrity:

• Baseline Response Replay, where the attacker replays genuine traffic between units recorded

previously [25, 16];

• MODBUS Diagnostic Register Reset Command, where the attacker sends the command5

and the device resets all the counters and diagnostic registers, changing the configuration of

the device and impacting diagnostic operations [16];

• Direct Slave Control, where the attacker blocks the control of a master unit over one or more

slaves, controlling them directly by spoofing its identity with the master’s identity causing the

slave to comply with the commands sent by the attacker [25, 16];

• Data Modification, where the attacker manipulates the data being exchanged within a net-

work, which requires access to the traffic to be manipulated and an already successful MitM

attack.

In [28] (2016), Miciolino et al. performed a data modification attack, which modified the content

of specific values within the packets destined to field devices. As a result, the commands sent by the

Human-Machine Interface (HMI) of the system intended to deactivate a pump were modified as to

close a valve, effectively contradicting the desired result, overflowing the tanks being controlled.

Table 2.1: Taxonomy of attacks on MODBUS.

Attack Availability Confidentiality Integrity

Baseline Response Replay X [16] X [25, 16]

Broadcast Message Flooding X [16] X [25] X [25, 16]

Data Modification X

Continued on next page

5Awell-defined command in the specification of the protocol, with function code 08 and sub-function code 0A.
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Table 2.1 – continued from previous page

Attack Availability Confidentiality Integrity

Direct Slave Control X [25, 16] X [25, 16]

Irregular TCP Framing X [16]

MODBUS Diagnostic Register Reset Command X [16]

MODBUS Network Scanning X [25, 16]

MODBUS Query Flooding X X X

MODBUS Slave Reconnaissance X [16]

MODBUS TCP Pool Exhaustion X [16]

Passive Reconnaissance X [25, 16]

Ping Flooding X

Remote Restart Command Flooding X [16] X [16]

Response Delay X [25, 16] X [25, 16]

TCP FIN/RST Flooding X [16]

TCP SYN Flooding X [16]

2.3 Intrusion Detection and Prevention Systems

Intrusion consists of wrongfully entering a system, either maliciously or not, with the intention

to disrupt its operation by the actions performed during such intrusion. By monitoring and analysing

the events within a system, an Intrusion Detection System (IDS) may detect signs of those intrusions

(e.g., by comparing with a number of patterns – such as signatures – of how the system and their

actors should behave). If it is also able to attempt to stop such possible incidents in real time, the

system is called an Intrusion Detection and Prevention System (IDPS) [31].

Many methodologies can be used by IDPS, but, according to the work in [31], there are four

widely used:

• Signature-based detection, in which a signature - a recognizable pattern of an event - is

compared to a database of known attacks and threats, identifying possible intrusions. It is

rather simple to implement and has little overhead since it does not inspect the activity itself,

it only matches the signature. Is effective against known attacks but it is not flexible to adapt

and find new or adapted attacks until the database is updated, which requires extensive work.

• Anomaly-based detection, in which a deviation from a defined profile - also known as nor-
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mal or expected behaviour and defined by a set of attributes monitored over a period of time -

is sought. The profile may be either static - where the profile does not change once established

- or dynamic - where the IDPS updates the profile as the system evolves.

A dynamic profile adds extra overhead to the system, given the continuous update of the pro-

file, but it may be required if the process is not stationary. Furthermore, if a threat is temporally

spaced, it can become itself a part of the profile and thus avoid detection by the system.

• Stateful Protocol Analysis, in which the observed behaviour is compared to the expected

behaviour of the protocols involved, requiring a deep understanding of how the protocols and

its actors should interact/work, placing a big overhead on the system. Although the deeper

understanding of the actions, attacks can evade detection by maintaining themselves within

the acceptable/expected behaviour of the protocols.

• Hybrid-based methodology, in which a combination of two or more methodologies are used

to take advantage of the strengths of each methodology.

According to Zhu in [32], IDS approaches can be grouped into several categories, as depicted in

Table 2.2.

Table 2.2: Taxonomy of IDS approaches [32].

Approach Detection basis

Signature Known attacks are listed and detected when their signature appears

Anomaly Models of normal communication of the system are learned and anomalous events

are detected

Probabilistic Models of communication are constructed and when patterns of misuse are de-

tected the system calculates the probability of being an intrusion

Specification Models of the system are constructed with knowledge of specifications of the

system and protocol involved and a violation of such model raises an alarm

Behavioural A behavioural pattern of attacks is captured and are detected

2.4 Machine Learning Techniques

Machine learning techniques provide to the systems the capacity to learn and improve upon some

task from experience without being explicitly programmed to adjust. They can be generally divided

in the following three categories [33]:
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• Single machine learning techniques, of which Neural Networks, genetic algorithms, and

Support Vector Machines are good examples;

• Hybrid techniques, where several single machine learning techniques are combined into a

system, typically by cascading different techniques, i.e., where the outputs of a technique are

analysed as the input of other techniques;

• Ensemble techniques, where multiple machine learning techniques are used independently

in a system and the result of each technique is combined (e.g., majority vote of all the results)

to achieve better prediction accuracy, e.g., Random Forests.

2.4.1 Techniques Implemented

Numerous techniques are available in the field of machine learning and they can be categorized

within five major schools of thought [34]:

• Symbolists: focused on the premise of inverse deduction. Instead of the classical model of

starting with a premise and looking for the conclusions, inverse deduction starts with a set of

premises and conclusions and works backward to fill in the gaps;

• Connectionists: one of the most well-know, focused on reengineering the brain. Generally,

it is based on connecting artificial neurons in a neural network;

• Evolutionaries: focused on applying the idea of genomes and DNA in the evolutionary pro-

cess to data processing. In essence, evolutionary algorithms will constantly evolve and adapt

to unknown conditions and processes;

• Bayesians: focused on handling uncertainty using techniques like probabilistic inference.

Typically, Bayesian models will take a hypothesis and apply a type of a priori thinking, be-

lieving that there will be some outcomes that are more likely;

• Analogizers: focused on matching bits of data to each other.

The techniques used in this work represent the ones most used in research of IDS and are suc-

cinctly reviewed in the following sections.

2.4.1.1 Support Vector Machine

An algorithm where an optimum hyperplane, which can maximize the separation between data

from different classes, is sought [35]. The margin of separation between data defines the decision

frontier, i.e., the optimum hyperplane, and the patterns nearest to that frontier are the support vec-
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tors. It is currently a state-of-the-art technique in pattern recognition given its ability to work in

highly complex classification problems. Its usage of kernel functions (e.g., Gaussian, Linear, and

Polynomial) – capable of operating in high dimensions which map the data into a higher dimension

– allows for the generalization of non-linear frontiers, facilitating pattern classification.

2.4.1.2 k-Nearest Neighbours

A classification algorithm where the k nearest neighbours to an instance are chosen to perform

its classification, resorting to the minimization of a distance metric (e.g., Euclidean, Manhattan or

Minkowski distance) [36]. To classify an instance its distance to the training instances is calculated,

allowing the determination of its neighbours, from which the k nearest ones are chosen to classify.

The class of that instance is then determined by a majority vote of its neighbours, i.e., the class most

represented is chosen to classify the new instance, or by the class that has the most weight, when

a weighing procedure is applied and smaller distances have bigger weights in the classification.

The biggest drawback of this algorithm is the distance calculation required for each new instance

to the entire dataset, which can be a computational heavy task. This algorithm also requires the

determination of the best k and the distance metric that is most appropriate.

2.4.1.3 Naïve Bayes

An algorithm which considers the distribution of probability of the data in each class to perform

a decision on the classification process, assuming that exists a probabilistic relationship between

the features of the instances and its class and that they are independent between them [37]. As

such, the algorithm determines the probability that a given instance x belongs to class ci, called the a

posteriori probability, represented as P (ci|x), using Bayes formula, as seen in Equation (2.1), where

P (ci) represents the a priori probability of occurring that class, P (x|ci) the likelihood of x in a given

class, and P (x) is the probability of x.

P (ci|x) = P (x|ci)
P (ci)

P (x)
(2.1)

In a binary classification problem, where the decision is between classes c1 and c2, the algorithm

determines two a posteriori probabilities, P (c1|x) and P (c2|x), and decides according to the class

with higher probability, or randomly when the probabilities are equal.
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2.4.1.4 Decision Tree

A supervised learning algorithm applied in data mining, which recursively divides the data in

nodes of a tree until a leaf is reached. Each node corresponds to a test done to a feature of the

instances and each branch corresponds to a value (or set of values) that feature has. The leafs of the

tree are associated with a class and correspond to the decision being made for a given instance. The

tree is built from a training set of data and the classification process on new instances is made using

the resulting tree [38].

2.4.1.5 Random Forest

An ensemble learning algorithm, used in classification, which combines multiple Decision Trees

predictors independently constructed and classifies new instances as the mode of the predictions

made. It tends to improve the Decision Tree’s generalization error as the number of trees in the

forest increases, although it depends on the strength of the individual trees in the forest and the

correlation between them.

2.4.1.6 Neural Network

A learning algorithm used in classification which mimics the neurons of the human brain [39].

It is based on a collection of connected units called neurons that process signals given to them and

whose results signal additional neurons connected to it. The training process is done by tuning the

weights of the connections between neurons until a satisfactory result is achieved, i.e., the minim-

ization of the error of misclassification – usually done by relying in the backpropagation learning

algorithm.

2.4.2 Cross-Validation

Cross-validation is a common strategy for performance analysis of a given technique by giv-

ing insight on how their results will generalize to an independent dataset [40]. Several strategies

may be implemented, such as k-fold or holdout cross-validation, of which the latter was the one

employed in this work, given it requires less computational resources. In holdout cross-validation,

a dataset is randomly divided into two sets, usually called training and test sets, whose sizes are

arbitrarily defined, where the former is used during the training procedure of the technique being

evaluated while the latter is used to test the resulting model for performance. Given that the test data

was not used in the training procedure, the performance obtained in that set can give insight to the
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generalization capabilities or overfitting of the model.

2.4.3 Evaluation Metrics

The performance of a machine learning technique must be measured using empirical metrics

[41]. The metrics presented can be related to the confusion matrix, a bi-dimensional table which

represents the number of real and predicted cases in each class within a dataset. Although it can be

used for multi-class classification problems, the confusionmatrix can become hard to interpret, while

in the binary classification problem its a powerful tool. A binary classification problem’s confusion

matrix can be seen in Table 2.3.

True Condition

Positive Negative

Predicted Condition
Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

Table 2.3: Confusion matrix for a binary classification problem.

From the confusion matrix it is possible to define the following terms: True Positive (TP) and

True Negative (TN), when the predictions made correspond to the reality; and False Positive (FP)

and False Negative (FN), otherwise. We can also define the following evaluation metrics [41]:

• Detection Rate (DR), which represents the ration between the correctly identified positive

states and the overall number of positive states existent. It is defined as

DR =
TP

TP+ FN
(2.2)

• False Positive Rate (FPR), which represents the ratio between false states misidentified as

positive and the overall number of existent negative states. It is defined as

FPR =
FP

FP+ TN
(2.3)

• Accuracy, which represents the ratio of correct predictions over the number of total predic-

tions made. It is defined as

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
(2.4)

• Precision, which represents the ratio between the correctly identified positive states and the

overall number of positives states that were identified (correctly or incorrectly). It is defined
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as

Precision =
TP

TP+ FP
(2.5)

• Recall, which represents the ratio between the correctly identified positive states and the over-

all number of positives states that should have been identified. It is defined as

Recall =
TP

TP+ FN
(2.6)

• F1 score, which represents the harmonic average of the precision and recall measures of a

test. It is defined as

F1 = 2 · Precision · Recall
Precision+ Recall

=
2 · TP

2 · TP+ FN+ FP
(2.7)
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Cyber-Physical Systems’ security has had a lot of research, where multiple types of techniques

have been explored and Intrusion Detection Systems from simple to complex have been proposed.

In this section, a review of that research is presented. A comparison table of the results of the works

reviewed is also available in Table 3.1.

One of the fields of research has been the development or domain-adaptation of techniques to

security of SCADA systems. A good example of this kind of research was made by Shitharth and

Prince Winston, in [42] (2017), where they proposed an Intrusion Weighted Particle-based Cuckoo

Search Optimization with Hierarchical Neuron Interface based Neural Network (IWP-CSO with

HNA-Neural Network) technique in order to detect and classify intrusions in SCADA networks.

The technique starts by organizing the input data into clusters where the attributes available are

arranged and the optimal attributes are selected by the IWP-CSO. The intermediate output is then

given to the HNA-NN algorithm which classifies the results. The combination of both algorithms

intends to reduce the dimensionality of features while improving the overall accuracy. The approach

was tested against four datasets – Single-hop Indoor Real Data (SIRD), Single-hop Outdoor Real

Data (SORD), Multi-hop Indoor Real Data (MIRD), and Multi-hop Outdoor Real Data (MORD) –

to detect external attacks (DoS and spoofing, specifically). The approach presented a detection rate

ranging from 94.28% to 100% with a false positive rate ranging from 0% to 1.14%. The approach

was also tested using the ADFA-LD dataset and compared to SVM, HNA-NN, and IWP-CSO with

SVM presenting better results in every metric measured against those techniques.

Another example was made by Lil,Wanl and Zengl, in [43] (2015), were they proposed an anom-

aly detection system based on an improvedOne-Class Support VectorMachine (OCSVM) algorithm,

reliant in data preprocessing and normalization, an appropriate kernel function and the calculation of

a decision function, which was done with the Particle Swarm Optimization (PSO) algorithm, since

I(A)CS systems tend to be more well-behaved than traditional networks. The approach was tested in

a SCADA testbed using the MODBUS protocol. The PSO optimization with the OCSVM detection

proved successful, with accuracies of 96% and 100% for the test and training sets, respectively, while

having better efficiency than traditional grid-search OCSVM, requiring 10 times less computational

power, which should allow the construction of more concise models, with stronger generalization

and fewer support vectors.
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However, more research has been made in anomaly detection, which have the prospect of detect-

ing abnormal behaviour of the system. Different type of techniques have been proposed, such as the

Ant Colony Clustering Model (ACCM) within a multi-agent IDS architecture by Chi-Ho Tsang and

SamKwong, in [44] (2005). Different agents perform certain functions in order to provide the detec-

tion capabilities, such as traffic monitorization and pre-processing, classification (where the ACCM

algorithm is embedded), coordination, counter-attack action, user-interaction, and registration. The

ACCM algorithm specifically is based on positive and negative feedbacks for self-organization in

order to create larger clusters and destroy smaller ones, using a heuristically approach. Against the

KDD-Cup99 dataset1, the algorithm presented better results and more resilience when using a Prin-

cipal Component Analysis and the number of principal components increased. It presented around

90% detection rate with a FPR of 1%. It was also compared against other approaches (K-Means,

E-M, Ant-based clustering, multiple classifier, and KDD-Cup99 winner) and it outperformed them

in almost every case in its recall rates.

Yang, Usynin and Hines proposed, in [45] (2005), an anomaly-based IDS composed of anAuto-

Associative Kernel Regression (AAKR) and Sequential Probability Ratio Test (SPRT) for SCADA

systems. The AAKR is an empirical modelling technique which makes predictions based in histor-

ical, exemplar observation of the traffic used for distance calculation, similarity quantification, and

output estimation, while the SPRT technique tests the likelihood of an observation to be abnormal.

The technique was tested against a simulation of a SCADA system, where an attack was introduced

to simulate a malicious inside action. Such attack was correctly identified by their IDS. However,

the results lack consistent testing against multiple types of attacks and variable states of the SCADA

system, as stated by the authors themselves. This work also lacks, unfortunately, quantitative results

to assess the performance claimed.

Two other anomaly detection techniques have been proposed by Valdes and Cheung, in [46]

(2009): pattern-based host-to-host communication anomaly detection, and flow-based detection. In

the pattern-based technique, the approach relies in an adaptive library of known patterns – initially

empty – that can record both normal and abnormal activity (which does not require attack-free train-

ing data) and is periodically updated and pruned (similar patterns are consolidated and rare ones

are discarded). The inputs are compared to the library of patterns and, if the probability of the in-

put matching one of the recorded pattern is below a certain threshold, an alarm is raised. In the

flow-based technique, a database of active and historical flow records is maintained and an alarm is

raised when anomalies of the current network flow does not match the expected behaviour – e.g., a

1Available at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
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significant change of the rate of flow, an absence of an expected flow, or the emergence of a new

flow.

Erez andWool proposed, in [47] (2015), a domain-aware anomaly detection system to detect con-

trol register values with irregular changes. An automatic classifier of the registers was developed

using a single-window classification algorithm in order to distinguish different types of registers

(namely, sensor, counter, and constant registers) given their respective characteristics in runtime of

the PLCs, such as their variance and monotony. Using the dataset provided by the Tel Aviv Univer-

sity (used in [48]), the authors tested the classifier by varying several aspects of the classification

parameters, such as, the window size and thresholds. They found that after a certain size, the clas-

sification window did not yield better results. Upon further analysis, the authors found that certain

characteristics of registers were too slow for the algorithm to notice, misclassifying them, but, as

mentioned, increasing the size of the window would not yield better results. Adapting the approach,

a long time-frame was divided in several parts where the single-window algorithm would be applied

and the register classification would be incremental, affected by the classification in the current win-

dow and in the previous windows, using a finite-state machine. This new approach improved the

performance with a True Positive Rate (TRP) ranging from 91% to 100% and a FPR lower than 3%

in each type of register. Then, each type of register was modelled according to their class. Testing

against the dataset found the system achieved a 93% classification accuracy and a 0.86% false alarm

rate. However, the technique requires further testing, such as against subtle anomalies or attacks to

the system, to assess its full potential.

SCADA systems tend to be highly static, which present an unique advantage against attacks: by

modelling the expected behaviour of a system, any deviation from normal operation should raise a

flag, even if it is not an attack, and quickly dealt with. In this field of research, Cheung and Skin-

ner proposed, in [49] (2006), an IDS wichh explored three different techniques: a protocol-level

modelling for MODBUS over TCP/IP, a communication pattern modelling of the network, and a

service availability modelling of the network. The protocol-level intrusion detection was imple-

mented using Snort rules derived from the specifications of the protocol, allowing the detection of

relatively generic threats against these types of networks. However, given the limitations of this

approach, detecting system-specific threats are cumbersome and error-prone, and the authors aim to

use the model as a detector itself, but the approach is still in an embryonic state. The communica-

tion pattern-based detection allows the definition of a set of rules that the communication in these

networks should follow, such as the communication of a server unit to another unit which should not

happen in MODBUS. The service availability-based detection uses a heuristic approach of learning
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the models of availability of servers and services in the network. A service discovery component

maintains a list of active services and periodically detects their state. When any of them become

unavailable for no apparent reason or new services appear, an alarm is raised. The IDS was tested

in a SCADA testbed against an attack scenario where the system was compromised by a zone of

the system connected to the Internet that successively gained access to the entire system. The au-

thors claim that their approach proved effective for monitoring SCADA networks, where different

sensors detected different aspects of their multistep attack scenario, however no quantitative results

were made available to assess such claim.

Valdes et al., in [1] (2009), proposed a multilayer security architecture that uses model-based

monitoring, complemented by a conventional signature-based detection, and a hierarchical security

event management framework to correlate events. The model-based monitorization implemented

included specification-based, change, and statistical anomaly detection, which varied in the level

of automation used and the abstraction layers used for the model. A heuristic approach was also

used to model availability of servers and services used in MODBUS over TCP/IP to generate re-

ports of ”interesting” events, such as the detection of new units or the use of function codes unused

previously. These model-based sensors were incorporated in an IDS containing a multi-algorithm

and multilevel analysis, a stateful packet reassembly and protocol analysis engine, a Bayesian pro-

tocol anomaly detection engine, a signature-based detection system (Snort), and a probabilistic alert

aggregation engine. Using an exemplary testbed [49], the multi-algorithm intrusion detection was

experimentally validated against a multistep attack scenario, which included reconnaissance and dir-

ect attacks to system hosts. The algorithms were able to detect different aspects of the attack with

various degrees of success and removing any of the algorithms resulted in diminished detection of

the system.

A SCADA IDS architecture based on system knowledge and system state analysis has been

proposed by Fovino et al., in [50] (2010). It maintained a virtual image of the various components,

information flows, critical states, and known vulnerabilities (known vulnerabilities are mentioned

in Section 2.1.5.1). Alongside a signature-based detection system, every command was interpreted

in terms of the consequences to the state of a virtual image of the system – relying in behavioural

profiles of the components –, raising alerts when critical states were detected. The architecture was

tested in three phases – single packet signature detection, critical state detection, and performance

analysis – using a reproduction of a power plant’s environment and a limited set of rules, both for

signature-based and critical state detections, where the proposed architecture proved successful in

the detection of the attacks. In the third test, the system was tested against various amounts of traffic
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and it was found that over 180 kbit/s the number of alerts raised by the IDS did not match the number

of expected alerts. However, the authors considered it a satisfactory result given the number of rules

inspected and the average low bandwidth typical in industrial networks.

Goldenberg and Wool proposed, in [48] (2013), an IDS based on the modelling of SCADA

traffic with the assumption of rigid periodicity of communications between elements of the systems,

which allowed simple models to be made with high predictive capabilities. The approach relied

in the modelling of each communication channel with a Deterministic Finite Automata (DFA). The

communication patterns are described by the set of states and the transition between them, where four

types of transitions are defined, specifically, normal – corresponding to the pattern of communication

–, retransmission – usually due to congestion in the TCP traffic –, miss – when a pattern is out of

order, which can also happen due packet loss in the communication process –, and unknown – un

unknown pattern occurred, which can signal a human operation, an unmodelled pattern, or an attack.

In order to generate the models, the authors presented an automatic model generator which did not

require labelling of the data, requiring only a capture of normal traffic longer than the pattern to

model. To validate the technique, the authors captured two MODBUS datasets from the system of

the TelAviv University used to monitor the campus power-grid several months apart from each other.

The DFA-based technique proved successful with the first dataset, where the unknown transitions

in the system were localized in time (a suspicious occurrence) and correlated to maintenance of the

system. However, in the second dataset the same approach was not successful, as the unknown rate

was alarmingly high with no localization in time. After analysing the system, the authors found

various patterns with different frequencies corresponding to normal operation of the system. As

a consequence, the approach was adapted (since a single DFA would require an enormous time

interval of traffic to construct the model with every pattern occurring once which would result in a

DFA with millions of states) and a multi-level DFA was devised. A first-level DFA, corresponding

to the fast periodic sequence, evaluates the stream and, when an unknown event occurs, passes

the unknown input to the second-level DFA, corresponding to the slow periodic sequence, which

evaluates as normal or unknown – this last unknown raises a signal to the operator. This adapted

approach proved successful, diminishing the unknown rate by two orders of magnitude. However,

the validity of this approach was not fully assessed as the datasets did not contain any kind of attacks

and a single SCADA system was evaluated, requiring further investigation, specifically to more

dynamic systems.

A passive SCADA IDS based on unsupervised anomaly detection focused on integrity attacks

has been proposed by Almalawi et al., in [51] (2014). The approach was based in two different
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techniques: a scoring of inconsistency of unlabelled data, which used the density factor of the kNN

of each observation, and the extraction of proximity-based rules allowing for a small set of rules to

define the system as a model. The authors tested the approach using three different datasets, namely,

a real dataset (available at [52]) and two datasets obtained from a simulation of a water distribution

SCADAsystem using theMODBUS protocol suffering aMitM attack. The approach presented over-

all good results identifying consistent from inconsistent states in all of the three datasets, reaching

detection rates of around 98% for the simulated ones and 86% for real one.

Yoon and Ciocarlie proposed, in [53] (2014), a method for modelling normal I(A)CS behaviour

based on sequencing of requests and replies in order to determine the state of the devices in a net-

work using a Probabilistic Suffix Tree (PST) which in turn uses variable-order Markov chains. An

incremental PST algorithm was introduced for online-learning capabilities, where the tree is incre-

mentally updated to include recently-learned sequences. Amissing element approach is also included

in order to avoid the learning of erroneous sequences and cause multiple false alarms by the system.

The approach was tested in a testbed configured with a MODBUS network, from where a clean

dataset was obtained. The authors compared the PST approach with batch learning, the incremental

learning introduced, and the incremental learning with a missing element detector. The batch learner

produced a better False Positive Rate (FPR) in every connection tested than the incremental learner

(1.429% against 1.819%), an expected result since the incremental learner only knows the history of

communication up to the point is testing whilst the batch learner had already known the entire his-

tory. However, the incremental learner with missing element detector presented the better average

FPR of the three (0.848%), although presenting the less robust results of with the highest standard

deviation (0.011 against 0.007 of the batch learner and 0.010 of the incremental learner). When in-

troducing a synthetic anomaly in the dataset, namely, a set of random sequences is introduced with

a repeating pattern that randomly drops some packets in order to randomize the sequence further.

With a low missing probability of packets, as in the previous test, the incremental learner with miss-

ing element detector outperformed the other two learners, presenting a better capacity to distinguish

attacks from noise. However, increasing the missing packet probability, the incremental learner with

missing element detector has a poorer performance, which indicates that this learner is appropriate

only for communications with a dominant pattern present.

Caselli, Zambon and Kargl, in [54] (2015), proposed a sequence-aware IDS for Industrial (Auto-

mation and) Control System that analyses sequences of allowed operations within the system that

pose significant threats to the systems, using Discrete-Time Markov Chain (DTMC), where a model

of regular behaviour of the system is built and anomalies are detected when a DTMC built during the
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detection phase does not match the one created during the training stage. Distances between the ex-

pected and current states are measured and raise an alarm when a predefined threshold is surpassed.

The approach was tested against a trace of a water treatment plant using the MODBUS protocol. In

a first test, the detector ran across a clean trace using a small threshold for alerts, raising a total of

211 alerts (false positives, since it was a clean trace), of which 96% were due to delays on ”read”

operations. In a second test, two sequence attacks were introduced to the same trace and the detector

raised the same 211 false positives as before plus 8 alarms corresponding to the introduced attacks.

In order to diminish the number of false positives of the system, the authors introduced an event im-

portance monitor which employed various different approaches, such as categorization of the events

– events that control the system have higher risk than events that only serve to monitor the system –,

proximity to other important events, and transition timing variability. With this new setup, the clean

trace only raised 9 alarms (false positives) and the trace containing the attacks raised 17 alerts on the

attacks, nine more than the previous setup, improving the detection capability of the system.

Finally, Faisal, Cardenas and Wool, in [55] (2016), proposed a specification-based IDS com-

plimentary to the DFA (presented in [48]) and DTMC (presented in [54]) models employed for

MODBUS over TCP/IP. The specification-based approach is built as a set of rules defining allowed

behaviours within the network constructed using a priori knowledge about the protocols involved

and the system specifications. The approaches were tested against two datasets: a one-day trace

from a real-world operational large-scale water facility in the USA, and a trace of a university power

grid monitoring process. The authors found that the DFAapproach could generate models for all the

channels in the second dataset but was unable for 68% of the channels analysed in the first dataset.

For the DTMC approach, the algorithm was able to generate values for all the channels analysed,

where the size of training data did not affect significantly the size of the model but increased the

number of transitions used within those models. Their specification-based approach was not thor-

oughly tested since the authors did not possess the a priori design and configurations of the systems

evaluated, requiring inferred information from analysis of the datasets, stating only that it raised 15

alarms on one of the channels of the first dataset for delayed responses.

Combined approaches are also relevant research in the field of intrusion detection. The work

made by Samdarshi, Sinha and Tripathi, in [56] (2016), where they proposed a triple layer IDS for

SCADA systems is a good example. The first layer ensured the protection of the communication

network, namely, the TCP/IP network. This layer was tested using the J48 and the Random Forest

algorithms available at WEKA, which presented 99.96% and 99.98% accuracy and 0.998 and 0.999

Kappa coefficient, respectively. However, the Random Forest took 447.54 seconds against the more
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reasonable 54 seconds of the J48 algorithm for the same number of instances. The second layer

ensured command and state authentication by detecting tampering of data by an intruder with a

What-if module, which fed data from the field to an existing model of the system, checking the

authenticity of the commands, whose result is simulated and warns the operator of insecure states

of the system. The third layer ensured the authentication of the data entering the control centre and

classified the state of the system coming from the second layer as a disturbance, an attack or a normal

state. This layer was tested with one of the ORNL-MSU datasets using Naïve Bayes, J48, Random

Forest, and Adaboost with JRipper algorithms, where the accuracies were, respectively, 33.88%,

70.90%, 75.68%, and 94.01%.

A significant work of comparing the effectiveness of multiple machine learning algorithms in

SCADA systems has been made in [57] (2014), by Borges Hink et al. Using Weka as the frame-

work and the open-source power system data provided by The Mississippi State University divided

in 15 datasets, randomly sampled at 1%, the authors used three testing schemes, using multiclass,

three-class, and binary class classification of events. They tested several algorithms (OneR, NNge,

Random Forests, Naïve Bayes, SVM, JRipper, and Adaboost) in terms of accuracy within each of

the 15 sets and of average precision, recall, and F-measure. The first noteworthy aspect found was

the consistency of the results of each learner regardless of the dataset used. Secondly, there could

be no definitive conclusion of using different classification schemes, since each learner has a dif-

ferent response to each scheme (the multiclass scheme was clearly better for the Random Forest

learner, while the binary scheme was better for Naïve Bayes, and the three-class scheme was better

for JRipper). Thirdly, the Adaboost+JRipper learner had the best performance of all the learners.

Table 3.1: Comparison of the works reviewed.

Pub. Scope Dataset Technique2 DR FPR Acc

[44]

(2005)

I(A)CS KDD-Cup99 K-Means & FastICA 89.17% 4.29% -

E-M & FastICA 90.94% 4.24% -

ACCM & FastICA 92.23% 1.53% -

[53]

(2014)

MOD-

BUS

Testbed trace Batch PST trees - 1.429% -

Incremental PST trees - 1.819% -

Continued on next page

2In bold, is(are) the technique(s) introduced in the paper, while the others are comparisons made in the same paper.
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Table 3.1 – continued from previous page

Pub. Scope Dataset Technique DR FPR Acc

Incremental PST trees

with element missing

inference

- 0.848% -

[57]

(2014)

SCADA Open-source

simulated power

system data by

Mississippi State

University

OneR, Nearest Neigbor,

Random Forests, Naïve

Bayes, SVM, JRip, Ad-

aboost+JRip

- - -

[47]

(2015)

MOD-

BUS

2 traces of Tel

Aviv University’s

power grid mon-

itor

Domain-aware classi-

fication algorithm

- 0.86% 93%

[43]

(2015)

MOD-

BUS

Testbed trace PSO-OCSVM - - 96%

Grid-OCSVM - - 87.5%

[42]

(2017)

SCADA SIRD EDDC 100% 0% -

IWP-CSO&HNA-NN 100% 0% -

SORD EDDC 96.88% 1.94% -

IWP-CSO&HNA-NN 97.57% 1.14% -

MIRD EDDC 100% 0.31% -

IWP-CSO&HNA-NN 100% 0.18% -

MORD EDDC 92.98% 0.04% -

IWP-CSO&HNA-NN 94.28 0% -

ADFA-LD SVM 43.53% 13.02% -

HNA-NN 61.51% 9.99% -

IWP-CSO & SVM 93.01% 8.85% -

IWP-CSO&HNA-NN 100% 8.35% -

Althoughmany approaches, with varying degrees of success, have been presented over the years,

the lack of comparable datasets with comparable attack procedures prevents the proper generalization
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of these techniques and real-world application. This work aims to present the frailties of machine

learning algorithms when datasets with different characteristics are fed to them and serve a stepping

stone to future works to proper generalize them.
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The availability of datasets or network traces containing normal SCADA operations, as well as

attacks aimed at those systems, is very limited. To overcome this limitation, which would not allow

a proper evaluation of IDS based on machine learned classifiers, a testbed (described in Section 4.1)

was used to generate those datasets. The trace collection procedure also included attacks, which were

performed as described in Section 4.2, which were then processed by the algorithms as described in

Section 4.3.

4.1 Simulation Environment

The testbed emulates a CPS process controlled by a SCADA system using the MODBUS pro-

tocol [58]. It consists of a liquid pump simulated by an electric motor controlled by a Variable

Frequency Drive (VFD) – allowing for multiple rotor speeds –, which in its turn is controlled by

a Programmable Logic Controller (PLC). The motor speed is determined by a set of predefined li-

quid temperature thresholds, whose measurement is provided by aMODBUS Remote Terminal Unit

(RTU) device providing a temperature gauge, which is simulated by a potentiometer connected to

an Arduino. The PLC communicates horizontally with the RTU, providing insightful knowledge of

how this type of communications may have an effect on the overall system. The PLC also com-

municates with the Human-Machine Interface (HMI) controlling the system, which was built using

RapidSCADA [59]. The testbed, including the HMI used, can be seen in Figure 4.1, while a schem-

atic representation can be seen in Figure 4.2.

(a) The installation. (b) The HMI.

Figure 4.1: The testbed used for the simulation environment.
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Figure 4.2: Schematic representation of the testbed.

4.2 Attack Implementation

There are several types of attacks that are effective against SCADA-based systems using the

MODBUS over TCP/IP protocol implementation. For analysis purposes, a subset of the attacks

mentioned in the introductory section was implemented in the testbed, namely:

1. Ping flooding;

2. TCP SYN flooding;

3. MODBUS Query Flooding - Read Holding Registers;

4. Passive Reconnaissance;

5. Data Modification.

The first three attacks targeted the PLC, while the last two attacks targeted the HMI. The first

two attacks attempt to overwhelm the capacity of the network or the networking subsystem in the

target device with requests (operating mostly at OSI layers 2 to 4), and were implemented using the

hping3 tool [27], which is capable of generating conventional DoS attacks and simulated DDoS by

spoofing the packet’s IP address (specifically, by setting the source with a random valid IP address).

This last configuration was the one used in this work.

The third attack works at the SCADAprotocol layer, flooding the device with read request opera-

tions whichmay lead to side effects such as device resource exhaustion, scan cycle latency deviations

or loss of connectivity and was implemented using an adaptation of the SMOD tool [60].

The final two attacks present a MitM with two different objectives. The first one aims at discov-

ering which type of information is being presented to the human operators of the system and allows

for the definition of a baseline of the system, which can be exploited in future attacks. The second

one modifies the data sent to the HMI, specifically the temperature reading went from 30ºC to 39ºC,
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which could trigger an intervention by human operators.

As mentioned, the aim of this work is to present the frailties of machine learning algorithms

when different characteristics of datasets are fed to them. As such, an analysis of the impact of the

dataset size and the relative magnitude of the attack traces within such datasets on the behaviour

of machine-learned classifiers was made. For this purpose, the following experiments were made:

varying the time of the capture (30 minutes, 1 hour, and 6 hours of capture); and varying the time of

the attack (1 minutes, 5 minutes, 15 minutes, and 30 minutes of attack within each capture1).

The network captures were made using the tshark network analyzer tool [61], which was used

to acquire the network traces on the testbed. For this purpose, the network switch that was used to

interconnect the equipment was configured with a mirror port, providing access to a replica of all

the network traffic on the testbed.

The captures were then processed for feature extraction within MATLAB [62], where a total of

68 features were extracted (packet timestamps, inter-packet arrival times, binary features defining

which protocols were involved, and every field of the Ethernet, ARP, IP, ICMP, UDP, TCP and

MODBUS over TCP/IP headers). However, to generalize the captures for normal use of the system,

the timestampswere removed from the datasets before the analysis, maintaining only the inter-packet

arrival times.

In the case of the MitM attacks, the attacks were only detectable in the trace by the presence of

unsolicited is-at messages of the ARP protocol, which would not allow a proper generalization of

the classification procedure of an attack. As such, the captures were reduced to the TCP packets only

and their features were also reduced, but now contained the timespan of the TCP flows. Alongside

a clean trace of the system, which allowed for the calculation of the mean time (and its standard

deviation) of packet travel between each host, the classification procedure was then implemented by

analysing those timespans.

4.3 Classifier Implementation

Six of the most used classifiers in literature (as reviewed in Chapter 3) were implemented in this

analysis study, namely: k-Nearest Neighbors (kNN), Support Vector Machine (SVM), Decision Tree

(DT), Random Forest (RF), Neural Network (NN) and Naïve Bayes (NB). Two experiments were

devised: a default MATLAB implementation of each of the algorithms; and a tuned implementa-

1The 30 minutes capture did not have a 30 minute attack, since it would represent the entire trace.
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tion of the algorithms, i.e., an hyperparameter selection was introduced to the algorithms. However,

given time constraints and the prolonged nature of the learning procedure of the algorithms, the tun-

ing could only be made to the kNN and SVM algorithms and were only tested against the first two

attacks enumerated. Specifically, the kNN was tested with k being 1, 3, 5, 7 or 9; the distances being

cityblock, chebychev, correlation, cosine, euclidean, hamming, and jaccard; and the distance weight

parameter set as equal, inverse, and squaredinverse. The SVM was tested with kernel functions as

gaussian, linear, and polynomial (the polynomial order was only tested as 2, due to the aforemen-

tioned constraints); the solvers as ISDA, L1QP, and SMO; and the ν parameter set as 0.1, 0.3, 0.5,

0.7, and 0.9. All the algorithms belong to the Statistics and Machine Learning Toolbox [63], except

the Neural Network, which belongs to the Deep Learning Toolbox [64].

In order to validate the models created, a cross-validation procedure was performed with a

70%/30% ratio for training and validation sets.

40



Chapter 5. Experimental Results

In this chapter a report of the results obtained from the experiments described in Chapter 4 is

made. This chapter is subdivided in two main sections: an analysis of the Denial-of-Service (DoS)

attacks is made in Section 5.1, which includes the tuning analysis referenced; and an analysis of the

Man-in-the-Middle (MitM) attacks is made in Section 5.2.

5.1 Denial-of-Service Attacks

This part of the experiment proposed has the goal of visualizing the effects of different charac-

teristics of datasets, specifically, the effects of dataset size and the relative magnitude of the attack

within such datasets, on the classification procedure with a broader goal of defining a baseline when

comparing different works on the security of Cyber-Physical Systems.

As mentioned in Chapter 4, the following experiments were made: varying the time of the cap-

ture (30 minutes, 1 hour, and 6 hours of capture); and varying the time of the attack (1 minutes, 5

minutes, 15 minutes, and 30 minutes of attack within each capture1). Two different analysis were

performed: a direct application of the default configuration of the algorithms in MATLAB, covered

in Section 5.1.1; and a hyperparameter tuning of the algorithms, covered in Section 5.1.2.

5.1.1 Default Configurations

Three different traces were performed to allow generalization of the results. Figures 5.1 to 5.3

present the average results2 obtained in the three captures of the accuracy and F1-score of the clas-

sification procedure of the six classifiers implemented in their default MATLAB configurations.

On a first approach, the analysis of the results reveals a trend for consistent high accuracy results

for the smallest attack timespan. However, this is a misleading result, given the high imbalance in

the data present in these situations, associated with the small variance of the attacks in such a small

timespan. When the attacks increase in size, a decay of the performance can be observed, explained

by the decrease of the aforementioned effects. The increasing attack timespan overcomes the imbal-

ance within the dataset, allowing the algorithms to systematically learn more differences between

1The 30 minutes capture did not have a 30 minute attack, since it would represent the entire trace.
2The three captures followed the same trends.
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(a) 0.5h of capture.

0 10 20 30

Attack Time (m)

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 (
%

)

kNN

DT

RF

SVM

NB

NN

(b) 1h of capture.
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(c) 6h of capture.

Figure 5.1: Average accuracy (full line) and F1-score (dashed line) of the implemented classifiers

for the first attack.
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Figure 5.2: Average accuracy (full line) and F1-score (dashed line) of the implemented classifiers

for the second attack.

normal and anomalous traces and improve the results – a similar effect is also accomplished with

an increase in the size of the capture. Although the increase of the size of the capture increases the

imbalance of the dataset, it also increases the number of packets available to differentiate the traces,

improving the performance of the classifiers, as can be seen by the reduced decay in performance

when the time of capture increases. The improvement of the results as a consequence of the increase

in the relative size of the attack traffic is also reduced when the size of the capture increases.

The Decision Tree classifier presents the best results of all the studied classifiers. By analysing

the trees obtained, some of the attacks were classified by detection of the reduced inter-packet arrival

times (a good metric for flooding attacks), however, when the inter-packet arrival times were not suf-

ficient, the algorithm tended to overfit the data and, consequentially, exhibited higher performances

but lacked generality. The Random Forest algorithm aims to prevent these overfitting issues and,

consequentially, showcases worse accuracy.

The Naïve Bayes classifier tends to generally decrease in performance with increasing attack

timespans for the ping flooding attack, while in the other attacks it presents the same trend as the

other classifiers. Given its more statistical nature and assumption of statistical independence between

features, which clearly is not the case, since some of the values are dependent of others, its perform-
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Figure 5.3: Average accuracy (full line) and F1-score (dashed line) of the implemented classifiers

for the third attack.

ance may be penalized because of that.

All the classifiers presented unusually good results for the third attack (the MODBUS query

flood), prompting a deeper analysis of the dataset obtained. This allowed for the detection of a field

with little variance during the attack, which allowed the algorithms to detect the attack with ease.

Consequentially, inferring upon these results may be overreaching, requiring further analysis and an

adaptation of the implemented attack in future works.

In conclusion, the effects of data imbalance on the classification process constitute a real prob-

lem that can lead to unintentional misleading when analysing classifier performance. Moreover,

this situation can be hard to detect since the datasets used for CPS security research are frequently

restricted (and consequentially, difficult to analyse and characterize).

5.1.2 Hyperparameter Tuning

In the previous experiment, a default configuration of the algorithms implemented was used.

However, those algorithms have some parameters which can be tuned in order to present better

results, such as the distance metric used in the kNN algorithm.

Table 5.1 presents the performance of the various parameters tuned in the k-Nearest Neighbors

algorithm, alongside their variation from the default configuration – one neighbour, euclidean dis-

tance and equal distance weight. It is possible to observe that simple parameter differences can have

some impact on the performance of the algorithm, such as what happened when the distance metric

was changed from ’euclidean’ to ’hamming’, which introduced a variation of about 5% in accuracy

and almost 19% in F1-score, while other variations have almost no effect on the performance. This

part of the experiment does not hope to define the best parametrization of the algorithm for detecting

DoS attacks, but to demonstrate that a search of the best parametrization should be considered when
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implementing these algorithms.

Table 5.1: Performance of the kNN algorithmwith hyperparametrization tuning for the ping flooding

attack.

Number of

Neighbours

Distance Distance

Weight

Acc.

(%)

Acc. Vari-

ation (%)

F1 (%) F1 Vari-

ation (%)

1 chebychev equal 63.10 -0.36 73.43 -0.20

1 chebychev inverse 63.10 -0.36 73.43 -0.20

1 chebychev squaredinverse 63.10 -0.36 73.43 -0.20

1 cityblock equal 63.82 0.77 73.99 0.56

1 cityblock inverse 63.82 0.77 73.99 0.56

1 cityblock squaredinverse 63.82 0.77 73.99 0.56

1 correlation equal 63.62 0.46 73.82 0.33

1 correlation inverse 63.62 0.46 73.82 0.33

1 correlation squaredinverse 63.62 0.46 73.82 0.33

1 cosine equal 63.77 0.69 73.95 0.51

1 cosine inverse 63.77 0.69 73.95 0.51

1 cosine squaredinverse 63.77 0.69 73.95 0.51

1 euclidean equal 63.33 0 73.58 0

1 euclidean inverse 63.33 0 73.58 0

1 euclidean squaredinverse 63.33 0 73.58 0

1 hamming equal 60.30 -4.79 59.87 -18.63

1 hamming inverse 60.30 -4.79 59.87 -18.63

1 hamming squaredinverse 60.30 -4.79 59.87 -18.63

1 jaccard equal 60.30 -4.79 59.87 -18.63

1 jaccard inverse 60.30 -4.79 59.87 -18.63

1 jaccard squaredinverse 60.30 -4.79 59.87 -18.63

3 chebychev equal 63.77 0.69 74.55 1.32

3 chebychev inverse 63.70 0.58 74.47 1.21

3 chebychev squaredinverse 63.70 0.58 74.33 1.02

3 cityblock equal 64.34 1.59 75.07 2.03

3 cityblock inverse 64.41 1.70 75.09 2.05

3 cityblock squaredinverse 64.31 1.55 74.88 1.77

3 correlation equal 64.19 1.360 74.95 1.86

3 correlation inverse 64.17 1.320 74.78 1.63

3 correlation squaredinverse 64.08 1.18 74.52 1.28

3 cosine equal 64.08 1.18 74.86 1.74

3 cosine inverse 63.99 1.04 74.64 1.44

Continued on next page
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Table 5.1 – continued from previous page

Number of

Neighbours

Distance Distance

Weight

Acc.

(%)

Acc. Vari-

ation (%)

F1 (%) F1 Vari-

ation (%)

3 cosine squaredinverse 64 1.06 74.46 1.20

3 euclidean equal 64.07 1.170 74.86 1.74

3 euclidean inverse 64.05 1.14 74.82 1.69

3 euclidean squaredinverse 63.98 1.02 74.65 1.46

3 hamming equal 65 2.64 66.21 -10.01

3 hamming inverse 65 2.64 66.21 -10.01

3 hamming squaredinverse 65 2.64 66.21 -10.01

3 jaccard equal 65 2.64 66.21 -10.01

3 jaccard inverse 65 2.64 66.21 -10.01

3 jaccard squaredinverse 65 2.64 66.21 -10.01

5 chebychev equal 64.34 1.59 75.32 2.37

5 chebychev inverse 64.28 1.50 75.24 2.26

5 chebychev squaredinverse 64.12 1.250 74.97 1.89

5 cityblock equal 64.88 2.450 75.89 3.14

5 cityblock inverse 64.82 2.35 75.78 2.99

5 cityblock squaredinverse 64.72 2.19 75.54 2.67

5 correlation equal 64.89 2.46 75.84 3.07

5 correlation inverse 64.66 2.1 75.49 2.6

5 correlation squaredinverse 64.24 1.44 74.85 1.73

5 cosine equal 64.97 2.59 75.87 3.12

5 cosine inverse 64.61 2.02 75.43 2.52

5 cosine squaredinverse 64.40 1.69 74.96 1.88

5 euclidean equal 64.64 2.070 75.68 2.86

5 euclidean inverse 64.68 2.130 75.65 2.82

5 euclidean squaredinverse 64.48 1.810 75.32 2.37

5 hamming equal 68.72 8.510 70.89 -3.65

5 hamming inverse 68.72 8.510 70.89 -3.65

5 hamming squaredinverse 68.74 8.540 70.9 -3.64

5 jaccard equal 68.72 8.510 70.89 -3.65

5 jaccard inverse 68.72 8.510 70.89 -3.65

5 jaccard squaredinverse 68.74 8.540 70.9 -3.64

7 chebychev equal 64.91 2.49 76.06 3.37

7 chebychev inverse 64.77 2.270 75.9 3.16

7 chebychev squaredinverse 64.41 1.7 75.44 2.53

Continued on next page
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Table 5.1 – continued from previous page

Number of

Neighbours

Distance Distance

Weight

Acc.

(%)

Acc. Vari-

ation (%)

F1 (%) F1 Vari-

ation (%)

7 cityblock equal 64.96 2.570 76.27 3.66

7 cityblock inverse 64.97 2.59 76.20 3.56

7 cityblock squaredinverse 65.07 2.750 76.04 3.35

7 correlation equal 64.9 2.480 76.23 3.6

7 correlation inverse 64.78 2.29 75.87 3.12

7 correlation squaredinverse 64.53 1.89 75.24 2.26

7 cosine equal 64.89 2.46 76.20 3.56

7 cosine inverse 64.68 2.130 75.78 2.99

7 cosine squaredinverse 64.56 1.940 75.27 2.3

7 euclidean equal 65.12 2.82 76.34 3.75

7 euclidean inverse 64.97 2.59 76.16 3.51

7 euclidean squaredinverse 64.94 2.540 75.89 3.14

7 hamming equal 71.15 12.35 73.82 0.33

7 hamming inverse 71.15 12.35 73.82 0.33

7 hamming squaredinverse 71.19 12.41 73.84 0.36

7 jaccard equal 71.15 12.35 73.82 0.33

7 jaccard inverse 71.15 12.35 73.82 0.33

7 jaccard squaredinverse 71.19 12.41 73.84 0.36

9 chebychev equal 64.70 2.160 76.13 3.47

9 chebychev inverse 64.66 2.1 76.04 3.35

9 chebychev squaredinverse 64.65 2.080 75.82 3.05

9 cityblock equal 65.60 3.580 76.99 4.64

9 cityblock inverse 65.66 3.680 76.94 4.57

9 cityblock squaredinverse 65.51 3.44 76.60 4.11

9 correlation equal 65.35 3.19 76.84 4.43

9 correlation inverse 65.17 2.9 76.39 3.82

9 correlation squaredinverse 64.58 1.970 75.42 2.5

9 cosine equal 65.42 3.3 76.85 4.45

9 cosine inverse 65.13 2.840 76.32 3.73

9 cosine squaredinverse 64.55 1.920 75.41 2.49

9 euclidean equal 65.20 2.950 76.68 4.22

9 euclidean inverse 65.24 3.010 76.63 4.15

9 euclidean squaredinverse 65 2.64 76.20 3.56

9 hamming equal 72.57 14.59 75.60 2.75

Continued on next page
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Table 5.1 – continued from previous page

Number of

Neighbours

Distance Distance

Weight

Acc.

(%)

Acc. Vari-

ation (%)

F1 (%) F1 Vari-

ation (%)

9 hamming inverse 72.57 14.59 75.60 2.75

9 hamming squaredinverse 72.81 14.97 75.76 2.97

9 jaccard equal 72.57 14.59 75.60 2.75

9 jaccard inverse 72.57 14.59 75.60 2.75

9 jaccard squaredinverse 72.81 14.97 75.76 2.97

5.2 Man-in-the-Middle Attacks

This part of the experiment has the goal of exploring the classification process on Man-in-the-

Middle attacks. These attacks were implemented using ARP cache poisoning, which, if correctly

implemented, would mean that single ARP messages for each cache to poison would appear in the

capture, which by themselves do not mean an attack is being implemented, although being a good

indicator. Furthermore, a MitM attack would not present other variations in the features extracted in

this experiment, unless a deep inspection of the values were compared to a previous built model of

the system and a reckless change was perpetrated. However, such models are not easily constructed,

scalable and generalized for widespread use in protecting these systems.

In a MitM attack, the traffic between two hosts is unknowingly redirected through a third party.

As such, that third party, even if it is only immediately forwarding that traffic, should introduce a

delay on the time of travel of the packets through the network. To verify such effect, the Time-To-

Response (TTR) of the TCP packets in the captures of the two MitM attack mentioned in Chapter 4,

was measured and compared to the results of a clean capture. Table 5.2 presents the mean and

standard deviation values measured in different clean captures.

Table 5.2: Time-To-Response (TTR) of clean captures.

Capture Length of Capture
TTR

µ (s) σ (s)

1 0.5 h 0.21 0.01

2 1 h 0.21 0.01

3 6 h 0.21 0.05

Mean values 0.21 0.02

Figure 5.4 presents a comparison of the TTR of the clean capture and the attacks implemented.

The mean (µ) and standard deviation (σ) of the values of the clean capture are marked on the figure
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for comparability, as well as the mean TTR during the attack (marked with a white bar).
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(b) Passive reconnaissance attack.
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(c) Data modification attack.

Figure 5.4: Time-To-Response of TCP packets in a half hour capture with attacks of 15 minutes.

It is notorious that the passive reconnaissance attack introduces an almost negligible effect on the

TTR, where the mean value varied by 0.05%, a variation which can easily be attributed to normal

noise on the measurements or fluctuations on the network, whereas the data modification attack

introduced a higher and measurable variation (5.55%), which pushed the mean value well beyond

the first σ of normal variation. This bigger variation is to be expected, given that data modification

implies dissecting a packet, changing its values – which in this case was one of the values of the

innermost protocol of the entire protocol stack involved –, and the recalculation of the headers of the

outer protocols. Tables 5.3 and 5.4 present the mean value of TTR and its variation by varying the

size of the datasets3 and the timespan of the passive reconnaissance and data modification attacks,

respectively.

Table 5.3: TTR of the passive reconnaissance attack.

TTR

Length

of Cap-

ture

Attack

timespan

µ (s) Mean Vari-

ation (%)

µAttack

(s)

µNormal

(s)

Normal / At-

tack Variation

(%)

0.5 h 1min 0.2078 0.5124 0.2031 0.2079 -2.3088

0.5 h 5min 0.2074 0.3189 0.2069 0.2075 -0.2892

0.5 h 15min 0.2074 0.3189 0.2066 0.2082 -0.7685

1 h 1min 0.2078 0.5124 0.2068 0.2078 -0.4812

1 h 5min 0.2076 0.4157 0.2071 0.2077 -0.2889

1 h 15min 0.2079 0.5608 0.2069 0.2084 -0.7198

1 h 30min 0.2069 0.0771 0.2071 0.2067 0.1935

Continued on next page

3The 6 hours captures were not analysed due to time constraints.
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Table 5.3 – continued from previous page

TTR

Length

of Cap-

ture

Attack

timespan

µ (s) Mean Vari-

ation (%)

µAttack

(s)

µNormal

(s)

Normal / At-

tack Variation

(%)

Mean Value 0.2075 0.3880 0.2064 0.2077 -0.6661

Standard Deviation 0.0003 0.1672 0.0014 0.0006 0.7926

Table 5.4: TTR of the data modification attack.

TTR

Length

of Cap-

ture

Attack

timespan

µ (s) Mean Vari-

ation (%)

µAttack

(s)

µNormal

(s)

Normal / At-

tack Variation

(%)

0.5 h 1min 0.2094 1.2863 0.2172 0.2091 3.8737

0.5 h 5min 0.2104 1.7700 0.2171 0.2091 3.8259

0.5 h 15min 0.2132 3.1244 0.2182 0.2083 4.7528

1 h 1min 0.2092 1.1896 0.2164 0.2091 3.4912

1 h 5min 0.2097 1.4314 0.2181 0.2089 4.4040

1 h 15min 0.2111 2.1086 0.2186 0.2087 4.7437

1 h 30min 0.2132 3.1244 0.2175 0.2089 4.1168

Mean Value 0.2109 2.0049 0.2176 0.2089 4.1726

Standard Deviation 0.0017 0.8249 0.0008 0.0003 0.4819

In the passive reconnaissance attack, a negative variation is consistently observed, i.e., the mean

time for response during an attack is lower than the for a normal state, which does not comply with

the assumption that a delay in the response is always introduced by a MitM attack. This negative

variation could be the result of the path taken by the packets through the middle man being faster or

less congested than the direct path.

In the data modification attack, a positive and significant variation is observed, which was ex-

pected. As a result, this type of attacks my be detected using a technique involving the Time-To-
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Response. Three approaches are possible for the classification procedure regarding this attack: a

direct classification of all the packets that surpass a given distance from the expected mean value; a

classification of the datasets using machine-learning algorithms; and a sliding-window analysis. In

all the analysis made, the reduced dataset mentioned in Chapter 4 was used. Due to time constraints,

the analysis was only made for the first of the three captures made.

Regarding the direct classification procedure, various distances to the expected mean value of

the TTR. In Figures 5.5 and 5.6, the accuracy and F1-score of the procedure are shown when varying

that distance. When the distance is big enough, all of the packets will bemarked as safe, whichmeans

the accuracy of the procedure will tend to the percentage of safe packets within a dataset, which is

marked in the figures.
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(b) 5 minute of attack.
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Figure 5.5: Accuracy (full line) and F1-score (dashed line) of the direct classification of the passive

reconnaissance attack in a half hour capture.
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(a) 1 minute of attack.
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(b) 5 minutes of attack.
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Figure 5.6: Accuracy (full line) and F1-score (dashed line) of the direct classification of the data

modification attack in a half hour capture.

As expected, the performance of the direct classification procedure for the passive reconnais-

sance attack never surpasses the proportion of safe vs unsafe packets in the capture, but in the data

modification attack the performance indicates that the attack is being correctly identified. Although

the performance degrades as the proportion of the attack increases, the performance difference to the

weight of safe/unsafe packets increases significantly. Another trend that is visible is that the optimal

distance is between 1 and 2 σ, while distances bigger than 2.5σ present performances almost near
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the expected limit. When visualizing Figure 5.7, the same trends are visible.
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(b) 5 minutes of attack.
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Figure 5.7: Accuracy (full line) and F1-score (dashed line) of the direct classification of the data

modification attack in a one hour capture.

Regarding the application of machine learning algorithms on the classification, the default con-

figuration of the algorithms used in the first experience was used. The datasets were greatly reduced,

containing no information about the headers of the protocol stack, but containing the TTR inform-

ation of the packets. In Figures 5.8 and 5.9, the performance of the classifiers is compared for the

passive reconnaissance and data modification attacks, respectively,
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Figure 5.8: Accuracy (full line) and F1-score (dashed line) of the implemented classifiers for the

passive reconnaissance attack.
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Figure 5.9: Accuracy (full line) and F1-score (dashed line) of the implemented classifiers for the

data modification attack.

Analysing the results for the passive reconnaissance attack, the performance tends to degrade

with the increase in the proportion of the attack timespan within the capture and the increase in the
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capture length accelerates that degradation. However, due to time constraints, a deeper analysis was

not possible to confirm those trends. Nevertheless, since differences in TTRs was not discernible

for this attack, these results are not able to be considered as reliable. The results obtained for the

data modification attack, show performance degradations for the SVM and NB algorithms, while an

increase in performance is discernible for the remainder of the algorithms. Again, given the a deeper

analysis was not possible, these results still require further analysis.

Regarding the analysis with a sliding-window, the first step taken regarded the effect of the

window’s size in the TTR measured. Figures 5.10 and 5.11 present the values for the Time-To-

Response (TTR) of a capture made of the passive reconnaissance and data modification attacks,

respectively.
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(a) Window Size of 10 packets.
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(b) Window Size of 30 packets.
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(c) Window Size of 50 packets.
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(d) Window Size of 70 packets.

0 200 400 600 800 1000 1200 1400 1600 1800

Relative time (s)

0.18

0.19

0.2

0.21

0.22

0.23

0.24

T
T

R
 (

s
)

MitM Attack

Instance Flow Time

 2

WindowSize = 90

WindowSize = 90

 2
WindowSize = 90

(e) Window Size of 90 packets.

Figure 5.10: TTR measured by sliding windows of various sizes for the passive reconnaissance

attack.

As had happened previously, no discernible variation happens to the TTR on the passive re-

connaissance attack. Nevertheless, it is possible to visualize the effect that varying the size of the

sliding window has on the values measured, specifically that bigger window’s sizes smoothen the

crisp variations of the measurements, comparable to the effects of a low-pass filter. This effect is

also discernible in the data modification attack. This technique allows for the adaptability of the

detection capabilities, since small long-term variations can become part of the expected values of

the TTR and avoid the recalculation of the baseline when the system organically changes, while

maintaining its capability of detecting attacks, since they would introduce a sudden change to the

values.
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(b) Window Size of 30 packets.
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(c) Window Size of 50 packets.
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(d) Window Size of 70 packets.
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Figure 5.11: TTR measured by sliding windows of various sizes for the data modification attack.

Its worth noting that while the detection of MitM attacks is of great concern, the detection of

sudden variances in the system is itself of great importance, since it may represent an anomaly

within the system, which should be immediately assessed.
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Chapter 6. Conclusions and Future Work

The scientific community researching security concerns on Cyber-Physical Systems (CPSs) has

been focused on presenting newer algorithms and techniques or domain-adaptation of those al-

gorithms from the much more researched field of securing common communication infrastructures.

However, unlike the latter research, the community does not have common datasets from which it

can compare their results, mostly due to the confidentiality of these systems. This work constitutes a

step to providing an insight on the frailties of machine learning algorithms which may lead to proper

generalization of those techniques and, consequentially, real-world application.

The effects of varying the attack and the capture timespans, when using different algorithms

and attacks, were studied. It was inferred that, although small attack timeframes provide apparently

good results, the classification accuracy starts to decrease as they grow in size and the imbalance

of data starts to diminish. Once the data imbalance is overcome, the results start improving again.

The overfitting problem is also detected and discussed. A study of hyperparametrization tuning of

algorithms is also made, where it is inferred that simple variations on the parametrization of the

algorithms may (or may not) have significant performance changes in the classification procedure.

This work also provides an insight at a generalized detection framework for Man-in-the-Middle

attacks, based on the Time-To-Response of packets which is inherently longer when a third party

gets between the traffic of two hosts in a network. This approach proved capable of detecting the

attacks when data modification was applied, but was incapable when direct forwarding was applied,

since the variation was not sufficient considering the natural variation of the network.

Considering the results obtained in this work, one of the possibilities of future work is the analysis

of other common classification algorithms, which should analyse a wider set of attacks. Hyperpara-

metrization tuning should also be expanded to more algorithm since time constraints prevented a

deeper analysis in this dissertation. Future developments of this work should also involve an ana-

lysis of how the feature selection process may affect both the time required to create the models for

detection and the resulting classification performance and generalization capabilities.
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