
Faculty of Sciences and Tecnology

Department of Informatics Engineering

Validation of Smart Contracts Through
Automated Tooling

Tomás Morgado de Carvalho Conceição

Internship Report in the context of the Master in Informatics Engineering, Specialization in
Software Engineering advised by Professor Raul Barbosa and Eng. João Barbosa and

presented to the
Department of Informatics Engineering / Faculty of Sciences and Technology

January 2019

Acknowledgements

I would first like to thank Professor Raul Barbosa, my advisor at the University of Coimbra,
for, with his valuable experience and insights, guiding me through this process and always
challenging me to do better.

I would like to thank my advisor, João Barbosa, not only for his technical contributions
to this dissertation but for always ensuring that I had my priorities straight and was
managing my time properly. Thank you for pushing me to always make healthy choices
regarding my work-life balance.

I want to thank the members of my jury, Professor Fernando José Barros and Professor
César Alexandre Domingues Teixeira, for their input and suggestions for improvement,
and their constructive criticism.

I would like to thank Whitesmith and Blocksmith, and in particular Gonçalo Louzada,
Maria João Ferreira and Rafael Jegundo, for accepting me on this internship, providing
me with all the tools and conditions to achieve my goals and for inviting me to take part
on other projects during this year.

I would also like to thank my co-workers, who, since the first day and without exception,
made me feel welcome and at home. I have learned something new with every single one
of you.

Finally, I would like to thank my family and friends for supporting me and encouraging
me relentlessly throughout all of my academic and non-academic life.

iii

Abstract

Smart contracts are computer programs which use blockchain
technology to allow users to exchange digital assets without
the need for a middle-man. NEO is a recent blockchain plat-
form, which presents programmers with the possibility of de-
veloping smart contracts in high-level programming languages.
Due to blockchain properties, smart contract code cannot be
changed after being deployed. It is then crucial for develop-
ers to thoroughly test their smart contracts before using them
in a production environment. This dissertation, a product of
the intern’s internship at Whitesmith, presents the different
phases of the development of a testing tool for NEO smart
contracts. This tool attempts to fill the gap between the state
of the art of NEO and Ethereum developer tools, two promis-
ing blockchain technologies which are presented in this report.
The study of the state of the art of development tools for these
technologies shows that, although NEO has development tools,
such as NeoCompiler Eco, which assists in the development of
smart contracts, these do not offer any testing features. Tak-
ing advantage of the existing NEO tool NeoCompilerEco, a test
automation tool was developed, which enables users to create,
import, save and run test cases and test suites on a NEO pri-
vate network, using only a browser. This tool, which assesses
tests according to events listened in the NEO blockchain, is
the result of the requests made to the intern by developers at
Blocksmith, a spin-off startup from Whitesmith, and is now in
use by these developers.

Keywords

Automation, Blockchain, NEO, Smart Contract, Testing

v

Resumo

Os smart contracts são programas de computador que usam
a tecnologia blockchain para permitir que os seus utilizadores
troquem bens digitais sem a necessidade de um intermediário.
NEO é uma recente plataforma de blockchain que oferece aos
programadores a possibilidade de desenvolver smart contracts
em linguagens de programação de alto ńıvel. Devido às pro-
priedades da blockchain, o código dos smart contracts não pode
ser alterado após ser distribuido na blockchain. É portanto cru-
cial que os programadores testem cuidadosamente os seus smart
contracts antes de os usarem em ambiente de produção. Esta
dissertação, o produto do estágio do seu autor na Whitesmith,
apresenta as diferentes fases do desenvolvimento de uma ferra-
menta de testes para smart contracts de NEO. Esta ferramenta
tenta colmatar a distância entre o estado da arte das ferramen-
tas de desenvolvimento de NEO e de Ethereum, duas tecnolo-
gias de blockchain promissoras, apresentadas neste relatório. O
estudo do estado da arte das ferramentas de desenvolvimento
para estas tecnologias mostra que, apesar de NEO ter ferra-
mentas de desenvolvimentos tais como o NeoCompiler Eco que
assistem no desenvolvimento de smart contracts, estas não ofer-
ecem quaisquer funcionalidades de teste. Tomando partido de
uma ferramenta já existente para NEO, o NeoCompiler Eco,
foi desenvolvida uma ferramenta de automação de testes que
permite aos seus utilizadores criar, importar, guardar e correr
casos de teste e suites de teste numa rede privada de NEO, uti-
lizando apenas um browser. Esta ferramenta, que avalia os ca-
sos de teste consoante eventos ouvidos na blockchain de NEO,
é o resultado dos requisitos feitos ao estagiário pelos progra-
madores da Blocksmith, uma startup spin-off da Whitesmith,
e é agora usada por estes programadores.

Palavras-Chave

Automação, Blockchain, NEO, Smart Contracts, Testes

vii

Contents

1 Introduction 1

1.1 Context and Motivation . 2

1.1.1 Smart-Contract Development Process 2

1.1.2 NEO . 3

1.2 Objectives and Scope . 3

1.3 Proposed Solution . 4

1.4 Report structure . 4

2 State of the art 5

2.1 Blockchain and Bitcoin . 6

2.2 Smart Contracts . 7

2.3 Ethereum . 8

2.4 NEO . 10

2.4.1 NEO Economic Model . 10

2.4.2 NEO Nodes . 11

2.4.3 Consensus Mechanism . 11

2.4.4 NEO Smart Contracts . 11

2.5 Smart Contract Development Tools . 13

2.5.1 Ganache . 13

2.5.2 Truffle Suite . 13

2.5.3 Remix IDE . 14

2.5.4 NEO GUI Developer . 15

2.5.5 NEO Debugger Tools . 17

2.5.6 NeoCompiler Eco . 19

2.5.7 NEO WebDebugger . 20

2.5.8 Conclusion . 21

2.6 Software Testing . 21

2.6.1 Unit Testing . 21

2.6.2 Test Case . 22

2.6.3 Test Automation . 22

2.6.4 Test Automation Framework . 22

3 Project Management 23

3.1 Risk Management . 23

3.1.1 Risk Monitoring . 24

3.2 Development Methodology . 25

3.3 Project Management Tools . 25

3.3.1 Trello . 25

3.3.2 Github . 26

3.4 Planning . 26

3.4.1 First Semester . 26

ix

Chapter 0

3.4.2 Second Semester . 27

4 Requirement Specification 31
4.1 Stakeholders . 31
4.2 System Actors . 31

4.2.1 Non-Authenticated User . 32
4.2.2 Authenticated User . 32

4.3 Requirements Gathering . 32
4.4 Functional Requirements . 33
4.5 Non-Functional Requirements . 39

4.5.1 Technical Constraints . 39
4.5.2 Quality Attributes . 39

5 Architecture 41
5.1 Context Diagram . 41
5.2 Containers Diagram . 42
5.3 Components Diagram . 44

5.3.1 Server Side Web Application . 44
5.3.2 NEO Node Tap . 44

5.4 Entity Relationship Diagram . 47

6 Implementation 49
6.1 Database . 49
6.2 NEO Node Tap . 50

6.2.1 Event Listening . 51
6.2.2 Models . 53
6.2.3 Event Handling . 55

6.3 Server Side Web Application . 57
6.3.1 Express Application . 57
6.3.2 Authentication . 58
6.3.3 Routes and Controllers . 61
6.3.4 Models . 62

6.4 Single Page Web Application . 65
6.4.1 Landing Page and Authentication 65
6.4.2 Editing, Compiling and Deploying Smart Contracts 66
6.4.3 Test Cases and Test Suites . 66

7 Testing 73
7.1 Server Side Web Application . 73
7.2 Single Page Web Application . 76
7.3 NEO Node Tap . 77

8 Conclusion 79
8.1 Future Work . 79

References 80

Appendices 85

x

Acronyms

AJAX Asynchronous JavaScript And XML. 65, 69

API Application Programming Interface. 13, 19, 44, 49, 57, 61, 65, 66, 68, 69, 73, 74, 76,
77

CLI Command-Line Interface. 13, 14, 17, 22, 62, 65

CoZ City of Zion - an independent group of open source developers formed to support
the NEO core and ecosystem. xiii, 15–17, 32

CRL Certificate Revocation List. 10

DApp Decentralized Application. 1, 33

dBFt Delegated Byzantine Fault Tolerance. 11

DOM Document Object Model. 65, 69

DoS Denial of Service. 9

GUI Graphical User Interface. xiii, 3, 13–17, 19, 22

IDE Integrated Development Environment. xiii, 14, 15, 19

MVP Minimum Viable Product. 1

ORM Object Relational Mapper. 50, 53, 57, 63

OS Operating System. 19, 21

PKI Public Key Infrastructure. 10

PoW Proof of Work. 6, 7, 10

RPC Remote Procedure Call. xiv, 13, 36, 42, 44, 57, 65–67

SDK Software Development Kit. 24, 33

SPA Single Page Application. 44, 65, 76

UI User Interface. 3

URI Uniform Resource Identifier. 61

VCS Version Control System. 26

VM Virtual Machine. xiii, 5, 8, 12, 17, 18

xi

List of Figures

2.1 Representation of a chain of two Bitcoin blocks. Taken, with owner consent,
from http://blog.brakmic.com/bitcoin-internals-part-1/. 6

2.2 Ethereum state transiction function. Taken from Ethereum Whitepaper: A
Next-Generation Smart Contract and Decentralized Application Platform[11]. 9

2.3 A representation of an Ethereum block. Taken from IoT Security: Review,
Blockchain Solutions, and Open Challenges[36]. 10

2.4 NeoVM architecture. Taken from NEO Smart Contract Introduction[24]. . . 12

2.5 Ganache Graphical User Interface (GUI) . 14

2.6 Remix Integrated Development Environment (IDE) 15

2.7 Neo GUI Developer - Smart contract test invocation (taken, with authoriza-
tion, from City of Zion - an independent group of open source developers
formed to support the NEO core and ecosystem (CoZ) Youtube channel) . 16

2.8 Neo Debugger - Debugging a NEO smart contract. Taken, with con-
sent, from Nikolaj-K youtube channel https://www.youtube.com/watch?
v=KnPHIaEsgtA. 17

2.9 Neo Debugger - Inserting breakpoints. Taken, with consent, from Nikolaj-K
youtube channel https://www.youtube.com/watch?v=KnPHIaEsgtA. 18

2.10 Neo Debugger - Virtual Machine (VM) instructions. Taken, with con-
sent, from Nikolaj-K youtube channel https://www.youtube.com/watch?
v=KnPHIaEsgtA. 18

2.11 NeoCompiler Eco - Ilustration of the Web tool compiler. 19

2.12 NeoCompiler Eco - Ilustration of the Web tool deployment and test envi-
ronment. 20

2.13 NeoCompiler Eco - Ilustration of the Web tool wallets page. 20

3.1 The front-end application, where the user can input an endpoint to be called
whenever an even from a given small contract is listened. 27

3.2 The endpoint being called whenever the selected contract broadcasted an
event. The requests are being made to a SimpleHTTPServer which was not
prepared to handle them. 28

3.3 The custom event listener connecting to the blockchain and starting listen-
ing to events. 28

3.4 The overall planning of the second semester. 29

5.1 The System Context Diagram, showing the system interactions with the
environment. 41

5.2 The Containers Diagram of the proposed solution. 43

5.3 A lower-level view of the Server Side Web Application, showing their com-
ponents and how they interact with the rest of the system. 45

5.4 A lower-level view of Node Tap, showing its components and how they
interact with the rest of the system. 46

xiii

http://blog.brakmic.com/bitcoin-internals-part-1/
https://www.youtube.com/watch?v=KnPHIaEsgtA
https://www.youtube.com/watch?v=KnPHIaEsgtA
https://www.youtube.com/watch?v=KnPHIaEsgtA
https://www.youtube.com/watch?v=KnPHIaEsgtA
https://www.youtube.com/watch?v=KnPHIaEsgtA

Chapter 0

5.5 The entity-relationship diagram of the solution. 48

6.1 Flow diagram of the NEO Node Tap. 50
6.2 Flow diagram of the backend server. 61
6.3 Landing Page - Sign In and Sign Up form. 66
6.4 Network Essential - Remote Procedure Calls (RPCs) to the private network. 67
6.5 Testing - Creating a test case using the test creator. 68
6.6 Testing - Temporary tests table. 68
6.7 Testing - Creating two test cases by importing them with JSON. 69
6.8 Testing - Running test cases are displayed on the temporary tests table. . . 69
6.9 Testing - Successful test cases are displayed on the temporary tests table. . 70
6.10 Testing - Modal displaying a small report of a test case execution. 70
6.11 Testing - Saved tests are displayed in the saved tests table. 70
6.12 Testing - Creating a new test suite. 71
6.13 Testing - Adding a test case to a test suite. 71
6.14 Testing - Saved test suites table. 72
6.15 Testing - Running a test suite. 72
6.16 Testing - Removing a test case from a test suite. 72

7.1 Katalon - Running a test case on Katalon that attempts to login and logout
an existing user. 76

xiv

List of Tables

2.1 Comparison between the different development tools - Neo Web Debugger
was excluded as it’s still in development . 21

3.1 Risk1 - Changes in Underlying Technology 24
3.2 Risk2 - A Competitor Tool is Launched . 24
3.3 Risk3 - Unfamiliarity with the required technologies 24

4.1 Stakeholders summary . 31
4.2 System actor - Non-Authenticated User (NAU) 32
4.3 System actor - Authenticated User (AU) . 32
4.4 User Stories - Landing Page . 34
4.5 User Stories - Authentication . 35
4.6 User Stories - Private Network . 36
4.7 User Stories - Testing (1) . 36
4.8 User Stories - Testing (2) . 37
4.9 User Stories - Testing (3) . 38

xv

Chapter 1

Introduction

During their study of the NEO blockchain, both Blocksmith and Whitesmith developers
found the state of the art of NEO development tools immature, especially when trying to
test their smart contracts and Decentralized Applications (DApps). Running a node in
an official NEO test network is also a cumbersome task. Test currency must be requested
to the test network owners, a process that can take a few days, and the node must be
fully synchronised with the test network, which can take a few hours to accomplish as the
client must download and synchronise the full blockchain. While running a local network
can solve these problems, as test currency can be generated by the network owner and the
small size of a local blockchain allows for a fast synchronization, sharing a local network
between a team of developers requires a few tweaks and every developer still has to have
a copy of the local network fully synchronized.

Furthermore, after deploying a smart contract, it is not trivial for a developer to know
whether the smart contract is performing as expected, and, when noticed that the smart
contract is not performing as expected, it is not always easy to understand why. After
fixing a problem in a smart contract and when attempting to test it, the developer must
deploy the new version of the smart contract to the blockchain, manually invoke the smart
contract, call every method on the smart contract, compare the result of the invocation
with the expected result and verify whether the problem was fixed or not. This is a very
time-consuming task that not only takes valuable time away from development but it also
leaves room for error, as developers may eventually forget to test a particular scenario.

Most startups, in order to respond to competitive pressure, rely on Agile development
methodologies to be able to validate and deliver Minimum Viable Products (MVPs) as
fast as possible[20]. Fast iterations through different product development phases, from
idea to deployment, ensure that stakeholders can input their feedback more often, which
in turn guarantees that a product succeeds or fails quickly and inexpensively. This ”fail
fast, fail often, fail cheap” doctrine is often the difference between succeeding or failing
as a startup[21]. To improve product quality, predictability, development, and shipping
times, processes, tools, and frameworks were created for most mature technologies and are
abundantly used by developers.

For startups, such as Blocksmith, to compete in the fast-paced and ever-changing environ-
ment that is blockchain development and consulting, it is essential that their developers
have access to tools which enables them to move fast and deliver robust products and
solutions in different blockchain technologies.

1

Chapter 1

1.1 Context and Motivation

This report was written as part of the intern’s curricular internship, during his Masters
in Software Engineering, by the Department of Informatics Engineering (DEI) of the
University of Coimbra, Portugal. The internship took place at Whitesmith, LDA.

Headquartered at Instituto Pedro Nunes (IPN) in Coimbra, Portugal, Whitesmith is a
product studio and software consultant. Recognising blockchain as a promising technol-
ogy, Whitesmith launched in 2018 its first spinoff, Blocksmith, a blockchain development
agency based in London, United Kingdom. Whitesmith takes pride in iterating from idea
to product in record times, a track record that it wants Blocksmith to inherit. To do so,
their developers must be able to easily and quickly setup development environments where
they can develop, deploy, test and validate their prototypes.

1.1.1 Smart-Contract Development Process

As explained and exemplified by K. Delmolino et al. with a ”Rock-Paper-Scissors” smart
contract example[17], even simple smart contracts are prone to bugs.

The development of a smart contract generally encompasses the following steps:

1. The developer writes the code for the smart contract, in a language accepted by a
compiler for the blockchain to where the smart contract is going to be deployed;

2. The developer compiles the code he has written in the previous step to the machine
code accepted by the blockchain;

3. The developer deploys the machine code to a private (local) network in order to
assess its behaviour by calling the smart contract different methods;

4. The developer deploys the machine code to a test network, a network that uses play
currency and emulates the main blockchain network, and continues assessing the
smart contract behaviour;

5. The developer finally deploys the machine code to the main network of the blockchain,
a network that uses real currency;

It is important to note that steps 1 to 3 are usually repeated while the developer changes
his smart contract code to fix bugs or add new features. The developer then moves to
step 4 and deploys the smart contract in the test network in order to understand how it is
going to behave in a bigger network, returning to step 1 to make any necessary changes.
Finally, after being reasonably confident that the smart contract is working as intended,
the developer moves to step 5 and deploys the smart contract on the main network. Due
to blockchain properties, after a smart contract is deployed in a main network, it is not
possible to patch it. Smart contracts need to be thoroughly tested before deployment as
failing to do so can result in hidden bugs and vulnerabilities causing the loss of assets.
An example was when a bug in an Ethereum smart contract was exploited by attackers,
leading to the loss of more than 50,000,000 dollars worth of Ether on the most significant
attack of the kind and forcing a fork on the Ethereum network[4]. Exploits and attacks
such as this one are not uncommon, preventing developers from being comfortable when
developing smart contracts that deal with users funds.

2

Introduction

1.1.2 NEO

NEO is a blockchain platform that supports smart contracts and which competes directly
with the Ethereum blockchain[13]. Due to different blockchain platforms being best for
different use cases[42], and in order to better serve its clients, Blocksmith started investi-
gating the NEO blockchain, considering it to be a potential platform to be used for future
projects.

When searching for tools that could help them increase their productivity and deliver
blockchain products faster, Whitesmith and Blocksmith developers realised that such tools
were lacking for the NEO blockchain. Realising that contributing with a new tool for
this blockchain could improve not only its developers’ productivity but also advertise
its presence in the blockchain community, Blocksmith decided to study the possibility
to develop an open-source tool for testing smart contracts for the NEO blockchain. As
such, the intern was tasked with studying the current state of the art on smart contract
development tools, with emphasis on the NEO blockchain. The intern was also asked to
study and develop a solution that allowed for a developer or a team of developers to easily
test and validate NEO smart contracts, if possible without having the burden of having
to set up a blockchain. To automate this validation, the developers should be able to set
a test suite which would be run against a deployed smart contract.

1.2 Objectives and Scope

In this internship, the intern aims to develop a web application tool to support developers
to implement and test NEO smart contracts, providing the necessary infrastructure. This
solution should work as a test harness, or test automation framework which, according to
”Introduction to Software Testing”, should support the ability to evaluate expected test
results through assertions1, test suites to organize and run multiple test cases (as defined
in Section 2.6 - Software Testing) and a Graphical User Interface (GUI)[33].

It should also support a NEO blockchain network, where the smart contracts will be
deployed and where the tests will be executed. For the purpose of the internship, the
developed solution interface should be able to give the users the possibility of creating
unit tests to test their smart contracts. The tool should handle the smart contract as a
black box, giving the user the possibility to set an input for each test case and to determine
the expected output of the smart contract execution. When a test case or test suite ends its
execution, the tool should display a test report, which should also reference performance
information, such as the amount of NeoGas spent to run the test. The tool should also
allow its users to save test cases and test suites and enable them to use the same test cases
or test suites in different contracts.

At the end of the internship, a report should be produced which should document the
study of state of the art, the requirement’s gathering, the architecture used and detail the
process of developing and testing the chosen solution. The design of the User Interface
(UI) of the tool to be developed is out of the scope of this internship.

1Assertion - A boolean expression which should evaluate to true unless there is a defect in the program.

3

Chapter 1

1.3 Proposed Solution

For the presented problem, the proposed solution is a web application for smart contract
deployment and testing. This web application features a testing tool, where users can
define which operations they want the smart contract to perform and what is the expected
outcome of said operations. These operations are invoked in the smart contract, and a
custom NEO node is listening to the resulting events. After the execution of the tests end,
the user is presented with the test results and with data on the contract execution, such
as NeoGas spent. To solve the problem of the developer having to set up a development
environment with a private blockchain every time he needs to develop or test a smart
contract, it is proposed that the developed tool shall be integrated with an existing open-
source tool called NeoCompiler Eco (see 2.5.6). With this solution, a private network is
running on a back-end server, with the user just having to access a web client to deploy
his smart contract on the platform.

1.4 Report structure

This report follows the following structure:

• Chapter 1 - In this chapter, an introduction to the report is made. This introduction
starts by describing the problem. It then introduces the context of the internship,
its goals and scope and the proposed solution to the presented problem.

• Chapter 2 - In this chapter, the study of state of the art is presented. An intro-
duction to blockchain and Bitcoin is made, followed by the introduction of smart
contracts and Ethereum. The NEO platform is then presented, and a description
and comparison of several Ethereum and NEO development tools follow. Finally,
some Software Testing terms are presented to the reader.

• Chapter 3 - In this chapter, the development methodologies and tools used in the
management of this project are presented, as well as an analysis and identification
of the project risks and a mitigation plan for each of these risks. The planning of
this project is also described.

• Chapter 4 - In this chapter, the project stakeholders and actors are presented, as
well as the requirements gathered from these entities. These requirements are split
into functional requirements and non-functional requirements.

• Chapter 5 - In this chapter, the system architecture is discussed. This architecture
is presented in different diagrams which provide an overview over different levels of
the system.

• Chapter 6 - In this chapter, the implementation of the different components of the
tool is described.

• Chapter 7 - In this chapter, the different tests made for the different system compo-
nents are enumerated.

• Chapter 8 - In this chapter, a conclusion for the report is presented.

4

Chapter 2

State of the art

In today’s society, and with the widespread use of electronic transactions, almost every
transaction is mediated by a central authority such as financial institutions or the gov-
ernment. This gives every party involved in the transaction a sense of security. This
model works as long as each side trusts the central authority to mediate the trade and
enforce penalties in the event that one of the parties breaches his side of the agreement.
However, recent events such as the financial crisis of 2007-2008, have shown that even the
most significant financial institutions can fail, leaving numerous people with the conviction
that the collapse of the world banking system is not an implausible scenario. There are
also countries where these central authorities cannot be trusted to mediate agreements or
to enforce penalties, either because they are corrupt or because they lack the necessary
infrastructures to keep transactions and ownership records safe[38].

With the advent of the blockchain, we are presented with a number of technologies that,
through a set of cryptographic and mathematical properties, guarantee that its users
can make electronic transactions in a transparent, trust-less and irreversible manner,
without having to trust a central authority. In 2009, Bitcoin was the first fully decen-
tralised technology to solve the double-spending problem and fully implement the concept
of blockchain[9]. In 2015, a new implementation of the blockchain was launched, called
Ethereum[6]. Ethereum features a Turing-complete Virtual Machine (VM) with the capa-
bility of executing scripts, the Ethereum Virtual Machine[18]. Suddenly, developers were
given the tools to be able to deploy a whole new class of decentralised applications powered
by smart contracts running on the Ethereum blockchain. In 2016 another implementation
of the Blockchain, NEO (formerly known as Antshares), a Chinese cryptocurrency also
featuring a Touring-complete VM (neoVM), was launched[27].

This chapter aims to acquaint the reader with the concept of Blockchain, as well as with the
two most notorious and famous blockchain implementations, Bitcoin and Ethereum. The
concept of ”Smart Contracts” is introduced, followed by the study of the NEO blockchain.
An analysis of the current state of Ethereum and NEO smart contract development tools
is then presented, and a final comparison between these tools is made.

Finally, some concepts of software testing relevant for this report are reviewed.

5

Chapter 2

2.1 Blockchain and Bitcoin

The first implementation of a blockchain was described in 2008 and implemented in 2009
by a person, or a group of people, under the pseudonym of Satoshi Nakamoto, as the
backbone of the Bitcoin cryptocurrency[31]. In a simplistic description, a blockchain can
be seen as an immutable and ever-growing list of blocks where each new block is appended
to the top of the blockchain. These blocks are connected between them and secured using
cryptographic properties.

In most blockchain implementations, these blocks are constituted by a block header and
a block body. In the Bitcoin implementation, the body contains the digital transactions
to be validated and recorded on the blockchain and its count, whereas the block header
includes the version of the block, a nonce, a cryptographic hash of the previous block, a
Merkle-tree root, the current difficulty and a timestamp, as illustrated in Figure 2.1.

Figure 2.1: Representation of a chain of two Bitcoin blocks. Taken, with owner consent,
from http://blog.brakmic.com/bitcoin-internals-part-1/.

Blockchains are usually used in peer-to-peer networks, where every node of the network
holds its copy of the blockchain. In the case where everyone can access the blockchain
(i.e., be a node of the network), the term public blockchain is used, whereas a blockchain
where only selected nodes can access its data is called a private blockchain[34]. In private
blockchains, reaching a consensus in which transactions to validate is often easy, as a pri-
vate organisations usually runs the validator nodes without interest in colluding against
the blockchain. However, in public blockchains, it is necessary to have a consensus mech-
anism that prevents nodes from attempting to force a different version of the blockchain
to other nodes.

In Bitcoin whitepaper, Nakamoto proposed a consensus mechanism based on a Proof
of Work (PoW) protocol[31]. In Nakamoto’s PoW implementation, validator nodes, or
miners, actively listen to the network, waiting for transactions to be broadcasted by other
nodes. These validators can pick the transactions they want to include in the block they

6

http://blog.brakmic.com/bitcoin-internals-part-1/

State of the art

will be mining, often opting to prioritise transactions that pay higher transaction fees. A
miner can include any amount of transactions they wish in the block they are mining,
providing that the block size does not surpass the maximum allowed size of 1 megabyte.
To mine a block, the miner increments a nonce attempting to find a value that, hashed
with the rest of the content of the block, results in a hash that starts with a pre-determined
number of zeros. The number of zeros required in the resulting hash is used to set the
difficulty of finding this nonce (the higher the number of zeros required, the hardest it is to
generate a hash that complies with this requirement). The PoW difficulty is increased or
decreased automatically to compensate for increasing hardware speed and varying interest
in running nodes over time and aims to generate a new block every ten minutes. Due to
the cryptographic properties of one-way hash functions (in Bitcoin, SHA256 is used), it
is hard for a miner to find a nonce that generates a hash that obeys the requirements.
However, once the nonce is found it is easy for other miners to verify that it is indeed a
correct solution to the problem.

This difficulty in finding the solution is the proof that work has been done on the block
and makes it that if a node wants to compromise the integrity of older blocks, it will
have to mine every block since the block he wants to change up until the latest mined
block. This guarantees that, unless the miner has more than 51% of the CPU power of the
miners’ network, he will never be able to catch up with the current state of the blockchain,
as the nodes will always pick the longest available version of the blockchain as the true
blockchain[8].

When a miner finds a solution, he will add a new transaction, called a generation transac-
tion, to the beginning of the block issuing a reward of a pre-determined amount to himself.
This reward is a special kind of transaction, as, contrary to the other bitcoin transactions,
does not contain a from address. As such, this transaction will generate new bitcoins
into the system. This reward started in 50 bitcoins, with this amount being halved every
210,000 blocks. Eventually, no bitcoins will ever be generated, making it that the network
has a hard cap of 21 million bitcoins[25]. In this transaction, the miner also receives every
transaction fees existing in the mined block.

The miner then broadcasts the solved block to the entire network and other miners will
validate the transactions and check whether the proposed nonce fits the solution. If a
miner accepts the block, it will append the block to his blockchain, discard the block he
was working on and start generating a new block to mine. If he does not find the block
to be valid, he will discard the received block and will keep trying to find a nonce that
fits the requirements. Eventually, other blocks will be mined on top of this block, with
every block mined on top being called a confirmation. If this block is part of the longest
version of the blockchain, eventually other branches created by other blocks being mined
concurrently will stop receiving work. Usually, users and traders demand more than six
confirmations before accepting the transaction as valid[7].

2.2 Smart Contracts

The term ”Smart Contract” was coined in 1994 by Nick Szabo, which defined a smart con-
tract as ”a computerized transaction protocol that executes the terms of a contract”[39].
Whereas usually, the judicial system or another arbitration method enforces a traditional
contract, with smart contracts a program enforces the contract built into the code. Szabo,
in ”Smart Contracts: Building Blocks for Digital Markets”, uses a vending machine as
the example of a primitive smart contract ancestor: The vending machine takes currency

7

Chapter 2

from its user and, according to a previous agreement on the product price, dispenses
product and change fairly[40]. With the advent of the blockchain and Bitcoin, developers
were provided with the means of running simple scripts on top of the blockchain, using
a Touring-incomplete scripting language. Later, platforms such as Ethereum (see section
2.3) and NEO (see section 2.4), provided developers with Turing-complete virtual ma-
chines, where more complex and sophisticated programs could be run. These programs,
or smart contracts, are run by every node of the network they belong to every time the
node attempts to validate a transaction that inputs a determined value to the smart con-
tract method. As such, smart contracts need to be deterministic, otherwise, each node
that executes the contract method to validate the transaction would end with different
results and no consensus would be possible[12]. These properties make it possible for
programmers to develop smart contracts in a decentralised network, where the oversight
of a third-party or centralised authority is not needed and give users the ability to take
part on contracts which are auditable, verifiable and deterministic. These contracts can
be used to manage assets, as long as these assets that are, themselves, embedded on the
blockchain where the smart contract is running.

2.3 Ethereum

In 2013, Vitalik Buterin proposed a new blockchain platform, called Ethereum[11]. Vitalik
and his team started publicly developing Ethereum in early 2014[10], and in 2015 Ethereum
was officially launched[6]. Ethereum includes a Turing-complete VM, the EthereumVM,
which provides a runtime environment for smart contracts in the Ethereum blockchain. In
Ethereum, smart contracts can be written in a set of high-level languages which are con-
verted to EthereumVM bytecode and deployed on the Ethereum blockchain for execution.
Of these, Solidity, a language similar to C and JavaScript, is the most popular language
for Ethereum smart contract development.

Ethereum has a native token, called Ether. Ether is used to pay for transaction fees,
working as the fuel of the Ethereum network. Ether can be subdivided down to 10−18

Ether, which is also called a ”wei”[14]. To hold Ether and interact with the blockchain, a
user must create an ”account”. Each account has a 20 bytes address, which identifies the
account, and four fields:

• A nonce, which is a counter used to guarantee that each transaction can only be
processed once;

• The account’s current Ether balance;

• The account’s contract code, if existent;

• The account’s key-value storage, which is empty by default;

In general, there are two types of accounts: externally owned accounts[41], belonging to
a user of the Ethereum blockchain and which are controlled by private keys, and contract
accounts, controlled by their contract code. An externally owned account has no contract
code, with the user being able to send messages by creating and signing a transaction. On
a contract account, every time it receives a message, its code activates, allowing it to read
and write to storage and send other messages, or even create other contracts[41].

To be sent, a message needs to be stored inside a transaction. Transactions, in Ethereum,
contain:

8

State of the art

• The address of the recipient of the message;

• The sender signature;

• The amount of ether (can be zero) to transfer from the sender to the recipient;

• A STARTGAS value, which represents the maximum gas to be spent on the exe-
cution of the message;

• A GASPRICE value, which represents the value that the sender is willing to pay for
each gas consumed, and which is given in Wei;

• An optional data field;

Gas can be seen as the effort required to execute a given transaction. Most of the compu-
tational steps taken by the EthereumVM when running a contract cost 1 gas, with some of
the most computationally expensive steps costing more. A fee of 5 gas must also be paid
for every byte in the transaction data. If a transaction runs out of gas during execution,
all the state changes are reverted, but the spent gas is not reimbursed. If a transaction
ends its execution with success, the transaction will change the state to a new state, as
illustrated in Figure 2.2.

Figure 2.2: Ethereum state transiction function. Taken from Ethereum Whitepaper: A
Next-Generation Smart Contract and Decentralized Application Platform[11].

If the transaction concludes without using all the available gas, the spare gas is sent back
to the sender. This prevents a transaction execution from being locked in a loop, while
also preventing Denial of Service (DoS) attacks on the network by making the attackers
pay for each computational step taken. The GASPRICE also serves for senders to set a
priority to transactions, as miners will try to process first the transactions that pay more
Ether for each gas used. The transaction fee is calculated by multiplying the GASPRICE
by the STARTGAS and is subtracted from the sender’s account balance. If the sender
does not have enough balance to pay for the transaction, an error will be raised and the
transaction aborted.

Despite some differences, the Ethereum blockchain is in many ways similar to the Bitcoin
blockchain. Of this differences, the major one, with regards to the blockchain architecture,

9

Chapter 2

is that Ethereum blocks contain a copy of the transaction list and its current state, while
Bitcoin only stores a copy of the transaction list, as shown in 2.3. Aside from this difference,
both the block number and the difficulty are stored in the block.

Figure 2.3: A representation of an Ethereum block. Taken from IoT Security: Review,
Blockchain Solutions, and Open Challenges[36].

The consensus algorithm used on the Ethereum blockchain is the same PoW algorithm
used in the Bitcoin blockchain, with the difference that Ethereum attempts to generate a
new block every 15 seconds which allows a higher number of transactions being validated
per second (roughly a throughput of 15 transactions per second), compared to the 10
minutes that Bitcoin blockchain takes to generate a new block.

2.4 NEO

Formerly known as Antshares, NEO was founded in 2014 by Da Hongfei and had its
platform deployed online in 2016. In the NEO whitepaper[24], Da Hongfei states that
NEO main objective is to use blockchain technology and digital identity to achieve what
Da calls a ”Smart Economy”. In the whitepaper, ”Smart Economy” is depicted as using
smart contracts to manage digital assets, which belong to digital entities automatedly. To
build this ”Smart Economy”, NEO promises to establish a sophisticated digital identity
system, based in the Public Key Infrastructure (PKI) X.509 Standard. To issue and val-
idate a digital identity, NEO claims that a set of authentication methods will be used,
such as ”the use of facial features, fingerprint, voice, SMS and other multi-factor authen-
tication methods”, which will be managed by an X.509 Certificate Revocation List (CRL)
functioning on the blockchain.

2.4.1 NEO Economic Model

NEO has two native tokens, a management token called NEO and a fuel token called
NeoGas, which is usually referred to as GAS. The NEO token functions similarly to having
a share of a company. Users that hold NEO tokens can vote on managerial decisions, such

10

State of the art

as choosing bookkeepers (consensus nodes). The minimum unity of NEO is 1, and a token
cannot be subdivided. A total supply of 100 million NEO tokens was generated at the
beginning of the platform, with half of it belonging to the NEO Council and the rest having
been distributed to the platforms investors in a crowdfunding phase. NeoGas is used to
pay for smart contract deployment and further operations, preventing the abuse of the
network resources, such as DOS attacks on the network. NeoGas can also be used to pay
transactions fees, although, at the moment of the writing of this document, transactions
are free. Transactions fees will enable higher paying transactions to be prioritised as well
as will serve as an economic incentive for bookkeepers to exist and honestly validate blocks.
The minimum unit of GAS is 0.00000001. 100 million NeoGas, corresponding to the 100
million NEO, will be generated through a decay algorithm in about 22 years to addresses
holding NEO. While in Ethereum accounts hold Ether and GAS, in NEO the same logic
is applied, with accounts being called Wallets.

2.4.2 NEO Nodes

In NEO platform two different types of nodes exit. Ordinary nodes, which represent a
normal client connected to the blockchain and consensus nodes (or bookkeepers). The
nodes connect between them via a peer-to-peer network with all messages within the net-
work being sent by broadcast. Ordinary nodes use the network to transfer and exchange,
accepting ledger data. Consensus nodes manage the ledger, validating new blocks.

2.4.3 Consensus Mechanism

NEO employes Delegated Byzantine Fault Tolerance (dBFt) as its consensus mechanism.
In dBFt consensus nodes voted, or delegated, by NEO holders, listen actively for transac-
tion data being broadcasted by the other nodes. NEO holders have interest in the system
being honest and, as such, vote for delegates that they perceive as being trustworthy. Each
consensus node store independently, in memory, its version of the data received from the
network. After a certain pre-defined time, a speaker is drawn from the group of consensus
nodes and forms a block from the transactions he received since the last block was vali-
dated. This speaker proposes his version of the block to the other delegates, which in turn
verify if it follows a set of rules, compares it with their version of the block and votes the
block for approval or disapproval. Two-thirds of the delegates need to approve the block
for the block to be validated. In the cases where the block is not approved, a new speaker
is drawn, which presents his block for voting. When NEO holders perceive delegates to
be dishonest by, for instance, observing their voting patterns, they vote on other nodes to
be consensus nodes, demoting the dishonest nodes to ordinary nodes. dBFt has a good
finality, which means that once a block confirmation is final it cannot be rolled back or
reverted and a fork in the blockchain is not possible.

2.4.4 NEO Smart Contracts

NEO allows a developer to write smart contracts in a set of high-level languages. These
high-level languages are subsets of mainstream languages, where not all of the function-
alities of the language are available for smart contract development. At the time of the
writing of this document, NEO supported subsets of the following languages[24]:

• C#, VB.Net, F#

11

Chapter 2

• Java, Kotlin

• Python

The ability to develop in one of these high-level languages is undoubtedly one of the main
attractions of NEO. While Ethereum developers must learn a new programming language,
such as Solidity, to develop smart contracts, NEO developers may use a programming
language that they already know to start developing. Then, developers just need to adapt
to the subset of the chosen programming language.

NEO smart contracts run on top of a virtual machine, the NeoVM, which, as depicted in
Figure 2.4, in the dashed board, consists of three main modules.

Figure 2.4: NeoVM architecture. Taken from NEO Smart Contract Introduction[24].

• In green is the VM execution engine, equivalent to a CPU. It executes common
instructions (flow control, stack operations, bit operations, arithmetic operations,
logical operations, cryptographic methods, and others) and interacts with the inter-
operable service layer (in blue).

• In grey, the evaluation stack, which is equivalent to the memory.

12

State of the art

• In blue, the interoperable service layer of the virtual machine, which provides some
Application Programming Interfaces (APIs) that enable the smart contract to ac-
cess chain data such as block information, transaction information, smart contract
information, asset information, etc. The interoperable service layer also provides
persistent storage for each contract.

To deploy a smart contract to the network, the developer must pay a deployment fee[24],
which serves as a payment for the resources of the network. At the time of the writing,
this fee was of 500 NeoGas (or GAS), which translated to roughly 4,500 euros. Once a
smart contract is deployed, its execution requires the payment of additional fees, which
depend on the number and type of operations executed by the smart contract, with most
of these operations defaulting to a fee of 0.001 NeoGas. However, the first 10 NeoGas of a
smart contract execution or deployment are free, which, for most simple contracts, makes
it that they can be executed for free. If the execution of the smart contract fails due to
lack of NeoGas, the expended NeoGas will not be returned, to prevent malicious attacks
that attempt to deplete network resources. These fees are considered to be service fees and
are put in a pool for redistribution to all NEO holders. This distribution is proportional
to the amount of NEO held by each holder.

2.5 Smart Contract Development Tools

2.5.1 Ganache

Ganache1, formerly known as TestRPC, is an open-source2 Node.js based Ethereum client
that emulates a local Ethereum blockchain for development and testing purposes. It
provides an Remote Procedure Call (RPC) interface, allowing the user to make RPCs to
the local blockchain and inspect blocks and transactions during development, to better
understand how a smart contract deployed on that local network behaves. This tool also
comes with a wallet with ten accounts, each of them having a balance of 100 ether. The
tool comes in two flavours:

• Ganache Application3 - An electron application that provides a fully interactive GUI,
depicted in Figure 2.5.

• Ganache-cli - A Command-Line Interface (CLI)4, which is also included in Truffle
Suite (see section 2.5.2).

2.5.2 Truffle Suite

Truffle5 is a development environment, test framework and asset pipeline for Ethereum. At
the time of the writing of this document Truffle claimed to be the most popular Ethereum
development framework and implemented the following features[5]:

• Integrated smart contract compilation, linking, deployment and binary management.

1http://truffleframework.com/ganache/
2https://github.com/trufflesuite/ganache-core
3https://github.com/trufflesuite/ganache
4https://github.com/trufflesuite/ganache-cli
5http://truffleframework.com

13

http://truffleframework.com/ganache/
https://github.com/trufflesuite/ganache-core
https://github.com/trufflesuite/ganache
https://github.com/trufflesuite/ganache-cli
http://truffleframework.com

Chapter 2

Figure 2.5: Ganache GUI

• Automated contract testing with Mocha (a JavaScript test framework for Node.js
and the browser) and Chai (an assertion library for Node.js and the browser).

• Configurable build pipeline with support for custom build processes.

• Scriptable deployment and migrations framework.

• Network management for deploying to many public and private networks.

• Interactive console for direct contract communication.

• Instant rebuilding of assets during development.

• External script runner that executes scripts within a Truffle environment.

Ganache (see section 2.5.1) is being developed and maintained by Truffle. Truffle is shipped
with the CLI version of Ganache.

2.5.3 Remix IDE

Remix6 is a browser-based compiler and Integrated Development Environment (IDE) for
the Ethereum smart contract programming language Solidity. Remix features an inte-
grated debugger and testing environment. At the date of the writing of this document,
Ethereum developers could use Remix to:

6https://github.com/ethereum/remix-ide

14

https://github.com/ethereum/remix-ide

State of the art

• Develop smart contracts using its integrated Solidity editor, compiler and debugger.

• Access the state and properties of an already deployed smart contract.

• Debug already committed transactions.

• Reduce code bugs by using Remix to statically analyse Solidity code.

• User Remix to unit test a Solidity smart contract.

As seen in Figure 2.6, Remix IDE GUI can be subdivided in four different parts:

Figure 2.6: Remix IDE

1. File Explorer - Allows the user to add, remove or rename Solidity files to be used by
the IDE.

2. Solidity Editor - Displays opened Solidity files, automatically saves code editions,
provides syntax highlighting of Solidity keywords and re-compiles the code everytime
it detects a change in the code.

3. Terminal - It integrates a JavaScript interpreter and the web3 object. It enables the
execution of JavaScript scripts which interact with the current context. It displays
important actions made while interacting with the Remix IDE, such as sending a
transaction. It displays transactions that are mined in the current context[1].

4. Tabs Panel - The tabs panel holds the tools that allows the user to compiler a smart
contract, see the result of the static analysis on the contract, unit test a smart
contract and change different settings in the editor.

2.5.4 NEO GUI Developer

NEO GUI Developer7 is a tool being developed by City of Zion - an independent group of
open source developers formed to support the NEO core and ecosystem (CoZ) and which is

7https://github.com/CityOfZion/neo-gui-developer

15

https://github.com/CityOfZion/neo-gui-developer

Chapter 2

built on top of NEO GUI - the official NEO client and wallet. It includes all the features
of the official NEO GUI, such as deploying smart contracts and creating NEO wallets,
while also adding some useful features for developers. Like the original NEO GUI it also
works as a full node of the network, acting both as a client and as a server. At the time
of the writing of this document, it included the following features[16]:

• Event log - The tool features a tab on the GUI which displays all the logs created by
any smart contract in the network calling Runtime.Log() and Runtime.Notify().
Along with the log message, it shows the local time when the event is received, the
current block height, event type and the script hash.

• Smart contract return - This feature allows the user to verify the CheckWitness()

operation during test invocations by displaying a message pop-up. It also pop-ups
a dialogue with the result of a smart contract test invocation.

• Smart contract monitor - After being deployed or looked up, the smart contract
script is added to a watch list and its status (successfully deployed or unavailable),
script info and script hash are displayed in an information box.

• Add parameters to smart contract invocation - This feature allows the user to build
an array of objects in the GUI with the arguments to be passed during a con-
tract invocation. The tool currently supports Array, ByteArray, Integer, Hash160,
Hash256, PublicKey and Signature types, which can be added by selecting them
from a drop-down list.

• Simple field validation - Parameters that were set as required when the contract
was deployed are marked as required when the user tries to test invoke a contract.
Hash160, Hash256 and PublicKey fields are also validated.

Although it provides some useful features, this tool suffers from the same compatibility
issues as NEO GUI, being compatible only with Windows 7 (Service Pack 1), Windows 8
and Windows 10. It also has a very minimalist and poor design, as seen in Figure 2.7 and
lacks documentation.

Figure 2.7: Neo GUI Developer - Smart contract test invocation (taken, with authoriza-
tion, from CoZ Youtube channel)

16

State of the art

2.5.5 NEO Debugger Tools

NEO Debugger Tools 8 is a set of tools which aim to help on the development of NEO
smart contracts. They were first created by a Portuguese developer, Sérgio Flores, also
known as Relfos in the CoZ community, and were later adopted by CoZ. This tool suite
consists of a CLI disassembler and a GUI debugger. At the time of the writing of this
document, it implemented the following features:

• Support of any NEO .avm (NEO VM bytecode) code, regardless of the language or
compiler used.

• Source viewer with syntax highlight, as seen in Figure 2.8.

• Contract debugging with run, step and set breakpoints options, as seen in Figure
2.9.

• Toggling between source code and VM instructions, as seen in Figure 2.10.

• Test invocation result and GAS usage.

Figure 2.8: Neo Debugger - Debugging a NEO smart contract. Taken, with consent, from
Nikolaj-K youtube channel https://www.youtube.com/watch?v=KnPHIaEsgtA.

8https://github.com/CityOfZion/neo-debugger-tools

17

https://www.youtube.com/watch?v=KnPHIaEsgtA
https://github.com/CityOfZion/neo-debugger-tools

Chapter 2

Figure 2.9: Neo Debugger - Inserting breakpoints. Taken, with consent, from Nikolaj-K
youtube channel https://www.youtube.com/watch?v=KnPHIaEsgtA.

Figure 2.10: Neo Debugger - VM instructions. Taken, with consent, from Nikolaj-K
youtube channel https://www.youtube.com/watch?v=KnPHIaEsgtA.

18

https://www.youtube.com/watch?v=KnPHIaEsgtA
https://www.youtube.com/watch?v=KnPHIaEsgtA

State of the art

However, this suit has some limitations, as recognised by its creator in his documentation
(available on the tool Github repository). For now, although supporting any NEO .avm

code, it only works when a .neomap file is generated by the compiler in order to map
source code lines with the correspondent .avm code. Smart contract source code is also
limited to a single file, and it’s not yet possible to inspect variable values. Also, some
NEO syscalls and API calls are not supported yet. Similarly to NEO GUI Developer, it
also only compatible with Windows Operating System (OS).

2.5.6 NeoCompiler Eco

NeoCompiler Eco9 is an open-source Web and Android NEO smart contract development
ecosystem. NeoCompiler aims to provide a didactic and straightforward interface, in order
to make the tool usable not only by advanced developers but also by beginners and regular
users. Similarly to Ethereum Remix IDE (see section 2.5.3) it also alleviates the user of
the burden of setting up a development environment, providing the user with a ready to
use compiler and with a NEO private net running on the back-end to where the user can
deploy his contracts.

Figure 2.11: NeoCompiler Eco - Ilustration of the Web tool compiler.

Currently, this tool presents the following features:

• C#, Python, Java and Go code compilation to AVM and ABI code, which is done
in a back-end server (as seen in Figure 2.11).

• Smart contract deployment to a private network running on a back-end server and
test-invocation of smart contracts deployed on that private network (as seen in Figure
2.12).

• Different wallets provided for testing purposes, containing generous amounts of NEO
and GAS to be used in the private network (depicted in Figure 2.13).

• Multiple utilities for interacting with smart contracts with the NEO blockchain.

9https://github.com/NeoResearch/neocompiler-eco

19

Chapter 2

Figure 2.12: NeoCompiler Eco - Ilustration of the Web tool deployment and test environ-
ment.

Figure 2.13: NeoCompiler Eco - Ilustration of the Web tool wallets page.

2.5.7 NEO WebDebugger

NEO WebDebugger10 is a planned port of NEO Debugger Tools (see section 2.5.5) for
the Web. However, at the time of the writing of this document, this tool was still in
development.

10https://github.com/CityOfZion/neo-debugger-tools/tree/master/NEO-WebDebugger

20

https://github.com/CityOfZion/neo-debugger-tools/tree/master/NEO-WebDebugger

State of the art

2.5.8 Conclusion

Comparing the studied tools by observing Table 2.1, a rift between the state of the
Ethereum development tools and the NEO development tools can be observed, with
Ethereum development tools being more powerful and implementing more features.

Provides
Private
Network

Needs Local
Node Sync

Contract
Deployment

Test
Wallets

Invoke Testing
Code
Editor

Static
Analysis

Debugger GUI
Block
Explorer

OS
Dependent

Ganache Yes Yes No Yes No No No - No Yes Yes No

Truffle Yes∗ Yes Yes Yes∗ Yes Yes No - No No No No

Remix Yes∗∗ Yes∗∗ Yes Yes Yes Yes Yes Yes Yes∗∗∗ Yes No No

NeoGuiDev No Yes Yes No Yes No No - No Yes No Yes

NeoDebugger No No No No Yes No No - Yes Yes No Yes

NeoCompiler Yes No Yes Yes Yes No Yes No No Yes Yes∗∗∗∗ No
∗ Provided by Ganache-cli
∗∗ The user can either run on client-side simulated blockchain or provide its own private network
∗∗∗ The debugger can only be used in already existing and commited transactions
∗∗∗∗ Implements NEOSCAN, an open-source blockchain explorer

Table 2.1: Comparison between the different development tools - Neo Web Debugger was
excluded as it’s still in development

It can be seen that while Truflle and Remix implement smart contract testing, there is not
any existing tool that does so for the NEO blockchain. Also, while all of the Ethereum tools
can run in any common OS, the same does not happen with its counterpart tools, where
only the NeoCompiler tool is OS agnostic. Finally, it is also noted that NeoCompiler,
the NEO development tool that includes more features, differs from Remix, its Ethereum
counterpart, for lacking features such as smart contract testing, debugging and static
analysis of code.

This difference between the state of these blockchain tools can be explained by the broader
adoption of the Ethereum community, which translates in more developers using Etherium,
and as such, on companies and developers in investing in the development and maintenance
of these tools.

2.6 Software Testing

”The Art of Software Testing” describes software testing as ”a process, or a series of
processes, designed to make sure computer code does what it was designed to do and,
conversely, that it does not do anything unintended”[30]. Software testing is, as such,
essential to guarantee the predictability and consistency of software[30]. If consistency and
predictability are valuable properties in simple applications, where software malfunctioning
translates into a mild nuisance to the end-user, they are of the utmost importance when
developing more serious applications, such as a smart contract that manages user’s assets.

2.6.1 Unit Testing

In unit testing, software is assessed in regard to its implementation[33]. Ian Sommerville,
in ”Software Engineering”, defines unit testing as ”the process of testing program com-
ponents, such as methods or object classes”[37]. As such, when unit testing, the devel-
oper should attempt to test the software implementation by testing the individual sub-
programs, classes and procedures of the program, focusing on the building blocks of the
program rather than focusing on the program as a whole[30].

21

Chapter 2

2.6.2 Test Case

The ”IEEE Standard for System, Software, and Hardware Verification and Validation”
defines a test case as:

• (A) ”A set of test inputs, execution conditions, and expected results developed for
a particular objective, such as to exercise a particular program path or to verify
compliance with a specific requirement”[2].

• (B) ”Documentation specifying inputs, predicted results, and a set of execution
conditions for a test item”[2].

To design test cases for unit testing, two types of information are required: the specification
of the module to test and its source code[30]. With the module specification, the tester
is able to define the module’s input and output parameters, as well as its function in the
program[30].

A test case should consist, as such, of a description of the input data for the module to be
tested and of a precise description of the correct output for that set of input data[30][33].

A collection of test cases is called a test suite, or test set.

2.6.3 Test Automation

Unit testing should be automated whenever possible[37], as it brings clear benefits such as
making it easier to run existing (regression) tests on a new version of the program, enabling
the tester to run more tests more often and increase test repeatability and consistency[19].

An automated test should be comprised of three parts[37]:

1. A setup part, where the system is initialised with the test case, namely, the expected
inputs and outputs;

2. A call part, where the method to be tested is called;

3. An assertion part, where the expected outputs are compared with the result of the
call;

2.6.4 Test Automation Framework

”Introduction to Software Testing” defines a test framework as ”a set of assumptions, con-
cepts, and tools that support test automation”[33]. A test framework should provide[37]:

• The ability to evaluate expected test results through assertions;

• The ability to share common test data between tests

• The ability to organise tests in suites and run multiple test cases;

• The ability to run tests either from a GUI or a CLI;

22

Chapter 3

Project Management

3.1 Risk Management

Due to the novelty and constant change of the Blockchain technology, and NEO, in par-
ticular, risk management is of the utmost importance in this project.

Risk management is a process that involves anticipating risks that might affect the quality
of the software being developed or the project schedule, and then taking action to avoid
these risks[22][32]. This is an iterative process that should be addressed during all the
stages of the project and, according to Sommerville[37], should be comprised of four phases:

1. Risk identification - where the risks that pose the biggest threats to the project or
the product should be identified;

2. Risk analysis - where an estimate of the probability and seriousness of the risk should
be assessed;

3. Risk planning - where plans are made to address the risk either by avoiding it or by
minimising its effects on the project;

4. Risk monitoring - where risk assessment and mitigation plans should be revised
whenever there is more information on the risk;

In the next tables, project risks were identified. An analysis of each risk was conducted,
classifying the probability of the risk as insignificant, low, moderate, high, or very high.
The effects of each risk were also assessed and classified as catastrophic (threaten the
survival of the project), serious (would cause major delays), tolerable (delays are within
allowed contingency), or insignificant.

23

Chapter 3

Risk1 - Changes in Underlying Technology

Description Changes on underlying technology such as smart contract compilers,
SDKs or nodes may cause dependency issues and software crashes

Probability High

Effects Serious

Affects Project Schedule, Performance of the Software

Removable No

Mitigation Plan A modular software architecture should be planned for the project,
making it easier to update or remove deprecated modules.

Table 3.1: Risk1 - Changes in Underlying Technology

Risk2 - A Competitor Tool is Launched

Description A competitor tool, which offers a similar value proposition and fea-
tures is announced, or launched, before the system is completed

Probability Moderate

Effects Tolerable

Affects Business, Project Schedule

Removable No

Mitigation Plan The implementation of new features can be studied in order for the
tool to offer a better value proposition than the competitor tool.

Table 3.2: Risk2 - A Competitor Tool is Launched

Risk3 - Unfamiliarity with the required technologies

Description The developer unfamiliarity with the required technologies (Angular,
Node and Docker) can make development take longer than expected.

Probability Moderate

Effects Tolerable

Affects Project Schedule

Removable No

Mitigation Plan An assessment of the state of the development should be done each
week to detect possible delays in the project schedule. In the event
that these delays are inevitable, the less important functional require-
ments should be left to the end. To do so, a MoScoW analysis of the
requirements should be done in order to prioritise these requirements.

Table 3.3: Risk3 - Unfamiliarity with the required technologies

3.1.1 Risk Monitoring

Risk monitoring was required in order to keep the different risks described in the Risk
Management subsection (see 3.1) under control.

To guarantee that the identified risks were under control and the correspondent risk mit-
igation plans were being followed, as well as to give advice on how to better manage his
time and his project, the intern and his advisor from Whitesmith had weekly meetings
where project status and concerns were discussed. The intern was also advised to take
some time each day to reflect on the latest day of work and to plan his day accordingly.

24

Project Management

The intern was also encouraged to contact his company advisor and coworkers whenever
needed.

3.2 Development Methodology

NEO is a new platform which is still in development and evolving fast. It was then
essential to choose a development methodology that not only fitted with the company’s
development style, but that could also adapt to the fast pace of changes that happen on
the NEO platform. It was also crucial for this methodology to be able to adapt to the
mitigation plans chosen to address the risks identified in the previous section (see section
3.1).

The Kanban[3], an agile and lean methodology was then chosen, which is suited for indi-
viduals and small teams of developers. Kanban allows for changes in requirements at any
time during the project, for short cycle times and fast delivery of features, which results
in more frequent feedback. In Kanban, work items are represented visually on a Kanban
board, allowing team members and stakeholders to check its state at any given time, with
each piece of work represented as a separate card on the board.

3.3 Project Management Tools

In this section, the tools used in the management of the project are presented.

3.3.1 Trello

Trello was used as a Kanban board and project management tool in the project. Trello
is a cloud-based tool that enables project managers and developers to manage teams and
projects[26].

Trello allows users to organise projects into Trello boards. In a Trello board, users can
create tasks, which represent a small body of work. Users can be assigned to tasks and
tasks can hold text, lists, to-do items, images, links, pdf files and commentaries.

In this project, each task represented a different User Story and was labelled according
to the Epic they belonged to (see section 4.4). Tasks were then given a name, which was
preceded by its User Story ID and then split into lists.

Lists are used to create a workflow where cards are moved according to its progress,
creating a Kanban board. In this project, the described lists were used, creating the
following task life cycle:

• Backlog - This list held tasks that were waiting to be picked by a developer. When
a developer picked a task from this list, he would assign himself to the task. Project
managers could also assign developers to a task;

• Blocked - This list held tasks that, for some reason, were blocked. Only tasks that
already started development could be moved to this list. Tasks could be blocked, for
instance, if they needed other tasks to be completed in order to resume development;

• In Development - This list held tasks that were under development. Ideally, only
one team member could have owned a task in this list at a time;

25

Chapter 3

• Waiting for Code Review - This list held tasks that had already undergone develop-
ment but were waiting for its code to be reviewed;

• In Code Review - This list held tasks that were undergoing code review. Only one
task should be picked at a time for review by a developer. If a task failed in code
review, it would then be moved to the backlog with its original developer assigned to
it. Blocksmith developers were responsible for code reviewing the completed tasks;

• Ready to Deploy - This list held tasks that passed code review and were ready to
be deployed in a new release;

• Done - This list held tasks that were already released and, as such, concluded the
development cycle;

3.3.2 Github

Github offers remote web hosting of Git Version Control System (VCS) repositories, pro-
viding all of Git features and adding its own tools on top of them, such as the ability to
clone or fork existing open-source repositories, do code reviews and more[29].

Github was used for version control, with the usage of two Git repositories. One for the
development of the NEO Node Listener and one containing a fork of the NeoCompiler Eco
open-source repository, used for the development of the test automation tools on top of
this project. During development different branches were created in each repository for
each functionality implemented, with a pull request and corresponding code review being
made for each release.

Github issue tracker was also used, which allows users to create and catalogue a new issue
if a bug is found on the current version of the project.

3.4 Planning

3.4.1 First Semester

To guarantee that the internship goals were possible to accomplish, the first semester
was spent studying the state of the art, gathering the relevant requirements, developing
a software architecture for the proposed solution and planning the second semester of the
internship, dedicated to the development of the proposed solution.

As the NEO platform is still immature in terms of tools and documentation, an experiment
was also conducted on the first semester in order to assess whether it would be possible to
listen to events thrown by smart contracts in this platform network, as this functionality
would be used as the core of the tool to be developed for the internship. To attempt to
do so, an event listener based on the NEO Python1 node client was developed, with which
it was possible to access every event thrown by a smart contract running in the network
that the client was listening to. The intern, with the help of one of the company’s devel-
opers, also developed a simple python web application using the Django framework and a
PostgreSQL database, which allowed users to register a smart contract to be listened to
and an endpoint to be called whenever that smart contract threw an event. To call the

1https://github.com/CityOfZion/neo-python

26

https://github.com/CityOfZion/neo-python

Project Management

endpoint, a queue and worker system, similar to the one depicted in the components dia-
gram of the architecture section (see Figure 5.4), was used, implemented using Celery2, an
asynchronous task queue/job queue based on distributed message passing and Redis3, an
in-memory data structure store, as a message broker. The front-end application is depicted
in Figure 3.1, whereas an endpoint, simulated by using python SimpleHTTPServer4, can
be seen being called in Figure 3.2 whenever events from the followed contract were listened
(Figure 3.3).

Figure 3.1: The front-end application, where the user can input an endpoint to be called
whenever an even from a given small contract is listened.

It was thus concluded that the internship goals were possible to be accomplished and that
the development of the tool could be started by the intern in the second semester of the
internship.

3.4.2 Second Semester

Planning flexibility is one of the features of the Kanban methodology. However, in order
to track the progress of the internship and to ensure that the project and the required
report are delivered on time, a Gantt diagram was built and was used to track the progress
of the project, divided into milestones. This diagram can be consulted in Appendix B.
The overall schedule of the second semester is also depicted in Figure 3.4.

2https://celeryproject.org
3https://redis.io
4https://docs.python.org/2/library/simplehttpserver.html

27

https://celeryproject.org
https://redis.io
https://docs.python.org/2/library/simplehttpserver.html

Chapter 3

Figure 3.2: The endpoint being called whenever the selected contract broadcasted an
event. The requests are being made to a SimpleHTTPServer which was not prepared to
handle them.

Figure 3.3: The custom event listener connecting to the blockchain and starting listening
to events.

28

Figure 3.4: The overall planning of the second semester.

Chapter 4

Requirement Specification

A system’s requirements document describes the services provided by the system, as well as
the constraints on its operation[37]. In this project, these requirements reflect the needs
of NEO smart contract developers for the proposed solution. This chapter details the
requirements gathered from the stakeholders, as well as the processes followed to obtain
them.

4.1 Stakeholders

Name Description Responsibility

Whitesmith Software consultant and product
studio. Launched the Blocksmith
spinoff and are mentoring the
project. Hired the intern.

Monitoring the project progress.
Funding. Committing the nec-
essary resources to ensure the
project succeeds. Providing assis-
tance to the intern.

Blocksmith Blockchain development studio.
Requested the project.

Ensuring that the project fits
business objectives. Making their
detailed requirements known.
Ensuring project quality.

System Actors NEO blockchain developers who
will be the end-users of the final
product.

None

Table 4.1: Stakeholders summary

4.2 System Actors

In order to clearly define the system’s requirements, it is important to understand who
are the actors in this system. The actors are system stakeholders, as they will be the ones
using the system after its release. Reviewing the intern’s code in code reviews.

31

Chapter 4

4.2.1 Non-Authenticated User

Non-Authenticated User (NAU)

Description A human entity which will have access to a subset of the system func-
tionalities. This entity has not yet authenticated itself in the system,
but may, or may not, already have a registered account.

Assumptions It is assumed that this entity is a NEO smart contract developer, and
that, as such, has at least a basic knowledge of how to interact with a
web system and perform actions such as creating an account and logging
in. It is also assumed that this entity has at least a basic understanding
of the NEO blockchain and of smart contract development.

Expectations It is expected that this entity will use the application to attempt to
deploy and test a smart contract. It is expected that this entity will
register an account and turn into an Authenticated User, in order to
have access to extended functionalities.

Table 4.2: System actor - Non-Authenticated User (NAU)

4.2.2 Authenticated User

Authenticated User (AU)

Description A human entity with a registered account in the system and which has
logged-in in the system, authenticating itself. This entity will have ac-
cess to extended functionalities, such as saving a test suit in the system.

Assumptions As with NAUs, it is assumed that this entity is a NEO smart contract
developer, and that, as such, has at least a basic knowledge of how
to interact with a web system and a basic understanding of the NEO
blockchain and of smart contract development.

Expectations It is expected that this entity will use the application to deploy and test
smart contracts. It is also expected that this entity will be able to save
its progress by saving current test cases and test suites in the system.

Table 4.3: System actor - Authenticated User (AU)

4.3 Requirements Gathering

In order to understand the needs and difficulties of smart contract developers, and also to
validate the need for this tool, a survey was made and distributed to Blocksmith blockchain
developers, as well as circulated in a NEO CoZ discussion channel. The survey, which can
be seen in Appendix A, only aimed to collect answers from smart contract developers,
regardless of the platform where these contracts were run, and was answered by 19 devel-
opers.

This survey revealed that, although most developers were successful in developing a smart
contract, they faced difficulties which seem to be a direct consequence of the lack of
maturity of the technology and its development tools. The main difficulties identified by
these developers were:

• Lack of documentation, with most tutorials on contract development scattered along
random blog posts;

32

Requirement Specification

• Deprecated documentation as blockchain platforms and SDKs keep evolving at a
fast pace;

• Lack of debugging tools;

• Lack of tools to deploy and test contracts;

• Difficulty in installing a development environment;

These developers were also asked for their feedback on what made them succeed in de-
veloping their contracts, with many of them stating that the support of the development
community was one of the key reasons why they were able to succeed, as well as tools and
tutorials that were written by members of this community.

To further understand the needs of a smart contract developer, the intern was involved in
a project with other members of Blocksmith, which aimed to create a DApp to enter the
NEO DApps competition[28]. This DApp consisted of a decentralised curriculum network,
where a user could see its curriculum validated by an entity, and was called NEO Vitae.
This DApp ended up being one of the honourable mentions, winning an Award of Merit
prize which amounted to 500 NeoGas (worth roughly 13,000 euros at the time of the
competition)[15].

Finally, a study of the current state of the art of NEO and Ethereum smart contract
development tools was done, which aimed not only to understand the shortcomings of
these tools but also to identify any open-source tools with interesting functionalities. This
study of the state of the art was previously presented in this report (see section 2.5).

4.4 Functional Requirements

In this section, the system’s functional requirements are described through user stories.
User stories are often used in Agile software development to capture a description of
a software feature from the end-user perspective, with each user story describing the
actors for which they apply as well as what they want from the system and why. User
stories can be added or removed during the development phase to better adapt to the
proposed solution or to increase or decrease the solution complexity. To easily understand
where each story fits in the system, stories are assigned to larger bodies of work, called
”Epics”[35]. The epics to be implemented in the solution are:

• Landing page - This epic is concerned with the first contact the user has with the
application;

• Authentication - Stories that deal with user authentication should be included in
this epic;

• Private Network - All the stories that are concerned with functionalities that include
the interaction of the user with the private network should be included in this epic;

• Testing - All of the stories related to smart contract testing should belong to this
epic;

To prioritise user stories inside each epic, the MoSCoW technique was used, which gives
each user story one of four possible classifications[23]:

33

Chapter 4

• Must Have: These features are indispensable for the functionality of the system
and for the required objectives to be achieved in the given timebox. Without these
features, the system will not be an adequate solution.

• Should Have: These features can be as important as the ”Must Have” features,
but are not critical for this timebox. These are features that will eventually be on
the solution but are not guaranteed to be delivered in the first iteration.

• Could Have: These are desired features that will be included in the solution if
time and resources will permit it. They usually represent features that usually will
increase user experience for little development cost.

• Won’t Have: These features were agreed by the stakeholders not to be critical.
These are features that will not be included in a first delivery, but that can be
included in a later version of the product.

ID Actor(s) Description Depends on MoSCoW

US1
AU
AUG
NAU

As a user, I want to be able to visit a
landing page so that I can learn more
about the features provided by the ap-
plication

Must Have

US2
AU
AUG
NAU

As a user, I want to be able to eas-
ily access an authentication form from
the landing page, so I can create a new
account or login with an existing ac-
count

US1 Must Have

Table 4.4: User Stories - Landing Page

34

Requirement Specification

ID Actor(s) Description Depends on MoSCoW

US3 NAU As a user, I want to be able to cre-
ate an account using my email and
a password as credentials, so that I
can access extra system features

US2 Must Have

US4 NAU As a non-authenticated user, I want
to be able to login into my account
so that I can authenticate myself and
save data under my account

US2, US3 Must Have

US5
AU
AUG

As an authenticated user, I want to
be able to delete my account, so that
I remove all of my information from
the system

US3 Should Have

US6 AU As an authenticated user, I want to
be able to confirm my email so that
I can prove that I own my email and
receive notifications from the system

US3 Could Have

US7 AU As an authenticated user, I want to
be able to reset my password so that
I can change it for security reasons

US3 Could Have

US8 NAU As a non-authenticated user, I want
to be able to authenticate myself us-
ing my Github credentials so that I
can log in using my Github creden-
tials and use the Github integration

Won’t have

US9 AU As an authenticated user, I want to
be able to link my Github account to
my already existing account so that
I can log in with them and use the
Github integration

US3, US8 Won’t Have

Table 4.5: User Stories - Authentication

35

Chapter 4

ID Actor(s) Description Depends on MoSCoW

US10
AU
AUG
NAU

As a user, I want to be able to de-
ploy my NEO smart contract code
to a private network provided by
the website, so that I don’t have to
set up my own private network

Must Have

US11
AU
AUG
NAU

As a user, I want to be able to make
JSON RPCs to the private network
so that I can use blockchain func-
tionalities such as smart contract
invocation

US10 Should Have

US12
AU
AUG
NAU

As a user, I want to have an online
editor so that I can create or update
my smart contract code

Should Have

US13
AU
AUG
NAU

As a user, I want to be able to
compile my smart contract to NEO
AVM code

US12 Should Have

US14
AU
AUG
NAU

As a user, I want to be able to be
able to use all of the tool function-
alities on the official test network,
so I can test my smart contracts on
a bigger network

US10 Won’t Have

Table 4.6: User Stories - Private Network

ID Actor(s) Description Depends on MoSCoW

US15
AU
AUG
NAU

As a user, I want to be able to create
a test case, so that I can use it to test
my smart contract

Must Have

US16
AU
AUG
NAU

As a user I want to be able to set the
test input on my test case, so I can
test specific methods of my smart
contract

US15 Must Have

US17
AU
AUG
NAU

As a user, I want to be able to define
the expected output of my test case,
so that the tool can evaluate if my
smart contract passed the test case.

US15, US16 Must Have

Table 4.7: User Stories - Testing (1)

36

Requirement Specification

ID Actor(s) Description Depends on MoSCoW

US18
AU
AUG
NAU

As a user, I want to be able to
run a test case so that I can unit
test my smart contract

US10, US15 Must Have

US19
AU
AUG
NAU

As a user, I want to be able to
see a detailed result of the test
case so that I can understand
why is my smart contract pass-
ing or failing a test

US15 Must Have

US20
AU
AUG

As an authenticated user, I
want to be able to save a test
case that I created, so that I can
use it later or on another smart
contract

Must Have

US21
AU
AUG

As an authenticated user, I
want to be able to set a name
and a description for my saved
test cases so that they are easier
to manage

US20 Must Have

US22
AU
AUG

As an authenticated user, I
want to be able to edit a test
case that I saved, so that I can
update it when needed

US20, US21 Must Have

US23
AU
AUG

As an authenticated user, I
want to be able to delete a test
case that I saved, so that I can
remove it from the system

US20 Must Have

US24
AU
AUG
NAU

As a user, I want to be able to
create a test suite for my smart
contract so that I can test more
than one test case at a time

US15 Must Have

US25
AU
AUG
NAU

As a user, I want to be able to
run a test suite for my smart
contract so that I can run more
than one unit test at a time

US10, US18, US24 Must Have

US26
AU
AUG
NAU

As a user, I want to be able to
see the detailed result of run-
ning a test suite, so I can see in
which cases my smart contract
is passing or failing

US19, US25 Must Have

Table 4.8: User Stories - Testing (2)

37

Chapter 4

ID Actor(s) Description Depends on MoSCoW

US27
AU
AUG

As an authenticated user, I want
to be able to save a test suite that
I created so that I can use it later
or run it on another smart con-
tract

US24 Must Have

US28
AU
AUG

As an authenticated user, I want
to be able set a name and a de-
scription for my saved test suites
so that they are easier to manage.

US27 Must Have

US29
AU
AUG

As an authenticated user, I want
to be able to delete a test suite
that I saved, so that I can remove
it from the system

US27 Must Have

US30
AU
AUG

As an authenticated user, I want
to be able add a saved test case to
a saved test suite, so I can create
new test suites from existing test
cases

US20, US27 Must Have

US31
AU
AUG

As an authenticated user, I want
to be able to remove a test case
from a test suite, so that I can re-
move non necessary test cases

US30 Should Have

US32
AU
AUG
NAU

As a user, I want to be able to
have access to different wallets, so
that I can test my smart contract
with more than one wallet

Could Have

US33 AUG As an authenticated user with a
Github account, I want to be
able to access code from a Github
repository that I have access to, so
that I can retrieve smart contract
code

U8, US9, US12 Won’t Have

US34
AU
AUG
NAU

As a user, I want to be able to set
breakpoints in my smart contract

US12, US13 Won’t Have

Table 4.9: User Stories - Testing (3)

38

Requirement Specification

4.5 Non-Functional Requirements

4.5.1 Technical Constraints

The intern was required to attempt to integrate his solution with NeoCompiler Eco devel-
opment tool:

• NFR1 - The platform must be integrated with the NeoCompiler Eco development
tool.

To make the integration of this solution with the NeoCompiler Eco development tool
easier, the intern must use the same stack of technologies used in that tool. As such,
the frontend client must be developed in Angular.js, whereas the backend server must be
developed in Node.js, using the Express.js framework.

• NFR2 - The frontend client must be developed using Angular.js.

• NFR3 - The back-end server must be developed in Node.js, using the Express.js
framework.

4.5.2 Quality Attributes

Whereas functional requirements define what a system should do, quality attributes define
how the system shall behave at all times. As they define the system behaviour, the system
must be designed around them, and they must be taken into consideration in every step,
from the solution proposal until the delivery of the system.

Security

As every data sent to the blockchain is, by definition, public and accessible to all of the
existent nodes, there are no concerns to be had regarding the possibility of an attacker
gaining access to smart contract code or test cases. However, user personal information,
such as his password, must be kept safe from attackers.

• NFR4 - The application must not keep user passwords in plaintext. Only a hashed
and salted representation of the password can be stored by the application.

Modularity

The lack of maturity but fast pace of the blockchain technology, and NEO in particular,
makes it that new features are added daily to this blockchain and its smart contracts.

• NFR5 - To ensure future compatibility with any changes made to smart contract
properties, this solution must follow a modular design, in order to quickly remove
and update deprecated components.

39

Chapter 4

Compatibility

Being a web application, it is important that the front-end client is compatible with
popular web browsers.

• NFR6 - The front-end desktop client must be compatible with the following desktop
web browsers: Google Chrome (v67.0 or newer), Mozilla Firefox (v61.0 or newer)
and Apple Safari (v11.1.1 or newer).

40

Chapter 5

Architecture

In order to guarantee that both the project’s functional and non-functional requirements
are obeyed, it was essential to define an architecture that addresses them, which is de-
scribed in this chapter. The project’s first technical constraint, NFR1, states that the
tool to be developed had to be integrated with the NeoCompiler Eco, a development tool
for NEO smart contracts that provides the user with a remote private blockchain and the
possibility of deploying and invoking smart contracts.

As NeoCompiler Eco is developed following a micro-services architecture deployed in
Docker containers (as shown in Figure 5.2), the intern planned to use Docker to en-
capsulate the NEO Node Tap component and make it easier to integrate it with the tool.

5.1 Context Diagram

The application System Context Diagram, shown in Figure 5.1, depicts a high-level view
of how the system interacts with the environment.

Figure 5.1: The System Context Diagram, showing the system interactions with the envi-
ronment.

As seen in the diagram, two actors interact with the system. These actors, introduced in
Chapter 4 - Requirements, are the non-authenticated user and the authenticated user.

41

Chapter 5

5.2 Containers Diagram

With the Containers Diagram, it is possible to go down a level of abstraction and see
how different containers inside the system interact between them, how different system
responsibilities are distributed and how the new system is integrated with the existing
NeoCompiler Eco.

In the diagram depicted in Figure 5.2 the following containers are represented:

• Single Page Web Application - Provides all tool features to the users via their web
browsers. Makes requests to the server side application. Uses the Neon.js library
(described in Section 6.4 - Single Page Web Application) to interact with the NEO
blockchain through the NEO Python RPC Node.

• Server-Side Web Application - Delivers and updates all the content present in the
front-end application. Uses the different compilers to compile smart contract code
to machine code. Reads and writes data to the Database container.

• Database - Stores application data such as test cases, test suites and user data.

• NEO Python Compiler - Compiles Smart Contracts written in Python.

• NEO C# Compiler - Compiles Smart Contracts written in C#.

• NEO GO Compiler - Compiles Smart Contracts written in Golang.

• NEO Java Compiler - Compiles Smart Contracts written in Java.

• NEO Python RPC Node - Python based P2P NEO client node that offers a RPC
interface that allows the deployment of NEO smart contracts in the NEO blockchain,
among other operations.

• Database - Stores user authentication data, references to smart contracts, tests, and
test suites.

• NEO Node Tap - NEO node that listens to events in the network and relays them
to the Server-side Web application.

• NEO Blockchain - A container encapsulating a network of four NEO consensus nodes
that validate NEO blockchain data.

The green containers presented in this (Figure 5.2) and in the following diagrams (Figure
5.3 and Figure 5.4), are containers that are already a part of the NeoCompiler Eco system
and which will not need to be altered. Blue containers already exist in the NeoCompiler
Eco system but needed to be altered in order to perform new functionalities. White
containers are containers that do not exist yet and needed to be developed.

42

Architecture

Figure 5.2: The Containers Diagram of the proposed solution.

43

Chapter 5

5.3 Components Diagram

5.3.1 Server Side Web Application

As seen in Figure 5.3, the Server Side Web Application container is composed by three
applications:

• appHttp.js - This application serves the static single page application to the client.
An API that handles all operations concerned with authentication, test cases and
test suites was added to this application, with its implementation being described
in Section 6.3 - Server Side Web Application.

• appCompiler.js - This application receives requests from the Single Page Application
(SPA) with smart contract code to be compiled. It then uses the correspondent NEO
compiler and returns the compiled code to the client.

• appEcoServices.js - This application uses web sockets to provide real-time informa-
tion on the status of the different services, such as the RPC node status and the
number of users active on the platform.

The appHttp.js application is the only one that was changed, as it was the one serving the
single page application to the client. The other two applications are simple applications,
shipped with the NeoCompiler Eco.

5.3.2 NEO Node Tap

The NEO Node Tap components diagram, as shown in Figure 5.4, zooms in on the NEO
Node Tap container and offers a view of the existing components inside it. In this diagram,
it is possible to see how these components relate between them and how they interact with
other containers. In this diagram, the external services and the containers that compile
smart contracts are not presented in order to reduce space.

The following components are present in this diagram:

• NEO Node - A node based on the NEO Python node implementation, which listens
to events broadcasted by smart contracts in the blockchain and puts them in the
Queue A component.

• Queue A - A queue that temporarily stores events received from the NEO Node
component.

• Worker A - A worker that removes an event from the top of the queue A, queries
the database to verify if it belongs to a contract currently being tested and in the
case of a positive answer puts the event in queue B.

• Queue B - A queue that receives events that belong to smart contracts being currently
tested and are waiting to be processed.

• Worker B - A worker that processes and evaluates events from queue B and updates
the correspondent test in the database.

The implementation of the NEO Node Tap is discussed on Section 6.2 - NEO Node Tap.

44

Architecture

Figure 5.3: A lower-level view of the Server Side Web Application, showing their compo-
nents and how they interact with the rest of the system.

45

Chapter 5

Figure 5.4: A lower-level view of Node Tap, showing its components and how they interact
with the rest of the system.

46

Architecture

5.4 Entity Relationship Diagram

To be able to visualise which objects are stored in the database and how they relate
between them, an entity-relationship diagram, depicted in Figure 5.5, was drawn. The
database acts as a bridge between the NEO Node Tap and the Web Application Server, as
the server updates the database with the currently existing test cases as the NEO Node
Tap queries the database to see which events it should update. The following data-model
objects are represented in the diagram:

• User - This object stores data on the users authenticated in the application.

• Test Case - This object holds data of test cases created in the application. Also holds
data on the required inputs necessary to call the smart contract with the required
test input data. If the user chooses to save any test case, the test case is bound to
the user via a foreign key correspondent to the owner ID, forming a one-to-many
relationship, where a user can have many test cases. If the user assigns the test
case to a test suite, the test suite foreign key is saved in the test case, forming a
one-to-many relationship, where a test suite can have multiple test cases.

• Test Suite - It stores test suites data, such as name and description. If a user opts to
save any test suite, the test suite is bound to the user via a foreign key correspondent
to the user ID, forming a one-to-many relationship, where a user can have multiple
test suites.

47

Chapter 5

Figure 5.5: The entity-relationship diagram of the solution.

48

Chapter 6

Implementation

This chapter describes the implementation process of the different components of the
proposed solution and their integration. A shortened project tree, depicting the project
structure and the organisation of the project files and folders, can be consulted in Appendix
C - Project Tree, which can be useful for the reader in the following sections.

As discussed in Section 3.4 - Planning, the first step in the development of the solution
was to create a NEO Node that could listen and relay events emitted by smart contracts
running on the NEO blockchain it was listening to. As such, this module was named NEO
Node Tap, as it acts as a wiretap, and is described in detail in section 6.2 - NEO Node
Tap.

After confirming that listening to Blockchain events in real time was possible, the next step
was to start developing the test harness that enables users to deploy a smart contract on
a private network and unit test it. As shown in the study of the state of the art of smart
contract development tools (section 2.5 - Smart Contract Development Tools), there is
already an open-source tool, NeoCompiler Eco, that offers some of these features for NEO
smart contracts. This tool implements an online smart contract editor, a compiler for the
different NEO smart contract programming languages and the ability for developers to
deploy the compiled smart contract to a private network. So, the intern decided to fork
this existing tool and implement the testing and authentication features on top of it. This
implementation is described in section 6.3 - Server Side Web Application and in section
6.4 - Single Page Web Application.

6.1 Database

In order to store and relate user and test data, PostgreSQL1, an open-source relational
database, was used. PostgreSQL was chosen, not only for being a relational database but
also for being an ACID-compliant and transactional database, as access to the database
happens concurrently between the NEO Node Tap and the backend API, with a reasonable
possibility of attempts to update the same entry on the database being made at the same
time.

An entity-relationship (ER) diagram of the database can be seen in Figure 5.5 of section
5.4 - Entity Relationship Diagram, visually representing how the different models relate
between themselves.

1https://www.postgresql.org/

49

https://www.postgresql.org/

Chapter 6

6.2 NEO Node Tap

NEO Node Tap is a simplified version of a full NEO-Python node that connects to a
NEO blockchain network and to the application database. This module was developed in
Python 3.6, and uses the following dependencies:

• Pip2, a Python package manager;

• Virtualenv3, that enables the creation of isolated Python environments;

• Neo-Python4, the original NEO-Python SDK and full-node;

• Celery5, a distributed task queue that asynchronously processes tasks, and which in
this application uses Redis as a message broker;

• Redis6, a key-value in-memory database;

• SQLAlchemy7, a Python Object Relational Mapper (ORM).

A diagram of the NEO Node Tap flow can be seen in Figure 6.1.

Figure 6.1: Flow diagram of the NEO Node Tap.

When a new block is added to the blockchain, the node runs the smart contract transac-
tions contained on the block and listens for events emitted during this execution. If an
event is captured, it is then passed to a celery task that handles it. The task queries the

2https://github.com/pypa/pip
3https://github.com/pypa/virtualenv/
4https://github.com/CityOfZion/neo-python
5https://github.com/celery/celery/
6https://github.com/antirez/redis
7https://github.com/sqlalchemy/sqlalchemy

50

https://github.com/pypa/pip
https://github.com/pypa/virtualenv/
https://github.com/CityOfZion/neo-python
https://github.com/celery/celery/
https://github.com/antirez/redis
https://github.com/sqlalchemy/sqlalchemy

Implementation

database for any test case that might be related to that event transaction. If no relevant
test case is found, the task discards the event. However, if a test case is found, the event
is sent to other task, along with the relevant test case ID, which then evaluates the test
case by comparing the listened event with the expected test case output, saving on the
database the outcome of the test case as well as data related with the listened event.

The smart contract events mentioned in this report are instances of the SmartContractEvent
object and occur when the node is processing blockchain blocks8.

6.2.1 Event Listening

Event listening is started by running the runnode.py Python script on the neo_node_tap

folder (see Appendix C - Project Tree). As seen in Listing 6.1, the script starts by loading
the private network settings, setting up the blockchain database (the LevelDB database)
and then starts a new node (see the code in Listing 6.1 from line 1 to line 9).

1 def main (** options):

2 settings.setup_privnet ()

3
4 # Setup the blockchain

5 blockchain = LevelDBBlockchain(settings.chain_leveldb_path)

6 Blockchain.RegisterBlockchain(blockchain)

7 dbloop = task.LoopingCall(Blockchain.Default ().PersistBlocks)

8 dbloop.start (.1)

9 NodeLeader.Instance ().Start()

10
11 # Setup Notifications Database

12 NotificationDB.instance ().start ()

13
14 # Disable smart contract events for external smart contracts

15 settings.set_log_smart_contract_events(False)

16
17 # Start a thread with custom code

18 d = threading.Thread(target=custom_background_code)

19 d.setDaemon(True) # daemonizing the thread will kill it when the main

thread is quit

20 d.start()

21
22 # Run all the things (blocking call)

23 logger.info("Everything setup and running. Waiting for events ...")

24 reactor.run()

25 logger.info("Shutting down.")

26 logger.info("Closing databases ...")

27 NotificationDB.close ()

28 Blockchain.Default ().Dispose ()

29 NodeLeader.Instance ().Shutdown ()

30
31
32 if __name__ == "__main__":

33 main()

Listing 6.1: runnode.py - Setting the blockchain and running a blockchain node

After starting the blockchain node, a thread is launched (see line 18 in Listing 6.1) that
monitors and logs the state of the node. This thread is also responsible for restarting the
node if the node seems to be stuck on a block. This was a recurring problem in older
versions of NEO-Python. The code run by this thread can be seen in Listing 6.2.

8https://neo-python.readthedocs.io/en/latest/neo/SmartContract/smartcontracts.html#

event-types

51

https://neo-python.readthedocs.io/en/latest/neo/SmartContract/smartcontracts.html##event-types
https://neo-python.readthedocs.io/en/latest/neo/SmartContract/smartcontracts.html##event-types

Chapter 6

1 def custom_background_code ():

2 """ Custom code run in a background thread. Prints the current block

height.

3 Raises an exception every 5 minutes the block count is blocked and

restarts the node

4 """

5 if settings.is_mainnet:

6 network = ’Mainnet ’

7 elif settings.is_testnet:

8 network = ’Testnet ’

9 else:

10 network = ’Privnet ’

11 counter = 0

12 previous_block_count = 0

13
14 while True:

15 try:

16 logger.info(f"Block {str(Blockchain.Default ().Height)} / {str(

Blockchain.Default ().HeaderHeight)}")

17 logger.info(f"Connected to {len(NodeLeader.Instance ().Peers)}

peers.")

18 for peer in NodeLeader.Instance ().Peers:

19 logger.info(peer.Address)

20 logger.info("\n")

21 if previous_block_count == Blockchain.Default ().Height:

22 counter += 1

23 if counter % 5 == 0:

24 error = ’{} Node is blocking ’.format(network)

25 message = ’Node is blocking at block: {}. Connected

peers: {}. Attempting restart.’

26 message = message.format(Blockchain.Default ().Height ,

len(NodeLeader.Instance ().Peers))

27 raise NodeBlockingException(error , message)

28 else:

29 previous_block_count = Blockchain.Default ().Height

30 counter = 0

31 except Exception as e:

32 logger.warning(e)

33 NodeLeader.Instance ().Shutdown ()

34 NodeLeader.Instance ().Start()

35 counter = 0

36 sleep (60)

Listing 6.2: runnode.py - Code that monitors and handles the node state

The code in Listing 6.3 shows how new events occurring on a block are delivered to the
Celery workers. The call_on_event() function receives the new event and creates a
new dictionary data type to hold the smart contract event, as data passed to Celery
workers needs to be serializable, and the original SmartContractEvent data type is not
serializable.

1 from logzero import logger

2 from neo.Core.Blockchain import Blockchain

3 from neo.EventHub import events , SmartContractEvent

4 from neo.Implementations.Blockchains.LevelDB.LevelDBBlockchain import

LevelDBBlockchain

5 from neo.Implementations.Notifications.LevelDB.NotificationDB import

NotificationDB

6 from neo.Network.NodeLeader import NodeLeader

7 from neo.Settings import settings

8 from twisted.internet import reactor , task

9
10 from exceptions import NodeBlockingException

52

Implementation

11 from tasks import handle_event

12 from tasks import app as celery_app

13
14 __all__ = (’celery_app ’,)

15
16 @events.on(SmartContractEvent.RUNTIME_NOTIFY)

17 @events.on(SmartContractEvent.RUNTIME_LOG)

18 @events.on(SmartContractEvent.EXECUTION_SUCCESS)

19 @events.on(SmartContractEvent.EXECUTION_FAIL)

20 @events.on(SmartContractEvent.EXECUTION_INVOKE)

21 @events.on(SmartContractEvent.VERIFICATION_FAIL)

22 @events.on(SmartContractEvent.VERIFICATION_SUCCESS)

23 @events.on(SmartContractEvent.STORAGE_DELETE)

24 @events.on(SmartContractEvent.STORAGE_GET)

25 @events.on(SmartContractEvent.STORAGE_PUT)

26 @events.on(SmartContractEvent.CONTRACT_CREATED)

27 @events.on(SmartContractEvent.CONTRACT_DESTROY)

28 @events.on(SmartContractEvent.CONTRACT_MIGRATED)

29 def call_on_event(sc_event):

30 """ Is called whenever an event occurs and puts event into queue.

31
32 Event types can be found at:

33 https ://neo -python.readthedocs.io/en/latest/neo/SmartContract/

smartcontracts.html#event -types

34 """

35 if settings.is_mainnet:

36 network = ’mainnet ’

37 elif settings.is_testnet:

38 network = ’testnet ’

39 else:

40 network = ’privnet ’

41
42 try:

43 event_data = {

44 ’event_type ’: sc_event.event_type ,

45 ’contract_hash ’: str(sc_event.contract_hash),

46 ’tx_hash ’: str(sc_event.tx_hash),

47 ’block_number ’: sc_event.block_number ,

48 ’event_payload ’: sc_event.event_payload.ToJson (),

49 ’execution_success ’: sc_event.execution_success ,

50 ’test_mode ’: sc_event.test_mode ,

51 ’extra ’: {’network ’: network}

52 }

53 logger.info(event_data)

54 handle_event.delay(event_data)

55 except Exception as e:

56 logger.warning(e)

Listing 6.3: runnode.py - Sending the smart contract event to Celery

6.2.2 Models

To be able to fetch and edit test cases from the database, a database connection, and a
test case model, both handled by the SQLAlchemy ORM, were defined, as seen in Listing
6.4.

1 from sqlalchemy import create_engine , Column , String , Integer , Sequence ,

Boolean , DateTime

2 from sqlalchemy_utils.types.choice import ChoiceType

3 from sqlalchemy.ext.declarative import declarative_base

4 from sqlalchemy.orm import sessionmaker

53

Chapter 6

5
6 from settings import database_url

7 from datetime import datetime

8
9 Base = declarative_base ()

10
11
12 class TestCase(Base):

13 DATA_TYPES = [

14 (’Signature ’, ’Signature ’),

15 (’Boolean ’, ’Boolean ’),

16 (’Integer ’, ’Integer ’),

17 (’Hash160 ’, ’Hash160 ’),

18 (’Hash256 ’, ’Hash256 ’),

19 (’ByteArray ’, ’ByteArray ’),

20 (’PublicKey ’, ’PublicKey ’),

21 (’String ’, ’String ’),

22 (’Array ’, ’Array’),

23 (’InteropInterface ’, ’InteropInterface ’),

24 (’Void’, ’Void’)

25]

26
27 EVENT_TYPES = [

28 (’SmartContract.Runtime.Notify ’, ’SmartContract.Runtime.Notify ’),

29 (’SmartContract.Runtime.Log’, ’SmartContract.Runtime.Log’),

30 (’SmartContract.Execution .*’, ’SmartContract.Execution .*’),

31 (’SmartContract.Execution.Invoke ’, ’SmartContract.Execution.Invoke ’

),

32 (’SmartContract.Execution.Success ’, ’SmartContract.Execution.

Success ’),

33 (’SmartContract.Execution.Fail’, ’SmartContract.Execution.Fail’),

34 (’SmartContract.Verification .*’, ’SmartContract.Verification .*’),

35 (’SmartContract.Verification.Success ’, ’SmartContract.Verification.

Success ’),

36 (’SmartContract.Verification.Fail’, ’SmartContract.Verification.

Fail’),

37 (’SmartContract.Storage .*’, ’SmartContract.Storage .*’),

38 (’SmartContract.Storage.Get’, ’SmartContract.Storage.Get’),

39 (’SmartContract.Storage.Put’, ’SmartContract.Storage.Put’),

40 (’SmartContract.Storage.Delete ’, ’SmartContract.Storage.Delete ’),

41 (’SmartContract.Contract .*’, ’SmartContract.Contract .*’),

42 (’SmartContract.Contract.Create ’, ’SmartContract.Contract.Create ’),

43 (’SmartContract.Contract.Migrate ’, ’SmartContract.Contract.Migrate ’

),

44 (’SmartContract.Contract.Destroy ’, ’SmartContract.Contract.Destroy ’

)

45]

46
47 __tablename__ = ’test_cases ’

48 id = Column(Integer , Sequence(’test_case_id_seq ’), primary_key=True)

49 contract_hash = Column(String (128))

50 transaction_hash = Column(String (128))

51 event_type = Column(ChoiceType(EVENT_TYPES))

52 expected_payload_type = Column(ChoiceType(DATA_TYPES))

53 expected_payload_value = Column(String (512))

54 sc_event = Column(String (1024))

55 active = Column(Boolean , default=True)

56 success = Column(Boolean , default=None)

57 createdAt = Column(DateTime , default=datetime.now)

58 updatedAt = Column(DateTime , default=datetime.now)

59
60 def __repr__(self):

54

Implementation

61 return "<TestCase(test_id=’%s’ contract_hash =’%s’ contract_hash =’%s

’ event=’%s’ expected_payload_type =’%s " \

62 "expected_payload_value =’%s’ active=’%s’)>" % (

63 self.id, self.contract_hash , self.transaction_hash , self

.event_type , self.expected_payload_type ,

64 self.expected_payload_value , self.active)

65
66 engine = create_engine(database_url)

67 Session = sessionmaker(bind=engine)

68 engine.dispose ()

Listing 6.4: models.py - Setting the test case model to be used by SQLAlchemy

6.2.3 Event Handling

Before starting the Celery workers, the Redis database, which serves as a message broker,
needs to be running. After starting the Redis database server (with redis-server), to
start the Celery application and its workers, the tasks.py file is run (see Appendix C -
Project Tree) with the celery -A tasks worker command.

In this file, which can be seen in Listing 6.5, we start by defining a base task that handles
and cache the database connection and is the base task for the two tasks.

The handle_event task is the one that receives and handles the smart contract event
listened by the node. It starts by attempting to fetch from the database a test case that
might relate to the received event. If it fails, it will retry 5 more times with an exponential
backoff. This is mechanism was implemented as the database retrieval could have failed
because the transaction hash was not yet saved in the test case table, as it is only known
after the smart contract is invoked, as this transaction hash is saved on the test case table
at approximately the same time as the node is receiving the new block. The exponential
backoff makes the function retry five times over a 31 seconds time span, giving enough
time for the transaction hash to be present in the database.

If a test case is found that relates to the received event, both the event and the test case ID
are passed to another task, the evaluate task. When the evaluate task starts handling
this event, the test case is again fetched from the database. This is done as if we were to
pass an instance of the test case to the task, the instance could no longer be up to date
with the current state of the database by the moment that it is handled by the evaluate

task. This task then compares the test case expected outputs with the received event and
evaluates the test case, after which it saves the execution result as an attribute of the test
case.

1 import json

2 from celery import Task , Celery , shared_task

3 from exceptions import NoTransactionFound

4 from models import Session , TestCase

5 from settings import redis_url

6
7 app = Celery(’tasks’, broker=redis_url)

8
9 class DatabaseTask(Task):

10 _session = None

11
12 @property

13 def session(self):

14 if self._session is None:

15 self._session = Session ()

16 return self._session

55

Chapter 6

17
18
19 @shared_task(base=DatabaseTask , autoretry_for =(NoTransactionFound ,),

default_retry_delay =1, max_retries =5, retry_backoff=True)

20 def handle_event(sc_event):

21 """

22 This shared_task handles smart contract events by querying the database

searching for tests that might concern them

23 :param sc_event: a smart contract event

24 :return: True if task is successful , False otherwise

25 """

26 try:

27 test_case = handle_event.session.query(TestCase). \

28 filter_by(contract_hash=sc_event[’contract_hash ’],

transaction_hash=sc_event[’tx_hash ’],

29 event_type=sc_event[’event_type ’], active=True).first

()

30 if not test_case:

31 print("Retrying ...")

32 raise NoTransactionFound("No test found with tx_hash: " +

sc_event[’tx_hash ’])

33 except NoTransactionFound as ntf:

34 print(ntf)

35 else:

36 evaluate.delay(sc_event , test_case.id)

37 return True

38
39
40 @shared_task(base=DatabaseTask)

41 def evaluate(sc_event , test_case_id):

42 """

43 This shared_task evaluates if a pre -determined test fails or passes.

44 Stores the result on the database.

45 :param sc_event: a smart contract event

46 :param test_case_id: a test case ID

47 :return: True if task is successful , False otherwise

48 """

49 test_case = evaluate.session.query(TestCase).get(test_case_id)

50 if not test_case.success:

51 sc_event_payload = sc_event[’event_payload ’]

52
53 if sc_event[’event_type ’] == test_case.event_type.value and

sc_event_payload[’type’] == test_case .\

54 expected_payload_type.value:

55 if str(sc_event_payload[’value ’]) == test_case.

expected_payload_value:

56 test_case.sc_event = json.dumps(sc_event)

57 test_case.active = False

58 test_case.success = True

59 else:

60 test_case.sc_event = json.dumps(sc_event)

61 test_case.active = False

62 test_case.success = False

63
64 evaluate.session.add(test_case)

65 try:

66 evaluate.session.commit ()

67 except Exception:

68 evaluate.session.rollback ()

69 raise

70 finally:

71 evaluate.session.close ()

56

Implementation

72 return True

Listing 6.5: tasks.py - Celery application that handles event and evaluates test cases

6.3 Server Side Web Application

As shown in Figure 5.3 of subsection 5.3.1 - Server Side Web Application, the backend of
the web application is composed by a database and three applications:

• appHttp.js - Serves the static single page application to the client. An API was added
to this application, that handles all operations concerned with authentication, test
cases and test suites.

• appCompiler.js - Receives requests from the single page application with smart con-
tract code to be compiled. It then uses the correspondent NEO compiler and returns
the compiled code to the client.

• appEcoServices.js - Uses web sockets to provide real-time information on the status
of the different services, such as the RPC node status and the number of users active
on the platform.

Of these applications, only the appHttp.js application was significantly changed. Similarly
to the other two applications, it was developed using Node.js9, a JavaScript runtime en-
vironment that enables developers to use JavaScript as a server language, and Express10,
a minimal Node.js web framework that offers a number of HTTP methods and middle-
ware that makes developing APIs easier and more straightforward. NPM11, a JavaScript
package manager, was used to manage the project dependencies. Sequelize12, an ORM
for Node.js was also used in the project, providing its own PostgreSQL connector and
offering useful features such as database models creation and association, and database
migrations.

6.3.1 Express Application

The appHttp.js file (see Appendix C - Project Tree) creates an Express application object
named app, imports the required dependencies and libraries and sets up the application
settings and middleware. In this file, the application routes are also defined, which have
access to the application controllers. These routes are presented in subsection 6.3.3 -
Routes and Controllers. The code inside the appHttps.js file that creates and sets up the
application can be seen in Listing 6.6. Node libraries are installed using the NPM package
manager and imported using require().

1 require(’dotenv ’).config ();

2 const express = require(’express ’);

3 const http = require(’http’);

4 const logger = require(’morgan ’); // log requests to the console (express4)

5 const app = express ();

6 const bodyParser = require(’body -parser ’); // pull information from HTML

POST (express4)

9https://github.com/nodejs/node
10https://github.com/expressjs/express/
11https://www.npmjs.com/
12https://github.com/sequelize/sequelize

57

https://github.com/nodejs/node
https://github.com/expressjs/express/
https://www.npmjs.com/
https://github.com/sequelize/sequelize

Chapter 6

7 const session = require(’express -session ’);

8 const passport = require(’passport ’),

9 LocalStrategy = require(’passport -local’).Strategy ,

10 BearerStrategy = require(’passport -http -bearer ’);

11
12 const server = http.createServer(app);

13 const testController = require(’./ controllers ’).test_cases;

14 const testSuiteController = require(’./ controllers ’).test_suite;

15 const userController = require(’./ controllers ’).user;

16
17 const bcrypt = require(’bcrypt ’);

18 const saltRounds = 10;

19 const jwt = require(’jwt -simple ’);

20
21 app.use(express.static(__dirname + ’/’)); // set the static files location

/public/img will be /img for users

22 app.use(session ({

23 resave: false ,

24 saveUninitialized: true ,

25 secret: process.env.SESSION_SECRET || ’set secret in production ’, //

try to load secret from .env

26 cookie: {}

27 }));

28
29 app.use(passport.initialize ());

30 app.use(passport.session ());

31
32 app.use(logger(’dev’)); // log every request to the console

33 app.use(bodyParser.urlencoded ({ // parse application/x-www -form -urlencoded

34 parameterLimit: 100000 , // bigger parameter sizes

35 limit: ’5mb’, // bigger parameter sizes

36 extended: false

37 }));

38 app.use(bodyParser.json()); // parse application/json

39 app.use(bodyParser.json({

40 type: ’application/vnd.api+json’

41 })); // parse application/vnd.api+json as json

42
43 app.set(’jwtTokenSecret ’, process.env.JWT_TOKEN_SECRET || ’

SETSECRETINPRODUCTION ’);

44
45 module.exports = app;

Listing 6.6: appHttp.js - Creating the Express application

6.3.2 Authentication

While some resources, such as creating temporary test cases, are available to non-authenticated
users, it was a functional requirement that users should be able to create accounts to man-
age their test cases and suites. Four main packages are used to implement authentication
in the application:

• express-session13, a session middleware to manage user session, saves the session
data on server side and sends a cookie with the session ID to the frontend;

• Passport14, an authentication middleware that offers plugins (called strategies) to
authenticate requests;

13https://www.npmjs.com/package/express-session
14https://www.npmjs.com/package/passport

58

https://www.npmjs.com/package/express-session
https://www.npmjs.com/package/passport

Implementation

• bcrypt15, a cryptographic library used to hash passwords;

• jwt-simple16, a JSON Web Token encoding and decoding library;

The configuration of these packages can be seen in the code presented in Listing 6.7.

1 const app = express ();

2 const session = require(’express -session ’);

3 const passport = require(’passport ’),

4 LocalStrategy = require(’passport -local’).Strategy ,

5 BearerStrategy = require(’passport -http -bearer ’);

6
7 app.use(session ({

8 resave: false ,

9 saveUninitialized: true ,

10 secret: process.env.SESSION_SECRET || ’set secret in production ’, //

try to load secret from .env

11 cookie: {}

12 }));

13
14 app.set(’jwtTokenSecret ’, process.env.JWT_TOKEN_SECRET || ’

SETSECRETINPRODUCTION ’);

15
16 const testController = require(’./ controllers ’).test_cases;

17 const userController = require(’./ controllers ’).user;

18 const testSuiteController = require(’./ controllers ’).test_suite;

19
20 const bcrypt = require(’bcrypt ’);

21 const saltRounds = 10;

22
23 const jwt = require(’jwt -simple ’);

24
25 // This is used for auth. http :// www.passportjs.org/docs/

26 passport.use(new LocalStrategy(

27 function (email , password , done) {

28 userController.getUserByEmail(email).then(function (user) {

29 if (!user) {

30 return done(null , false , {

31 message: ’Invalid email or password.’

32 });

33 }

34 bcrypt.compare(password , user.password , function (err , res) {

35 if (res) {

36 let expires = new Date();

37 expires.setDate ((new Date()).getDate () + 5);

38 let token = jwt.encode ({

39 id: user.id ,

40 expires: expires

41 }, app.get(’jwtTokenSecret ’)); // get this from env

42
43 user.token = token;

44 user.save().then (() => {

45 return done(null , user);

46 })

47 } else {

48 return done(null , false , {

49 message: ’Invalid email or password.’

50 })

51 }

52 });

53 });

15https://www.npmjs.com/package/bcrypt
16https://www.npmjs.com/package/jwt-simple

59

https://www.npmjs.com/package/bcrypt
https://www.npmjs.com/package/jwt-simple

Chapter 6

54 }

55));

56
57 passport.use(new BearerStrategy(

58 function (token , done) {

59 userController.getUserByToken(token).then(function (user) {

60 let decodedToken = jwt.decode(token , app.get(’jwtTokenSecret ’))

;

61 if (!user) {

62 return done(null , false);

63 }

64 if (new Date(decodedToken.expires) < new Date() || user.id !=

decodedToken.id) {

65 user.token = null;

66 return done(null , false);

67 }

68 return done(null , user , {

69 scope: ’all’

70 });

71 });

72 }

73));

74
75 passport.serializeUser(function (user , done) {

76 done(null , user);

77 });

78
79 passport.deserializeUser(function (user , done) {

80 done(null , user);

81 });

Listing 6.7: appHttp.js - Authentication middleware used on the application

One of the quality attributes detailed (see subsection 4.5.2 - Quality Attributes) in the
non-functional requirements, states that only hashed and salted representations of the
password can be stored by the application. In Listing 6.8, the bcrypt library can be seen
being used to hash and salt a password sent by the user before calling the create method
in the userController controller.

1 app.post(’/api/user’,

2 function (req , res , next) {

3 if (req.body.password != req.body.confirmPassword) {

4 res.status (400).send({

5 status: "Passwords don’t match"

6 });

7 return;

8 }

9
10 bcrypt.hash(req.body.password , saltRounds , function (err , hash) {

11 req.body.password = hash;

12 next()

13 });

14 },

15 userController.create

16);

Listing 6.8: appHttp.js - Hashing a user password before calling userController.create

60

Implementation

6.3.3 Routes and Controllers

Routes are sections of Express code that associate an HTTP method such as GET, POST,
PUT or DELETE, an Uniform Resource Identifier (URI) and a function that handles that
request. So, when an HTTP request from the frontend application is made to a given
endpoint of the REST API, it is routed to the correspondent controller. The controller
then retrieves or modifies data from the models and creates an HTTP response, which is
returned to the frontend. This flow can be observed in Figure 6.2.

Figure 6.2: Flow diagram of the backend server.

If the HTTP request is requesting an existing resource, a JSON representation of the
resource is then returned to the frontend, together with a 200-OK status code. If the
HTTP request is trying to change an existing resource or create a new resource and
succeeds, a representation of the new resource is returned to the user, together with a 20X

status code. If the HTTP request tries to access a non-existing resource or sends a bad
request, a 40X status error and message is returned.

As mentioned in subsection 6.3.2 - Authentication, some routes require the user to be
authenticated to give access to the requested resources. In Listing 6.9, an example is
presented, where, for the user to be able to successfully delete a test suite, the request to
the API must pass the authentication.

1 app.delete(’/api/test_suite /: testSuiteID ’,

2 function (req , res , next) {

3 if (!req.isAuthenticated ()) {

4 res.status (401).send({

5 status: "Unauthorized"

6 });

7 }

8 next();

9 },

10 passport.authenticate(’bearer ’),

11 testSuiteController.destroy

12);

Listing 6.9: appHttp.js - Routing to the delete test suite controller.

If the request passes the authentication, it is then routed to the destroy function of the
testSuiteController (see in Listing 6.10), which, if the test suite belongs to the user
that made the request, fetches and destroys the chosen test suite.

1 const TestSuite = require(’../ models ’).TestSuite;

2 const TestCase = require(’../ models ’).TestCase;

3
4 module.exports = {

5 create(req , res) {

61

Chapter 6

6 ...

7 },

8 list(req , res) {

9 ...

10 },

11 retrieve(req , res) {

12 ...

13 },

14 destroy(req , res) {

15 return TestSuite

16 .findByPk(req.params.testSuiteID)

17 .then(testSuite => {

18 if (! testSuite) {

19 return res.status (400).send({

20 message: ’TestSuite Not Found’,

21 });

22 } else if (testSuite.userId != null && testSuite.userId != req.

user.id) {

23 return res.status (403).send({

24 message: ’Forbidden!’,

25 });

26 }

27 return testSuite

28 .destroy ()

29 .then (() => res.status (200).send({ message: ’Test Suite deleted

successfully.’ }))

30 .catch(error => res.status (400).send(error));

31 })

32 .catch(error => res.status (400).send(error));

33 },

34 update(req , res) {

35 ...

36 }

37 };

Listing 6.10: controllers/test suite.js - The destroy function inside the test suite controller.

6.3.4 Models

Three different models were defined in the application:

• TestCase - This model can belong to both a user and a test suite, in a one-to-many
relationship.

• TestSuite - This model can belong to a user, in a one-to-many relationship.

• User - This model can own one or more test cases and test suites.

Mappings between the database tables and models are defined by Sequelize. The Sequelize
CLI automatically creates the models/index.js file, shown in Listing 6.11, when Sequelize
is added to the project and sets a new connection to the database (line 13 or 15 of the
file, depending on which configuration file is being read).

1 ’use strict ’;

2
3 const fs = require(’fs’);

4 const path = require(’path’);

5 const Sequelize = require(’sequelize ’);

6 const basename = path.basename(__filename);

62

Implementation

7 const env = process.env.NODE_ENV || ’development ’;

8 const config = require(__dirname + ’/../ config/config.json’)[env];

9 const db = {};

10
11 let sequelize;

12 if (config.use_env_variable) {

13 sequelize = new Sequelize(process.env[config.use_env_variable], config)

;

14 } else {

15 sequelize = new Sequelize(config.database , config.username , config.

password , config);

16 }

17
18 fs

19 .readdirSync(__dirname)

20 .filter(file => {

21 return (file.indexOf(’.’) !== 0) && (file !== basename) && (file.

slice(-3) === ’.js’);

22 })

23 .forEach(file => {

24 const model = sequelize[’import ’](path.join(__dirname , file));

25 db[model.name] = model;

26 });

27
28 Object.keys(db).forEach(modelName => {

29 if (db[modelName]. associate) {

30 db[modelName]. associate(db);

31 }

32 });

33
34 db.sequelize = sequelize;

35 db.Sequelize = Sequelize;

36
37 module.exports = db;

Listing 6.11: The models/index.js file

All of the application models are located as separate files inside the models folder (which
can be seen in Appendix C - Project Tree). Sequelize, through the code present in the
models/index.js file (see Listing 6.11, from line 18 to line 32), automatically tracks every
model present in that folder and associates them, if needed.

The test_suite.js file, depicted on Listing 6.12, is a good and short example of how
models are defined in the application. The define method defines the mapping between
the model and a database table. The model attributes and its data types are then defined.
After defining the model, associations with other models can be defined, as shown from
line 15 to line 24 in Listing 6.12. One of the advantages of using an ORM such as Sequelize
is that the syntax used often has excellent readability. As such, it is easy to understand
which associations are being formed in the code above: the hasMany association creates a
1 to N relationship between the TestSuite model and the TestCase model, with one test
suite having zero or more test cases. This relationship is creating by adding a foreign key

testSuiteId that refers to a test suite id, its primary key. The as keyword makes it
possible to refer to every test case belonging to a test suite by using the alias testCases.
It is also evident that the belongsTo association is part of an N to 1 association between
the TestSuite and User models. In this case, one user can have 0 or more test suites, and
a foreign key userId referring to the user primary key is saved as a TestSuite model
column.

1 module.exports = (sequelize , DataTypes) => {

2 const TestSuite = sequelize.define(’TestSuite ’, {

63

Chapter 6

3 name: {

4 type: DataTypes.STRING ,

5 allowNull: false

6 },

7 description: {

8 type: DataTypes.STRING ,

9 allowNull: true

10 },

11 }, {

12 tableName: ’test_suites ’

13 });

14
15 TestSuite.associate = (models) => {

16 TestSuite.hasMany(models.TestCase , {

17 foreignKey: ’testSuiteId ’,

18 as: ’testCases ’,

19 });

20 TestSuite.belongsTo(models.User , {

21 foreignKey: ’userId ’,

22 onDelete: ’CASCADE ’,

23 });

24 };

25
26 return TestSuite;

27 };

Listing 6.12: The models/test suite.js file

Migrations are used in the project to keep track of changes to the database and change
the database state. Those state transitions are defined in JavaScript and stored in the
migrations folder (which can be seen in Appendix C - Project Tree). The code inside
a migration file, as shown in Listing 6.13, describes how to change the database to the
intended state and how to revert the changes in order to get back to the original state.
When a model definition is changed, a migration is created to reflect those changes.

1 module.exports = {

2 up: (queryInterface , Sequelize) =>

3 queryInterface.createTable(’test_suites ’, {

4 id: {

5 allowNull: false ,

6 autoIncrement: true ,

7 primaryKey: true ,

8 type: Sequelize.INTEGER ,

9 },

10 name: {

11 type: Sequelize.STRING ,

12 allowNull: false ,

13 },

14 description: {

15 type: Sequelize.STRING ,

16 allowNull: false ,

17 },

18 createdAt: {

19 allowNull: false ,

20 type: Sequelize.DATE ,

21 },

22 updatedAt: {

23 allowNull: false ,

24 type: Sequelize.DATE ,

25 },

26 userId: {

27 type: Sequelize.INTEGER ,

28 onDelete: ’CASCADE ’,

64

Implementation

29 references: {

30 model: ’users’,

31 key: ’id’,

32 as: ’userId ’,

33 },

34 },

35 }),

36 down: (queryInterface) =>

37 queryInterface.dropTable(’test_suites ’),

38 };

Listing 6.13: A migration to create the test suites table

Sequelize keeps track of all of the applied migrations in a table inside the database.
To apply all of the new migrations to the database, the developer needs to run the
sequelize db:migrate command on the Sequelize CLI.

6.4 Single Page Web Application

This SPA is the frontend application that enables the user to interact with the system.

The frontend application was developed using AngularJS17, JQuery18, the Neon-js li-
brary19, vanilla JavaScript, Bootstrap 20 and CSS.

AngularJS is a JavaScript framework which extends HTML syntax to create dynamic web
applications and was mainly used in this application to create routes inside the SPA and
group HTML into reusable components. Neon-js is a JavaScript library that enables a
developer to interact, through JavaScript, with the NEO blockchain. It’s used, in this
project, for most of the operations exposed on the frontend that require interaction with
the NEO blockchain, such as smart contract deployment, smart contract invocation, and
RPCs to the NEO blockchain. JQuery is a JavaScript library that simplifies Asynchronous
JavaScript And XML (AJAX) requests, Document Object Model (DOM) manipulation
and event handling, among other useful features. JQuery was mainly used to make requests
to the backend API and present the retrieved data through DOM manipulation. Bootstrap
is an HTML and CSS framework, which provides design templates for typography, forms,
buttons, navigation, and other interface components. All of the presented libraries and
frameworks are open-source, and their source code can be consulted on the links provided
on the footnotes of this report.

6.4.1 Landing Page and Authentication

As mentioned on the User Stories 2, 3 and 4 (see US2 on table 4.4 - User Stories - Landing
Page and US3 and US4 on table 4.5 - User Stories - Authentication), the user must be
able to easily access a an authentication form from the landing page and must be able to
create an account and login with his account. This simple form, depicted in Figure 6.3, is
implemented on top of a Bootstrap modal component.

To signup, the user needs to insert an email address on the form, a password, and the
password confirmation. After submitting the form, a POST request is made to the au-

17https://github.com/angular/angular.js
18https://github.com/jquery/jquery
19https://github.com/CityOfZion/neon-js
20https://github.com/twbs/bootstrap

65

https://github.com/angular/angular.js
https://github.com/jquery/jquery
https://github.com/CityOfZion/neon-js
https://github.com/twbs/bootstrap

Chapter 6

Figure 6.3: Landing Page - Sign In and Sign Up form.

thentication endpoint in the backend API. If the user is logging in with a valid account
and password, the server returns a session ID which is stored in the frontend applica-
tion session storage and a session cookie, which are used in subsequent requests while the
session is alive to authenticate the user.

6.4.2 Editing, Compiling and Deploying Smart Contracts

By building the testing tool on top of the NeoCompiler Eco tool, it is possible to ensure
that the functional requirements presented on User Stories 10, 11, 12 and 13 (see US10,
US11, US12 and US13 on table 4.6 - User Stories - Private Network) are satisfied, as this
tool already offers an online editor to edit smart contract code, which can then be compiled
and deployed to a private network, as mentioned on subsection 2.5.6 - NeoCompiler Eco,
and depicted in Figures 2.11 and 2.12 of that subsection. As shown in Figure 6.4, the
original tool also offers an interface which the user can use to make JSON RPCs to the
private network.

6.4.3 Test Cases and Test Suites

The biggest challenge on the frontend development was to create a testing interface that
would allow the tool to satisfy the functional requirements represented by the User Stories
15 to 32 see US15-32 on tables 4.7, 4.8 and 4.9 - User Stories - Testing).

To satisfy the requirement that the user must be able to create a test case, the information
required for the test to be created needed to be defined. As described in subsection 2.6.2
- Test Case, a set of test inputs, execution conditions and expected outputs are required
in order to define the test case.

To define the test inputs, the user needs to provide:

• The contract hash of the contract to be invoked;

66

Implementation

Figure 6.4: Network Essential - RPCs to the private network.

• The contract hash of the contract that will emit the output;

• The function to invoke on the smart contract and its parameters;

• The amount of NEO and GAS to be sent in the transaction;

• The GAS fee to be paid for the transaction;

• The wallet that will make the transaction;

To define the expected outcome of the test, the user needs to insert:

• The event type that is expected to result from running the test;

• The payload of that event;

For this tool, the execution condition is the state of the blockchain at the start of the test,
which can not be changed by the user. A drawback of the blockchain technology is that
every operation is permanent on the blockchain, and as the blockchain is running on the
server it is not feasible to bring the blockchain to a clean state after each test execution.
As such, execution order is important when running tests, as non-idempotent operations
permanently change the state of the blockchain, and a test that evaluated to true the first
time it ran may evaluate to false in a future execution.

67

Chapter 6

Figure 6.5: Testing - Creating a test case using the test creator.

When developing the testing interface, to simplify test creation and execution for new
users and developers, it was decided that a ”Test Creator” would be implemented, where
the user could easily create tests by inputting the required information in a form. This
interface can be seen in Figure 6.5. After providing the required information in the Test
Creator, the user can either choose to immediately run the test, temporarily save the test
or add it to an existing test suite. If the user chooses to run the test or to create it without
running it, the test is presented on the temporary tests table, depicted in Figure 6.6. This
table temporarily keeps user tests while the browser is opened in the tool. If the user
closes or refreshes the page, the temporary tests are lost.

Figure 6.6: Testing - Temporary tests table.

Using the Test Creator is the easiest way for a new user to create a test. However, after
understanding how the tool works, it would be faster if the user could create tests in bulk.
To enable the user to do so, an editor was added that lets the user write tests in JSON
and import them to the tool. This way, the user can create an unlimited amount of tests,
in the online editor or in his favourite IDE, and quickly import them to the tool, as shown
in Figure 6.7. Tests added through the editor are also added to the temporary test table
depicted in Figure 6.6. The data required in the JSON for Test Import is specified in
Appendix D - JSON Structure, and is the same as the data required in the Test Creator,
with optional test name and description fields.

When a new test is created, it is sent to the backend API through a POST request and

68

Implementation

Figure 6.7: Testing - Creating two test cases by importing them with JSON.

saved in the database. After the user imports or creates a new test and it being available
in the temporary test table, the user can now execute the test by pressing the ”Run”
button on the correspondent test in the temporary test table or the ”Run Test” button on
the Test Creator. Running a test results in the browser making an invocation to the smart
contract to be tested, with the parameters defined in the test case. This invocation is done
through the Neon-js library presented previously. This invocation returns a transaction
hash, which uniquely identifies the resulting transaction inside the NEO blockchain. This
transaction hash is then saved in the backend database together with the rest of the test
case data, waiting for the NEO Node Tap to do its job. This operation can take a few
seconds due to the nature of the blockchain technology. The browser periodically tries to
retrieve new data corresponding to the tests presented in the tables (shown in Figure 6.8)
from the backend API and update the DOM with AJAX GET requests. The user is able
to force these requests by pressing the ”Reload Tests Status” button.

A test that is running and waiting for its result has a spinning-wheel on the ”Running”
column, as represented in Figure 6.8, while a test that has not yet run has a cross and a
test that has already run has a check mark.

Figure 6.8: Testing - Running test cases are displayed on the temporary tests table.

If a test case passes, a check mark appears in the ”Success” column, while a cross appears
in the cases where the test has failed or has not run yet. An example of successful test
cases can be seen in Figure 6.9.

Test cases in the temporary tests table can be removed from the table, run (and re-
run) by pressing the ”Run” button, or they can be added to a test suite. If the user is
authenticated in the system, they can also be saved by pressing the ”Save” button, only
visible to authenticated users. These options can be seen, for instance, in Figure 6.9.

69

Chapter 6

Figure 6.9: Testing - Successful test cases are displayed on the temporary tests table.

After a test is executed, the user can have access to a small report on the test execution.
This report, depicted in Figure 6.10, displays to the user the NEOGas cost of having run
the test as well as details on the listened event that led to the evaluation of the test. By
looking at this report, the user can understand how much NEOGas it would cost to run
that transaction and understand why the test case is passing or failing.

Figure 6.10: Testing - Modal displaying a small report of a test case execution.

When saving a test case, the user is prompted to insert a test case name and description.
After being saved, the test is displayed on the saved tests table, as depicted in Figure 6.11
and is available to the user until it is deleted. As such, the user can access saved tests in
any browser compatible with the tool, anywhere, and re-use them easily.

Figure 6.11: Testing - Saved tests are displayed in the saved tests table.

To add a test case to a test suite, the user needs to have a test suite created, or create a
new test suite first. The user can create a test suite by selecting the ”Create Test Suite”
button on the temporary test suites table, which can be seen in Figure 6.6. The user then
needs to fill the ”Create Test Suite” prompt with the test suite name and description, as
seen in Figure 6.12.

70

Implementation

Figure 6.12: Testing - Creating a new test suite.

After creating a test suite, the user has to select a test case from the temporary tests table
or from the saved tests table, select the ”Add To Suite” button and choose the test suite
to which to add the test case, as seen in Figure 6.13.

Figure 6.13: Testing - Adding a test case to a test suite.

Similarly to a test case, a test suite can be saved in order to be permanently available to
the user, moving to the saved test suites table, as seen in Figure 6.14. If the test suite is
not saved, it is only kept in the frontend while the user does not refresh or closes the page.

A test suite that has one or more test cases can be run by pressing the button ”Run”.
This follows the same process as when running a single test case, but it automatically
applies it to every test case in the suite. If all the test cases pass, the test suite displays a
check mark on the success column, as seen in Figure 6.15. Otherwise, it displays a cross.

71

Chapter 6

Figure 6.14: Testing - Saved test suites table.

Figure 6.15: Testing - Running a test suite.

The user can also delete saved test cases and saved test suites. Deleting a saved test suite
also deletes every test case that belongs to it. As shown in Figure 6.16, the user can also
delete a test case from inside a test suite.

Figure 6.16: Testing - Removing a test case from a test suite.

72

Chapter 7

Testing

As discussed and presented on Section 2.6 - Software Testing, testing attempts to ensure
that an application performs as its developers expected. As this project concerns the de-
velopment of a testing framework, it is important to understand if the application assesses
test results correctly, and if all of its features work as required. Bugs in the application
can be critical, not only because users will be discouraged from using the application, but
also because wrongly assessed tests may cause users to deploy buggy smart contracts into
production. Creating tests for the application also ensures that, through regression test-
ing, any future alteration to the application code will not cause previously implemented
features to malfunction.

In an attempt to determine whether the application is functioning as intended, the NEO
Node Tap, the Web Server Application and the Web Client were tested, as described in
the next sections. A copy of the original database was created, to be used during testing.

7.1 Server Side Web Application

Mocha1 and Chai2 were the libraries used to unit test the backend API. Mocha is a test
framework for Node.js, which can be used along with many different assertion libraries,
providing the testing environment for testing the application. Chai was the assertion
library used chosen to be used alongside Mocha, which, together with the Chai-HTTP
plugin, enables to make and test HTTP calls to the API.

To test that the API was working as intended, three files were created, correspondent
to the three different models used by the system (test cases, test suites and users) and
were placed under the tests folder of the web application project (see Appendix C -
Project Tree). Each file contains a set of test suites, with each suite dedicated to testing
a determined endpoint in the application, and after and before methods that bring the
environment to the desired state before and after the tests are run, as seen in Listing 7.1.

1 // During the test the env variable is set to test

2 process.env.NODE_ENV = ’test’;

3
4 const User = require(’../ models/’).User;

5
6 // Require the test libraries

7 const chai = require(’chai’);

1https://github.com/mochajs/mocha
2https://github.com/chaijs/chai

73

https://github.com/mochajs/mocha
https://github.com/chaijs/chai

Chapter 7

8 const chaiHttp = require(’chai -http’);

9 chai.use(chaiHttp);

10 const should = chai.should ();

11
12 // Require the app

13 const app = require(’../ appHttp ’);

14
15 let agent = chai.request.agent(app); // request agent used to mantain

cookies between requests

16 ...

17
18 describe(’Users ’, () => {

19 // Clean existing user data

20 before(function (done) {

21 User.sync({

22 force: true

23 }) // drops table and re-creates it

24 .then(function () {

25 done(null);

26 }, function (err) {

27 done(err);

28 });

29 },

30 after(function (done) {

31 agent.close();

32 User.sync({

33 force: true

34 }) // drops table and re-creates it

35 .then(function () {

36 done(null);

37 }, function (err) {

38 done(err);

39 });

40 }));

41
42 ...

43 });

Listing 7.1: user.js - Requiring the test libraries and setting up the test environment. The
before and after methods guarantee that the User table is clean before and after the tests
in this file have run.

After setting the environment, tests to each route follow. In Listing 7.2, it can be seen
how each test is implemented. Each test is preceded by a small description. Chai-HTTP
is then used to make a request to the API. Finally, the response is received, and its status
and content are compared against the expected output. If this assessment fails, the test
raises an error and is marked as failed, otherwise the test passes. As also seen in Listing
7.2, endpoints are not only tested with valid data but also with invalid requests that should
be rejected by the application.

1 /*

2 * Test /api/user and create user method

3 */

4 describe(’/POST user’, () => {

5 it(’it should create a valid user’, (done) => {

6 const user = {

7 email: "user123@mail.com",

8 password: "uns4f3P4ss0rd",

9 confirmPassword: "uns4f3P4ss0rd"

10 }

11 chai.request(app)

12 .post(’/api/user’)

74

Testing

13 .send(user)

14 .end((err , res) => {

15 res.should.have.status (201);

16 res.body.should.be.a(’object ’);

17 res.body.should.have.property(’username ’);

18 res.body.should.have.property(’username ’).eql(user.

email);

19 done();

20 });

21 });

22
23 it(’it should not allow different passwords ’, (done) => {

24 const user = {

25 email: "otheruser@mail.com",

26 password: "uns4f3P4ss0rd",

27 confirmPassword: "unsafepassword"

28 }

29 chai.request(app)

30 .post(’/api/user’)

31 .send(user)

32 .end((err , res) => {

33 res.should.have.status (422);

34 res.body.should.be.a(’object ’);

35 res.body.should.have.property(’errors ’);

36 res.body.errors.should.be.a(’array’);

37 res.body.errors [0]. should.be.a(’object ’);

38 res.body.errors [0]. should.have.property(’msg’);

39 res.body.errors [0]. should.have.property(’msg’).eql(’

Passwords don\’t match’);

40 done();

41 });

42 });

43
44 it(’it should not allow dupplicate users ’, (done) => {

45 const user = {

46 email: "user123@mail.com",

47 password: "anotherpassword",

48 confirmPassword: "anotherpassword"

49 }

50 chai.request(app)

51 .post(’/api/user’)

52 .send(user)

53 .end((err , res) => {

54 res.should.have.status (400);

55 res.body.should.be.a(’object ’);

56 res.body.should.have.property(’errors ’)

57 res.body.errors.should.be.a(’array’);

58 res.body.errors [0]. should.be.a(’object ’);

59 res.body.errors [0]. should.have.property(’message ’);

60 res.body.errors [0]. should.have.property(’message ’).eql(

’email must be unique ’);

61 done();

62 });

63 });

64
65 it(’it should not allow users with empty password ’, (done) => {

66 const user = {

67 email: "newuser@mail.com",

68 password: "",

69 confirmPassword: ""

70 }

71 chai.request(app)

72 .post(’/api/user’)

75

Chapter 7

73 .send(user)

74 .end((err , res) => {

75 res.should.have.status (422);

76 res.body.should.be.a(’object ’);

77 res.body.should.have.property(’errors ’);

78 res.body.errors.should.be.a(’array’);

79 res.body.errors [0]. should.be.a(’object ’);

80 res.body.errors [0]. should.have.property(’msg’);

81 res.body.errors [0]. should.have.property(’msg’).eql(’

Invalid value’);

82 done();

83 });

84 });

85 });

Listing 7.2: user.js - Set of tests that test the API endpoint that creates new users.

After implementing the tests with Chai, Mocha is used to run them, presenting a report
at the end of its execution.

7.2 Single Page Web Application

The SPA was tested using the Katalon Recorder, a browser add-on built on top of the
Selenium test automation framework. With this IDE it is possible to create and record
frontend tests and organise them into test suites.

Katalon Recorder was used to realistically simulate all of the operations performed by the
user on the frontend web application, which are specified in the User Stories (see Section
4.4 - Functional Requirements). In the Katalon IDE, each test case is composed by a series
of actions, which target a given component in the SPA. If the simulator fails to perform
any of the actions, the test case fails. If it succeeds in performing every action, the test
case passes, as depicted in Figure 7.1.

Figure 7.1: Katalon - Running a test case on Katalon that attempts to login and logout
an existing user.

76

Testing

7.3 NEO Node Tap

To unit test the NEO Node Tap, the unittest3 test framework, a Python standard library,
was used.

Similarly to the API tests, a setUp and tearDown methods were defined, which create
a new database session before running each test, and rolls-back every transaction made
after each test has run, as seen in Listing 7.3.

1 import unittest

2 import json

3
4 from sqlalchemy import create_engine

5 from sqlalchemy.orm import sessionmaker

6 from models import Base , TestCase

7 from settings import database_url_tests

8
9 class TestCaseAssertion(unittest.TestCase):

10 # uses test database

11 engine = create_engine(database_url_tests)

12 Session = sessionmaker(bind=engine)

13 session = Session ()

14
15 def setUp(self):

16 """

17 setUp is called when tests start to setup the database

18 """

19 Base.metadata.create_all(self.engine)

20 # connect to the database

21 self.connection = self.engine.connect ()

22
23 # begin a non -ORM transaction

24 self.trans = self.connection.begin ()

25
26 # bind an individual Session to the connection

27 self.test_session = self.Session(bind=self.connection)

28
29 ...

30
31 def tearDown(self):

32 """

33 tearDown is called when tests end to clean reset database

34 """

35 self.test_session.close ()

36 # rollback - everything that happened with the

37 # Session above (including calls to commit ())

38 # is rolled back.

39 self.trans.rollback ()

40 # return connection to the Engine

41 self.connection.close ()

42 Base.metadata.drop_all(self.engine)

Listing 7.3: tests.py - Setting up the test environment.

The tests unit test the different components of the application, specified in Section 6.2
- NEO Node Tap. As seen in Listing 7.4, test cases are creating by subclassing the
unittest.TestCase class, and should be defined by methods whose names start with
test, so the test runner knows they should be run as test cases. At the end of the test,
the assert method is called, which compares a given result with the expected result.

3https://docs.python.org/3/library/unittest.html

77

https://docs.python.org/3/library/unittest.html

Chapter 7

1 class TestCaseAssertion(unittest.TestCase):

2 ...

3
4 def test_test_case_creation(self):

5 # directly create test into the database

6 test_case = TestCase(contract_hash=’

f3da12622e9bb2b3f367a650a81fd8c70b2eb495 ’,

7 transaction_hash=’c33fd08be47a978778f1c7098804d8339ce ’,

8 event_type=’SmartContract.Runtime.Log’,

9 expected_payload_type=’String ’,

10 expected_payload_value=’Contract was called ’,

11 active= True

12)

13 self.test_session.add(test_case)

14 self.test_session.commit ()

15 t_case = self.test_session.query(TestCase).filter_by(

16 contract_hash=’f3da12622e9bb2b3f367a650a81fd8c70b2eb495 ’,

17 transaction_hash=’c33fd08be47a978778f1c7098804d8339ce ’,

18 event_type=’SmartContract.Runtime.Log’).first()

19 self.assertEqual(test_case , t_case)

Listing 7.4: tests.py - Testing the creation of a new test case in the database.

When the test runner is called, it runs all the tests present in the tests.py file and compile
a report.

78

Chapter 8

Conclusion

This internship aimed to study and implement a tool capable of automating the validation
and testing of smart contracts during their development.

During his research of the blockchain state of the art, the intern concluded that two of
the most promising blockchain technologies, Ethereum and NEO, were in different states
concerning the maturity of the existing tools for development of smart contracts. In
Ethereum, tools such as Truffle Suite and the Remix IDE could be used to develop and
test smart contracts, while others, such as Ganache, could be used to provide the user
with a local private network for smart contract deployment. NEO, on the other hand,
despite featuring useful tools such as NeoCompiler Eco, a web application which provides
a server-side private blockchain for developing, deploying and interacting with NEO smart
contracts, lacked tools that enabled the developer to create automated tests for these
contracts.

By taking advantage of the features already present in the NeoCompiler Eco application,
the intern managed to successfully implement a test automation framework on top of it.
This framework allows users to create, import, save and execute smart contract tests,
without having to run anything else than a browser. The intern also developed a NEO
blockchain event listener, able to catch events emitted on a NEO blockchain. By comparing
the resulting event from the test case execution with the expected test case output, the
tool is then able to assess whether the test has passed or failed, and present the user with
a small test report.

This tool fulfils the internship and the company’s goals of having a tool capable of au-
tomating smart contracts testing, while also providing, in the backend, the required in-
frastructure to run those tests. This backend infrastructure improves the quality and
easiness of developing smart contracts for the NEO blockchain, while the implementation
of the test tool provides greater assurance that these smart contracts are functioning as
intended. Furthermore, a pull request with this tool was made to the NeoCompiler Eco
tool repository so that it can be used by NEO developers who use NeoCompiler Eco.

8.1 Future Work

The intern planned to use Docker to encapsulate the NEO Node Tap module of the system,
an objective that, despite not having a significant impact in the project state, was not
achieved due to time constraints. This remains, as such, as a feature to be implemented

79

Chapter 8

on further iterations.

During the discussion of the project, both the intern and Blocksmith also considered that,
despite not being a part of the scope of the project, adding static analysis to the smart
contract code editor would be a useful and interesting feature to implement on a next
version of the tool.

80

References

[1] Remix, Ethereum IDE - Terminal. https://remix.readthedocs.io/en/latest/

terminal.html. Accessed: 2018-09-30.

[2] Ieee standard for system, software, and hardware verification and validation. IEEE
Std 1012-2016 (Revision of IEEE Std 1012-2012/ Incorporates IEEE Std 1012-
2016/Cor1-2017), page 25, Sept 2017.

[3] David J Anderson. Kanban: successful evolutionary change for your technology busi-
ness. Blue Hole Press, 2010.

[4] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
ethereum smart contracts (sok). In Matteo Maffei and Mark Ryan, editors, Prin-
ciples of Security and Trust, pages 164–186, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

[5] J.J. Bambara, P.R. Allen, K. Iyer, R. Madsen, S. Lederer, and M. Wuehler.
Blockchain: A Practical Guide to Developing Business, Law, and Technology So-
lutions. McGraw-Hill Education, 2018.

[6] bitfly.at. Account 0x5abfec25f74cd88437631a7731906932776356f9 - etherchain.org -
the ethereum blockchain explorer.

[7] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A Kroll,
and Edward W Felten. Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
104–121. IEEE, 2015.

[8] Danny Bradbury. The problem with bitcoin. Computer Fraud & Security, 2013(11):5–
8, 2013.

[9] Jerry Brito and Andrea Castillo. Bitcoin: A primer for policymakers. Mercatus
Center at George Mason University, 2013.

[10] Vitalik Buterin. Ethereum: Now going public, Jan 2014.

[11] Vitalik Buterin. A next-generation smart contract and decentralized application plat-
form - ethereum whitepaper, 2014.

[12] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and smart contracts
for the internet of things. Ieee Access, 4:2292–2303, 2016.

[13] Jamil Civitarese. Technical development, asset prices and market efficiency in alter-
native cryptocurrencies. 2018.

[14] Ethereum Community. Ether: What is ether - denominations.

81

https://remix.readthedocs.io/en/latest/terminal.html
https://remix.readthedocs.io/en/latest/terminal.html

Chapter 8

[15] NEO Council. Neo dapps competition, 2018.

[16] Tomás Morgado de Carvalho Conceição. Debugging tools for neo
blockchain development, 2018. https://medium.com/blocksmithtech/

debugging-tools-for-neo-blockchain-development-4a2f319e0464.

[17] Kevin Delmolino, Mitchell Arnett, Ahmed Kosba, Andrew Miller, and Elaine Shi.
Step by step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab. In Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, Dan Wal-
lach, Michael Brenner, and Kurt Rohloff, editors, Financial Cryptography and Data
Security, pages 79–94, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

[18] J Dienelt. Understanding ethereum. New York, NY: CoinDesk, 2016.

[19] Mark Fewster and Dorothy Graham. Software test automation: effective use of test
execution tools. ACM Press/Addison-Wesley Publishing Co., 1999.

[20] C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek, and P. Abrahamsson.
What do we know about software development in startups? IEEE Software, 31(5):28–
32, Sept 2014.

[21] Doug Hall. Fail fast, fail cheap. Business Week, 32:19–24, 2007.

[22] Elaine M Hall. Managing risk: Methods for software systems development. Pearson
Education, 1998.

[23] Jim Highsmith and Alistair Cockburn. Agile software development: The business of
innovation. Computer, 34(9):120–127, 2001.

[24] Da Hongfei and Erik Zhanh. Neo white paper.

[25] George F Hurlburt and Irena Bojanova. Bitcoin: Benefit or curse? IT Professional,
16(3):10–15, 2014.

[26] Heather A Johnson. Trello. Journal of the Medical Library Association: JMLA,
105(2):209, 2017.

[27] Sudhir Khatwani. Neo cryptocurrency: Everything you need to know about china
ethereum, Dec 2017.

[28] Malcolm Lerider. Neo to announce the first dev competition intended for blockchain
apps eco-development, Nov 2017.

[29] Jon Loeliger and Matthew McCullough. Version Control with Git: Powerful tools
and techniques for collaborative software development. ” O’Reilly Media, Inc.”, 2012.

[30] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011.

[31] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[32] Martyn A Ould. Managing software quality and business risk. John Wiley & Sons,
Inc., 1999.

[33] Jeff Offutt Paul Ammann. Introduction to Software Testing. Cambridge University
Press, 2 edition, 2017.

[34] Jayachandran Praveen. The difference between public and private blockchain -
blockchain unleashed: Ibm blockchain blog, May 2018.

82

https://medium.com/blocksmithtech/debugging-tools-for-neo-blockchain-development-4a2f319e0464
https://medium.com/blocksmithtech/debugging-tools-for-neo-blockchain-development-4a2f319e0464

References

[35] Max Rehkopf. Agile epics: Definition, examples, & templates.

[36] Khaled Salah and Minhaj Ahmad Khan. Iot security: Review, blockchain solutions,
and open challenges. 11 2017.

[37] Ian Sommerville. Software Engineering. Pearson, 10th edition, 2015.

[38] Economist Staff. Blockchains: The great chain of being sure about things. The
Economist, 18, 2016.

[39] Nick Szabo. Smart contracts. Unpublished manuscript, 1994.

[40] Nick Szabo. Smart contracts: building blocks for digital markets. EXTROPY: The
Journal of Transhumanist Thought,(16), 1996.

[41] Fabian Vogelsteller, Vitalik Buterin, et al. Ethereum whitepaper, 2014.

[42] Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass, Cesare
Pautasso, and Paul Rimba. A taxonomy of blockchain-based systems for architecture
design. In Software Architecture (ICSA), 2017 IEEE International Conference on,
pages 243–252. IEEE, 2017.

83

Appendices

85

Appendix A - A Survey on Tools Used for Smart Contract
Development

87

Tools for Smart Contract Development
20 responses

Screener

Have you ever developed or tried to develop a smart contract?
20 responses

Development History

For which platform or platforms have you developed (or tried to
develop) a smart contract?
19 responses

Yes

No

95%

89

Which programming language or languages have you used to develop a
smart contract?
18 responses

Have you been successful on developing and deploying your smart
contract?
19 responses

NEO

Ethereum

14 (73.7%)14 (73.7%)14 (73.7%)14 (73.7%)

11 (57.9%)11 (57.9%)11 (57.9%)11 (57.9%)

0 5 10 15

Solidity

Vyper

Serpent

Neo­Python

Neo­GO

Neo­Sharp (C#)

Neo­Js

Neo­Ruby

C++

11 (61.1%)11 (61.1%)11 (61.1%)11 (61.1%)

0 (0%)0 (0%)0 (0%)0 (0%)

0 (0%)0 (0%)0 (0%)0 (0%)

12 (66.7%)12 (66.7%)12 (66.7%)12 (66.7%)

1 (5.6%)1 (5.6%)1 (5.6%)1 (5.6%)

8 (44.4%)8 (44.4%)8 (44.4%)8 (44.4%)

1 (5.6%)1 (5.6%)1 (5.6%)1 (5.6%)

0 (0%)0 (0%)0 (0%)0 (0%)

1 (5.6%)1 (5.6%)1 (5.6%)1 (5.6%)

Yes

No

10.5%

89.5%

Chapter

90

What do you feel that made you not be successful on developing and/or
deploying your smart contract?
2 responses

Lack of guides, information and documentation.

Lack of doc at that time

What do you feel that made you be successful on developing and/or
deploying your Smart Contract?
18 responses

Tutorials.

Blind luck? Given that the docs for solidity at the time were pretty rough, it was a lot of trial and error.

One of the biggest pluses was that I had a priv-net already setup and with decent tools to facilitate testing
once the contract was deployed, and I didn't have to do that myself.

Documentation

I did it! I was happy

Fixing bugs in Neo wallet software

existing knowledge of the language

Seeing it deploy and be interactable

It took a lot of work, I had to study for many hours

Not stopping to develop when things got tricky (see next question).

The community support, documentation, great tools

Engaging and collaborating with the NEO community

The CoZ community

Trial and error, and the Tru�e framework.

Persistence!

91

NeoCompiler.io ecosystem. The ability of having an online tool for easy doing all necessary steps.

it runs

It's running on testnet.

asking people who had done it before

What were the biggest challenges you faced when developing your
smart contract?
18 responses

Brand new tools for a brand new language, with very sparse documentation. Most knowledge on contract
development at the time was scattered along random blog posts.

So, mainly docs docs docs.

lack of visibility, some easy way to test

Bad documentation

Restricted python usage and no auto-complete

Understanding all the possible scenarios one might introduce a vulnerability

debugging

Learning security and syntax

Code is being updated daily, documentation gets old very quickly

Data types for the C# compiler were tricky.

Debugging!

Working with such new technology meant getting involved with the development of the platform itself in
order to support or requirements

The lack of high quality tools to test and deploy.

Lack of documentation. New development style.

Con�dence in my code's correctness and security.

Installing all necessary tools and OS

security

I had to develop my own tool (NeoCompiler Eco) :)

understanding how to deploy, and the mechanics of how smart contracts work on the evm, how storage
works, how iterating isn't feasible, etc. expecting it to be like javascript but actually being quite different

Chapter

92

Development Tools

Have you ever used any tools to help you with smart contract
development?
19 responses

If you answered "yes" to the last question, which tools have you used?
14 responses

Yes

No

26.3%

73.7%

0 2 4 6 8

Truffle

Neo Compiler Eco

Ganache

Remix IDE

NEO GUI Developer

NEO Debugger Tools

neo­python

Rider

visual studio code with

solidity plugin

7 (50%)7 (50%)7 (50%)7 (50%)

3 (21.4%)3 (21.4%)3 (21.4%)3 (21.4%)

4 (28.6%)4 (28.6%)4 (28.6%)4 (28.6%)

6 (42.9%)6 (42.9%)6 (42.9%)6 (42.9%)

4 (28.6%)4 (28.6%)4 (28.6%)4 (28.6%)

3 (21.4%)3 (21.4%)3 (21.4%)3 (21.4%)

2 (14.3%)2 (14.3%)2 (14.3%)2 (14.3%)

1 (7.1%)1 (7.1%)1 (7.1%)1 (7.1%)

1 (7.1%)1 (7.1%)1 (7.1%)1 (7.1%)

93

Which features do you �nd useful on a smart contract development
tool?
18 responses

Thank you for answering

6 responses

nunosilva800@gmail.com

mgontav@whitesmith.co

lllwvlvwlll@cityofzion.io

nickazg@gmal.com

vncoelho@gmail.com

ebaizel@gmail.com

0 5 10 15

Online Editor and

Compiler

Testing Framework

Github Integration

Smart contract

deployment to the

testne…

Test Wallets

Transactions Status

Blockchain Status

Event Log

Field validation of

required parameters…

Debugging replay of

past transactions a…

Being able to quickly

deploy a base pri…

9 (50%)9 (50%)9 (50%)9 (50%)

12 (66.7%)12 (66.7%)12 (66.7%)12 (66.7%)

12 (66.7%)12 (66.7%)12 (66.7%)12 (66.7%)

5 (27.8%)5 (27.8%)5 (27.8%)5 (27.8%)

4 (22.2%)4 (22.2%)4 (22.2%)4 (22.2%)

14 (77.8%)14 (77.8%)14 (77.8%)14 (77.8%)

11 (61.1%)11 (61.1%)11 (61.1%)11 (61.1%)

11 (61.1%)11 (61.1%)11 (61.1%)11 (61.1%)

9 (50%)9 (50%)9 (50%)9 (50%)

12 (66.7%)12 (66.7%)12 (66.7%)12 (66.7%)

6 (33.3%)6 (33.3%)6 (33.3%)6 (33.3%)

7 (38.9%)7 (38.9%)7 (38.9%)7 (38.9%)

8 (44.4%)8 (44.4%)8 (44.4%)8 (44.4%)

12 (66.7%)12 (66.7%)12 (66.7%)12 (66.7%)

7 (38.9%)7 (38.9%)7 (38.9%)7 (38.9%)

8 (44.4%)8 (44.4%)8 (44.4%)8 (44.4%)

1 (5.6%)1 (5.6%)1 (5.6%)1 (5.6%)

1 (5.6%)1 (5.6%)1 (5.6%)1 (5.6%)

1 (5.6%)1 (5.6%)1 (5.6%)1 (5.6%)

1 (5.6%)1 (5.6%)1 (5.6%)1 (5.6%)

1 (5.6%)1 (5.6%)1 (5.6%)1 (5.6%)

Chapter

94

Appendix B - Planning of the Second Semester - Gantt Chart

95

97

Appendix C - Project Tree

NeoCompiler-Eco

neocompiler-eco

CHANGELOG.md

CNAME

LICENSE

README.md

VERSION

appHttp.js

buildCompilers.sh

build_everything.sh

compilers

docker-compiler-csharp

...

docker-compiler-go

...

docker-compiler-java

...

docker-compiler-js

...

docker-compiler-python

...

docker-compiler-ts

...

config

config.example.json

config.json

connections.json

controllers

index.js

test_cases.js

test_suite.js

user.js

docker-compose-eco-network

docker-compose.yml

logs-neocli-node1

...

logs-neocli-node2

...

logs-neocli-node3

...

logs-neocli-node4

...

logs-neopython-rest-rpc

...

neo-cli

configs

wallets

neo-python

99

Chapter

custom-config.json

docker-neo-csharp-node

...

docker-neo-python

...

docker-neo-scan

...

docker-ubuntu-dotnet

...

dockers-neo-scan-neon

...

examples

...

exportingGitCommitVersion.sh

express-servers

appCompiler.js

appEcoServices.js

connections.json

outputs

...

run-CompilerExpress-RPC.sh

run-EcoServicesExpress-RPC-SocketIo.sh

socket-js

connections.js

startAllExpressNohup.sh

index.html

migrations

2018-11-21-1500-create_user.js

2018-11-21-1515-create_test_suite.js

2018-11-21-1530-create_test_case.js

2018-12-04-1600-add_atachgasfeejs_to_test.js

2018-12-04-1615-add_attachneojs_to_test.js

2018-12-04-1615-add_wallet_invokejs_to_test.js

2018-12-04-1616-add_attachgasjs_to_test.js

2018-12-04-1618-add_invokehashjs_to_test.js

2018-12-04-1619-remove_params_from_test.js

2018-12-04-1620-add_invokeparamsjs_to_test.js

models

index.js

test_cases.js

test_suite.js

user.js

node_modules

...

npm-debug.log

npm_prune_install.sh

package-lock.json

package.json

public

assets

coz-tesnet.json

100

eco-shared-privanet.json

localhost.json

mainnet.json

testnet.json

css

bootstrap-3.2.0.min.css

bootstrap-theme-3.2.0.min.css

bootwatch-theme.min.css

codemirror.css

fontawesome-all.min.css

login-modal.css

main.css

fonts

...

images

...

js

ace-v133-min-noconflict

angular-1.2.18.min.js

angular-1.6.9.min.js

angular-route-1.2.18.min.js

angular-route.min.js.map

angular.min.js.map

bootstrap-3.2.0.min.js

bootstrap.min.js

codemirror.js

common

blockchain.js

cookies.js

crypto.js

helper.js

neoEditorScripts.js

neon-opt

opcodes.js

sessionManagementScripts.js

testSuiteScripts.js

testsScripts.js

wallet_AutomaticClaimAndSend.js

jquery-3.3.1.min.js

login-modal.js

main.js

neon-js-browser-3.10.0.js

rawgit

socket.io-2.1.1.js

partials

404.html

about.html

ecolab.html

home.html

phonegap

README.md

101

Chapter

config.xml

createNeoCompiler-Phonegap-Zip.sh

templates

footer.html

header.html

login-modal.html

modal.html

test-case-modal.html

test-case-to-suite-modal.html

test-suite-modal.html

webfonts

...

pull.sh

runEco_network.sh

runHttpExpress.sh

seeders

stopEco_network.sh

stopExpressServers.sh

tests

test_case.js

test_suite.js

user.js

NEO Node Tap

neo_node_tap

README.md

dump.rdb

events

__init__.py

__pycache__

exceptions.py

models.py

runnode.py

settings.py

tasks.py

tests.py

requirements.txt

venv

102

Appendix D - JSON Structure for Test Import

[

{

"name": "",

"description": "",

"contract_hash": "",

"event_type": "",

"expected_payload_type": "",

"expected_payload_value": "",

"attachgasfeejs": "",

"attachneojs": "",

"attachgasjs": "",

"wallet_invokejs": "",

"invokehashjs": "",

"invokeparamsjs": ""

}

]

• ”name” - optional test case name field;

• ”description” - optional test case description field;

• ”contract hash” - the contract hash of the smart contract which will emit the event;

• ”event type” - the expected type of the event resulting from the smart contract
invocation1 (i.e.: SmartContract.Runtime.Log);

• ”expected payload type” - the expected data type of the event resulting from running
the test2 (i.e.: String, ByteArray);

• ”expected payload value” - the expected value of the event resulting from running
the test;

• ”attachgasfeejs” - the amount of NEOGas to be paid as fee in the test case execution;

• ”attachneojs” - the amount of NEO to be attached in the test case invocation;

• ”attachgasjs” - the amount of NEOGas to be attached in the test case invocation;

• ”wallet invokejs” - the NeoCompiler Eco wallet to be used on the test case invocation
(i.e.: wallet 0, wallet 1);

• ”invokehashjs” - the hash of the contract to be invoked by the test;

• ”invokeparamsjs” - a stringified JSON with the parameters of the test case invoca-
tion;

1https://neo-python.readthedocs.io/en/latest/neo/SmartContract/smartcontracts.html#

event-types
2https://neo-python.readthedocs.io/en/latest/data-types.html

103

https://neo-python.readthedocs.io/en/latest/neo/SmartContract/smartcontracts.html#event-types
https://neo-python.readthedocs.io/en/latest/neo/SmartContract/smartcontracts.html#event-types
https://neo-python.readthedocs.io/en/latest/data-types.html

	Introduction
	Context and Motivation
	Smart-Contract Development Process
	NEO

	Objectives and Scope
	Proposed Solution
	Report structure

	State of the art
	Blockchain and Bitcoin
	Smart Contracts
	Ethereum
	NEO
	NEO Economic Model
	NEO Nodes
	Consensus Mechanism
	NEO Smart Contracts

	Smart Contract Development Tools
	Ganache
	Truffle Suite
	Remix IDE
	NEO GUI Developer
	NEO Debugger Tools
	NeoCompiler Eco
	NEO WebDebugger
	Conclusion

	Software Testing
	Unit Testing
	Test Case
	Test Automation
	Test Automation Framework

	Project Management
	Risk Management
	Risk Monitoring

	Development Methodology
	Project Management Tools
	Trello
	Github

	Planning
	First Semester
	Second Semester

	Requirement Specification
	Stakeholders
	System Actors
	Non-Authenticated User
	Authenticated User

	Requirements Gathering
	Functional Requirements
	Non-Functional Requirements
	Technical Constraints
	Quality Attributes

	Architecture
	Context Diagram
	Containers Diagram
	Components Diagram
	Server Side Web Application
	NEO Node Tap

	Entity Relationship Diagram

	Implementation
	Database
	NEO Node Tap
	Event Listening
	Models
	Event Handling

	Server Side Web Application
	Express Application
	Authentication
	Routes and Controllers
	Models

	Single Page Web Application
	Landing Page and Authentication
	Editing, Compiling and Deploying Smart Contracts
	Test Cases and Test Suites

	Testing
	Server Side Web Application
	Single Page Web Application
	NEO Node Tap

	Conclusion
	Future Work

	References
	Appendices

