

Modeling and Analysis
of Energy Harvesting IoT Networks

Joel Möllering Torrado

Coimbra, September 2018

Modeling and Analysis
of Energy Harvesting IoT Networks

Supervisor:
Prof. Dr. José Luís Esteves dos Santos

Co-Supervisor:
Prof. Dr. Marilia Pascoal Curado

Jury:
Prof. Dr. Paulo José Monteiro Peixoto

Prof. Dr. Vasco Nuno Sousa Simões Pereira
Prof. Dr. José Luís Esteves dos Santos

Dissertation submitted in partial fulfillment for the degree of Master of Science in

Electrical and Computer Engineering.

Coimbra, September 2018

Acknowledgments

Acredito que uma pessoa perfaz-se enquanto pessoa com a ajuda de outros com os quais

se cruza na caminhada da vida. Eu não sou excepção e portanto sou o que sou hoje e cheguei

até aqui devido ao facto de contar com a vossa companhia, camaradagem, afecto e ajuda em

algum dos momentos da minha vida.

Assim, começo por escrever o meu apreço a todos aqueles a que eu posso chamar de

colegas – que ainda são bastantes –, desde a escola primária em Aldeia de S. Sebastião, à

Escola de Vilar Formoso, passando pela Infanta D. Maria em Coimbra, até à Universidade.

Todos vocês contribuíram de alguma forma ou outra através das vossas opiniões e amizades.

Nessas andanças estudantis, quero dar um destaque à malta da Sagrada Casa dos Gabirus,

da Orxestra Pitagórica (EAMT2B!) e do BEST Coimbra, pelas aventuras partilhadas e pelas

histórias que ficarão sempre para contar. E ainda ao pessoal do G.6.7 pelos conselhos e

camaradagem.

Aos meus amigos da Anarkia, mas principalmente aos meus grandes amigos do Set’Up

pela vossa amizade ao longo destes anos todos. Que haja muitos mais! E que todos nós

atinjamos o sucesso que nos é devido.

À minha família, em particular à minha avó Graça e ao meu avô Adelino (já falecido,

que em paz descanse) por terem acreditado sempre em mim desde que era pequeno, e por

me mostrarem o valor da humildade.

Ao meu irmão Guilherme, que recorrentemente me prova que o reconhecimento enquanto

pessoa advém do trabalho e da dedicação que é imposta a tudo o que uma pessoa se dispõe

a fazer.

ii

Aos meus pais, por serem o grande suporte que sempre foram e que hoje me faz ter os

valores que acredito serem importantes para singrar no futuro. Em detalhe, ao meu pai Jan

pela confiança depositada em mim e pela ajuda nas horas de necessidade. À minha mãe

Lina por tudo o que teve de endurar pelo melhor para mim, pelo carinho, afecto, conselhos

e conversas; a sua forma de ser faz-me crer que o Mundo ainda tem espaço para as pessoas

boas.

Por último, um especial agradecimento à Rita. Por todos os bons momentos passados em

conjunto. Pelo imenso apoio, carinho e amor que alguém consegue proporcionar em todos

os instantes e por conseguir sempre fazer de mim uma pessoa melhor. Por um futuro feliz,

que será até quando nós quisermos.

Por tudo, obrigado.

The work team that contributed to this dissertation is constituted by André Riker (Lab-

oratory of Communications and Telematics (LCT) – Center for Informatics and Systems of

the University of Coimbra (CISUC)), Prof. Dr. José Luís dos Santos (Center for Mathemat-

ics of the University of Coimbra (CMUC)), and Prof. Dr. Marilia Curado (Laboratory of

Communications and Telematics – Center for Informatics and Systems of the University of

Coimbra). Let me express here my gratitude towards them for their availability, suggestions

of improvements, and overall contributions to this work.

The work presented in this dissertation was partially carried out in the scope of the Mo-

biWise project: From mobile sensing to mobility advising (P2020 SAICTPAC/0011/2015),

co-financed by COMPETE 2020, Portugal 2020 - Operational Program for Competitiveness

and Internationalization (POCI), European Union’s ERDF (European Regional Develop-

ment Fund), and the Portuguese Foundation for Science and Technology (FCT).

iii

Resumo

Redes de Internet das Coisas em que existe recolha de energia do ambiente são o alicerce

de uma série de conceitos de alta conectividade contemporâneos nos quais é necessário extrair

cada vez mais informação do ambiente, ao mesmo tempo que se mantém a perpetuidade

operacional dos mesmos.

Maximizar a recolha de dados do meio envolvente usando uma rede deste tipo com

conectividade multi-etapa enquanto se mantém uma operação energética neutra é uma tarefa

complexa pois é necessário equilibrar a utilidade global da rede e a escassez de recursos

energéticos.

Para concretizar uma operação óptima de uma rede de Internet das Coisas com recolha de

energia do ambiente recorre-se à construção de um modelo de optimização baseado em Pro-

gramação Linear Inteira Mista, em que são considerados dois aspectos adicionais: aquisição

obrigatória de ocorrências notáveis ao longo do tempo e do espaço, denominadas de eventos;

e a transmissão de dados deve utilizar um mecanismo de agregação de dados, de forma a

tornar a comunicação mais eficiente.

Para que o modelo proposto seja validado e analisado adequadamente, é desenvolvida uma

plataforma que permite efectuar simulações com o modelo, as quais têm como parâmetros

de entrada dados que refletem condições operacionais estudadas. Com base nos resultados

das simulações realizadas, constata-se que o modelo apresentado é bem sucedido nos vários

cenários experimentais considerados.

Os resultados obtidos confirmam a validade do modelo proposto. Os dados recolhidos

permitem identificar padrões no comportamento da rede que possibilitam a construção de

uma heurística distribuída sub-óptima que atinja um desempenho semelhante em tempo real.

Palavras-chave – Internet das Coisas, Recolha de Energia do Ambiente, Operação

Energética Neutra, Programação Linear Inteira Mista

iv

Abstract

Energy Harvesting Internet of Things Networks serve nowadays as the backbone of a

myriad of high-connectivity concepts in where it is necessary to extract more and more

information from the environment while maintaining a perpetual operational state.

Maximizing the collection of environmental data employing a multi-hop Energy Har-

vesting IoT Network while maintaining an Energy Neutral Operation is a challenging task

because it is necessary to balance overall network utility with the scarcity of energy resources,

typical of Energy Harvesting techniques.

A Mixed-Integer Linear Programming optimization model is constructed to achieve an

optimal operation in an Energy Harvesting IoT Network. Two additional aspects are con-

sidered: enforced acquisition of spatio-temporal notable occurrences labeled as events; and

the use of a data aggregation mechanism when performing data communication.

A framework is developed which can perform simulations with the proposed model so

it can be validated and appropriately analyzed. The model simulations are supplied with

input data that mirrors a studied operational setting. Based on the simulations results, the

effectiveness of the presented network model is derived under different operational schemes.

The obtained results confirm the validity of the proposed model. The gathered data

facilitates the identification of patterns in the network behavior, which enable the formulation

of a distributed real-time sub-optimal heuristic that achieves a similar performance.

Keywords – Internet of Things, Energy Harvesting, Energy Neutral Operation,

Mixed-Integer Linear Programming

v

“Faz porque queres e sentes. Não porque deves e tens.”

— Samuel Mira, À Procura da Perfeita Repetição

vii

Contents

Acknowledgments ii

Resumo iv

Abstract v

List of Acronyms xii

List of Figures xiv

List of Tables xv

List of Equations xvi

1 Introduction 2

1.1 Motivation and Context . 2

1.2 Goals . 3

1.3 Key Contributions . 4

1.4 Structure of Dissertation . 5

2 Background 6

2.1 Concept . 6

2.2 Related Work . 7

2.3 Research Scope . 10

3 Theoretical Model 12

3.1 Data and Communication Models . 13

3.2 Energy Harvesting, Storage, and Consumption Models 15

3.3 Events . 17

3.4 Optimization Objective . 18

ix

4 Implemented Model 19

4.1 The need of Mixed-Integer Programming . 19

4.2 The MILP model . 20

4.2.1 Data . 20

4.2.2 Decision Variables . 23

4.2.3 Constraints . 23

4.2.4 Objective . 26

4.3 Solving a MILP problem: the CPLEX Optimizer engine 26

4.4 The resulting OPL Model . 28

5 Simulation and Analysis Platform 31

5.1 Conception and Requirements . 31

5.2 Development . 32

5.3 Features and Functionalities . 33

5.4 Functional Flow Overview . 34

6 Evaluation Setup and Results 36

6.1 Goals . 36

6.2 Evaluation Conditions . 36

6.2.1 Platforms and Methods . 37

6.2.2 Fixed Simulation Parameters . 37

6.2.3 Metrics . 43

6.3 Results . 44

6.4 Results Discussion . 56

7 Conclusions and Future Work 61

8 Bibliography 62

A Calculations for the Energy Input Data 70

A.1 Battery . 70

A.2 Consumptions . 72

A.3 Harvesting . 75

B Network Visualizer User’s Guide 78

B.1 Introduction . 78

x

B.2 Warning Note . 79

B.3 System Requirements . 79

B.4 NetVis Operation . 79

B.4.1 First use . 79

B.4.2 Data types . 80

B.4.3 Home Screen . 80

B.4.4 Settings Screen . 84

B.4.5 Nodes Screen . 88

B.4.6 Harvesting Screen . 90

B.4.7 Analyze Screen . 91

B.5 Usage Examples . 99

B.5.1 Perform a simulation . 99

B.5.2 Load and save simulation data . 100

xi

List of Acronyms

2D bi-dimensional

6LowPan IPv6 over Low-Power Wireless Personal Area Networks

B&B Branch and Bound

CoAP Constrained Application Protocol

CDMA Code Division Multiple Access

CISUC Center for Informatics and Systems of the University of

Coimbra

CMUC Center for Mathematics of the University of Coimbra

EH-IoTN Energy Harvesting IoT Network

EH-WSN Energy Harvesting Wireless Sensor Network

ENO Energy Neutral Operation

FDMA Frequency Division Multiple Access

GHI Global Horizontal Irradiation

GUI Graphical User Interface

IEEE Institute of Electrical and Electronics Engineers

IDE Integrated Development Environment

IP Integer Program(ming)

IoT Internet of Things

LCT Laboratory of Communications and Telematics

xii

LP Linear Program(ming)

MILP Mixed-Integer Linear Program(ming)

MIP Mixed-Integer Program(ming)

NetVis Network Visualizer app

OPL Optimization Programming Language

SRAM Static Random-Access Memory

RAM Random-Access Memory

UDP User Datagram Protocol

WSN Wireless Sensor Network

xiii

List of Figures

5.1 Activity diagram of a run of the NetVis framework 35

6.1 Battery of network nodes over time: harvesting profiles comparison 49

6.2 Operational status distribution by distance: harvesting profiles comparison . 50

6.3 Average data aggregation per time slot: harvesting profiles comparison . . . 51

6.4 Link activity heat map: harvesting profiles comparison 52

6.5 Alpha value enforcement: metrics comparison 53

6.6 Network utility comparison: simulation settings 54

6.7 Data aggregation comparison: simulation settings 55

A.1 Atmel ATmega256RFR2 Xplained Pro . 71

A.2 Experimental consumptions results with Powertrace 74

A.3 Typical Lithium-Ion rechargeable battery . 75

A.4 Average values of GHI and its variability in the Portuguese continental territory 76

A.5 Thin film photo-voltaic cell . 76

B.1 NetVis Main Screen showing the default network topology 81

B.2 NetVis Main Screen showing network state after receiving a simulation result 82

B.3 NetVis Settings Screen showing the default parameters 84

B.4 NetVis: some random network topologies with different parameters 86

B.5 NetVis Nodes Screen . 89

B.6 NetVis Harvesting Screen sequence . 91

B.7 NetVis Analyze Screen . 92

B.8 Examples of types of graphics supported by NetVis Analyze Screen 96

B.8 Examples of types of graphics supported by NetVis Analyze Screen (cont.) 97

B.8 Examples of types of graphics supported by NetVis Analyze Screen (cont.) 98

B.8 Examples of types of graphics supported by NetVis Analyze Screen (cont.) 99

xiv

List of Tables

2.1 Related works features differentiation . 8

4.1 Network model data . 20

4.2 Node Operations and Data Communications model data 21

4.3 Energy model data . 22

4.4 Events model data . 22

4.5 Node Operations and Data Communications model decision variables . . . 23

4.6 Energy model decision variables . 23

6.1 Fixed simulation parameters . 38

6.2 Related works time data comparison . 39

xv

List of Equations

3.1 One state only theoretical description . 12

3.2 Link activity theoretical description . 13

3.3 Data packets and data payloads relationship theoretical description 13

3.4 Maximum link capacity theoretical description 14

3.5 Bounded buffer capacity theoretical description 15

3.6 Node buffer dynamics theoretical description 15

3.7 Bounded battery theoretical description . 16

3.8 Battery dynamics theoretical description 16

3.9 Energy neutral operation theoretical description 16

3.10 Event capture theoretical description . 17

3.11 Optimization objective theoretical description 18

4.1 One state only implemented constraint . 23

4.2 Sink node always receiving implemented constraint 23

4.3 Tx state implemented constraint . 24

4.4 Rx state implemented constraint . 24

4.5 Active link implemented constraint . 24

4.6 Active link data flow implemented constraint 24

4.7 Neutral data flow implemented constraint 24

4.8 Maximum buffer implemented constraint 24

4.9 Data packets and data payloads relationship implemented constraint 24

4.10 Systematic data collection implemented constraint 25

4.11 Minimum Tx activity implemented constraint 25

4.12 Minimum s activity implemented constraint 25

4.13 Overall data collection implemented constraint 25

4.14 Event capture implemented constraint . 25

4.15 Battery limits implemented constraint . 25

4.16 Energy neutral operation implemented constraint 26

4.17 Battery dynamics implemented constraint 26

4.18 Implemented Optimization objective . 26

xvi

1 Introduction

This chapter summarizes the motivations that led to this dissertation, compiles the pri-

mary goals and the major contributions, and provides an outline of this document to con-

textualize the reader.

1.1 Motivation and Context

The Internet of Things (IoT) is the network that interconnects physical objects to the

Internet, which serves society in numerous ways by providing ample and assorted applications

[1]. In IoT, a Wireless Sensor Network (WSN) takes an active role in the consolidation of

physical world information. WSNs incorporate a significant number of tiny devices called

sensor nodes which are deployed in the sensing domain of interest to gather its data. That is

why in recent years there has been a remarkable focus on achieving more and more connected

objects. The most significant restrictions to effective adoption of IoT systems have been the

limited deployment possibilities if they operate on grid power or the bound operational

lifetime if running on conventional batteries [1].

Energy harvesting from light, thermal or mechanical sources available in the environment

provides the electrical energy required to power these devices, that is, when paired with a

rechargeable battery [2].

A definite interest is to use the available energy efficiently because in networked systems

with multiple harvesting nodes, these may have varying harvesting opportunities. Also,

in a distributed application, the same performance may be accomplished employing mixed

workload1 allocations, which results in diverse consumptions at multiple nodes. Under these

circumstances, it is essential to adjust the workload allocation with their energy availability.

Because both energy harvesting and in-network data processing are major IoT techniques,

it is crucial to analyze them concurrently. This dissertation’s work tackles the problem of
1Workload: the amount of performed work

2

controlling the mechanisms related to data-production and data-communication to achieve

an Energy Neutral Operation (ENO) in a multi-hop2 Energy Harvesting IoT Network (EH-

IoTN).

The term ENO was introduced by Kansal et al. [4] as a mode of operation of an IoT node

where its energy consumption is at all moments inferior or equal to the energy harvested

from the environment. To achieve this kind of operation on a data-gathering IoT network is

a very complex task, since the nodes do not have full knowledge of the other nodes status

and their operational conditions can differ.

To achieve an optimal solution to the problem above it is proposed a mathematically

constrained optimization model. The central challenge of this work was to construct, evolve

and validate such proposed model, so the network behaviors revealed by the model solutions

were in concordance with the expected performance of an IoT network. Therefore, an ac-

companying graphical tool was also developed in the scope of this dissertation to support

the validation of the provided solutions.

This research project paves the way for further evolutions of the considered model and

ambitious sub-optimal real-time heuristic approaches. The model and the created tools can

be replicated and used in LCT for other researching prospects.

1.2 Goals

This work purpose is to present both theoretical and practical studies on how to opti-

mize global performance in EH-IoTNs by in-network data gathering and transfer while also

guaranteeing Energy Neutral Operation on the whole network.

The primary goals are reviewed as follows:

1. Study the major characteristics and approaches in networking algorithms for energy-

efficient self-managed networks and define what the proposed model should be capable

of;

2. Implement the intended mathematically constrained optimization model such that it

is possible to extract actual results from it;

3. Provide a way to easily interact with the test parameters of the model and its results;
2Multi-hop routing is a type of communication in radio networks in which network coverage area is larger

than radio range of single nodes. Therefore, to reach some destination a node can use other nodes as relays.

[3]

3

4. With a comprehensive set of model simulation results, verify that the network model

behavior is as expected from point 1 and that it can be used to formulate a heuristic

sub-optimal model posteriorly.

1.3 Key Contributions

The achievements fulfilled throughout this work, from which some of them double up as

implementations, are reviewed below:

• A refined mathematically constrained model based on previous work of the team pre-

sented in the Acknowledgments, that is described in Chapter 4.

• Implementation – An Optimization Programming Language (OPL) model based on

the previously referred model that can be solved by the CPLEX engine provided by the

IBM ILOG CPLEX Optimization Studio software3. The resulting code can be found

in an open-access online repository4.

• Implementation – A MATLAB Graphical User Interface (GUI) that performs as

the testing platform of the OPL model, as a results validator, and as a results data

explorer. This platform is described in Chapter 5, and the code can be found in an

open-access online repository5.

• Implementation – A model developing and testing framework that comprises both of

the implementations above (OPL and MATLAB code) and a way to pass data between

the two efficiently.

• An extensive amount of data from the simulations performed with variations in the

input parameters – to better understand the model performance – that led to some

important conclusions.

Beyond that, it is expected to target the following publications with the outcomes of the

produced work in this dissertation:

• IEEE Internet of Things Journal with the proposed model and subsequent heuris-

tic;

• 15th Wireless On-demand Network systems and Services Conference with the

developed NetVis framework and a simple version of the implemented model.
3https://www.ibm.com/products/ilog-cplex-optimization-studio
4https://bitbucket.org/mollering/mobiwise-cplex
5https://bitbucket.org/mollering/mobiwise-matlab

4

https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6488907
http://2019.wons-conference.org/
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://bitbucket.org/mollering/mobiwise-cplex
https://bitbucket.org/mollering/mobiwise-matlab

1.4 Structure of Dissertation

This dissertation is divided into eight chapters.

The current chapter provides the motivations, overall goals and expected contributions

of this work.

The related research and the background for this work is presented in Chapter 2.

In Chapter 3, the theoretical model that is the premise of this work is analyzed and

then, in Chapter 4, the mathematical implementation of such model – that is the core of

this work – is thoroughly described.

The overall aspects of the implemented software used to validate the produced model are

provided in Chapter 5. In Chapter 6, it is explained the parameters fed to that software

to validate the model.

The achieved results and additional discussion are exhibited in Chapter 6.

Finally, in Chapter 7 we will draw conclusions, and following that, in the same chapter,

we suggest future work.

Additional material can be found in appendices: Appendix A exposes assumed consid-

erations for data used in the model evaluation, and Appendix B is the user’s guide for the

software described in Chapter 5.

5

2 Background

This chapter expresses an overall examination of the field revolving around Energy Har-

vesting IoT Networks while contextualizing with relevant academic works.

2.1 Concept

Energy Harvesting Wireless Sensor Networks (EH-WSNs) attracted enormous interest

in the past two decades [5, 6, 7]. The combined capabilities of detecting and reporting the

temporal and spatial dynamics from the environment plus maintaining an operational state

through energy harvesting from it are crucial for many network design solutions. These

abilities are particularly useful in autonomous operations such as environmental monitoring

tasks – hazardous (earthquakes, volcanoes, fires) [8, 9, 10] and non-hazardous (weather,

habitats, machinery) [6, 11, 12] – structural monitoring [13, 14, 15], personal or animal

tracking [16, 17, 18], and wireless robot systems [19].

Energy Harvesting IoT Networks are the next step of the technological evolution in this

field: they combine the almost-perpetual sensing abilities of EH-WSNs with the capacity

of actuating on the environment. EH-IoTNs perform a crucial part in achieving the am-

bitions of many rising concepts, like Smart Cities, Smart Grids, and Industrial Internet of

Things. Considerable numbers of small, battery-operated sensing and actuating devices can

be deployed in all sorts of environments to gather data, propagate information and execute

actions [20].

The concept of energy harvesting releases the network devices from having an always

on energy infrastructure and grants a way of operating the network with a potentially per-

petual lifetime. Other advantages arise, such as reduced operation cost [21], environment-

friendliness [21, 22], and in many cases may be the only option available due to practical

constraints [8, 23, 24]. The most common sources of the harvested energy for EH-IoTNs are:

• Solar – Photovoltaic harvesting systems for uninterrupted EH-IoTNs operations should

6

be simplistic, robust, and operate without human mediation for long periods of time

[25, 26, 27]. The nature of solar power makes it abundant and accessible, but highly

dynamic: a few hours of daily direct sunlight are expectable in most regions, and there

is the likelihood of existing heterogeneous harvesting across distinct devices in a sensing

space due to shading or cloud coverage.

• Kinetic – Commonly the most versatile and omnipresent ambient energy source avail-

able [28]. Especially prominent in bridges, roads and rail tracks. Motion source is

usually machine vibration [13, 28, 29] and fluid flow (e.g., wind or water currents)

[24, 30]. Successful exploitation possibly requires the combined design of the entire

wireless system, including a power-aware control of the powered device.

• Thermal – Thermogenerators utilize the temperature variations or gradients to gen-

erate electricity, e.g., between the human body and the surrounding environment

[31, 32, 33]. Due to the absence of moving pieces in thermal energy harvesting de-

vices, they tend to be more resilient than kinetic-based devices.

• Wireless Energy Transfer – Objects resonating at an equivalent frequency tend

to exchange energy efficiently while scattering comparatively little energy in external

off-resonant objects. This way, it is possible to harvest radiation from multiple power

sources [27, 34, 35].

Energy harvesting is a gradual process, its rate usually is insufficient to support a constant

performance of typically small devices, and is inherently time varying [2, 36, 37]. Hence, pow-

ering sensor networks and associated actuators with energy harvesting technology presents

essential design and optimization challenges, which have captivated a considerable research

interest in recent years [2, 36, 37]. To improve energy efficiency it is required to design

optimal activation policies and scheduling algorithms for the sensors, so it is possible to

maximize the entire network performance under energy allocation constraints.

2.2 Related Work

Most current EH-IoTNs related works focus on presenting both theoretical and practical

studies on how to optimize network performance achieving sustainable operation – i.e., no

sensor node runs out of energy – through one or various of the following topics:

• Sensing and networking algorithm design – Network-wide protocols that estimate

the energy spent by sensors plus wireless transceivers for sensing and data communica-

7

tions respectively. They can be distributed and adaptative to accomplish autonomous

multi-hop data acquisition [38, 39, 40].

• In-network data processing – An efficient approach to diminish bandwidth con-

sumption, where data is processed and reduced inside the network [41]. Common

in-network processing methods comprise raw sensor data compression, aggregation,

fusion, and feature extraction [42, 43, 44].

• Power management schemes – Self-management capacities of every single node

that optimizes its long-term harvesting power usage [25, 45, 46].

• Path traveling optimization – Routing protocols that adaptively determine and

dynamically adapt the end-to-end path to bypass the time-varying routing hot-spots

(i.e., nodes with low battery) [47, 48]. Multi-hop networks can turn this optimization

unmanageable [49, 50].

• Energy awareness – Constructing realistic models for energy storage (i.e., recharge-

able battery with finite capacity), energy harvesting, and operational energy consump-

tion states [30, 51, 52].

One of the most usual approaches to achieve validity on proposed solutions encompassing

the topics mentioned above is to formulate an optimization problem, and next propose an

algorithm which can solve that problem. Finally, through testing, it is proven that the stated

algorithm achieves the desired network operation and utility performance within some given

bounds. Similarly to this work, some of these solutions (see Table 2.1) propose routing

mechanisms and operations scheduling such as to maximize aggregated network utility while

dealing with performance constraints.

Features [53] [54] [55] [13] [25] This Work

Energy Neutral Operation no yes no yes no yes

Event Capture yes no no no yes yes

Data Aggregation no no yes no no yes

Multi-hop Network yes no yes yes yes yes

Table 2.1: Related works features differentiation

Zareei et al. (2018) [53] propose a protocol for EH-IoTNs that uses adaptive transmission

power to enhance the overall performance of the network. The core idea is to extend the

transmission reach of the nodes that have elevated energy levels when their neighbor nodes

8

possess inferior energy levels, while attempting to avoid that nodes in critical energy condi-

tions perform communications. Although this proposal improves the end to end performance

of a multi-hop network while maintaining a regular event sensing rate, it allows nodes to

reach critical energy conditions – it does not ensure an Energy Neutral Operation – and the

data transmissions do not consider any compression or data aggregation aspect.

Jackson et al. (2017) [54] formulate an optimization problem to maximize the operational

activity and battery lifetime of each network node while acknowledging the degradation of

the battery capacity. They achieve a solution to this problem through a proposed algorithm

that can be used by an arbitrary IoT application. This work focuses highly in maintaining an

Energy Neutral Operation of all the network nodes but does not refer any multi-hop routing

scheme, where data can flow in many possible transmission routes. Data aggregation and

the existence of particular events are also not mentioned.

Yang et al. (2016) [55] present an online algorithm to solve a stochastic optimiza-

tion problem based on practical energy and network models. Their formulations influ-

enced this work significantly, as they use in-network data processing (e.g., data aggrega-

tion/compression/fusion) and the concept of sustainable network operation in their models.

However, it is explicitly indicated that this sustainable operation is that no sensor node runs

out of energy; thus it can not be considered ENO. The extra sensing restrictions imposed by

the existence of environmental events are also not considered.

Gaglione, Rodenas-Herraiz et al. (2018) [13] characterize a multi-hop vibration EH-WSN

system for utilization in bridges. The evaluations performed in this paper demonstrate that

their system achieves Energy Neutral Operation in a 4-hop sensor network. Although it

is noticed that the vehicle traffic in bridges is transient in nature – as in events –, this

information is applied to the energy harvesting model and not to the data utility performance.

Data aggregation is not applied in this work.

Dehwah et al. (2017) [25] have as objective to find the best network policy to optimize the

remaining energy in a solar-powered wireless sensor network to monitor flood occurrences.

They achieve good practical results with management policies in a multi-hop routing scheme

that takes into account the existence of events (i.e., floods) and energy maximization. This

maximization can be seen as a sort of Energy Neutral Operation, but it is really not well

defined here. This work assumes that no data compression or aggregation is available.

9

2.3 Research Scope

The work presented in this dissertation follows a similar line of thought as the works

presented in Section 2.2. Previous related work performed at CISUC such as from Riker et

al. (2015, 2017) [44, 56] and by other sources, such as Yang et al. (2016) [55] and Mehrabi

et al. (2017) [57], lead to the design of a concept model which purpose is to maximize the

aggregate data traffic utility of a multi-hop EH-IoTN into a single sink node.

For this goal, we study the problem of composing an optimal scheduling algorithm in

a discrete finite-horizon network. Finite capacity batteries power the nodes; still, they are

capable of harvesting energy.

Allow us to reflect throughout the topics specified in Section 2.2. Every time slot, the

network settles how much new data to admit through sensing and how much power to allo-

cate over each communication link for data transmission (sensing and networking algorithm

design; power management schemes). The sensing operational allocation is further con-

strained by the mandatory capture of stochastic spatio-temporal occurrences designated as

events (sensing and networking algorithm design). Besides, energy consumption for data

transmissions can sometimes be minimized by employing a data aggregation mechanism,

where several data payloads can be integrated into the same data packet (in-network data

processing; power management schemes).

The network operation is subject to an Energy Neutral Operation, where the average

power consumption of the nodes is less or equal than the average power harvested from the

environment (power management schemes). The energy availability constraint dramatically

complicates the operation of an efficient scheduling algorithm, since the current energy ex-

penditure decision may cause an energy outage in the future and consequently affect the

subsequent decisions.

The concept of path traveling optimization is also explored implicitly by the optimization

model results. As for energy awareness, a considerable effort was put into having the most

realistic energy profiles as possible (see Appendix A).

The finite-horizon problem is essential but challenging and turns out to be highly sophis-

ticated. The complexity arises from the fact that it compels to optimizing metrics over

the short term rather than metrics that are averaged over an extended period. There is

also the time coupling property, which implies that current decisions can influence future

10

performance.

It is possible to infer from the overall description above (and from Table 2.1) that this

work studies jointly these four important IoT techniques: Energy Neutral Operation of

a multi-hop network with data aggregation and environmental events capture. To

the best of our knowledge, this quartet optimization has not been studied yet.

It is not intended with this work to claim that the obtained results are suitable to

implement the evaluated algorithms in a real EH-IoTN setting, at least in the present form.

This work focuses on obtaining behavioral patterns in the operation of EH-IoTNs through

time, so a solid theoretical foundation supports further algorithmic research to be able to

mimic the extracted optimal behaviors into a heuristic distributed setting.

11

3 Theoretical Model

We analyze an energy harvesting network that consists of a set of statically-deployed

nodes N that includes sensor nodes S and only one IoT gateway (sink node) � such that

N = S ∪ �. The network can be expressed as a graph G(N ,L) with arbitrary topologies,

where L represents the set of all possible wireless links. These links are directed, though

we assume connectivity to be symmetric, i.e., link (j , i) ∈ L if and only if (i , j) ∈ L. Let

N ≥ 2 be the order of the graph (its number of nodes), i.e., N = |N |; and let L ≥ 1 be the

size of the graph (its number of links), i.e., L = |L|. Let Ni ⊆ N be the set of all one-hop

neighbors of each node i ∈ N . See visual examples of a network in Figure B.4.

The network operates in a finite-horizon period consisting of discrete time slots t ∈

{0, 1, 2, . . . , T} , T <∞, where t = 0 is the initial state of the network (with associated start

conditions). Each time slot has a fixed time span ∆ where all the operations within the

scope of the states below can be performed in its entirety, i.e., all operations that need to

be finished in one time slot have enough time to end before starting a new time slot.

In a particular time slot, there are four possible statesM for a sensor node: staying idle

(sleeping) z, collecting raw sensor readings (sensing) s, transmitting Tx or receiving Rx data

packets over a wireless link. This means M = {z, s, Tx, Rx}. A node can only be in one

operational state at each time slot, i.e.,∑
m∈M

Sm
i (t) = Sz

i (t) + Ss
i (t) + STx

i (t) + SRx
i (t) = 1, ∀i ∈ N , 1 ≤ t ≤ T (3.1)

where Sm
i (t) is a binary variable that indicates if the sensor node i at time slot t is in

the state m ∈M or not, i.e., Sm
i (t) = 1 and Sm

i (t) = 0 respectively.

In our model, the sink node � does not have any battery limitations and has virtually

infinite buffer size.

Additionally, all the sensor nodes have harvesting devices and batteries with the same

characteristics. This implies that all the nodes are in the same initial technical conditions.

12

3.1 Data and Communication Models

1) Wireless Interference Model: We consider that the network has primary inter-

ference: links that share a common node cannot transmit and receive simultaneously, but

links that do not share nodes can do so. An identical interference model has been used

in e.g. [50, 58, 59] - it is about a wireless network with multiple channels available for

transmission. Examples are orthogonal CDMA or FDMA channels that enable simultaneous

communications in a neighborhood.

We use a binary variable ai ,j (t) to indicate if a link (i , j) ∈ L is active (ai ,j (t) = 1) at

time slot t . This activity exists only when node i is in Tx state and j is in Rx state during

that time slot, i.e.,

STx
i (t) + SRx

j (t) ≥ 2 · ai ,j (t), ∀(i , j) ∈ L, 1 ≤ t ≤ T (3.2)

We can see the influence of the considered interference model on (3.2), where the restric-

tion is formulated as inequality and not equality. Thus, this model then allows the following

in a particular time slot t : a node in transmitting state can send data to multiple neighbor

nodes if those are in receiving state; a node in receiving state can receive data from various

neighbor nodes if those are in transmitting state.

2) Data Packets: A data packet is constructed by two parts: one header and a variable

number of payloads. The header contains the communication protocol information, so the

header size is constant; a payload carries sensed data. In our model, the payload’s size is

smaller than the header’s. A data packet must have at least one payload and can have a

maximum of Pmax payloads.

Let pi ,j (t) and hi ,j (t) be the integer number of payloads and headers (data packets)

respectively sent, for a successful transmission (3.2) over the wireless link (i , j) ∈ L at time

slot t .

We can model the relationship between the number of data packets and payloads involved

in that transmission as

hi ,j (t) =

⌈
pi ,j (t)

Pmax

⌉
, ∀(i , j) ∈ L : ai ,j (t) = 1, 1 ≤ t ≤ T (3.3)

13

3) Link Capacity and Transmission Cost: Let Wmax be the constant maximum

capacity of a wireless link (i , j) ∈ L for any t , i.e., the maximum integer number of data

packets that can be successfully transmitted from i to j during any time slot t . Thus,

hi ,j (t) ≤ Wmax, ∀(i , j) ∈ L : ai ,j (t) = 1, 1 ≤ t ≤ T (3.4)

Also, denote by CTx
p and by CTx

h a fixed energy cost for successfully transmit a payload and

a header respectively. In the same fashion, designate by CRx
p and by CRx

h the corresponding

cost for a node to successfully receive a payload and a header. We can then define the

overall energy cost of transmitting p payloads inserted into h data packets over a wireless

link (i , j) ∈ L at a time slot t as

CTx
p · pi ,j (t) + CTx

h · hi ,j (t)

and

CRx
p · pi ,j (t) + CRx

h · hi ,j (t)

be the total energy cost of receiving that same amount of information.

4) Data Buffer Model: Each sensor node i ∈ S maintains a data buffer Qi(t) to

store its own sensed data payloads and data payloads received from its neighbors in Ni .

Therefore, the buffer Qi(t) represents the set of data payloads in node i ’s data buffer at

time slot t . We assume that the headers do not make part of this buffer because they are

attached and detached only at the instants of sending or receiving data packets, respectively

(see Data Aggregation).

Let Qi(t) ≥ 0 be the size of buffer Qi(t), i.e., Qi(t) = |Qi(t)|. Since sensor nodes

normally have limited RAM resources, we consider a finite buffer size Qmax in our model,

i.e., ∀i ∈ S,∀t , Qi(t) ≤ Qmax.

5) Sensing Model: At each time slot t , every node i that is in sensing state (Ss
i (t))

collects raw data readings from a hardware sensor. This activity produces a payload of

information on that node. We denote the total energy cost for the sensing operation of i ∈ S

as a constant Cs as we consider that all sensor nodes in the network have the same hardware

sensor.

14

6) Data Aggregation: We implicitly assume that exists some underlying mechanism

that perform operations with the existing data inside each nodes’ data buffer such that the

payloads and headers that constitute a data packet are organized as stated in the Data

Packet construction above. This method allows that data from different sources can be

opportunistically aggregated at intermediate nodes before reaching the sink node.

7) Data Buffer Size Dynamics: Considering the sensing, transmitting and receiving

operations, it can be seen that the buffer size dynamics of a sensor node i ∈ S can be

described as

0 ≤ Qi(t) ≤ Qmax, ∀i ∈ S, 1 ≤ t ≤ T (3.5)

Qi(t) = Qi(t − 1)− pouti (t) + pini (t) + Ss
i (t), ∀i ∈ S, 1 ≤ t ≤ T (3.6)

where

pouti (t) =
∑

j :(i ,j)∈L

pi ,j (t) and pini (t) =
∑

j :(j ,i)∈L

pj ,i(t)

represent the total number of transmitted and received data payloads by that node i at time

slot t respectively. Here, (3.6) represents the filling and clearing process of the node buffer;

and (3.5) highlights the bounded buffer capacity, as seen in the Data Buffer Model

above.

3.2 Energy Harvesting, Storage, and Consumption Mod-

els

There are three fundamental components in the embedded energy harvesting system of

each sensor node: energy harvester, energy storage, and energy consumers. Specifically,

consider a node i ∈ S at time slot t ∈ [1, . . . , T]:

• Hi(t) ≥ 0 is the amount of its harvested energy from the environment and we consider

this amount as deterministic;

• Bi(t) ≥ 0 is its residual battery level. We consider a battery with finite-capacity, i.e.,

∀i , t , Bi(t) ≤ Bmax;

15

• Ci(t) ≥ 0 is its total energy consumption. Each of the four possible states inM have

a different energy consumption:

– if the node is sleeping (z), the energy consumption is very low and it is constant,

i.e., Ci(t) = Sz
i (t) · Cz;

– if the node is sensing (s), the energy consumption is also constant, i.e., Ci(t) =

Ss
i (t) · Cs and usually Cs � Cz;

– if the node is transmitting (Tx) or receiving (Rx) data packets, its energy con-

sumption will have a constant component and a component that is a function of

how many headers and payloads it is transmitting/receiving; and we can denote

this by

Ci(t) = STx
i (t) · CTx + CTx

p · pouti (t) + CTx
h · houti (t)

if transmitting or by

Ci(t) = SRx
i (t) · CRx + CRx

p · pini (t) + CRx
h · hini (t)

if receiving, where

houti (t) =
∑

j :(i ,j)∈L

hi ,j (t) and hini (t) =
∑

j :(j ,i)∈L

hj ,i(t)

represent the total number of transmitted and received data packets, respectively.

Here, the definition of pouti (t) and pini (t) is the same as in the preceding section.

Considering the hardware of real sensor nodes, the total per-slot energy consumption

Ci(t) should be upper bounded by a finite value Cmax (i.e., ∀i , t , Ci(t) ≤ Cmax), which

depends on the maximum total power consumption of sensor nodes and the duration of a

time slot. Practically, Cmax � Bmax, because Cmax (typically in mJ) is multiple orders of

magnitude smaller than Bmax (typically in kJ).

The dynamic energy system of each sensor node can be modelled as:

Bmin ≤ Bi(t) ≤ Bmax, ∀i ∈ S, 1 ≤ t ≤ T (3.7)

Bi(t) = Bi(t − 1)− Ci(t) +Hi(t), ∀i ∈ S, 1 ≤ t ≤ T (3.8)

Bi(T) ≥ Bi(0), ∀i ∈ S (3.9)

16

Here, (3.8) represents the recharging and discharging process of the battery; and (3.7)

highlights the bounded battery capacity. More importantly, the constraint (3.9) ensures

neutral operation, which is expected to be achieved by every sensor node in the network, i.e.,

a node must consume only the energy it harvested – its residual battery level at the end of

operation must be always greater or equal than at the beginning of operation.

3.3 Events

We can consider that an event is a notable occurrence at a particular point in time. In our

model, we do not define particularly what an event is, as it depends on the general purpose

of the wireless network and the kind of hardware sensor mounted on the set of sensor nodes

S. For example, if the deployed nodes are monitoring the fluid pressure at specific points of

an industrial piping system, sudden rise or drop of pressure (events) in the neighborhood of

those points could be interpreted as pipe obstructions or leakage in those areas, respectively.

Whatever is the case, the general approach is to ensure that every point of the deployment

area is covered all the time by at least one active sensing sensor, provided that there is an

available sensor in the random placement [60]. Some algorithms, e.g. [61], are designed to

minimize the probability that any given point is not covered by an active sensor, provided

that it could be covered. Doing so will also maximize the detection probability of any event

and ensure instantaneous detection, if the event is within range of at least one sensor that

is sensing. In some applications for transient events (e.g., an animal which arrives and then

leaves), the goal may be to maximize the detection probability of the events before they

disappear, and some delay in the detection is acceptable.

Furthermore, it is widely accepted that real-world events can be modelled as stochastic

processes [62]. So, for this model, we consider that the starting time slots and locations of

the occurring events are known beforehand, as they follow a predictable distribution. Thus,

let Ei(t) be a binary variable indicating that at time slot t the node i ∈ S is close enough

to detect an event (Ei(t) = 1) or not (Ei(t) = 0) before it disappears, as all events have a

fixed duration δ. This suggests that is possible that Ei can be 1 to more than one node at

the same time, and can be 1 several time slots in a row for the same subset of sensor nodes.

For a certain event be declared as detected or captured, there must be at least one sensor

node i ∈ S in its neighborhood that is in sensing state while that event exists, i.e.,

∃i ∈ S, ∃t ∈ [δstart, δend] : (Ss
i (t) = 1 ∧ Ei(t) = 1) (3.10)

17

where δstart ∈ {1, ..., T − δ} and δend = δstart + δ are the starting and ending time slots of

the event, respectively.

3.4 Optimization Objective

It is not the purpose of this work to make any probabilistic (e.g. specific distribution) and

stochastic assumptions of the dynamic network states, including harvested energy, energy

costs (for sensing, sleeping, transmitting, and receiving), as well as transmission and data

buffering capacities, or events space-time location. The objective of this model is to seek an

algorithm that can solve the following finite-horizon optimization problem, by finding the

most suitable state Sm
i (t) ∈ M and wireless payload transmission pi ,j (t) for each sensor

node in S at each time slot 1 ≤ t ≤ T , so as to maximize the number of data payloads that

arrive at the sink node � at the end of the horizon, i.e., at t = T (3.11).

maximize

Q�(T) (3.11)

subject to

Constraints (3.1) - (3.10)

18

4 Implemented Model

To solve the finite-horizon optimization problem of Section 3.4 it is necessary to translate

it into something that can be run by a processing-capable machine, like a computer. This

translation brings up additional constraints not considered in the original problem, but those

are required so that the obtained solution meets the purposes of the initial design.

These extra restrictions may come from the very nature of Mixed-Integer Programming,

where it’s just not possible to write some given constraints precisely as they are written in

theory, so some additional auxiliary variables are needed. Others become necessary after

further refinement of the existing model, where its behavior was not exactly the expected

one.

4.1 The need of Mixed-Integer Programming

First, some definitions:

• An optimization model is an Integer Program (IP) if any of its decision variables is

discrete.

– If all variables are discrete, the model is a pure Integer Program.

– Otherwise, the model is a Mixed-Integer Program (MIP).

• An IP or MIP model is an Integer Linear Program or a Mixed-Integer Linear Program

(MILP), respectively, if its (single) objective function and all its constraints are linear.

– Otherwise, it is an Integer Non-Linear Program or a Mixed-Integer Non-Linear

Program.

In an optimization problem, the types of mathematical relationships between the objec-

tive and constraints and the decision variables determine how hard it is to solve, the solution

methods or algorithms that can be used for optimization, and the confidence one can have

that the solution is truly optimal.

19

The optimization problem stated in Section 3.4 is described to be a Mixed-Integer Pro-

gram: some of the variables are constrained to be integers (e.g., the number of data payloads

at any node, Qi(t)), while other variables are allowed to be non-integers (e.g., the battery

consumption of a node at any time slot, Ci(t)).

The additional constraints imposed by the integral variables make a MIP problem to be

much harder to solve. However, eliminating these integrality constraints (also designated

relaxation) results in a Linear Program, as the derived constraints and objective function

are linear. This linearity presence also implies that is guaranteed the existence of at least

one globally optimal solution – and that we can get its limits if solved.

For these reasons, the implemented model follows a Mixed-Integer Linear Programming

(MILP) approach.

4.2 The MILP model

Here it is described the resulting MILP model that is based in the theoretical model of

Chapter 3. Most of the expressed notation at this section has the same meaning of the one

in Chapter 3. Still, here an effort is made to express and describe the numerical constraints

or mathematical equivalence of the referred data.

4.2.1 Data

Network

Symbol Description

N Set of all nodes (sensor nodes + sink node �).
Each node has a number that corresponds to the node identifier.
N = {1, . . . , N}, where N is the number of nodes in the network.

� The sink node (or just sink) is the only IoT gateway in N , i.e., � ∈ N .
The goal is to maximize the received payloads in the sink.
It does not have energy or buffer size limitations.

L Set of all possible wireless links (i, j) between the nodes N where all data is
transferred.

Di Distance to the sink node, i.e., the length of the shortest path between node
i ∈ N and sink node �.
Distance of sink node to itself is 0.

T Finite-horizon period limit, or operational time-frame.
t = 0 coincide with the initial state of the network.
The model finds a solution for 1 ≤ t ≤ T .

20

Nodes Operation and Data Communication

Symbol Description

M Set of all the operational states of a certain node i ∈ N . M = {z, s, Tx, Rx}.
They are: sleeping z, sensing s, transmitting Tx, or receiving Rx.

Qi(0) Buffer size of a node i ∈ N at the start of the simulation, i.e., how many data
payloads it has in the buffer at t = 0.

Qmax Maximum number of data payloads that a sensor node can have in its buffer
at any time.

Pmax Maximum number of data payloads that a transmitted data packet can
contain.

α Duration of the period, in time slots, in which a minimum amount of data
payloads will be required to enter the sink node �.
This means that from α to α time slots a certain minimum amount of data
payloads (see β) need to reach the sink node, with 1 ≤ k ≤ T

α
, being k the

current period.

β Minimum amount of data payloads per sensor node that the sink node must
receive in each of the time periods k (see α).

Txmin Minimum amount of data transmit (Tx) states that a sensor node must
achieve in each of the time periods k (see α).

smin Minimum amount of sensing (s) states that a sensor node must achieve in
each of the time periods k (see α).

γ Value between 0 and 1 that sets what fraction of the total number of
payloads that enter the sink node throughout all the operational time-frame
can remain outside in the sensor nodes data buffer.

21

Energy

Symbol Description

Bi(0) Battery level of node i ∈ N \ � at the start of operation.
This is also the value of battery that the node must have at the end of the
operational time-frame.

Bmin Minimum level of battery that any node can reach during operation.

Bmax Maximum level of battery that any node can reach during operation.

Hi(t) Amount of increased battery level of a sensor node i ∈ N \ � in a certain
time slot t .
This amount comes from harvested energy from the environment.

Ci(t) Total amount of decreased battery level of a sensor node i ∈ N \ � at time
slot t .
This amount is due to consumption profiles regarding the node operational
state and data communications.
The value can be further decomposed in:

CTx
p decreased battery level when transmitting one data payload

CTx
h decreased battery level when transmitting one header (data packet)

CRx
p decreased battery level when receiving one data payload

CRx
h decreased battery level when receiving one header (data packet)

Cz decreased battery level when in sleeping (z) state

Cs decreased battery level when in sensing (s) state

CTx decreased battery level when in data transmitting (Tx) state

CRx decreased battery level when in data receiving (Rx) state

Events

Symbol Description

Ei(t) Binary variable that is 1 if node i ∈ N \ � is close enough to detect an event
at time slot t . Otherwise, is 0.

v(t) Binary variable that is 1 if an event has started at time slot t . Otherwise, is 0.
This means that v(t) = max {Ei(t) : i ∈ N \ �}.

δ Fixed duration, in time slots, of all emerging events.

22

4.2.2 Decision Variables

Nodes Operation and Data Communication

Symbol Description

Sm
i (t) Binary variable that is 1 if the node i ∈ N at time slot t is in the state

m ∈M. Otherwise, is 0.

hi ,j (t) Number of data packets (headers) being transmitted over wireless link
(i , j) ∈ L at time slot t .

pi ,j (t) Number of data payloads being transmitted over wireless link (i , j) ∈ L at
time slot t .

ai ,j (t) Binary variable that is 1 if the link (i , j) ∈ L is active during time slot t , i.e.,
there is information flowing from i to j . Otherwise, is 0.

f̄i ,j (t) Binary variable that is 1 if there is a data packet being transmitted over a
wireless link (i , j) ∈ L at time slot t that is not full, i.e., the number of data
payloads in it is less than Pmax. Otherwise, is 0.

Qi(t) Buffer size of node i ∈ N at time slot t , i.e., how many payloads it has in the
buffer.

Energy

Symbol Description

Bi(t) Battery level of node i ∈ N \ � at time slot t .

4.2.3 Constraints

Nodes Operation

(4.1)
∑
m∈M

Sm
i (t) = Sz

i (t) + Ss
i (t) + STx

i (t) + SRx
i (t) = 1, ∀i ∈ N , 1 ≤ t ≤ T

A node can only be in one operational state at each time slot.

(4.2) SRx
� (t) = 1, 1 ≤ t ≤ T

The sink node � is in the receiving state at all times.

23

Data Communication

(4.3) STx
i (t) ≤

∑
j :(i ,j)∈L

ai ,j (t), ∀i ∈ N , 1 ≤ t ≤ T

A node can only be in a transmitting state (Tx) if any of its outgoing links is active,
i.e., the node is sending payloads.

(4.4) SRx
i (t) ≤

∑
j :(j ,i)∈L

aj ,i(t), ∀i ∈ N , 1 ≤ t ≤ T

A node can only be in a receiving state (Rx) if any of its incoming links is active,
i.e., the node is receiving payloads.

(4.5) STx
i (t) + SRx

j (t) ≥ 2 · ai ,j (t), ∀(i , j) ∈ L, 1 ≤ t ≤ T

If a link (i , j) is active, then the node i must be in Tx state, and the node j must
be in Rx state.

(4.6) ai ,j (t) ≤ pi ,j (t) ≤ ∞ · ai ,j (t), ∀(i , j) ∈ L, 1 ≤ t ≤ T

If a link (i , j) is active, then there must be data payloads flowing through it.

(4.7) Qi(0) +
t−1∑
τ=1

pini (τ) +
t−1∑
τ=1

Ss
i (τ) ≥

t∑
τ=1

pouti (τ), ∀i ∈ N , 1 ≤ t ≤ T

The number of outgoing payloads at a node on a time slot t cannot be higher than
the number of its incoming payloads before that time slot (t − 1). That includes
payloads received from other nodes, the payloads created when sensing, and the
initial payloads in its buffer.1

(4.8) Qi(t)︷ ︸︸ ︷
Qi(0) +

t∑
τ=1

pini (τ) +
t∑

τ=1

Ss
i (τ)−

t∑
τ=1

pouti (τ) ≤ Qmax, ∀i ∈ N \ �, 1 ≤ t ≤ T

The number of payloads at a node cannot be higher than its maximum buffer
capacity.1

(4.9) Pmax
(
hi ,j (t)− f̄i ,j (t)

)
+ 0.1 · f̄i ,j (t) ≤ pi ,j (t) ≤ Pmax · hi ,j (t),

∀(i , j) ∈ L, 1 ≤ t ≤ T

Sets the correct number of data packets (headers) when transmitting payloads. In
other words, if data packets are flowing through a link, only one data packet could
not be full. When there are incomplete data packets, the expression 0.1 · f̄i ,j (t)
transforms the first constraint from inequality to strict inequality.

1See (3.6) at page 15 for the definition of pini and pouti .

24

(4.10)
kα∑

t=(k−1)α+1

∑
j :(j ,�)∈L

pj ,�(t) ≥ (N − 1) · β, 1 ≤ k ≤ T

α

The amount of data payloads that the sink node must receive during a time period
α needs to be higher than the number of sensor nodes multiplied by the parameter
β, i.e., each sensor node sends an average of β payloads to the sink node per period.

(4.11)
kα∑

t=(k−1)α+1

STx
i (t) ≥ Txmin, ∀i ∈ N \ �, 1 ≤ k ≤ T

α

A sensor node must be in a transmitting state at least Txmin times per period k.

(4.12)
kα∑

t=(k−1)α+1

Ss
i (t) ≥ smin, ∀i ∈ N \ �, 1 ≤ k ≤ T

α

A sensor node must be in sensing state at least smin times per period k.

(4.13)

T /α∑
k=1

(∑
i∈N\�

(Di ·Qi(k · α))

)
T/α

≤ γ ·Q�(T), 0 ≤ γ ≤ 1

At the end of each period k, it is given a weight to each of the data payloads that
do not reach the sink node – that weight is linearly dependent to their current
distance (in wireless hops) to the sink node. This weight must not be higher than
a fraction γ of the number of data payloads that reach the sink node at the end
of time-frame T . This penalization function ensures that the sensor nodes do not
accumulate data payloads through time. Instead, it will regularly force the nodes
to flush the payloads on their buffers to nodes closer to the sink node. For further
explanation, see Communications in Section 4.4 (p.28).

Events

(4.14)
∑

i∈N\�

Ei(t) ·
min

{
t+

δ
2
,T−t

}∑
τ=t

Ss
i (τ)

 ≥ v(t), 1 ≤ t ≤ T

At least one sensor node must capture a nearby event in the first half of its duration.

Energy

(4.15) Bmin ≤ Bi(t) ≤ Bmax, ∀i ∈ N \ �, 1 ≤ t ≤ T

The battery level of all sensor nodes must be within the imposed limits.

25

(4.16) Bi(T) ≥ Bi(0), ∀i ∈ N \ �
Maintain the network in neutral operation, i.e., the battery level of all nodes at the
end of the finite horizon period must be higher or equal than at the beginning.

(4.17) Bi(t) = Bi(t − 1)− Ci(t) +Hi(t), ∀i ∈ N \ �, 1 ≤ t ≤ T,

Ci(t) = CTx
p · pouti (t) + CTx

h · houti (t) + CRx
p · pini (t) + CRx

h · hini (t)

+ Cz · Sz
i (t) + Cs · Ss

i (t)

Ensures the proper recharging and discharging process of the battery throughout
the entire operation.2

4.2.4 Objective

(4.18) maximize Q�(T)

The MILP single objective is to maximize the total number of data payloads that
arrive at the sink node over time.

4.3 Solving a MILP problem: the CPLEX Optimizer en-

gine

Since MILP problems have integer variables, they must be solved by some systematic

search and not by a potentially exhaustive one. One traditional algorithm for solving these

problems is designated Branch and Bound (B&B).

This method begins by finding the optimal solution to the relaxation of the original

MILP problem – removing all of the integrality restrictions results in a Linear Program,

much more straightforward to solve. If in this solution, the decision variables with integer

constraints have integer values, then no further attempts are required – this solution is an

optimal solution of the original problem. However, this occurs very rarely.

If one or more integer variables have non-integral solutions, the Branch and Bound

method chooses one variable that violates the integrality restriction, i.e., a variable which

value is xi = γ, with γ as non-integral, making the new optimal value an upper bound of

the optimal value of the original problem. Subsequently, the problem branches into two

new sub-MILP-problems wherein one of them has an additional restriction xi ≤ bγc and the

other has xi ≥ dγe as extra constraint. The variable xi is labeled as a branching variable.
2See (3.6) (p. 15) for the definition of pini and pouti , and (3.8) (p. 16) for the definition of hin

i and hout
i .

26

If the B&B can compute optimal solutions for each of these sub-problems, then the better

of these two solutions will be optimal to the starting problem: this process replaced it by

two simpler (or at least more-restricted) MILPs.

The next move is to apply the same approach to these two MILPs, solving the correspond-

ing LP relaxations and, if necessary, picking branching variables. This process constructs a

search tree. The MILPs generated by the search procedure are termed the nodes of the tree,

with the initial MILP appointed as the root node. The leaves of the tree are all the nodes

still unbranched.

It is not necessary to branch on a specific node if the B&B has just solved its Linear

Programming (LP) relaxation and all of the integrality restrictions of the root node are

satisfied in this solution – a feasible solution to the original MILP has been found. This

node can be called fathomed as is a permanent leaf of the search tree.

The incumbent is the best integer solution found at any point in the search. At the

start of the search, there is no incumbent. By analyzing the information provided by the

last integer feasible solution found, the B&B records this solution as the new incumbent

(along with its objective value) if it has a better objective function value than the current

incumbent (or if it has no incumbent yet). Otherwise, no incumbent update is necessary,

and the B&B simply proceeds with the search.

Two other possibilities can lead to a node being fathomed. First, it can happen that the

branch that directed to the present node added a restriction that made the LP relaxation

infeasible. Naturally, if this node contains no feasible solution to the LP relaxation, then it

holds no feasible integer solution. The other possibility is that an optimal relaxation solution

is discovered, but its objective value is worse than that of the current incumbent. Clearly,

this node cannot yield a better integral solution and again can be fathomed.

This algorithmic approach demands a proper optimization engine that is constructed for

this kind of algorithmic approach. Here enters the CPLEX Optimizer.

The CPLEX Optimizer is one of the optimization engines provided by the IBM ILOG

CPLEX Optimization Studio3 and it is a mathematical programming optimization engine

that implements the Simplex and Barrier methods, Mixed Integer programming, and the

Branch and Bound method.

One of the reasons to use this software suite was the extended use amongst fellow re-

searchers here in the LCT. Other major reason was the fact that it combines a fully featured
3https://www.ibm.com/products/ilog-cplex-optimization-studio

27

https://www.ibm.com/products/ilog-cplex-optimization-studio

Integrated Development Environment (IDE) that supports the Optimization Programming

Language (OPL).

OPL, the modeling language, allows us to write a mathematical representation of our

problem that is separate from our data. This separation enables significant improvement

because we can easily rerun the same model while adjusting the input data for different

simulations.

Further reference to the CPLEX Optimizer engine on the rest of the document will be

just "CPLEX" or "the CPLEX engine".

4.4 The resulting OPL Model

The MILP model described in Section 4.2 materializes itself as a computing-capable

model in OPL, and this resulting model can be accessed at https://bitbucket.org/

mollering/mobiwise-cplex. If we analyze in detail the code, we can find that its data,

decision variables/expressions, constraints, and objective fit perfectly the mathematically

defined MILP model in such a way that still is quite intuitive to comprehend.

However, this model – that in its core is a representation of the theoretical model of

Chapter 3 – went through a significant number of modifications until the present form

detailed in Section 4.2.

The GUI platform developed in the course of this dissertation and described in Chapter

5 provided an interactive build-up capability that started with the core model (with some

undetected flaws at first) until a valid up-and-running model that conforms with the general

guidelines presented in Chapter 3.

A compilation of the modifications that were necessary and their motivation is shown

here.

Nodes Operation

Constraint (3.1) is maintained as (4.1) but expanded to include the sink node along the

sensor nodes. Also, (4.2) is added so that the state of the sink node does not fluctuate as it

happened before its inclusion – it is essential that the sink keeps the receiving state such as

to maximize the reception of new payloads.

28

https://bitbucket.org/mollering/mobiwise-cplex
https://bitbucket.org/mollering/mobiwise-cplex

Data Communication

Constraints (4.3) and (4.4) were appended after some nodes would be in transmitting

and receiving states even when not sending any payloads – virtually, this would save them

battery because when sending/receiving zero data payloads the energy consumption was

nonexistent. Similarly, constraint (4.6) was also attached to make sure that a link can only

be active if payloads are passing through it.

Theoretical constraints (3.5) and (3.6) were rewritten as (4.7) and (4.8). In practice,

the resulting constraint set is maintained. The modifications ensure that the input flow

of payloads on a node’s buffer equals its output flow, that is, no payloads are created or

disappear "from/to nothing" (4.7) – this constraint also ensures that Qi(t) is never negative

– and that the number of payloads inside a buffer does not go beyond its maximum capacity

(4.8). Data parameter Qi(0) was supplemented accordingly.

Constraint (4.9) is just a linear equivalent of the original (3.3). Decision variable f̄i,j(t)

was added as an auxiliary in this process.

Period-based constraints (4.10), (4.11), and (4.12) were added later in the model formula-

tion to further constraint the network to regularly perform some necessary actions, such as

to create and send data to the sink node. Data parameters α, β, Txmin and smin were added

subsequently. In deeper detail:

• An initial version attested that most of the payloads only reached the sink node near

the end of the finite horizon T . In other words, the information was utmostly delayed,

a situation that is not acceptable when it is needed to actuate regarding an event

or collect the network information as early as possible. Constraint (4.10) solved this

behavior by introducing the concept of time periods.

• With the inclusion of (4.10), the model put the sink’s closest nodes pretty active:

frequently in sensing state to create payloads, and only transmitting those at the end

of the time periods. In consequence, most of the time the peripheral nodes were not

capable of getting their payloads through the inner nodes, so they remained mostly

sleeping. This situation does make sense considering the model objective, since the

transmission of the few payloads generated in the most distant nodes will force the

passage through several nodes that will have to be in the Tx/Rx states, preventing

29

them from being in sensing mode (which would be more beneficial to maximize the

objective function).

However, this is not desirable in a real context because the intention is to receive

information from all nodes, not just from those that are close to the sink. Constraint

(4.12) was added to force every node (most importantly, the distant ones) to obtain

data from the environment and (4.11) ensured that the payloads not remained in the

nodes’ buffers, i.e., that they were actually transmitted.

• The model approach to overcome the previous constraints was to play some "ping-

pong" game with the payloads acquired by the most distant nodes: as all nodes had a

chance to be transmitting once per period, constraint (4.11) was successfully enforced.

To minimize this impact on the obtained solutions, constraint (4.13) ensures that the

optimization objective has an increasing penalty as nodes further away keep payloads inside

their buffers. Thus, at each period, this penalty is minimized when the network "pushes"

payloads closer to the sink node – the minimum possible penalty is when the payloads enter

the sink node. The included data parameter γ controls what fraction of the total number of

payloads acquired by the sink node at the end of the operational timeframe can stay inside

the network. The distance-to-sink data Di was also required for this constraint.

Events

As constraint (3.10) was difficult to implement as is written theoretically, it was rewritten

as the linear constraint (4.14). The final linear expansion needed data v(t) to achieve this.

30

5 Simulation and Analysis Platform

What started by being a secondary idea of having a simple way to represent in some

visual form the results obtained by running the CPLEX engine on the OPL model, quickly

developed into being a main project within the scope of this thesis.

This chapter describes the specifications and functionalities of a MATLAB-based GUI

that we call Network Visualizer app (NetVis). This app allows interoperability with

the CPLEX Studio (Section 4.3) and enables us with the ability to validate and analyze

the dynamic network states that correspond to optimal or sub-optimal solutions of the

optimization problem of Section 3.4. The NetVis User’s Guide is in Appendix B.

5.1 Conception and Requirements

In the early stages of the core model development, it was immediately clear that it was

necessary to find a way to validate the model optimization results. We were obtaining data,

but we lacked a proper method for:

• Evaluating if the network model was valid from a real-world perspective, i.e., it followed

the physical rules of an IoT sensorial network.

• Assessing if the behavior exposed by the results met our goals for that network, even

if they were valid.

• Perform continued experimentations with different data parameters or constraints in

an agile1 development cycle.

The results provided by CPLEX come in a numerical array format. This representation is

good for a computer, but not for us trying to obtain a meaningful and practical understanding
1Agile software development refers to a group of software development methodologies based on iterative

development, where requirements and solutions evolve through collaboration between self-organizing cross-

functional projects.

31

of the model response. Another necessity was to obtain and manage data quickly to feed as

input to the CPLEX, as without proper input data the results had no real meaning.

The obstacles presented above created the need for a supporting platform whose core

requirements are:

• Translate the CPLEX array-style results to datasets in which it is possible to manip-

ulate the data for further analysis.

• Provide a graphical representation of a given network, its parameters, and its operation

over time. This analysis is performed by using the CPLEX results as source.

• Grant the ability to change data parameters quickly and feed them as input to CPLEX.

• Perform a series of automatic validations on the results presented by CPLEX to avoid

the existence of incorrect models.

Other non-functional assumptions to point out:

• Maintain a clean graphical interface, with intuitive and straightforward operativity,

and privilege mouse use.

• Possibility to add more features in the future, so the platform evolution should be as

modular as possible.

5.2 Development

Although the platform had a core of principles (Section 5.1) to follow during its construc-

tion, in reality, the process of software creation was quite experimental and iterative. As

this process was completely intertwined with the process of building-up and validation of the

OPL model, several times the need to identify a particularity on the CPLEX results or the

necessity to rewrite some constraints changed the focus on the conception of new features

or forced the modification of existent ones.

This method means that the development was not linear and some secondary require-

ments changed during the steps to achieve the 3800 lines GUI software that can be accessed

at https://bitbucket.org/mollering/mobiwise-matlab. Thus we can call this method

as agile considering that the optimization model and the presented analysis platform grew

with each other.

The MATLAB2 environment and language were the chosen tools to build the app since:
2https://www.mathworks.com/products/matlab.html

32

https://bitbucket.org/mollering/mobiwise-matlab
https://www.mathworks.com/products/matlab.html

• MATLAB language allows easy creation of data-based algorithms, matrix manipula-

tion, and data analysis.

• MATLAB environment provides a streamlined interface with programs written in other

languages or with externally created data.

• Mathworks3 maintains App Designer4, a tool that integrates the two primary tasks of

app building – laying out the visual components and programming app behavior.

• I have considerable experience working with them, and fellow researchers commonly

use those tools.

5.3 Features and Functionalities

1) Data Creation and Storage: In Section 4.2.1 there is an enumeration of a some-

what extensive set of necessary data used as input of the implemented model. The NetVis

app allows a user to set and modify these various parameters quickly and makes sure they

can be reused in future runs of the model since they can be stored as MATLAB data.

2) Graph Creation and Visualization: Provided the number of nodes (N) in a

graph representing the modeled network (G) and other graph options, the app automatically

creates the sets of all nodes (N) and wireless links (L) that connect those nodes. The app

also defines the sink node (�) as being the node in the closest position to all other nodes.

A possible 2D representation of such network is then displayed.

3) Interface with CPLEX: The app takes the given data and writes it in a format

comprehensible to the CPLEX OPL engine. Next, it can send a command to the engine to

start the process of finding an optimal model solution with the specified data, with the help

of a B&B algorithm. If the model tends out to be infeasible, the app receives the information

of which constraints are producing a problem. If there is an optimal or sub-optimal solution,

then the app imports it and translates it back to a MATLAB suitable format.

4) Results Visualization: When the app receives a valid solution, it can display the

behavior of the network through time, namely: the operational state of the sensor nodes, the

amount of data payloads on the nodes’ buffers, the amount of battery of each sensor node,
3https://www.mathworks.com
4https://www.mathworks.com/products/matlab/app-designer.html

33

https://www.mathworks.com
https://www.mathworks.com/products/matlab/app-designer.html

and which links are active and how many data packets and payloads flow through them. See

an example in Figure B.2.

5) Results Validation: The app runs a set of validation functions on the results data to

ensure that those are physically consistent and the model constraints are enforced. Examples:

the residual battery cannot overflow a specified maximum value, even if the energy harvesting

is too much and a node can practically "live" only from the harvested energy; if a node is

transmitting, then the variation of data payloads on its buffer on that time slot must be

negative.

6) Result Analysis: Several functions run through the obtained data to extract further

data metrics not provided by CPLEX. These functions calculate cumulative data-based

tendencies through time and then present a set of different graphical representation of these

metrics. See examples in Section B.4.7.

7) Import and Export of Data: The app allows the following operations:

- Save and load specific network graphs, for reuse on various model types.

- Manual import of CPLEX data, in case we want to run a model on the CPLEX Studio

IDE manually.

- Save and load model optimization results along with the data parameters and other in-

formation extracted from the results in a data structure suitable for numerical analysis

(MAT files). See Section B.5.2 to know more.

8) Expansion and Modification Capabilities: Create new algorithms to manipulate

data, add more network settings and data validations functions, extract further metrics and

graphics from data results or improving the user interface is quite easy as the App Designer

provides these tools in a very intuitive way, making use of graphical development and object

callbacks.

5.4 Functional Flow Overview

To successfully perform a simulation with the implemented model from Chapter 4, one

must first define its input parameters. The NetVis app and interoperability framework

facilitates this procedure and guarantees that some parameters do not invalidate each other.

34

Configure Network Settings
Add Harvesting Profile

Add Node States Consumptions
Define Event Settings

Verify
inconsistencies
with Input Data

inconsistencies

Generate
Events

Saves Input
Data

Creates and
displays Network

Exports Input
Data to CPLEX

Run CPLEX
solver engine

Wait for CPLEX
response

Displays error
cause or failed

constraint

Run validation
checks on

Results Data

Extracts
aggregated

metrics from
Data

Saves Results
into NVDat

data structure

Displays
Network

dynamics
over time

Creates graphic
visualizations from
acquired metrics

success

error

Figure 5.1: Activity diagram of a run of the NetVis framework

Figure 5.1 displays the course of actions followed by the app, the framework and its user

in the overall process of producing optimizations results with the model. One can inspect

what kind of network is modeling before running the optimization engine. When the results

are ready, which can take some time depending on the provided configurations, the app aids

in the process of analyzing the data and storing it for future examination.

35

6 Evaluation Setup and Results

It is essential to feed the model proposed in Chapter 4 with data that mirrors a realistic

IoT setting to test its validity. Here it is described the reasoning behind the choices regarding

the used parameters values, which metrics are evaluated and how that was achieved.

6.1 Goals

Foremost and of fundamental significance, we expect to evaluate the model validity. Va-

lidity implies that, in its core design, the model should not result in unnatural behavior. It

has to reproduce as strictly as possible what is operationally expected from an EH-IoTN con-

structed to gather environmental data without logical faults. Skipping hardcoded rules like

manipulating data beyond the corresponding operational states, overriding battery physical

bounds, or allowing uncaptured events, even if that provides a better optimization objective,

are examples of logical flaws to avoid.

Second and on top of ensured validity, we strive to assess the model performance. After

corroborating that its behavior is within the imposed logical limits, the purpose is to uncover

what are the conceivable dynamics that an EH-IoTN adopts to guarantee an optimal utiliza-

tion of the resources that are available to it. However, that use of resources should, above all,

exhibit the premises already well-established: the IoT network must take advantage of its

multi-hop design and data aggregation capability to make data collection more efficient; it

has to ensure that environmental events are captured without failure; and it needs to prove

that it can operate indefinitely while maintaining a neutral operation regarding its energetic

availability.

6.2 Evaluation Conditions

To demonstrate the use of the framework composed of the OPL model linked with the

NetVis app, we resort first to study a possible physical implementation of a network with

36

the characteristics detailed in Chapter 4.

This practical research leads us to a point where we can assume that most of the analyzed

network parameters are as close to a realistic setting as we are capable of assessing within

the current project status. It is vital to note that the model remains as a simplification

of real network conditions, mainly because some temporal-related data is assumed to be

deterministic, e.g., the energy harvesting profiles or the events’ distribution.

6.2.1 Platforms and Methods

Taking into consideration the proposed objectives in Section 6.1, testing the model in-

volves conducting simulations that operate with the studied data parameters as input.

The framework CPLEX-NetVis provides these simulations, and the process – mainly

automated, as briefly described in Section 5.4 – is as follows:

1. NetVis is employed to specify suitable data parameters;

2. A simulation is requested, that in turn runs a B&B process (Section 4.3) within the

CPLEX studio engine;

3. The process in 2. produces the optimal network dynamics if those exist;

4. NetVis is used to view the results and analyze them in conformity with established

metrics. Consequently, it allows to perform comparisons between all the simulation

results.

6.2.2 Fixed Simulation Parameters

Due to the extensive quantity of input data in the model, which produces numerous

combinations of experimental conditions, we decided to fix most of the parameters and only

vary two of them, so in the retrieved results we can analyze how these parameters influence

the goals established in Section 6.1.

However, to settle some of the parameters is not a straightforward task, as most of them

have a viable range of values, namely the ones regarding the Nodes Operation and Data

Communication data. A sizeable amount of simulations were performed for this effect. These

simulations, which are not shown in this document, served both to validate the model and

to consolidate several values for some of the parameters, as specified below.

37

Parameter Fixed Value

Time Slot Duration ∆ = 5min = 300 s

Time-frame T = 60

Maximum Battery Bmax = 648 J −−−−−−−−−−−−−−→ 100 %

Minimum Battery Bmin = 0.1 ·Bmax = 64.8 J −−−−→ 10 % of Bmax

Initial Battery Bi(0) = 0.5 ·Bmax = 324 J −−−−→ 50 % of Bmax

for all sensor nodes

Consumption
when in sleeping state

Cz = 0.63 mJ −−−−−−−−−−−→ 0.00009722 % of Bmax

per time slot

Consumption
when in sensing state

Cs = 7.67 mJ −−−−−−−−−−−→ 1.18333333 % of Bmax

per time slot

Consumption
when in transmitting data state

CTx = 7.63 J −−−−−−−−−−−−→ 1.17718056 % of Bmax

per time slot

Consumption
when in receiving data state

CRx = CTx = 7.63 J −−−−−−−→ 1.17718056 % of Bmax

per time slot

Consumption
when transmitting a data packet

CTx
h = 217.96 mJ −−−−−−−−−→ 0.03363578 % of Bmax

per data packet

Consumption
when transmitting a data payload

CRx
h = 375.85 mJ −−−−−−−−−→ 0.05800218 % of Bmax

per data payload

Consumption
when receiving a data packet

CTx
p = 9.46 mJ −−−−−−−−−−→ 0.00146047 % of Bmax

per data packet

Consumption
when receiving a data payload

CRx
p = 6.28 mJ −−−−−−−−−−→ 0.00096885 % of Bmax

per data payload

Number of Nodes N = 25

Network Topology Square grid (Figure B.1)

Sink Node Node with maximum closeness centrality

Maximum data packet size Pmax = 15 data payloads

Maximum node data buffer size Qmax = 6000 data payloads

Minimum data payloads per period β = 1 data payload per sensor node

Minimum sensings per period smin = 1 each node

Minimum transmissions per period Txmin = 1 each node

Network data collection ratio γ = 0.1 of total data

Initial data payloads inside nodes Qi(0) = 2 in every sensor node

Events duration δ = 4 time slots

Events proximity Always nearby to at least 1 sensor node

Events probability Spawn at pE = 36 % of the time slots:
W (A = 3.11, B = 3)

Event randomness No randomness, always the same events distribution

Table 6.1: Fixed simulation parameters

38

Time

As we assume a time-slotted system with a finite-time operation of T time slots, it is

essential first to define the duration of each of the time slots, since all other parameters

depend on it – namely the harvesting and consumption profiles.

In an effort to comprehend how similar works tackle this matter, it is presented in Table

6.2 a brief compilation of the data parameters used in the past couple years’ simulations

about resource allocation on Energy Harvesting Networks. It was clear when reading those

works that every research group defines the time slot duration or the timeframe span as the

most suitable for the type of simulation and for the results that they are trying to achieve.

Hence, as our goal is to attain a certain sense of realism in the potential uses for this sort

of networks, 5 minutes per time slot is a suitable value. This value respects the assumptions

made on the theoretical model of Chapter 3, where it is declared that the nodes’ operational

states require sufficient time to be performed in their entirety before a new time slot initiates.

Considering that the active and more consuming states (i.e., sensing, receiving and trans-

mitting) represent operations that an embedded micro-controller can ordinarily perform in

less than 2 seconds, 5 minutes gives a substantial operational margin and is proper for most

applications of an IoT network with environment-sensing capabilities.

It should be remarked that the model does not use this value directly, but implicitly in

the energy-related parameters. See next section or Appendix A.

Work Time Slot Duration Time-frame Span T

This Work 5 minutes 5 hours 60

Baghaee et al. (2018) [63] 1 second 120 seconds 120

Zhang et al. (2018) [64] 1 second 100 seconds 100

Al-Tous et al. (2018) [65] 1 ms 100 ms 100

Dehwah et al. (2017) [25] 2 hours 12 hours 6

Kosunalp (2017) [30] 1 hours 24 hours 24

Jackson et al. (2017) [26] 30 minutes 24 hours 48

Table 6.2: Related works time data comparison (sorted by year)

For choosing a value for T , we had to regard simulation time: we found that simulation

times raised exponentially with the value of the selected time-frame. As we had to perform

39

several simulations, the value was fixed at 60 because it proved to be a right balance between

simulation time and the exposed network dynamics.

Energy Profiles

The contemplated sensor nodes are based on the Atmel XPlained Pro evaluation board

which incorporates an Atmel 8-bit AVR Microcontroller ATmega256RFR2 with a low power

2.4GHz IEEE 802.15.4 compliant radio transceiver [66]. These evaluation boards also come

with a mounted temperature sensor that can be considered the data acquisition module of

the model. A typical rechargeable 3.0V/60mAh Lithium-Ion battery powers the board.

Appendix A exhibits all the premises and calculations that established the nodes energy

related data.

Network Topology

For the network topology, we can consider two approaches:

• The random network topology – In this type of topology, N nodes are arbitrarily

distributed across a bi-dimensional area. This approach is commonly used in related

works as performance evaluation [53, 67]. The exact value of this considered area is

not essential for the model, only the linked graph that results from connecting the

nodes. These connections depend on the range radius defined for the attached radio

transceivers.

TheNetVis app has the option to recreate such kind of topology with the help of an al-

gorithm explicitly created for this task: it can vary the sparsity of the distributed nodes

(more sparsity creates a looser network, less sparsity creates a tighter network) and

the connectivity between them, simulating the variable range of the radio transceivers

(more connectivity increases the number of neighbors of the nodes, less connectivity

decreases the average amount of links between nodes).

This kind of topology is the one which mirrors best how a network would exist in a

practical IoT setting, but unfortunately it can not serve to our immediate evaluation

purposes due to the always changing connectivity between simulations: the number

of links between nodes varies, and more importantly, the number of links to the sink

node also differ. See Figure B.4 for examples. Furthermore, as the evaluation metrics

are dependent on the network structure, a lengthy analysis would need to include

40

averaged results from multiple simulations, making this assessment recommendable as

future work (see Chapter 7).

• The square grid network topology – A square grid network is considered to main-

tain a consistent and perpetual evaluation topology: the placement of the nodes on

a 2D area follows a square pattern (see Figure B.1 as an example). This works best

when the number of nodes in the network N is a perfect square. As the connections

between nodes are perpetually the same, it is the most natural topology in which to

evaluate metrics when varying other parameters. This kind of topology features four

sensor nodes connected to the sink node, and most of the nodes have four transmission

links to other nodes, except those in the periphery of the network.

In any of the cases, the sink node is always the node on the network with maximum

closeness centrality1, i.e., the sink node stands in the closest position to all other nodes.

The model was experimented with both random and square topologies and with a variable

number of nodes on the network – from 9 to 100 nodes. Nonetheless, although the model

works out for a sizable amount of network nodes (which is good as IoT networks tend to have

more and more nodes) we had to consider simulation running times – more nodes implies

larger times waiting for optimization results –, and the size of the exhibited graphical data

– after a certain number of nodes, the displayed information in such restricted canvas is

visually challenging.

Thus, for evaluation purposes in this dissertation, we fixed N to be 25 along with a

square topology – see Figure B.1. This choice satisfies what is expected from a network with

a modest number of nodes while enabling us to assess the performance of nodes that remain

at varying distances from the sink node. In Figure 6.4 it can be noticed that there are nodes

up to four hops away and that the sink node is the central node.

The set of wireless links L in this topology contains 40 links that work in both directions.

The contemplated transmitter radius for every node is sufficient to encircle its closer nodes.

This radius along with the nodes placement results in a non-overlapping graph, in contrast

with the examples in Figures B.4b, B.4c, and B.4d.

In short, we consider a 25-node square network with a central sink node with 40 bidirec-

tional non-overlapping links. This decision further fixes the values for the distances to the
1In a connected graph, closeness centrality of a node is a measure of centrality in a network, calculated

as the reciprocal of the sum of the length of the shortest paths between the node and all other nodes in the

graph. Thus, the more central a node is, the closer it is to all other nodes. [68]

41

sink node Di.

Nodes Operation and Data Communication

As asserted earlier in this document (Nodes Operation and Data Communication Ta-

ble, Section 4.2.1), the analyzed set of four operational states of any particular node is

M = {z, s, Tx, Rx} – sleeping z, sensing s, transmitting Tx, or receiving Rx.

As Riker et al. (2015) [44], we consider a node-to-node communication protocol stack

composed of Constrained Application Protocol (CoAP) [69], User Datagram Protocol (UDP),

6LowPAN [70], and IEEE 802.15.4. The IEEE 802.15.4, 6LowPAN and UDP protocols can

produce headers of varying sizes [44]. Considering a typical scenario, the aggregated headers

of this protocol stack reach 64 bytes. The volume of a single CoAP payload is 4 bytes. This

payload is used to store a data reading or the aggregated payload value. Taking into account

the maximum limit of 127 bytes that IEEE 802.15.4 imposes and the Frame Check Sequence

(2 bytes), the considered data packets are limited to contain a maximum of 15 payloads (i.e.,

60 bytes).

The internal SRAM for the ATmega256RFR2 can go up to 32KB [66]. We acknowledge

a fraction of this memory to be used as a node data buffer: 24KB. This value results in

having enough memory space for 6000 4-byte-sized data payloads, therefore this does not

constraint in any practical way the contemplated model.

After an exhaustive amount of simulation experiments with different values for some

network parameters, we fixed the following data in subsequent performance tests, as the

behavior of the network was in concordance to our expectations. The data and respective

values are: β = 1, Txmin = 1, smin = 1, γ = 0.1, and Qi(0) = 2,∀i ∈ S.

In detail, the finite-horizon operation time T is subdivided into periods of α time slots

each. In each of those periods the sink node must receive at least (N−1) ·β data payloads –

as N is already fixed at 25, this results in a minimum of 24 data payloads into the sink node

per period. In each one of these periods, a sensor node must perform a sensing operation

(smin) and transmit data (Txmin) to other nodes at least once. In average, at the end of each

period, at least 90 % (i.e.,(1 − γ)) of all the created data payloads on the network in that

period must be inside the sink node – this ensures that the sensor nodes actively work to

get the data to neighbors closer to the sink as quickly as they can. Every sensor node starts

its operation with two data payloads inside their buffers (Qi(0) = 2,∀i ∈ S), as to replicate

a practical instance where the network is launching a new operation cycle after concluding

42

a previous one.

Events

Events are distributed throughout space and time. The temporal distribution – events

inter-arrival times –, as Ren et al. [62] proposed in 2014, can be modeled through a Weibull

distribution W (A,B). For their experiments, they use A = 40 and B = 3 as the parameters

values.

Parameter B is related to the rate at which the events occur and, when is superior to 1

– as is this case where B = 3 –, the appearance probability of an event rises with time, i.e.,

the events inter-arrival times decrease over time. We use this value of B as well, and for this

value, the mean of a Weibull random variable is given by 0.893A.

Parameter A depends on the considered finite-horizon T and, for that reason, we can not

use the value A = 40. We decided to specify this value according to the average amount

of events that we wanted in a simulation, given by a fraction of the total number of time

slots T . In other words, if we want, in average, nE events in a simulation with T time slots,

then we will have a fraction pE of all the time slots T in which events will start happening:

nE = pE · T . Furthermore, for nE events, the average inter-arrival time between them is T
nE

.

This is equivalent to the previous value, so 0.893A = T
nE
⇐⇒ A = 1

0.893·pE
. Therefore, to

obtain the right value for A in a simulation with any finite-horizon, we just need to input

the value of pE, e.g., if pE = 0.36 we will obtain Weibull-randomly distributed events in 36%

of the time slots.

The model (Section 4.2) receives as event data Ei(t), v(t), and δ. The first two parameters

are obtained after the NetVis app processes the values inserted in the Percentage of

Events box and in the Proximity slider (see Section B.4.4) as explained above. The spatial

distribution of the events is random, but depends on the Proximity slider value. The

duration of the events is given by the Duration box in the app settings.

As a final note, the same spatio-temporal distribution of the events can be replicated in

simulations with the same finite-horizon T if the Random checkbox is unchecked.

6.2.3 Metrics

As mentioned in the previous section, the validation of the model was carried out grad-

ually through numerous tests with varied parameters. These tests are considered implicitly

in the scope of this dissertation, because without them, the model would not have evolved

43

to the present point.

The performance assertion to the model is built on top of the validation, since no perfor-

mance can be considered without having a valid model as a basis, and hence the considered

metrics already include these two aspects as a whole.

These evaluation metrics are:

• The fraction of the total time that a node is in a specific operational state, in number

of time slots in T . This metric allows us to compare the activity of the network as

a whole for various energy conditions and to evaluate the particular performance of

nodes at various distances from the sink node.

• The evolution of the energy status of each node over time, so it is possible to appraise

the energy-neutral operation and to examine the network response to various harvesting

profiles.

• The data communication distribution in all the existing network multi-hop links. This

metric allows us to understand the adopted data routes when in variable energy con-

ditions so the network throughput is not compromised.

• The average data aggregation as a function of distance to the sink to verify that this

mechanism works with the goal of reducing energy waste.

With these performance metrics in mind, we extract the relevant graphical results from

simulation data with the help of NetVis, as it is exhibited in the next section.

6.3 Results

To test the model we evaluate two significant aspects:

1. Network behavior across six different harvesting profiles. The primary goal of this

aspect is to verify that the network is able to operate with diverse external harvesting

situations and how its modus operandi depends on the harvesting outline. All the

contemplated harvesting profiles have a lower average harvesting value per time slot

than the suggested optimal value calculated in Appendix A, so we have an evaluation

safety margin.

Two essential segments differentiate the performed tests in the context of harvesting

dynamics:

(a) Constant harvesting values throughout all network operation. Consequently, the

44

overall harvesting average matches the harvesting value per time slot. See Figure

6.1 top left plot as an example.

(b) Variable harvesting values for the duration of the time-frame, dubbed dynamic

harvesting. The considered profiles resemble a 5-hours generic solar energy acqui-

sition with real hardware – i.e., see Figure 6.1 top right plot, where the harvested

energy is near zero at the start and end of the operation, but peaks somewhere in

the middle of it. In any case, these profiles and the constant ones share the same

values of averaged harvesting per time slot.

Regarding the actual harvesting values, three situations are presented (all the values

below are in percentage of the considered Bmax):

(c) A low value with a mean of 0.9% per time slot – e.g., see Figure 6.1 top left plot

–, which may correspond to a mostly cloudy period. This situation will be further

referenced as low harvesting.

(d) An optimistic value averaging at 1.2% per time slot – e.g., see Figure 6.1 bottom

left plot – that may be compatible with a sunny interval. This condition will be

further labeled as high harvesting.

(e) And a median value between the two above: 1.05% per time slot, e.g., Figure 6.1

middle left plot. This situation is dubbed as medium harvesting from now on.

The range of these values may seem rather short, but as we are contemplating solar

harvesting with the Appendix A hardware characteristics, these are practicable. Im-

portant note: all sensing-capable network nodes receive the same amount of energy

harvesting in each time slot.

2. Interdependence of network behavior with various degrees of operational freedom, con-

trolled through the α parameter. The applied values for α are 5, 10, and 20. A low

value of α, e.g., α = 5, compel the network nodes to perform an information "flush" to

the sink every five time slots resulting in a low degree of operational freedom. Keeping

in mind that every sensorial node has to perform at least one sensing operation and

one Tx operation in that interval (consequently the inner nodes must be in Rx another

time slot, because they will receive data for sure), there is no much room for the nodes

to have a greedy response when it comes to creating new data payloads by sensing.

Inversely, a higher value of α will allow the network to decide its own nodes’ states in

a more significant fraction of the time periods, i.e., the network is less restricted.

In brief, to fulfill the stated goals in Section 6.1, we performed six simulations that cover

45

the combinatorial possibilities of the considered harvesting aspects, while holding the value

of α as 5; and then two more simulations that cover the remaining examined α values while

maintaining fixed the harvesting in the dynamic medium profile. Therefore, we obtain a total

of eight simulation results, and, taking into account the metrics established in the previous

section, we present the graphical results ordered in the following manner:

• Figure 6.1 to Figure 6.4 present comparisons between the six regarded harvesting

profiles: the left columns contain the constant harvesting related data results, and

the right columns contain the dynamic harvesting related data results; the top rows

show the low harvesting data results, the middle rows the medium harvesting, and the

bottom rows the high harvesting data results.

• Figure 6.5 shows side-by-side comparisons between the data originated from simula-

tions with α = 5 (left column) and with α = 10 (right column). The behavior of the

results for α = 20 is identical to that of α = 10, so we chose not to present them

thoroughly.

• Figures 6.6 and 6.7 provide an overall comparison between metrics derived from the

previous graphical results.

Before explaining the results, let us examine Figure B.8s, showing an identical network

topology to the one considered in our simulations. It shows the minimum distances, in hops

– i.e., wireless links –, of all the network nodes to the sink node. Blue nodes are 1-hop

away, green ones at 2-hops, orange at 3-hops, and red nodes are at 4-hops. Some upcoming

references to the distance of the nodes to the sink node may be performed by using the hops

nomenclature.

The line plots in Figure 6.1 detail the evolution of the network energy levels over the 60

operational time slots. The left axis relates to the nodes’ battery levels. The matching plots

are the average battery of all nodes at the same sink distance – we opted not to display

each node battery individually as the resulting plot would be confusing. This way each line

is representative of nodes with the same characteristics since the network is a symmetrical

grid. The entire network battery average also appears as a reference (thick dark-blue line).

The right axis has a different scale – it is a restricted range because the harvesting values are

much lower than the battery ones –, and it visually presents the harvesting levels received

by the nodes throughout the entire operation. The overall harvesting average is featured

to have a visual cue when comparing constant versus dynamic harvesting. Naturally, when

the harvesting is constant, the two lines will overlap. The values in the scales represent

46

percentage of Bmax.

The distribution of the operational status of each node expressed in fraction of the time-

frame appears in the bar plots of Figure 6.2. The sum of the parts of each bar is 1, and

each color characterizes one of the four possible states (see respective legend). Illustrative

explanation: if a bar is equally divided in four (25% each part), then, of the 60 operational

time slots, the corresponding node would spend a total of 15 time slots in each of the states:

sleeping, sensing, Tx and Rx – the exact order is not considered here. The horizontal axis

presents the nodes ordered by the distance to the sink node from left to right, and the bars

corresponding to the same distance are grouped to facilitate examination. Inside each group,

the nodes at the same distance are positioned arbitrarily, but each position links to the same

node in every plot. This time, we opted for not perform an overall aggregation of the results

by distance, as in the previous figure, since the purpose of this plot is to interpret the nodes

dynamics as a whole and as being part of a group with similar attributes.

Figure 6.3 displays the averaged data aggregation rates in the performed communications

as a chart. The horizontal axis, from left to right, shows the temporal evolution of the

network operation in time slots. The vertical axis arranges all the nodes at the same distance

to sink – closer at the bottom, farther at the top. The intersections between the values in

the two axes are shaped like a cell, e.g., the left bottom cell presents the averaged data

aggregation rate of all the data packets transmitted during the first time slot by the nodes

1-hop away from the sink. The aggregation rates are specified by a color saturation scale:

more average aggregation means a darker color – until a maximum of 1 (100% of average

data aggregation), and less average aggregation a lighter color – until a minimum of 0 (no

transmission occurred during that time slot).

The network topology is presented in the map plots of Figure 6.4 with the purpose of

exhibiting the activity (utility) level of all the network wireless links. They also promote

the global utility of the network by presenting the model optimization objective: the sum

of payloads that reach the sink node (the larger circle in the middle) during operation. The

network links are bi-directional (but never in the same time slot: constraints (4.1) and (4.5)

guarantee that) so the arrows show the route of the information flow in the respective link.

Above the arrows, it is revealed in square brackets the total sum of all the data packets

that passed through the corresponding link throughout all the network operation. The

other indicated value represents the equivalent in data payloads. Additionally, the link color

saturation highlights the links’ activity. If a certain link does not appear it is because no

activity happened in that link. The values inside the nodes are the number of payloads that

47

were left inside the respective nodes’ buffer (no visible number relates to an empty buffer)

at the end of the operation – therefore those payloads would not reach the sink in that

operational time-frame.

Figure 6.5 reuses previous plot types to compare the network performance in all the

evaluated metrics. The plots in the left column are the same as those in the middle right

position in the previous four figures (medium dynamic harvesting with α = 5) while the

right column shows an identical harvesting profile, but with α = 10.

In Figure 6.6 we have line plots to compare the network utility over time. The used metric

is the number of data payloads that get to the sink node. The left-hand plot evaluates the

effect of the considered harvesting profiles in the overall network utility. Performances with

the three α values are assessed in the right plot. By having the two plots side by side with

the same scale, we can globally compare the potentials of all the considered simulations.

We apply the same-scale reasoning in Figure 6.7 to evaluate the total averaged data

aggregation rates between all the eight experimental settings. The values of the bars are

equivalent to the agglomeration of the values of each line of the charts of Figure 6.3. The

axes’ information follows similar reasoning as the ones in Figure 6.2.

The ensuing section is devoted to the discussion of the graphical results presented from

Figure 6.1 to Figure 6.7.

48

Figure 6.1: Battery of network nodes over time: harvesting profiles comparison

49

Figure 6.2: Operational status distribution by distance: harvesting profiles comparison

50

Figure 6.3: Average data aggregation per time slot: harvesting profiles comparison

51

Figure 6.4: Link activity heat map: harvesting profiles comparison

52

Figure 6.5: Alpha value enforcement: metrics comparison

53

Figure 6.6: Network utility comparison: simulation settings

54

Figure 6.7: Data aggregation comparison: simulation settings

55

6.4 Results Discussion

The proposed model goals in Section 6.1 lead to the regarded evaluation metrics in Section

6.2.3. In turn, the plots were designed the way they are presented in the foregoing section

to reflect on the appointed metrics. So now, in this section, we scrutinize the given plots to

verify if the deducted results from them meet the dissertation targets stated in Chapter 2.3

and the model objectives in Section 6.1.

Energy Neutral Operation

The network maintains a neutral energy operation, which can be seen in all the demon-

strations in Figure 6.1, although the harvesting profiles vary, both in profile and in average

value. We verify ENO when the average power consumption of the network is less or equal

than the average power harvested from the environment. Every node starts with 50% of bat-

tery and ends with more battery than the one with which it starts in all the considered cases.

This behavior allows that the network nodes can always begin with an adequate battery level

in following operational time-frames. If employing a similar energetic performance in those

(which is guaranteed once again by the ENO constraint (4.16)), then it is guaranteed that

the network can operate perpetually.

It is important to note that during the simulation there are nodes whose battery drops

below the starting value – for instance, it can be seen in the 1-hop nodes in the first plot

and in all the nodes in the dynamic harvesting plots. However, they can recover throughout

the simulation and end up with as much energy as when it started. Note that we could

increase the amount of data that can reach the sink bypassing the ENO constraint (4.16),

but it would prevent the ability to keep the network running continually.

We can verify that, as might be expected, the lower the given average power, the more

difficulties will have in getting nodes with a satisfactory battery margin above the initial

value of 50%. Moreover, the network global average energy (thick dark-blue lines in the

plots) tends to finish with even more surplus energy as the level of harvesting increases.

In general, the nodes that have more battery, on average, are the 4-hops nodes, char-

acteristic that can be seen with more prominence as the harvesting level increases, being

particularly notorious in high constant harvesting, where those nodes have 3% more battery

than the rest, on average. This reaction is expected since the 4-hops nodes are the ones

further away from the network center. Therefore they will not make many data receptions,

56

since sending data through these will lengthen the data path, which may not be beneficial

in most operational conditions.

The analogous charts in Figure 6.2 confirm the deduction above. The 4-hops nodes enjoy

a meager rate of Rx in comparison with all other nodes. While the remaining nodes are

busy performing energy-expensive operations, 4-hops ones can decrease their power usage

by running states that require less power such as sensing and sleeping. This advantage makes

them accumulate more energy over time, and therefore they will always be the most robust

nodes in cases of power failure. ENO can be easy to achieve for those nodes, contrarily to

the internal ones, which may struggle to keep above the ENO line. Despite critical battery

situations in the inner nodes may arise, the 4-hops nodes will almost never be used to route

information – as verified in the links in their direction in Figure 6.4.

Network Utility

When comparing network utility in the simulations where constant harvesting was pro-

vided versus the dynamic harvesting ones, we can report that there is no practical difference

between the two situations, even if the battery profiles over time are entirely unrelated. The

left plot in Figure 6.6 helps to prove this statement, where it can be seen that every pair of

lines with the same harvesting level follow a very similar network utility scheme.

Once again, an ENO is verified: the network optimizes the entirety of its operation by

efficiently allocating the given resources. Let us analyze the dynamic harvesting profiles.

The network is optimized by always using the right amount of energy, without operationally

abusing the nodes when it has the most energy availability in the present to prevent future

power outages; and operating with caution in cases of less access to energy, knowing that it

can recover later when it is more accessible.

Here, of course, the model works because it is deterministic: it knows beforehand what is

the expected power availability and its profile at all times and can plan accordingly. A real-

time online algorithm would find the task of adjusting the network operation to the available

power much more difficult because it cannot accurately predict the upcoming amount of

usable energy.

As harvesting increases, nodes can further decrease their energy level (the curves fall

below 37% in the bottom right plot of Figure 6.1), since they know they will have next more

energy to recover.

Further similarities between constant and dynamic harvesting simulations are found in the

57

operational bar charts of Figure 6.2: in each row, the matching distances present analogous

operational ratios – the most discernible cases are the sensing ratios.

However, when evaluating Figure 6.2 row by row, an apparent operational pattern emerges:

less average power availability equals to a decreased sensing ratio across all the distances.

This action is the network response to conserve its energy, as long as it maintains the minimal

services imposed by the combined α, smin, and Txmin constraints ((4.10) to (4.13)).

The network operational dependence in the amount of harvested energy per time slot is

notably significant, as an increase of just 0.03% of average harvesting per time slot results

in a drop of almost 22% in the network sleeping average. This sleeping reduction results

in an equivalent sensing increase since the Tx and Rx remain practically at the same levels

when looking at each row. Therefore, the nodes create more data payloads when the energy

availability is higher but keep the same communication ratio when transmitting the supple-

mentary created data, meaning that the data aggregation level in communications has to

increase.

This is confirmed by the left and middle bar graphs in Figure 6.7. The trend for the

global aggregation level is to increase each harvesting level, being this more significant in

the 1-hop and 2-hops nodes than the most distant ones.

Multi-hop Potential

Regarding the performance of data reception, it is clear that the inner nodes carry out

more often this type of operation than any other, as they act as the only routes between

the periphery and the network center, which in this case is the sink. Therefore these are the

most critical nodes in the network and will be the first to fail in case of energy shortage.

While more distant ones will be able to use other communication channels if any of the

neighbors fail, there will be repercussions on all the utility of the network if any of the core

nodes cease to function, since all the information will have to be routed by the remaining

1-hop nodes. This situation will, in turn, make these nodes extraordinarily vulnerable and

to likely fail too. The darker arrows in Figure 6.4 graphs represent this vulnerability. Thus,

in a real network setting, it is reasonable that the number of nodes with direct access to the

sink should always be more significant to make the network more robust.

The fact that the network has multi-hop capabilities is convenient in some cases where a

node needs to find an alternative route to send the data, although this topology is not the

best one to evaluate these parameters because the symmetry of the network does not allow

58

to extract meaningful patterns. However, there are some cases in which the same link was

used at different times to pass information in opposite directions. The model optimization

objective is rewarded when data is pushed closer to the sink (constraint (4.13)). Still, the

opposite happens in some cases, but the amount of data transmitted on these occasions is

always minimal, which suggests that the nodes take this critical decision when they have no

other choice, i.e., they have to satisfy some operational constraint such as (4.11).

The multi-hop feature is more interesting when analyzing the corresponding link activity

graphs in Figure 6.5, as the α = 10 related graph shows distinctly that the network deprecates

two of their links. Is interesting to note that increasing the operational degrees of freedom

of the network by rising the α values also may provide increased flexibility in the possible

placement of the nodes in the field. That is, as some links are expected not to be used, the

nodes that had those possible links are no more constrained by their existence and can be

moved to a new placement provided that the existing connectivity is maintained.

Data Aggregation

Aggregation rates increase when transmissions are performed nearby the sink node. Sev-

eral plots support this declaration: Figure 6.7 left-most bar plots, the lower darker lines

of the charts in Figure 6.3, and even deducing from the operational distributions in Figure

6.2. However, it is difficult to correlate the harvesting profiles (constant versus dynamic)

with the data aggregation patterns of Figure 6.3. It seems that the aggregation behavior is

equally distributed over time. Nonetheless, a hidden pattern can be deduced. In most of the

time periods given by α, the nodes wait for the final time slots of those periods to start the

Tx operations in a cascade effect from the outside to the inside. By operating the nodes in

such controlled way, the network will make the most use of the aggregation energy savings

by increasingly accumulating payloads in closer nodes to sink over the time period duration.

After all, this pattern becomes apparent when evaluating the data aggregation chart over

time for the simulation with α = 10 (Figure 6.5) – dark blue diagonal stripes appear across

all the ten time slots period.

The statement above further suggests that increasing α also increases the overall network

data aggregation rates. And it is true; in the right-most plot of Figure 6.7, we extract a

value for this: data packets are, in average 30% more filled when doubling α from 5 to 10.

However, further increasing the value of α will not benefit significantly data aggregation

rates, since the network has limited physical resources, i.e., number of nodes.

59

When choosing a value for α, a trade-off must be considered. Increasing α to a certain

extent will bring further data communication efficiencies due to the higher rates of data

aggregation. Moreover, the network utility will also increase – the right plot of Figure 6.6

shows that 300 more data payloads are received when doubling the α value from 5 to 10.

Decreasing α will tend to lower those metrics but the lifetime of the received data payloads

in the sink is decreased, that is, they will reach the sink at faster rates.

In brief:

• Similar average harvesting levels, but with different profiles, do not result in very

different behaviors in our tests: the network optimizes its resources at any moment

taking into account the expected global value of energy and results in very similar

utility (see Figure 6.6, left plot).

• Higher values of harvesting result in more sensing and data aggregation opportunities

and therefore higher network utility (see Figure 6.6, left plot).

• When varying α, there is a trade-off between communication efficiency through data

aggregation plus global network utility versus granularity in receiving payloads at the

sink (see Figure 6.6, left plot, and Figure 6.7, left plot). However, increasing the α

value beyond a certain threshold will not bring increased additional benefits.

• The network takes advantage of its multi-hop ability, but only uses longer routes for

data payloads when it is unavoidable.

• Events are guaranteed to be captured by at least one node, even that this is not

displayed in any graphical result. The hardcoded constraint (4.14) ensures that this

happens.

These results show that all the all the proposed goals have been met: the network model

achieves validity through testing and its overall behavior is studied.

60

7 Conclusions and Future Work

The fulfillment of this dissertation allowed to kick-start in the LCT the study of EH-IoTNs

that embrace the following compelling IoT concepts: multi-hop connectivity, Energy Neutral

Operation, data aggregation mechanisms, and event capture. The combined evaluation of

such referred notions into a single work is something that had not been analyzed yet, although

there are works in the area that operate around similar topics such as data aggregation and

ENO. When validating the proposed optimization model constructed to maximize aggregated

data utility in an EH-IoTN, we obtained results that ensure continuity of the process of

disclosure of behavioral patterns in such a network.

However, this model also presents certain simplifications of what would be an actual

operation of sensor networks of this type, such as:

• The aggregation mechanism is implicitly regarded as an existing underlying functional

concept;

• It is assumed that no communication faults occur and the data is flawlessly transmitted

whenever required;

• The model employs deterministic data, the solutions are computed offline and not in

real-time; the model is centralized, that is, it knows all the network nodes status at

every moment.

Still, a possible solution for tackling the downsides stated above is composed as follows:

• Continue to perform simulation tests with the MILP model along the NetVis frame-

work, varying the experimental settings and extracting refined metrics;

• Obtain a more inclusive and expressive portrayal of the EH-IoTN behavior;

• Suggest a sub-optimal heuristic that mirrors the previously studied behaviors and

guarantees that it will work in a reactive distributed manner.

Finally, build up a physical test setting that applies the developed algorithmic heuristic

in order to prove that the proposed models are viable in a real environment.

61

8 Bibliography

[1] V. Barchetti, M. Senigalliesi, O. Vermesan, R. Bahr, T. Macchia, A. Gluhak, S. Hubert,

S. Vallet Chevillard, and F. Clari, “Analysis on IoT Platforms Adoption Activities,”

H2020 Work Programme - UNIFY-IoT Project - ICT-30-2015: Internet of Things and

Platforms for Connected Smart Objects, p. 54, 2017.

[2] M. Prauzek, J. Konecny, M. Borova, K. Janosova, J. Hlavica, and P. Musilek, “Energy

Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless

Sensor Networks: A Review,” Sensors, vol. 18, no. 8, p. 2446, 2018.

[3] U. Pešović, J. Mohorko, K. Benkic, and Z. Cucej, “Single-hop vs. Multi-hop – Energy

efficiency analysis in wireless sensor networks,” in Telekomunikacioni forum TELFOR

2010, Beograd, Srbija, 2010.

[4] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava, “Power Management in Energy

Harvesting Sensor Networks,” ACM Transactions on Embedded Computing Systems

(TECS), vol. V, no. 4, pp. 1–35, 2007.

[5] A. Cerpa, J. Elson, M. Hamilton, J. Zhao, D. Estrin, and L. Girod, “Habitat Monitor-

ing: Application Driver for Wireless Communications Technology,” ACM SIGCOMM

Computer Communication Review, vol. 31, no. 2, pp. 20–41, 2001.

[6] G. Tolle, D. Gay, W. Hong, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu,

S. Burgess, T. Dawson, and P. Buonadonna, “A Macroscope in the Redwoods,” in

Proceedings of the 3rd international conference on Embedded networked sensor systems

- SenSys ’05, 2005, p. 51.

[7] S. Chalasani and J. M. Conrad, “A Survey of Energy Harvesting Sources for Embedded

Systems,” in IEEE SoutheastCon 2008, 2008, pp. 442–447.

[8] G. Werner-Allen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity and Yield in

62

a Volcano Monitoring Sensor Network,” in OSDI ’06 - The 7th symposium on Operating

systems design and implementation, 2006, pp. 381–396.

[9] M. Suzuki, S. Saruwatari, N. Kurata, and H. Morikawa, “A high-density earthquake

monitoring system using wireless sensor networks,” in Proceedings of the 5th interna-

tional conference on Embedded networked sensor systems - SenSys ’07, 2007, p. 373.

[10] L. Yu, N. Wang, and X. Meng, “Real-time Forest Fire Detection with Wireless Sensor

Networks,” Proceedings - 2005 International Conference on Wireless Communications,

Networking and Mobile Computing, vol. 2, pp. 1214–1217, 2005.

[11] S. Sudevalayam and P. Kulkarni, “Energy Harvesting Sensor Nodes: Survey and Im-

plications,” IEEE Communications Surveys and Tutorials, vol. 13, no. 3, pp. 443–461,

2011.

[12] R. Cardell-Oliver, “ROPE: A Reactive, Opportunistic Protocol for Environment Mon-

itoring Sensor Networks,” in Second IEEE Workshop on Embedded Networked Sensors,

EmNetS-II, vol. 2005, no. July, 2005, pp. 63–70.

[13] A. Gaglione, D. Rodenas-Herraiz, Y. Jia, S. Nawaz, E. Arroyo, C. Mascolo, K. Soga,

and A. A. Seshia, “Energy Neutral Operation of Vibration Energy-Harvesting Sensor

Networks for Bridge Applications,” in International Conference on Embedded Wireless

Systems and Networks (EWSN), 2018, pp. 1–12.

[14] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and

D. Estrin, “A Wireless Sensor Network For Structural Monitoring,” in Proceedings of

the 2nd international conference on Embedded networked sensor systems - SenSys ’04,

2004, p. 13.

[15] J. Paek, K. Chintalapudi, R. Govindan, J. Caffrey, and S. Masri, “A Wireless Sensor

Network for Structural Health Monitoring: Performance and Experience,” in The Second

IEEE Workshop on Embedded Networked Sensors, 2005. EmNetS-II., 2005, pp. 1–10.

[16] Y. Luo, L. Pu, and Y. Zhao, “RF Energy Harvesting Sensor Networks for Healthcare of

Animals: Opportunities and Challenges,” arXiv preprint arXiv:1803.00106, 2018.

[17] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless sensor

networks for habitat monitoring,” in Proceedings of the 1st ACM international workshop

on Wireless sensor networks and applications - WSNA ’02, 2002, p. 88.

63

[18] P. A. Gargano, D. H. Gilmore, F. A. Pace, and L. Weinstein, “Personal tracking and

recovery system,” US Patent 5,629,678, jan 1997.

[19] T. R. Halford and K. M. Chuggy, “Barrage Relay Networks,” in 2010 Information Theory

and Applications Workshop (ITA), 2010, pp. 153–160.

[20] J. Huang, Z. Chang, M. Atiquzzaman, Z. Han, and W. Saad, “Guest Editorial Special

Issue on Wireless Energy Harvesting for Internet of Things,” IEEE Internet of Things

Journal, vol. 5, no. 4, pp. 2580–2584, 2018.

[21] EnOcean GmbH, “The True Cost of Batteries – why energy harvesting is the best

power solution for wireless sensors,” Tech. Rep. August, 2015. [Online]. Available:

https://www.enocean.com/en/technology/white-papers/

[22] World Energy Council, “World Energy Resources: Waste to Energy 2016,” Tech. Rep.,

2016. [Online]. Available: https://www.worldenergy.org/wp-content/uploads/2017/03/

WEResources{_}Waste{_}to{_}Energy{_}2016.pdf

[23] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler, “An Analysis of

a Large Scale Habitat Monitoring Application,” in Proceedings of the 2nd international

conference on Embedded networked sensor systems - SenSys ’04, 2004, p. 214.

[24] S. Basagni, V. D. Valerio, D. Informatica, R. La, D. Informatica, R. La, D. Informat-

ica, and R. La, “Harnessing HyDRO: Harvesting-aware Data ROuting for Underwater

Wireless Sensor Networks,” in Mobihoc ’18 - Proceedings of the Eighteenth ACM Inter-

national Symposium on Mobile Ad Hoc Networking and Computing, 2018, pp. 271–279.

[25] A. H. Dehwah, J. S. Shamma, and C. G. Claudel, “A distributed routing scheme for

energy management in solar powered sensor networks,” Ad Hoc Networks, vol. 67, pp.

11–23, 2017.

[26] G. Jackson, S. Ciocoiu, and J. A. McCann, “Solar Energy Harvesting Optimization for

Wireless Sensor Networks,” in GLOBECOM 2017 - 2017 IEEE Global Communications

Conference, 2017.

[27] C. Wang, J. Li, Y. Yang, and F. Ye, “Combining Solar Energy Harvesting with Wireless

Charging for Hybrid Wireless Sensor Networks,” IEEE Transactions on Mobile Com-

puting, vol. 17, no. 3, pp. 560–576, 2018.

64

https://www.enocean.com/en/technology/white-papers/
https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources{_}Waste{_}to{_}Energy{_}2016.pdf
https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources{_}Waste{_}to{_}Energy{_}2016.pdf

[28] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, “En-

ergy Harvesting From Human and MachineMotion for Wireless Electronic Devices,”

Proceedings of the IEEE, vol. 96, no. 9, pp. 1457–1486, 2008.

[29] M. A. Abdelkareem, L. Xu, M. K. A. Ali, A. Elagouz, J. Mi, S. Guo, Y. Liu, and

L. Zuo, “Vibration energy harvesting in automotive suspension system: A detailed

review,” Applied Energy, 2018.

[30] S. Kosunalp, “An energy prediction algorithm for wind-powered wireless sensor networks

with energy harvesting,” Energy, vol. 139, pp. 1275–1280, 2017.

[31] L. Mateu, C. Codrea, N. Lucas, M. Pollak, and P. Spies, “Energy Harvesting for Wireless

Communication Systems Using Thermogenerators,” in 21st Conference on Design of

Circuits and Integrated Systems, 2006.

[32] W. K. Seah, A. E. Zhi, and H. P. Tan, “Wireless Sensor Networks Powered by Ambient

Energy Harvesting (WSN-HEAP) - Survey and challenges,” Proceedings of the 2009 1st

International Conference on Wireless Communication, Vehicular Technology, Informa-

tion Theory and Aerospace and Electronic Systems Technology (Wireless VITAE 2009),

no. June, pp. 1–5, 2009.

[33] F. K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor networks: A com-

prehensive review,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 1041–1054,

2016.

[34] P. S. Chindhi, H. P. Rajani, and G. B. Kalkhambkar, “A Review on Radio Fre-

quency[RF] Energy Harvesting Systems,” JASC: Journal of Applied Science and Com-

putations, vol. 5, no. 8, pp. 211 – 222, 2018.

[35] T. Sanislav, S. Zeadally, G. D. Mois, and S. C. Folea, “Wireless energy harvesting: Em-

pirical results and practical considerations for Internet of Things,” Journal of Network

and Computer Applications, vol. 121, pp. 149–158, 2018.

[36] K. S. Adu-manu, N. Adam, C. Tapparello, H. Ayatollahi, and W. Heinzelman, “Energy-

Harvesting Wireless Sensor Networks (EH-WSNs): A Review,” ACM Transactions on

Sensor Networks, vol. 14, no. 2, p. 50, 2018.

65

[37] F. Engmann, F. A. Katsriku, J.-D. Abdulai, K. S. Adu-manu, and F. K. Banaseka, “Pro-

longing the Lifetime of Wireless Sensor Networks: A Review of Current Techniques,”

Wireless Communications and Mobile Computing, vol. 2018, pp. 1–38, 2018.

[38] S. Yang, X. Yang, J. A. McCann, T. Zhang, G. Liu, and Z. Liu, “Distributed Networking

in Autonomic Solar Powered Wireless Sensor Networks,” IEEE Journal on Selected

Areas in Communications, vol. 31, no. 12, pp. 750–761, 2013.

[39] Z. A. Eu, H.-P. Tan, and W. K. Seah, “Design and performance analysis of MAC

schemes for Wireless Sensor Networks Powered by Ambient Energy Harvesting,” Ad

Hoc Networks, vol. 9, no. 3, pp. 300–323, 2011.

[40] L. Lin, N. B. Shroff, and R. Srikant, “Asymptotically Optimal Energy-Aware Routing

for Multihop Wireless Networks with Renewable Energy Sources,” IEEE/ACM Trans-

actions on Networking, vol. 15, no. 5, pp. 1021–1034, 2007.

[41] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network Aggregation Techniques for

Wireless Sensor Networks: A Survey,” IEEE Wireless Communications, vol. 14, no. 2,

pp. 70–87, 2007.

[42] E. F. Nakamura, A. A. F. Loureiro, and A. C. Frery, “Information fusion for wireless

sensor networks,” ACM Computing Surveys, vol. 39, no. 3, pp. 9–es, 2007.

[43] M. Amarlingam, P. K. Mishra, P. Rajalakshmi, S. S. Channappayya, and C. S. Sastry,

“Novel Light Weight Compressed Data Aggregation using sparse measurements for IoT

networks,” Journal of Network and Computer Applications, vol. 121, pp. 119–134, 2018.

[44] A. Riker, E. Cerqueira, M. Curado, and E. Monteiro, “Data Aggregation for Machine-to-

Machine Communication with Energy Harvesting,” in 2015 IEEE International Work-

shop on Measurements & Networking (M&N), 2015, pp. 76–81.

[45] S. Guo, Y. Shi, Y. Yang, and B. Xiao, “Energy Efficiency Maximization in Mobile Wire-

less Energy Harvesting Sensor Networks,” IEEE Transactions on Mobile Computing, pp.

1–1, 2017.

[46] J. Pelegri-Sebastia, M. Gasulla, and G. Boggia, “Energy harvesting and management

for distributed sensor networks,” International Journal of Distributed Sensor Networks,

2017.

66

[47] L. Lin, N. B. Shroff, and R. Srikant, “Energy-Aware Routing in Sensor Networks: A

Large Systems Approach,” in WONS 2006 : Third Annual Conference on Wireless

On-demand Network Systems and Services, 2006, pp. 159–169.

[48] S. Sarkar, M. H. R. Khouzani, and K. Kar, “Optimal Routing and Scheduling in Multi-

hop Wireless Renewable Energy Networks.” IEEE Transactions on Automatic Control,

vol. 58, no. 7, pp. 1792–1798, 2013.

[49] S. Manfredi and E. Di Tucci, “Decentralized Control Algorithm for Fast Monitoring and

Efficient Energy Consumption in Energy Harvesting Wireless Sensor Networks,” IEEE

Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1513–1520, aug 2017.

[50] Y. Yi and S. Shakkottai, “Hop-by-Hop Congestion Control Over a Wireless Multi-Hop

Network,” IEEE/ACM Transactions on Networking, vol. 15, no. 1, pp. 133–144, 2007.

[Online]. Available: http://users.ece.utexas.edu/{~}shakkott/Pubs/hopbyhop-submit.

pdfhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4100728

[51] S. Peng and C. P. Low, “Energy neutral directed diffusion for energy harvesting wireless

sensor networks,” Computer Communications, vol. 63, pp. 40–52, 2015.

[52] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace : Network-level Power

Profiling for Low-power Wireless Networks Low-power Wireless,” Tech. Rep., 2011.

[53] M. Zareei, C. Vargas-Rosales, R. Villalpando-Hernandez, L. Azpilicueta, M. H. Anisi,

and M. H. Rehmani, “The effects of an Adaptive and Distributed Transmission Power

Control on the performance of energy harvesting sensor networks,” Computer Networks,

vol. 137, pp. 69–82, 2018.

[54] G. Jackson, Z. Qin, and J. A. McCann, “Long Term Sensing via Battery Health Adap-

tation,” in 2017 IEEE 37th International Conference on Distributed Computing Systems

(ICDCS), 2017, pp. 2240–2245.

[55] S. Yang, Y. Tahir, P.-y. Chen, A. Marshall, and J. McCann, “Distributed Optimization

in Energy Harvesting Sensor Networks with Dynamic In-network Data Processing,” in

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer

Communications, 2016, pp. 1–9.

[56] A. Riker, M. Curado, and E. Monteiro, “Neutral Operation of the Minimum Energy

67

http://users.ece.utexas.edu/{~}shakkott/Pubs/hopbyhop-submit.pdf http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4100728
http://users.ece.utexas.edu/{~}shakkott/Pubs/hopbyhop-submit.pdf http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4100728

Node in Energy-Harvesting Environments,” in 2017 IEEE Symposium on Computers

and Communications (ISCC), 2017, pp. 477–482.

[57] A. Mehrabi and K. Kim, “General Framework for Network Throughput Maximization

in Sink-Based Energy Harvesting Wireless Sensor Networks,” IEEE Transactions on

Mobile Computing, vol. 16, no. 7, pp. 1881–1896, 2017.

[58] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Cross-layer Congestion Control,

Routing and Scheduling Design in Ad Hoc Wireless Networks,” in IEEE INFOCOM

2006. 25TH IEEE International Conference on Computer Communications, 2006.

[59] M. Kodialam and T. Nandagopal, “Characterizing Achievable Rates in Multi-hop Wire-

less Networks: The Joint Routing and Scheduling Problem,” in MobiCom ’03. ACM,

2003, pp. 42–54.

[60] S. He, J. Chen, D. K. Yau, H. Shao, and Y. Sun, “Energy-Efficient Capture of Stochastic

Events under Periodic Network Coverage and Coordinated Sleep,” IEEE Transactions

on Parallel and Distributed Systems, vol. 23, no. 6, pp. 1090–1102, 2012.

[61] C.-f. H. C.-f. Hsin and M. L. M. Liu, “Network Coverage Using Low Duty-Cycled Sen-

sors: Random & Coordinated Sleep Algorithms,” in Third International Symposium on

Information Processing in Sensor Networks 2004 (IPSN 2004), 2004, pp. 433–442.

[62] Z. Ren, P. Cheng, J. Chen, D. K. Yau, and Y. Sun, “Dynamic Activation Policies for

Event Capture in Rechargeable Sensor Network,” IEEE Transactions on Parallel and

Distributed Systems, vol. 25, no. 12, pp. 3124–3134, 2014.

[63] S. Baghaee, S. Chamanian, H. Ulusan, and O. Zorlu, “WirelessEnergySim: A Discrete

Event Simulator for an Energy-Neutral Operation of IoT Nodes,” in 2018 IEEE In-

ternational Black Sea Conference on Communications and Networking (BlackSeaCom),

2018, pp. 1 – 5.

[64] X. Zhang, C. Wang, and L. Tao, “An Opportunistic Packet Forwarding for Energy-

Harvesting Wireless Sensor Networks With Dynamic and Heterogeneous Duty Cycle,”

IEEE Sensors Letters, vol. 2, no. 3, 2018.

[65] H. Al-Tous and I. Barhumi, “MPC for Online Power Control in Energy Harvesting

Sensor Networks,” in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring),

2018.

68

[66] Atmel Corporation, “Atmel ATmega256/128/64RFR2 Summary Datasheet.”

[67] I. Khan and D. Singh, “Energy-balance node-selection algorithm for heterogeneous wire-

less sensor networks,” ETRI Journal, vol. 40, no. 4, 2018.

[68] W. contributors, “Closeness centrality,” Reviewed in 2016. [Online]. Available: https:

//en.wikipedia.org/w/index.php?title=Closeness{_}centrality{&}oldid=854898371

[69] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol

(CoAP),” RFC 7252, Internet Engineering Task Force, 2014. [Online]. Available:

http://www.ietf.org/rfc/rfc7252.txt

[70] C. Bormann, G. Mulligan, and T. Lemon, “IPv6 over Low power WPAN

(6lowpan),” RFC4944 Internet Engineering Task Force, 2012. [Online]. Available:

https://datatracker.ietf.org/wg/6lowpan/documents/

[71] Digi-Key Electronics, “Microchip Technology ATSAM4S-XPRO.” [On-

line]. Available: https://www.digikey.com/product-detail/en/microchip-technology/

ATSAM4S-XPRO/ATSAM4S-XPRO-ND/3906411

[72] A. Cavaco, H. Silva, P. Canhoto, S. Neves, J. Neto, and M. C. Pereira, “Annual Average

Value of Solar Radiation and its Variability in Portugal,” inWorkshop On Earth Sciences

2016 | Workshop em Ciências da Terra 2016, 2016, p. 5.

[73] T. D. Lee and A. U. Ebong, “A review of thin film solar cell technologies and challenges,”

Renewable and Sustainable Energy Reviews, vol. 70, no. December 2016, pp. 1286–1297,

2017.

[74] Texas Instruments Inc., “eZ430-RF2500-SEH Solar Energy Harvesting Development

Tool User’s Guide,” Tech. Rep., 2009. [Online]. Available: www.ti.com

69

https://en.wikipedia.org/w/index.php?title=Closeness{_}centrality{&}oldid=854898371
https://en.wikipedia.org/w/index.php?title=Closeness{_}centrality{&}oldid=854898371
http://www.ietf.org/rfc/rfc7252.txt
https://datatracker.ietf.org/wg/6lowpan/documents/
https://www.digikey.com/product-detail/en/microchip-technology/ATSAM4S-XPRO/ATSAM4S-XPRO-ND/3906411
https://www.digikey.com/product-detail/en/microchip-technology/ATSAM4S-XPRO/ATSAM4S-XPRO-ND/3906411
www.ti.com

Appendix A

Calculations for the Energy Input Data

A.1 Battery

The battery that powers the Atmel ATmega256RFR2 Xplained Pro board (similar as the

one in Figure A.1a) is a rechargeable Lithium-Ion one rated to 3V/60mAh (Figure A.3).

Each time slot has 300s (∆ = 300s).

Since an Amp Hour (Ah) is a measure of charge (measured in Coulombs (C)) whereas a

Joule (J) is a measure of energy, it is only possible to convert mAh to Joules by using the

Voltage (Volts (V)) which the charge is transferred. So, by combining

Charge (C)×Voltage (V) = Energy (J)

and

Current (A)× time (seconds) = Charge (C)

we obtain

Energy (J) = Current (A)× time (seconds)×Voltage (V)

The 60mA delivered by the battery over 1h (3600s) at 3V provide

0.06 A× 3600 s× 3 V = 648 J

of energy. In other words, the battery can supply 648 J before running out of energy. We

assume that the battery performs ideally and in an adequate operating environment. Also,

it is considered that the battery does not wear over time. Those 648 J of energy are the full

battery, that is, 100% of the battery:

Bmax = 648 J

70

(a) The Atmel XPlained Pro evaluation board [71].

(b) Atmel ATmega256RFR2 Radio Transceiver and microcontroller (16MHz) supply current – from

the datasheet [66]. Considering only the values referring to 3.0V.

Figure A.1: The Atmel ATmega256RFR2 Xplained Pro evaluation kit is a hardware platform

to evaluate the ATmega256RFR2 microcontroller and features a temperature sensor and a

Low Power 2.4GHz IEEE 802.15.4 compliant Radio Transceiver.

71

A.2 Consumptions

The typical supply current of the Atmel 8-bit AVR Microcontroller ATmega256RFR2

with a Low Power 2.4GHz IEEE 802.15.4 compliant Radio Transceiver with CPU clock set

to 16MHz is shown in Figure A.1b. Consider only the values regarding 3.0V.

From it, it is possible to expose that in the idlest state, Deep Sleep, which we regard as

the sleeping state in our model, an entire time slot (300s) consumes Cz = 700 nA× 300 s×

3V = 0.63mJ. In other words, 0.63×10−3/Bmax = 0.00009722% of the battery is consumed

per time slot when a node is sleeping.

The remaining of the datasheet values seem valuable but we performed experimental tests

to achieve coherent values for these parameters, recurring to Powertrace [52], a network-

level power profiling tool of low-power wireless systems. We found that in our setting, the

consumption values differ from the nominal ones:

• When in sensing, we consider that the microcontroller is performing CPU opera-

tions, i.e., not idle, but not has the radio transceiver turned on. Also, in the test

setting, performing sensing operations at a rate of 1 measurement per second, the

microcontroller draws an average current of 8.52 mA. Then, sensing consumes Cs =

8.52 mA × 300 s × 3 V = 7.668 J of the battery energy during a time slot, which

corresponds to 7.668/Bmax = 1.18333333% of the battery per time slot.

• For the operation states where there is data flowing, we first determined the average

current that the board consumed when operating with the transmitter on. This value

stands at 8.4757 mA. Therefore, there is a fixed consumption that is given by CTx =

CRx = 8.4757 mA × 300 s × 3 V = 7.62813 J or 7.62813/Bmax = 1.17718056% of the

battery during a time slot in which the board is in the Tx and Rx states.

• Our model also discriminates the energy cost per sent/received data payload and data

packet. Again, recurring to Powertrace, we were capable of isolating the power con-

sumptions spikes that happened when the board sent and received fixed amounts of

data: no data payloads (0 bytes), 10 bytes, 20 bytes, 30 bytes, and 40 bytes. The

results are exhibited in Figure A.2. By performing linear regressions on the results, we

determine that in practice:

– The discrete energy consumption for transmitting 1 data packet (just the header)

is CTx
h = 217.96 mJ (0.03363578% of Bmax). This is the value of the linear

72

regression in Figure A.2a when we consider 0 bytes.

– A data payload has 4 bytes. The corresponding linear regression value from Figure

A.2a is 227.42 mJ. Therefore, each additional data payload that is carried on a

packet consumes CTx
p = 227.42 − CTx

h = 9.46 mJ (0.00146047% of Bmax) on the

sender node.

– The discrete energy consumption for receiving 1 data packet (just the header)

is CRx
h = 375.85 mJ (0.05800218% of Bmax). This is the value of the linear

regression in Figure A.2b when we consider 0 bytes. Although the experimental

values (Figure A.2b) are best fitted by a quadratic regression, our data packets are

limited to 15 data payloads, meaning that we have more interest in approximating

the results by a linear regression.

– A data payload has 4 bytes. The corresponding linear regression value from Figure

A.2b is 382.13 mJ. Therefore, each additional data payload that is carried on a

packet consumes CRx
p = 382.13 − CRx

h = 6.28 mJ (0.00096885% of Bmax) on the

receiver node.

73

(a) Values for transmitting data.

Linear regression: energy (J) = 0.002366× bytes+ 0.21796

(b) Values for receiving data.

Linear regression: energy (J) = 0.0015696× bytes+ 0.37585

Figure A.2: Experimental consumptions results with Powertrace [52] in the Atmel AT-

mega256RFR2 Xplained Pro evaluation kit from Figure A.1.

74

Figure A.3: Typical Lithium-Ion rechargeable battery. This one has a rated voltage of 3.7V.

A.3 Harvesting

The images in Figure A.4 are taken from the 2016 Annual Average Value of Solar Radi-

ation and its Variability in Portugal [72]. From the values in the lower right-hand corner of

Figure A.4a we observe that the Average Solar Irradiation for Coimbra through the year is

1600 kWh/m2. This unit of measurement – kWh/m2 – represents the amount of energy

(measured in kW-hours) accumulated over 1 square meter in a year period. Of course, there

is no sunlight each evening, so the values correspond to the energy absorbed during daylight

hours.

We can expect an average of 1600/365 = 4.38 kWh of energy falling on an area of 1m2

over the period of one day. This is equivalent to 4380 W× 3600 seconds/hour = 15.78 MJ

per square meter per day. We can calculate how much of that energy can be converted to

electrical form using the following equation:

Eelectrical = Esolar × Effective Area× PVefficiency

The average power available from the sun is

Esolar =
15.78 MJ

86400 seconds/day
= 183 J/m2/second

Effective area is the surface area in the solar cell actually absorbing photons and is

measured inm2. PVefficiency quantifies the Photo-Voltaic cell’s ability to convert light energy

to current.

Thin film photo-voltaic cells (similar to Figure A.5) are usually cheap and offer some

mechanical flexibility. The latter feature can be handy for applications requiring the cells

to cover a curved surface. Nowadays, typical efficiencies for these cells go from 8% to more

than 20% [73]. We will assume a very low efficiency value (typical for a decade ago) for the

purposes of this work: a 6% solar to electric power conversion.

The effective area of a small thin film photo-voltaic cell is around 50 mm × 50 mm =

0.0025 m2.

75

(a) GHI Average Annual Availability

(kWh/m2/year).

(b) Relative Annual Variability of GHI

(%/year).

Figure A.4: Average values of Global Horizontal Irradiation (GHI) and its variability in the

Portuguese continental territory [72].

Figure A.5: Thin film photo-voltaic cell mounted on an EZ430-RF2500-SHE solar energy

harvesting development kit [74].

76

In short, the nodes can capture an average of

Eelectrical = 183 J/m2/second× 0.0025 m2 × 0.06 = 0.0274 J/second

During an entire time slot, a node can obtain around 0.0274 × 300 = 8.23 Joules of

energy, which corresponds to 1.2684% of Bmax. This value is an overall average, so the

values used in Chapter 6 to test the model are below to this one, as this represents an

optimistic approach and we can say it is a "high" value of harvesting.

77

Appendix B

Network Visualizer User’s Guide

B.1 Introduction

Welcome! Thanks for using NetVis – Network Visualizer Application!

NetVis is a desktop app created to quickly create, manage and visualize simulations of

an IoT networking optimization model developed at the Laboratory of Communications and

Telematics of the University of Coimbra.

By using NetVis, you can manage the simulation model by creating new input data

parameters, saving data models and loading existing ones, watching the results dynamically

and extracting graphics from them.

78

B.2 Warning Note

This User’s Guide refers to an alpha release of the NetVis. This means that the app

may change in the future. Thus, the user is asked to understand that some functionalities

can change and others can be added and removed, or both, until the final product release.

At the launch of the final product, an updated version of this User’s Guide will also be

provided.

B.3 System Requirements

NetVis requires a computer running an updated MATLAB Runtime Engine in any

operative system. The system does not require to have the full MATLAB environment

installed. The Runtime usually is provided within the installation files. If you do not have

any, NetVis app will ask to download and install the required files from the internet.

NetVis also requires that the computer has installed the CPLEX engine to perform

simulations. You can obtain this engine from here.1

Additionally, the computer must allow interaction via mouse or touchpad and keyboard.

B.4 NetVis Operation

B.4.1 First use

To get started with the application, make sure that you have all the referred software in

the System Requirements section.

Subsequently and considering that you are in the directory where you identify the exe-

cutable NetVis.mlapp, you must double-click that same file to run it.

After a few moments, the application window will appear, presenting the Home Screen.

At the first use, it will display the default network topology: a square network composed of

25 nodes – Figure B.1.

From this point, you can use the software by clicking on the buttons and options of the

Home Screen or explore the current network topology.
1https://www.ibm.com/products/ilog-cplex-optimization-studio

79

https://www.ibm.com/products/ilog-cplex-optimization-studio

B.4.2 Data types

The NetVis use a data structure for storing all the data related to simulations called

NVDat. This data structure is used in all the operations referred in this guide. It is possible

to store it in a regular .mat file.

B.4.3 Home Screen

This is the opening screen of NetVis (Figure B.1). In here you can see:

• Orange: Main Menu – Access other app functionalities. This menu is accessible at all

times.

• Blue: Home Screen Main Options

– Create New Graph: Generates and displays in the Network Representation

area a new network topology that encompasses the options in Settings Screen.

– Run Simulation: Sends the current graph options to the CPLEX Engine and

waits for the simulation results.

• Red: Network Representation area – Shows the present working network.

Navigating through the app is possible via the buttons on the Main Menu, each one

allowing to access other screens in which you can perform further operations (see more in

the next sections).

Network Representation area

Clicking and dragging with the cursor is possible to move around the represented network.

The buttons in the top left can be used to zoom in and zoom out when necessary. Usually,

all the network fits in the screen, but when that is not possible, the default view of the

network will be a maximum zoom out to encompass all the network nodes. Use the Home

Button to reset the view area to the default state.

The Numbers Button can show/hide the numeric identifiers of the network nodes.

In the default viewing state, the light blue dots represent the network nodes, the big-

ger dark blue dot is the sink node, and the lines between them are the possible wireless

connections between nodes.

Whatever the options regarding graph topology selected in the Settings Screen, the

app always defines by default the sink node of the network as the node with maximum

80

Figure B.1: NetVis Main Screen showing the default network topology

81

Figure B.2: NetVis Main Screen showing network state after receiving a simulation result

82

closeness centrality2, i.e., the sink node stands in the closest position to all other nodes.

Exploring the network states through time after a successful simulation

After running a successful simulation (see Perform a simulation) or loading a saved

simulation (see Load and save simulation data), the app Network Representation area

will change to allow you to explore the status of the network over time. See Figure B.2. At

the top of the Network Representation area, it will appear a number box showing the

currently considered time slot and a horizontal slider representing all the possible time slots

that you can explore. The explorable time slots go from 0 (initial network conditions) until

the selected value of T for the presented simulation.

There are three possible ways to change the currently displayed time slot: click the

number box with the mouse and write a new value, click on the green arrows buttons at its

side to move back and forth one time slot, or click and drag the slider to the desired value.

The Network Representation area will update accordingly.

The network information displayed in the Network Representation area has the follow-

ing meaning:

• A big dark circle represents the sink node. In Figure B.2 is the central node.

• A grey circle represents a sensor node in sleeping state (z). In Figure B.2, the top

right node is in sleeping state, for example.

• A light green circle represents a sensor node in sensing state (s). In Figure B.2, the

bottom left node is in sensing state, for example.

• A blue diamond represents a sensor node in transmitting state (Tx). In Figure B.2,

the bottom right node is in transmitting state, for example.

• A blue square represents a sensor node in receiving state (Rx). In Figure B.2, the node

immediately below the sink node is in receiving state, for example.

• A light grey thin line represents a non-active link between two nodes.

• A thick green line represents an active link between two nodes. There is data flowing

from the transmitting node (diamond) to the receiving node (square). The numbers

above those links show [Number of data packets] Number of data payloads be-

ing transmitted through them.

• The white number inside the nodes represent the current data payloads in the nodes’

buffers. If no number appears, then the respective node buffer is empty.
2https://www.mathworks.com/help/matlab/ref/graph.centrality.html

83

https://www.mathworks.com/help/matlab/ref/graph.centrality.html

Figure B.3: NetVis Settings Screen showing the default parameters

• The dark green empty circles represent the location of the current events on the net-

work. These are guaranteed to be captured by a nearby sensing node during their

lifetime.

B.4.4 Settings Screen

All the major network settings input are in this screen (Figure B.3). Changing these

allows to change some simulation parameters that are given as input to the CPLEX engine.

From top to bottom, left to right:

84

Load Graph button

Loads a network topology previously saved by the Save this Graph Button. The app

will switch automatically to the Home Screen displaying the loaded topology.

Save this Graph button

Saves to a file the data about the current network topology. Useful when is intended to

repeat various simulations with the same network.

Number of Nodes box

Click the arrows or click and write to change the number of nodes of the network. This

setting refers to the parameter N of the implemented model (Chapter 4). The topology only

updates and takes into effect the new number after clicking the Create New Graph button

in the Home Screen Main Options. When the square graph is selected, this box only allows

perfect squares. Changing this parameter may also change some node-related parameters in

the Nodes Screen.

Min Distance Between Neighbors and Connexions sliders

Refer to Figure B.4.

The Min Distance Between Neighbors slider is only visible when the random graph

topology is selected. When creating a random topology, there is an absolute minimum

distance around any existent node where no new node can be placed. This slider sets that

minimum distance, therefore affects only the nodes spatial distribution in the graph. In any

case, how far can they placed from other nodes is only limited by the overall connectivity

of the whole network, that is, NetVis ensures that every node must be connected to any

other node. When the slider advances to the left side, the forbidden radius is augmented, so

the nodes tend to have more space between them and consequently tend to be more isolated

and less connected. To the right side, the nodes have more probability to be closer to each

other, therefore increasing the average number of connections between them.

The Connexions slider changes the average number of links between the nodes in the net-

work by varying the transmitter range of the nodes. To the left side this radius is diminished

until the minimum possible number of links to maintain a viable network. To the right side

it is augmented until it connects all the nodes between themselves. This option also works

with square grid networks.

85

Square/Random Graph selection

Change the network topology between a perfect square, as in Figure B.1 or a random

topology – as in Figure B.4. The topology only updates and takes into effect after clicking the

Create New Graph button in the Home Screen Main Options. With random graph selected,

each press of the Create New Graph button creates a new non-repeatable topology.

(a) 36 nodes, low connections degree, high

distance between neighbors

(b) 36 nodes, low connections degree, low dis-

tance between neighbors

(c) 36 nodes, high connections degree,

medium distance between neighbors

(d) 100 nodes, medium connections degree,

medium distance between neighbors

Figure B.4: NetVis: some random network topologies with different parameters. The sink

node is the dark blue more prominent node.

86

TimeFrame box

Click the arrows or click and write to change the time-frame of the simulation. This

setting refers to the parameter T of the implemented model (Chapter 4). Changing this

parameter may also need to manually update some time-related parameters in the Settings

Screen and Harvesting Screen.

Time period (alpha) box

Click the arrows or click and write to change the time periods of the simulation. This

setting refers to the parameter α of the implemented model (Chapter 4). The TimeFrame

value must be a multiple of this value – the value appears in green if this is true and in red

if not.

min payloads per node (beta) box

Click the arrows or click and write to change the minimum number of data payloads per

sensor node that must be enforced in the simulation. This setting refers to the parameter β

of the implemented model (Chapter 4).

max payloads per package box

Click the arrows or click and write to change the maximum number of data payloads per

data packet that are used in the simulation. This setting refers to the parameter Pmax of

the implemented model (Chapter 4).

Duration box

Click the arrows or click and write to change the time duration (in time slots) of each

of the events that exist in the simulation. This setting refers to the parameter δ of the

implemented model (Chapter 4).

Proximity slider

To the left, the location of the events – randomly created as explained in Section 6.2.2

– will tend to be closer to the sensor nodes. To the right, the location will tend to be more

distant. This parameter influences the average number of sensor nodes that can sense an

event at the same time – more to the left, less to the right. This will affect the values of

Ei(t) of the implemented model (Chapter 4).

87

Percentage of Events box

Click the arrows or click and write to change the time percentage of the time-frame in

which events will be created for the simulation. A number closer to zero will result in fewer

events, and a number closer to 100 will result in more events. This parameter will affect the

values of v(t) of the implemented model (Chapter 4).

Random checkbox

Check this box to obtain always different events distributions, even if the other events

parameters remain unchanged. A random distribution is useful to approximate the input

data to reality.

Uncheck to obtain always the same events if the events parameters are the same. This

setting is useful to retry simulations with the same conditions.

B.4.5 Nodes Screen

All the parameters related to the network nodes are on this screen (Figure B.5). Also,

the nodes operational states and respective energy consumptions are found here.

Changing these allows changing some simulation parameters that are given to input to

the CPLEX engine.

Nodes List

The Nodes List shows all the information about the network nodes. From left to right:

• Node ID: Each node unique identifier. Not editable. The app creates it automatically.

• Is Sink?: Boolean identifying which node is the sink node. It can be changed by

clicking the respective checkbox. Only one node can be the sink node. The sink node

always has infinite buffer size, and no battery related data.

• Initial Payloads: The amount of data payloads that a node has in its buffer at the

beginning of simulation. Click each cell and write to change it. This setting can be

altered for all the nodes at the same time by using the box above it. This parameter

corresponds to the parameter Qi(0) of the implemented model (Chapter 4). Useful for

retrying a simulation with the results data of a previous one.

• Buffer Size: The amount of data payloads that a node can hold at maximum. Click

each cell and write to change it. This setting can be altered for all the nodes at the

same time by using the box above it. This parameter corresponds to the parameter

Qmax of the implemented model (Chapter 4).

88

Figure B.5: NetVis Nodes Screen

89

• Min Battery: The minimum amount of battery that a node can have in the simu-

lation. Click each cell and write to change it. This setting can be altered for all the

nodes at the same time by using the box above it. This parameter corresponds to the

parameter Bmin of the implemented model (Chapter 4).

• Max Battery: The maximum amount of battery that a node can have in the simu-

lation. Click each cell and write to change it. This setting can be altered for all the

nodes at the same time by using the box above it. This parameter corresponds to the

parameter Bmax of the implemented model (Chapter 4).

• Initial Battery: The amount of battery that a node starts the simulation with. Click

each box and write to change it. This setting can be altered for all the nodes at the

same time by using the box above it. This parameter corresponds to the parameter

Bi(0) of the implemented model (Chapter 4).

Nodes States List

The Nodes States List shows the operational states that the nodes can have – on the left

– and the corresponding energy consumption of the state per time slot – on the right. It

appears below the Nodes List. Click and write to add a new state, to edit an existing one

or to delete an existing one.

Warning: keep in mind that changing any of the nodes states in this list needs a manual

rework of the CPLEX OPL model to be consistent with the new changes.

B.4.6 Harvesting Screen

In this screen (Figure B.6a) you can add or edit the amount of energy harvesting per

time slot considered in the simulation. Note that the amount of harvesting is the same for

all the network nodes.

To start, click the green Add Data button. A small pop-up window appears (see Figure

B.6b): you can choose between adding a constant harvesting value to all of the T time slots

or to load existing data from a file (useful for retrying simulations with the same data, or to

load external harvesting profiles).

If choosing the constant option, a box will appear next to the green button, where you

can click and write the desired constant value. If choosing the data load option, a file picker

window will appear to select the desired file from which to load the harvesting data.

Whichever the selected option, a list will appear with the chosen harvesting values in

each time slot (see Figure B.6c). It is possible to edit each one of them by clicking and

90

writing a new value. Dragging the horizontal scroll bar allows access to more time slots.

Below this list will appear the graphic representation of the selected values. This visual-

ization is useful to see the chosen harvesting profile.

(a) Without Harvesting values added (b) Pop-up selection window

(c) Harvesting values added: list and graphic

Figure B.6: NetVis Harvesting Screen sequence

B.4.7 Analyze Screen

In this screen (Figure B.7) you can obtain graphical representations about data generated

by the simulations. The options in this screen only result in graphics after a successful

simulation.

Choose an option in the center list with the mouse. A description of the resulting graphic

91

Figure B.7: NetVis Analyze Screen

92

appears in the big text-box below. Some options provide extra parameters on the list of the

right. When satisfied with the selected options, click on the green Create New button to

create a new graph that will appear in a new window. You can create as many figures as

you want. The charts currently supported by the NetVis are:

• Networks link heat map: Shows which links are the most used to transmit data

packets. Darker links are equivalent to more data. See Figure B.8a.

• Nodes battery over time: Shows the average battery of the nodes aggregated by

the distance to the sink node over time. See Figure B.8b.

• Node states distribution by distance: Percentage of time slots that each node

spends on a certain state. See Figure B.8c.

• Node states allocation over time: Shows in which operational state each node is

at each time slot. See Figure B.8d.

• Average data packets aggregation sent by node and time slot: Shows in what

time slot the nodes made transmissions and the amount of data aggregation in each

one of them. See Figure B.8e.

• Average data packets aggregation sent by distance and time slot: Shows in

which time slot the nodes made transmissions and the amount of data aggregation in

each one of them. The nodes are averaged by the distance to the sink node. See Figure

B.8f.

• Range of battery values of all nodes at a specific time period: The horizontal

axis contains all the nodes ordered by distance to the sink node – left is close to it and

right is far from it. The vertical axis has the battery values in percentage. The time

period can be specified in the extra parameters list. See Figure B.8g.

• Range of battery values of nodes aggregated by distance at a specific time

period: The same as above but it aggregates and averages the battery values from

nodes with the same distance to the sink node. The horizontal axis represents the

distance to the sink node. The vertical axis represents the range of battery values (in

percentage) for the nodes at same distances. The time period can be specified in the

extra parameters list. See Figure B.8h.

93

• Battery values of a specific node over all the simulation: The horizontal axis

represents the time. The vertical axis represents the battery value in percentage. The

selected node can be specified in the extra parameters list. See Figure B.8i.

• Data payloads on the network over time: It shows where all the payloads are

during all the simulation. The horizontal axis represents the time. The vertical axis

represents the number of data payloads. In the extra parameters list, it can be specified:

data payloads at sink node; data payloads still outside sink node (at sensor nodes);

data payloads created by sensing; and data payloads being transmitted. See Figure

B.8j.

• Data payloads on a node over time: It shows the number of data payloads inside

a specified node during all the simulation. The horizontal axis represents the time.

The vertical axis represents the number of data payloads inside the nodes’ buffer. The

selected node can be specified in the extra parameters list. See Figure B.8k.

• Data payloads on node with the same distance to the sink node over time:

It shows the number of data payloads inside the nodes of a specified distance to the

sink node during all the simulation. The horizontal axis represents the time. The

vertical axis represents the sum of data payloads inside the selected nodes’ buffer. The

selected distance can be specified in the extra parameters list. See Figure B.8l.

• Sensing heat map: It shows the cumulative sum of number of sensing states of the

nodes until a specified time slot. The specified time slot can be selected in the extra

parameters list. If the selected time slot is the last one then it shows the cumulative

sum of all the simulation. See Figure B.8m.

• Sleeping heat map: It shows the cumulative sum of the number of sleeping states

of the nodes until a specified time slot. The specified time slot can be selected in

the extra parameters list. If the selected time slot is the last one then it shows the

cumulative sum of all the simulation. See Figure B.8n.

• Transmitting heat map: It shows the cumulative sum of the number of transmitting

states of the nodes until a specified time slot. The specified time slot can be selected

in the extra parameters list. If the selected time slot is the last one then it shows the

cumulative sum of all the simulation. See Figure B.8o.

94

• Receiving heat map: It shows the cumulative sum of the number of receiving states

of the nodes until a specified time slot. The specified time slot can be selected in

the extra parameters list. If the selected time slot is the last one then it shows the

cumulative sum of all the simulation. See Figure B.8p.

• Node activity heat map: It shows the cumulative sum of spent battery of the

nodes until a specified time slot. The specified time slot can be selected in the extra

parameters list. If the selected time slot is the last one then it shows the cumulative

sum of all the simulation. See Figure B.8q.

• Data payloads left inside sensor nodes heat map: It shows the amount of data

payloads that are inside each sensor’s buffer at the end of the simulation. See Figure

B.8r.

• Distance to the sink node heat map: It shows the shortest-hops-distance to the

sink node of the sensor nodes of the network. See Figure B.8s.

95

(a) Network links heat map (b) Nodes battery over time

(c) Node states distribution by distance (d) Node states allocation over time

(e) Average data packets aggregation sent by

node and time slot

(f) Average data packets aggregation sent by

distance and time slot

Figure B.8: Examples of types of graphics supported by NetVis Analyze Screen

96

(g) Range of battery values of every node at

a specific time period

(h) Range of battery values of nodes aggre-

gated by distance at a specific time period

(i) Battery values of a node over time (j) Payloads on the network over time

(k) Payloads on a node over time (l) Payloads on nodes with same distance

over time

Figure B.8: Examples of types of graphics supported by NetVis Analyze Screen (cont.)

97

(m) Sensing nodes heat map

images/usersguide/S.png

(n) Sleeping nodes heat map

(o) Transmitting nodes heat map (p) Receiving nodes heat map

(q) Node activity heat map by spent battery (r) Payloads left on nodes heat map

Figure B.8: Examples of types of graphics supported by NetVis Analyze Screen (cont.)

98

(s) Nodes distance to sink node heat map

Figure B.8: Examples of types of graphics supported by NetVis Analyze Screen (cont.)

B.5 Usage Examples

B.5.1 Perform a simulation

The most common use for the NetVis app is to obtain simulation results while varying

input parameters to the optimization model of Chapter 4. For that purpose, the usual steps

that you need to take to obtain results are:

1. Open the NetVis app – see First use. The Home Screen will appear.

2. Chose the desired network parameters by interacting with the boxes and buttons in

the Settings, Nodes and Harvesting screens. See the respective sections to know

how to change each parameter.

3. When satisfied with the input data, go back again to the Home Screen and click the

green Run Simulation button.

4. If everything is correct, the data will be sent over to the CPLEX Engine and this

engine will start the simulation.

5. Depending on the chosen input parameters, the results may take a very long time to

be ready.

6. If CPLEX finds a solution for the simulation, the Network Representation area at

the Home Screen will change colors. A slider and a textbox will appear at the top

99

of the Home Screen area. Interacting with those allows to view the network state

time slot by time slot. See Figure B.2 and Exploring the network states through

time after a successful simulation.

7. It is then possible to save the data in the Settings Screen or analyze it in the Analyze

Screen.

8. To retry a simulation with a new set of parameters, go back to item 2.

Additionally, see Figure 5.1 for a visual depiction of the steps above.

B.5.2 Load and save simulation data

Save a simulation

After obtaining simulation data (check the steps in Perform a simulation), a dark

Save Simulation button will appear in the Home Screen. Click it and a folder window will

appear. Choose the folder location and the file name in which to save the simulation data.

Load a simulation

Go to the Settings Screen and click the dark Load Simulation button at the bottom

of the window. A folder search window will appear. Find and select a previously saved

simulation file. If the chosen file contains simulation data, the app will change automatically

to the Home Screen. After this, you can explore the network states over time as seen

in Exploring the network states through time after a successful simulation or

analyze the simulation with the help of graphics as seen in the Analyze Screen.

100

	Acknowledgments
	Resumo
	Abstract
	List of Acronyms
	List of Figures
	List of Tables
	List of Equations
	1 Introduction
	1.1 Motivation and Context
	1.2 Goals
	1.3 Key Contributions
	1.4 Structure of Dissertation

	2 Background
	2.1 Concept
	2.2 Related Work
	2.3 Research Scope

	3 Theoretical Model
	3.1 Data and Communication Models
	3.2 Energy Harvesting, Storage, and Consumption Models
	3.3 Events
	3.4 Optimization Objective

	4 Implemented Model
	4.1 The need of Mixed-Integer Programming
	4.2 The MILP model
	4.2.1 Data
	4.2.2 Decision Variables
	4.2.3 Constraints
	4.2.4 Objective

	4.3 Solving a MILP problem: the CPLEX Optimizer engine
	4.4 The resulting OPL Model

	5 Simulation and Analysis Platform
	5.1 Conception and Requirements
	5.2 Development
	5.3 Features and Functionalities
	5.4 Functional Flow Overview

	6 Evaluation Setup and Results
	6.1 Goals
	6.2 Evaluation Conditions
	6.2.1 Platforms and Methods
	6.2.2 Fixed Simulation Parameters
	6.2.3 Metrics

	6.3 Results
	6.4 Results Discussion

	7 Conclusions and Future Work
	8 Bibliography
	A Calculations for the Energy Input Data
	A.1 Battery
	A.2 Consumptions
	A.3 Harvesting

	B Network Visualizer User's Guide
	B.1 Introduction
	B.2 Warning Note
	B.3 System Requirements
	B.4 NetVis Operation
	B.4.1 First use
	B.4.2 Data types
	B.4.3 Home Screen
	B.4.4 Settings Screen
	B.4.5 Nodes Screen
	B.4.6 Harvesting Screen
	B.4.7 Analyze Screen

	B.5 Usage Examples
	B.5.1 Perform a simulation
	B.5.2 Load and save simulation data

