
Hélio José Batista Ochoa

Compliant Control
of the Kinova Robot for Surface Polishing

Master’s Dissertation in MIEEC, supervised by

Professor Dr. Rui Pedro Duarte Cortesão and presented to the

Faculty of Science and Technology of the University of Coimbra

Coimbra 2018

Compliant Control

of the Kinova Robot for Surface

Polishing

Hélio José Batista Ochoa

Coimbra 2018

Compliant Control

of the Kinova Robot for Surface

Polishing

Supervisor:

Professor Dr. Rui Pedro Duarte Cortesão

Jury:

Professor Dr. Jorge Manuel Moreira de Campos Pereira Batista

Professor Dr. Rui Alexandre de Matos Araújo

Professor Dr. Rui Pedro Duarte Cortesão

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra 2018

Agradecimentos

Em primeiro lugar, agradeço aos meu pais, José e Maria, por fazerem de mim o que sou

hoje e porque sem eles nada disto seria possível. Agradeço as minhas irmãs, Marta e Lúcia,

pelo apoio, compreensão e por serem um exemplo a seguir.

Em segundo lugar, queria agradecer ao meu orientador, o Professor Doutor Rui Cortesão,

por me ter concedido esta oportunidade, pelo seu acompanhamento, partilha de experiência

e aconselhamento durante a realização deste trabalho.

De seguida um especial obrigado a Ana Rita Tavares, por ter estado sempre ao meu

lado, pela paciência e por nunca me ter deixado baixar os braços.

Queria também agradecer ao Engenheiro Pedro Lino, por me ter ensinado as bases do

ROS e pela sua amizade, e ao Engenheiro Miguel Mendes, por ter partilhado comigo o seu

conhecimento e experiência à cerca do robô.

Por último, aos meus amigos, em especial aos LedZener, obrigado pela convivência e

camaradagem durante o meu percurso académico.

Coimbra, Julho de 2018

iii

Resumo

Este trabalho consiste em testar diferentes algoritmos de controlo no robô Kinova JACO2

e propor uma solução para o polimento automatizado. Maioritariamente na indústria o

processo de polimento é ainda realizado manualmente, o que requer muito tempo do ser

humano a desempenhar a mesma tarefa, o que o limita em termos de quantidade produzida.

Inicialmente são testados algoritmos de controlo simplificados por forma a testar e

avaliar o desempenho do robô. Os algoritmos testados correspondem a arquiteturas de

controlo avançadas, como o controlo de binário computorizado, quer no espaço das juntas

quer no espaço de tarefa. Posteriormente é testado o controlador de impedância, que permite

relacionar uma determinada posição, velocidade e aceleração com a força necessária. Afim

de validar os controladores anteriormente mencionados estes são testados em ambiente de

simulação e em ambiente real. Finalmente o controlador de impedância é testado numa

tarefa real de polimento.

Verificou-se que o controlador de impedância pode ser usado para desempenhar tarefas

de polimento. Contudo o desempenho do robô não é perfeito, devido à fricção dos atuadores

e a outros fatores externos, o que pode ser mitigado com um estudo minucioso dos vários

parâmetros considerados no controlador e dos parâmetros internos do manipulador.

v

Abstract

This work consists of developing different control algorithms in Kinova JACO2 robot

and propose a solution for automated surface polishing. Nowadays, surface polishing is

performed manually, which requires a long time for a human performing the same task,

being limited in terms of production capacity.

Initially, several simplified control algorithms are tested so as to evaluate the robot

performance. The tested algorithms correspond to computed torque controller in the joint

and task space. Then, the impedance control is tested since it allows to regulate the re-

lationship between the required force and position, velocity and acceleration. In order to

validate the control architectures they are tested in simulated and real environment. Finally,

the impedance controller is tested in a real surface polishing task.

In conclusion, the impedance controller can be used in polishing tasks. However, the

robot performance needs improvements due to actuators friction and other factors. This

problem can be mitigated by an in-depth study of the controller parameters as well as the

internal parameters of the manipulator.

vii

"Look up, get up and don’t ever give up!"

— Michael Irvin,

Contents

Agradecimentos iii

Resumo v

Abstract vii

List of Acronyms xv

List of Figures xvii

List of Tables xxi

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Organization . 3

2 The Kinova JACO2 Robotic Arm 5

2.1 System Overview . 5

2.2 Communication Modes . 7

2.3 Kinova-ROS . 8

3 JACO2 Kinematics and Dynamics 13

3.1 Direct Kinematics . 13

3.2 Differential Kinematics . 18

3.3 Dynamics . 20

4 Control Architectures 23

4.1 ROS Control . 23

xi

4.2 Computed torque control in the joint space 25

4.3 Computed torque control in the task space 27

4.4 Joint Space Control with Task Posture Reference 30

4.5 Impedance Control . 35

5 Experimental Results 43

5.1 Gazebo Simulator Results . 43

5.1.1 Computed torque control in the joint space (simulator) 43

5.1.2 Computed torque control in the task space (simulator) 45

5.1.3 Joint space control with task posture reference (simulator) 47

5.1.4 Impedance control in the task space without force sensing (simulator) 49

5.1.5 Impedance control in the task space with force sensing (simulator) . . 50

5.1.6 Impedance control in the task space with force sensing for redundant

robots (simulator) . 52

5.2 Real JACO2 Results . 54

5.2.1 Computed torque control in the joint space 55

5.2.2 Computed torque control in the task space 56

5.2.3 Impedance control in the task space without force sensing 57

5.2.4 Impedance control in the task space with force sensing 58

5.2.5 Impedance control in the task space with force sensing for redundant

robots . 59

6 Surface Polishing 63

6.1 Polishing task in Gazebo simulator . 63

6.2 Polishing task in the real JACO2 . 65

7 Conclusion 71

7.1 Future Work . 71

8 Bibliography 73

A JACO2 Product Specification 77

B Actuators Product Specification 81

C Kinova-ROS: Installation 85

xii

D Kinova-ROS: How to use the stack 87

D.1 Gazebo Simulator . 87

D.2 Real JACO2 . 88

E Robot Operating System 89

F Polishing Task Example 97

xiii

xiv

List of Acronyms

API Application Programming Interface

COM Center of Mass

DH Denavit-Hartenberg

DOF Degrees of Freedom

DSP Digital Processing Unit

EL Euler-Lagrange

KDL Kinematics and Dynamics Library

NE Newton-Euler

OS Operating System

PD Proportional-Derivative

PID Proportional-Integral-Derivative

ROS Robot Operating System

SDK Software Development Kit

URDF Unified Robot Description Format

xv

xvi

List of Figures

2.1 The Kinova JACO2 Research Edition system. 5

2.2 Kinova’s joystick possible commands [7]. 6

2.3 General Architecture from low level up of kinova_driver. 8

2.4 The joint position control on the left (2.4a) and the cartesian position control

on the right (2.4b). 9

2.5 Kinova JACO2 arm in Gazebo simulator. 10

2.6 Data flow of ros_control and Gazebo. 11

2.7 Kinova JACO2 arm in RViz MoveIt Plugin. 12

3.1 Description of the position and orientation of the end-effector frame [25]. . . 14

3.2 JACO2 6DOF curved wrist components [7]. 15

3.3 Basic geometric parameters of the JACO2 6DOF curved wrist configuration [7]. 16

3.4 Auxiliary parameters that are useful for describing the geometry for direct

kinematics of the JACO2 6DOF curved wrist configuration [7]. 16

3.5 JACO2 6DOF curved wrist coordinate frames for the DH algorithm [7]. . . . 18

4.1 Diagram of the relationship between controller interfaces, controller managers,

transmissions and hardware interfaces in ros_control [18]. 24

4.2 PID computed torque control in the joint space. 26

4.3 Position/Orientation PD control in the task space. 28

4.4 PD joint space torque control with task space posture reference. 33

4.5 The two pictures above shows the 3 different situations that occur between

robot and environment. [3] . 35

4.6 Impedance control scheme in the task space without force sensing. [23] . . . 36

4.7 Impedance control architecture in the task space without force sensing and

without inertia shaping. 37

4.8 Impedance control scheme in the task space with force sensing. 40

xvii

4.9 Impedance control scheme in the task space with force sensing for redundant

robots and with quaternion orientation. 42

5.1 PID computed torque control in the joint space (Gazebo Simulator). 45

5.2 Position/Orientation PD computer torque control in the task space (Gazebo

Simulator). 47

5.3 Position PD joint space torque control with task space posture reference

(Gazebo Simulator). 48

5.4 Orientation PD joint space torque control with task space posture reference

(Gazebo Simulator). 48

5.5 Position/Orientation impedance control without force sensing (Gazebo Sim-

ulator). 50

5.6 Position/Orientation impedance control with force sensing (Gazebo Simulator). 51

5.7 Position impedance control with force sensing for redundant robots (Gazebo

Simulator). 52

5.8 Quaternion orientation impedance control with force sensing for redundant

robots(Gazebo Simulator). 53

5.9 PID computed torque control in the joint space, with respect to the first solution. 56

5.10 Position/Orientation PD computer torque control in the task space. 57

5.11 Position/Orientation impedance control without force sensing. 58

5.12 Position/Orientation impedance control with force sensing. 59

5.13 Position impedance control with force sensing for redundant robots. 60

5.14 Quaternion orientation impedance control with force sensing for redundant

robots. 60

5.15 Position impedance control with force sensing for redundant robots using a

low pass filter with a cut-off frequency of 100 Hz. 61

5.16 Quaternion orientation impedance control with force sensing for redundant

robots using a low pass filter with a cut-off frequency of 100 Hz. 62

6.1 Polishing task demonstration in simulated environment. 63

6.2 End-effector position during the polishing task (Gazebo Simulator). 64

6.3 The circular defined trajectory and end-effector force measured (Gazebo Sim-

ulator). 64

6.4 End-effector orientation during the polishing task (Gazebo Simulator). . . . 65

6.5 Polishing tool with a sandpaper embedded in the robot end-effector. 66

xviii

6.6 State-machine for the polishing task. 67

6.7 End-effector position during the polishing task. 68

6.8 The circular defined trajectory and end-effector force measured. 68

6.9 End-effector orientation during the polishing task. 69

E.1 ROS File-System level. [10] . 91

E.2 Structure of the ROS Graph layer. [10] . 92

E.3 ROS basic concepts. [10] . 94

xix

xx

List of Tables

3.1 JACO2 6DOF curved wrist basic geometric parameters. 15

3.2 Auxiliary parameters of the JACO2 6DOF curved wrist. 17

3.3 JACO2 6DOF curved wrist DH parameters. 17

3.4 Transformation from DH algorithm to robotic arm physical angles. 17

5.1 The control gains were done by the following expressions: Kpj
= w2

nj
and

Kdj
= 2wnj

. 45

5.2 Position and Orientation Gains. 46

5.3 Joint control architecture gains. 49

5.4 Position and Orientation Gains. 50

5.5 Impedance task space control gains, where the variable I in 5.5a and 5.5b

represents the identity matrix. 51

5.6 Impedance task space control gains, where the variable I in 5.6a and 5.6b

represents the identity matrix. 53

5.7 Internal parameters that need to be changed. 54

5.8 Control Gains. 56

5.9 Position and Orientation Gains. 57

5.10 Position and Orientation Gains. 58

5.11 Impedance task space control gains, where the variable I in 5.11a and 5.11b

represents the identity matrix. 59

5.12 Impedance task space control gains, where the variable I in 5.12a and 5.12b

represents the identity matrix. 61

6.1 Impedance task space control gains in Gazebo Simulator. 66

6.2 Impedance task space control gains obtained in the real JACO2. 69

xxi

1 Introduction

1.1 Background

Nowadays, polishing process is considered as one of the essential final machining pro-

cesses in various precision industries including die and mould manufacturing, air-foils, sculp-

ture, camshaft and crankshaft. It is used to remove surface and subsurface damages and

improve its roughness. However, the polishing processes of these parts are primarily con-

ducted manually which is not only time-consuming and exposes labourers to high noise levels

and metal dust environments, but also it is difficult to maintain a stable polishing operation

for long time [28]. For example, to manufacture a mould the time spent on the polish-

ing process accounts for 37-50% of the total manufacturing time [13]. In addition, labours

conducting manual polishing for long time may get "vibration white finger" or other mus-

culoskeletal diseases. Furthermore, to obtain quantitative and qualitative processing some

companies may have difficulty in recruiting and training sufficient numbers of highly skilled

manual workers [13].

In order to address the mentioned limitations, some industries are strongly motivated

to seek and implement alternative solutions in their manufacturing processes such as Com-

puter Numerically Controlled (CNC) machines and industrial robots. CNC machines have

remarkable positioning accuracy and splendid ability to simultaneously adjust the trajectory,

posture, and force during polishing tasks. However, the limited available working space of

these machines usually leads to process one part in multiple stages and restricts the size of

work-piece. Apart from the working space, polishing processes do not require a high posi-

tioning accuracy otherwise human operators could not be able to perform them nevertheless

it requires accurate force control.

Recently, robotic machining and finishing have attracted many researchers due to its

advantages compared with CNC machines, such as low cost, higher flexibility and greater

capability of integration with actuators, sensors and different end-effectors.

1

In order to achieve a human-like polishing, the robot tool should have some flexibil-

ity which includes passive compliance or active compliance control. In passive compliance

control, by using a passive mechanical element such as springs, the contact force between

the work-piece and the polishing tool is converted to a natural obedience deformation. On

the other hand, the active compliance control, also known as force control, employs a closed

control loop to regulate the contact force between the polishing head and the work-piece

[13].

The impedance control is another possible solution. This controller does not simply

regulate force or position, instead it regulates the relationship between force on the one hand

and position, velocity and acceleration on the other hand. It requires a position, velocity or

acceleration as input and has a resulting force as output. The controller imposes a mass-

spring-damper behaviour on the mechanism by maintaining a dynamic relationship between

force and position, velocity and acceleration [4].

1.2 Objectives

First of all, this work consists in finding and developing strategies to help operators in

polishing processes. For this reason, the Kinova JACO2 6DOF robot arm is tested to achieve

a human-like polishing.

In order that, it is required to study the capabilities and limitations of the robot pur-

posed. After that, it is necessary to understand the different control architectures that could

be used in order to accomplish the principal objective. Then, it is essential to implement

the suitable controllers, being the impedance control one of the possibilities.

Finally, it is needed a demonstration or demo of the developed work.

1.3 Contributions

The work presented gives the possibility to test different computed torque control ar-

chitectures in Gazebo simulator as well as in real JACO2 robot.

In addition, this work offers a low-cost solution in polishing processes and portability

because of the reduced weight of JACO2.

Lastly, open doors to an automatic polishing system and also to human-machine in-

teraction.

2

1.4 Organization

• Chapter 1: Covers the background, objectives, contributions and document structure;

• Chapter 2: Deals with the robot JACO2 system overview, the possible communication

modes with the robot and presents the Kinova-ROS stack;

• Chapter 3: Explains the theoretical background of the robot kinematics, differential

kinematics and dynamics;

• Chapter 4: Presents the control architectures to be implemented in the Gazebo

simulator and in the real JACO2 robot arm;

• Chapter 5: Analyses and comments the experimental results in the Gazebo simulator

and in the real robot;

• Chapter 6: Is devoted to the polishing task in the simulator and in the real JACO2

arm;

• Chapter 7: Sets out the work final conclusions and suggestions for future work.

3

4

2 The Kinova JACO2 Robotic Arm

2.1 System Overview

The robotic arm JACO2 was developed by Kinova Robotics [1], a Canadian company

focused on assistive/rehabilitation devices. At first, Kinova tried to help people with reduced

mobility or upper limb impairments, as a result they created a commercial version in 2010,

JACO Rehab Edition. Later, in 2012 they developed a scientific version called JACO2

Research Edition.

The version used in this work is JACO2 Research Edition, this version is a 6 degree of

freedom (DOF) with a removable 3 fingered end-effector (figure 2.1).

The robot is composed of six interconnected carbon fibber links, jointed together by

six aluminium brushless direct current actuators. It is important to refer that the actuators

do not possess mechanical limitation allowing unlimited rotation around their axis. Because

of the nature of the carbon fibre, the main structure has a very lightweight composition.

The end-effector consists of three fingers which can be individually controlled. They

are made of plastic allowing them to precisely adjust to different sizes and types of objects.

(a) The Kinova JACO2
6DOF curved wrist [7].

(b) Kinova’s joystick part identification [7].

Figure 2.1: The Kinova JACO2 Research Edition system.

5

Appendix A details a description of the robot specifications and appendix B describes

the actuators specification, both taken from Kinova user guide [7].

The robot arm could be controlled through a three-axis joystick with five independent

push-buttons and four external auxiliary inputs placed at the back side of the controller (fig.

2.1b). The front side of the controller (fig. 2.1b) has the power button, HOME button and

other five buttons for the switching of operation modes. The blue light on the front side

displays the current operation mode while the green lights show that the robot is ready and

powered to be used.

The HOME button moves the arm to a preprogrammed pose. The rest of the buttons

are assigned to the shift between three-axis and two-axis mode. Fundamentally, the robot

can be easily changed into translation mode, wrist mode, "drinking" mode and finger mode.

The control using the joystick is considered cartesian as the user can only change the position

or orientation of the gripper.

As mentioned previously, the translation mode allows the controlling of the hand in

the three axis of the cartesian coordinate system. In the wrist mode, the arm is controlled

around a reference point set the middle of the end-effector and the arm remains stationary

around that point changing its orientation. The "drinking" mode, allows the wrist to produce

a rotation around another point in the space through an offset in height and length from the

reference point. The name "drinking" mode is because it is used to help during the grasping

of bottles and cups. Ultimately, the finger mode lets the user open and close the hand.

The joystick possible commands or movements are presented in (fig. 2.2). The joystick

provided by Kinova Robotics is intuitive at start, but the number of different modes that

can be chosen could be confusing for unfamiliar users, it requires practice.

Figure 2.2: Kinova’s joystick possible commands [7].

The JACO2 robot arm could be considered as a portable device due to its very light

frame. Additionally, the power supply is considerable small which effectively puts into evi-

dence the easiness to carrying the robot to everywhere. Furthermore, the arm has sensors to

6

ascertain temperature, voltage, current and torque parameters. With respect to hardware

connectivity, apart from the necessary connections for an approved power supply and joy-

stick, the robot comes with an ethernet port for wireless connections and a universal serial

bus (USB) port to connect to a computer or laptop in order to send commands through the

available software development kit (SDK) [5] [12].

2.2 Communication Modes

One of the communication modes is offered by Kinova, a complete graphical user inter-

face to control the robot arm, both in trajectory and torque control. The SDK grants to the

user complete control over the functionalities of the manipulator without the need to use the

joystick.

Another one is the Kinova Application Programming Interface (API). The API is avail-

able with a lot of tools, which gives the possibility to create specific software programs. The

programming language from where the API is built is C++ and the internal communication

protocol used to control the actuators is the RS485. It is possible to interact directly with the

actuators by using an appropriate RS485 interface or USB-RS485 communication modules.

However, there is another way of establishing a communication link with the robot arm,

the Kinova Robot Operating System (Kinova-ROS) [9]. The Kinova-ROS stack provides a

ROS interface for the Kinova Robotics JACO, JACO2 and MICO robotic manipulator arms.

The stack is developed above the Kinova C++ API functions, which communicate with the

DSP inside robot base. It is important to refer that the recommended configuration is ROS

Indigo with 64 bit Ubuntu 14.04. Concerning to the programming language, the Kinova-

ROS has two alternatives, the C++ and python. The programming language used in this

work is python because is simple and intuitive.

The control system frequency depends on what communication method is used, if

it is high level, like via USB, the rate is between 100 to 500 Hz, but the refresh rate of

the controller of the DSP is 100 Hz. On the other hand, if the communication is made

directly with the actuators, the low level approach, then the communication rate is 500 Hz.

Nonetheless, this work was made following a high level approach, which means that all the

control architectures follow the refresh rate represented by the DSP controller, that is 100

Hz.

The communication mode chosen in this work is the Kinova-ROS, because ROS is a

flexible framework for writing robot software and simplifies the task of creating complex

7

and robust robot behaviour across a wide variety of robotic platforms. Appendix E briefly

describes the functionalities, history and objectives of the ROS.

2.3 Kinova-ROS

Description

As it is said before, the kinova-ros stack [9] provides a ROS interface for the Kinova

Robotics JACO, JACO2, and MICO robotic manipulator arms. The robot used in this work

is JACO2. The stack is composed for the following file system:

• kinova_bringup: This package provides a launch file to start kinova_driver and apply

some configurations.

• kinova_driver: This package is composed of the most essential files to run kinova-ros

stack. Under the include folder, Kinova C++ API headers are defined, and ROS

package header files are in kinova_driver folder. The kinova_api source file is a

wrap of Kinova C++ API, kinova_comm builds up the fundamental functions. Some

advanced accesses regarding to force/torque control are only provided in kinova_api.

Most parameters and topics are created in kinova_arm. Figure 2.3 shows a general

architecture from low level up.

Figure 2.3: General Architecture from low level up of kinova_driver.

• kinova_demo: This package provides some python scripts for actionlibs in joint space

and cartesian space.

8

• kinova_msgs: This package contains all the messages, servers and actionlib format.

• kinova_description: This package contains a Unified Robot Description Format (URDF),

that is a standard ROS XML format for describing robot models and meshes.

• kinova_docs: Contains a folder, kinova_comm, that is a reference for html files gener-

ated by doxygen.

The stack offers different ways to control the robot in ROS. The stack came with a

Joint position control and a Cartesian position control. To access this controllers you

need follow some steps that are presented in appendix D. Another way to control the robot

is to use the interactive markers in Rviz [21]. Figure 2.4 shows the two controllers mentioned

before.

(a) A blue ring at each joint, that al-
lows you to move the robot by dragging
the rings.

(b) A cubic with 3 axis (translation)
and 3 rings (rotation) at the end-
effector, that give you the possibility to
move the robot by dragging the axis or
rings.

Figure 2.4: The joint position control on the left (2.4a) and the cartesian position control on the
right (2.4b).

There is a Finger position control that allows you to open/close each finger indi-

vidually and a Velocity Control for joint space and cartesian space.

The users have to their disposal some ROS service commands, like bring the robot

to pre-defined home position, enable and disable the ROS motion, switch to Cartesian

Admittance mode, switch to torque control from position control, and a service that

permits to move robot in Null Space. The cartesian admittance mode lets the user control

the robot by manually (by hand).

Furthermore, the torque control allows the user to publish torque/force commands just

like joint/cartesian velocity.

9

It is possible that the torque sensors develop offsets in reporting absolute torque over

time, they need to be re-calibrated. Due to this, it is necessary to follow a very simple

calibration process.

It is important to refer, that to make kinova-ros part of your workspace you need to

follow some steps which are available in appendix C.

In appendix D a description showing how to use the stack is presented and more

information is available in Kinova-ROS stack [9].

Gazebo Simulator

Moreover, the kinova-ros stack come with a Gazebo package [6], kinova_gazebo, this

package make available a robot simulation, and that is an essential tool in every roboticist’s

toolbox, see figure 2.5. A simulator makes it possible to rapidly test algorithms, design

robots, perform regression testing, and train system using realistic scenarios [15].

Figure 2.5: Kinova JACO2 arm in Gazebo simulator.

To control the robot model in Gazebo the stack use ros_control [19]. As a result, three

different types of controllers are available - effort, position and velocity. The configuration

files for controlling the joints using ros_control are available in kinova_control package.

Trajectory controller has also been added to provide interface for MoveIt.

An overview of the relationship between simulation, hardware, controllers and trans-

missions is shown in figure 2.6.

As a consequence, ros_control parameters have been added to Gazebo. Firstly, inertial

parameters are added to all mesh models to support gazebo, each link has the inertia model

10

Figure 2.6: Data flow of ros_control and Gazebo.

for the link and half of the actuator on one side and half on the other side. Center of mass

(COM) position and mass of the links are accurate to result in correct torque readings.

Secondly, the joint dynamics parameters, like damping, friction, stiffness, do not accurately

represent the hardware. Thirdly, the joints are configured to have an effort joint interface

[18]. Lastly, the inertia matrix is an approximation, assuming uniform cylinders for links.

MoveIt

As Gazebo the kinova-ros stack provides a MoveIt package [8], kinova_moveit. This

package allows choosing to launch MoveIt with a virtual robot, useful for visualization and

testing, or to launch MoveIt with the kinova_driver node which controls the real robot [20].

Figure 2.7 shows the RViz window with the MoveIt plugin. The user can move the

robot’s end-effector using the interactive markers (marked in the figure by a red rectangle).

While you move the end-effector MoveIt runs inverse kinematics to update the joint positions

while you drag the marker.

The planing tab (marked in the figure 2.7 by a blue rectangle), gives the ability to

plan and execute the trajectory. Clicking on plan button, MoveIt visualizes its planned path

to move from the start state to the goal state, and if the visualized plan is acceptable it is

possible to command the robot to execute the plan by clicking execute button. Connected

to the real robot, the robot moves according to the visualized plan, or running the virtual

robot the joints of the model moves to the goal state. In addition, the moveIt RViz plugin

11

Figure 2.7: Kinova JACO2 arm in RViz MoveIt Plugin.

can also be used to add obstacles and edit planning parameters.

12

3 JACO2 Kinematics and Dynamics

This chapter focus on the derivation of the direct kinematics, differential kinematics

and dynamics of the JACO2 6DOF curved wrist arm.

In order to compute the kinematics and dynamics of the JACO2 it is used the Kine-

matics and Dynamics Library (KDL), distributed by the Orocos Project [27]. The KDL

gives the possibility to use solvers to compute anything from forward position kinematics

to inverse dynamics and includes support to construct a KDL chain from a XML Robot

Description Format (URDF) file. It is important to emphasise, that the kinova-ros stack

provides a package that contains the URDF model of JACO2. This include the physical

geometry, the kinematic and dynamic properties of the robot arm. For more information on

URDF’s consult the ROS URDF wiki page [22].

Due to the fact that kinematics and dynamics are calculated using the KDL, a theo-

retical background is granted in the next sections.

3.1 Direct Kinematics

Amanipulator consists of a series of rigid bodies (links) connected by means of kinematic

pairs or joints. Joints can be essentially of two types: revolute and prismatic. The whole

structure forms a kinematic chain. One end of the chain is constrained to a base and an

end-effector (gripper, tool) is connected to the other end.

The mechanical structure of a manipulator is characterized by a number of degrees of

freedom (DOFs) which uniquely determine its posture 1. Each DOF is typically associated

with a joint articulation and constitute a joint variable. The aim of direct kinematics is

to compute the pose of the end-effector as function of the joint variables.

The pose of a body with respect to a reference frame is described by position vector

of the origin and the unit vectors of a frame attached to the body. As result, with respect

1The term posture of a kinematic chain denotes the pose of all rigid bodies composing the chain.

13

to a reference frame Ob − xbybzb, figure 3.1, the direct kinematics function is expressed by

the homogeneous transformation matrix

T be (q) =

nbe(q) sbe(q) abe(q) pbe(q)

0 0 0 1

 =

Rb
e(q) pbe(q)

OT 1

 (3.1)

where q is the (n × 1) vector of joint variables, ne, se, ae are the unit vectors of a frame

attached to the end-effector, and pe is the position vector of the origin of such a frame with

respect to the origin of the base frame Ob−xbybzb. In addition, if you combine the three unit

vectors in figure 3.1, ne, se, ae, they result in the (3 × 3) matrix, which is termed rotation

matrix, Re.

The frame Ob − xbybzb is denoted base frame. The frame attached to the end-effector

is termed end-effector frame and is conveniently chosen according to the particular task

geometry. For example, if the end-effector is a gripper, the origin of the end-effector frame

is located at the centre of the gripper, the unit vector ae is chosen in the approach direction

to the object, the unit vector se is chosen normal to ae in the sliding plane of the jaws, and

the unit vector ne is chosen normal to the other two, so the frame is right-handed.

Figure 3.1: Description of the position and orientation of the end-effector frame [25].

Analogously, the JACO2 6DOF curved wrist robotic arm, figure 3.2, can be represented

by a set of reference frames between each of its links, in a similar fashion as displayed in

figure 3.1. Then the transformation between the end-effector and the base frame is given by

T be (q) = T b1 (q1)T 1
2 (q2)...T n−1

n (qn) (3.2)

where n = 6 for the robotic manipulator in study.

14

Figure 3.2: JACO2 6DOF curved wrist components [7].

Denavit-Hartenberg Convention

In order to compute the direct kinematics equation for an open-chain manipulator like

JACO2, according to the recursive expression 3.2, a systematic, general method is to be

derived to define the relative position and orientation of two consecutive links; the problem

is determining two frames attached to the two links and computing the coordinate transfor-

mations between them. The Denavit-Hartenberg convention (DH) gives a possible solution

to ascertain that. One good description of the DH method is presented in this book [25].

The Kinova Ultra lightweight robotic arm User Guide [7] describes the classic DH

parameters for the 6DOF curved wrist manipulator as well as the basic geometric parameters.

Next, table 3.1 provides the basic geometric parameters, pictured in figure 3.3.

Table 3.1: JACO2 6DOF curved wrist basic geometric parameters.

Parameter Description Length (m)
D1 Base to shoulder 0.2755

D2 Upper arm length
(shoulder to elbow) 0.4100

D3 Forearm length
(elbow to wrist) 0.2073

D4 First wrist length
(center of actuator 4 to center of actuator 5) 0.0741

D5 Second wrist length
(center of actuator 5 to center of actuator 6) 0.0741

D6 Wrist to center of the hand 0.1600
e2 Joint 3-4 lateral offset 0.0098

To simplify the analysis of figure 3.3 it is useful to break down each of the curved wrist

segments into two component straight-line sub-segments of equal length, with the second

15

Figure 3.3: Basic geometric parameters of the JACO2 6DOF curved wrist configuration [7].

sub-segment angled 60◦ from the first. Figure 3.4 shows the procedure in detail.

Figure 3.4: Auxiliary parameters that are useful for describing the geometry for direct kinematics
of the JACO2 6DOF curved wrist configuration [7].

16

Table 3.2: Auxiliary parameters of the JACO2 6DOF curved wrist.

Parameter Description Value

aa Half of the angle of curvature of each wrist
segment (60◦), measured in radians.

30.0π
180.0

sa Sine of half the angle of curvature of wrist segment. sin(aa)
s2a Sine of angle of curvature of wrist segment. sin(2aa)

d4b Length of straight-line segment from elbow to end
of first sub-segment of first wrist segment. D3 + (sa

s2a)D4

d5b
Length of straight-line segment consisting
of second sub-segment of first wrist segment
and first sub-segment of second wrist segment.

(sa
s2a)D4 + (sa

s2a)D5

d6b
Length of straight-line segment consisting
of second sub-segment of second wrist segment
and distance from wrist to the center of the hand.

(sa
s2a)D5 +D6

Finally, the classic DH parameters are shown in table 3.3, presented below.

Table 3.3: JACO2 6DOF curved wrist DH pa-
rameters.

T i−1
i αi−1 ai−1 di θi
T 0

1
π
2 0 D1 q1

T 1
2 π D2 0 q2
T 2

3
π
2 0 -e2 q3

T 3
4 2aa 0 -d4b q4
T 4

5 2aa 0 -d5b q5
T 5

6 π 0 -d6b q6

Table 3.4: Transformation from DH algorithm
to robotic arm physical angles.

q1(physical) −q1(robot)
q2(physical) q2(robot)− 90◦
q3(physical) q3(robot) + 90◦
q4(physical) q4(robot)
q5(physical) q5(robot)− 180◦
q6(physical) q6(robot) + 90◦

Basically, the JACO2 physical angles need to be converted into the angles of the DH

algorithm, which is given by the relation shown in table 3.4. Therefore, the DH parameters

are obtained after establishing the coordinate frames for each link exhibited in figure 3.5.

The transformation matrices associated to each link could be obtained following the

DH convention. That transformation matrix from frame i to frame i-1 is given by

T i−1
i =



cos(θi) −cos(αi)sin(αi) sin(αi)sin(θi) aicos(θi)

sin(θi) cos(αi)cos(θi) −sin(αi)cos(θi) aisin(θi)

0 sin(αi) cos(αi) di

0 0 0 1


(3.3)

As soon as the DH parameters are known, the transformation matrices associated to

each link could be calculated by applying the equation 3.3, then the forward kinematics can

be calculated through equation 3.2.

17

Figure 3.5: JACO2 6DOF curved wrist coordinate frames for the DH algorithm [7].

3.2 Differential Kinematics

The differential kinematics gives the relationship between the joint velocities and the

corresponding end-effector linear and angular velocity. This mapping is described by a

matrix, termed geometric Jacobian, which depends on the manipulator configuration. The

Jacobian constitutes one of the most important tools for manipulator characterization, it is

useful for finding singularities, analysing redundancy, determining inverse kinematics, and

can be useful for computing forces applied to the end-effector and resulting torques at the

joints.

Firstly, it is desired to express the end-effector linear velocity ṗe and angular velocity

we as a function of the joint velocities q̇. The relation described above is given by

 ṗe = JP (q)q̇

we = JO(q)q̇
(3.4)

where JP is the (3× n) matrix relating the contribution of the joint velocities q̇ to the end-

effector linear velocity ṗe, while JO is the (3×n) matrix relating the contribution of the joint

velocities q̇ to the end-effector angular velocity we. In compact form, 3.4, can be written as

ve =

 ṗe
we

 = J(q)q̇ (3.5)

which 3.5 represents the manipulator differential kinematics equation. Where the (6 × n)

18

matrix J is the manipulator geometric Jacobian

J =

JP
JO

 , (3.6)

which in general is a function of the joint variables.

Secondly, to compute the Jacobian, the linear and the angular velocity can be computed

as

 ṗe = ∑n
i−1

∂pe

∂qi
q̇i = ∑n

i=1 JPi
q̇i

we = wn = ∑n
i=1 wi−1,i = ∑n

i=1 JOi
q̇i

(3.7)

The joint velocities q̇i are expressed differently if the joints are prismatic or revolute. There-

fore, by distinguishing the case of a prismatic joint (qi = di) from the case of a revolute joint

(qi = ϑi), the contribution to the linear velocity it is:

• If joint i is prismatic:

q̇iJPi
= ḋizi−1 ⇔ JPi

= zi−1 (3.8)

• If joint i is revolute:

q̇iJPi
= wi−1,i × ri−1,e = ϑ̇izi−1 × (pe − pi−1)⇔ JPi

= zi−1 × (pe − pi−1) (3.9)

Where pe is the distance from the origin of the end-effector coordinate frame to the

base frame, and pi−1 the analogous distance from link i− 1.

For the contribution to the angular velocity it is:

• If joint i is prismatic:

q̇iJOi
= 0⇔ JOi

= 0 (3.10)

• If joint i is revolute:

q̇iJOi
= ϑ̇izi−1 ⇔ q̇iJOi

= zi−1 (3.11)

In summary, the JACO2 has six joints and all of them are revolute, therefore the

19

Jacobian can be translated into

J =

JP1 · · · JPn

JO1 · · · JOn

⇔
JPi

JOi

 =

zi−1 × (pe − pi−1)

zi−1

 (3.12)

Finally, notice that the Jacobian matrix depends on the frame in which the end-effector

velocity is expressed. The above equations allow computation of the Jacobian with respect

to the base frame. If it is necessary to represent the Jacobian in a different frame u, it

is sufficient to know the relative rotation matrix Ru. Therefore, the relationship between

velocities in the two frames is

 ṗue
wue

 =

Ru O

O Ru


 ṗe
we

 , (3.13)

which, substituted in equation 3.5, gives

 ṗue
wue

 =

Ru O

O Ru

 Jq̇ (3.14)

and then

Ju =

Ru O

O Ru

 J, (3.15)

where Ju denotes the geometric Jacobian in frame u.

3.3 Dynamics

Now, it is time to describe the dynamics of robot manipulators. While the kinematic

equations (section 3.1) describe the motion of the robot without consideration of the forces

and moments and moments producing the motion, the dynamic equations explicitly describe

the relationship between force and motion [11]. The dynamic equations are incorporated by

the robot dynamic parameters which entail the mass, inertia, frictions and other unknown

parameters that can negatively affect the robot’s performance. In addition, the referred

equations grant the possibility of designing additional control architectures for both joint

space and task space.

The robot dynamics can be obtained by Euler-Lagrange (EL) or recursive Newton-

Euler (NE) techniques, or even a combination of both.

20

The method used in this work to determine the robot dynamics is the EL, for this

reason it is described in detail below.

In relation to the NE technique, the method is recursive which means that the compu-

tations are made from link to link. First, the velocities and accelerations of the augmented

links 2 are calculated in an interactive way, from the base to the end-effector. Then, the

iterative process is inverted, in order to find the resulting torques/forces exerted on the links.

Obviously, both methods must yield the same results. However, some discussions re-

garding the computational efficiency of both techniques. The EL method is computationally

less efficient than the NE method, because apart from the fact that it is not recursive, it also

makes all the necessary calculations referred to the base frame, which leads to very complex

expressions when dealing with a 6DOF robot. Apart from that, the recursive Lagrangian

methodology can achieve the same efficiency as the recursive NE technique [11] [12].

Euler-Lagrange

The Lagrangian mechanics is a re-formulation of Newton’s Laws which takes into ac-

count energy relations [23]. The Lagrangian L is defined by

L(q, q̇) = E(q, q̇)− U(q) (3.16)

where E(q, q̇) and U(q) are scalars representing respectively robot kinetic and potential

energies. q is a vector (n× 1) of generalized coordinates, representing the positions of robot

joints.

The kinetic energy is given by

E(q, q̇) = 1
2 q̇

TM(q)q̇ (3.17)

where M(q) is the mass matrix (n×n), which is symmetric and positive definite. While the

potential energy is given by

U(q) = −gTc rc(q)mc (3.18)

where gc is the gravity acceleration vector (3× 1), rc(q) is the links center of gravity matrix

(3× n) and mc is the links mass vector (n× 1).

2The term augmented links refers to a system composed of a link + actuator.

21

Then, the Lagrangian mechanics is represented in vector form by

τ = d
dt
∂L(q, q̇)
∂q̇

− ∂L(q, q̇)
∂q

(3.19)

where τ is the generalized torque acting on q.

From equations 3.16, 3.17 and 3.19,

d
dt(M(q)q̇)− ∂E(q, q̇)

∂q
+ ∂U(q)

∂q
= τ (3.20)

Therefore, equation 3.20 can be written as

M(q)q̈ + v(q, q̇) + g(q) = τ (3.21)

where M(q) is the mass matrix, v(q, q̇) is the Coriolis and centripetal forces term and g(q)

is the term relating to the gravity forces.

The mass (or inertia) matrix M(q) is given by

M(q) =
n∑
i=1

[
miJvi

(q)TJvi
(q) + Jwi

(q)TRi(q)IiRi(q)TJwi
(q)
]

(3.22)

where mi, Jvi(q), Jwi(q), Ri(q) and Ii are respectively the mass of each link, the Jacobians

associated with linear and angular velocities, the rotation matrix in base coordinates and

the inertia tensor in link coordinates. It is important to refer that all these quantities are

referred to the center of mass of link i.

The Coriolis and centripetal forces term v(q, q̇) is given by

v(q, q̇) = C(q, q̇)q̇ = Ṁ(q)q̇ − ∂E(q, q̇)
∂q

(3.23)

where C(q, q̇) is the Coriolis matrix which has dimensions (n× 1) and is given by

C(q, q̇) = Ṁ(q)− 1
2 q̇

T ∂M(q)
∂q

(3.24)

Lastly, the gravity term g(q) (n× 1) is represented by

g(q) = ∂U(q)
∂q

(3.25)

22

4 Control Architectures

To achieve the goal of this work it is necessary first analyse the kinematic and dynamic

model calculated or estimated in the previous chapter. For that it is needed a iterative

process, where different control architectures from the simplest to the most complex are

tested in order to validate the estimated model. But first it is necessary understand how

this control architectures could be implemented either in a simulation environment (Gazebo

simulator) or with the real robot since this is to be carried out in ROS environment.

To start, an explanation of how the different controllers are connected to ROS and the

control architectures to be implemented are detailed.

4.1 ROS Control

Before starting to work with ROS it is necessary an in-depth study of how the interface

between the robot and ROS is made. As mentioned in section 2.3 ROS offers a set of

packages, called ros_control [18], which includes controller interfaces, controller managers,

transmissions and hardware interfaces. Figure 4.1 briefly explains how ROS control works.

Regarding the real robot, once the kinova-ros stack is created on top of the kinova

API, there is already a hardware interface, as well as a way to communicate with the robot,

and there is also available examples of implemented controllers, which simplifies the work

to be developed. With this, when the kinova_robot.launch file from the package ki-

nova_bringup is initialized, this one sends to the server the drivers and settings needed to

control the real robot. This makes available a topics and services list. This allows access-

ing for instance the joint states, such as the topic "/j2n6s300_driver/out/joint_states"

which publishes information regarding the position, velocity and effort of each joint. Con-

cerning the services, they allow for example to command the robot to the home position

("rosservice call /j2n6s300_driver/in/home_arm"), permit to changing from position

to torque control ("rosservice call j2n6s300_driver/in/set_torque_control_mode").

23

Figure 4.1: Diagram of the relationship between controller interfaces, controller managers, trans-
missions and hardware interfaces in ros_control [18].

Regarding the real robot, the controller_manager box as well as the controller

box in figure 4.1 are substituted by the controllers detailed from section 4.2 to 4.5.

Comparatively to the Gazebo simulator, it is necessary first understand how the torques

could be sent to the virtual robot. By analysing the list of controllers available in ros_control,

it is concluded that is necessary to create a new package, named thesis_control, with the

appropriate controllers to interface with Gazebo.

As a result it is needed to create a ".yaml" configuration file inside the new package,

called j2n6s300_control.yaml, with the torque controllers for each joint, position con-

trollers for each of the end-effector fingers, trajectory controller to the joints and fingers,

and finally a controller to publish the joint states at a given frequency. A "roslaunch" file is

also created to initialize the mentioned controllers and a "roslaunch" file to load the URDF

model in the ROS parameter server and send the virtual robot to the Gazebo simulator.

It is also necessary to mention that a node is created to command the robot to the home

position when it is initialized in the simulator. Therefore, the control architectures described

are introduced in the controller box in the figure 4.1.

The commands necessary for the user to launch the real robot and the virtual robot

in the simulator running the controllers are available in the appendix D.

24

4.2 Computed torque control in the joint space

Like is mentioned in chapter 3, the robot dynamics is given by (see equation 3.21)

M(q)q̈ + v(q̇, q) + g(q) = τ (4.1)

• M(q) is the mass matrix (n× n);

• n is the number of DOF;

• v(q̇, q) represents Coriolis and centripetal forces (n× 1);

• g(q) is the gravity term (n× 1);

• and τ is the generalized torque acting on q, including friction (τf), computer com-

manded (τc) and external torques (τe).

τ = τc + τf + τe (4.2)

Throughout this work, external and friction torques are not considered, i.e.,

τ ' τc (4.3)

For this reason, equation 4.1 is denoted as

τc = M̂(q)q̈ + v̂(q̇, q) + ĝ(q) (4.4)

where (̂.) means estimations of the dynamic model obtained from the KDL library referenced

in the beginning of the chapter 3 and the theoretical background is mentioned in section 3.3.

Equation 4.4 illustrates a system non-linearly dependent upon the joint positions and

velocities. Due to this linearisation and decoupled control are applied in order to cancel

non-linear effects. As soon as the system is linearised, (see equation 4.5), using a non-linear

feedback law the robot dynamics becomes

τc = M̂(q)w + ĝ(q) (4.5)

where w = q̈ is the new control variable and the term v̂(q̇, q) is ignored, because the ex-

perimental tests pursued with the JACO2 robot are done with low speed motions, making

25

this term less contributive. Equation 4.5 is known as computed torque control or inverse

dynamics control. As can be easily seen, the direct application of this control law can be

used for joint space control techniques.

For this reason, a simple dynamic model based on PID controller is developed, since

it presents a good starting point to infer the viability of the estimated dynamic model.

Figure 4.2 shows a PID computed torque control in the joint space, based on a real-time

dynamic model computation.

Figure 4.2: PID computed torque control in the joint space.

The inertia matrix, M̂(q) and the gravity term ĝ(q) are computed in real-time with

the control variable w being

w = q̈d +Kd(q̇d − q̇) +Kp(qd − q) +Ki

∫ t

t0
(qd − q)dλ (4.6)

• qd, q̇d and q̈d represent desired joint positions, velocities and accelerations;

• Kp, Kd and Ki are (n×n) positive definite diagonal matrices with diagonal gains Kpj,

Kdj and Kij, respectively.

Therefore, the following decoupled error dynamics is obtained

ë+Kdė+Kpe+Ki

∫ t

t0
edλ = 0 (4.7)

with

e = qd − q (4.8)

26

Finally, in order to obtain the adequate gains for equation 4.6 a critically damped error

dynamics with natural frequency wj entails for each joint j,

Kpj = w2
j (4.9)

Kdj = 2wj (4.10)

In relation to the Kij, the gains are manually chosen to each joint j.

4.3 Computed torque control in the task space

Now, a dynamic control in task space is proposed. Knowing that the Jacobian J , (see

section 3.2), relates task and joint velocities as

Ẋ = Jq̇ (4.11)

The equation 4.1 can be written as

M(q)J−1(Ẍ − J̇ q̇) + v(q̇, q) + g(q) = τ (4.12)

A control law that linearises and decouples the task space equations is given by

M̂(q)J−1w + ĝ(q) = τc (4.13)

Just as v(q̇, q) term, the derivative Jacobian J̇ has a high computation cost and a

small influence on the system, for this reason it is ignored over this work. Again, without

estimation errors and neglecting or compensating friction and external torques a new variable

is considered

w = Ẍ (4.14)

With this for a PD control, w is given by

w =

fc
µc

 (4.15)

where w is the concatenation of a 3D force vector fc and a 3D torque vector µc. Figure 4.3

27

represents the real-time dynamic model in the task space.

Figure 4.3: Position/Orientation PD control in the task space.

For a better understanding the position and orientation control are analysed separately.

In figure 4.3, the green colour represents the position and the violet colour represents the

orientation. And the boxes with FK Model and DK Model represent the Forward and

Differential Kinematics, respectively.

Position Control

Being pc and pd respectively current and desired end-effector positions, the PD terms

for the task space are computed by

fc = Kp,p∆pcd −Kd,pṗc (4.16)

with

∆pcd = pd − pc (4.17)

and ṗc is the linear velocity in the task space, Kp,p is the proportional gain and Kd,p is the

derivative gain, both related to position.

Orientation Control

In relation to the orientation error it requires additional formulation. Since rotation

matrices are being used to represent orientation, the computation of the rotation from the

28

current to the desired orientation, described in the current end-effector frame Rc
c→d

1 is given

by

Rc
c→d = R−1

c Rd (4.18)

where Rc is the current end-effector orientation and Rd the desired one. Equation 4.18 can

be represented in the base frame using the following transformation [26]:

Rc→d = RcR
c
c→dR

−1
c (4.19)

There are various ways to represent the orientation of the end effector: Euler angles,

angle-axis representation or quaternions. In this case it is chosen the angle-axis representa-

tion, which can be parametrized as



θ = cos−1(R11+R22+R33−1
2)

ν = 1
2sin(θ)


R32 −R23

R13 −R31

R21 −R12


(4.20)

where R refers to a rotation matrix like Rc→d, θ is the angle, and ν is a unitary vector.

Multiplying the vector by the axis, the rotation vector r is obtained

r = θν (4.21)

Although the axis vector ν is not defined for the null rotation, it is possible to impose

the rotation vector to be the null vector in such occasion, since in the vicinity of zero is

lim
θ→0+

θν =


0

0

0

 (4.22)

The same applies for a rotation of an angle π, which is also not defined by 4.20. The

function R2r(·) in figure 4.3 has been defined to implement 4.20 and 4.21 with zero values

for θ = 0 and θ = π [26]. To avoid this, in practice it is assumed a threshold of 0.03 rad.

r = R2r(R) (4.23)
1The superscript c is related to the current frame. Matrices having no superscript are related to the base

frame.

29

The function R2r(·) transforms a rotation matrix into a rotation vector. So, applying R2r(·)

to Rc→d a rotation vector rc→d can be obtained, which represents the orientation error ∆ocd
between current end-effector frame and desired one,

∆ocd ≡ rc→d = R2r(Rc→d) (4.24)

Finally, the orientation PD control is then defined as

µc = Kp,o∆ocd −Kd,owc (4.25)

where wc is the angular velocity in the task space, Kp,o is the proportional gain corresponding

to the orientation and Kd,o is the derivative gain referring to the orientation.

4.4 Joint Space Control with Task Posture Reference

In previous sections (sections 4.2 and 4.3) different operational space control schemes

are addressed. Acceptable results can be obtained using these kind of architectures, their

control gain design is limited, however. In relation to the control in the joint space, each

joint is controlled individually, which is not very useful for task operation purposes. On the

other hand, the controller in the task space is in general more complex than controlling it in

the joint space and the presence of singularities and/or redundancy influences the Jacobian.

Then, a new approach must be followed. The posture errors in the task space are

converted into velocity references in the joint space. This approach merges task and joint

space formalism into a single architecture.

Before starting, another orientation representation is introduced, the quaternion ori-

entation.

Quaternion Orientation

Unit quaternions are a four parameter representation that comes with a complete quater-

nion algebra, enabling a better analysis and development of control algorithms [24]. The

unit quaternion is defined as

Q =
{
η, ε

}
(4.26)

30

where η is called the scalar part

η = cos
(
ϑ
2

)
(4.27)

and ε =
[
εx εy εz

]T
is the vector part

ε = sin
(
ϑ
2

)
r (4.28)

ϑ is the angle of rotation and r is the unit vector of an equivalent angle-axis representation

(see eq.4.20). Since unit quaternions are a four parameter representation for a sufficient

three parameter representation, η and ε are not independent, being related to the following

constrain

η2 + εT ε = 1 (4.29)

The Rotation matrix corresponding to a given quaternion is [24]

R = (η2 − εT ε)I + 2εεT + 2ηS(ε) (4.30)

where I is the identity matrix and S(·) is the skew-symmetric matrix operator. The skew-

symmetric operator can be written as

S(ε) =


0 −εz εy

εz 0 −εx
−εy εx 0

 (4.31)

The quaternion corresponding to a given rotation matrix

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (4.32)

can be obtained by [24]

η = 1
2
√
r11 + r22 + r33 + 1, (4.33)

31

and

ε = 1
2


sgn(r32 − r23)

√
r11 − r22 − r33 + 1

sgn(r13 − r31)
√
r22 − r33 − r11 + 1

sgn(r21 − r12)
√
r33 − r11 − r22 + 1

 (4.34)

where

sgn(x) =

 1 if x ≥ 0

−1 if x < 0
(4.35)

The quaternions
{
η, ε

}
and

{
−η,−ε

}
are both a representation of the same orientation.

Since equation (4.33) implies that η ≥ 0, the angle ϑ ∈
[
−π, π

]
, allowing the representation

of any rotation and solving the ambiguity problem of two different quaternions representing

the same orientation. The quaternion Q−1 represents R−1 and can be computed as

Q−1 =
{
η,−ε

}
(4.36)

where Q−1 is the conjugate of Q. Now, let Qa =
{
ηa, εa

}
and Qb =

{
ηb, εb

}
be the cor-

responding quaternions of rotation matrices Ra and Rb. In the quaternion framework, the

product RaRb is

Qa ∗Qb =
{
ηaηb − εTa εb, ηaεb + ηbεa + εa × εb

}
(4.37)

where ∗ is the quaternion product operator. The product of a quaternion by its conjugate

gives the identity element of the product of quaternions

Q ∗Q−1 =
{

1, 0
}

(4.38)

Control Architecture

It is time to explain the controller suggested. With this, the equation 4.1 can be written

as

τc = M̂(q)α + ĝ(q) (4.39)

where α is the new control variable and like in last sections the v̂(q̇, q) term is ignored. The

32

following linear and decoupled system is achieved

q̈ = α (4.40)

Figure 4.4: PD joint space torque control with task space posture reference.

Figure 4.4 shows the control architecture suggested. It is easy to realise that the inner

joint velocity control depends on the outer task posture control. Then the task space error

is given by

Xe =

∆pcd
εcd

 (4.41)

where ∆pcd and εcd are the task space position and orientation errors, respectively. In this

way a velocity vector is generated, which is collinear with the task space error vector. The

task space position error ∆pcd is given by

∆pcd = pd − pc (4.42)

where pd and pc are the reference and current task space positions. The task space orientation

error εcd is computed based on unit quaternion theory. The mutual orientation between the

current Qc and the desired orientation Qd, expressed in the current frame cQcd
=
{
ηcd, cεcd

}
,

is given by

cQcd = Q−1
c ∗Qd (4.43)

33

Equation 4.43 can be described in the base frame by

Qcd = Qc ∗c Qcd ∗Q−1
c = Qd ∗Q−1

c (4.44)

Knowing that Qcd =
{

1, 0
}

only if the desired frame is aligned with the current frame

(Qc = Qd), the orientation error can be defined as [24]

εcd = ηcεd − ηdεc − S(εd)εc (4.45)

where S(·) is the skew-symmetric operator. Then, the joint velocity reference q̇d can be

computed by the following relation

q̇d = K1J
−1Xe (4.46)

where K1 is a (n × n) diagonal matrix and represents a proportional control gain whose

elements are independently set for each joint. And J−1 is the inverse of the Jacobian matrix.

Finally, the resolved acceleration α is computed by a PD controller over the velocity

error in the joint space.

α = Kp∆q̇cd +Kd∆q̈cd (4.47)

with

∆q̇cd = q̇d − q̇c (4.48)

and

∆q̈cd = d

dt
(q̇d − q̇c) (4.49)

Kp and Kd are (n×n) diagonal matrices whose elements are the proportional and derivative

gains for each joint controller.

34

4.5 Impedance Control

In the previous sections different control architectures were suggested, but none of them

allow external interactions with the environment. As a result the impedance control is the

next step. The idea of this control is to assign a prescribed robot dynamic behaviour in the

presence of external interactions, matching the dynamics of mass-spring-damper systems

[23].

According to this, the end-effector velocity Ẋ and the robot applied force Fe are related

to a mechanical impedance Z. In the Laplace domain,

−Fe(s) = Z(s)Ẋ(s) (4.50)

with

sZ(s) = As2 +Ds+K (4.51)

where A, K and D are the parameters of a mass-spring-damper system. Figure 4.5 shows

the relation between the robot and the environment.

(a) System model of a robot and rigid
environment: (a) without any contact
between robot and environment, (b)
critical point when contact occurs but
f = 0 and (c) contact with f 6= 0.

(b) The diagram of robot and environment con-
tact force.

Figure 4.5: The two pictures above shows the 3 different situations that occur between robot and
environment. [3]

35

The figure 4.6 shows the principle of the impedance control, where the overall dynamics

in contact can be written as

Figure 4.6: Impedance control scheme in the task space without force sensing. [23]

M(q)q̈ + v(q̇, q) + g(q) = τc − JTFe (4.52)

with

τc = JT
[
A(Ẍd − Ẍ) +D(Ẋd − Ẋ) +K(Xd −X)

]
+ g(q) (4.53)

Neglecting robot dynamic effects, 4.52 and 4.53 gives

A(Ẍd − Ẍ) +D(Ẋd − Ẋ) +K(Xd −X) ≈ Fe (4.54)

where Fe is the robot applied force in equation 4.50. Analysing the figure 4.6 in detail, if

there is no contact the robot under impedance control generates a force Fc according to the

mass-spring-damper system, based on X, Ẋ and Ẍ displacements around the equilibrium

point.

Impedance control scheme in the task space without force sensing

and without inertia shaping

The mass term A is not present in the control scheme, figure 4.7, not only because this

term is hard to implement in practice but also because it is important to go from a simpler

to a more complex controller without tripping over the smallest details.

Similar procedure as equations 4.5, 4.13 and 4.39, corresponding to resolved accelera-

36

Figure 4.7: Impedance control architecture in the task space without force sensing and without
inertia shaping.

tion control, another control variable w can be considered

τc = JTw + ĝ(q) (4.55)

JT is the transpose Jacobian, ĝ(q) is the estimated gravity term and the variable w = Ẍ is

given by

w =

fc
µc

 (4.56)

where w, like in equation 4.15, is the concatenation of a 3D force vector fc and a 3D torque

vector µc. So, analysing the position control first, (see the green blocks in figure 4.7), the

vector fc is given by

fc = Dp∆ṗcd +Kp∆pcd (4.57)

∆ṗcd is the linear task velocity error and can be written as

∆ṗcd = ṗd − ṗc (4.58)

ṗd is the desired linear velocity in the task space and ṗc is the current linear velocity in the

task space, which are obtained using the differential kinematics (see equation 3.4). ∆pcd is

37

the position error in the task space (see equation 4.17). In relation to Dp and Kp, they are

diagonal matrices that represent the position damping and spring terms in task space. In

this specific control scheme they are similar to the derivative and proportional gains.

Now, the orientation control, (see the violet blocks in figure 4.7), the vector µc is given

by

µc = Do∆wcd +Ko∆ocd (4.59)

∆wcd is the angular task velocity error and can be written as

∆wcd = wd − wc (4.60)

The current angular velocity wc is similarly computed as the linear velocity (see equation 3.4)

and wd is the desired angular velocity in the task space. Again the orientation representation

chosen is the angle-axis, thus ∆ocd is calculated in the same way as in equation 4.24. The

Do and Ko are diagonal matrices that represent orientation damper and spring terms in the

task space, like derivative and proportional gains.

Last but not least, the Fe term in figure 4.7 is physic and it represents the force that

the robot end-effector feels when it is in contact with the environment.

Impedance control scheme in the task space with force sensing

It is time to add the force sensing. Using force sensing and the full robot dynamics

model, an impedance control scheme can be derived. Starting from the robot dynamics in

contact,

M(q)q̈ + v(q̇, q) + g(q) + JTFe = τc (4.61)

where

A(Ẍd − Ẍ) +D(Ẋd − Ẋ) +K(Xd −X) = Fe (4.62)

the previous equation 4.62 can be written as

Ẍ = Ẍd + A−1
[
D(Ẋd − Ẋ) +K(Xd −X)− Fe

]
(4.63)

Then, using a similar procedure to equation 4.55 corresponding to resolved acceleration

38

control a new control variable w is considered

τc = M̂(q)J−1w + ĝ(q) + JTFe (4.64)

where

w = ad + A−1

fc − fe
µc − µe

 (4.65)

• fc is a 3D force vector;

• µc is a 3D torque vector;

• ad is the desired acceleration in the task space;

•

fe
µe

 = Fe, is the end-effector force;

• A−1 is the inverse of the mass term. The mass term A is a (n× n) diagonal matrix.

During this work the inverse of the mass term A−1 is given by

A−1 = JM−1JT (4.66)

Considering this equality, there is no inertia shaping in the task space. In this case, the Fe
terms in 4.64 and 4.65 are eliminated, due to this no force feedback is needed [23].

Therefore, without inertia shaping the equation 4.65 can be re-written as

w = ad + A−1

fc
µc

 (4.67)

where

fc = Dp∆ṗcd +Kp∆pcd + Ip

∫ t

t0
∆pcddλ (4.68)

Ip is a (3 × 3) diagonal matrix with position integral gains. This term and the sum of the

position error are responsible for eliminating the magnitude and duration of the error over

time. Apart from this, the vector fc is similar to equation 4.57. In relation to the 3D torque

vector µc is given by

µc = Do∆wcd +Ko∆ocd (4.69)

39

wish can be calculated likewise in equation 4.58, since the orientation representation chosen

is the angle-axis.

Figure 4.8: Impedance control scheme in the task space with force sensing.

Impedance control scheme in the task space with force sensing for

redundant robots

The control scheme in figure 4.8 requires the computation of J−1, which is not possible

for redundant robots. From the control point of view, a redundant robot means that it has

more DOF than the task space. Even though JACO2 is a non-redundant robot, another

approach is proposed, because this new control scheme, figure 4.9, can be used in all kind of

robot manipulators.

Again, the robot dynamics in contact can be written as

M(q)q̈ + v(q̇, q) + g(q) + JTFe = τc (4.70)

and pre-compensating v(q̇, q), g(q) and JTFe,

M(q)q̈ = τ ′ (4.71)

with

τc = τ ′ + v(q̇, q) + g(q) + JTFe (4.72)

40

Shifting the inertia matrix M(q) to the right side of equation 4.71, and multiplying by

Jacobian J,

Jq̈ = JM(q)−1τ ′ (4.73)

Since

Ẋ = Jq̇ → Jq̈ = Ẍ − J̇ q̇ (4.74)

and applying an additional Cartesian force Fc through τ ′, the equation 4.73 becomes

Ẍ − J̇ q̇ = JM(q)−1JTFc (4.75)

Therefore, from equation 4.75, the dynamic equation in the task space can be written

as

Λ(q)Ẍ − Λ(q)J̇ q̇ = Fc (4.76)

where Λ(q) is the inertia matrix of the task space, and has the following inverse

Λ(q)−1 = JM(q)−1JT (4.77)

which always exists, even if J is non-square (M(q)−1 always exists) [23].

Considering w = Ẍ the new control variable, ignoring the terms J̇ q̇ and v(q̇, q) for

the same reasons as in previous sections, the resolved acceleration control architecture can

be implemented without the computation of J−1. As a result the expression 4.72 can be

re-written as

τc = JTFc + ĝ(q) + JTFe (4.78)

with

Fc = Λ(q)w (4.79)

41

Figure 4.9 shows the control scheme for redundant robots.

Figure 4.9: Impedance control scheme in the task space with force sensing for redundant robots
and with quaternion orientation.

Since there is no inertia shaping (A = Λ(q)) no force feedback is needed, so the terms

with Fe in 4.78 are cancelled. Seeing that, w is given by

w = ad + A−1

fc
µc

 (4.80)

The vector fc is computed as the same way as in equation 4.68 and the vector µc can be

written as

µc = Do∆wcd +Koεcd (4.81)

where ∆wcd is equal to 4.59 and the orientation error εcd is equal to 4.45.

The orientation chosen in figure 4.9 is the quaternions, because comparing with the

angle-axis representation, (see equation 4.20), no singularity occurs.

42

5 Experimental Results

In this chapter the control architectures proposed are evaluated. Firstly, this control

schemes are tested in the Gazebo simulator and after in the real JACO2 robot.

Also, it is necessary to mention that it is created a package inside the kinova-ros stack,

named "thesis_demo". This package contains all the files or algorithms necessary to test

the controllers mentioned in previous chapter, and also the files necessary to calculate and

estimate the robot kinematics, differential kinematics and dynamics.

5.1 Gazebo Simulator Results

As stated in section 4.1, the thesis_control package is created in order to send binaries

or torques to the robot in the simulator. This package allows to perform a switch controller,

in other words, stop a controller and start another. Therefore, when the robot is launched

in the simulator it is initialized with a trajectory controller in each of the robot joints. In

order to send torques to the robot joints a ROS node is created. Then a switch controller

from trajectory control to torque control is started. This is possible because ros_control

provides a controller_manager which allows to interact with the different controllers.

Without this switch the robot would start dead or dropped on the ground in the simulator,

because the torques at each joint would be zero.

After the switch starts the control loop where the torques are generated depending on

the control architecture.

5.1.1 Computed torque control in the joint space (simulator)

The first control scheme suggested it is a PID computed torque control in the joint

space, figure 4.2. The estimated dynamic model and the robot performance are analysed

for this control architecture. So as to perform it a desired trajectory is defined to infer the

capabilities of the robotic arm. The trajectory defined is a sinusoidal wave for each joint.

43

Before starting the robot joints needs to be in a more favourable position due to robot

geometry. So a third degree polynomial is denoted as

qd(t) = qi + 3(qf − qi)(t− ti)2

(tf − ti)2 − 2(qf − qi)(t− ti)3

(tf − ti)3 (5.1)

Then, for each joint a sinusoidal wave is generated with the form

qd(t) = qi + Asin(wt) (5.2)

where the angular frequency w = 2π
T

with T being the period of the trajectory.

Figure 5.1 shows the performance of each joint of the robot during the defined trajec-

tory. From t = 10s to t = 25s the trajectory is defined according to equation 5.1, whose

parameters are



qi =
[
4.8046852 2.92482 1.002 4.2031852 1.4458 1.3233

]T
(rad) → ”Home”

qf =
[
π π π π π π

]T
(rad)

ti = 10s ; tf = 25s
(5.3)

Then, from t = 30s to t = 80s, the trajectory is defined according to equation 5.2, with the

following parameters:


qi =

[
π π π π π π

]T
(rad)

A = π
6 (rad) ; T = 8s

(5.4)

Finaly, from t = 80s to t = 95s the robot returns to his "Home" position following again a

third degree polynomial (eq. 5.1), with the given conditions:


qi = qdlast

qf = ”Home”

ti = 80s ; tf = 95s

(5.5)

It is important, that during the first milliseconds the switch controller occurs, which

is notorious analysing the plots of the figure 5.1. Although the switch occurs, the controller

corrects well the position of the robot joints and along the defined trajectory achieves a good

position tracking with stable and smooth movements.

44

(a) Joint 1. (b) Joint 2. (c) Joint 3.

(d) Joint 4. (e) Joint 5. (f) Joint 6.

Figure 5.1: PID computed torque control in the joint space (Gazebo Simulator).

In relation to table 5.1 it is verified that the gains of the last three joints are higher

compared to the first three joints, which can cause problems in the real robot since the

movement of each joint is influenced by the movement of the other joints. This problem can

be associated to the fact that the inertia matrix corresponds to an approximation assuming

uniform cylinders for the robot links (see section 2.3). This issue is further discussed in the

real robot.

Table 5.1: The control gains were done by the following expressions: Kpj = w2
nj

and Kdj
= 2wnj .

Joint j wnj
Kij

1 16 0.005
2 10 0.005
3 10 0.005
4 20 0.005
5 20 0.005
6 20 0.005

5.1.2 Computed torque control in the task space (simulator)

The controller suggested in the previous chapter is a PD computed torque control in the

task space, figure 4.3. A desired trajectory is defined again to infer the robot performance.

The desired trajectory is a spline (see equation 5.1) both in position and orientation and

45

then a circular trajectory is proposed, based on the following expression

pd = pi +


0

a · cos(wt)− a

b · sin(wt)

 (5.6)

where w = 2π
T

, with T being the period of the trajectory, and a and b correspond to the

radius of the circle, so a = b. The equation 5.6 could be used also to define a ellipse trajectory,

and in this case a 6= b.

In figure 5.2, from t = 10s to t = 18s the spline parameters are



 pi(m)

ri(rad)

 =
[
0.2127 −0.2566 0.5069 2.0292 −0.6806 2.0476

]T
 pf (m)

rf (rad)

 =
[
0.3127 −0.3566 0.6069 1.5249 0.7589 1.0022

]T
ti = 10s ; tf = 18s

(5.7)

Then, from t = 20s to t = 40s a circular position trajectory (see eq. 5.6) in y and z axis is

defined, whose parameters are


pi =

[
0.3127 −0.3566 0.6069

]T
a = b = 0.1(m) ; T = 8s

(5.8)

As can be seen in figure 5.2 the steady state error is good, both in position and

orientation. The orientation is based on angle-axis representation and the figures 5.2d, 5.2e

and 5.2f correspond to the end-effector rotation vector, (see eq. 4.21). The tracking response

is good, with smooth end-effector movements. Here the underestimated dynamic model does

not seem to have much influence on the controller gains, table 5.2.

Table 5.2: Position and Orientation Gains.

Position Gain Orientation Gain
Kp,p 200 Kp,o 100
Kd,p 40 Kd,o 10

46

(a) X Position. (b) Y Position. (c) Z Position.

(d) X Orientation. (e) Y Orientation. (f) Z Orientation.

Figure 5.2: Position/Orientation PD computer torque control in the task space (Gazebo Simula-
tor).

5.1.3 Joint space control with task posture reference (simulator)

In the control scheme presented in figure 4.4 a task posture reference is designed similarly

to the task space control in section 4.3, with the task space errors being converted into joint

velocity references, by virtue of the known differential kinematic relation. This conduces to

a control of each joint, just like the control of the section 4.2, but having the advantage of

possessing a task space reference.

The desired trajectory for this controller it is almost the same of the previous controller,

but instead of a spline it is suggested a rectilinear movement. The equation of a line can be

given by

pd = pi(1− α) + pfα, α ∈ [0, 1] (5.9)

where pd is the desired position, pi is the line start point, pf is the line final point and α is

the step time.

In figure 5.3, from t = 10s to t = 15s is represented a position control for a line, with

the following parameters:


pi =

[
0.2127 −0.2566 0.5069

]T
pf =

[
0.3127 −0.3566 0.6069

]T (5.10)

47

(a) X Position. (b) Y Position. (c) Z Position.

Figure 5.3: Position PD joint space torque control with task space posture reference (Gazebo
Simulator).

Then, between t = 20s to t = 40s a circular path is defined with the same trajectory

conditions of 5.8, with the exception that the trajectory period is T = 12s. In relation to

the results, the control algorithm performs a good position tracking and the robot follows

the reference with smooth movements. Concerning the orientation control, figure 5.4.

(a) εx Orientation. (b) εy Orientation.

(c) εz Orientation. (d) η Orientation.

Figure 5.4: Orientation PD joint space torque control with task space posture reference (Gazebo
Simulator).

The desired orientation trajectory is also a line, whose parameters are:


Qi =

[
0.6823 −0.2288 0.6884 0.0896

]T
Qf =

[
0.6443 0.3206 0.4234 0.5502

]T (5.11)

Analysing the figure 5.4, the steady state error is good but the orientation associated

48

to the quaternion Qx, (figure 5.4a), the robot has difficulties in following the reference.

However, the robot has a good orientation tracking in the other axis.

Table 5.3: Joint control architecture gains.

Joints K1 Kp Kd

Joint 1 7 50 0.02
Joint 2 7 50 0.02
Joint 3 7 50 0.02
Joint 4 10 50 0.5
Joint 5 7 50 0.5
Joint 6 7 50 0.5

5.1.4 Impedance control in the task space without force sensing

(simulator)

It is time to test the control scheme shown in figure 4.7, this architecture corresponds to

the basis of the impedance control. Since the term A associated to the mass and the inertia

matrix M is not present in this scheme, this control scheme corresponds to a compliance

control. To analyse the performance of the robot in this control algorithm is defined the

same trajectory as in subsection 5.1.2.

It is important to mention that besides position/orientation tracking is also done the

tracking of the linear velocity associated to the movement of the robot in the task space. The

linear velocity corresponds in this case to the derivative of the position during the circular

trajectory, whose expression is given by

pd = pi +


0

a · cos(wt)− a

b · sin(wt)

 ; ṗd = ṗi +


0

−w · a · sin(wt)

w · b · cos(wt)

 (5.12)

where the parameters a, b and w are the same of equation 5.8 and the initial linear velocity

is ṗi =
[
0 0 0

]T
.

The results obtained in figure 5.5 are practically the same as the results obtained in

the figure 5.2. Although the inertia matrix M has not been used in this control scheme,

the robot has a good tracking during the defined trajectory. However, this is a simulated

environment where the inertia and friction of the actuators are different in the case of the

real robot.

49

(a) X Position. (b) Y Position. (c) Z Position.

(d) X Orientation. (e) Y Orientation. (f) Z Orientation.

Figure 5.5: Position/Orientation impedance control without force sensing (Gazebo Simulator).

Table 5.4: Position and Orientation Gains.

Position Gain Orientation Gain
Kp 150 Ko 8
Dp 24 Do 2

5.1.5 Impedance control in the task space with force sensing (sim-

ulator)

This architecture allows the interaction between the robot and the environment (figure

4.8). It can be used to interact with a human or any kind of material, like a mould. In this

work it is used the JACO2 robot in a polishing task as main goal. Firstly it is necessary to

analyse the performance of the robot in free space, and later a polishing task is demonstrated,

which represents the interaction between the robot and a flat surface.

For a movement in free space, the defined trajectory is the same as the trajectory

defined in the previous subsection 5.1.4. Besides position tracking it is also made the velocity

tracking and the acceleration tracking during the circular trajectory. So, the robot starts

to move from a point to another, (see equation 5.1), and then begins a circular trajectory,

50

defined from the following expression

pd = pi +


0

a · cos(wt)− a

b · sin(wt)

 ; ṗd = ṗi +


0

−w · a · sin(wt)

w · b · cos(wt)

 ; ad =



0

−w2 · a · cos(wt)

−w2 · b · sin(wt)

0

0

0


(5.13)

Figure (5.6) shows that the robot has good position and orientation tracking in free

space. Analysing the plots referred to orientation you can see that the position motion has

a small influence in the orientation motion.

(a) X Position. (b) Y Position. (c) Z Position.

(d) X Orientation. (e) Y Orientation. (f) Z Orientation.

Figure 5.6: Position/Orientation impedance control with force sensing (Gazebo Simulator).

Table 5.5 represents the controller gains used to move the robot in free space.

Table 5.5: Impedance task space control gains, where the variable I in 5.5a and 5.5b represents
the identity matrix.

(a) Position Gains.

Gain Position
Kp 150I3×3
Dp 30I3×3
Ip 5I3×3

(b) Orientation Gains.

Gain Position
Ko 5I3×3
Do 2I3×3

51

5.1.6 Impedance control in the task space with force sensing for

redundant robots (simulator)

The last results to be analysed in the simulator refers to the control architecture present

in figure 4.9. This algorithm is an alternative to the previously control, since it does not need

to calculate the inverse of the Jacobian, and this control can be adapted or implemented

in any type of manipulator. Besides this advantage it is also implemented the orientation

with the quaternions, thus solving the problems of singularities associated to angle-axis

representation.

Figure 5.7 shows the good position tracking where the robot end-effector performs

smooth movements in the task space. From t = 10s to t = 18s the position trajectory is

defined according to equation 5.1, whose parameters are



pi =
[
0.2127 −0.2566 0.5069

]T
pf =

[
0.1127 −0.3566 0.6069

]T
ti = 10s ; tf = 18s

(5.14)

In relation to the circular path is described according to expression 5.13.

(a) X Position. (b) Y Position. (c) Z Position.

Figure 5.7: Position impedance control with force sensing for redundant robots (Gazebo Simula-
tor).

It is important to refer, table 5.6 refers to the movement in free space, so in contact

the gains can differ from axis to axis, in other words, the controller can be more compliant

in one axis than in the others.

52

Table 5.6: Impedance task space control gains, where the variable I in 5.6a and 5.6b represents
the identity matrix.

(a) Position Gains.

Gain Position
Kp 200I3×3
Dp 30I3×3
Ip 25I3×3

(b) Orientation Gains.

Gain Position
Ko 5I3×3
Do 2I3×3

In relation to the orientation control, the desired trajectory is a third degree polyno-

mial, whose parameters are:



Qi =
[
0.6823 −0.2288 0.6884 0.0896

]T
Qf =

[
0.2288 0.6823 −0.0896 0.6884

]T
ti = 10s ; tf = 18s

(5.15)

This orientation trajectory (eq. 5.15) corresponds to a rotation of −π radians about the z

axis of the robot end-effector.

The results showed in figure 5.8 shows a good steady state error, a good orientation

tracking and a smooth rotation.

(a) εx Orientation. (b) εy Orientation.

(c) εz Orientation. (d) η Orientation.

Figure 5.8: Quaternion orientation impedance control with force sensing for redundant
robots(Gazebo Simulator).

53

5.2 Real JACO2 Results

The time has come to evaluate and compare the experimental results in the real robot

with the results obtained in the Gazebo simulator. As in the simulator, the experimental

tests are done with the robot performing a defined trajectory. But before discussing the

results obtained it is necessary to change some internal parameters of the robot, in order to

be able to integrate the controllers studied in chapter 4.

Internally in the robot are active different types of controllers. In order to minimize

the influence of these internal factors it is necessary to use some functions available in the

Kinova API. The functions used and the changed parameters are:

Table 5.7: Internal parameters that need to be changed.

Function Description Value

MySetTorqueSafetyFactor
If the velocity of an actuator gets to a specific threshold the robot stops and

changes back to trajectory control. Feature that prevents the robot from taking high speed motion.
Setting to 1 disables the feature.

1

MySetTorqueVibrationController Vibration observer/controller to eliminate vibrations during contact with stiffness environments.
Adjust from 0 to 1, to enable or disable vibrations. 1

MysetTorqueActuatorDamping Set actuators damping gain. 0
MySetTorqueActuatorGain Set the actuators feedback gain. 0

It is important to refer that after reboot the robot the parameters presented in the

table 5.7 return to their default values. Moreover, before initiating the experimental tests,

it is required to calibrate the torque sensors by setting them to zero, so it is necessary first

place the robot in a configuration where gravity does not influence the joint torques. In the

advanced specification guide [7] is suggested to use the following joint position

qcalibration =
[
∗ 180 180 0 0 180

]
(degrees) (5.16)

with ’∗’ being any joint value. Similarly, the position of the actuators is also calibrated due

to the common displacement occurred when the actuators are suddenly stopped. So as to cali-

brate the robot a node in the package "thesis_demo" denominated by "calibration_robot.py"

is created. This node uses the function "joint_position_client()" to send the robot to

calibrate position, qcalibration, and uses function "ZeroTorque()" to set the joint torques to

zero. This functions are available in the "kinova_demo" package, (see section 2.3).

Last but not least, before sending the commanded torques, τc, switching to torque

control from position control is required, this means that is necessary to use the service

"SetTorqueControlMode" available in package "kinova_msgs". Then, to publish torque

commands it is available the ros topic "/j2n6s300_driver/in/joint_torque" that use the

"JointTorque" message, also available in package "kinova_msgs".

54

5.2.1 Computed torque control in the joint space

Initially it is used the same algorithm implemented in the Gazebo simulator, but the

results are far from being the best, since to move the last three joints together high gains

is required, which cause disturbances in the other joints leading to the instability of the

system. This problem is due to the fact that the inertia matrix is underestimated in the last

three joints, analytically this corresponds to a very low values in the last three values of the

diagonal of the inertia matrix.

In order to solve this problem a solution has been proposed, use only the inertia matrix

in the first three joints and in the other three only use a PID controller.

Before the sinusoidal wave trajectory it is needed first to put the robot joints in a more

favourable position due to the robot geometry. It is suggested a third degree polynomial,

(see eq. 5.1), with the following parameters



qi =
[
4.8046852 2.92482 1.002 4.2031852 1.4458 1.3233

]T
(rad)

qf =
[
4.8046852 π π/2 4.2031852 1.4458 1.3233

]T
(rad)

ti = 5s ; tf = 15s

(5.17)

Then, from t = 20s to t = 80s begins the sinusoidal motion (see eq. 5.2) and the

parameters are given by


qi =

[
4.8046852 π π/2 4.2031852 1.4458 1.3233

]T
(rad)

A =
[
π/6 π/20 π/20 π/20 π/20 π/6

]T
(rad) ; T = 8s

(5.18)

The achievements in the figure (5.9) concern to the control architecture of the figure

4.2, where is done not only the position tracking, but also the velocity and the acceleration

tracking during the sinusoidal wave trajectory. So, the desired joint velocity q̇d corresponds

to the derivative of the desired joint positions qd and the desired joint acceleration q̈d corre-

sponds to the derivative of the joint velocities.

qd = qi + A · sin(wt); q̇d = w · A · cos(wt); q̈d = −w2 · A · sin(wt) (5.19)

For this first solution the results presented in figure 5.9 with the PID gains detailed in

table 5.8, have relatively good tracking response, performing stable movements during the

55

(a) Joint 1. (b) Joint 2. (c) Joint 3.

(d) Joint 4. (e) Joint 5. (f) Joint 5.

Figure 5.9: PID computed torque control in the joint space, with respect to the first solution.

defined trajectory. With this first approach the PID control gains in the last three joints

are low comparatively to the gains of the simulated results (see tab. 5.1). This proves that

is possible to achieve good results in the real JACO2. Lastly, all the controller gains were

manually tuned.

Table 5.8: Control Gains.

Joint j Kpj
Kdj

Kij

1 200 20 0.1
2 180 34 0.3
3 200 34 0.3
4 22 6.4 0.3
5 24 4 0.1
6 20 2.6 0.1

5.2.2 Computed torque control in the task space

Now, it is presented the practical results of the control scheme of the figure 4.3. In this

case, the defined trajectory in task space is a third degree polynomial, (see eq. 5.1), where

the trajectory parameters are the same of the simulated results in equation 5.7.

Observing the experimental results exposed in the figure 5.10, the robot is able to reach

its final pose (position, orientation) with overall acceptable steady state error. Even though

the dynamic model is underestimated the position and orientation tracking are acceptable

and closely to the simulated results.

56

(a) X Position. (b) Y Position. (c) Z Position.

(d) X Orientation. (e) Y Orientation. (f) Z Orientation.

Figure 5.10: Position/Orientation PD computer torque control in the task space.

In relation to the controller gains, (tab. 5.8), they are similar to the simulated results.

For obtain a better orientation tracking of this controller and on the following controllers, the

inertia tensor with respect to "z" is artificially increased in the last joint. The multiplicative

factor required to obtain good results is "200".

Table 5.9: Position and Orientation Gains.

Position Gain Orientation Gain
Kp,p 200 Kp,o 100
Kd,p 22 Kd,o 4

5.2.3 Impedance control in the task space without force sensing

The following experimental results are done in the same conditions of the simulated

results, in other words, the same trajectory is defined, (see subsection 5.1.4) for the control

scheme of the figure 4.7.

The results in figure 5.11, referring to the real robot, are reasonable considering that

in the control scheme used the matrix associated to the robot dynamics, the inertia matrix

M, is not considered. In addition, there is a great perturbation in the orientation of the

end-effector, figures 5.11d, 5.11e and 5.11f, and also in the component "x" of the end-effector

position, since a circular trajectory is defined in the components (y,z) of the end-effector

position.

57

There is also some oscillation in the "z" component, figure 5.11c, making the movement

of end-effector slightly smooth.

In the tests made in the simulated environment there is not such problems because the

dynamic parameters, like damping, friction, stiffness, do not accurately represent the robot

hardware.

(a) X Position. (b) Y Position. (c) Z Position.

(d) X Orientation. (e) Y Orientation. (f) Z Orientation.

Figure 5.11: Position/Orientation impedance control without force sensing.

Table 5.10: Position and Orientation Gains.

Position Gain Orientation Gain
Kp 200 Ko 10
Dp 26 Do 1.2

5.2.4 Impedance control in the task space with force sensing

Although the robot dynamics is considered, the results do not improve significantly in

comparison to the controller aforementioned, figure 5.11.

The tests are done for the same parameters as the algorithm presented in the simulator,

(see subsection 5.1.5). These results are only made for movements in free space, even thought

this controller allows external interactions.

Again it is possible to observe the noise that the circular path causes in the orientation

of the end-effector, figures 5.12d, 5.12e and 5.12f. With this, it is verified that the friction

of actuators becomes dominant causing noise and oscillations in the movement of the robot

end-effector.

58

Furthermore, it is important to emphasize that the illustrated planned trajectory is

not particularly simple, involving a complex movement, which naturally can cause even more

friction.

(a) X Position. (b) Y Position. (c) Z Position.

(d) X Orientation. (e) Y Orientation. (f) Z Orientation.

Figure 5.12: Position/Orientation impedance control with force sensing.

Table 5.11 represents the spring and damper terms with respect to end-effector position

and orientation in free-space.

Table 5.11: Impedance task space control gains, where the variable I in 5.11a and 5.11b represents
the identity matrix.

(a) Position Gains.

Gain Position
Kp 220I3×3
Dp 24I3×3
Ip 30I3×3

(b) Orientation Gains.

Gain Orientation
Ko 10I3×3
Do 2I3×3

5.2.5 Impedance control in the task space with force sensing for

redundant robots

The last controller to be analysed corresponds to the architecture of the figure 4.9.

Analysing the figure 5.13 referring to the end-effector position, it is possible to observe

the significant noise in the "x" component that was verified in the architecture analysed

previously.

59

In relation to the orientation of the end-effector, figure 5.14, there is a significant

improvement over the previous results. This is because the chosen orientation is the quater-

nions, which helps the robot in the orientation tracking.

(a) X Position. (b) Y Position. (c) Z Position.

Figure 5.13: Position impedance control with force sensing for redundant robots.

(a) εx Orientation. (b) εy Orientation.

(c) εz Orientation. (d) η Orientation.

Figure 5.14: Quaternion orientation impedance control with force sensing for redundant robots.

60

In order to reduce the noise verified previously a low pass filter is applied to the joint

position and also to the joint velocity.

qfiltered[k] = αhq[k] + qfiltered[k − 1]
1 + αh

; q̇filtered[k] = αhq̇[k] + q̇filtered[k − 1]
1 + αh

(5.20)

where q is the joint angular position, q̇ is the joint angular velocity, α is the cut-off frequency

constant and h is the sample time. Therefore, the filtered signals do not solve the end-effector

position problem, but helps to stabilize the controller.

Comparing the figures 5.13 and 5.15 referring to the end-effector position, there is an

improvement comparing to the results analysed previously. Although the improvement, the

robot continues having difficulties in following the reference during the circular trajectory,

and the perturbation in the "x" component continues to be significant. However, the influence

of the low pass filter makes the movement slightly softer. It is important to refer that these

results are made for same conditions of the simulated experiments, see subsection 5.1.6.

(a) X Position. (b) Y Position. (c) Z Position.

Figure 5.15: Position impedance control with force sensing for redundant robots using a low pass
filter with a cut-off frequency of 100 Hz.

Table 5.12: Impedance task space control gains, where the variable I in 5.12a and 5.12b represents
the identity matrix.

(a) Position Gains.

Gain Position
Kp 244I3×3
Dp 24I3×3
Ip 30I3×3

(b) Orientation Gains.

Gain Orientation
Ko 13I3×3
Do 2I3×3

61

Regarding the end-effector orientation, figure 5.16, there is also perceptible that the low

pass filter helps to decrease the perturbation of the end-effector position in the orientation.

(a) εx Orientation. (b) εy Orientation.

(c) εz Orientation. (d) η Orientation.

Figure 5.16: Quaternion orientation impedance control with force sensing for redundant robots
using a low pass filter with a cut-off frequency of 100 Hz.

In the next chapter, the impedance controller presented in figure 4.9 is tested in a

polishing task in a simulated environment and the in the real JACO2 robot.

62

6 Surface Polishing

6.1 Polishing task in Gazebo simulator

As previously stated, the impedance control allows interactions between the robot and

the surrounding environment. Therefore, to demonstrate the concept it is used a ramp shape

surface, this object is obtained from the Gazebo database. At the beginning of the section

4.5 is shown three different situations that occur between the robot and the environment.

The first is before contact, the second is when the contact occurs and the third is when the

robot is in contact with the ramp.

Figure 6.1 shows the robot before contact and when the robot comes into contact with

the ramp.

(a) Without any contact be-
tween robot and environment.

(b) Critical point when con-
tact occurs.

Figure 6.1: Polishing task demonstration in simulated environment.

In simulation a specific trajectory is defined. Firstly, a −π2 radians rotation of the

end-effector in "y" axis and a movement of the end-effector position is applied, the trajectory

is based on a third degree polynomial. Secondly, a linear movement of the end-effector

position in z axis is made until the robot comes into contact with the ramp. Finally, a

circular movement is effectuated in contact with the ramp. It is important to mention that

63

the control architecture used in this demonstration is the controller of the figure 4.9.

From t = 10s to t = 15 the position trajectory, figure 6.2, is defined according to

equation 5.1, then from t = 20s to t = 25s according to equation 5.9 and finally from

t = 30s to t = 60s the circular trajectory is defined according to the following equation

pd = pi +


a · cos(wt)− a

b · sin(wt)

0

 ; ṗd = ṗi +


−w · a · sin(wt)

w · b · cos(wt)

0

 ; ad =



−w2 · a · cos(wt)

−w2 · b · sin(wt)

0

0

0

0


(6.1)

where the radius is a = b = 0.1m and the angular frequency is w = 2π
T

with the period

T = 8s.

(a) X Position. (b) Y Position. (c) Z Position.

Figure 6.2: End-effector position during the polishing task (Gazebo Simulator).

Figure 6.3 shows a different perspective of the circular trajectory and the measured

end-effector force in contact with the ramp.

(a) Circular trajectory in contact. (b) End-Effector force Fe.

Figure 6.3: The circular defined trajectory and end-effector force measured (Gazebo Simulator).

64

The orientation trajectory is defined according to the equation 5.1. In relation to the

results of the figures 6.2, 6.3 and 6.4, it is verified a good position tracking without contact

and with contact. In order to ensure the contact between the end-effector and the ramp,

the reference of the robot in the component "z" is placed in a point that the robot can not

reach. Analysing the figures 6.4b and 6.4d it is verified a perturbation associated to the

circular trajectory and to the contact between the end-effector and the surface. Also, the

robot fingers can cause friction between the robot and the surface, since they are not ready

to polishing tasks.

(a) εx Orientation. (b) εy Orientation.

(c) εz Orientation. (d) η Orientation.

Figure 6.4: End-effector orientation during the polishing task (Gazebo Simulator).

Table 6.1 represents the impedance control gains in free space and in contact with the

surface.

Nevertheless, the polishing task in the simulator is successfully completed and validat-

ing the proposed impedance controller.

6.2 Polishing task in the real JACO2

The last step of this work corresponds to a demonstration of polishing in the real robot.

The robot end-effector consists of three fingers, which is very useful for pick and place tasks,

but is not adequate for the polishing task. Thus, for the polishing task accomplishment a

65

Table 6.1: Impedance task space control gains in Gazebo Simulator.

(a) Position Gains.

Gain Position

Kp

400 0 0
0 400 0
0 0 500


Dp

35 0 0
0 35 0
0 0 35


Ip

30 0 0
0 30 0
0 0 0



(b) Orientation Gains.

Gain Orientation

Ko

10 0 0
0 10 0
0 0 10


Do

2 0 0
0 2 0
0 0 2



new tool is required. The tool is designed in the Fusion 360 and printed on a 3D printer, see

figure 6.5b.

(a) Initial version. (b) Final version. (c) Polishing tool.

Figure 6.5: Polishing tool with a sandpaper embedded in the robot end-effector.

To understand how the polishing task is accomplished, a state machine is constructed,

figure 6.6. This process is divided as follows:

• (0): The polishing node starts and the robot switch from position mode to torque

mode;

• (1): Then, a menu is displayed in the terminal, where the user can choose to start the

polishing task by pressing the <enter> key or exit the program by pressing the <e>

key;

• (2): After the <enter> key is pressed the following message is displayed to the user:

"Please choose the end point, after that select the number (1) ". With this, the user

can pick up the end-effector and put it on the line endpoint. If the user does not

66

press the <1> key, the following message is displayed: "Please select the number (1)

to continue ...";

• (3): As soon as user selects the <1> key, the following message appears: "Please

choose the initial point, after that select the number (2) ". Again the user can place

the end-effector in the desired position. If after the procedure the user does not click

the <2> key, the following message is displayed: "Please select the number (2) to

continue ...";

• (4): Then it is suggested to the user to press the <3> key to start the polishing;

• (5): Once the <3> key is selected, the control loop is started, where the robot moves

from the star point to the end point and when the end-effector reaches the end point

performs a circular trajectory in contact with the flat surface. This control loop is

active for a pre-set time, but can be interrupted by pressing the <enter> key. If the

pre-set time has finished or the <enter> key is selected, the initial menu is shown again

and so on.

Figure 6.6: State-machine for the polishing task.

67

With this, it is time to analyse the experimental results, where the control loop of the

figure 6.6 corresponds to the control scheme of the figure 4.9.

Looking at figure 6.7, it can be concluded that the position tracking is reasonable, but

analysing the figure 6.7c is verified a lot of noise in the position component z. This noise

causes a not smooth movement of the end-effector. The defined trajectory from t = 5s to

t = 8s is according to equation 5.9, and then from t = 15s to t = 45s is defined according to

equation 6.1, where the radius is a = b = 0.05m and the angular frequency is w = 2π
T

with

the period being T = 8s. It is important to mention that before the movement from the

initial point to the final point the position reference in "z" is placed two centimetres under

surface to ensure the contact.

(a) X Position. (b) Y Position. (c) Z Position.

Figure 6.7: End-effector position during the polishing task.

A different perspective of the circular trajectory and the measured end-effector force

in contact with the ramp are shown in figure 6.8.

(a) Circular trajectory in contact. (b) End-Effector force Fe.

Figure 6.8: The circular defined trajectory and end-effector force measured.

Now, analysing in detail the end-effector orientation during the contact between the

polishing tool and the surface plane, figure 6.9, it can be seen a lot of noise in the end-

effector orientation caused by the polishing movement. As result, the orientation tracking

need improvements and again the end-effector movement is slightly smooth.

68

(a) εx Orientation. (b) εy Orientation.

(c) εz Orientation. (d) η Orientation.

Figure 6.9: End-effector orientation during the polishing task.

Table 6.2 represents the impedance control gains in contact with the flat surface. The

integral gain in "z" is considered zero in order to avoid that the end-effector is forced to

assume the reference in "z".

Table 6.2: Impedance task space control gains obtained in the real JACO2.

(a) Position Gains.

Gain Position

Kp

400 0 0
0 400 0
0 0 500


Dp

24 0 0
0 24 0
0 0 24


Ip

25 0 0
0 25 0
0 0 0



(b) Orientation Gains.

Gain Orientation

Ko

13 0 0
0 13 0
0 0 13


Do

3 0 0
0 3 0
0 0 3



Appendix F shows in detail the flat surface used to test the robot performance during

the polishing task.

69

70

7 Conclusion

Despite the difficulties that appear during this work, the main objectives are achieved

and the concluding remarks can be summarized in the following topics:

• The results obtained in Gazebo simulator are quite promising, allowing to prepare and

test different control algorithms before being tested in the real robot. Because of this

it is possible to establish a secure connection with the real robot;

• Although the results achieved in the real robot need improvements, due to the friction

of the actuators and other external factors, this work demonstrates that it is possible

to use the JACO2 in polishing tasks and with an in-depth study of the impedance

controller. Anyway, this work can be a big step in automated polishing tasks;

• It is also concluded that it is necessary to analyse and rectify the URDF model built

for the robot in ROS, because the robot dynamics corresponds to an approximation to

cylinders and this produce an underestimated dynamic model;

• Even though the internal controllers present in JACO2 proved to be an obstacle, some

effort has been made to overcome this problem, including turn off some internal pa-

rameters;

• Finally, this work opens doors for future researchers who want to work in the area of

collaborative robotics and human-machine interaction.

7.1 Future Work

Many adaptations, tests and experiments have been left for the future. For this reason,

here are some suggestions:

• Improve the impedance controller, reducing the friction and noise produced by the

actuators, achieving more precise and smooth movements;

71

• Attach to the JACO2 robot an end-effector suitable for polishing and test the impedance

controller on different types of surfaces;

• Integrate external sensors, such as cameras to coordinate and supervise the robot

movements during polishing tasks.

72

8 Bibliography

[1] Kinova Robotics. "http://www.kinovarobotics.com".

[2] ROS community. Higher-Level concepts of ROS. "http://wiki.ros.org/ROS/

Higher-Level%20Concepts".

[3] Jinjun Duan, Yahui Gan, Ming Chen, and Xianzhong Dai. Adaptive variable impedance

control for dynamic contact force tracking in uncertain environment. Robotics and

Autonomous Systems, 102:54–65, 2018.

[4] Neville Hogan. Impedance control: An approach to manipulation: Part

ii—implementation. Journal of dynamic systems, measurement, and control, 107(1):8–

16, 1985.

[5] Kinova Robotics. Development center user guide. "http://www.kinovarobotics.com/

wp-content/uploads/2017/10/Kinova-SDK-Development-Center-User-Guide.

pdf".

[6] Kinova Robotics. Gazebo for Kinova robots. "https://github.com/Kinovarobotics/

kinova-ros/wiki/Gazebo".

[7] Kinova Robotics. KINOVA Ultra lightweight robotic arm user guide. "https:

//beta.kinovarobotics.com/sites/default/files/KINOVA_JACO_Prosthetic_

robotic_arm_USER_GUIDE_0.pdf".

[8] Kinova Robotics. MoveIt for Kinova robots. "https://github.com/Kinovarobotics/

kinova-ros/wiki/MoveIt".

[9] Kinova Robotics. Official ROS packages for kinova robotic arms. "https://github.

com/Kinovarobotics/kinova-ros".

[10] Lentin Joseph. Mastering ROS for Robotics Programming. Packt Publishing Ltd., Livery

Place, 35 Livery Street, Birmingham B3 2PB, UK, first edition edition, December 2015.

73

http://www.kinovarobotics.com
http://wiki.ros.org/ROS/Higher-Level%20Concepts
http://wiki.ros.org/ROS/Higher-Level%20Concepts
http://www.kinovarobotics.com/wp-content/uploads/2017/10/Kinova-SDK-Development-Center-User-Guide.pdf
http://www.kinovarobotics.com/wp-content/uploads/2017/10/Kinova-SDK-Development-Center-User-Guide.pdf
http://www.kinovarobotics.com/wp-content/uploads/2017/10/Kinova-SDK-Development-Center-User-Guide.pdf
https://github.com/Kinovarobotics/kinova-ros/wiki/Gazebo
https://github.com/Kinovarobotics/kinova-ros/wiki/Gazebo
https://beta.kinovarobotics.com/sites/default/files/KINOVA_JACO_Prosthetic_robotic_arm_USER_GUIDE_0.pdf
https://beta.kinovarobotics.com/sites/default/files/KINOVA_JACO_Prosthetic_robotic_arm_USER_GUIDE_0.pdf
https://beta.kinovarobotics.com/sites/default/files/KINOVA_JACO_Prosthetic_robotic_arm_USER_GUIDE_0.pdf
https://github.com/Kinovarobotics/kinova-ros/wiki/MoveIt
https://github.com/Kinovarobotics/kinova-ros/wiki/MoveIt
https://github.com/Kinovarobotics/kinova-ros
https://github.com/Kinovarobotics/kinova-ros

[11] Mark W. Spong, Seth Hutchinson, and M. Vidyasagar. Robot Dynamics and Control.

Second edition edition, January 2004.

[12] Miguel Pereira Mendes. Computed torque-control of the Kinova JACO2 arm. Master

thesis, University of Coimbra, 2017.

[13] Abd El Khalick Mohammad, Jie Hong, and Danwei Wang. Design of a force-controlled

end-effector with low-inertia effect for robotic polishing using macro-mini robot ap-

proach. Robotics and Computer-Integrated Manufacturing, 49:54–65, 2018.

[14] Morgan Quigley, Brian Gerkey and William D. Smart. Programming Robots with ROS.

O’Reilly Media, 1005 Gravenstein Highway North, Sebastopol, CA 95472, first edition

edition, December 2015.

[15] ROS community. Gazebo ROS plugin. "http://wiki.ros.org/gazebo".

[16] ROS community. Introduction to ROS. "http://wiki.ros.org/ROS/Introduction".

[17] ROS community. Main concepts of ROS. "http://wiki.ros.org/ROS/Concepts".

[18] ROS community. ROS Control. "http://wiki.ros.org/ros_control".

[19] ROS community. ROS Control and gazebo. "http://wiki.ros.org/gazebo".

[20] ROS community. ROS MoveIt. "http://moveit.ros.org/".

[21] ROS community. ROS Rviz. "http://wiki.ros.org/rviz".

[22] ROS community. ROS URDF. "http://wiki.ros.org/urdf".

[23] Rui Cortesão. Medical Robotics. University of Coimbra, 2016/17.

[24] Luis Santos and Rui Cortesao. Joint space torque control with task space posture

reference for robotic-assisted tele-echography. In RO-MAN, 2012 IEEE, pages 126–131.

IEEE, 2012.

[25] Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. Kinematics.

Springer, 2009.

[26] Cristóvão Sousa, Rui Cortesão, and Luís Santos. Computed torque posture control for

robotic-assisted tele-echography. In Control & Automation (MED), 2010 18th Mediter-

ranean Conference on, pages 1561–1566. IEEE, 2010.

74

http://wiki.ros.org/gazebo
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/ros_control
http://wiki.ros.org/gazebo
http://moveit.ros.org/
http://wiki.ros.org/rviz
http://wiki.ros.org/urdf

[27] The Orocos Project. "http://www.orocos.org/".

[28] Fengjie Tian, Chong Lv, Zhenguo Li, and Guangbao Liu. Modeling and control of

robotic automatic polishing for curved surfaces. CIRP Journal of Manufacturing Science

and Technology, 14:55–64, 2016.

75

http://www.orocos.org/

76

Appendix A

JACO2 Product Specification

77

Specifications

JACO2
6 DOF

78

4333 Grande-Allée Boulevard,
Boisbriand (Québec) J7H 1M7
info@kinovarobotics.com 1-855-6-KINOVA kinovarobotics.com    

G E N E R A L

		 No gripper	 2 fingers (KG-2)	 3 fingers (KG-3)

Total weight		 4.4 kg	 5.0 kg	 5.2 kg
Payload capabilities	 Mid-range continuous	 2.6 kg	 1.8 kg	 1.6 kg
	 Full-reach peak/temporary	 2.2 kg	 1.5 kg	 1.3 kg

Materials	 Links	 Carbon fiber
	 Actuators	 Aluminum
Maximum reach		 90 cm
Joint range after start-up (sotware limitation)	 ±27.7 turns
Maximum linear arm speed		 20 cm/s
Power supply voltage		 18 to 29 VDC, 24 VDC nominal
Peak power		 100 W
Average power	 Operating mode	 25 W
	 Standby mode	 5 W
Communication protocol		 RS-485
Communication cables		 20 pins flat flex cable
Expansion pins 		 2 (on communication bus)

Water resistance		 IPX2
Operating temperature		 -10 °C to 40 °C

controller

Ports	 Joystick	 1 Mbps Canbus
	 Power supply	 18 to 29 VDC, 24 VDC nominal
	 USB 2.0 (API)	 12 Mbps
	 Ethernet (API)	 100 Mbps	
Control system frequency	 High level (API)	 100 Hz
	 Low level (API)	 500 Hz
CPU		 360 MHz
SDK	 APIs	 High and low level
	 Compatibility	 Windows, Linux Ubuntu & ROS
	 Port	 USB 2.0, Ethernet
	 Programming languages	 C++
Control	 	 Force, cartesian & angular

S P E C I F I C A T I O N S

Actuators #1, #2 & #3 		 K-75+
Actuators #4, #5 & #6 		 K-58

JACO2

6 DOF

Version 1.1 – April 2017

Tech Specs

JACO2 is a product of
Kinova Robotics, designed and

manufactured in Canada.

79

80

Appendix B

Actuators Product Specification

81

Specifications

actuators
K-75+ K-58

82

Ø58 mm, 3.6 Nm nominal, 7.7 Nm peak
Brushless DC motor, ratio 110 Harmonic Drive™

Ø74.5 mm, 12.0 Nm nominal, 37 Nm peak
Brushless DC motor, ratio 160 Harmonic Drive™

G eared M otor (wit h 2 4 V suppl y)

		 K-75+	 K-58

No load speed		 12.2 rpm	 20.3 rpm
Nominal torque		 12.0 Nm	 3.6 Nm
Nominal speed		 9.4 rpm	 15.0 rpm
Peak torque (software limitation)		 30.5 Nm	 6.8 Nm
Max motor efficiency		 83%	 81%
Max gearing efficiency		 76%	 69%
Torque gradient		 13.8 Nm/A	 7.8 Nm/A
Backdriving torque		 0.8 to 7 Nm	 1.7 to 5.2 Nm

S ensors

		 K-75+	 K-58

Position sensor resolution		 3,686,400/turn	 2,534,400/turn
Motion before position indexation	 ±2.25°	 ±3.27°

Absolute position sensor precision at start-up (before indexation)	 ±1.5˚
Torque sensor precision (room temperature)	 ±0.4 Nm
Torque sensor temperature drift (-10 ˚C to 40 ˚C)	 ±0.3 Nm
Torque sensor cross-axis torque sensitivity	 0% to 8%
Accelerometers range and bandwidth (x, y and z)	 ±3g, 50 Hz
Motor current sensor range and bandwidth	 ±5 A, 140 Hz
Temperature sensor range and precision	 -40 ˚C to 125 ˚C, ±2 ˚C

M ec h anical

		 K-75+	 K-58

Weight		 570 g	 357 g
Motion range after start-up (software limitation)	 ±27.7 turns	 ±27.7 turns
Max axial, radial and flexion moment loads (static)	 7.6 kN, 3.0 kN, 87 Nm	 4.7 kN, 1.8 kN, 39 Nm
Dynamic axial, radial and flexion moment loads ratings
of the main bearing		 3.5 kN, 1.5 kN, 41 Nm	 2.1 kN, 0.8 kN, 17 Nm

T h E R M A L

Operating temperature range		 -10 ˚C to 40 ˚C
Max frame temperature (overheat protection triggered)	 75 ˚C

		 K-75+	 K-58

Thermal time constant of the winding	 22 s	 16 s
Thermal time constant of the frame	 39 min.	 35 min.

actuators
Version 1.1 – May 2017

K-58K-75+

Tech SpecsTech Specs

83

4333 Grande-Allée Boulevard,
Boisbriand (Québec) J7H 1M7
info@kinovarobotics.com 1-855-6-KINOVA kinovarobotics.com    

E L E C T R O N I C

Power supply voltage		 18 to 29 VDC, 24 VDC nominal
Communication protocol		 RS-485
Communication cables		 20 pins flat flex cable
Expansion pins 		 2 (on communication bus)

C O N T R O L L E R

Ports	 Joystick	 1 Mbps Canbus
	 Power supply	 18 to 29 VDC
	 USB 2.0 (API)	 12 Mbps
	 Ethernet (API)	 100 Mbps	
Control system frequency	 High level (API)	 100 Hz
	 Low level (API)	 500 Hz
CPU		 360 MHz
SDK	 APIs	 High and low level
	 Compatibility	 Windows, Linux Ubuntu & ROS
	 Port	 USB 2.0, Ethernet
	 Programming languages	 C++
Control	 	 Force, cartesian & angular

reference

A

Absolute position sensor precision at start-up
(before indexation):
The absolute position measurement precision at
power-up, before an index is detected (see Motion
before indexation below).

Accelerometers range and bandwidth (x, y and z):
The range and bandwidth of the tri-axis accelerom-
eter with signal conditioning.

B

Backdriving torque:
The load torque that causes an unpowered unit to
backdrive. This value varies depending on of factors
that include temperature and wear.

C

Communication cables:
The cables used to link each actuator in a daisy
chain.

Communication protocol:
The communication protocol used between the actu-
ators and controller.

D

Dynamic axial, radial and flexion moment loads
ratings of the main bearing:
The actuator main bearing dynamic loads capacity.

E

Expansion pins (on communication bus):
The pins that are available to transmit signals
through all the actuators to the controller with the
output on the joystick port. 24V and ground pins are
also available.

M

Max axial, radial and flexion moment loads (static):
The actuator main bearing static loads capacity.

Max frame temperature (overheat protection
triggered):
The temperature measured at the frame at which
a progressive current limitation starts to be applied
by software. Torque loads above nominal should
always be brief; this protection cannot guarantee
the integrity of the motor under loads significantly
higher than the nominal.

Max gearing efficiency:
An indicator of the gearing performance at input
speed 500 rpm and temperature 30 ˚C. The effi-
ciency of the gearing depends on factors including
speed, load and temperature.

Max motor efficiency:
An indicator of the motor performance at its ideal
operation torque and velocity. The efficiency of the
motor depends on factors including friction and Joule
power losses.

Motion before position indexation:
The max required output motion (after power-up)
before an index is detected. When this precision
index is detected, the position information is updated
to the precise value.

Motion range after start-up (software limitation):
The motion range (software limitation).

Motor current sensor range and bandwidth:
The motor current measurement range and
bandwidth.

N

No load speed:
The maximum speed (no payload, 24 VDC power
supply).

Nominal speed:
The maximum speed under Nominal torque load.

Nominal torque:
The continuous torque output that causes the
actuator frame to heat up to Max frame temper-
ature (tested at 23 ˚C with the actuator enclosed in
a plastic shell). Loadings above this value should
always be brief.

O

Operating temperature range:
Actuator safe operating temperature range.

P

Peak torque (software limited):
The maximum torque output (in the direction of
motion) with the motor current limited by software.

Position sensor resolution:
The position sensing resolution measured at the
input and calculated for the output.

Power supply voltage:
The rated range of power supply tension of the actu-
ator drive.

T

Temperature sensor range and precision:
The range and precision of the temperature sensor
mounted on the actuator chassis.

Thermal time constant of the frame:
An indicator of the thermal response time (first order
system approximation) of the frame. When a torque
load is applied, the winding heats first and then start
to heat the more massive frame (which has thus a
slower response).

Thermal time constant of the winding:
An indicator of the thermal response time (first order
system approximation) of the winding.

Torque gradient:
The ratio of torque output to motor current cal-
culated without gearing losses. The actual torque
applied on the load depends on motion direction
and gearing efficiency.

Torque sensor cross-axis torque sensitivity:
The effect of torque applied perpendicularly to the
actuator axis on the measured torque (torque meas-
ure bias / cross-axis torque).

Torque sensor precision (room temperature):
The precision of the sensor at 23 ˚C under a pure
moment loads.

Torque sensor temperature drift (-10 ̊ C to 40 ̊ C):
The maximum effect of temperature on torque
measurement precision.

W

Weight:
The weight of the actuator module.

JACO2, MICO2 and related accessories
are products of Kinova Robotics,

designed and manufactured in Canada.

84

Appendix C

Kinova-ROS: Installation

To make kinova-ros part of your workspace, follow these steps:

user@hostname$ mkdir -p ~/catkin_ws/src

user@hostname$ cd ~/catkin_ws/src

user@hostname$ git clone https://github.com/Kinovarobotics/kinova-ros.git kinova-ros

user@hostname$ cd ~/catkin_ws

user@hostname$ catkin_make

user@hostname$ source devel/setup.bash

To access the arm via usb copy the udev rule file "10-kinova-arm.rules" from "~/catkin_ws/src/

kinova-ros/kinova_driver/udev" to "/etc/udev/rules.d/":

user@hostname$ sudo cp kinova_driver/udev/10-kinova-arm.rules /etc/udev/rules.d/

All functionalities available in USB are available in Ethernet. To use ethernet connection

follow these steps:

1. Setup a static IP address for your ethernet network say - 192.168.100.100;

2. With the robot connected to your PC via USP open kinova’s Development Center;

3. Open tab General/Ethernet - Set robot IP Address to something like - 192.168.100.xxx;

4. Make sure MAC address is not all zero;

5. Press ’Update’ and restart robot;

6. In a terminal ping your robot’s IP, then your robot is setup for ethernet.

85

To connect to robot via ethernet in ROS just set these parameters in kinova_bringup/launch/

robot_parameters.yaml

connection_type: ethernet

local_machine_IP: [your PC network IP]

subnet_mask: [your network subnet mask]

86

Appendix D

Kinova-ROS: How to use the stack

D.1 Gazebo Simulator

Launching Gazebo with ros_control:

roslaunch thesis_control j2n6s300_gazebo.launch

To run the nodes referred to the package thesis_demo in Gazebo:

rosrun thesis_demo joint_pos_control.py

rosrun thesis_demo surface_polishing_gazebo.py

Use RQT to send commands:

rosrun rqt_gui rqt_gui

Use RVIZ to visualize the robot:

rosrun rviz rviz

1) Fixed Frame: root

2) Add: RobotModel

To launch moveIt with Gazebo:

roslaunch j2n6s300_moveit_config j2n6s300_gazebo_demo.launch

To visualize a list of the available topics:

rostopic list

To get info about a specific topic:

87

rostopic info /’{...}’

To visualize a list of the available services:

rosservice list

To get info about a specific service:

rosservice info /’{...}’

D.2 Real JACO2

Lauching the essential drivers and configurations for JACO2:

roslaunch kinova_bringup kinova_robot.launch kinova_robotType:=j2n6s300 use_urdf:=true

use_urdf specifies whether the kinematic solution is provided by the URDF model. This

is recommended and it is the default option.

Send the robot to HOME position:

rosservice call /j2n6s300_driver/in/home_arm

To launch moveIt with the real robot:

roslaunch j2n6s300_moveit_config j2n6s300_demo.launch

To switch from position to torque control and vice-versa:

rosservice call j2n6s300_driver/in/set_torque_control_parameters

rosservice call j2n6s300_driver/in/set_torque_control_mode 1

(Switch to Torque control: 1 | Position control: 0)

To calibrate the robot:

rosrun thesis_demo calibration_robot.py

To run the nodes referred to the package thesis_demo in JACO2:

rosrun thesis_demo joint_space_robot.py

rosrun thesis_demo surface_polishing_Q.py

To acess API functions:

rosrun kinova_driver kinova_api_funcs

rosrun thesis_demo kinova_api_wrapper.py

More information is available in [9].

88

Appendix E

Robot Operating System

Introduction

The Robot Operating System (ROS) is an open-source, framework for create robot

software. It is a collection of tools, libraries and conventions that simplify the task of

creating complex and robust robot behaviour across a wide variety of robotic platforms.

Why ROS? Because creating truly robust robot software is really hard. For example,

many problems and tasks that seem trivial to humans could be considered difficult from the

robots perspective.

Dealing with real-world alterations in complex tasks and environments is so difficult

that no single individual, laboratory or institution can imagine building a complete system

from scratch. As result, ROS was built from the ground up to encourage collaborative

robotics software development. [14]

Brief History

The ROS project was started in 2007 with the name Switchyard by Morgan Quigley as

part of the Stanford STAIR (STanford AI Robot) project. In January, the main development

of ROS happened at willow Garage, a robotics research institute/incubator. The effort was

promoted by uncounted researchers who contributed their time and skills to the heart of

ROS and its fundamental software packages.

From the beginning, ROS was being developed at different institutions and for multiple

robots. At first, this appeared to be a mess, because it was far simpler for all contributors

to place their code on the same servers. Ironically, over the years, this has emerged as one

89

of the great strengths of the ROS ecosystem: any group can start their own repository on

their own servers, and maintain full ownership and control of it. They don’t need any-ones

permission. If they choose to make their repository publicly, they can receive the recognition

and credit they deserve and benefit from specific technical feedback and improvements like

all open source software projects.

Nowadays, the ROS world consists of tens of thousands of users worldwide, working

on projects ranging from hobbies to large industrial automation systems. [14]

Goals

The primary goal is to support code reuse in robotics research and development. ROS

is a distributed framework of processes (also known as Nodes) that enables executables to

be individually designed and loosely coupled at runtime. These processes can be organized

into Packages and Stacks, which can be easily shared and distributed. ROS also supports

a federated system of code Repositories that enable collaboration to be distributed as well.

This design, from the file system level to the community level, enables independent deci-

sions about development and implementation, but all can be brought together with ROS

infrastructure tools. [16]

In support of this primary goal there are several other goals of the ROS

framework:

• Easy integration with other robot software frameworks: ROS has already been inte-

grated with OpenRAVE, Orocos, and Player;

• Lightweight;

• Language independence: the ROS framework is easy to implement in any modern

programming language (commonly used with Python, C++ and Lisp);

• Multi-platform: it is actually available for UNIX and MAC systems, but efforts are

being made to make it fully compatible with Microsoft Windows OS;

• Scaling: ROS is appropriate for large runtime systems and for large development pro-

cesses.

90

Concepts

ROS has three level of concepts: the File-System level, the Computation Graph level,

and the Community level. [17]

File-System level

The following graph (fig.E.1) shows how ROS file-system and folder are organized on the

disk:

Figure E.1: ROS File-System level. [10]

The file-system level concepts mainly cover ROS resources that you find on disk, such

as:

• Packages: The ROS packages are the main unit for organizing software in ROS.

A package may contain ROS runtime processes (nodes), a ROS-dependent library,

datasets, configuration files, or anything else that is usefully organized together. Pack-

ages are the most atomic build item and release item in the ROS software.

• Meta-packages: The term meta-package is used for a group of packages for a special

purpose. In an older version of ROS such as Electric and Fuerte, it was called stacks,

but later it was removed, and meta-packages came to existence. One of the examples

of meta-package is the ROS navigation stack.

• Package Manifests: The package manifest file is inside a package that contains in-

formation about the package, including its name, author, licence, dependencies, com-

pilation flags, and other meta information like exported packages. The "package.xml"

file inside the ROS package is the manifest file of that package.

91

• Repositories: Most of the ROS packages are maintained using a Version Control

System (VCS) such as GitHub, subversion (svn), mercurial (hg), and so on. The

collection of packages that share a common VCS can be called repositories. The

package in the repositories can be released using a catkin release automation tool

called bloom.

• Message (msg) types: The ROS messages are a type of information that is sent

from one ROS process to another. We can define a custom message inside the msg

folder inside a package (my_package/msg/MyMessageType.msg).

• Services (srv) types: The ROS service is a kind of request/reply interaction between

processes. The reply and request data types can be defined inside the srv folder inside

the package (my_package/srv/MyServiceType.srv).

Computation Graph Level

The Computation Graph is the peer-to-peer network of ROS processes that are pro-

cessing data together. The main concepts in the computation graph are Nodes, Master,

Parameter server, Messages, Topics, Services, and Bags. All of which provide data to the

Graph in different ways.

Figure E.2: Structure of the ROS Graph layer. [10]

These concepts are implemented in the ros_comm (http://wiki.ros.org/ros_comm)

repository.

• Nodes: Nodes are processes that perform computation. ROS is designed to be mod-

ular at a fine-grained scale; a robot control system usually comprises many nodes.

For example, one node controls a laser range-finder, one node controls the wheels

92

http://wiki.ros.org/ros_comm

motors, one node performs localization, one node performs path planning, one node

provides a graphical view of the system, and so on. Each ROS node is written

using ROS client libraries such as roscpp (http://wiki.ros.org/roscpp) or rospy

(http://wiki.ros.org/rospy).

• Master: The ROS Master provides name registration and lookup to the rest of the

nodes. Nodes will not be able to find each other, exchange messages, or invoke services

without ROS Master. In a distributed system, we should run the master on one

computer, and other remote nodes can find each other by communicating with this

master.

• Parameter Server: The parameter server allows you to keep the data to be stored

in a central location. All nodes can access and modify these values. Parameter server

is currently part of the Master.

• Messages: Nodes communicate with each other by passing messages. Messages are

simply a data structure containing the typed field, which can hold a set of data and

that can be sent to another node. There are standard primitive types (integer, floating-

point, boolean, and so on) and these are supported by ROS messages. We can also

build our own message types following these standard types.

• Topics: Each message in ROS is transported using named buses called topics. When

a node sends a message through a topic, we can say the node is publishing a topic.

When a node receives a message through a topic, we can say the node is subscribing

to a topic. The publishing node and subscribing node are not aware of each other

existence. For example, we can subscribe a node that might not have any publisher.

The idea is to decouple the production of information from its consumption. Logically,

we can think of a topic as a strongly typed message bus. Each bus has a unique name,

and any node can access this topic and send data through it as long as they have the

right message type.

• Services: The publish/subscribe model is a very flexible communication paradigm,

but its many-to-many, one-way transport is not appropriate for request/reply inter-

actions, which are often required in a distributed system. Request/reply is done via

services, which are defined by a pair of message structures: one for the request and

other for the reply. A providing node offers a service under a name, and when the

client node sends a request message to this server, it will respond and send the result

93

http://wiki.ros.org/roscpp
http://wiki.ros.org/rospy

to the client. The client might need to wait until the server responds. The ROS service

interaction is like a remote procedure call.

• Bags: Bags are a format for saving and playing back ROS message data. They are

an important mechanism for storing data, such as sensor data, that can be difficult to

collect but is necessary for developing and testing algorithms.

The ROS Master acts as a name-service in the ROS Computation Graph. It stores

topics and services registration for ROS nodes. Nodes communicate with the Master to report

their registration information. As soon as these nodes communicate with the Master, they

can receive information about other registered nodes and make connections. The Master will

also make callbacks to these nodes when the registration information changes, which allows

nodes to dynamically create connections with the new nodes that are running.

Nodes connect to other nodes directly; the Master only provides lookup information,

like a DNS server. Nodes that subscribe to a topic will request connections from nodes that

publish that topic, and will stablish connection over an agreed upon connection protocol.

The most common protocol used in ROS is called TCPROS (http://wiki.ros.org/ROS/

TCPROS), which uses standard TCP/IP sockets.

Figure E.3: ROS basic concepts. [10]

Community Level

The ROS community Level concepts are ROS resources that enable separate communi-

ties to exchange software and knowledge. These resources include:

• Distributions: ROS Distributions are collections of versioned stacks that you can

install. Distributions play a similar role to Linux distributions: they make it easier

to install a collection of software, and they also maintain consistent across a set of

software.

94

http://wiki.ros.org/ROS/TCPROS
http://wiki.ros.org/ROS/TCPROS

• Repositories: ROS on a federated network of code repositories, where different insti-

tutions can develop and release their own robot software components.

• The ROS Wiki: The ROS community Wiki is the main forum for documenting

information about ROS. Anyone can sign up for an account and contribute their own

documentation, provide corrections or updates, write tutorials, and much more.

• Mailing Lists: The ros-users mailing list is the primary communication channel about

new updates to ROS, as well as a forum to ask questions about ROS software.

• ROS Answers: A site (https://answers.ros.org/questions/) for answering your

ROS related questions.

• Blog:: The Blog (http://www.ros.org/news/) provides regular updates, including

photos and videos.

Higher-Level Concepts

The higher-level concepts [2] are provided for helping the building of larger systems on

top of ROS:

• Coordinate Frames/Transforms: The tf package provides a distributed ROS-based

framework for calculating the positions of multiple coordinate frames over time.

• Actions/Tasks: The actionlib package provides tools to create servers that execute

long-running goals that can be pre-empted. It also provides a client interface in order

to send requests to the server.

• Message Ontology: The common_msgs stack provides a standard base message

ontology for robotics systems, even if the definition of messages can be arbitrary.

• Plugins: The pluginlib package provides tools for writing and dynamically loading

plugins using the ROS build infrastructure.

• Filters: The filters package provides a C++ library for processing data using a se-

quence of filters.

• Robot Model: The urdf package defines an XML format for representing a robot

model and provides a C++ parser.

95

https://answers.ros.org/questions/
http://www.ros.org/news/

96

Appendix F

Polishing Task Example

97

98

	Agradecimentos
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Contributions
	1.4 Organization

	2 The Kinova JACO² Robotic Arm
	2.1 System Overview
	2.2 Communication Modes
	2.3 Kinova-ROS

	3 JACO² Kinematics and Dynamics
	3.1 Direct Kinematics
	3.2 Differential Kinematics
	3.3 Dynamics

	4 Control Architectures
	4.1 ROS Control
	4.2 Computed torque control in the joint space
	4.3 Computed torque control in the task space
	4.4 Joint Space Control with Task Posture Reference
	4.5 Impedance Control

	5 Experimental Results
	5.1 Gazebo Simulator Results
	5.1.1 Computed torque control in the joint space (simulator)
	5.1.2 Computed torque control in the task space (simulator)
	5.1.3 Joint space control with task posture reference (simulator)
	5.1.4 Impedance control in the task space without force sensing (simulator)
	5.1.5 Impedance control in the task space with force sensing (simulator)
	5.1.6 Impedance control in the task space with force sensing for redundant robots (simulator)

	5.2 Real JACO² Results
	5.2.1 Computed torque control in the joint space
	5.2.2 Computed torque control in the task space
	5.2.3 Impedance control in the task space without force sensing
	5.2.4 Impedance control in the task space with force sensing
	5.2.5 Impedance control in the task space with force sensing for redundant robots

	6 Surface Polishing
	6.1 Polishing task in Gazebo simulator
	6.2 Polishing task in the real JACO²

	7 Conclusion
	7.1 Future Work

	8 Bibliography
	A JACO² Product Specification
	B Actuators Product Specification
	C Kinova-ROS: Installation
	D Kinova-ROS: How to use the stack
	D.1 Gazebo Simulator
	D.2 Real JACO²

	E Robot Operating System
	F Polishing Task Example

