

José Pedro Soares Castanheira

Software Defined Networking in access networks

Dissertação de Mestrado em Engenharia Eletrotécnica e de Computadores

07/2018

Software Defined Networking in access networks

José Pedro Soares Castanheira

Dissertação para obtenção do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Orientador: Doutora Lúcia Maria dos Reis Albuquerque Martins
Co-Orientador: André Domingos Brı́zido

Júri
Presidente: Doutor António Paulo Mendes Breda Dias Coimbra
Orientador: Doutora Lúcia Maria dos Reis Albuquerque Martins
Vogal: Doutora Rita Cristina Girão Coelho da Silva

July 2018

Acknowledgments

Primeiramente, gostaria de agradecer à minha famı́lia, nomeadamente aos meus pais,
irmãos e avós. Estou grato pela incessante presença e aconselhamento em todos os mo-
mentos da minha vida.

Aos meus orientadores da Altice Labs Aveiro, André Brı́zido e Vitor Mirones, pela
ajuda, paciência e partilha de conhecimentos e experiências durante todo o tempo do
projeto de dissertação.

À professora Lúcia Martins pela sua orientação e todo o tempo e apoio disponibi-
lizado.

Aos meus colegas de curso, mais propriemente à minha SQUAD não só pelos momen-
tos de convı́vio e diversão, mas também pelo espı́rito de auxı́lio mútuo ao longo destes 5
anos.

Aos meus amigos que me acompanharam e apoiaram durante esta etapa.

E a todos os que, de forma direta ou indireta, contribuı́ram para o meu processo de
formação académica e pessoal.

A todos,

Muito Obrigado.

Abstract

Technology evolution over the past decade led to an increased complexity of Telecom-
munication Networks as well as lower life-cycles for the equipments involved. These
problems, together with the high complexity associated with the configuration of equip-
ments led to high capital expenditures and operational expenditures which forces network
Service Providers (SP) to look for solutions. Software Defined Networking (SDN) and
Network Function Virtualization (NFV) are two current paradigms used by SPs to to ad-
dress these problems.

The Cloud Central Office (CloudCO) is a SDN/NFV architecture that can operate in a
cloud environment. The Central Office Re-architected as a Datacenter (CORD) project is
the reference implementation of CloudCO and has the Open Network Operating System
(ONOS) as its SDN controller.

This dissertation proposes a SDN/NFV solution for passive optical access networks
based on CloudCO, using ONOS for an Internet Protocol Television (IPTV) use case.

The IPTV scenario uses Multicast for IPTV distribution and needs Internet Group
Management Protocol (IGMP) snooping to work properly. Because ONOS didn’t have
an IGMP snooping application, one was developed in the context of this dissertation.
Also, the applicability of ONOS and the developed IGMP snooping application is shown
through its performance evaluation for a set of Multicast traffic scenarios including the
case of a single link failure, several high demanding topologies and heavy load multicast
traffic conditions. Conclusions were drawn based on the IGMP packets processing times,
the time it took for a host start to receive multicast traffic after sending an IGMP join
packet and the compute power used.

Keywords
Software Defined Networking, Network Function Virtualization, Multicast, IGMP

snooping, ONOS

Resumo

O progresso tecnológico que ocorreu na ultima década levou a um aumento na com-
plexidade das redes de telecomunicações assim como a um tempo de vida útil baixo dos
equipamentos envolvidos. Estes problemas, em conjunto com a alta complexidade exis-
tente na configuração de equipamentos levou a altos CAPEX e OPEX que forçaram as
empresas fornecedoras de serviços de telecomunicações a procurar novas soluções. Dois
dos paradigmas actualmente usados para fazer face a estes problemas são o Software

Defined Networking (SDN) e Network Function Virtualization (NFV). O Cloud Cen-

tral Office (CloudCO) é uma arquitetura SDN/NFV que opera num ambiente de cloud.
O Central Office Re-architected as a Datacenter (CORD) é o projecto que deu origem
à implementação de referência do CloudCO e tem o Open Network Operating System

(ONOS) como controlador SDN.
Esta dissertação propõe uma solução SDN/NFV para as redes de acesso óticas pas-

sivas, baseada no CloudCO, usando o ONOS num caso de estudo com o IPTV. O IPTV
usa Multicast como estratégia de difusão de televisão e precisa de IGMP snooping para
funcionar devidamente. Como o ONOS não tinha nenhuma aplicação de IGMP snooping,
foi desenvolvida uma no contexto desta dissertação.

A aplicabilidade do ONOS e da aplicação de IGMP snooping desenvolvida é mostrada
através da avaliação de desempenho do sistema num leque variado de cenários Multicast,
incluindo o cenário da falha de um link, de cenários com topologias complexas do ponto
de vista da aplicação e condições de sobrecarga de tráfego Multicast. As conclusões
foram tiradas tendo em conta o tempo de processamento de pacotes IGMP, o tempo que
um utilizador demora a começar a receber tráfego Multicast depois de enviar o pacote
IGMP para se juntar a um grupo e a capacidade de cálculo envolvida.

Palavras-Chave
Software Defined Networks, Network function virtualization, Multicast, IGMP snoop-

ing, ONOS

Table of contents

1 Introduction 1
1.1 Objectives and contributions . 2

1.2 Dissertation outline . 3

2 Software Defined Networking and Network Function Virtualization 5
2.1 What is Software Defined Networking? 6

2.2 What is Network Function Virtualization? 8

2.3 How do they interact . 9

2.4 Cloud Central Office . 10

2.4.1 CloudCO Domain Architecture 12

2.5 Security concerns . 13

3 Choosing the platforms to work with 15
3.1 CORD . 16

3.1.1 What is CORD? . 16

3.1.2 Disaggregation and Virtualizing of network components 16

3.2 ONOS . 17

3.2.1 ONOS features . 17

3.3 VLC . 18

3.4 Mininet . 18

3.5 Open vSwitch . 18

4 Multicast 19
4.1 What is Unicast, Broadcast and Multicast? 20

4.2 How does Multicast work . 22

4.3 IGMP . 22

4.4 IGMP Snooping . 23

4.5 IGMP Query . 23

4.6 PIM . 24

4.7 IPTV . 24

i

5 Using ONOS 25
5.1 Working with ONOS . 26

5.1.1 Basic setup . 26
5.1.2 Sending unicast data . 27
5.1.3 Sending multicast data using ONOS standard applications 28

5.1.3.A Using the FWD application 28
5.1.3.B Using the MFWD application 28

5.2 Developing the IGMP application . 30
5.3 Testing the IGMP snooping functionality 31

5.3.1 One sender and multiple receivers 31
5.3.2 Multiple senders and multiple receivers 32
5.3.3 Testing the IGMP Timeout functionality 34

5.4 Stress tests on the IGMP application . 35
5.4.1 High number of hosts connected to a single multicast group . . . 35
5.4.2 High number of multicast groups with one sender and one receiver 38
5.4.3 Link failure recovery tests . 39

6 Conclusion 41
6.1 Future Work . 42

7 Appendix A 47

ii

List of figures

2.1 Example of a SDN architecture . 7
2.2 Example of a NFV solution architecture [1] 9
2.3 CloudCO reference architecture [2] . 13

4.1 Example of a network where a server uses Unicast to stream a movie . . . 20
4.2 Example of a network where a server uses Multicast to stream a movie . . 21
4.3 Reach of the protocols used for Multicast 22

5.1 Topology used in all basic tests . 26
5.2 Result of sending via unicast . 27
5.3 Result of the second test . 29
5.4 SDN network with MFWD, FWD and IGMP snooping apps activated

with a multicast stream . 31
5.5 Network status of the two streams running simultaneously 33
5.6 New flows installed on switch Leaf-2 33
5.7 Wireshark capture from the host h21 . 34
5.8 Network status right after h31 is disconnected 34
5.9 Network status after the timeout mechanism is activated 34
5.10 Test bed topology . 35
5.11 Stress tests system architecture . 36
5.12 Spine-Leaf topology used to test the link failure 39

iii

iv

List of tables

5.1 Test one computer resources results . 37
5.2 Test one processing times results in ms 37
5.3 Test one processing times results half the processing capacity 38

v

vi

List of Acronyms

API Application Programming Interface

BNG Broadband Network Gateway

CLI Command Line Interface

CORD Central Office Re-architected as a Datacenter

CPE Consumer Premises Equipment

CloudCO Cloud Central Office

DDoS Distributed Denial-of-Service

FWD Forwarding

IGMP Internet Group Management Protocol

IP Internet Protocol

MFWD Multicast Forwarding

NB Northbound

NFV Network Function Virtualization

OLT Optical Line Terminal

ONOS Open Network Operating System

ONU Optical Network Unit

PIM Protocol Independent Multicast

PNF Physical Network Function

QoS Quality of Service

vii

SB Southbound

SDN Software Defined networking

VNF Virtual Network Function

viii

1
Introduction

1

1. Introduction

In the past, networks had to be configured by hand in a tedious and expensive process
prone to errors and as new technologies appeared the cost to adapt them into the core
network was very high. Network service providers have been trying to reduce this kind
of expense. To achieve this, various strategies have been attempted and one of the most
recent ones is Software Defined Networking (SDN) and Network Function Virtualiza-
tion (NFV). A network architecture design that uses concepts from both SDN, NFV and
also cloud computing is the Cloud Central Office (CloudCO). It is defined by the Broad-
Band Forum in the TR-384 [2]. It outlines how they would work together, which network
functions should remain as Physical Network Functions (PNF) and which should be virtu-
alized. One possible implementation for the CloudCO is the Central Office Re-architected
as a Datacenter (CORD) project. This project is gaining traction between network service
providers, and uses Open Network Operating System (ONOS) as the SDN controller.

For a SDN controller to be adopted by a network service provider, it has to support
the legacy network functions. One of those functions is the Internet Group Management
Protocol (IGMP) snooping. IGMP is a protocol used in networks that allows hosts to
advertise which multicast group they want to join or leave. IGMP snooping is the process
of listening to IGMP packets from the hosts to learn which host wants to subscribe/leave
to a certain multicast group. This way, instead of broadcasting the traffic to every host,
the switch is capable of only forwarding the packets to the hosts that want to receive
them. In an SDN-NFV environment the IGMP snooping is performed through the SDN
controller, which installs and removes the flows in accordance with the IGMP requests.
Multicast traffic is used in IPTV, where users receive TV over an IP network. Because
all the channels aren’t being watched at the same time, IGMP snooping is required to
know which channel is on and when zapping is done which multicast group must be left
and which multicast group must be joined. With this mechanism, service providers can
save bandwidth preventing the network to be overloaded with unwanted traffic. IGMP
snooping play a huge role in access networks and is still missing in the ONOS controller
application library.

1.1 Objectives and contributions

The objective of this dissertation is to study how ONOS SDN controller works and
if it is possible to have a multicast scenario with the standard ONOS applications. As
an IGMP snooping application was missing in the ONOS controller application library,
one was developed and tested. The tests ranged from simple networks to complex ones,
simulating real live conditions.

This master thesis was developed in DSR-Altice Labs Aveiro. From the development

2

1.2 Dissertation outline

and testing of the IGMP snooping application a demonstration paper was submitted for the
“EEE Conference on Network Function Virtualization and Software Defined Networks
2018” which can be seen in appendix A.

1.2 Dissertation outline

This dissertation is composed by the following chapters.

• Chapter 2 introduces the concepts of SDN, NFV, their objectives and advantages
and how they should interact. It also presents the CloudCO architecture, princi-
ples to choose which functions should be disaggregated and virtualized and some
security concerns relative to these concepts and architectures.

• Chapter 3 presents the platforms and software used along this thesis as well as the
motivation for choosing them.

• Chapter 4 introduces multicast and which protocols and network functions are nec-
essary to have multicast running on a SDN/NFV environment.

• Chapter 5 describes the tests done using ONOS and the IGMP snooping application
developed and presents the results obtained in the different scenarios.

• Chapter 6 presents the conclusions from this thesis and some future work directions
are given.

3

1. Introduction

4

2
Software Defined Networking and
Network Function Virtualization

5

2. Software Defined Networking and Network Function Virtualization

In traditional networks all the network planes are bundled together and are integrated
over the same devices. This makes legacy networks highly decentralized. Over the years
this kind of design has proven his benefits. Networks grew more resilient and overall net-
work performance also increased [3]. However, this highly decentralized design presents
some problems that become more notorious as networks grow and turn into more com-
plex systems. Network configurations have to be done by hand in each device, which is
an extremely time consuming task that often leads to configurations errors. Vendors have
started to offer network proprietary management tools that change from device to device.
Network operators are expected to master each one of the tools in order to manage a large
range of devices. The highly decentralized design of the legacy networks further increases
the difficulty to design, test and deploy new features as it would mean the replacement
of millions of devices. [3, 4]. Capital expenditures (CAPEX) are the costs of in physical
goods or services that are used for more than one year. Operational costs (OPEX) repre-
sents the costs of operation of devices. As it can be imagined, as networks become bigger
and more complex their OPEX increases. Also, the need to buy new equipments leads
to an increase in CAPEX. Motivated by all these problems new solutions have emerged.
claiming that they can reduce CAPEX and OPEX for network service providers, with
faster development and shorter implementation cycles, as well as an easier management
of networks. These solutions are called Software Defined Networking (SDN) and Net-
work Function Virtualization (NFV) [1, 3, 4].

This chapter examines the concepts of Software Defined Network and Network Func-
tion Virtualization, how the interaction between them is made, how that interaction leads
to a new network architecture design, the CloudCO and some security concerns from the
access network perspective.

2.1 What is Software Defined Networking?

Software Defined Networking refers to a new way of organizing the network function-
alities. Instead of having the control plane and data plane embedded on the same device,
they are separated allowing the possibility to have simple forwarding devices correspond-
ing to the data plane and centralized controller corresponding to the control plane. Over
time the definition has evolved from only being the network architecture where the control
plane and data plane are decoupled from each other to a more complex one depending on
who is defining it [3, 5, 6]. Some authors state that SDN is a network architecture where
the forwarding decisions are not destination-based but flow-based, the control and data
planes are separated, the control plane is on an external entity called controller and soft-
ware applications run on top of the controller and manage the network [3]. For the Open

6

2.1 What is Software Defined Networking?

Network Foundation the definition is a network architecture where the control plane and
the forwarding plane are physically separated and where a control plane serves several
devices [7].

To achieve the separation of the control plane and data plane it is necessary to have a
well-defined programming interface between the SDN controller and the forwarding de-
vices. This programming interface is called southbound (SB) Application Programming
Interface (API and for SDN the most important southbound API is, for now, Openflow.
Note that a controller can have more than one SB API [3, 8].

A northbound (NB) API is what the SDN controller uses to communicate with higher-
level applications. It offers an abstraction of the network details. Usually the NB API is
a Representational State Transfer (REST) API that is used to communicate with higher-
level applications and simplifies the underlying topology and protocols to enable a faster
and more straightforward development of network applications. A REST API is an API
that uses HTTP to get, edit and delete data. As it uses HTTP it can be used by almost
every programing language. A SDN controller can have more than one defined NB API.

In figure 2.1 an example of how a SDN architecture would work is displayed. The
centralized controller uses the SB API to communicate with the network devices and uses
a NB API to communicate with the network applications [6].

Figure 2.1: Example of a SDN architecture

SDN allows a faster development of new work methodologies as it becomes easier
and quicker to implement new network norms and protocols. It also allows for a global

7

2. Software Defined Networking and Network Function Virtualization

network view that all applications can use leading to more consistent and efficient policy
decisions that could lead to an improvement of the network performance. With SDN the
integration of different applications becomes easier as the order in which the applications
run can be previously defined by the controller. For example, the income traffic can go
through a firewall application, then an anti-virus application and in the end a parental
control application. Having all these benefits into account, networks in the future should
embrace innovation instead of trying to predict future requirements [3, 8].

2.2 What is Network Function Virtualization?

Traditional networks rely on specialized physical network devices to perform a given
service. These network devices have a proprietary nature and most of the times have a
specific chaining that must reflect the network topology. In addition, a chase for long
product cycles and heavily dependent on specialized hardware reflected the lack of ca-
pacity to adapt and innovate in a fast paced and always changing world.

NFV (Network Function Virtualization) is one of the proposed solutions to these
problems. It proposes to transform network architectures by running networks functions
in common off-the-shelf hardware benefiting from the evolution in virtual infrastructure
management. This allows for the concentration of many network equipments in server-
like equipments that can be located along the network.

The shift from physical network functions to software functions hosted by data cen-
ters will enable service providers to reduce the time to market of new functions as it is
easier to develop and deploy software components than to develop and deploy hardware
components. It will also allow a full automated management via API’s for services like
dynamic QoS (Quality of Service), service load dynamic adaptation and service heal-
ing. New business will appear to service providers as networks can be shared as well as
network functions [1, 9, 10].

8

2.3 How do they interact

Figure 2.2: Example of a NFV solution architecture [1]

Figure 2.2 shows how an NFV architecture would work to simplify the Consumer
Premises Equipment(CPE). Various CPEs would be able to use the same functions or
network functions and update one of them would be fast and easy. In this case functions
like Dynamic Host Configuration Protocol (DHCP), firewall and routing moved way from
the CPE and were implemented in an aggregation point for various networks. Figure 2.2
also shows how this would be a cheaper solution by having simpler equipments on the
CPE side, and more efficient virtualized equipments on the service provider side.

2.3 How do they interact

SDN and NFV are two different concepts designed to address different problems in the
shift for a new network paradigm. While NFV concept is implementing network functions
on common hardware instead of specialized hardware, SDN priority is to concentrate
the processing capacities in a central equipment. Even though SDN and NFV can exist
separately, the evolution of these concepts is highly complementary. NFV serves SDN
by providing the capability to virtualize the SDN controller together with some network
elements functions to run on a cloud-like environment allowing the cloud management
techniques to be used, e.g. scalability techniques, migration techniques and configuration

9

2. Software Defined Networking and Network Function Virtualization

techniques. SDN serves NFV by providing an API between the network and the VNFs
(Virtual Network Function) to reach an optimized traffic routing and network resources
usage.

Access networks are one of the many beneficiaries from this new paradigm shift, as
now we are able to offer new business models where operators can offer Anything-as-
a-Service to third parties as well as reduce CAPEX and OPEX and the time-to-market.
[1, 9, 10].

2.4 Cloud Central Office

A CloudCO (Cloud Central Office) is an adaptation of the traditional Central Office
infrastructures that use SDN, NFV and Cloud technologies and is defined by the Broad
Band Forum. The CloudCO functionalities can be used by others, like third parties and
operators, through a NB API. A NB API is a way to communicate with higher level
components or interfaces with a set of well defined functions. Using a NB API allows the
CloudCO functionalities to be used by other systems without revealing to them how they
were implemented. To do this, SDN and NFV techniques are used on typical data center
equipments. The CloudCO architecture has a series of advantages like being able to have
a higher level of control on system-level network and service design, in part because of the
disaggregation of the legacy network nodes into separated network functions, being more
flexible and easy to scale due to the use of virtual network functions, supporting automated
and fast deployment and allowing an easy addiction and maintenance of services. It does
not take much hardware to implement a CloudCO. It is only necessary some general
purpose network switches that interconnect over a switch fabric, some computer hosts
and access I/O hardware connected to the switches and some connection to the service
provider backbone. Most of this hardware may be installed inside a central office but the
CloudCO domain can reach over multiple physical locations. In theory we could have
some necessary hardware installed across multiple locations resulting in a single instance
of a CloudCO domain or there can even be network functions that normally are at the
customer premise disaggregated across multiple locations [2].

In order to move to this new architecture we need to choose the functionalities that
should be disaggregated, virtualized or stay as they are now. Disaggregation is the division
into constituent parts. Applying that concept to networks, the network disaggregation can
be seen as the division of nodal functions into network functions that are more modular
and granular. A simple and obvious example is the network control plane on access nodes
that can be centralized into an SDN application. In this case virtualization of network
functions is the passage of network functions to software that may be hosted in generic

10

2.4 Cloud Central Office

off-the-shelf hardware rather than having them running on dedicated hardware. To choose
which functionalities may be disaggregated it is needed to pay attention to the following
criteria:

1. Ability to virtualize- Disaggregation is one of the most important means to split
functions that can be virtualized from others that cannot.

2. Ability to efficiently split the user plane and the control plane- As control plane
functions are compute-intensive and not forward-intensive, they benefit from virtu-
alization and should be separated from the user plane functions that require a fast
processing of packets and benefit from specialized hardware.

3. Reusability- It may be advantageous to disaggregate components that can be reused
at various physical or logical points in the network.

4. Upgrade cycle- It is easier to make changes to a disaggregated and virtualized func-
tion than to one built in hardware.

5. Interface simplifications and standardization- Disaggregation should lower the over-
all interface and API complexity.

6. Performance- In order to better optimize some components, it may be more suitable
to disaggregate them.

7. Operational consideration - A few operational considerations need to be taken into
account:

(a) Orchestration- in general the complexity of orchestration is likely to grow if
the orchestrated service requires a larger number of network functions.

(b) Availability – A higher level of availability can be expected as strategies like
reboot of a function, hot swap and redundancy are more efficient with smaller
functions.

(c) Diagnostics – Having more components and an increased number of network
functions lead to a rise in the difficulty to diagnose a problem.

In order to choose which network functionalities should be virtualized, we should take
the following characteristics into account:

1. High rate of change- It is easier to alter a function when it is virtualized and not on
specific hardware.

11

2. Software Defined Networking and Network Function Virtualization

2. Varying scale- When a function does not have a constant resource usage over time,
it can benefit from cloud scale out techniques

3. Differentiation- Functions that can have different implementations between differ-
ent vendors.

4. Specialization- Functions that require high level of domain information.

5. Interoperability- Functions that can alleviate interoperability by having a central-
ized common implementation to reduce variability across multiple vendors.

6. Component reuse- Functions that once virtualized can be used in different configu-
rations to serve different needs.

It should be also taken into account the complexity, risk and performance impact of
the transition. Functions that are performance intensive, real time sensitive, or already
deployed in the equipment should remain as physical network function. The tradeoffs
between virtual network functions and physical network function may change over time
as new technologies appear and their performance improves. The CloudCO should be
able to adapt to these evolutions [2].

2.4.1 CloudCO Domain Architecture

The CloudCO reference architecture is composed of a NFV and SDN architecture ap-
plied over NFV infrastructure and a physical one. The NFV component is responsible
for the virtual functions and their supporting infrastructure. The SDN component is re-
sponsible not only by the control and management of most of the user plane interactions
between Physical Network Functions (PNFs), the switch fabric and VNFs but also by the
redirection of certain control packets to the right SDN applications. The CloudCO domain
orchestrator is the central function in the architecture and also contains the CloudCO NB
API. It is responsible for providing the necessary service abstraction layer, not show-
ing the internal procedures of the CloudCO. Figure 2.3 shows the CloudCO reference
architecture.

12

2.5 Security concerns

Figure 2.3: CloudCO reference architecture [2]

2.5 Security concerns

Network security is a component that takes a massive part of the cyber security and
becomes more important each day that passes. Traditional networks security uses fire-
walls and proxy servers to protect the physical network. The appearance of new concepts
like SDN and NFV brought new technologies that can solve many security and privacy
problems but their use can also cause new problems that need to be addressed. CloudCO
not only provides a separation between the assets and the threat making the network more
secure, but also gives the operator a dynamic control over their network service behavior
with the use of API’s. Some new security problems can appear from the communications
of the different planes and some can appear from a multi-tenant CloudCO. Because the
underlying behavior of a virtualized system, there may be security exploits that can be
abused if they are poorly designed. It shouldn’t be forgotten how some security problems
may occur if someone can access the physical network [2, 11].

The existence of a central controller that uses the knowledge of the complete network
to analyze traffic patterns for potential security threats is a reality. Common attacks like
low-rate burst attacks and DDoS (Distributed Denial-of-Service) attacks can be recog-
nized just by analyzing traffic patterns. Because of the increased performance and pro-
grammability of SDN and how the network view works, it is predicted that the discovery,

13

2. Software Defined Networking and Network Function Virtualization

control and containment of security threats is going to be faster and more efficient. The
SDN interface can also facilitate a higheo number of potential attacks like DDoS attacks
as a result of having a centralized controller. Trust issues between network elements due
to the open programmability of the network and the absence of good proceedings regard-
ing SDN functions and components may also occur [8, 12].

14

3
Choosing the platforms to work with

15

3. Choosing the platforms to work with

In this chapter the platforms and programs that were used in this dissertation are in-
troduced, as well as the justifications for using them. Some of the main features of these
platforms are also described.

3.1 CORD

3.1.1 What is CORD?

CORD means Central Office Re-architected as a Datacenter and tries to unify the
SDN, NFV and cloud technologies. It can be seen as an implementation of the CloudCO,
so in terms of architecture they are similar [13]. The software used on CORD reference
implementation takes advantage of four open source projects. ONOS is a SDN controller
built thinking on service providers and allowing high availability and scale-out capacity
to the network. It provides the control plane to a network, a platform to host control
programs that give CORD services and is capable to manage switches and other network
components [13, 14]. Docker is a tool that allows applications to share the same Linux
kernel, making a container for an application. On CORD it provides a way to deploy
and interconnect services on a container and also plays a role on the deployment of the
other management elements of CORD instantiated on Docker containers [13, 15]. XOS
is a framework for assembling and composing services. It consolidates infrastructure
services, control plane services and cloud or data plane services [13, 16]. OpenStack is
a cloud OS that is able to control a large number of compute, storage and networking
resources all over a datacenter. On CORD it is responsible for provisioning and creating
virtual networks and machines [13, 17].

For service providers CORD is seen as a more mature SDN solution than the others
available in the market and has huge support from other service providers like AT&T,
China Unicom, Comcast, Google, Deutsche Telekom, Telefonica, NTT Group, and Turk
Telekom. Recently CORD launched blue-prints for service providers start to deploy field
trials and presented use cases from AT&T, Telefonica and NTT. CORD and ONOS are
still under development and new features are added in each release depending on market
trends and the results from the field trials.

In this dissertation, only the ONOS SDN controller from CORD project was used.
The remaining projects were neither included nor discussed for the rest of this document.

3.1.2 Disaggregation and Virtualizing of network components

Reducing some of the principal components of the network to a basic status is possible
if the functions that need to remain on hardware and the ones that can be virtualized are

16

3.2 ONOS

previously identified. The virtualization of the OLT (Optical Line Terminator) results
on a control program called vOLT that runs on top of ONOS and implements all the
functionalities of the legacy OLT. The same thing can be done to the CPE resulting in a
virtual Subscriber Gateway that runs a bundle of functions selected by the subscriber on
the central office white-boxes. A CPE is still present in the house of the user but it can
be a strip down version of the legacy one. Virtualizing the BNG (Broadband Network
Gateway) is also possible and on CORD it is called vRouter and is implemented as a
control program hosted by ONOS that manages flows through the switch fabric on behalf
of subscribers.

3.2 ONOS

ONOS is the OpenNetwork Operating System and was created by the Open Network-
ing foundation. It is a SDN controller designed for service providers and is known for its
high availability and resiliency, a requirement from service providers so that clients don’t
experience poor quality of service. It was also designed to be able to grant the highest
performance possible for scaled network operations. The controller can be deployed on
a cluster of servers that run the same ONOS software enabling a fast recovery in case of
server failure on one instance of ONOS [18, 19].

In this dissertation it was decided to use ONOS as a SDN controller because of the
tight relation it has with CORD. Also, ONOS presents good architectural documentation
and has an environment to start to work and develop network applications.

3.2.1 ONOS features

ONOS relies on applications to perform network functions. To communicate with
them it uses NB APIs. ONOS has a REST API and a Java API. To the network manager
it has available a command line interface as well as a graphical interface. SB APIs are
used for communication with a variety of net devices. ONOS allows the installation of
more SB APIs in order to adapt to new requisites from service providers. Right now it
supports Netconf, Openflow, SNMP and TL1.

One of the main features of ONOS is the use of intents. The use of intents allows
applications to state their network control desires in form of a policy rather than a mecha-
nism. ONOS core accepts the intent specifications and compiles it into installable intents
that then result in tunnel links being provisioned, flows rules installed or wavelengths
being reserved.

New features can be added as applications. Right now ONOS has more than 100
applications like reactive forwarding, DHCP, alarm applications and switch drivers [18].

17

3. Choosing the platforms to work with

3.3 VLC

VLC is a free, open source and light-weight media player that allows for a large set of
codecs and streaming protocols to be used as well as to display media content [20].

VLC was chosen for its good documentation, for providing a command line inter-
face to start streaming and to receive a stream, and for its capability to send and receive
multicast traffic.

3.4 Mininet

Mininet is a network emulator that allows to instantiate virtualized network elements
like switches, routers, links and even hosts in a single computer. It allows a fast proto-
typing of large networks and is developed to connect these network devices to a SDN
controller [21].

Mininet was chosen for its flexibility and scalability because it allows different kinds
of small or large networks behaving like real networks.

3.5 Open vSwitch

Open vSwitch (OvS) is the standard switch instantiated by the Mininet. It supports
OpenFlow [22]. It was chosen because it runs with little resources, is very reliable and its
the most common switch used in a virtualized environment.

18

4
Multicast

19

4. Multicast

In a network we can have three types of traffic: Unicast, Broadcast and Multicast.
Unicast is used when we need to send traffic from one source to one receiver. Broadcast
is used when we need to send traffic from one source to all the receivers. Multicast is used
when we need to send traffic from one source to a group of receivers.

In this chapter an easy example is shown to explain the differences between them, and
how they affect a network differently. It is also described which protocols does Multi-
cast use and which network functions are necessary to have multicast traffic flowing in a
network. For last, a Multicast use case is presented, IPTV.

Throughout this dissertation the term “switch” will be used to talk about ethernet
switches and “router” is used to talk about IP routers.

4.1 What is Unicast, Broadcast and Multicast?

Imagine that a server is streaming a movie and 4 hosts want to receive it. If the sender
uses Unicast, each host needs to establish a connection with the server and the movie
is sent 4 times, one for each host. As we can see this is not a scalable solution: if the
numbers of hosts grows, the number of direct connections will also grow saturating the
network with copies of the same movie [23].

Figure 4.1: Example of a network where a server uses Unicast to stream a movie

In figure 4.1 it can be seen how a Unicast works in a small network with a ethernet
switch (rectangular box), a IP router (circular box) and 4 hosts. Each host has a direct
connection with a server so four copies of the same traffic are being sent at the same time.

With Broadcast other problems arise. The sender streams to everybody, even hosts

20

4.1 What is Unicast, Broadcast and Multicast?

that don’t want to receive it or that shouldn’t have access to it. So it is not a good option
in this case.

Imagine that only two hosts want to receive a movie stream. With Multicast this
solution is very efficient as the server will only send the packets once and the switches or
routers are responsible for forwarding and copying when needed the packets to the hosts
that want to receive them. Figure 4.2 demonstrates how Multicast works and how efficient
it is [23].The two hosts that subscribed to the Multicast group receive the traffic without
problems and the remaining elements of the network don’t receive it. In the Multicast
case the router is able to forward the income traffic contrary to the broadcast case.

Figure 4.2: Example of a network where a server uses Multicast to stream a movie

Although Multicast is much more efficient, it does not work without some other re-
quirements and some configurations. The hosts need to be able to tell the router when
they want to receive Multicast traffic. IGMP (Internet Group Management Protocol) is
used for that. Switches also need to know what to do when they receive Multicast traf-
fic because for the incoming traffic the destination is not a host but an IP group. We
use IGMP snooping to address this problem, as explained next. The switch will listen to
IGMP messages from the hosts and figure out where to forward the packets. It is also nec-
essary a Multicast routing protocol to know where to forward traffic between routers.PIM
(Protocol Independent Multicast) is one of the possible and most popular choices to do
it [23].

21

4. Multicast

4.2 How does Multicast work

Multicast applications use a specific group of IP addresses that are reserved. These IP
addresses range from 224.0.0.0 to 239.255.255.255 and each one correspond to a differ-
ent multicast group that a host can subscribe. Some of them are reserved addresses with
specific tasks, for example 224.0.0.0 to 224.0.1.225 are reserved to permanent Multicast
groups, 232.0.0.0 to 232.255.255.255 are reserved to source-specific Multicast groups. To
subscribe a Multicast group a host uses the IGMP protocol. In order to forward the Mul-
ticast traffic through the right port, the switch resorts to IGMP snooping, i.e., the switch
will listen to the communication between the host and the router to know which hosts
subscribe to which Multicast group. Routers use diverse protocols to ask for Multicast
traffic from other routers. The most widely used is PIM [23].

Figure 4.3: Reach of the protocols used for Multicast

In the figure 4.3 it is represented the scope of each protocol. IGMP is used between the
the host and the first local router and PIM is used to announce Multicast groups between
routers. A deeper definition of the protocols and how they work follows next.

4.3 IGMP

There are different versions of IGMP and different kinds of packets. Each version
increases the complexity of IGMP but also increases its functionalities.

IGMPv1 is the first version and only has 2 kinds of messages, membership reports to
inform the local router that a host wants to subscribe to a specific Multicast group and
membership queries that the router periodically sends to confirm that a host still wants to
receive the Multicast traffic from that group. If the router doesn’t receive a membership
report from a host after sending a membership query it knows that the host doesn’t want
to continue to receive the Multicast stream. The lack of a mechanism to leave a Multicast
group from the host side is one of the main flaws of the IGMPv1 [23].

IGMPv2 is a more sophisticated version of IGMPv1. New kinds of messages appeared
in this version like the message that allows to leave a Multicast group from the host side.

22

4.4 IGMP Snooping

This saves huge amounts of bandwidth as a host doesn’t need to wait for a timeout to
leave a group. There was also the addition of the Maximum Response Time Field; this
is the field in the membership query that defines how much time hosts have to respond
to the query. This field is extremely important to don’t congest the network with an
immediate response to the query. Now hosts have a dynamic time frame to respond and
choose a random value from 0 to ’Maximum Response Time’. The IGMPv2 also allows
the membership query to be group specific and not for all hosts [23, 24].

IGMPv3 introduced the possibility to subscribe to a specific source Multicast group.
It can be seen as a more secure and robust protocol and necessary for specific source
Multicast implementations. It also allows to subscribe or unsubscribe to various groups
in the same packet which reduce the overall number of packets sent from the hosts [23,25].

4.4 IGMP Snooping

IGMP snooping is done by the switches and it is the process of listening to IGMP
packets either from routers or from the hosts to learn informations about Multicast groups.
It is possible to know which subnet wants to listen to and instead of flooding the network
with a Multicast stream, the switch is capable to forward the packets only to the hosts that
desire to receive the stream. The switch needs to be able to listen to the different kinds of
IGMP messages, distinguish them and do the right processing [23, 26].

IGMP Snooping is one of the main functionalities in the tradictional OLTs (Optical
Line Terminator). It allows to optimize the bandwidth in each PON by only sending
Multicast traffic when it is necessary and for where it is necessary. In a typical service
provider scenario there are hundreds of channels and in a single PON there can be up to
128 ONUs (Optical Network Unit) .

4.5 IGMP Query

In order to better manage a Multicast network, it is necessary a system that prevents
the waste of resources, in this case the waste of bandwidth with hosts that do not wish
to continue subscribed to a Multicast stream. Usually when the host wants to leave a
Multicast group it sends an IGMP packet saying so, but suppose that a device is discon-
nected from a power source and does not send the leave packet. There should be a timeout
mechanism in place. In legacy networks a switch with the role of querier sends a packet
periodically, an IGMP membership query, to all the hosts in the network and waits for
their response. If there are no responses, i.e. membership reports, from the hosts in a
determined amount of time they are removed from the Multicast group. The hosts should

23

4. Multicast

respond with every Multicast group they are subscribed to.

4.6 PIM

PIM is the most used Multicast routing protocol. It was developed to route Multicast
traffic without needing to rely on specific Unicast routing protocols. PIM has different
modes but the most common ones are Dense mode and Sparse mode. Dense mode as-
sumes that every router wants to get Multicast traffic so it forwards the Multicast packets
through all interfaces until a message to stop (prunning message) is received. The prune
messages only last 3 minutes. After that the router receives the Multicast traffic again
and if it doesn’t want the Multicast traffic, a new prune message is sent. Sparse mode
assumes that no other router desires to get Multicast traffic, and only forwards Multicast
data through interfaces that have received explicit join messages. The number of routers
involved in handling the Multicast traffic is minimum [23, 27].

4.7 IPTV

Service providers with IPTV services are among the main beneficiaries of multicast
and IGMP snooping. The load on their network is heavily reduced allowing for other
network services. In an IPTV network each channel correspond to a Multicast group and
changing channels correspond to joining a new group and leaving another. On IPTV the
ideal time for a user to start watching a new channel is less than 200 ms and the acceptable
time is less than one second [28, 29].

24

5
Using ONOS

25

5. Using ONOS

In this chapter some experiments with ONOS are firstly presented. As there is no
IGMP snooping application on ONOS, one was developed as described in this chapter.
Finally, the performance of the overall solution is evaluated.

5.1 Working with ONOS

5.1.1 Basic setup

During all basic tests the topology is the following:

Figure 5.1: Topology used in all basic tests

It contains eight hosts; every two hosts are connected to a single switch, called leaf;
that switch connects to two central switches, called spines. The spines connect with all
leaf switches. Note that all the switches used are layer two switches.

The ONOS version used was the ONOS 1.13.0- snapshot, the mininet used was 2.3.0
and the VLC version was 2.2.2 .

26

5.1 Working with ONOS

5.1.2 Sending unicast data

The objective of this experiment is to have a network where an IPTV source is sending
a movie to the receivers in Unicast mode. In this case the sender is h11 and the receivers
are h21, h22, h31 and h41.The topology used is the one presented in figure 5.1.

The VLC commands used were:
Sender:

vlc-wrapper -vvv ’<FileName.xyz>’ ’#std{ access= udp, mux= ts, dst=

<Destination IP>, port= 1234 }’
Receiver:

vlc-wrapper -vvv udp://

Figure 5.2: Result of sending via unicast

Figure 5.2 displays the network status of four unicast streams, using only the apps
that come activated by default with ONOS and activating the forwarding app. The results
are clear: when h11 streams to four hosts the throughput scales as the number of hosts
increases, so four hosts require four times more bandwidth than one host. In the end h11
had a throughput of 7.08Mbps ≈ 3.7808Mbps + 3.3108Mbps. It is also interesting to see
how well the reactive forwarding app worked, providing a fast path between the hosts

27

5. Using ONOS

and installing the necessary flows on the switches. As it was stated before, unicast is not
the appropriated method to stream between hosts as it is data intensive. The solution is
using multicast but its implementation is not as easy as unicast. The following sections
explain the problems, what ONOS already have available to use and how the problems
were overcome.

5.1.3 Sending multicast data using ONOS standard applications

5.1.3.A Using the FWD application

Using the same topology and with the same applications installed, a test was made
with multicast traffic. In this case h11 streams to the multicast group with IP address
232.0.0.0 and h21, h22, h31 and h41 subscribe this multicast group. We used both specific
source multicast and any source multicast for the receivers. After activating the FWD
(forwarding) application, it installs two flows in each switch. These low priority flows
state that every ARP packet and every IPv4 packet should be sent to the controller if there
isn’t other higher priority flow to deal with them.

The first Problem encountered was that the hosts didn’t send any data. The prob-
lem was found to be that mininet hosts didn’t have any default multicast gateway con-
nected to their newly created interfaces. To add it to them it was used the command:
<NameOfTheHost> route add -net 224.0.0.0 netmask 224.0.0.0 <HostInterface>

After adding the right multicast gateways, the test was made as stated before and the
result of this test was that instead of forwarding the packets to the subscribed hosts the
FWD application broadcasted them, i.e. sent the multicast traffic to all hosts presented in
the network. This behavior was the expected one for a network without IGMP snooping
[26].

5.1.3.B Using the MFWD application

For the second test the MFWD (multicast forwarding) application was activated and
the option ignoreIPv4Multicast was set to true on the FWD application so that it didn’t
interfere with the multicast packet processing. The setup for this test was the same as
the one from the first test. Right after its activation, the MFWD application adds a low
priority flow to every switch that states that if a IPv4 packets arrives with a destination
224.0.0.0/4 it should be sent to the controller.

The firsts attempts of this test showed similar results as test one, described in 5.1.3.A,
which theoretically didn’t make sense as the FWD application should ignore multicast
traffic. After trying the first test but with this option (ignoreIPv4Multicast) set to true we
were sure that the error was in the FWD application because it did not ignore the multicast

28

5.1 Working with ONOS

packets. After looking on the application code a bug was found. This bug was that the
application didn’t update their settings even after changing them over the CLI (Command
Line Interface). This bug was corrected and the second test repeated.

Figure 5.3: Result of the second test

Figure 5.3 shows the results of the second test. It is clear that the hosts are not re-
ceiving the packets from the multicast group they are subscribed to. After analyzing the
flows installed on the switches we saw that no new flows were installed, there where also
no new intents installed but we saw that a multicast route was created with the IP address
232.0.0.0. and with h11 as the sender. ONOS multicast routes are organized on a table
that stores the multicast group IP, who is the sender to that group and who are the sinks.
It can be said that the MFWD application is not working as expected. Even though it
generates the route to the sender it doesn’t add the hosts that subscribe to the group as
sinks of the route.

There was no documentation on how it was supposed to work, so the next step was
to analyze the code of the MFWD and the ONOS core. The analysis of the MFWD
application code allowed to conclude that IGMP packets were not processed. In order to
be able to do an IPTV use case, it is imperative to have an IGMP packet processor.

29

5. Using ONOS

5.2 Developing the IGMP application

Because ONOS doesn’t have a native IGMP snooping application one was developed
following the IGMPv2, IGMPv3, IGMP snooping and IGMP querier specifications. The
main objective of the IGMP snooping application is to perform the tasks of both the
IGMP snooping and IGMP querier. Without it there was no automatic way to add hosts
to multicast groups and to manage them afterwards.

The application starts by installing a flow rule on all network switches and when they
receive a packet which matches the flow specifications the controller processes it. In this
case the flow selector is a IPv4, IGMP packet with the destinations 224.0.0.0/4. The
IGMP snooping app, working within the controller, then receives the IGMP packet and
after identifying the IGMP version and type processes it according to the specification.

IGMPv3 membership reports allow for more than one action to be transmitted over
a single IGMP packet so the application separates the various groups and then processes
each one individually. After gathering the necessary information like the group IP ad-
dress, if it is source-specific or not and if the host is joining a group or leaving one, the
application searches in the multicast route table for routes with the wanted IP group ad-
dress then it searches for the one with the specific sender, in the case there is one, and at
last adds the IGMP sender as a sink for the route.

When an IGMPv2 membership report is received there is only one possible action,
subscribing to a multicast group, so the process is simpler. Because IGMPv2 is not source
specific the IGMP application only has to find the registered routes with the desired group
IP address and add the sender as a sink to all the routes.

The IGMPv2 Leave group packet as the name denotes provides a mean to unsubscribe
multicast groups and has a similar behavior as the IGMPv2 membership report processing,
but in this case instead of adding a new host to the group the host is removed.

IGMPv1 only has a subscribing mechanism and behaves like the IGMPv2 membership
report.

In this case the role of querier is played by the controller itself, more precisely the
IGMP snooping application within ONOS. The querier has two tasks, one is to period-
ically send an IGMP query to every host, the other is to verify the timeout condition of
each route for every host. ONOS waits a certain period of time before removing the host
from the multicast group. In this case the waiting time is 3 times the querying time, i. e.,
each time it send an IGMP query it decrements an individual counter for each host and if
that counter reaches 0 the host is removed. Every time a host responds to the query that
counter is reset. The number of times it waits for the timeout can be adjusted depending
on the type of network we are working on.

30

5.3 Testing the IGMP snooping functionality

5.3 Testing the IGMP snooping functionality

5.3.1 One sender and multiple receivers

To test the IGMP snooping functionality an experiment was made that used the FWD
application to forward the normal traffic, the MFWD to create the multicast routes and
the developed IGMP application to do IGMP packets processing. Using the same topol-
ogy as before, figure 5.1, and the same scenario, h11 is streaming to the multicast group
225.0.0.0. and hosts h21, h31 and h32 join that multicast group. Both any-source mul-
ticast and source-specific multicast were tested but as they presented similar results no
distinction between them was made for the rest of this dissertation.

In the beginning h11 starts to stream to the multicast group 225.0.0.0, but because no
host is interested in receiving the stream the switch leaf-1 does not forward the traffic.
The MFWD application creates a entry for a multicast group with h11 as the sender and
225.0.0.0 as the destination IP address but without any sinks. After hosts h21, h31 and
h32 run the VLC command to subscribe to the multicast group with IP address 225.0.0.0,
an IGMP membership report is sent and processed by the IGMP snooping application.
They are then added to the multicast route as sinks. The MFWD application knowing that
a sink was added to a multicast route declares the necessary intents that will install the
necessary flows on the switches.

Figure 5.4: SDN network with MFWD, FWD and IGMP snooping apps activated with a
multicast stream

31

5. Using ONOS

Figure 5.4 shows the overall result of this experiment. Every host that wanted to
receive the multicast stream is receiving it and the ones that weren’t supposed to receive it
aren’t receiving. To achieve these results the MFWD application and the IMGP snooping
application need to work together. The intent functionality is provided by the ONOS core
and it is responsible for translating the intents into flow rules, so the path chosen for the
multicast stream is from ONOS responsibility. The default algorithm is Dijkstra and it
was not changed for these tests. Another important feature that can be observed in figure
5.4 is the bandwidth used which is only 2.09Mbps, a significant reduction from the unicast
test.

To complete the test of the IGMP snooping application a receiver closes VLC and
sends a IGMP membership report to leave the multicast group. After that the host is
removed from the multicast group and the intent is replaced by a new one without the
host that left. The new intent removed the unnecessary flows and installed the new ones.

5.3.2 Multiple senders and multiple receivers

The initial setup is similar to the previous one, only this time the network complexity
will increase. In this test h11 will stream to the multicast group 226.0.0.0 and h12 will
stream to 227.0.0.0. h21 and h41 will connect to the multicast group 226.0.0.0 and h21,
h22, and h31 will connect to 227.0.0.0. This way h21 will subscribe two multicast groups
at the same time. The purpose is to see how the IGMP snooping application behaves in
such scenario.

32

5.3 Testing the IGMP snooping functionality

Figure 5.5: Network status of the two streams running simultaneously

Figure 5.5 displays our scenario network with two streams running simultaneously.
Only the hosts that subscribed to the multicast groups are receiving the multicast streams.
The bandwidth flowing on the link between h21 and Leaf-2 is superior to the bandwidth
of the other links because h21 receives both streams. Figure 5.6 presents the new flows
installed on Leaf-2 by the intents. One of them sends the incoming traffic to h21 and h22,
and the other one only sends it to h21.

Figure 5.6: New flows installed on switch Leaf-2

Some important information is present in figure 5.7. It can be seen how the querier
is sending the IGMP Membership Query packets to the hosts every ten seconds and that
the host responds with a IGMP Membership Report. In this case it is specific source
multicast. It can also be seen how the Membership Report changed from only one group
to start to two groups.

33

5. Using ONOS

Figure 5.7: Wireshark capture from the host h21

5.3.3 Testing the IGMP Timeout functionality

Starting with the same topology as before and having h11 as the sender and h21, h22
and h31 as the receivers, this time the test consists in deactivating one of the hosts and
checking that after some time it is removed from the multicast group. This experiment
puts to test the timeout capacity of the IGMP application.

Immediately after disconnecting h31, Leaf-3 is still receiving data from the multicast
group this can be seen in figure 5.8. This is an expected behavior because not enough
time has passed for the host to be timed-out. After some time Leaf-3 stops receiving the
multicast traffic. As h31 stopped to send the Membership Reports back to the controller
to respond to the IGMP Query packets, it was removed from the multicast group, and new
intents were installed which lead to new flow rules installed. This can be seen in figure
5.9. For re-adding h31, it needs to send an IGMP Membership Report to be added again
to the multicast group because it was removed from the multicast group by the timeout
mechanism. When it sends a new IGMP join packet it is added to the group again, and a
new intent is installed, which installs new flows.

Figure 5.8: Network status right after
h31 is disconnected

Figure 5.9: Network status after the
timeout mechanism is activated

After this test it can be said that the timeout functionality is working, and our applica-
tion fulfills all the IGMP requirements.

34

5.4 Stress tests on the IGMP application

5.4 Stress tests on the IGMP application

After proving that the IGMP snooping application satisfies the IGMP snooping re-
quirements, it is necessary to evaluate how it performs under stress tests representing
some “extreme” conditions that can occur in real live scenarios. Only by doing this test
can the solution be considered appropriate to be deployed by service providers envision-
ing the virtualization of some OLT functions in real passive optical access networks.

Three tests were performed. The objective of first one is to see how the ONOS SDN
controller and our application behave in a network with a high number of hosts connected
to a multicast group. The objective of the second test is to conclude if they can handle
sets of multicast groups at the same time. The purpose of the third test is to measure how
much time ONOS takes to react to a link failure in a network with redundancy. Each test
presents a different topology chosen specifically to each case.

The tests were performed with two computers. One functioning as the SDN controller,
running ONOS with the developed IGMP application (VM Xubuntu 32 with 4 Gbyte of
RAM, running over virtual machine on a windows 10, 64 bits with 8 Gbyte of RAM
and an intel core i5 2.6 GHz) and the other was where the network was instantiated with
Mininet (VM Xubuntu 32 with 8Gbyte of RAM, running over virtual machine on a win-
dows 8.1, 64 bits with 16 Gbyte of RAM and an intel core i5 2.5 GHz). Both computers
are connected via an Ethernet switch and have the topology displayed in figure 5.10:

Figure 5.10: Test bed topology

Figure 5.11 presents the system architecture used along these tests. More information
about it can be found in the specific test description on the following sub-chapters. All
these tests were performed more than 1 time and the values presented are average values.

5.4.1 High number of hosts connected to a single multicast group

The first test consists in a network that simulates an aggregation topology, like the one
presented in figure 5.11. A main switch connects to n=16 other switches. Each switch then
connects to k hosts. There is a special host, the multicast sender, that connects directly to
the main switch which is not represented in the figure. The conclusions taken from this
test can be applied to a scenario with OLTs. In the CORD architecture an OLT can be
abstracted as a switch OpenFlow where the ONUs are ports of that switch. By increasing

35

5. Using ONOS

Figure 5.11: Stress tests system architecture

the number of hosts connected to each switch, we are adding load and observing how
it affects the SDN controller and the IGMP snooping application. Also, we want to see
if it meets the IPTV recommendations regarding the time it takes to connect to a new
channel. In this case all the hosts connect to the same multicast group which is the only
one available.

The table 5.1 and table 5.2 display the results obtained in these tests for k hosts. The
CPU and memory values were calculated in three different instants: initially when the
controller was instantiated but the network was not; in the middle, when the network was
instantiated and connected to the controller; in the end, when all hosts were receiving
the multicast traffic. The available memory is displayed in MB and the CPU usage in
percentage. The “Intent Install Time” displayed represents the time it took for an intent
to be installed and the “Intent Withdraw Time” the time to be withdrawn after giving the
controller the order to do so. The IGMP processing time is the time it took for the IGMP
snooping application to process the packet. The Average total time is the time it took for
the host to start receiving the multicast traffic after sending a IGMP join packet and was
measured via an interface capture analyzed in wireshark. All these times are presented in
milliseconds (ms).

When we had a low number of hosts (up to k = 10 hosts per switch, 160 total) every-
thing worked as expected. On average, the IGMP snooping application took up to 8 ms to
process an IGMP packet and a maximum of 100 ms. The time it took from the moment

36

5.4 Stress tests on the IGMP application

Number of CPU Usage Available Memory (Mb)
Hosts Init. Middle End Init. Middle End

16 1.2% 50% 3% 2102 2101 2104
32 1.4% 51% 1.7% 2103 2077 2071

Controller 160 1.5% 45% 8.8% 2080 2077 2053
320 1.7% 50% 51% 2020 2020 1993
608 1.6% 63% 92% 1728 1700 1665
16 0% 0.7% 0.5% 7081 7041 6885

Network 32 0% 0.8% 0.8% 7073 7002 6716
Virtualizer 160 0% 3% 10% 7072 6709 5347

320 0% 5% 4.3% 6871 6218 3667
608 0% 11% 63% 7094 5459 42

Table 5.1: Test one computer resources results

Number of Intent Install Time Intent Withdraw Time IGMP Processing Time Average total
Hosts (k) min max mean min max mean min max mean time

16 18 45 26 17 45 25 1 25 3 105
32 17 98 36 15 99 31 1 94 6 170

160 16 240 32 11 247 18 1 104 8 195
320 17 182 26 11 171 19 0 1472 16 320
608 - - - - - - 1 2636 43 445

Table 5.2: Test one processing times results in ms

an IGMP packet was sent and the multicast traffic started to be received by the host was
on average 195 ms (with a maximum of 478 ms). As previously mentioned the results
are in accordance with the IPTV recommendations. It was also observed a peak on the
CPU usage when the hosts started to send IGMP join packets to the controller but with
this number of hosts it was not a problem. In the end, after processing the initial burst of
packets, the CPU usage goes back to low starting levels.

When we had a higher number of hosts (total ranging from k = 20 up to k = 50) some
not so good results started to appear. The average time it took to process an IGMP packet
was 43 ms and the maximum was 2,6 s. Even though the average time it took to start to
receive the multicast traffic, after sending the IGMP packet, was 455 ms, in some cases
it reached 2636 ms. This means that the 1 second barrier was exceed. Also, the SDN
controller CPU usage never went back to the low starting levels. In a real scenario this
can lead to a bad costumer experience and a low quality of service.

For the test with 608 hosts, the intent install time and intent withdraw time was not
possible to access. To get them we used the ONOS application events that records ev-
ery event that happens in the network and for this case the application crashed from the
overload of data and to access it was impossible.

37

5. Using ONOS

Running this test with different processing capacity it was verified that the system
response does not vary linearly and further evaluation is in course. The results of these
tests can be seen in table 5.3.

Number of Intent Install Time (ms) Average total
Hosts min max mean time (ms)

16 1 32 6 126
32 0 279 16 203

160 0 396 32 736

Table 5.3: Test one processing times results half the processing capacity

With this experiment we can conclude that the memory(RAM) capacity was not so
important to the SDN controller, packet processing is a CPU heavy task and only with
the right hardware it is possible to achieve optimal times for a good consumer experience.
Also, virtualizing the network is a memory intensive task.

5.4.2 High number of multicast groups with one sender and one re-
ceiver

The objective of the second test is to show how many different multicast groups can
the SDN controller and the IGMP snooping application manage. This way we can know
how many different channels can operate in the network and if it handles the average
number of channels of IPTV services. The second test uses the same network topol-
ogy presented in Fig. 5.11 with n = 2. The topology is a simple one-to-one connection
between a variable number of hosts working as senders and the same number of hosts
working as receivers via an Ethernet switch.

On average an IPTV typical scenario has 500 channels available and the peak number
of different channels being watched at the same time is 250 channels. With this test
we can conclude that ONOS handles that number of multicast groups at the same time
without any problem. Every host was added by the IGMP snooping application to the
right multicast group. ONOS converted the information about the multicast groups in
intents and after compiling them it installed the right flows. However sometimes even
though it had the right intents it did not install the necessary flows into the switches,
and that happens even with a low number of multicast groups. This lead to hosts not
receiving the multicast traffic which can lead to a bad consumer experience, and a low
quality of service. This problem results from the ONOS intent mechanism which is still
under development

38

5.4 Stress tests on the IGMP application

5.4.3 Link failure recovery tests

The third test focuses on the ONOS intent ability where the objective is to see how fast
it recompiles the intent and installs the necessary flow rules to accommodate the failure of
a link and if the number of hosts in an intent changes the reaction time. The topology used
is the classic spine-leaf topology displayed in figure 5.12. The host h11 starts a multicast
stream that every other hosts joins. To simulate a link failure the link between Leaf-1 and
Spine-2 is put down, and after a few seconds up again. The same thing is done to the link
Leaf-1 and Spine-1.

Figure 5.12: Spine-Leaf topology used to test the link failure

In case of a link failure the typical recommended time for the network to recover is
less than 50 ms. After this test we concluded that it took, on average, 45 ms to react to a
link failure scenario. This value is calculated from the moment the link goes down until
new openflow rules are installed. This is considered a good response time and it is almost
imperceptible to the final user. If the network was under a heavy load i.e. with more than
160 hosts connected at the same time to a multicast group, and the SDN controller CPU
usage was at high levels, it could take up to 300 ms to react which is a poor response time.

39

5. Using ONOS

40

6
Conclusion

41

6. Conclusion

Throughout this dissertation ONOS was tested as well as the developed IGMP snoop-
ing application with access networks in mind. The IPTV use case was the main benefi-
ciary of the executed tests.

After analyzing the results of the tests it can be concluded that ONOS is neither ready
to be deployed by network service providers nor ready for the IPTV distribution. First
of all, some undocumented problems were found in the ONOS core e.g. configuring
the FWD application didn’t work and sometimes the intent functionality didn’t install
the proper OpenFlow rules. Second, ONOS lacks good documentation for the existing
applications. Even though ONOS has various network applications already implemented
it is difficult to understand how they interact and how they work. Third, the stress tests
revealed that ONOS needs to have enough processing capacity that must be properly
evaluated in order to achieve good performances in real networks.

The stress tests covered a scenario equivalent to a single OLT but the computation
power used allocated to ONOS was more than what a traditional OLT has. The OLT has
a CPU specialized in embedded scenarios and less memory available and in spite of that
it is still able to perform the IGMP snooping functionalities.

The tests on the IGMP snooping application revealed that it meets the IGMP snooping
requirements as well as the ones from an IGMP querier. Namely,it processes all kinds of
IGMP packets, is able to add and remove hosts from the multicast groups created by
ONOS application MFWD and has a timeout function that removes inactive hosts that
didn’t send the leave packet.

6.1 Future Work

Even though the IGMP application was widely tested, new scenarios can be made to
test it further. In the future, more network applications can also be developed for ONOS
in order to increase its viability for network service providers deployment. Also, for
the available applications better documentation is necessary and more proof-of-concept
scenarios can be used to test them.

42

Bibliography

[1] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and R. Boutaba,
“Network function virtualization: State-of-the-art and research challenges,” IEEE

Communications Surveys and Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[2] Broadband Forum, “TR-384 Cloud Central Office Reference Architectural Frame-
work,” Broadband Forum, Tech. Rep. January, 2018.

[3] D. Kreutz, F. M. V. Ramos, P. E. Verı́ssimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of

the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[4] T. D. Nadeau and K. Gray, SDN - Software Defined Networks. O’Reilly, 2013.

[5] P. Morreale and J. Anderson, Software Defined Networking. CRC Press, 2014.
[Online]. Available: http://www.crcnetbase.com/doi/book/10.1201/b17708

[6] P. Göransson, C. Black, and T. Culve, Software Defined Networks A Comprehensive

Approach. Elsevier, 2017.

[7] ONF, “Software-Defined Networking (SDN) Definition - Open Networking
Foundation.” [Online]. Available: https://www.opennetworking.org/sdn-definition/

[8] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-defined
networking,” IEEE Communications Surveys Tutorials, vol. 17, no. 1, pp. 27–51,
Firstquarter 2015.

[9] M. R. Costa, R. Calé, C. Parada, P. Neves, and J. Bonnet, “NFV & SDN INNOVA-
TION STRATEGY AT ALTICE LABS,” innovaction, pp. 34–53, 2016.

[10] Y. Li and M. Chen, “Software-defined network function virtualization: A survey,”
IEEE Access, vol. 3, pp. 2542–2553, 2015.

[11] Broadband Forum, “ TR-370 Fixed Access Network Sharing - Architecture and
Nodal Requirements,” Broadband Forum, Tech. Rep. November, 2017.

43

http://www.crcnetbase.com/doi/book/10.1201/b17708
https://www.opennetworking.org/sdn-definition/

Bibliography

[12] S. Scott-Hayward, S. Natarajan, and S. Sezer, “A survey of security in software
defined networks,” IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 623–
654, Firstquarter 2016.

[13] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S. Das, J. Hart,
G. Palukar, and W. Snow, “Central office re-architected as a data center,” IEEE Com-

munications Magazine, vol. 54, no. 10, pp. 96–101, oct 2016.

[14] “ONOS - A new carrier-grade SDN network operating system designed for high
availability, performance, scale-out.” [Online]. Available: https://onosproject.org/

[15] “What is Docker?” [Online]. Available: https://www.docker.com/what-docker{#}
/overview

[16] “XOS - Open Networking Foundation.” [Online]. Available: https://www.
opennetworking.org/projects/xos/

[17] “Software - OpenStack is open source software for creating private and public
clouds.” [Online]. Available: https://www.openstack.org/software/

[18] “Features - ONOS.” [Online]. Available: https://onosproject.org/features/

[19] T. O. N. L. (ON.Lab), “Introducing ONOS - a SDN network operating system for
Service Providers,” vol. 1, p. 14, 2014.

[20] “VideoLAN.” [Online]. Available: https://www.videolan.org/vlc/index.html

[21] R. L. S. De Oliveira, A. A. Shinoda, C. M. Schweitzer, and L. R. Prete, “Using
mininet for emulation and prototyping software-defined networks,” in Communica-

tions and Computing (COLCOM), 2014 IEEE Colombian Conference on. IEEE,
2014, pp. 1–6.

[22] “Features - OvS.” [Online]. Available: http://www.openvswitch.org/features/

[23] N. Kocharians and V. Terry, CCIE Routing and Switching v5.0, 5th ed. Ciscopress,
2014.

[24] W. Fenner and X. PARC, “Internet Group Management Protocol, Version 2,” RFC,
pp. 1–24, 1997.

[25] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan, “Internet Group
Management Protocol, Version 3,” RFC, pp. 1–53, 2002. [Online]. Available:
https://www.rfc-editor.org/info/rfc3376

44

https://onosproject.org/
https://www.docker.com/what-docker{#}/overview
https://www.docker.com/what-docker{#}/overview
https://www.opennetworking.org/projects/xos/
https://www.opennetworking.org/projects/xos/
https://www.openstack.org/software/
https://onosproject.org/features/
https://www.videolan.org/vlc/index.html
http://www.openvswitch.org/features/
https://www.rfc-editor.org/info/rfc3376

Bibliography

[26] M. J. Christensen, K. Kimball, and F. Solensky, “Considerations for Internet
Group Management Protocol (IGMP) and Multicast Listener Discovery (MLD)
Snooping Switches,” 2006. [Online]. Available: https://tools.ietf.org/html/rfc4541?
ref=binfind.com/web

[27] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-g. Liu, and L. Wei, “Protocol
independent multicast (pim): Protocol specification,” Internet Draft RFC, 1995.

[28] S. Shoaf and M. Bernstein, “Introduction to igmp for iptv networks,” white paper

juniper networks, part, no. 200188-001, 2006.

[29] A. Technologies, “How network conditions impact IPTV QoE,” vol. 1, p. 10, 2008.

45

https://tools.ietf.org/html/rfc4541?ref=binfind.com/web
https://tools.ietf.org/html/rfc4541?ref=binfind.com/web

Bibliography

46

7
Appendix A

47

IGMP Snooping for Multicast Traffic in Software-Defined Networking

José Castanheira1 Andre Brizido2 Lucia Martins1,3

Abstract— In this demonstration it is presented an IGMP
snooping application developed for ONOS SDN controller. The
applicability of this SDN/NFV solution in the context of passive
optical access networks is showed through its performance
evaluation for a set of multicast traffic scenarios including the
case of a single link failure.

I. INTRODUCTION

Over the last few years, a revolution has been occurring
over networks. SDN and NFV appeared as new technologies
that can change the current network architecture paradigm.
SDN refers to a way network functionalities can be orga-
nized and can be defined as the separation of the control
plane from the data plane to a centralized controller [1].
NFV can be seen as the decoupling of networks functions
from the highly specialized physical hardware into software
application running in common hardware [2]. From the
perceptive of network service providers one of these network
functions is IGMP snooping [3]. IGMP is a protocol used
in networks that allows hosts to advertise which multicast
group they want to join or leave. IGMP snooping is the
process of listening to IGMP packets from the hosts to learn
which host wants to subscribe/leave to a certain multicast
group [4]. This way, instead of broadcasting the traffic to
every host, the switch is capable of only forwarding the
packets to the hosts that want to receive them. In an SDN-
NFV environment the IGMP snooping is performed through
the SDN controller, which installs and removes the flows
in accordance with the IGMP requests. Multicast traffic is
used in IPTV, where users receive TV over an IP platform.
Because all the channels aren’t being watched at the same
time, IGMP snooping is required to know which channel is
on and when zapping is done which multicast group must
leave and which multicast group must be jointed. With this
mechanism, service providers can save bandwidth preventing
the network to be overloaded with unwanted traffic. On IPTV
the ideal time for a user to start watching a new channel is
less than 200 ms and the acceptable time is less than one
second [5], [6].

In this work an IGMP snooping application was developed
for ONOS SDN controller [7]. In order to show the adequacy
of this solution envisioning the virtualization of some OLT
(Optical Line Termination) functions in real passive optical
access networks a demonstration is presented using a set of
multicast traffic scenarios, described next.

1 Department of Electrical and Computer Engineering, University of
Coimbra, 3030-290 Coimbra, Portugal

2 Altice Labs, 3810-106 Aveiro, Portugal
3 INESC Coimbra, 3030-290 Coimbra, Portugal

II. DEMO SYSTEM ARCHITECTURE

The system architecture used for this demo can be seen
in figure 1. The IGMP snooping application follows the
description presented in [3] and was implemented in Java.
It communicates through Java API with the SDN controller.
OvS were the switches instantiated via Mininet [8] and where
the SDN controller installs the flows rules.

Fig. 1. Demo system architecture

The tests were performed with two computers. One func-
tioning as the SDN controller, running ONOS with the
developed IGMP application (VM Xubuntu 32 with 4 Gbyte
of RAM, running over virtual machine on a windows 10,
64 bits with 8 Gbyte of RAM and a intel core i5 2.6 GHz)
and the other was where the network was instantiated with
Mininet (VM Xubuntu 32 with 8Gbyte of RAM, running
over virtual machine on a windows 8.1, 64 bits with 16 Gbyte
of RAM and a intel core i5 2.5 GHz). Both computers are
connected via an Ethernet switch.

A. Test one

The first test uses the network topology presented in Fig.
1. A main switch is connected to n = 16 other switches.
Each switch then connects to a variable number of k hosts.
There is a special host , the multicast sender, not represented
in the figure, that connects directly to the main switch. The

objective of this first test is to evaluate the performance of
this system with a high number of hosts connected to the
same multicast group and check if ONOS and our IGMP
snooping application met the IPTV recommendations.

B. Test two

The second test uses the same network topology presented
in Fig. 1 with n = 2. The topology is a simple one-to-one
connection between a variable number of hosts working as
senders and the same number of hosts working as receivers
via an Ethernet switch. The objective of this test is to check
how many different multicast groups can the SDN controller
and the IGMP snooping application manage and therefore
know how many different IPTV channels can operate in the
network.

C. Test three

The third test uses the classic leaf-spine topology [9]. This
test is focused on the ONOS intent ability where the objective
is to see how fast it recompiles the intent and install the
necessary flow rules to accommodate a failure of a link. It
also verifies if the number of hosts involved in a intent affects
the reaction time.

III. EXPERIMENTAL RESULTS

After running the experiments the following results were
obtained:

A. Test one

When we had a low number of hosts (up to k = 10 hosts
per switch, 160 total) everything worked as expected. On
average, the IGMP snooping application took 8 ms to process
an IGMP packet and a maximum of 100 ms. The time it took
from the moment an IGMP packet was sent and the multicast
traffic started to be received by the host was on average 195
ms and on maximum of 478 ms. As previously mention the
results are in accordance with the IPTV recommendations. It
was also observed a spike on the CPU usage when the hosts
started to send IGMP join packets to the controller but with
this number of hosts it was not a problem. In the end, after
processing the initial burst of packets, the CPU usage goes
back to low starting levels.

When we had a higher number of hosts (total ranging from
k = 20 up to k = 50) some not so good results started to
appear. The average time it took to process an IGMP packet
was 43 ms and the maximum was 2,6 s. Even though the
average time it took to start to receive the multicast traffic,
after sending the IGMP packet, was 455 ms, in some cases it
reached 3 s. This means that the 1 second barrier was exceed.
Also, the SDN controller CPU usage never went back to the
low starting levels. In a real scenario this can lead to a bad
costumer experience and a low quality of service.

Running this test with different processing capacity it was
verified that the system response does not vary linearly and
further evaluation is in course. It was also observed that the
memory(RAM) capacity was not so important to the SDN
controller.

B. Test two

On average an IPTV typical scenario has 500 channels
available and the peak number of different channels being
watched at the same time is 250 channels. With this test we
can conclude that ONOS handles that number of multicast
groups at the same time without any problem. Every host
was added by the IGMP snooping application to the right
multicast group. ONOS converted the information about
the multicast groups in intents and after compiling them it
installed the right flows. However sometimes even though it
had the right intents it did not installed the necessary flows
into the switches, and that happens even with a low number
of multicast groups. This lead to hosts not receiving the
multicast traffic which can lead to a bad costumer experience,
and a low quality of service. This problem results from the
ONOS intent mechanism which is still under development
[7].

C. Test three

In case of a link failure the typical recommended time for
the network recover is less than 50 ms. After this test we
concluded that it took, on average, 45 ms to react to a link
failure scenario. This value is calculated from the moment
the link goes down until new openflow rules are installed.
This is considered a good response time and it is almost
imperceptible to the final user. If the network was under a
heavy load i.e. many hosts connected at the same time to a
multicast group, and the SDN controller CPU usage was at
high levels, it took 300 ms seconds to react which is poor
response time.

IV. CONCLUSIONS

After these tests we can conclude that ONOS is not yet
ready to be used by network service providers and also needs
some serious processing power to be able to perform properly
in really networks.

The computation power used by the SDN controller in
these tests is more than that a traditional OLT pizzabox has.
The OLT has a CPU specialized in embedded scenarios and
less memory available and in spite of that it is still able to
perform the IGMP snooping functionalities.

REFERENCES

[1] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and R.
Boutaba, Network function virtualization: State-of-the-art and research
challenges, IEEE Communications Surveys and Tutorials, vol. 18, no.
1, pp. 236262, 2016.

[2] P. Goransson, C. Black, and T. Culve, Software Defined Networks A
Comprehensive Approach. Elsevier, 2017.

[3] M. J. Christensen, K. Kimball, and F. Solensky, Considerations for
Internet Group Management Protocol (IGMP) and Multicast Listener
Discovery (MLD) Snooping Switches, 2006.

[4] N. Kocharians and V. Terry, CCIE Routing and Switching v5.0, 5th
ed. Ciscopress, 2014.

[5] S. Shoaf and M. Bernstein, Introduction to igmp for IPTV networks,
white paper Juniper Networks, part, no. 200188-001, 2006.

[6] A. Technologies, How network conditions impact IPTV QoE.
[7] ON.Lab, Introducing ONOS - a SDN network operating system for

Service Providers, vol. 1, p. 14, 2014.
[8] http://mininet.org.
[9] https://github.com/ciena/mininet-topos

7. Appendix A

50

51

	Titlepage
	acknowledgments
	Abstract
	Resumo
	Table of contents
	Table of contents
	List of figures
	List of tables
	List of acronyms

	1 Introduction
	1.1 Objectives and contributions
	1.2 Dissertation outline

	2 Software Defined Networking and Network Function Virtualization
	2.1 What is Software Defined Networking?
	2.2 What is Network Function Virtualization?
	2.3 How do they interact
	2.4 Cloud Central Office
	2.4.1 CloudCO Domain Architecture

	2.5 Security concerns

	3 Choosing the platforms to work with
	3.1 CORD
	3.1.1 What is CORD?
	3.1.2 Disaggregation and Virtualizing of network components

	3.2 ONOS
	3.2.1 ONOS features

	3.3 VLC
	3.4 Mininet
	3.5 Open vSwitch

	4 Multicast
	4.1 What is Unicast, Broadcast and Multicast?
	4.2 How does Multicast work
	4.3 IGMP
	4.4 IGMP Snooping
	4.5 IGMP Query
	4.6 PIM
	4.7 IPTV

	5 Using ONOS
	5.1 Working with ONOS
	5.1.1 Basic setup
	5.1.2 Sending unicast data
	5.1.3 Sending multicast data using ONOS standard applications
	5.1.3.A Using the FWD application
	5.1.3.B Using the MFWD application

	5.2 Developing the IGMP application
	5.3 Testing the IGMP snooping functionality
	5.3.1 One sender and multiple receivers
	5.3.2 Multiple senders and multiple receivers
	5.3.3 Testing the IGMP Timeout functionality

	5.4 Stress tests on the IGMP application
	5.4.1 High number of hosts connected to a single multicast group
	5.4.2 High number of multicast groups with one sender and one receiver
	5.4.3 Link failure recovery tests

	6 Conclusion
	6.1 Future Work

	Bibliography
	7 Appendix A

