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Abstract

Mobile robotics has been constantly researched in the last decades, due to the potential

applications it may bring to society. In an industrial context, this subject has been evolving

so that mobile robots can be more flexible and precise, without compromising workers’

safety. In order for a mobile robot to navigate autonomously, it must be equipped with an

environment perception module, so that it can build the environment map, localize itself

and plan safe trajectories. Although mapping and localization are two distinct modules,

SLAM (Simultaneous Localization and Mapping) techniques apply these two modules in an

integrated way.

The main objective of this dissertation was focused on the localization module. The

approach intended for this module, included using sensor fusion data applied to a particle

filter. The used and studied sensors, included: encoders, a laser scanner, an IMU (Inertial

Measurement Unit) and a beacon-based IPS (Indoor Positioning System). These sensors

were fused in different ways, so that diverse approaches could be tested.

Experimental tests were conducted in order to assess the performance of the proposed

localization approach. These tests included the comparison of the developed localization

system with the well known AMCL (Adaptive Monte Carlo Localization) method, analyzing

different sensor fusion schemes in different scenarios and in both static and dynamic envi-

ronments. The results from the experimental tests were analyzed and the main conclusions

highlighted the advantages and disadvantages of each sensor fusion method.

Keywords: Sensor Fusion, Localization, Adaptive Monte Carlo Localization, Mobile Robot,

Perception.

iii





Resumo

A Robótica Móvel tem sido constantemente investigada nas últimas décadas, devido às

potenciais aplicações que pode trazer à sociedade. Em contexto industrial, este assunto tem

evolúıdo, para que os robôs móveis possam ser mais flex́ıveis e precisos, sem comprometer a

segurança dos trabalhadores. De modo a que um robô móvel navegue autonomamente, ele

tem que estar equipado com um módulo de perceção do ambiente, para que possa contruir

o mapa do ambiente, localizar-se e planear trajetórias seguras. Apesar de mapeamento e

localização serem módulos distintos, as técnicas de SLAM (Simultaneous Localization and

Mapping), aplicam estes dois módulos de uma maneira integrada.

O objetivo principal desta dissertação foi focado no modulo de localização. A abordagem

pretendida para este módulo, incluiu usar dados de fusão sensorial aplicados a um filtro de

part́ıculas. Os sensores estudados e usados, inclúıram: encoders, um IMU (Inertial Mea-

surement Unit) e um IPS (Indoor Positioning System) baseado em beacons. Estes sensores

foram fundidos de maneiras diferentes, para que pudessem ser testadas diversas abordagens.

Foram realizados testes experimentais com objectivo de avaliar o desempenho da abor-

dagem de localização proposta. Estes testes inclúıram a comparação do sistema de local-

ização com o conhecido método AMCL (Adaptive Monte Carlo Localization) e a análise

de diferentes esquemas de fusão sensorial em diferentes cenários e em ambos os ambientes,

estáticos e dinâmicos. Os resultados dos testes experimentais foram analisados e as principais

conclusões evidenciaram as vantagens e desvantagens de cada método de fusão sensorial.

Palavras Chave: Fusão Sensorial, Localização, Adaptive Monte Carlo Localization, Rôbo

Móvel, Perceção.
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“Creativity is intelligence having fun.”
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Chapter 1

Introduction

Robotic systems have been developed to execute all kinds of industrial tasks (e.g., produc-

tion) [1], with the purpose of providing optimization and flexibility to different processes. A

robotic vehicle that gained some importance in the industrial field is the Automated Guided

Vehicle (AGV), since its purpose is the transportation of materials in industrial environments

(e.g., warehouses) [2]. There are many solutions based on different sensors for localization

or path planning of AGVs, where some of the most deployed solutions are magnetic tape

tracking and laser-based localization [2].

(a) Magnetic tape tracking.1 (b) Laser-based localization.2

Figure 1.1: Two different solutions for the AGV navigation system.

1https://automotivemanufacturingsolutions.com/wp-content/uploads/2016/04/AGV-seat-1.

jpg
2https://www.transbotics.com/hubfs/Automatic_Guided_Vehicle_natural_navigation.jpg?t=

1502905426963

1

https://automotivemanufacturingsolutions.com/wp-content/uploads/2016/04/AGV-seat-1.jpg
https://automotivemanufacturingsolutions.com/wp-content/uploads/2016/04/AGV-seat-1.jpg
https://www.transbotics.com/hubfs/Automatic_Guided_Vehicle_natural_navigation.jpg?t=1502905426963
https://www.transbotics.com/hubfs/Automatic_Guided_Vehicle_natural_navigation.jpg?t=1502905426963


1.1 Context and motivation

One of the potential approaches for industrial AGVs is laser-based localization methods

but most of the actual localization methods rely on multimodal sensor data, because laser-

based systems alone, have problems in accuratly localizing the AGV in featureless zones (e.g.,

corridors) [3, 4], or in zones with dynamic obstacles. Among the used sensors for localization

in industrial settings, some of the most popular are the laser scanner, wheel encoders (used

for odometry) and the Inertial Measurement Unit (IMU).

Within laser-based approaches, the particle filter (PF) based localization approach have

a low software implementation overhead [5], but sometimes, due to their lack of sensor in-

formation, the particles start to diverge [6]. One of the most popular among these methods

is the AMCL (Adaptive Monte Carlo Localization) [7], which uses pose (position and orien-

tation) data (e.g., odometry), a prior cell grid map and laserscanner data to estimate the

robot’s pose (Fig. 1.2 (a)).

Open versions of the aforementioned algorithms are available in Robot Operating System

(ROS) [8]. Since the available “amcl”3 software package could only receive odometry data

(excluding laser and map data), one of the motivations was to modify the package, so it can

support another similar message (pose type message). This message can be generated by

combining and filtering data from two sensors (encoders and IMU), or simply filtering data of

the already used sensor in an Extended Kalman Filter (EKF), as shown in Fig. 1.2 (b). Here,

the used EKF software is also a software package in ROS, named as ”robot localization”4.

Odometry 

IMU

EKF
OR AMCL

Laser

MapMap

Odometry  AMCL

Laser

Estimated 
pose

(a) (b)

"amcl"
ROS package

"amcl"
ROS package

Estimated 
pose

"robot_localization"
ROS package

Figure 1.2: Localization systems where (a) represents the setup containing the available

”amcl” package in ROS and (b) the expanded system proposed in this dissertation with the

modified ”amcl” package.

3http://wiki.ros.org/amcl
4http://wiki.ros.org/robot_localization

2

http://wiki.ros.org/amcl
http://wiki.ros.org/robot_localization


Although these modifications (Fig. 1.2 (b)) help on the study of the localization system,

they are not enough to solve some of the problems faced by mobile robots, such as: dy-

namic obstacles, featureless zones and localization failures. So, the main motivation of this

dissertation was to develop a system using multi-modal sensor data (as shown in Fig. 1.3)

that uses position and pose (position and orientation) data from multiple sensors and study

which would be the approach to be applied in a PF-based multi sensor fusion algorithm, to

make the localization more robust and reliable.

MSPF2 

Odometry 

IMU 

Indoor
positioning 

system  

EKF 

Occupancy
grid map

2D Laser  
scanner 

"robot_localization"
ROS package

"MSPF2"
ROS package

Figure 1.3: Block diagram of the proposed system where: uo and ue are respectively the

Odometry and EKF pose data; uip is the position data from a beacon-based IPS; IR is

the motion data from the IMU sensor; M is a matrix of the map cells data with i and j

respectively being the number lines and columns; L is the 2D laser scanner with k being

the number of points scanned by the laser (d and α are distance and angle data); x̂R is the

estimated pose of the PF system.

The proposed PF block (shown in Fig. 1.3) is named as Multi Sensor Particle Filter Fusion

(MSPF2), is the main result of this dissertation work and it is thoroughly described in Chap-

ter 4. The odometry, 2D laser scan, Marvelmind beacon-based Indoor Positioning System

(IPS) and IMU are briefly described in Section 5.2. An overview of the ”robot localization”

ROS package and the occupancy grid map are is given in Chapter 3.
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1.2 Main objectives

As mentioned in the previous section, the main objective of this dissertation work was

the development of a localization approach that could integrate multi-modal sensor data in

a PF based method for mobile robot’s pose estimation. More precisely the main objectives

can be divided in two steps as follows:

• Multi-modal sensor system: The first step is to develop a system that can receive

data from multiple sensors, process this data according to its type (pose or position)

and send it to the PF;

• PF based sensor fusion: The filter implementation needs to guarantee that data

from multiple sensors can be fused, in order to be used for robot pose estimation.

Different approaches of sensor fusion need to be tested in order to find a method that

is robust, precise and that can estimate the robot’s pose in both static and dynamic

environments.

1.3 Implementations and key contributions

The main implementations and contributions are described in:

Developed Work (Chapter 4):

• Multi sensor fusion system design: Description of the developed software design

for multiple sensor inputs, including the local and global localization sensors.

• Particle filter: Detailed description of the MSPF2 algorithm, including the tested

sensor fusion methods.

Validation Platform (Chapter 5):

• Hardware architecture: Overview of the different onboard sensors for the validation

of the MSPF2 methods.

• Teleoperation: Two methods were deployed in ROS to directly steer the AGV plat-

form with a game controller. One of the methods consists on directly sending the

commands from the gamepad controller to the processing unit, while the other sends

4



the commands to a PC, which forwards them to the platforms processing unit trough

the same network.

• Global positioning system: Beacons, for indoor global positioning (the IPS system),

were inserted in the robot and environment, so that global positioning data could be

acquired.

Experimental Validation (Chapter 6):

• Parameters tuning: An experimental tuning was performed on the PF parameters

and tested on the same conditions, to ensure the selection of the best parameters for

the mobile robot.

• Off line testing: Different environments were tested in different situations with the

methods that showed best performance, using the data from several datasets.
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Chapter 2

Localization technologies and

methods: State of the art

Indoor localization is a very important research topic in an industrial context because it

is important for mobile robots to be developed with trajectory flexibility and reduction of

costs (robot and associated setup cost) in mind [3, 9, 10]. The majority of the high-level

tasks performed by a robot (e.g., planing, execution) are based on the supposition that the

robot can answer to three basic questions: “Where am I?”, “Where am I going”, “How can

I get there?”. The first question is related to the localization problem and the latter two, to

the knowledge of the robot’s workspace and decision-making [11]. In an industrial context,

an AGV needs a precise pose, so that it can execute its tasks with the maximum possible

safety in order to complete its mission and guarantee that the other agents (workers and

other AGVs) can also execute their tasks safely [2].

2.1 Technologies

Some of the most used technologies for AGV localization in indoor environments are:

IMUs, encoders, IPSs and laser scanners [12, 13, 14]. There is also the magnetic tape

tracking system, which does not locate the AGVs but allows them to follow intended paths

[15], and optical line guidance sensors1, that are used for the same purpose. In AGV or mobile

robots localization, the IPS presents important features since this technology is related to

absolute/global positioning. The IPS is based in principles that somehow resemble a Global

Positioning System (GPS), where in a simplified way a constellation of satellites (beacons

1https://www.sick.com/us/en/line-guidance-sensors/optical-line-guidance-sensors/c/

g466252
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with known positions) send distance measurements and one or more mobile devices receive

these measurements so that they can obtain the robot’s position by means of some known

techniques, such as trilateration [16, 17]. The use of IPS requires changes to the work

environment, i.e., beacons must be placed in the surrounding structures in key positions

so as to avoid reflection or occlusion problems and to increase the accuracy of measured

distances.

For indoor localization, several systems are based in technologies such as ultra-wideband

(UWB), infrared (IR), Wi-Fi and ultrasound [18].

Systems based in UWB use pulse transmissions short in time over a higher bandwidth of

frequencies (>500MHz) instead of a specific frequency to transmit information thus achieving

a lower consumption of the components. Applications with these systems consist in a mobile

element detecting the emitted pulses by the beacons placed in the infrastructure [19, 20].

With IR based systems, IR emitters are installed in known positions on the robot’s

workspace where each transmission is codified by a frame with a specific identification (ID),

the beacon position and other elements. One of the greatest problems of these systems is

the necessity for emitters and receivers to be in the same field of vision. This is due to the

restrict angle of IR transmission, which for wide areas, can demand an higher number of

beacons to ensure a robust positioning. Another major problem of this technology is the

interference in the IR signal [21].

Systems based in existent Wi-Fi networks can be used for position estimation of any agent

with a good precision [22]. This type of localization can easily be applied in several indoor

scenarios. However, problems related with the network congestion and interferences caused

by elements in the scenario, can limit the accuracy of this type of systems [20, 23]

In ultrasound-based systems, sound waves transmission are effectuated on the non-audible

specter (superior to 15KHz). The localization is performed based on the time of flight

between a receptor and an emitter, being necessary the obtaining of at least two readings

coming from different emitters to be able to calculate a robust position. Depending on the

scenarios and on the types of materials used on the walls, one of the greatest problems of

this kind of systems is the blocking and reflection of ultrasound signals. Additionally, it is

important to note that the emitter and receptor are in line of sight to get a more accurate

position [24, 25].

Table 2.1 presents some technical specifications of the technologies described in this chap-

ter, in particular, accuracy and coverage values.
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Technologies UWB IR Wi-Fi Ultrasound

Accuracy 15cm 57cm – 2.3m 1.5m 1cm – 2m

Coverage (m) 1-50 1-5 20-50 2-10

IC High High Low High

Table 2.1: Technical specifications of some indoor localization technologies (adapted from

[18, 22]). IC: installation and maintenance cost.

2.2 Localization methods

Within localization methods for mobile robots some of the well-known methods are based

on the following stochastic filters frameworks: the EKF, the Unscented Kalman Filter (UKF),

the Monte Carlo Localization (MCL) and the adaptive PFs.

Mobile robots can not always be described by linear state transitions but the KF (Kalman

Filter) assumes this linearity, and for this reason, is only applicable to the simplest robotic

problems [7]. The linearity assumption is overcome by the EKF, i.e., it uses the Taylor

expansion (first order) to find a linear approximation of nonlinear functions [7].

The EKF is a filtering strategy that was used over the last decades but it is consensual

that it presents some difficulties (e.g. difficult implementation and tuning) in tracking and

control fields. It also assumes that the distributions of noise sources are Gaussian, which is

not assumed by the UKF [26]. The UKF uses the unscented transformation for statistics

calculation of random variables that experience a nonlinear transformation [27]. This filter

can be used for mobile robot’s applications such as multi-sensor-based human detection and

tracking system [28].

In the MCL PF method, the representation of the probability density function is made by

maintaining a set of samples (particles) that are randomly drawn from this density function

[29]. This method is able to represent multi-modal distributions and it can be applied to

both local and global localization problems [7]. PFs are easily implemented, which makes

them an attractive solution for localization methods of mobile robots. This method also has

some limitations, such as, the impossibility of solving the kidnapped robot problem2 in the

method’s original form since there might be no samples around the robot’s new pose after

it has been transported [4].

2The kidnapped robot problem consists on locating the robot after it has been transported to another

location of the environment without any knowledge of this transportation.
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In adaptive PF approaches such as the AMCL, the sample set size is determined in each

iteration, based on statistical bounds. The particle’s set size varies depending on the faced

problem (e.g, when facing position tracking situations, the particle filter uses a small sample

set, but when facing global localization problems, it uses a larger sample set [30]). This

approach has some associated improvements over PFs with sample sets of constant size, such

as improvements on the computational overhead, position tracking and global localization

problems [30, 31].

Table 2.2 contains a brief review of some localization methods deployed in indoor mobile

robots and other systems over the years.

Table 2.2: Brief review of systems with indoor localization methods.

Localization methods Description Technologies

Extended Kalman Filter (EKF) based local-

ization applied to Robox (2002) [32].

Social guide robot at Expo 02, guided 686.000

people over 5 months, seven days a week, up

to twelve hours a day.

Enhanced navigation system, that handles the

exhibition environment, which was highly dy-

namic because of the people walking around.

Encoders

Two laserscanners

Localization method based on the MCL

(Monte Carlo Localization) approach used for

in robot Jinny (2004) [33].

The Jinny has been tested in various envi-

ronments like an office building in KIST (Ko-

rea Institute of Science and Technology). The

main functions of this robot consist on human

interaction and autonomous navigation.

Encoders

Two laserscanners

Gyroscope

The robot PR2 (2010) [34] dynamically

switched between the AMCL and the EKF lo-

calization methods depending on the available

data.

Indoor robot for social environments, which re-

quired a navigation system that was capable of

operating in an office without having any inci-

dents for 26.2 miles.

Performed in a marathon, without human in-

teraction for over 30 hours.

Encoders

Laserscanner

IMU

Use of IMU and UWB sensor fusion applied to

a particle filter for postion estimation of mobile

agents (2017) [35].

System composed by modules placed on the

users torso, which gives relative positioning be-

tween multiple mobile users.

This system has many applications, as it is in

the case of search and rescue disaster areas, or

social interaction scenarios.

IMU

UWB
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Chapter 3

Background material

3.1 Particle filter

“The particle filter is an alternative nonparametric implementation of the Bayes filter”, a

concept extracted from [7]. This algorithm begins by randomly distributing a set of samples

across the robot’s workspace, then, in each iteration there is an attempt to approximate the

particles to the real system state. The particles of this filter are denoted as:

Xt = [x
[1]
t , x

[2]
t , ...., x

[N ]
t ] (3.1)

Every x
[n]
t (with 1 ≤ n ≤ N) particle represents a hypothesis of the real state of a system at

time t, with their respective importance factor (w
[n]
t ). N represents the number of samples

in the set Xt, which is a fixed number of states, but in some methods it can be a variable,

as it happens in the KLD-sampling method [30], that is described in this dissertation.

PFs (Fig. 3.1) use the posterior state of the particles (Xt−1), the control (ut) and mea-

surement (zt) at time t to estimate the new particle states. PFs can be decomposed in 3

fundamental steps: Prediction; Update; Resampling.

In the literature, the authors of [29, 35, 36, 37] and others, mention these steps with

different names. The name chosen for the first step is ”Prediction”, because in it the next

state of the particles is predicted based on the motion model of the mobile robot. The

second step updates the weight of the particles based on the observation model of the sensors,

therefore it is named ”Update”.
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Prediction Update Resampling

Delay
Particle filter

Figure 3.1: Particle filter pipeline.

Before entering in the iterative steps of the PF, there must be an initialization of the

parameters. The initial belief bel(x0) can be obtained by generating N random particles

based on the prior distribution p(x0) and attributing to each particle the same importance

factor 1
N

. One of the objectives of this dissertation is to use the PF in a differential mobile

robot [38]. For this reason, the descriptions about the filter will no longer be generic, but

will be directed to the mobile robot used in the development of this dissertation.

3.1.1 Prediction

In the prediction stage, the PF generates an hypothetical pose x
[n]
t of the platform based

on the prior particle x
[n]
t−1 and the control ut. The particles are decomposed in 3 states

(x[n], y[n], θ[n]) and the control ut is a sensor estimation of the mobile robot’s pose at time

t (ut = [x̄Rt , ȳ
R
t , θ̄

R
t ]). As it is suggested in [7] the previous and actual pose estimations are

transformed in a translation (δtrans) and 2 rotations (δrot1 and δrot2) as it is shown in Fig. 3.2.

0º

Figure 3.2: Visual representation of the motion model with xRt =[xRt y
R
t θRt ], xRt−1=[xRt−1 y

R
t−1

θRt−1] and the dashed line representing the 0o orientation.

The following equations are applied in order to obtain the prediction of all the hypothetical

poses (particles) [7]:
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δrot1 = atan2(ȳt

R − ȳRt−1, x̄t
R − x̄Rt−1)− θ̄Rt−1

δtrans =
√

(x̄tR − x̄Rt−1)2, (ȳtR − ȳRt−1)2

δrot2 = θ̄Rt − θ̄Rt−1 − δrot1

(3.2)


δ̂rot1 = δrot1 − sample(α1δ

2
rot1 + α2δ

2
trans)

δ̂trans = δtrans − sample(α3δ
2
trans + α4δ

2
rot1 + α4δ

2
rot2)

δ̂rot2 = δrot2 − sample(α1δ
2
rot1 + α2δ

2
trans)

(3.3)


x

[n]
t = x

[n]
t−1 + δ̂trans cos(θ

[n]
t−1 + δ̂rot1)

y
[n]
t = y

[n]
t−1 + δ̂trans sin(θ

[n]
t−1 + δ̂rot1)

θ
[n]
t = θ

[n]
t−1 + δ̂rot1 + δ̂rot2

(3.4)

The relative motion parameters (δrot1, δtrans, δrot2)T are obtained by applying (3.2). Then,

the relative motion parameters (δ̂rot1, δ̂trans, δ̂rot2)T are obtained with (3.3) by subtracting

sampled error to each motion parameter, with the error parameters being α1, α2, α3 and

α4. The new states (x
[n]
t , y

[n]
t , θ

[n]
t ) are computed with (3.4) by adding the relative motion

parameters to the previous states. One approach for error sampling is the Box-Müller method

[39, 40]:

sample(σe) = σe · r2

√
−2 ln (r1) (3.5)

with r1 ∼ U(−1, 1), r2 ∼ U(−1, 1) and σe being the input of the function. U(−1, 1) is an

uniform distribution.

3.1.2 Update

There is a great variety of different sensor modalities for robots, such as tactile sensors,

range sensors, or cameras. Within the ones used in mobile robotics, range finders, which

are some of the most popular, provide measurements of distance to nearby objects. The

range may be measured along a beam, which is a good model for laser range finders, or

within a cone, which is the preferable model of ultrasonic sensors. The measurement model

is formally defined as a conditional probability distribution p(zt|xt,M), being xt a particle,

zt the measurements at time t, and M the map of the environment, with this being usually

a grid cell map. The following algorithm refers to a measurement model for beam range

finders that can be used in the update step.
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Algorithm 1: Range beam model algorithm adapted from [7].

Data: beam range measurements zt = {z1, ..., zK}, particle xt = {xt, yt, θt},

occupancy grid map M

1 w = 0;

2 for k=1 to K do

3 z∗k = tracing algorithm(xt, zk,M);

4 w = w +Nz(0, z∗k − zk);

5 end

6 w = w
K

; return w

In Algorithm 1, for each distance measured by the range finder, the algorithm searches

for a traced distance (distance to the first occupied cell), by searching the grid map cells

in the line between the robot and the measured point. Based on the difference between

the traced and measured distances, the weight of the particle being processed is calculated.

One approach for tracing the cells in the line between the state xt and measure zk, is the

Bresenham line algorithm described in [41]. This method computes the cells in a line between

the robot’s pose and the measured point. After using the Bresenham line algorithm, the cells

are analyzed in order to find the first occupied cell in that line. This process is shown in

Fig. 3.3, where xt is a possible state (particle), zk is the measured point by the sensor and

z∗k is the point of the first occupied cell of the line.

zk

z
k

xt

*

Figure 3.3: Tracing algorithm representation, that encompasses two steps: the algorithm for

line tracing and the search for the first occupied cell. In the occupancy-grid map, the gray

cells are the ones in the line between state xt and measurement zk and the occupied cells are

the ones represented in red, with z∗k representing the first detected occupied cell.
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3.1.3 Resampling

In the resampling step, the temporary particle set X̄t of N particles is transformed into

another set (Xt) of identical size. The algorithm draws particles from the temporary set X̄t,

with the probability of drawing a particle being related to the particle weight. Depending on

the resample method, the resampled set of particles can contain duplicates, which in some

cases happens because particles from the previous distribution are randomly sampled and

this sampling can chose the same particle more than once [42, 43, 44]. One method for the

resampling of particles, is the multinomial resampling [44]. This method starts by ordering

the particles according to their weights. Then, N numbers r are generated as follows:

r[n] ∼ U [0, 1], with n = [1, 2, ..., N ] (3.6)

these numbers are used to select a particle x
[n]
t according to the multinomial distribution as

follows:

x
[n]
t = x̄

[j]
t , with j = F−1(r[n]) and r[n] ∈ [

j−1∑
s=1

w
[s]
t ,

j∑
s=1

w
[s]
t ] (3.7)

where x̄
[j]
t is the particle from the temporary set X̄t with index j obtained from the inverse

cumulative probability distribution (F−1) of the normalized particle weights.

3.1.4 KLD-sampling

The Kullback–Leibler Distance (KLD) sampling is a method for adapting the particle set

size of particle filter algorithms. In this method, instead of applying each stage separately

to the entire particle set, each particle goes trough all stages so that the number of desired

samples (nχ) can be updated each time a particle is processed. When the number of desired

samples/particles is reached, the particles are not sampled anymore until the next filter

iteration. To update the number of desired samples, the number k of occupied bins, needs

to be known. For this purpose, each cell of the occupancy-grid map will contain an angle

histogram divided into n sections and each of these n sections is considered a bin (b). As

Algorithm 2 shows, the difference from this to the other methods is in lines 9 to 13 (KLD

condition). These lines contain the verification of the bin where the particle fell, the update

of the number of occupied bins (k) and the step that updates the number of desired particles

based on the number of occupied bins. In line 12 of Algorithm 2, the number of desired

samples is computed trough the presented equation, where z1−δ is the upper 1− δ quantile

of the standard normal distribution [30]. Figure 3.4 illustrates how the bins are verified.
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Algorithm 2: KLD-sampling algorithm adapted from [30].

Data: Posterior particle set Xt−1 = {(x[n]
t−1, w

[n]
t−1)| n = 1, ..., N}, representing belief

bel(xt−1), control ut, observation zt, bounds ε and δ, minimum number of

samples nmin

1 Xt = ∅, n = 1, nχ = 0, k = 0, α = 0; ; // Initialize

2 Xt−1 = Resample(Xt−1); ; // Rearranges the previous particle set

3 do

4 x
[j]
t−1 = Draw(Xt−1); // Samples a particle with index j from Xt−1

5 x
[n]
t = p(x

[n]
t |x

[j]
t−1, ut−1); // Predicts next state

6 w
[n]
t = p(zt | x[n]

t ); // Computes Importance weight

7 α = α + w
[n]
t ; // Updates normalization factor

8 Xt = Xt ∪ {x[n]
t , w

[n]
t }; // Inserts new particle in the new particle set

9 if x
[n]
t is in empty bin b then

10 k = k + 1; // Updates number of non-empty bins

11 b = occupied; // Marks bin as non-empty

12 nχ = k−1
2ε

(1− 2
9(k−1)

+
√

2
9(k−1)

z1−δ)
3; // Updates bin size

13 end

14 n = n+ 1;

15 while (n < nχ and n < nmin);

16 for i = 1, ..., n do

17 w
[i]
t = w

[i]
t /α; // Normalizes the weight of each particle

18 end

19 return Xt
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In Fig. 3.4 (a) the sampled particle falls into an empty bin, which turns into an occupied

bin and in this situation, the number k is updated. In Fig. 3.4 (b) the bin is already

occupied, so nothing happens. The bin in which the particle falls into is determined by the

orientation of the particle as shown in Fig. 3.4. Since the KLD-sampling is a method for

adaptive particle filter algorithms, it brings some advantages, such as improvements on the

computational overhead, as explained in Section 2.2.

(a)

(b)

Figure 3.4: Representation of a particle falling into a grid-map cell, being: (a) Example of

a particle falling into an empty bin; (b) Example of a particle falling into an occupied bin.

The particle is represented by the black dot (position) and black arrow (orientation). The

occupied bins are the red ones while the empty bins are the white ones. The represented

histograms have 8 sections/bins.

3.2 Extended Kalman Filter package

In order to test different methods of sensor fusion, multiple sources of pose or position

data were needed. The ”robot localization” ROS package[45] presented some advantages

towards the proposed system. This software can fuse data from multiple sensors in an EKF,

or simply apply information from one sensor to the filter. The configurations used for this

system permitted to filter the IMU data fused with odometry data, or just the odometry in

the EKF. Figure 3.5 represents the inputs and outputs block of the ROS package. The EKF

was chosen to be used instead of the KF (Kalman Filter) because it determines the next

state and measurement probabilities trough nonlinear transitions [7].
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Odometry
 

IMU

EKF pose 
 

robot_localization  
Extended Kalman

Filter

Figure 3.5: EKF block with inputs and outputs for the used configurations.

The KF assumes linear state transitions and measurements, but a mobile robot can not

always be described by linear state and/or measurement transitions.

3.3 Environment representation

In order for a mobile robot to be autonomous, it needs to be able to use a map representing

the environment. This map could be either built using different types of sensor data, or it

could be priorly given. There are 2 types of representations addressed in [46], the topological

maps and the grid-based (metric) maps, but in this dissertation only grid-based maps were

used.

3.3.1 Grid-based maps

Occupancy-grid maps can represent the environment in 2D or 3D grids, but in this disser-

tation, only 2D representations were used. In this kind of representation, the environment

is divided into a matrix of cells that form the metric grid, where the resolution depends on

the cell size. The cells have associated an occupancy value that represents the probability

of the cell being occupied. Figure 3.6 shows an example of a grid-based map.

Figure 3.6: Example of an occupancy grid map representation.
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Chapter 4

Developed work

This chapter presents the proposed MSPF2 localization system, with more emphasis on

the system design and the PF algorithm.

4.1 MSPF2 system

The PF used in this dissertation was inspired in the methods described in [7] and [30].

However, the developed system differs from the existing ones in the sense that it is able to

receive pose and/or position information from multiple sensors (i.e., laser scanner , encoders

and IMU).

4.1.1 Initialization section

The MSPF2 approach can be decomposed in two main sections, as shown in Fig. 4.1, the

initialization and the loop. The initialization consists on two procedures, as follows:

• Map loading: There is a need for a map of the environment to validate the observa-

tions coming from the laser scan, so the first step is to load the occupancy grid map

file. This file is generated from a version of the HectorSLAM1[47], and it is coded in

yaml format.

• Parameters configuration: To avoid wasting resources in redundant localization

estimations, a configuration is made for each sensor that provides pose data, which

only lets the localization method work when a defined minimal translation or rotation

is attained by sensor measurements. The function that governs this step receives as

1http://wiki.ros.org/hector_slam
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inputs: a key string, a value of minimum distance (∆d), and a value of minimum

rotation (∆θ). The key string serves to create variables for each sensor, so that their

data is processed independently, while ∆d and ∆θ values serve to preclude the sensor

data from being used unless one of those values of displacement have been reached

since the last estimated pose.

Map loading Parameters
configuration

Receive  
EKF 

Receive  
odometry

Receive  
IPS

Receive  
laser

KLD-based
particle filter

Initialization

Sensor handler

Loop

Receive sensor and EKF data

Pose Estimation

Figure 4.1: MSPF2 flowchart, including the initialization steps and the cyclic steps that

occur in the loop section.

4.1.2 Loop section

The loop section is where the sensor information is gathered and processed, so it can be

used in the filter to obtain an estimated pose. The procedures for the loop section are:

• Receive sensor and EKF data: The system design permits more than four inputs,

but only four were used in this dissertation as shown in Fig. 1.3. The data that is

received by the PF comes from odometry, an EKF, an IPS and a laserscanner. The

odometry and EKF inputs provide pose data ([x y θ]), the IPS provides position data

([x y]) and the laserscanner gives a matrix L containing the scanned distances and

their respective angles relatively to the laserscanner frame with a number of points (k)
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dependent on the sensor resolution.

L =

 d1 d2 · · · dk

α1 α2 · · · αk

 (4.1)

The configurations of the EKF input used in the PF, are in Section 3.2. While the

laser scan data enters directly in the filter, the pose and position data, from other

sources, is primarily processed in the Sensor Handler module.

• Sensor handler: When pose (odometry, EKF) or position (IPS) data is received,

it is processed to be later used in the PF. If position data is received, it is labeled

as global positioning data and this received position is saved to be used in the PF,

however, if pose data is received, this data is not labeled and the current and previ-

ous measurements are transformed into a translation and two rotations ([ut, ut−1] →

[δ̄rot1, δ̄trans, δ̄rot2]), as shown in Fig. 3.2 and (3.2). Until one of the displacement values

(∆d or ∆θ) has been reached, the transformed data is accumulated each time a new

measurement is received as follows:
δrot1 = δrot1 + δ̄rot1

δtrans = δtrans + δ̄trans

δrot2 = δrot2 + δ̄rot2

(4.2)

Whenever (δrot1 + δrot2) > ∆θ or δtrans > ∆d, the sensor data is applied to the PF.

After being used, the sensor data is reseted. The algorithm of the sensor handler is

described in Fig. 4.2.

Is global?

(x,y,θ)  
to 

(δt,δrot1,δrot2)

Save position 
(x,y)

Yes

No

Accumulate
(δt,δrot1,δrot2) 

Reset sensor

Receive
message

 δt > Δd  
or  

δrot > Δθ

Yes

No

Send data to
particle filter

Figure 4.2: Sensor handler steps, where δt = δtrans and δrot = δrot1 + δrot2.

• Particle Filter: The implemented PF follows the KLD method, described in Sub-

section 3.1.5, and therefore the order of operations, is slightly different from the one
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shown in Fig. 3.1. In this algorithm, the resampling step is the first to run, followed by

the prediction step and the last one is the update. The main modifications presented

by this PF-based localization approach are in the prediction step where it is possible

to receive information from multiple sensors and fuse this information to predict the

next pose of the particles. The structure of the filter is shown in Fig. 4.3 and the steps

are:

– Particles initialization: This step only runs once, during the initialization of

the filter. Usually, the particles are randomly created throughout the whole en-

vironment. But, in the experiments carried out in this work, the particles were

created on the origin of the axis or in an initial pose given by the user since it can

be ensured that the platform starts at the pre-defined position. The initialized

number of particles is the maximum number of particles (nmax), and the weight of

each particle is 1
nmax

because at this early stage, they have not yet been validated.

– Resampling: At this stage the particles are first ordered from the particle with

the lowest to the highest weight. Then, each of the ordered particles receive a

number, which contains the summed weight of all particles until that particle.

After this, the KLD algorithm is applied, so, from this rearranged set of particles,

each time a particle is sampled, it goes through the prediction and the update

stages, until the number of processed particles is equal to nmax, or the KLD

condition is reached. The particles are sampled according to the Multinomial

Resampling method, presented in Subsection 3.1.5. When these processes reach

to an end, the particle weights are normalized.

– Prediction: Before using the sensor information, the algorithm searches for the

types of information available and depending on that, a different method of fusion

is applied. In the approach implemented here, the types of information are applied

according to the method “1−α” described in [35]. If pose data is used, the motion

model described in Subsection 3.1.2 is applied and if position data is used, the

algorithm applies one of the methods in Subsection 4.2.4.

– Update: The update stage computes the weight (wt = p(zt|xt)) for a particle by

using the tracing algorithm described in Subsection 3.1.3. To avoid redundancy

during the validation cycle and not to waste processing resources, from the laser

points, only some of those are used to acquire the new weight of each particle.

The number os points used is defined by the user but they must be equally distant
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from each other in terms of number of points.

– Pose estimation: After the new particles are calculated, the filter, gets a new

estimation of the pose according to the following expressions [48]:

x̂Rt =



x̂Rt =
N∑
n=1

x
[n]
t · w

[n]
t

ŷRt =
N∑
n=1

y
[n]
t · w

[n]
t

θ̂Rt = atan2(
N∑
n=1

sin(θ
[n]
t ) · w[n]

t ,
N∑
n=1

cos(θ
[n]
t ) · w[n]

t )

(4.3)

with N being the number of used particles and x̂Rt the estimated robot’s pose

Resampling Prediction Update Pose estimation

KLD-based
particle filter

Particles 
Initialization

"Odom" "EKF" "IPS" "Laser Scan"

Prior map

Delay

Xt Xt

Xt-1

X0

Xt-1*

M

ut zt
o ut

e ut
ip

R
t

Figure 4.3: KLD-based particle filter block scheme with: Xt and Xt−1 being the actual and

the previous particle sets; X∗
t−1 the rearranged previous particle set; X̄t the actual predicted

set; X0 the initial set; x̂Rt the actual estimated pose; M the prior map; zt the observation;

ut (uot ,u
e
t ,u

ip
t ) the controls. Odom is an abbreviation for odometry.

4.2 KLD-based particle filter algorithm

This section presents a detailed description of the proposed KLD-based PF algorithm,

which is based on the KLD-sampling method [30] presented in subsection 3.1.4. The PF al-

gorithm is usually divided in three stages, and although it is common to apply the resampling

stage as the last step of the algorithm, the KLD-sampling algorithm uses the resampling as

its first stage and then maintains the order of the remaining steps as shown in Algorithm 3.
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Algorithm 3: KLD-based particle filter algorithm with sensor fusion.

Data: Posterior particle set Xt−1 = {(x[n]
t−1, w

[n]
t−1)|n = 1, ..., N}, representing belief

bel(xt−1), control measurement ut = [uot u
e
t u

ip
t ], observation zt , bounds ε and

δ, bin size, minimum and maximum number of samples nmin,nmax

1

2 Xt = ∅, n = 1, nχ = 0, k = 0, op = 0, d1 = 0, d2 = 0, α = 0; // Initialize

3 X∗
t−1 = sort(Xt−1); // Orders the particles from the lowest to the biggest weight

4 X∗
t−1 = prepare(X∗

t−1); // Gives the particle set the wc(weight counter)

5 op = choose(ut); // Choses a fusion option

6 do

7 x
[n]
t = pick(X∗

t−1); // Samples a particle from the previous set

8 x
[n]
t = Prediction(ut, op, x

[n]
t ); // Predicts next state with sensor fusion

9 w
[n]
t = Update(x

[n]
t , zt, M); // Computes Importance weight

10 α = α + w
[n]
t ; // Updates normalization factor

11 if (inEmptyBin(x
[n]
t )) then

12 k = k + 1; // Updates number of non-empty bins

13 setBin(x
[n]
t ); // Marks bin as non-empty

14 nχ = k−1
2ε

(1− 2
9(k−1)

+
√

2
9(k−1)

z1−δ)
3; // Updates number of samples

15 end

16 n = n+ 1;

17 if (n >= nmax) then

18 break;

19 end

20 while (n < nχ and n < nmin);

21 for n := 1, ..., N do

22 w
[n]
t = w

[n]
t /α; // Normalizes the weight of each particle

23 end

24 return Xt
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4.2.1 Resampling

The method used in this filter is based on the multinomial resampling approach [44]

because, it is a simple method to use [42, 43, 44] and it is the same method used in the

“amcl” ROS [8] package. Although major part of the sampled particles, have a good weight,

there are some drawn particles with a not ideal weight.

The implemented resampling algorithm is divided in the following steps:

• Sort: In line 3 (Algorithm 3), the posterior particle set, Xt−1, is ordered from the

particle with the lowest weight to the one with the biggest weight, giving origin to the

sorted set, X∗
t−1.

• Preparation: In line 4 (Algorithm 3), each particle x
∗[n]
t−1 gets attributed with a new

element, f(x
∗[n]
t−1) =

n∑
j=1

w
[j]
t−1, with 0 < f(x

∗[n]
t−1) ≤ 1. These new elements are used to

created a new point mass distribution, which will be used to sample a particle from

the previous set.

• Pick: In line 7 (Algorithm 3), a number is sampled from a uniform distribution (r ∼

U(0, 1)) and the algorithm searches for the first number in the point mass distribution

whose value is greater than the sampled number. Based on the found number, the

particle is picked. This step needs to be inside the loop, because each time a particle

is sampled and processed, there is a need to verify if the number of desired samples

was achieved.

N

0.2

0.05

0

0.1

0.15

1 ...

(a)

N

0.2

0.05

0

0.1

0.15

1 ...

(b)

N

1

0.2

0

0.4

0.8

1 ...

(c)

0.6

Figure 4.4: Graphics representing an example of the evolution of the resample stage: (a)

Previous particle set, Xt−1; (b) Sorted particle set, X∗
t−1; (c) Point mass distribution,

f(x
∗[n]
t−1) =

n∑
j=1

w
[j]
t−1, used to sample a particle for the new particle set. With N being the

number os particles in the set and 0 < n ≤ 1.
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After all particles are sampled for the resampled set, their weights are normalized and

the sum of the normalized particle weights is always equal to one (
N∑
n=1

w[n] = 1). Figure 4.4

shows the evolution of the resampling steps.

4.2.2 Prediction

The prediction algorithm is composed by two main tasks: the verification of available

sensors and the application of that sensor data. The first task consists in defining the

operation mode, which will define the prediction method to use in the picked particle. This

is illustrated in Fig. 4.5.

Ver. A

1

2

Ver. B

Ver. C

3

1

4

2

Operation mode

Sensor verification 

Beggining

Figure 4.5: Verification of available sensor data through a cascade system.

The verification process (Fig. 4.5), which searches for the available sensor data, is com-

posed by the following steps:

• Verification A: This first verification searches for odometry or EKF data. If odometry

data is found, the operation mode is set to 1, but if EKF data is available the operation

mode is set to 2. If, for some reason, both odometry and EKF data are available, the

EKF data is prioritized and the operation mode is set to 2.

• Verification B: The process only makes this verification if the operation mode was
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priorly set to 1. The system searches for IPS data, and if this data is found the

operation mode changes from 1 to 3; if not, the mode stays the same.

• Verification C: This verification is only made if the operation mode was priorly set

to 2. The system searches for IPS data, and if this data is found the operation mode

changes from 2 to 4; if not, the mode stays the same.

It is also important to mention that operation modes 3 and 4 can respectively return to 1

and 2 because the IPS has a low measurement rate and this prevents the localization method

from updating at a slower rate. Table 4.1 contains the possible operation modes according

to the detected sensor information.

Operation mode Sensor data

1 Odometry

2 EKF

3 Odometry + IPS

4 EKF + IPS

Table 4.1: Table containing the operation mode possibilities and the respective available

sensor information.

After the defining the operation mode, the algorithm applies the prediction method, based

on the available sensor data. This method was not designed to function without pose infor-

mation, so there needs to be available at least one sensor that estimates the robot’s pose.

Figure 4.6 represents the system that selects the prediction method to be used, based on

the defined operation mode. Depending on the number of available sensors, the method is

applied accordingly, and in some cases there is more than one type of sensor fusion that

can be applied with the same sensors. Aside from the processes of sensor verification and

decision making, the prediction algorithm is essentially composed by two functions: the

”Motion model” (Algorithm 4) and the ”IPS sample” ((4.4)). These functions are applied

to pose and position information respectively. When the operation mode is either 1 or 2,

the available pose information serves as an input for the ”Motion model” function, which

applies this information to a particle, as it can be seen in the Algorithm 4.
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Figure 4.6: Diagram describing the applied prediction methods based on the available sensor

data.

If the operation mode is equal to 3 or 4, the algorithm makes an evaluation to select if

the next particle is predicted using pose or position information. In the case of using pose

information, it’s applied the same function as in options 1 and 2. If the position information

is used, the ”IPS sampling” function, generates a new particle, instead of moving the picked

particle, by means of the following equations:

x
[n]
t =


x

[n]
t = xip − xge ∼ N (0, σ2

x)

y
[n]
t = yip − yge ∼ N (0, σ2

y)

θ
[n]
t = θ̂Rt−1 − θge ∼ N (0, σ2

θ)

(4.4)

where x
[n]
t , y

[n]
t and θ

[n]
t are generated by applying sampled errors from normal distributions,

to the position given by the sensor (xip and yip) and the last orientation estimated by the

PF (θ̂Rt−1). The standard deviations σ2
x, σ

2
y and σ2

θ define the maximum error that can
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respectively be applied to x
[n]
t , y

[n]
t and θ

[n]
t . The sampled errors applied to x

[n]
t , y

[n]
t and θ

[n]
t

are respectively xge, yge and θge. The IPS methods used in operation modes 3 and 4, to

select which function to be used, are described in Subscetion 4.2.4.

Algorithm 4: Motion model algorithm adapted from [7].

Data: Particle x
[n]
t = {x[n]

t , y
[n]
t , θ

[n]
t } and motion parameters {δrot1, δtrans, δrot2}

1

2 δ̂rot1 = 0, δ̂trans = 0, δ̂rot2 = 0; // Initialize

3

4 δ̂rot1 = δrot1 − δ ∼ N (0, (α1 · δ2
rot1 + α2 · δ2

trans));

5 δ̂trans = δtans − δ ∼ N (0, (α4 · (δ2
rot2 + δ2

rot1) + α3 · δ2
trans));

6 δ̂rot2 = δrot2 − δ ∼ N (0, (α1 · δ2
rot2 + α2 · δ2

trans));

7 x
[n]
t = x

[n]
t−1 + δ̂trans cos(θ

[n]
t−1 + δ̂rot1);

8 y
[n]
t = y

[n]
t−1 + δ̂trans sin(θ

[n]
t−1 + δ̂rot1);

9 θ
[n]
t = θ

[n]
t−1 + δ̂rot1 + δ̂rot2;

10 return x
[n]
t = {x[n]

t , y
[n]
t , θ

[n]
t }

4.2.3 Update

By using the the prior map (M) and the laser scan measure (zt) the predicted particle

is evaluated in order to determine the particle weight. The process of the update step is

described in Algorithm 5. The algorithm computes the particle weight by calculating the

difference between the measured scan points and the traced points on the map. The first

step is to transform the measure zt to the particle pose. The transformed scanned points will

be evaluated individually, but to optimize the processing time for each particle, not all of the

points are verified. Instead, the checked points are separated by a constant number (cu). By

using the tracing method described in Subsection 3.1.3, it is calculated the closest occupied

cell point (xtraced, ytraced) in the line between the particle and the measured point (xhit, yhit).

The weight is obtained by applying the difference between the measured point and the closest

occupied cell point to the normal distributions Nx and Ny, which are respectively referent

to the x-axis and y-axis.
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Algorithm 5: Update stage algorithm.

Data: Particle x
[n]
t = {x[n]

t y
[n]
t θ

[n]
t }, laser scan zt = {z1, ..., zK} wiht n being the

number of ranges of the lase scan and cu a constant

1 α = αmin; // Minimum angle of the laser scan range

2 i = αinc; // Angle increment between measurements, zk

3 w
[n]
t = 0, xhit = 0, yhit = 0, j = 0;

4 zt = trans(zt, x
[n]
t , y

[n]
t , θ

[n]
t ) ; // Transforms the scan to the position of the particle

5 for k = 1; k < K; k = k + cu do

6 xkhit = x
[n]
t + zkcos(α);

7 ykhit = y
[n]
t + zksin(α);

8 (xktraced, y
k
traced) = nearest(x

[n]
t , y

[n]
t , x

k
hit, y

k
hit) ; // Tracing algorithm

9 w
[n]
t = w

[n]
t +Nx(0, xktraced − xkhit) · Ny(0, yktraced − ykhit);

10 α = α + cu · i;

11 j = j + 1;

12 end

13 w
[n]
t =

w
[n]
t

j
;

14 return w
[n]
t ;

4.2.4 IPS methods

This section presents two decision-making approaches used to decide between using pose

or position data. One of the methods is based on the method presented in [35], while the

other is based on the verification of conditions related to the distance between points or time

between received measurements. The block that represents this decision-making process is

shown in Fig. 4.7.

Or

 rip> αip?

c1 or c2? 

1 
or 
2 

=
ip ip

Figure 4.7: Decision block representing two approaches used in the particle filter to decide

between the use of pose or position data.
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The first method (IPS1) generates a random number between 0 and 1 (rip ∼ U(0, 1)) and

based on that number, it uses the pose or position data, as it follows:


“IPS sample” if rip > αip

“Motion model” otherwise

with α being the constant that represents the percentage of particles that use pose data.

Conversely, the other approach (IPS2) is based on a method where one of two conditions

(cip1 or cip2 ) needs to be verified in order to use position data. One condition (cip1 ) is verified

through the distances between the position control measure (uipt ) and 2 other points, which

are: the last position control measure (uipt−1) and the picked particle (x[n]). If the distance

between the picked particle and the control measurement (d1) is lower than a tolerance

threshold (thip) or if the distance amidst the actual measure and the posterior measure (d2)

is inferior to constant distance error (derr), the first condition (cip1 ) is met. Figure 4.8 shows

an example of the distances between mentioned points.

ut-1

ut 

xt

d1
d2 ip

ip
[n]

Figure 4.8: Example of distance calculation for the verification of one condition for the

method.

The second condition (cip2 ) is verified through the time passed between measurements. If

the elapsed time since the last measure (∆t) is higher than a defined time threshold (Tth),

it is used the position information. Having the distances calculated and the time between

measurements, the conditions are verified as follows:


“IPS sample” if (d1 < thip and d2 < derr) or ∆t > Tth

“Motion model” otherwise
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Chapter 5

Validation platform

The mobile robot represented in Fig. 5.1 is a prototype for an AGV that was developed in

ISR-UC. In its final stage, it should be able to construct a map of an unknown environment

and localize itself in said environment, but in this dissertation the objective is to obtain the

pose estimation of the mobile robot using sensor information and a prior map. This chapter

provides a brief overview of the physical setup of the AGV mobile robot and its hardware.

Figure 5.1: Platform is composed by: (1) Processing Unit; (2) Marvelmind Beacon; (3)

Gamepad controller; (4) IMU sensor; (5) Lead-Acid Batteries; (6) Wheels with encoders; (7)

Laser Scanner; (8) RoboteQ Motors Controller.
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5.1 Platform kinematics

The validation platform is composed by two standard fixed wheels (L and R) and three

spherical wheels (s1, s2 and s3) for support. Having this configuration, the platform’s kine-

matics is only governed by the standard wheels, so this platform is considered a differential

drive platform as it is shown in Fig. 5.2 (adapted from [38]). The distance between standard

wheels baseline is defined as dw.

x axis

y axis
s1

s2

s3

L

R

dw

Figure 5.2: Representation of the AGVs motion model.

5.2 Hardware architecture

The AGVs system is composed by a low-level part related to the power and mechanical

components, and a high-level part used for processing data. Each hardware module that

composes the AGV is described below.

5.2.1 Processing unit

A laptop located in the AGV platform, runs software in the ROS environment [8] to

generate speed commands, that are sent to the motors, and receives sensor data, which is

used in the localization algorithm. Receives as inputs the wheels encoder measurements, laser

scan data from the Hokuyo Laser [49], the linear acceleration (x-axis) and angular velocity

(z-axis) from the Xsens IMU sensor [50] and the absolute position from the Marvelmind

system [51]. The Processing Unit is located in the platform, so that incoming data from the

sensors can be obtained and processed with minimum delay. This laptop has 15.6 GB of

RAM memory and an Intel Core i7-5500U processor.
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5.2.2 Marvelmind system

The commercial system, developed by Marvelmind, its composed by a modem, one or

more mobile beacons, and multiple static beacons (minimum of three). This system uses

ultrasound and radio signals, with a frequency of 433MHz, to compute the position of the

mobile beacons using a trilateration algorithm [17]. It’s only possible to use this algorithm

because the coordinates of the static beacons are given a priori and because the system

gives the distances between the mobile beacon and the static beacons. The mobile beacon

stays in the AGV (see Fig. 5.1) and its position is referenced in the user-defined coordinates

system, where the origin is configured by the user in any of the static beacons placed on

the infrastructure. The modem serves as a ”communication bridge” between the beacons

and the processing unit. This system is capable of computing the position of each beacon

without human assistance, which facilitates the setup on industrial environments. Figure 5.3

shows the system’s hardware.

(a) Modem. (b) Beacons.

Figure 5.3: Hardware components of the Marvelmind system with: (a) Modem that com-

municates with all beacons and the processing unit; (b) Beacons used for trilateration with

one staying in the AGV and the rest being scattered throughout the environment.

As an example of the configuration made on the Marvelmind software, Fig. 5.4 represents

the map of beacons configured in the Marvelmind software. The equivalent blueprint of

the floor, in which this beacon’s map was configured, is represented in Fig. A.1. Table 5.1

contains the technical specifications of the Marvelmind hardware.
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Figure 5.4: ISR-UC floor 0 beacons map configured on the Marvelmind software.

Max distance be-

tween beacons

30 m Principle trilateration

Coverage area 1000 m2 Technology Ultrasound

Precision error 1-3% of the distance

given by the beacon

Location pre-

cision

Differential precision:

± 2 cm

Position update

rate

0.5 - 45Hz Beacon size 55x55x33 mm

Table 5.1: Technical specifications of the Marvelmind system adapted from [51]

5.2.3 Encoders and RoboteQ motors controller

The wheels encoder resolution is 980 pulses per revolution (npe) and this information is

necessary to obtain the platform pose estimation trough odometry.

The RoboteQ Motors Controller (SDC2130) is used as a PID controller, which receives

speed commands from the processing unit and transforms them into voltage and current

outputs towards driving one or two DC motors. The transmission of the revolution pulses

information is made trough USB communication so that they can be processed into odometry

information.

Dr =
2π · rw · npr

npe
Dl =

2π · rw · npl
npe

(5.1)

∆d =
Dr +Dl

2
∆θ =

Dr −Dl
2

(5.2)
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xot = xot−1 + ∆d cos(θot−1 + ∆θ)

yot = yot−1 + ∆d sin(θot−1 + ∆θ)

θot = θot−1 + ∆θ

(5.3)

The odometry equations are represented from (5.1) to (5.3), where: npr and npl are respec-

tively the number of pulses detected since the last measure, Dr and Dl are the displacements

of the right and left wheels, ∆d and ∆θ are the linear and angular displacement, rw is the

wheel’s radius and xot , y
o
t and θot are the odometry estimation measurements.

The linear velocity is limited to a maximum of 0.5 [m/s].

5.2.4 Xsens Mti-G IMU sensor

This IMU [50, 52] is located right above the origin of the mobile robot. The frequency

of the measurements is of 100Hz and since the measurements are to noisy, the data coming

from this sensor serves mainly to compensate flaws of the other sensors, as it is in the case

of the Marvelmind system, which does not provide the mobile beacon’s orientation. The

sensor gives a great amount of information such as linear accelerations, angular velocities

and magnetic field values on all xyz-axis, however, for the purposes of this dissertation, only

the linear acceleration in x-axis and angular velocity in z-axis were used.

5.2.5 Hokuyo laser scanner

The Laser scanner is the most important sensor on the platform, because the proposed

localization algorithm in this dissertation is a laser-based algorithm. As Fig. 5.1 shows, this

sensor is displaced from the base of the platform (middle point between the wheels), and

in order to use the scan information properly, a rigid transformation is applied to the laser,

at the x-axis. The laser is dislocated 0.7m along x-axis, so the necessary transformation

matrix, is:

RobotTLaser =


1 0 0 0.7

0 1 0 0

0 0 1 0

0 0 0 1
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The laser scanner used in the tests was the Hokuyo UTM-30LX [49]. It uses laser source (λ

= 870nm) to scan a 270o semicircular field. Table 5.2 shows the laser’s main specifications.

Sensor’s measurement data along with the correspondent angle are transmitted through USB

communication.

Supply Voltage 12V DC +- 10% Angular Resolution 0.25o

Guaranteed Range 0.1 ∼ 30m Measurement Step 1080

Maximum Range 0.1 ∼ 60m Scan Speed 25ms

Scan Angle 270o Measurement Resolution 1mm

Table 5.2: Hokuyo’s UTM-30LX laser main specifications [49].

5.2.6 Gamepad controller

The gamepad controller is used as a HRI (Human Robot Interface). It sends velocity

commands to the processing unit, which is going to send them again to the motor’s PID

controller (RoboteQ Motors Controller). The left joystick gives linear velocity, and the right

one gives angular velocity commands.

5.3 Sensor data

Various sensors were incorporated in the mobile robot. Their raw sensor data is received

by the processing unit and turned into viable data for the localization method. On Chapter

6, an overview of how the sensors are being used to test the localization methods is presented.

Each sensor has its own measurement frequency, and this also depends on the computational

time that takes for the raw data to be processed. It is important to mention that the MSPF2

update rate varies from 40ms to 100ms. Table 5.3 shows each sensor frequency.

Sensors Measurement frequency

Odometry 20 Hz

IMU 100 Hz

Indoor GPS 4-8 Hz

Laser Scanner 40 Hz

Table 5.3: Sensors computational times.
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Chapter 6

Experimental validation

In this chapter the main experimental results from different scenarios and correspondent

analysis are presented. The experiments include:

1. The comparison between the MSPF2 and the AMCL methods in the same scenario.

2. Tuning of the MSPF2 software parameters.

3. Testing the different approaches in two environments.

4. Evaluating the performance of some approaches on a localization loss scenario.

The tests were performed in the ROS environment [8], on two different structures: the

first containing the developed MSPF2 package, and the other, the modified AMCL package,

being respectively represented in Fig. 6.1 and Fig. 6.2.

The AMCL package was used as benchmark, thus the results can be compared with the

ones from the MSPF2 package. Although the idea is to compare the developed package with

a consolidated one, the AMCL was modified so it could receive messages from either the

”odom” (odometry), or the ”robot pose ekf” (EKF) ROS topics.

The EKF package mentioned in this dissertation was not tuned because it was only used

as a different source of motion data. This motion data is a result of filtering odometry or

odometry fused with IMU data.
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Controller
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/odom_combined
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Figure 6.1: ROS schematic for the MSPF2 localization method, which contains the ROS

nodes used in the system, the subscribed and published topics, and the hardware that

communicates with mentioned nodes.
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Controller

/scan

/imu/data

/odom

/amcl_pose

/robot_pose_ekf
/odom_combined

/cmd_vel

Processing Unit

OR

Figure 6.2: ROS schematic for the modified AMCL method, which contains the ROS nodes

used in the system, the subscribed and published topics, and the hardware that communi-

cates with mentioned nodes.
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6.1 Methods comparison

The first experiment consisted in comparing the two systems on the same conditions.

For this purpose, both were tested on the same scenario with equal parameters as follows:

α1 = α2 = α3 = α4 = 0.04; ∆d ≈ 0.2m; ∆θ ≈ 0.523rad; nmax = 2000; nmin = 100. The

parameters related to error sampling (α1, α2, α3, α4) serve to apply more or less error to the

predicted particle positions, as explained in Section 3.1.2, while the parameters ∆d and ∆θ

limit the particles’ update rate. Figure 6.3 shows the room where this comparison was made.

Both systems use grid cell maps for validation of the predicted particle positions, with the

map used for this experiment being represented in Fig. 6.4. The intended trajectory is

represented in Fig. 6.4 by the red arrows.

Figure 6.3: Picture of the ISR-UC experiments room.

(0,0)

13.1 m

5.
19

 m

Figure 6.4: Occupancy grid map representing the ISR-UC experiments room with the defined

origin of the axis marked as the point (0,0). The intended trajectory is marked by the red

arrows.
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In order to compare the systems, two metrics were used for evaluation. In both metrics

the laser scan is used to estimate a score, but while one scores according to the update

method presented in Subsection 4.2.3, the other simply verifies if the cell detected by the

scan is occupied or not. In sum, for all points given by the scan (p
[k]
hit = [x

[k]
hit, y

[k]
hit], with

1 ≤ k ≤ 1080), the methods evaluate as follows:

• Metric 1 (M1): s[k] = N (0, x
[k]
traced − x

[k]
hit) · N (0, y

[k]
traced − y

[k]
hit) , with 0 ≤ s[k] ≤ 1

• Metric 2 (M2): if p
[k]
hit is occupied, s[k] = 1 ,otherwise s[k] = 0

The estimation of localization score is given by the following expression:

S =
1080∑
k=1

s[k], with 0 ≤ S ≤ 1080 (6.1)

By using one of ROS tools, the data from the sensors was saved in a rosbag file (i.e ”.bag”

file), so it could be applied to the different methods. The idea of this test was to drive the

robot over a path on the floor marked with magnetic tape, so that the points of the path

could serve as a ground truth. The intended path starts at the maps origin point and ends

after one complete lap. This path is represented in Fig. 6.5, along with sensors’ and EKF

data.

0

0

8

2

-2

x[m]

y[
m
]

1 2 3 4 5 76

1

-1

Figure 6.5: Representation of the sensors’ and EKF data overlapped with the intended

testing trajectory.
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(b) AMCL paths.

Figure 6.6: Overlap of the trajectories given by the MSPF2 and AMCL methods with the

intended path.

As can be seen in Fig. 6.5, the odometry measurements have some associated error, but

this can be attenuated by using the EKF. The use of IMU information on the EKF, adjusts

the platforms pose slightly better at the end of the path, since it is the only pose information

that ends at the same point as the beginning of the path.

Some of the points given by the beacons have some outliers that could be caused by

occlusions or by some internal configuration error. Even so, the majority of the points are

close to the intended path. The sensors’ and EKF data from Fig. 6.5 was applied to both

structures (Fig. 6.1 and Fig. 6.2) according to the pretended fusion methods (all tested

methods appear in Table 6.1), and the resulting paths from this tests can be seen in Fig

6.6. From the representation of the paths in Fig. 6.6, both systems appear to give similar

trajectories, but presenting some slight variations between methods. The paths estimated

by the methods are not entirely equal to the one pretended, but this may be caused by many

reasons, such as precision errors from hardware or software and errors originated by human

driving. Many conclusions can be drawn from the values of Table 6.1. The evaluations of

the sensors’ and EKF data show low scores, as it should be expected from what is seen

in Fig. 6.5, since major part of the estimations given by the sensors’ and EKF data have

an incorrect position and orientation. The scores of the PF methods are higher because

even if the position is not entirely correct, with the correct orientation, the laser evaluation

should give better scores. The second evaluation gives worse scores because it consists of a

simple binary evaluation, which discards the scan points that do not coincide with occupied

cells. Because of this, the remaining scenario evaluations were only made based on the first

evaluation metric.
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Methods RMSM1(%) MeanM1(%) RMSM2(%) MeanM2(%)

Odom 19.2079 15.7086 14.2421 11.9188

EKF(Odom) 29.4837 25.4813 19.9629 16.7636

EKF(Odom+IMU) 33.3997 28.2895 24.5289 21.1390

MS(Odom) 73.4608 72.5176 65.4027 63.8518

MS(EKF(Odom)) 72.4424 71.6499 62.3197 60.9444

MS(EKF(Odom+IMU)) 74.0880 73.1766 65.9523 64.4609

MS(Odom+IPS1) 73.7471 72.7721 65.2060 63.6005

MS(Odom+IPS2) 73.7636 72.7562 65.8472 64.1705

MS(EKF(Odom)+IPS1) 72.6698 71.8542 62.4718 60.9866

MS(EKF(Odom)+IPS2) 73.1479 72.3105 63.5779 62.2810

MS(EKF(Odom+IMU)+IPS1) 73.9271 72.9962 65.4734 63.9615

MS(EKF(Odom+IMU)+IPS2) 72.9778 72.0960 63.5136 62.1472

AMCL(Odom) 70.1248 68.4955 58.3771 56.0754

AMCL(EKF(Odom)) 63.7728 62.2694 48.6091 46.1578

AMCL(EKF(Odom+IMU)) 69.2302 67.9259 58.5352 56.9268

Table 6.1: Table containing the RMS and the mean of the two different metric evaluations

made on tested methods. The values in bold are the three best values of each column.

The AMCL does not increase in performance by using the EKF, but the MSPF2 does in

some methods. Using the Marvelmind system also does not improve much more than the

EKF, but it still provides better scores than the methods using just odometry and laser scan

data. These conclusions are not enough to determine which of this methods is more reliable,

because these tests were made in a small environment on a simple path and with no dynamic

obstacles. MS is a short for MSPF2 that is used in this chapter’s tables. Despite these facts,

the MSPF2 appears to show similar and better results than the AMCL. It is also important

to emphasize that this scenario evaluations were only made when new poses were estimated

due to the structure of the ”amcl” code, which did not permit that evaluations were made in

the time between estimations. However, since the remaining scenarios were only evaluated

with the MSPF2 system, the time between estimations was also evaluated. Both structures

were compared on this scenario because they used the same parameters in the PF packages,

but after this scenario, the MSPF2’s parameters were tuned, so the AMCL was no longer

tested.
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6.2 Parameters tuning

Before proceeding to the next scenarios, the parameters of the MSPF2 were calibrated in

an attempt to increase the performance of the localization methods. The variations upon

the parameters were always made on the same scenario, so the results could be comparable.

The results were analyzed with the first evaluation method described in Section 6.1. After

a parameter evaluation, its value was set as the value that showed better results, so it could

be used on the remaining evaluations. The evaluation results of the tuning process are

represented in Table 6.2 and the order of evaluations was the same as the order of this table.

Parameter Max(%)

Mean

Min(%)

Mean

Max(%)

RMS

Min(%)

RMS

Best

Value

Max

Value

Min

Value

α1 62.6296 59.8889 65.8576 62.9352 0.0208 0.1 0.001

α2 62.6296 59.8889 65.8576 62.9352 0.001 0.1 0.001

α3 62.6296 59.8889 65.8576 62.9352 0.0208 0.1 0.001

α4 62.6296 59.8889 65.8576 62.9352 0.0802 0.1 0.001

∆d 69.3571 44.9537 71.2161 51.7500 0.05 0.3825 0.05

∆θ 69.3571 44.9537 71.2161 51.7500 0.01 0.556 0.01

αip 70.3889 47.5741 71.5278 53.8796 1.0 1.0 0.0

thip 70.5741 10.1019 71.8056 21.7870 0.43 0.5 0.0

nmax 70.7130 48.2130 71.9167 54.3704 1740 10000 100

Table 6.2: Data from the tuning tests, including the evaluation values made with Metric 1,

the experimented ranges and the Best Value for for each parameter. The proposed testing

range was between the Min and Max values defined on the table.

In the appendix are shown the RMS for the tested values of each parameter. The param-

eters α1, α2, α3, α4 values were altered within the same test, so that all the combinations

between the proposed range could be tried. As could be expected, the best performances

were obtained when the parameters had low values because when adding too much error

to the particles, they start to diverge from the real robot’s pose. The ∆d and ∆θ were

in the same test as the prior parameters. In this case, the best value for both parameters

was the lowest tested value, since the pose actualization rate is inversely proportional to

these parameter’s values. The parameters were not tested with lower values due to the cases

where the platform is not moving, since it does not need a new pose if it still is in the same
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point. The best value for the αip is 1.0, which means that the position information is never

used. This result is not conclusive, because the tested scenario had a simple trajectory, no

dynamic obstacles and many features. For these reasons, further evaluations were made with

this parameter defined as 0.9, so that position information could help if needed, but without

ruining the pose estimation. The thip best value is 0.5m but this leads to the possibility

of particles, that strayed too much from the real pose, too be considered as good particles.

Since the results from 0.16m to 0.5m are stabilized, the value defined for the remaining tests

was 0.20m. As for the nmax parameter, the best value is 1740 particles, which shows that a

low number of particles can not be enough for a good pose estimation, but the greater the

number, the longer it takes to estimate the pose, thus leading to worse estimation. Figures

A.2 to A.6 represent the score’s RMS of the tuning tests for the tested parameters.

6.3 Large environment validation

After calibrating the parameters, the next step was to evaluate the behavior of the methods

in a larger scale environment containing some zones short on features. This serves to test if

the methods can locate the robot in adverse conditions and, in case of getting lost, if it is

possible to locate the robot again. For this purpose, the environment chosen was the floor 0

of the DEEC-UC building.

(0,0)

54 m

20
 m

Figure 6.7: Occupancy grid map representing the floor 0 of the DEEC-UC with the defined

origin of the axis marked as the point (0,0). The pictures are referent to the arrows with the

same color as its contour (e.g., red arrow refers to the picture with the red contour).
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6.3.1 Scenario 1

This scenario implicates going around the floor twice, with the first lap being counter-

clockwise and the second lap being in clockwise direction. The initial position is the origin

of the axis defined in Fig. 6.7.

Figure 6.8 represents the overlap of the trajectories obtained with each of the different

used methods. At a larger scale the variations between the methods are not noticeable,

except for the corners of the trajectories. In the zoomed ”Area 1”, some slight variations

can be noticed in one of the curves, more precisely in the more abrupt curve. This shows that

the methods diverge when angle variations are too abrupt. Nonetheless, when the platform

movement stabilizes, the methods begin to converge. Area 2 is referent to the zone of the

initial and final points of the trajectories and, as it can be seen, the variations are very low,

considering the zoomed scale.
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10 

Figure 6.8: Representation of the overlapped trajectories from 10 samples of all the MSPF2

methods. Area 1 is a zoom of a curve while Area 2 is a zoom of the initial and final position.

In Table 6.3 are represented the values of the evaluation made for the different methods

in this scenario. Overall, the most consistent method is the MS(Odom+IPS) because its

SD and RMSE values are within the lowest of all methods and the maximum and minimum

mean values are within the highest. Methods using IPS show better evaluation results, as

well as lower variations and errors, but it is important to emphasize that methods using IPS1

show better score than those using IPS2. Using the EKF produces a slight improvement in

some results, but it is not very conclusive.
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Method Max(%) Min(%) SD RMSE(%)

MS(Odom) 78.8632 78.6634 0.0666 21.2422

MS(EKF(Odom)) 78.9131 78.7122 0.0752 21.1923

MS(EKF(Odom+IMU)) 78.7841 78.4907 0.0811 21.3496

MS(Odom+IPS1) 79.3313 79.1883 0.0467 20.7440

MS(Odom+IPS2) 78.9774 78.8445 0.0442 21.0751

MS(EKF(Odom)+IPS1) 79.5135 78.9510 0.2015 20.7398

MS(EKF(Odom)+IPS2) 79.0796 78.6478 0.1260 21.0372

MS(EKF(Odom+IMU)+IPS) 79.2592 78.7921 0.1659 20.9513

MS(EKF(Odom+IMU)+IPS2) 78.9372 78.7219 0.0688 21.1609

Table 6.3: Table containing the evaluation data for the trajectories given by the different

MSPF2 methods. This data is relative to the mean of the points evaluation (with M1) of

each trajectory. The numbers in bold represent the three best values in each column.

The methods with IMU are actually worse than the ones without, however this could be

due to the absence of EKF covariance matrices tuning. In general the results do not show

significant variations between them, so the interpretations from this test are not conclusive

relatively to the intervention of the EKF, the IMU or the IPS.

6.3.2 Scenario 2

Since mobile robots, which use laser-based localization approaches, usually have problems

in corridors [4] (e.g., lack of features), the following test’s goal was to check the behavior of

the methods in this kind of scenario. Another problem for mobile robots is the existence of

dynamic obstacles, so this scenario also tested if the methods would be affected by them.

A B

25.3 m

1.
7 

m

Figure 6.9: Part of the grid cell map used for this test, where A and B are respectively the

initial and the final point of the corridor.
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The test consisted on going from the corridor point A to B and from B to A, represented

in Fig. 6.9, with different numbers of people passing in front of the robot from time to time.

The number of people passing varied from one to five. Figure 6.10 represents the overlap of

trajectories performed by all methods, ten times each.
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Figure 6.10: Representation of the overlapped trajectories from ten samples of all the MSPF2

methods, with the red points being the initial points of each trajectory and the red ones,

the last points.

As it can be seen in Fig. 6.10 the initial and final points of all trajectories are not too

distant from each other, which means that the mobile robot finished the trajectories around

the starting point, as intended. The variations are greater around the 20-meter zone, which

could be originated by occlusions of the sensors caused by the people passing by or/and

by the curved movements. Since this is not conclusive by itself, a further evaluation was

conducted based on the score values that are represented in Table 6.4. The values of the

evaluation made for the different methods in this scenario are represented in Table 6.4. The

method that appears to be the most consistent is the MS(EKF(Odom)) because its SD and

RMSE values are within the lowest of all methods and the maximum and minimum mean

values are within the highest. The methods with IPS2 are within the best, but the ones with

IPS1 are among the worst. This means that the methods with IPS1 are probably sampling

particles in wrong places, due to sensor errors or occlusions, while the ones using IPS2 seem

to maintain robustness in this more difficult scenario.
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Method Max(%) Min(%) SD RMSE(%)

MS(Odom) 75.1633 74.6857 0.1311 24.5118

MS(EKF(Odom)) 75.3436 74.9133 0.1548 24.3975

MS(EKF(OdomIMU)) 74.7448 73.7588 0.2531 25.1183

MS(Odom+IPS1) 74.9945 73.9576 0.3328 24.5615

MS(Odom+IPS2) 75.4011 74.6368 0.2146 24.4116

MS(EKF(Odom)+IPS1) 75.3273 74.0383 0.3411 24.5158

MS(EKF(Odom)+IPS2) 75.4217 74.8105 0.1961 24.4002

MS(EKF(OdomIMU)+IPS1) 73.7810 71.2960 0.6410 26.0510

MS(EKF(OdomIMU)+IPS2) 74.6809 72.6072 0.4701 25.4912

Table 6.4: Table containing the evaluation data for the trajectories given the different MSPF2

methods on the corridor. This data is relative to the mean of the points evaluation (with

M1) of each trajectory. The numbers in bold represent the three best values in each column.

Using the EKF to just filter the odometry input makes a slight improvement in some

results, which is consistent with the previous scenario. In general the methods using IMU

seem to have worst score results and greater variation than the rest, which could be caused

by a noisy contribution from the sensor or, as was mentioned, by the absence of EKF tuning.

In general these results still did not show significant variations between them, but they

presented some differences relatively to the previous scenario. The results using IMU seem

to be more conclusive in this scenario, because the sensor input seems to worsen the results.

Based on the mean of the scores, filtering the odometry input with the EKF appears to

improve the performance, but as the EKF was used in this dissertation, it did not significantly

improve the localization. In the presence of measurement errors, the methods using IPS2 are

more reliable than the ones using IPS1, however, the methods using IPS1 seemed consistently

better in an environment with only static obstacles.

6.4 Recovery tests

The last test performed in this dissertation work was related to the method’s capacity to

recover from a localization loss (kidnapped robot problem). To test this, three of the previous

used methods were chosen to test if the position can be recovered. The methods chosen

for this test were the ”MS(Odom)”, the ”MS(Odom+IPS1)” and the ”MS(Odom+IPS2)”.
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These methods were chosen to verify the differences between having an IPS or not and

to compare the two IPS methods, therefore, methods using EKF and/or IMU were not

needed. The test consisted in giving the mobile robot a false initial position (in the x-axis)

and observing if the estimated pose moved in the direction of the true initial position over

time, with the chosen time interval being from 0[s] to 2[s]. The results are visualized in a

ROS tool and since these results are snapshots, the time only stars counting after the first

pose estimation, so that the first frame can contain a robot pose. The robot’s poses are

represented by red arrows, and the particles by blue points on the occupancy grid map.

False initial 
Position

True initial 
Position

0[s]
(Frame 1)

1[s]
(Frame 11)

2[s]
(Frame 21)

Figure 6.11: Recovery test performed with the ”MS(Odom)” method. The snapshots are

taken from the ROS rviz.

False initial 
Position

True initial 
Position

0[s]
(Frame 1)

1[s]
(Frame 11)

2[s]
(Frame 21)

Figure 6.12: Recovery test performed with the ”MS(Odom+IPS1)” method. The snapshots

are taken from the ROS rviz.
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Figure 6.13: Recovery test performed with the ”MS(Odom+IPS2)” method. The snapshots

are taken from the ROS rviz.

Figures 6.11 to 6.12 show the recovery tests (represented on the occupancy grid map)

performed by the three chosen methods. As it can be observed in Fig. 6.11, using only

odometry data in the prediction stage, is not enough to recover from a localization loss,

which is expected because this method moves the particles based only on motion estimation

and an additional error. Figure 6.12 shows that using an IPS1 method moves the particles

in the true position direction, but it is not ideal because only a percentage of the particles

are created around the IPS measurements, which makes this recovery slightly slow. Using

an IPS2 method, seems to be a better approach, since the particle positions are corrected at

0 seconds, which makes the recovery instantaneous.
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Chapter 7

Conclusion and future work

7.1 Conclusion

The focus of this dissertation was the research of sensor fusion applied to PF algorithms for

mobile robots (in this case, an AGV). For this purpose it was important to study different

sensors, as well as different approaches on how to use these sensors individually or in a

combined way. It was also necessary to test the mobile robot in both controlled and non-

controlled environments to observe the differences in results. The software package was

developed so it could be used in ROS and it does not rely on external software to obtain

the location of the mobile robot. This package presents a robust behavior regardless of the

different scenarios, since all of the trajectories given by the software corresponded to the

intended paths. Even if the methods’ estimation error was not tested, it is clear that it

varies, depending on the used method.

Regarding the usage of EKF, the results appear to be better in some cases, but worse

in others, so further testing is needed to understand if the EKF is advantageous for this

software package. As for the IMU sensor, it does not present many advantages, which could

be resolved by calibrating the EKF matrices, but, based on the current filter state, this sensor

could be removed from the setup without interfering with the robustness of the software.

Concerning the IPS, the results showed that the methods using IPS1 produced better results

than those using IPS2, in scenarios with static obstacles, however, when dynamic obstacles

were present, their performances were inverted. Nonetheless, methods using IPS presented

scores among the best results of each tested scenario and these methods can solve localization

loss problems, being that methods using IPS2 recover the pose faster that the ones using

IPS1.
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7.2 Future work

To improve the performance of this software package, there are some topics that could be

further researched, such as:

• EKF tuning: Since the EKF package parameters were not tuned, this could be

improved for better filtering of the sensor data.

• Particle filter optimization: The maximum time it takes for a iteration of the PF

is ' 100ms. The algorithm could be optimized to have a faster response.

• Map update: The actual state of the PF algorithm, can only obtain the location of

the mobile robot. An interesting idea would be to use the data from the PF to update

the prior map in case of something is altered in the environment (e.g. boxes changing

places).

• Resampling: Other methods could be tested to improve of the resampling step, so

that the new set of particles, draws better samples.

• Combination of the IPS methods: As it was observed, both approaches of IPS

fusion methods showed advantages and disadvantages but in different scenarios, so,

the next step could be the fusion of both methods in order to improve the robustness

of the proposed MSPF2 package for all scenarios.
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Appendix A

Extra content

Figure A.1: Blueprint of the ISR-UC floor 0.
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Figure A.2: Score’s RMS of the tests performed for different values of the α1, α2, α3 and α4

parameters.
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Figure A.3: Score’s RMS of the tests performed for different values of the ∆d and ∆θ

parameters.
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Figure A.4: Score’s RMS of the tests performed for different values of the αip parameter.
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Figure A.5: Score’s RMS of the tests performed for different values of the thip parameter.
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Figure A.6: Score’s RMS of the tests performed for different values of the maximum number

of particles parameter.
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