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Resumo

De acordo com as estat́ısticas, o cancro da pele é um dos cancros mais prevalentes

mundialmente com um rápido aumento do número de casos nas últimas décadas. O

Melanoma é o cancro da pele mais perigoso, causando um maior número de mortes

que qualquer outro cancro. No entanto, através de uma monitorização regular o seu

diagnóstico prematuro e consequente irradicação é posśıvel. Através da monitor-

ização da pele, os dermatologistas são capazes de localizar alterações de padrões em

lesões cutâneas previamente existentes. No entanto, mesmo para profissionais mais

experientes, a quantificação de padrões ao longo do tempo é uma tarefa dif́ıcil.

Deste modo, por forma a facilitar a monitorização da pele e a classificar lesões

malignas, vários sistemas de diagnóstico assistido têm vindo a ser desenvolvidos

ao longo dos anos. No entanto, é escasso o trabalhado desenvolvido direcionado

para a avaliação da evolução de lesões cutâneas. O desenvolvimento de um sistema

automatizado que detete uma evolução significativa das lesões pode ser usada como

ferramenta adicional, fornecendo um aviso aos dermatologistas e pacientes. O estudo

presente nesta tese investiga a avaliação da evolução de lesões cutâneas ao longo do

tempo através da análise comparativa de imagens dermoscópicas adquiridas ao longo

do tempo. Nomeadamente a influência da aquisição de imagens dermoscópicas na

avaliação da evolução das lesões foi estudada.

Esta avaliação foi realizada recorrendo a um algoritmo de duas fases. Inicialmente foi

feita uma segmentação automática da área da lesão nas duas imagens a serem com-

paradas. Posteriormente, um alinhamento da máscara binária foi realizado de modo

a extrair caracteŕısticas da borda e forma da lesão que pudessem estar relacionadas

com a evolução desta. A avaliação foi realizada com os métodos Fuzzy C-Means e

Modelo de Mistura de Gaussianas e Classificação de Árvores de Decisão. Por sua

vez, a performance foi avaliada usando rótulos extráıdos de vários anotadores.

Os resultados obtidos sugerem que a avaliação da evolução com apenas carac-

teŕısticas de borda e forma é insuficiente. Este estudo indica também que uma
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aquisição incorreta de imagens dermoscópicas tem impactos negativos na extração

de caracteŕısticas. Foi ainda realizada uma análise que demonstra que a extração

de rótulos de vários anotadores sem experiência médica afeta o desempenho do al-

goritmo, limitando a avaliação da evolução da lesão cutânea.

Os resultados da avaliação da evolução são aqui apresentados de modo a serem

usados como incentivo para atrair mais investigação nesta área de estudo.

Palavras-chave: lesão cutânea, avaliação da evolução, dermoscopia, segmentação

de imagem, registro de imagem.
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Abstract

According to statistics, Skin Cancer represents one of the most prevalent cancers

worldwide with a rapid increase in the last decades. Within skin cancer, Melanoma

represents the most dangerous causing more deaths than any other cancer. Fortu-

nately, early diagnosis of Melanoma has proven to be curable making the regular

monitoring of the skin essential. When monitoring the skin, dermatologist looks for

patterns changes in previously pigmented skin lesions. However, quantification of

patterns over time is a difficult task even for the most experienced doctor.

Over the years, many automated diagnostic systems have been developed for clas-

sification of malignant lesions. However, there has been very little work directed

towards the assessment of the evolution of pigmented skin lesions. Development of

an automated system which detects a significant evolution of the skin lesion can be

used as an additional tool by providing a warning to dermatologists and patients.

This study investigates the assessment of the evolution of a skin lesion through

comparative analysis of dermoscopic images acquired over time. Special attention

has also been paid off how the acquisition of dermoscopic images may influence the

assessment of evolution.

The assessment of evolution was performed in a two-step algorithm. The first step

consisted of automated segmentation of the lesion area in the two images being

compared. Afterward, alignment of the binary mask was performed in order to

extract border and shape features which could relate to an evolution of the lesion.

The assessment was computed with the clustering methods Fuzzy C-Means and

Gaussian Mixture Models and, Decision Tree Classification. The performance was

evaluated using labels extracted from multiple annotators.

The results suggested that assessing the evolution with only border and shape fea-

tures is insufficient. This study also indicates that an incorrect acquisition of the

dermoscopic images would have negative impacts on the correct extraction of fea-

tures. An analysis has also been conducted that shows that the extraction of labels
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from annotators with no medical experience affects the algorithm performance which

limited the assessment of the evolution of the skin lesion.

The results of the assessment of evolution are presented such that they can be used

as an incentive to attract more research in this area of study.

Keywords: skin lesion, evolution assessment, dermoscopy, image segmentation,

image registration.
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CAD Computer-aided diagnosis.

CPD Coherent Point Drift.

DRA Demons Registration Algorithm.

EM Expectation-Maximization.

FFD Free Form Deformation.

GGR Global Growth Rate.

GMM Gaussian Mixture Models.

GVF Gradient vector flow.

LGR Local Growth Rate.

MSER Maximally stable extremal region.

NIM Number of incorrect matches.

RANSAC RANdom SAmpling Consensus.
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SIFT Scale Invariant Feature Transform.

UV Ultraviolet.
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Introduction

1.1 Context

1.1.1 The Skin Cancer Problem

In the present day, skin cancer represents one of the most common types of cancer

among the Caucasian population [5]. Its prevalence has been increasing progressively

in the last few decades reaching a total of 2 to 3 million skin cancers and 132.000

melanoma skin cancers each year [6]. To a certain extent, Melanoma comprises only

4% of all skin cancers but is responsible for 80% of skin-cancer related deaths [7].

Advanced melanoma is the fastest growing malignancy in men and the second-fastest

growing in women [8]. Every year, more than 100.000 new cases of Melanoma are

diagnosed in Europe and more than 22.000 European citizens lose their lives to the

disease [9].

The human skin is, nowadays, increasingly subject to vulnerabilities, much of it from

overexposure to potentially harmful sun rays. This is mainly due to continuously

loss of the atmosphere protective filter - the ozone layer - allowing more Ultraviolet

(UV) radiation reaching the Earth’s surface [6].

The monitoring of skin lesions should, according to the recommendations of der-

matologists, be done regularly by the person himself, with high regularity in most

cases. Depending on the degree of risk associated with the type of skin and personal

history, some patients should be accompanied by medical specialists, with prescribed

regularity. Early diagnosis of melanoma skin cancer results in a survival chance of

95 %, while late detection follows a fatal prognosis with an average survival of 6 to

9 months [10].

However, monitoring a skin lesion is quite a difficult task. When performing skin

inspection, dermatologists look for patterns or early signs that are associated with a
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malignant growth of the lesion. Such a task is very subjective since it is dependent on

the human visual perception. A systematic approach is required, although diagnostic

experience can be an asset. However, even the most experienced dermatologist will

have occasional difficulty to make the best possible diagnostic decision. An erroneous

decision can have negative consequences such as the evolution of the malignant form

of the skin lesion - the melanoma.

On account of these statistics, there is the need for an additional tool for comple-

menting traditional diagnosis.

1.1.2 The Research Problem

In the last decades, Computer-aided diagnosis (CAD) has been much explored by

researchers in the area of medical dermatology. These are systems that assist doctors

in the interpretation of medical images. Various approaches for implementation of

CAD systems of skin lesions have been developed. The majority of the objective

of these CAD systems is the classification of different skin lesions and especially

the detection of Melanoma. However, not much attention has been paid to the

development of automated systems for evaluating changes in skin lesions. This

would require to have at least two or more images of the same lesion captured at a

different time. Thus, much of the work performed outside the main scope focus on

performing a precise registration [11, 12] or extracting robust features for evolution

assessment [13].

1.2 Motivation

The use of Computer-aided diagnosis (CAD) has been crucial in filling gaps in

diagnoses performed by the naked eye by dermatologists. The diagnosis is directly

dependent on the visual acuity (the ability of the eye to distinguish two very close

points) of the dermatologist, where only the macroscopic characteristics of the lesion

are evaluated, ignoring critical microscopic characteristics [14]. In other words,

human vision lacks precision and the ability to quantify information from an image.

Dermatologists often have high-capacity visualization instruments, such as cameras

and lens systems - dermoscopes, capable of enlarging with great detail the skin’s

lesions, and still capable of relating these marks in time, making it easier to see

images with the characteristics of sharpness, correctness, and resolution required

2
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for short diagnosis. On the other hand, for self-control monitoring, the people

themselves do not have the same medical devices to acquire the image and, for this

reason, it will be more difficult to obtain images with the same quality and resolution

that can alert them to potentially significant alterations and, therefore, to the need

to consult a doctor.

According, to the ABCDE method of detection of Melanoma (detailed in Subsection

2.5), evolution is one of the essential parameters to be analyzed when monitoring

possible skin lesion malignancies. In order to assess the evolution of a skin lesion,

there is a need to acquire images of possible malignant skin lesions for growing

quantification. However, due to the lack of availability of databases of this nature,

especially of free access, we proposed a protocol with the Portuguese Institute of

Oncology Francisco Gentil for the sharing of dermoscopic time-series images.

Still, when images are acquired at different times, their acquisition may be done

differently or present artifacts that weren’t present in previous acquisitions. For

that matter, registration (the process of obtaining the best alignment between two

images) plays the first vital step to assess lesion evaluation. Computing a proper

registration between images is critical to allow a direct and better assessment of the

evolution of skin lesion.

In this work, we pretend to assess the skin lesion evolution through the extraction of

border and shape features, in order to provide a warning to the doctor when a lesion

may have evolved or not. In order to do so, registration of automatically segmented

binary masks was also performed. Furthermore, we desire to understand how the

conditions for image acquisition and treatment may influence the primary goal.

1.3 Structure

The remaining of this dissertation is organized as follows:

• Chapter 2 provides the medical background of the skin lesion as well as image

techniques for assessing lesion details. Moreover, a summary of the most used

clinical diagnostic methods for melanoma is also described.

• Chapter 3 describes the state of the art of image analysis techniques typically

integrated into automated diagnosis systems. Moreover, a brief description of

the attempts done for evolution assessment is provided.

• Chapter 4 explains in detail all the different stages and methodologies used

3
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towards the evolution assessment.

• Chapter 5 presents results from different stages of workflow along with dis-

cussion analysis.

• Chapter 6 concludes the dissertation by displaying an overview of the work

together with its limitations and future work.

4



2

Human Skin Medical Background

2.1 The Human Skin

The skin is the largest organ in the human body covering all of its external surface

area. It serves both as a mechanism of communication between the internal and

the external environment and as a defense structure. In addition, it cooperates

with other organs for the proper function of the organism such as thermoregulation

and elaboration of important metabolites like Vitamin D. The human skin is a

stratified estructure consisting of two main distinctive parts: the dermis and the

epidermis.(refer to Figure 2.1).

The epidermis is the most superficial and thinner layer of the skin. It is composed of

Stratified squamous epithelium which is a layered, paved and keratinized tissue. The

tight junction between these cells makes the epithelium tissue an efficient barrier

against the entry of invading agents and the loss of body fluids. Internally, the

epidermis is divided into several layers, from bottom to top: stratum basale, stratum

spinosum, stratum granulosum, and stratum lucidum. In these four layers, there

are presently four of the principal type cells, i.e., Keratinocytes, Langerhans cells,

Merkel cells, and Melanocytes.

• Keratinocytes, also known as basal cells, represent the majority of the epi-

dermis and are located in the stratum basale. Within the stratum basale,

keratinocytes are continually dividing and forming new cells. On account,

they are forced to differentiate and migrate towards the surface of the epider-

mis. During this migration, these cells become further away from the blood

vessels, which are located in the dermis. Since the epidermis does not have

blood vessels, these cells will eventually die from lack of nutrients and oxygen

and discarded [1].

• Langerhans cells are dendritic cells originated from bone marrow that later
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migrated to the epidermis. These cells only represent a small portion of total

cells of the epidermis where their primary objective is to detect and report

dangerous invasive cells to the immune system. Moreover, UV radiation can

cause a reduction in the number of normal Langerhans cells [15]

• Melanocytes are dendritic cells found in the epidermis responsible for the pro-

duction of the pigmented melanin to the surrounding epidermis cells. Apart

from giving color to the skin, it serves as a protection against UV radiation

from sunlight. In other words, when the skin is exposed to radiation, the

melanocytes produce more melanin in order to protect the skin from damag-

ing, resulting in tanning and, in exceptional cases, the appearance of freckles.

Regarding the objective of this study, Melanocytes represent the most important

type of cells on account of malignant transformation potential.

The other important layer of the skin, the dermis, is located just beneath the epi-

dermis. The dermis is formed of dense connective tissue of elastic and collagen

fibers. Together it forms a mesh that gives flexibility to the skin. Its composition

is essentially collagen (about 70%) and other glycoproteins and fibers of the elastic

system.

2.2 Cancers of the skin

The classification of skin lesion into benign and malignant is based on the effects

they have on the human body. Benign skin lesions are slow-growing, expansive and

well tolerated by the host organism. On the other hand, malignant skin lesions have

rapid and unlimited growth and may infiltrate in other tissues. In some individual

cases, malignant skin lesions can develop in such a way that can spread to other

tissues of the body. This is also known as metastasis. The development of malignant

skin lesions are essentially mutations of oncogenes induced by UV radiation.

Skin cancers can develop from any cells, but non-pigmented skin cells are more likely

to develop to skin cancer. The most common non-pigmented cancers are Basal Cell

Carcinoma and Squamous Cell Carcinoma. They are named from their respective

cells such as basal cells and squamous cells respectively. Luckily, these type of cancer

is more easily to cure [16].
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Figure 2.1: Anatomy of skin and subcutenous layer from a sectional view [1].

2.2.1 Pigmented Skin Lesions

Pigmented Skin lesion are the other type of skin lesion and, are divided into benign

and malign lesions. Bening lesions are commonly known as moles and are character-

ized by their symmetrical shape and small size. However, atypical moles can develop

into their malignant form, also known as Melanoma. Nevertheless, there are many

types of pigmented skin lesions that we should know about:

• Common nevus (Figure 2.2(a)-(b)) - is the most common mole in the human

body and can be further divided in junctional nevus, compound nevus and

dermal nevus, depending on which layer of the skin it grows [16].

• Blue nevus (Figure 2.2(c)) - are a variant of the common nevus characterized

by their rare variant of color blue.

• Dysplastic nevus (Figure 2.2(d)) - also known as atypical nevus, is known

for its similar appearance to melanoma. Atypical nevus are usually larger than

the common nevus, with a big variant of colors. Besides is one of the main
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precursors of melanoma [17].

• Congenital nevus (Figure 2.2(e)) - they are present since birth and can

be larger than 20 cms. They are highly suspicious to evolve to melanoma

depending on their size. [17, 16].

• Spitz nevus (Figure 2.2 (f)) - is distinguish by its small pinkish modules and

are usually seen in children [16].

(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Clinical and Dermoscopic images of benign pigmented skin lesions:
(a) junctional nevus; (b) dermal nevus; (c) blue nevus; (d) dysplastic nevi; (e)
congenital nevus; (f) spitz nevus. Original images from DermNet New Zealand [2].

Accurately diagnosing a benign skin lesion and distinguishing it from a malignant
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condition requires consideration of the physical and histological characteristics of the

lesion as well as the patient’s attributes and overall condition. Biopsy or surgical

excision is commonly performed when a potential malignancy cannot be ruled out

[17].

2.3 Melanoma

Lately, the incidence of Melanoma has been rising in a fast pace in New Zealand,

Australia, North America, and Europe, precisely in the white population, with high-

est incident seen in Australia and New Zealand [18]. In contrast, the disease is less

prevalent in African Americans and very exceptional in the Japanese population.

There are many risk factors that we can control to avoid Melanoma. The main

factor is the exposition to sunlight but, there are risk factors that can be prevented

such as time outdoors during childhood, proximity to the equator and viruses [16].

Melanoma can appear from normal skin cells or pigmented skin lesion. In case of

pre-existent pigmented skin lesion, take place a change of in size, change in color

and exhibition of an irregular border. It is up to us to be vigilant and aware of

a change of color, size or border and, if this occurs, assessment by a specialist

is required. When Melanoma is detected, surgery is always the most indicated

treatment. However, in advanced stages, when metastasis has occurred, palliative

treatments like radiotherapy, chemotherapy, and immunotherapy are only with the

objective to relieve the symptoms [1, 16].

2.4 Skin Imaging Techniques

Nowadays, there are numerous non-invasive skin visualization techniques to help

diagnose different skin lesions. Clinical photography was a breakthrough in derma-

tology since it was the beginning of the use of technology for storing information

in favor of medicine. Besides clinical photography, many imaging techniques allow

for the visualization of different skin lesion structures. For instance, dermoscopy,

confocal scanning laser microscopy, optical coherence tomography, high-frequency

ultrasound, magnetic resonance imaging, positron emission tomography, among oth-

ers [19].
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2.4.1 Dermoscopy

Dermoscopy is a non-invasive skin imaging technique that promotes the visualization

of small structures not detectable to the naked eye. This technique is described due

to its capability of optical magnification up to x10. The technique is based on the

interposition between a lens and the skin of some drops of water, oil or ultrasound

gel. In this way, the skin becomes translucent allowing the dermatologist to observe

up to the dermo-epidermal junction numerous peculiar characteristics for the early

diagnosis of melanoma that are not visible to the naked eye [20, 21]. With the

development of the technology, new-generation dermoscopes do not need the use

of immersive fluid but, instead, an integrated polarized light, allowing the rapid

screening of multiple skin lesions in a short period.

Overall, dermoscopy has proven to be a reliable and important tool, providing ad-

ditional accurate analysis, that would be inconceivable with only the naked eye,

allowing the physician’s experience in the diagnosis of pigmented skin lesions [21].

2.5 Diagnostic Methods

Over time, with the crescendo of information, there was a need of well defined cri-

terias to help dermatologist, physicians and clinicians diferentiate pigmented skin

lesions in melanocytic and non-melanocytic and later melanocytic in benign and

malignant. The most known diagnostic methods that are currently use are: the

ABCDE rule of dermoscopy, the 7-point Check List, the Menzies Method and fi-

nally the Revised Pattern Analysis [4]. ABCDE rule is the most commonly used in

dermoscopy and was first introduced by Friedman et al. in 1985 [17]. Initially, in

ABCD rule, A stands for assymetry, B for irregularity or sharpness of the border,

C for color variation and D for diameter (or differential sctructures). Later, Abbasi

et al. [22] proposed the inclusion of evolving as one additional criteria, since suspi-

cious pigmented skin lesions may evolve in different aspects over time. The 7-point

Checklist, the Menzies Method and the Revized Pattern Analysis are summarized

in the tables 2.1, 2.2 and 2.3 respectively.

After all, in the majority of cases, these clinical diagnostic methods show low ac-

curacy on account of different measurements consensus, subjective of diagnosis and

poor correlation of standards [23].
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7-point checklist

(1) Atypical pigmented network
(2) Blue-white veil
(3) Atypical vascular pattern
(4) Irregular streaks
(5) Irregular pigmentation
(6) Irregular dots/globules
(7) Regression structures

Table 2.1: Summary of the 7-point checklist. Based on [4].

The Menzies Method

Negative features
Point and axial symmetry of pigmentation
Presence of a single color
Positive features
Blue-white veil
Multiple brown dots
Pseudopods
Radial streaming
Scar-like depigmentation
Peripheral black dots-globules
Multiple blue/gray dots
Broadened network

Table 2.2: Summary of the Menzies Method. Based on [4].
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Benign Malignant

Dots
Centrally located or situated
right on the network

Unevenly distributed and
scattered focally at the
periphery

Globules

Uniform in size, shape, and
color, symmetrically located
at the periphery, centrally
located, or uniform throughout

Globules that are unevenly
distributed and when reddish
are highly suggestive
of melanoma

Streaks
Radial streaming or pseudopods
tend to be symmetrical and uniform
at the periphery

Radial streaming or pseudopods
tend to be focal and irregular at
periphery

Blue-white veil Tends to be centrally located
Tends to be asymmetrically located
or diffuse almost over entire lesion

Blotch
Centrally located or may be diffuse
hyperpigmented area that extends
almost to periphery of the lesion

Asymmetrically located or there are
often multiple asymmetrical blotches

Network
Typical network that consists of light
to dark uniform pigmented lines and
hypopigmented holes

Atypical network that may
be nonuniform with black/brown
or gray thickened lines and holes
of different sizes and shapes

Network borders
Either fades into the periphery
or is symmetrically sharp

Focally sharp

Table 2.3: Summary of patterns of benign and malignant lesions. Based on [4].
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Literature Review

This chapter aims at contextualizing and show the state of the most recent studies

within the area of interest of this dissertation. For this reason, different approaches

are reviewed in this chapter focusing on the following analysis steps: preprocessing,

segmentation, feature extraction, registration and matching and finally evolution

assessment. Thus, this chapter attempts to demonstrate the obstacles that the state

of the art has encountered to overcome the problem of the evolution and comparative

analysis of skin lesions.

3.1 Preprocessing

Preprocessing aims at improving the image by correcting any defect arising from

its acquisition and highlighting important details for the analysis. In order for the

segmentation step to have satisfactory results, it is necessary that the image be

with the minimum of imperfections. There are many artifacts present in pigmented

skin lesions, such as hair, air bubbles, ruler markings, shadows and reflections.

Preprocesing can be divided in two main groups of methods: artifacts removal and

image enhancement.

Hair represents one of the biggest obstacles before segmentation. The presence of

hair, especially thick hair, causes a considerable loss of accuracy during segmenta-

tion. The detection of the border can become very difficult or even impossible, not

reflecting the reality. Previously, before the use of specialized software, the shaving

of the lesion area was needed. To avoid this problem, the first method most widely

used and on which later proposed methods are based is the dull razor [24]. Sultana

et al. use the technique of Top Hat Transform (described in detail in Subsection

4.2.2) to detect hairs resulting in a mask of hair that is later removed using an in-

painting method based on DullRazor [23]. Recently [25], made a study of different
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hair removal methods based on three techniques: linear interpolation, inpainting

by Partial Differential Equation (PDE)-based diffusion and exemplar-based. They

realized that fast inpainting methods were faster and with better performance. In

the same study, [25] used a Derivative of Gaussian (DOG) for hair detection and

fast marching inpainting scheme. Therefore, [25] proposed new hair removal based

on a multi-resolution inpainting method which uses a multi-resolution coherence

transport inpainting method [26]. In addition, methods based on morphological

operations such as erosion and dilation were also proposed. Møllersen et al. [27]

applied a top hat operation using a long and thin structuring element (SE), in both

horizontal and vertical directions. In the end, the detected hair were replaced using

pixels values from morphological closing using an SE disc.

Even though hair represents the artifact which may influence more negatively, there

are others that can also affect further algorithms such as air bubbles, reflections, ruler

(scale) marks, small pores, among others. Median Filter is one of the most used

techniques to deal with this type of artifacts due to its ability to remove noise while

preserving edges. In 1995 and later in 2003, Kjoelen et al. [28] and Maglogiannis

[29] used a [3x3] size filter for noise reduction due to the presence of hair, scales

and light reflections. In further studies, Celebi et al. [20] state that the appropriate

median filter size should be proportional to the image size for better results, being

the size determined by this rule of thumb:

n = floor(5.
√

((M/768).(N.512))) (3.1)

The choice of 3.1 is based on good results from a 768 x 512 image with an n=5

median filter. One article, in particular, applied the technique Gaussian Smoothing

which consisted of a 3x3 size Gaussian filter to minimize the effects of small artifacts

[30].

Regarding Color Transformation, various approaches have been adopted. Both [25]

and [31] changed color space from Red-Green-Blue (RGB) to CIE L*a*b due to

its relative perceptual uniformity and better human perception. On the contrary,

[32] converted RGB to gray-scale for better functioning and accuracy of further

algorithms. In addition, [33] used Shades of Gray as a Color Constancy method in

order to retrieve the real colors that are affected by the acquisitions imperfections.

The objective of this method is ”to transform the colors of an image I, acquired

under an unknown light source, so they appear identical to colors under a canonical

light source.”
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Furthermore, the problem of unbalanced illumination has been an issue that authors

have been trying to correct. Cavalcanti et al. [34] transformed RGB to Hue, Satu-

ration, Value (HSV), and retrieve the four corners of the Value channel to estimate

the new local illumination in order to minimize shading effects. Differently, [32] de-

cided that Local Normalization (LN) would be appropriate to correct non-uniform

illumination and shading artifacts, and increase local contrast.

Finally but not least, black frames are a visual characteristic of dermoscopic images.

Since dermoscopy contains different sizes and shape lens, these images may contain

dark bands with different widths. Sultana et al. [23] proposed an implementation of

a circle mask with variable size to establish an ROI. Since most of the skin lesions are

not centered in the image, starting from the middle, the circle mask was iteratively

increased until all lesion was contained.

3.2 Segmentation

The study of skin lesions segmentation has been one of the areas that research have

dedicated more efforts for improvement and performance. Within the area of com-

puter vision, segmentation refers to the process of decomposition of a digital image

into several segments (regions) that form it. In other words, segmentation can be

considered a process of classification of pixels, where they are grouped based on the

sharing of certain characteristics such as color, intensity or texture. When dealing

with dermoscopic images of pigmented skin lesions, the objective aims to locate the

exact boundary between the surrounding skin and lesion area. An accurate lesion

segmentation is very important, especially for border and shape quantifications. The

problem of attaining an accurate border detection by automatic segmentation is that

dermatologist do not usually delimitate the skin lesion resulting in a ground truth

problem [35]. On top of that, certain pigmented skin lesions are not well defined

due to depigmentation, low lesion-to-skin gradient, multiple lesion regions, among

others, making the process of skin lesion segmentation, not an easy task [36].

For this reason, plenty of algorithms have been proposed, and in the following para-

graphs, a brief discription of some of them is presented.

One of the most usual approaches is the Threshold-based methods. Based on the

fact that the values of pixels that belong to a skin lesion differ from the values of

the background, thresholding methods will classify each pixel, taking into account

whether the calculated value exceeds a certain threshold or not. The discriminant
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value varies in the literature, varying from using the luminance value calculated

from RGB channels [37], to calculate which component from RGB channel presents

the highest entropy [38]. Within thresholding algorithms, segmentation can range

from simple to adaptive or hybrid thresholding. For instance, [39] decided for simple

thresholding, where Zortea et al. [31] and Pereira et al. [32] decided for adaptive

thresholding. Zortea et al. proposed a weighted thresholding method where it

uses the Otsu’s Thresholding [40] in a new intensity image estimated by the size

of classes from background skin and lesion with a histogram analysis. Pereira et

al., on the other hand, first computes a Region of Interested (ROI) by varying the

Local Normalization scale and later, applying threshold depending on the maximum

intensity of the ROI.

Region growing or region-based methods are probably the second most used ap-

proach and consists of grouping pixels or sub-regions into larger regions. [30] is

one typical example where initial seed points are empirically decided, and the seg-

mentation stops when the skin lesion has been isolated. Moreover, Celebi et al.

[20] decided for an unsupervised approach for color segmentation using Statistical

region merging algorithm based on region growing and merging. Rajab et al. [41]

even compared a region-based segmentation with neural network edge detection.

In this study, [41] demonstrates that the region-based method provided the best

performance over a range of signal to noise ratios in lesions with different border

irregularity properties.

Segmentation can also be achieved by the application of Active-contours which con-

sists in detecting the object contours using curve evolution techniques. Erkol et

al. [42] applied Gradient vector flow (GVF) snake to determine the lesion bor-

der. Then an automatic initializing of the snakes by smoothing the image using

a 15x15 Gaussian filter and later applying the Otsu’s Thresholding to provide the

under-segmentation of the skin lesion region. Later, Tang et al. [43] proposed a

Multi-direction GVF snake which consists of an extension of the basic GVF snake.

The method traced the lesion boundary expertly despite the presence of other ob-

jects near the skin lesion area.

Segmentation methods based on soft computing was also investigated. These meth-

ods involve the classification of pixels using soft-computing techniques such as fuzzy

logic, neural networks, and evolutionary computing. Therefore, [44] proposed to

segment the lesion based on fuzzy c-means (FCM) thresholding while [41] used a

neural network for edge detection.

Another method which is becoming extremely popular in computer vision is super-
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pixel segmentation. This consists of clustering a group of pixels with similar char-

acteristics. Navarro et al. [11] proposed an adaptation of Simple Linear Iterative

Clustering (SLIC) with the following detail: instead of initializing the centers using

a regular grid, they replace the center initialization with Scale Invariant Feature

Transform (SIFT) feature points, forcing the superpixels to be smaller and more

precise around the lesion.

There is an abundant number of methods for segmentation with, every one of them,

has its advantages and drawbacks. Some authors compared some methods to un-

derstand which one was adequate. In 2009, Silveira et al. [38] evaluated 6 methods

for the segmentation of skin lesions in 100 dermoscopic images: Adaptive thresh-

olding (AT), Gradient Vector Flow (GVF), Adaptive Snake (AS), Level Set Method

of Chan et al. [45] (C-LS), Expectation-maximization level set (EM-LS) and fuzz-

based split-and-merge algorithm (FBSM). The results obtained were ground truth

images, and the errors of segmentation were evaluated using four different methods.

TDR was considered of the 4, the most relevant method of evaluation from the point

of view of the clinic, and the best methods of segmentation were AS and EM-LS

(which are semi-supervised, with TDR = 95.47% and TDR = 95.20% respectively)

and FBSM (which is a fully automatic method, with TDR = 93.67%).

3.3 Feature Extraction

There are many works concerning feature extraction in skin lesions. We exposed

an overview of extraction of features from the three main groups: shape, color, and

texture.

The irregularity of shape is one of the characteristics referred to in the ABCDE

rule since this features may infer patterns of melanocytic development or unsta-

ble regression of melanoma. Among the various types of analysis in the literature

for the extraction of form, the regional descriptors are the most used, but other

like Fourier descriptors are also present. These regional descriptors can be used to

assess geometrical properties such as area, perimeter, equivalent diameter, compact-

ness, circularity, solidity, rectangularity, aspect ratio, and eccentricity. Regarding

asymmetry of the lesion, average, variance and standard deviation are some of the

features used to describe it [46].

Concerning color, the authors state that color identifiers are mainly statistical pa-

rameters calculated from different color channels, such as the mean value, standard

17



3. Literature Review

deviation, variance, minimum and maximum colors, and color skewness of color

channels. RGB color space is usually used although some authors preferred to con-

vert to other color space such as HSV, HSL, CIE Luv, CIE Lab since they are based

on the human perception of colors [46]. Other authors have used an optical model of

the skin to interpret the colors that appear in a lesion, finding that all normal colors

of the skin lie on a two-dimensional surface fragment within a three-dimensional

(3-D) color space [47].

The texture is a descriptor that provides measures like smoothness, roughness, and

regularity and it is frequently used because it assists in discriminating between ma-

lign and benign lesions. Depending on the technique used, several characteristics

can be obtained from the texture of the lesion. One of the methods that allow

obtaining dozens of descriptive statistical data of the texture is based on the gray-

level co-occurrence matrix (GLCM) which characterizes the texture of an image by

calculating how many pairs of pixels exist with a specific value and a specific spa-

tial relationship [48, 30]. There are alternatives texture descriptors that were also

used for better discrimination of skin lesions. For example, [36] made an exhaustive

review of other features adopted, for instance, Wavelet-based descriptors, Gabor fil-

ter descriptors, Intensity distribution descriptors Haralick descriptors, Local binary

pattern (LBP), SIFT and color SIFT, among others.

3.4 Registration and matching

Registration consists of transforming different sets of images into one coordinate

system, by computing a transformation between two or more representations of the

same subject. This transformation is executed in one image in order to optimally

fit in the other image, called the reference image [49]. When dealing with skin

lesion images, registration is crucial for monitoring the evolution and calculating

the changes in the skin lesions. As a matter of fact, image registration allows the

calculation of border features that can be used to monitoring the progress of skin

cancer [29].

Concerning single lesion analysis, some studies have been done. Maglogiannis et al.

[29] proposed the Log-polar representation of the Fourier Transform. The Fourier

Transformation spectrum is independent of horizontal and vertical shifting, whereas

the log-polar transform eliminates the dependency on magnification and rotation.

This algorithm showed good overall results with better performances for rotation

up to 10 degrees and scale factor up to 1.0. For bigger rotations, the algorithm
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tended to over calculate rotation corrections, whereas scale correction tended to

undercalculate above 1.0 scale factor.

Montin et al. [50] proposed two methods with different deformation models: a b-

spline-based model called Free Form Deformation(FFD) and a Demons Registration

Algorithm (DRA). The latter is a fast and accurate method for deformable mono-

modal registration of non-segmented images, while FFD is a combination of Mean

Square Error as the similarity metric, b-splines as transformation model and quasi-

Newton as an optimizer. After tuning the models with simulated images, DRA

showed to be more reliable, stable and robust than FFD with evaluation results of

77.14%, 93.88% and 100% for skin, border, and inner nevus respectively. However,

the DRA algorithm is more adequate for quantitive measurements of human skins’

in vivo biomechanical properties.

Anagnostopoulos et al. [12] projected the problem of registration with the ROI-SIFT

algorithm, a modification of SIFT algorithm. ROI-SIFT consisted in calculating

SIFT points using a ”hard” value of SIFT parameter h and then, ROIs are defined

according to this points. Later, the h is increased, producing a larger number of

key points; however, only key points belonging to ROIs are kept. Then RANdom

SAmpling Consensus method (RANSAC), is used to identify outliers and maximize

the registration accuracy. Finally, rigid image registration is performed based on

the best homography found.

Navarro et al. [11] proposed a Superpixel(SP)-SIFT technique. This technique

resides in previously segmentation of the image in superpixels isolating important

skin lesion area. Next, computes the SIFT descriptor using only the pixels within

the superpixel containing the skin lesion, resulting in a full skin lesion segmentation

mask feature descriptor. The detected feature is used to authenticate a correct

match between two images and evaluate possible lesion change.

In addition to registration regarding single pigmented skin lesion, there have also

been studies concerning mapping and registration of multiple lesions. This reason

is due to the difficulty of doctors in examining and monitoring the entire body

of the patient. Huang and Bergstresser [51] proposed a new hybrid method for

finding correspondences between dermatological images based on a bipartite graph

matching. It was from Voroni cells and distances between points that the authors

were able to convert the point registration problem in images to bipartite graph

matching problem.

Korotkov et al. [52] proposed a non-rigid point cloud registration. The skin lesions
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are detected using Maximally stable extremal region (MSER). Next, a homogra-

phy transformation is computed between ROIs (that were previously detected using

MSER). SIFT is used to detect important key points between ROIs while RANSAC

is used to find correspondences and eliminate any possible outlier.

Eventually, Mirzaalian et al. [53] tested five matching algorithms in 56 pairs of

dermatological images: Coherent Point Drift (CPD), shape contexts (SC+TPS),

the spectral technique of (Spect) and Hypergraph matching (d = 2) (Hyp). The

matching was evaluated using the number of incorrect matches (NIM) being that

CPD presented the least NIM among all tested algorithms.

Regardless of the registration process being applied to single or multiple skin lesion

images, registration is an important step since, in the majority of cases, evolution

assessment is dependent on image registration.

3.5 Evolution Assessment

According, to the ABCDE method of detection of Melanoma, evolving is one of the

important parameters to be analyzed when monitoring possible skin lesion malig-

nancies. Nevertheless, there is still much work ahead concerning the development

of automated systems for evaluating changes in skin lesions.

Prigent et al. [54] proposed two methods to measure the global area of changes and

the local changes: a binary change detection area and multi-level change detection,

in other words, homogeneity. The global area of change is calculated by subtracting

two consecutive image series while the homogeneity is approached by modeling the

change binary mask as a realization of a Gaussian random field under the null

hypothesis. Later, the model is split into regions, and a probability is assigned to

each region.

Navarro et al. [11] proposed to measure skin lesion evolution by comparing the

segmented areas and calculate a pixel-level difference. Knowing that the scale of

the images was known, the author was able to provide the skin lesion evolution in a

comprehensive metric.

Korotkov et al. [52] attempt a similar approach by computing the difference image

using each channel individually of the previously converted HSV representation. The

change mask is obtained by combining the difference images and binarized using a

threshold provided.
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Mendes et al. [13] experiment with a different approach by using a mathematical

model based on planar linear transformations. In this study, relevant information

such as the variation on the growth along the border, the deformation and the

symmetry of the lesion through time were measured. The models were first vali-

dated in synthetic binary images of skin lesions and then, tested in real dermoscopic

melanoma images, resulting in similar results.

Furthermore, [55] from two segmented images that were previously aligned using

Principal Component Analysis (PCA) and stochastic gradient descent obtained a

change map. This same researchers investigated by comparison, how computed

features would change at different time points [56].

Despite all these attempts, evolution assessment in pigmented skin lesion is still

raw and more studies will be needed. The development of an algorithm capable of

detecting small and accurate changes could be an essential tool for the dermatologist

on the early detection of melanocytic lesions.
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Methods

The methods used in this study were carefully chosen after the study of the literature.

The proposed methodology is divided into 6 main stages with all of them described

in detail throughout this chapter. The pipeline of our algorithm methodology is

outlined in the Figure 4.1.

Figure 4.1: Pipeline of the algorithm methodology.

The algorithms used in each stage of the pipeline were implemented using MATLAB

2018a with the exception of Registration that was implemented in Python 3.6.

4.1 Image Acquisition and Dataset

The first stage of study began with the acquisition of images, and a crucial step

for the continuity of this study. By rule, dermatologist often uses high capacity

visualization instruments to monitoring pigmented skin lesions from time to time to

inspect possible evolutions. For this matter, we request time series of dermoscopic

images to the Portuguese Institute of Oncology of Coimbra Francisco Gentil.
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The dataset consisted of 89 pigmented skin lesions with a total of 444 time series

dermoscopic images. The images are acquired by rule, in the interval of 6 in 6

months; however, the interval between some images is higher than six months be-

cause of postponing of medical appointments or when the atypical nevi became too

suspicious and needed to be removed. This led to a non uniform of images per skin

lesion. In addition, the dataset is retrieved from 9 patients who are monitored by

the dermatologist. The information of the patients was anonymous, and therefore

no information about the name, age, and gender was stored.

The most crucial point when describing the image data set provided by the Por-

tuguese Institute of Oncology of Coimbra Francisco Gentil was that no ground truth

about the lesion area or any label regarding the evolution of the skin lesion was

provided except for eight skin lesions. These 8 lesions were the only that the der-

matologist had a record of having evolution, having no information if other lesions

could or could not have evolved. Unfortunately, the label regarding the evolution

of the skin lesion was vague since we only knew that the skin lesion had evolved

somewhere between the time series images. This led to only 8 labels in our study

being all of them in the same class - a significant evolution had occurred. Besides, no

ground truth about the segmentation area was provided in this eight lesions. This

represented the biggest drawback of the entire study since our primary objective

was to provide a warning trigger when a significant evolution had occurred in the

skin lesion. In order to give more insight of the concerning lesions, we display in

Table 4.1 more detail information.

Lesion No of Images

P01L01 7
P01L17 2
P02L02 7
P02L04 8
P03L02 9
P04L08 5
P05L02 2
P07L03 3

Table 4.1: Name of the labelled skin lesion and number of images per skin lesion.

The images were acquired using a digital dermoscopy of Fotofinder Body Studio

which has an automatic focus leading to no information about the real size of the

skin lesion. The only information about the acquisition was that the magnification

was always set to 20x. This was also a drawback when analyzing the evolution in a

24



4. Methods

further chapter.

Figure 4.2: Representation of Fotofinder bodystudio ATBM tower (a) and
FotoFinder medicam 1000 dermoscopy (b). Adapted from public domain images
at https://www.fotofinder.de/en/products/bodystudio/.

Due to the existence of excessive undesirable artifacts or skin lesion which wouldn’t

fit entirely within the image frame, a total of 11 lesions were not considered in our

study, not being reliable for comparison and evolution analysis. In the end, 379

images were suitable and proceeded to be analyzed. A summary of the final dataset

can be shown in Table 4.2.

All the image files were JPG format, with an 8-bit RGB color graphics and a spatial

resolution of 1920x1080 pixels.

4.2 Preprocessing

The pipeline of our study begins with the preprocessing stage. Knowing that the

dermoscopic images have in their presence an abundant type of artifacts, it is essen-

tial to remove these unwanted artifacts since it may affect border detection when

segmenting the skin lesion. Besides, image enhancement plays a critical role allowing

to a better distinction of the skin lesion with the background skin. The proposed

pipeline of preprocessing is depicted in Figure 4.3.
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Total number of patients 9

Total number of skin lesions 78

Total number of images 379

average number of images
per skin lesion

5

Minimum number of images
per skin lesion

2

Maximum number of images
per skin lesion

10

Table 4.2: Summary of database details.

Figure 4.3: Pipeline of preprocessing stage.

4.2.1 Resizing

We began our preprocessing stage by resizing our image frame by a scale factor

of 1/3 of the original size. The image frame was initially 1920x1080 pixels and,

as a result of the downsizing, the scale image was 640x360 pixels. This procedure

allowed the following steps, especially the segmentation, to be faster and have similar

performances. Transforming the images before resizing them was slower and did not

improve the results.

4.2.2 Hair Removal

The presence of hair is a considerable obstacle for a correct segmentation, showing

to be an impediment for border detection. Thick and dark hairs are the main

interferences but also thin hair when located next to the lesion boundary. In this

study, the hair removal algorithm was based on the one proposed by [27] due to its
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logical and fast implementation. The algorithm was divided into the following steps:

1. Generation of Candidate Pixels;

2. Noise Removal;

3. Hair pixels Replacement.

The first step in the algorithm was detecting hair in the dermoscopic image. The

first approach for detecting the hair was to convert the RGB image to a grayscale

image since only one RGB channel is used for hair detection. However, the contrast

between hair and skin seemed to be greater when we only used the red layer of the

RGB image. In the end, the red channel was chosen and can be seen in Fig. 4.4.

Figure 4.4: Red channel of input image.

Assuming that the hair is darker than the surrounding skin, a grey level thresh-

old is applied in the red layer of the input image using the Otsu’s threshold which

selects the optimal threshold that maximizes the interclass variance between two

classes [40]. However, instead of using only one threshold calculated with the

Otsu’s method, we used 5 variations of the Otsu’s Thresholding by multiplying

it by 0.85, 0.90, 0.95, 1.00 and 1.05. Knowing that sometimes the Otsu’s threshold

over-segment or under-segment the areas of interest, these allowed detecting from

the darkest hairs to the more lighter, without missing any possible candidate in the

dermoscopic image.

The detection of candidate hair pixels started by applying a morphological operation

27



4. Methods

named Top Hat Transform filtering. The method computes the difference between

the image and its morphological closing 1 :

Ti = I − Ic(I, ei) (4.1)

In 4.1, I represent the input image and Ic describes the morphological closing of

input Image with a structuring element ei
2. The structuring element adopted in

this procedure is used to identify the hair, which is long and thin and therefore,

a line-shaped structuring element is used. When detecting possible hair pixels in

the vertical direction, the top-hat algorithm with a horizontal structuring element is

implemented in the binary image. Afterward, a morphological opening 3 is applied

to eliminate possible objects that are too short to be a hair. This same procedure

was repeated in the horizontal direction yet, in this case, a vertical structuring

element is used instead. Besides repeating this procedure for vertical and horizontal

direction, there was a need to use a more extended structuring element for thick

hair detection. To sum up, the top-hat filtering was applied using two different sizes

of the structuring element for thin and thick hair detection in both horizontal and

vertical direction.

After the previous step, there was a lot of noise present in the binary image such

as objects that were not hair or even texture from the skin lesion. In order to

eliminate the noise present in the binary image, the properties eccentricity and

major axis length were calculated for all the objects shown in the binary image.

The eccentricity is the ratio distance between the center of the ellipse and its major

axis length, taking the values of 0 (circle) to 1 (line segment). The elimination of

excess objects followed the condition exhibit in equation 4.2.

MajorAxis < t1 ∨ Eccentricity < t2 (4.2)

The thresholds values displayed in the above equation were chosen empirically and

by comparison with ones used by other authors [24, 27]. Apart from this, it is

important to note that different thresholds had to be chosen to filter thin and thick

hair, whereas, for eccentricity, the threshold had to be close to 1. For the final step

1Morphological closing refers to the mathematical morphology process of erosion following di-
latation of an image set using a structuring element.

2In image processing, structuring element is a group of pixels of different shapes used in mor-
phological operations such as dilation, erosion, opening, and closing

3Morphological opening refers to the process of dilatation followed by an erosion of an image
set using a structuring element.
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of noise removal, a dilation process using a 3x3 square was applied. This step was

necessary in order to smooth the border of the hairs to be removed.

(a) (b)

Figure 4.5: Final candidate pixels after noise removal in vertical (a) and horizontal
direction (b).

The end of hair removal step resides on eliminating the final candidate pixels followed

by the replacement of the hair pixels with non-hair-valued pixels. The replacement of

the hair pixels is done by linear interpolation. The pixels used for the interpolation

process are located at a distance of 3 pixels perpendicular to the length of hair.

However, the replacement of the region of hair is not only applied in the red channel

but also in the green and blue of RGB, combining all three channels and forming a

correct, no hair, color image.

One important aspect that was not mentioned previously was that the image was

rotated 4 times with angles of 0, 22.5, 45 and 67.5 degrees. This was a necessary

procedure in order to detect hair in every possible direction since the real direction

of the hair was unknown. In short, this process covered 8 directions (counting with

vertical and horizontal direction) with 5 different thresholds. The result correction

is displayed in Figure 4.6.

(a) (b)

Figure 4.6: Dermoscopic image before (a) and after (b) the hair removal.
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4.2.3 Color Transformation and Contrast Enhancement

Once the main artifacts were removed, we decided to convert our RGB image to a

one-layer image. Data reduction to a one-layer image was needed to fit our segmen-

tation method and also for performance matters. Therefore, we decided to convert

the true color RGB image to a grayscale intensity image. The conversion is based

on a weighted sum of the R, G, and B components (see Equation 4.3).

Igrayscale = 0.299×R + 0.587×G+ 0.114×B (4.3)

As a result of this process, the converted image was a non-normalized with an uneven

distribution of intensities, presenting eligible areas that were too bright or too dark.

So as to recover the information of eligible areas, contrast enhancement was applied

to normalize the converted image. Firstly, we found the lower and upper limits that

could be used for the contrast enhancement. Then a contrast stretch method is

applied by stretching the intensity values of the converted image to the new values

calculated in the previous step. The resulting image is presented in Figure 4.7.

(a) (b)

Figure 4.7: Image after color transformation (a) and contrast enhancement (b).

4.2.4 Correction of Non-Uniform Illumination

At this point, we have a grayscale image followed by contrast enhancement. How-

ever, unbalanced illumination is still visible in the images almost due to the acqui-

sition process of the dermoscope. Modern dermoscopes have integrated polarized

light positioned in the edge of the circular disk which, sometimes may cause some

uneven illumination areas or brighter artifacts such as air bubbles or light hairs.

Therefore, we perform the Local Normalization algorithm developed by [57]. The

algorithm aim at uniformizing the mean and variance of the image around a local
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neighborhood, being suitable for correct uneven illumination or shading artifacts.

The algorithm is defined by:

g(x,y) =
f(x,y)−mf (x,y)

σf (x,y)
(4.4)

where f(x,y) represents the input image and mf (x,y) is the estimation of local mean

of the input image, while σf is an estimation of the local variance. Local Nor-

malization uses fast recursive Gaussian filters for the estimation of local mean and

variance. The parameters used for estimation of the local mean and variance were

230 and 200 respectively, which represent the size of the smoothing window. These

parameters were decided empirically. Finally, the final result is displayed in Figure

4.8.

(a) (b)

Figure 4.8: Image (a) before and (b) after applying Local Normalization for cor-
recting uneven illumination.

4.3 Segmentation

At this point, we have a preprocessed image with the major artifacts removed plus,

vital areas of the dermoscopic image, especially the boundary, highlighted using

image enhancement techniques. Thus, in this step, using Thresholding segmentation

along with morphological operations, we intend to isolate the pigmented skin lesion

area from the background skin. This is a crucial step for the further stage since

an accurate segmentation is determinant for image registration. Our segmentation

method is described in detail below.
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4.3.1 Otsu’s Thresholding

Our segmentation method started by calculating the Otsu’s Thresholding in the

preprocessed image. This method assumes the existence of two classes, in this case:

skin lesion and clear skin and, thoroughly select the optimal threshold that minimizes

the intra-class variance, defined as the weighted sum of variances of the two classes

[40]. However, as it is known from dermoscopic images, the ROI is represented as a

disc-shaped illuminated center with a dark surrounding.

Moreover, the dark surrounding is not totally black, fading to the illuminated area

and, the disc-shaped illuminated center is not entirely contained in the image. Due

to these facts, the Otsu’s Threshold algorithm will consider that the classes are the

dark surrounding and the bright center, leaving the skin lesion undetected. We thus

computed a circular mask with the center in (x,y) = (320,180) and radius of 300

pixels that was chosen empirically. As a result, the group of pixels used in the Otsu’s

Threshold was the ones located inside the illuminated disc, helping to balance the

classes sizes. The outcoming image after the Otsu’s Thresholding is displayed in

Figure 4.9.

Figure 4.9: Outcoming binary image after Otsu’s Threshold.
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4.3.2 Morphological Refinement

Observing the final result of the segmentation and after all the morphological oper-

ations (that will be explained next), the final lesion mask would be connected with

a thin layer of the dark surrounding. Seeing that, we applied once again the same

circular mask to eliminate any noise located in the frame corners as shown in Figure

4.10(a).

(a) (b)

Figure 4.10: (a) Mask of the centered illuminated disk and (b) result of corner’s
noise removal.

After analyzing the Image 4.10 it was clear that there was much noise presented

that needed to be removed as well as the irregular shape of the skin lesion bound-

ary. Seeing that, we started by performing a morphological opening to remove small

unwanted objects that were considered positive pixels in the thresholding segmen-

tation.

Consequently, for the following steps, we created a disk-shaped structuring element,

that was used to slightly erode the edges of the structures in the image in small

disk shapes. This way the margins were smoothed. Then, dilatation 4 is applied to

recover the volume of the border lost after application of image corrosion. However,

before this operation, an opening operation is performed to enable the elimination

of small undesirable objects avoiding its ample growth resulting from the dilatation.

Due to the inconsistency of certain blobs, it was necessary to arrange a solution

for the standardization after treatment. For this purpose, the closing function was

initially applied, which join blobs at a certain distance from each other. Finally,

in order to fill possible holes left within the main blob, we performed a flood-fill

operation on the negative class of pixels of the skin lesion binary mask. The results

of the steps detailed above are presented in Figures 4.11.

4Dilation adds a layer of pixels to both inner and outer boundaries depending on the size and
shape of the structuring element
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Steps of Morphological Refinement of the proposed skin lesion seg-
mentation algorithm: (a) First Morphological opening, (b) Image Erosion, (c) Sec-
ond Morphological Opeing, (d) Image Dilation, (e) Morphological Closing (f) Flood-
fill operation.

4.3.3 Blobs Filtering

At this point, the final result of the skin lesion segmentation mask had been reached.

Still, in some cases, beyond the skin lesion segmentation, there were some isolated

areas visible in the binary image. For instance, the presence of large hair pores or

even the existence of furuncles (infection of the hair follicle) was one of the cases

of the isolated areas. Besides, dermoscopic images with a vast tangle of hair away

from the lesion could also contribute to this.

For this matter, we decided to label all the blobs visible and compute measurements

of the following set of properties: area and centroid. Then, for each labeled blob, we
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calculate the distance from their centroid to the center of the image frame, dividing

by its area. The goal is to keep the largest blob within the image frame which is

closest to the center of the image frame. A final binary image was obtained after

removing the blobs which had a larger distance to the center of the image frame per

area.

4.4 Registration

In order to access the progress of a skin lesion, a registration step was performed.

Registration is required when images are captured at different times, and in this

way, a direct comparison is possible for monitoring the evolution and quantification

on any significant changes.

4.4.1 Image Selection

Before initializing the registration process, we performed a second selection of images

that would be suitable for evolution assessment. This selection was more strict since

variations in change are very sensitive to external factors. For this reason, skin

lesions with abysmal results in segmentation were rejected since the binary mask

did not accurately represent the lesion area. Besides, images that were not entirely

contained within the image frame were also denied even though their binary mask

were a very good representation of the skin lesion. Therefore, of the 379 images

which were used up to this step, 59 were not suitable and consequently removed

for further studies. Once the image dataset was carefully chosen, we could initialize

our registration step. A summary of the dataset for image registration after image

selection can be shown in 4.3.

4.4.2 Coherent Point Drift

At this point, we had an accurate binary mask of the skin lesion area resulting

from the segmentation phase. Since the goal was the alignment of segmented binary

structures that were previously extracted, the choice of our registration method had

to take this into account. For that matter, an intrinsic registration method was

elected as it relies on the patient-generated image content only [58], that is, the

anatomical information and features generated by the subject image itself.
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Total number of patients 9

Total number of skin lesions 64

Total number of images 320

average number of images
per skin lesion

5

Minimum number of images
per skin lesion

2

Maximum number of images
per skin lesion

10

Table 4.3: Summary of database details after image selection for registration step.

Seeing that, we decided to use a probabilistic method for point set registration

named Coherent Point Drift (CPD) that was proposed by [59]. The CPD consists of

aligning two point sets based on probability density estimation. The target points

set is modeled as a Gaussian Mixture Model (GMM) centroids and forced to move

coherently, towards the reference set of points by maximizing the likelihood (see

Figure 4.12).

The transformation is obtained by optimizing the Maximum A Posteriori estima-

tion and constraining the GMM centroid locations with specific parameters. These

parameters are directly regulated by the type of transformation to be performed.

As was mentioned in Subsection 4.1, the digital dermoscope automatically focuses

the skin lesion. Also, the variation of the lesion area over time is too low, to cause a

variation of the dermoscopy workout distance. Since the goal is a direct evaluation

of the lesion evolution, a non-deformable registration is needed. For that reason,

rigid parameters such as rotation and translation for the alignment of the two images

were applied using CPD.

Figure 4.12: Gaussian Mixture Model centroids moving towards the reference
points. The red border refers to the reference image and the blue border with the
target image.
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For the alignment of the two images, we did not use the whole binary mask of the skin

lesion. Using the binary image as a whole would require the optimization of many

points in space, leading to a decrease in the algorithm performance. This way, we

decided to extract the border of the image to be used as input to the CPD algorithm.

Nevertheless, when we applied the CPD algorithm it does not align two borders but

two sets of points of the lesion border. In order to transform the image to a set

of points, we make use of the Cartesian coordinate system to transform the lesion

border pixels to a pair of numerical coordinates. Once the transformation matrix is

calculated between the two borders, we then apply the transformation matrix to the

whole binary mask. However, the result transformation not only includes integer

points but also float points in the cartesian coordinates. As we know, an image is a

representation of a set of pixels equally distant from each other. Due to this fact, a

rounding operation was performed to the resulting set of a pair of coordinate points

to ensure that the transformed binary mask was filled to its exact location in the

image frame.

Besides, the transformed binary mask undergo a closing procedure to eliminate

possible holes. These holes may appear when the rounding operation is applied,

skipping a pixel without being fulfilled.

Finally, to accomplish a systematic evaluation of the skin lesion evolution, we use

the first captured image of each lesion as the image of reference. Then, the more

recently image was used to align with the skin lesion when it was first detected. The

result is a registration between the image when was last acquired with the initial

captured image. The decision of only aligning two images of each lesion on account

of the limited label data for each skin lesion. More details are depicted in Subsection

4.6.1.

4.5 Feature Extraction

In this section, we aim at exploiting the extract of some features to analyze the

lesion evolution. However, in this study we do not focus on extracting features for

characterization of the skin lesion but instead, obtaining essential features in aligned

images to assess the lesion evolution.

In order to extract features from the registration previously performed, a direct

subtraction from the two aligned images was computed. Through the subtraction

of the two binary masks, we aim to identify the exact location where the skin lesion
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Figure 4.13: Results of four different difference images resulting from the alignment
procedure.

had evolved. Besides for a better identification where the lesion has changed, a color

identification was used to identify the following changes:

• Green - Areas where the reference image was smaller than the target image.

• Red - Areas where the reference image was bigger than the target image.

• Black - Areas where there were no changes between the reference image and

the target image.

These changes are shown in Figure 4.13.

After analyzing the difference image, it appears that areas where the skin lesion had

evolved, were of the same magnitude as the areas where it supposedly decreased.

These may be due to the incorrect segmentation and border detection in some areas

or even perhaps inconsistency during the alignment of images. Seeing that, we

decided to extract the area where the skin lesion had grown, but also the total

area resulted from the difference image, this is, both areas where had increased and

decreased.

In order to expand the assessment of the skin lesion evolution, a growth area rate

was computed. The growth area rate is the rate of change of area from one period to

another, that is the difference between the reference and target image. This growth

area rate was both applied to the total area of difference between aligned images,
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but also to the area where the lesion had increased - the green area.

Also, we decided to extract two features which could characterized by how the skin

lesion grows locally and globally based on the distance between the border points

of the two lesions. The assessment of the local growth is used to determine if the

growth through time has been proportional in all directions of the skin lesion. In

other words, we wanted to assess if the lesion suffers any deformation through time.

The feature is named Local Growth Rate (LGR) and was proposed by Mendes et

al. [13]. The feature is described as follows:

LGR(i) =

√
(x

′
i − xi)2 + (y

′
i − yi)2

di0
(4.5)

where di0 =
√

(xi − x0)2 + (yi − y0)2 and i = 1,...,M for a sampling with M points

where the points (xi, yi), (x
′
i, y

′
i) and (x0,y0) are respectively points in the border of

the reference image, the corresponding points in the border of the target image and

the centroid.

The deformation is designated as ∆LGR and measured as the deviation of LGR =

LGRi : i = 1,...M . ∆LGR is defined in Equation 4.6.

∆LGR =
max(LGR)−min(LGR)

mean(LGR)
(4.6)

The assessment of the global growth is done through a feature named Global Growth

Rate also proposed by Mendes et al. [13]. The Global Growth Rate (GGR) provides

an overall insight into the overall lesion growth and can be described as follows:

GGR(i) =

√
(x

′
i − xi)2 + (y

′
i − yi)2

max(di0)
(4.7)

The deviation of GGR can provide a better understanding if the lesion grows globally

at the same distance along the border, and can be calculated by:

∆GGR =
max(GGR)−min(GGR)

mean(GGR)
(4.8)

Finally, we had extracted a perimeter growth rate of the skin lesion. The perimeter

growth rate allows determining how the shape had changed by measuring the length

of the outline shape over time. More precisely, is the difference between the perimeter
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of the target image and the perimeter of the reference image in order to the reference

image. This was the only feature that was not dependent on the image registration.

Before assessing the lesion evolution, we evaluate if there was any correlation between

all the features extracted from the alignment of lesions, from the border points

and the perimeter rate. In other words, we decided to inquire if features could be

redundant in the presence of another relevant feature. Seeing that, a correlation

coefficient was computed to measure their linear dependence. The coefficient of

correlation is a statistical method used in medical research to assess a possible

linear association between features since it is simple to calculate and interpret [60].

The Pearson’s Coefficient is the most common and used in this study and is defined

as

ρ(A,B) =
1

N − 1

i=1∑
N

(
Ai − µA

σA

)(
Bi − µB

σB

)
(4.9)

where µA and σA are the mean and standard deviation of A respectively, where

µB and σB are the mean and standard deviation of B. A and B are two random

variables.

Once the Pearson’s coefficient was computed, it was clear that some features were

strongly correlated. Seeing that, we decided to remove the Global Growth Rate and

features related to the total area, that is, the rate of the total area growth and the

difference of the total area between skin lesions.

4.6 Evolution Assessment

Evolution Assessment defined the last step of our algorithm, by having the compli-

cated task to determine an optimum threshold in order to warn dermatologist of a

significant lesion evolution using features described in Subsection 4.5. We proposed

in this step two different approaches:

1. Since no label was provided, through unsupervised machine learning, we at-

tempt to infer a group which had a significant evolution by looking at the

extracted features.

2. In case of Unsupervised Learning demonstrating be unable for such task,

through the extracted labels (see Subsection 4.6.1) apply a supervised learning

algorithm that could map a correct model to the appropriate output.
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4.6.1 Data Labeling

The detection of significant evolution of a skin lesion is not an easy task even for

dermatologists. During the evaluation of the possible growth of the skin lesion,

dermatologists have to measure if the lesion has evolved clinically. However, the

procedure is sensitive to intra and inter dermatologist diagnosis.

Since no label about the evolution of the skin lesion was provided, we decided to

create our labels of the 64 skin lesions. Owing to the difficulty of assessing the

skin lesion evolution visually, we resort to the technique of Crowdsourcing [61]. In

crowdsourcing, a group of multiple annotators are asked to contribute by performing

a task that cannot be individually done with the same ease. For that matter, we

asked seven persons to compare the first and last dermoscopic images of each skin

lesion and label if a significant growth has occurred. The strategy for deciding the

final label was by Majority Voting. This was a crucial step in trying to incorporate

more information into the problem in order to try to create a more sophisticated

and reliable automatic solution than clustering.

4.6.2 Data Clustering

The choice of data clustering was not by chance but by being unsupervised learning

since no real labels about the lesions evolution were provided. These methods are

used when all data is unlabeled and the algorithms learn to inherit the structure

from the input data. In other words, we are looking for a threshold that allows

dividing lesions where a significant growth has occurred.

The goal of clustering is to create groups of data points such that points in different

clusters are dissimilar while points within a cluster are similar. That way, our

primary desire was to present a distinct cluster that allowed a proper detection

of significant growth, since dermatologist have difficulties in quantifying it by the

naked eye.

In our study, two clustering methods were evaluated to solve this problem: Fuzzy-

Means and Gaussian Mixture Models. We started by giving a brief description of

the used algorithms.
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4.6.2.1 Fuzzy C-Means

The fuzzy Clustering method is a soft form of clustering which, unlike K-Means
5, assigns degrees of membership in various clusters to each data point. Fuzzy C-

Means was the second clustering method we tested. What is unique in this method

is that, rather than entirely belonging to one cluster, each data point has a proba-

bility of belonging to each cluster. Like K-means, Fuzzy C-means still converges by

minimizing the square error function; however, it uses a weighted sum based on the

membership function.

The Fuzzy C-means algorithm is similar to the k-means and presents as follows: an

initial fuzzy partition of N objects into K clusters is selected by picking a membership

matrix U. Later, a probability of each data point belonging to a given cluster K is

computed. The new centroid of the cluster is recalculated as a weighted centroid

given the probabilities of membership U of all data points. The algorithm stops

when entries in the membership U does not change significantly or when a specific

number of iterations is reached.

In other words, the convergence is met when the square error function is minimized,

as shown in Equation 4.10.

E2(U) =
N∑
i=1

K∑
k=1

uij ‖xi − ck‖2 (4.10)

Where ck =
∑N

i=1 uikxi is kth fuzzy cluster center and uij represents the grade of

membership of object xi in cluster cj wherein uij ∈ [0,1].

To better understand the difference between both clustering algorithms, we display

two images of how a group of data points is divided using a hard and a soft clustering

technique.

Figure 4.14: An example of unidimensional data set. Adapted from ”Fuzzy C-
Means Clustering” [3].

5K-Means Clustering involves the partition of n observations into k clusters in which each
observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster.
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The first clustering presented in Figure 4.15 is an example of the K-Means algorithm

where each data point belongs to a specific centroid.

Figure 4.15: A typical membership function used in exclusive clustering methods
such as K-Means. Adapted from ”Fuzzy C-Means Clustering” [3].

On the contrary, in the Fuzzy C-Means, each data point has a probability of be-

longing to a specific cluster. This probability is modeled by the smoother line of

the membership function. For example, the red dot pointed in Figure 4.16 has a

probability of 0.2 to be part of the cluster A for this data set. That way, this point

will be part of cluster B, contrary to what would happen in K-Means.

Figure 4.16: A typical membership function used in overlapping clustering meth-
ods such as Fuzzy C-Means. Adapted from ”Fuzzy C-Means Clustering” [3]
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4.6.2.2 Gaussian Mixture Models

Gaussian Mixture Models (GMM) is a clustering method that attempts to find a

mixture of multi-dimensional Gaussian probability distributions that best model the

input data points. GMM can be classified as a probabilistic method that considers

that all data points are created as a mixture of a determined number of Gaussian

distributions with unknown parameters [62]. In order to find the parameters of the

GMM for each cluster, estimation is performed by training the data by adopting the

iterative expectation-maximization (EM) algorithm. The most popular and more

highly regarded is maximum likelihood (ML) estimation and was the one used in

this work [63]. The main idea of how the GMM is fit into the input data using the

EM algorithm can be explained in the following steps:

• The EM algorithm begins with a set of components of means, covariance matri-

ces and mixing proportions and are initialized using a binary Vector quantizer

estimation.

• Then for each data point, the algorithm computes the posterior probabilities

of component memberships. In other words, a calculation of the expectation

of the likelihood function regarding unabsorbed data points is computed.

• The Maximization step of the EM algorithm started by using the component-

membership posterior probabilities as weights. The maximum likelihood is

applied to estimate the components means, covariance matrix and mixing

proportions.

These last two steps are repeated until convergence is met.

Analysing how GMM works it is clear that it is much more flexible concerning cluster

covariance. The clusters can assume elliptic shapes rather than restricted circles.

4.6.3 Decision Tree Learning - Classification Tree

For the second approach of evolution assessment, we decided to use the Classification

Tree algorithm due to its popularity, easy to interpret and low complexity.

A decision tree is a decision support tool used to visually and explicitly repre-

sent decisions and decision making. In machine learning, decision tree learning is

a method of approximating the discrete-value target function represented in a de-

cision tree [64]. The idea of a decision tree is to divide the data set into smaller

data sets based on the characteristic features until you reach a small enough set that
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contains data points that fall under one label. This algorithm is recursive by nature

as each node executes a test over a feature, and each descending branch from that

node represents a decision rule, with the leaves representing the outcome.

The decision regarding which feature to be considered in each node is calculated

using a cost function. The feature chosen is the one where the split costs the least.

This makes the root of the decision tree, the feature with the high purity and the

most discriminatory. In classification trees, the Gini’s Diversity Index is used as the

cost function to evaluate the splits in the dataset. It gives an idea of how good a

split is by how mixed are the response classes in the groups created by the split -

Gini is a measure of purity. The Gini index is calculated by:

gdi = 1−
∑
i

p2(i) (4.11)

where the sum is over the classes i at the node, and p(i) is the observed fraction of

classes with the class i that reach the node [65].

Just like any classifier, the performance can be optimized by reducing the complexity

of the tree and thus reducing the overfitting in the classification tree. This is known

as pruning. The most used pruning techniques are all of them pre-pruning. They

consist in setting parameters for a manual choice of the stopping point. Pruning can

be performed by setting the maximum tree depth, the maximum number of terminal

nodes, minimum samples for a node split, size of the resultant nodes, among others.

Some of them were tested during this study in order to optimize our classifier.
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Results and Discussion

In this chapter, we presented all the experimental results for the comparative and

evolutive analysis of dermoscopic images, and segmentation of pigmented skin lesions

based on thresholding segmentation. Furthermore, the entire steps and methodology

to achieve these results are described in detail in Chapter 4.

5.1 Statistical Metrics

In order to evaluate the effectiveness of the proposed algorithms, the statistical met-

rics sensitivity, specificity, accuracy, and precision have been chosen to evaluate the

performance of our classification, from segmentation to evolution assessment. Since

the segmentation step can be seen as a pixel classification task, the performance

can also be measured with a statistical metric. In the case of evolution assessment,

the confusion matrix was analyzed in order to understand the disparity between

the predictions and ground truth. The definition of the statistical metrics can be

observed below:

Sensitivity =
TP

TP + FN
(5.1)

Specificity =
TN

FP + TN
(5.2)

Accuracy =
TP + TN

TP + FN + FP + TN
(5.3)

Precision =
TP

TP + FP
(5.4)

Where the TP (true positive) is the outcome where the model correctly predicts
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the positive class. Similarly, a TN (true negative) is the outcome where the model

correctly predicts the negative class. The FP (false positive) is the outcome where

the model incorrectly predicts the positive class, while FP (false negative) is the

outcome where the model incorrectly predicts the negative class.

It is important to note that, from a medical point of view, some metrics can present

misleading results when dealing with an unbalanced class dataset. Seeing that, it

is known that the accuracy, which measures the rate of correct classified classes,

would not be the best metric to evaluate the performance of our algorithms since it

can be strongly influenced in favor of the largest class. For that matter, we focus

more in both sensitivity and precision metrics since they focus in evaluating the

positive class in terms of medical diagnosis such as the boundary of the skin lesion

in segmentation or if a significant growth has occurred in evolution assessment.

• The sensitivity, also known as Recall, was used to calculate the fraction of

relevant instances that have been retrieved over the total amount of relevant

instances.

• The Precision was used to calculate the fraction of relevant instances among

the retrieved instances.

5.2 Segmentation

The first step of our study began with an accurate segmentation of our pigmented

skin lesions based on thresholding segmentation. Although segmentation does not

represent the primary goal of our study, an important detection of pigmented skin

lesion area is crucial for a better and correct extraction of features. Segmentation

side by side with registration are essential for the performance of lesion evolution.

5.2.1 Ground Truth and Segmentation Metrics

For each dermoscopic images of the initial dataset referred in Section 4.1 a manual

segmentation was performed in full-size images displayed in the computer screen.

Manual segmentation was performed by us, with some prior clarification by Dr.

Raquel Cardoso of the precise location of the lesion boundary. Since it was not

performed by a clinical expert (despite the help of the dermatologist), it is almost

certain that a residual error will be present when evaluating the precision of the

image segmentation.
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However, as it is known, dermatologists usually have difficulty at delineating the

exact transition between the lesion and the skin mainly due to fading of color between

the lesion and the skin. Finally, the ground truth images have the same dimension

as their corresponding lesion image, in order to have a direct comparison.

The evaluation of the lesion segmentation was performed using general statistical

measurements for binary classification like sensitivity, specificity, accuracy, and pre-

cision. However, for the study of segmentation, we select two similarity measure-

ments commonly use in segmentation: Dice Coefficient and Jaccard index. Both of

the similarity measurements range from 0 (meaning no overlap) to 1 which means

complete congruence. Although these measurements are insensitive to under or over

area estimation, they are reactive to misplacement of segmentation labels. For our

study, we decided to focus more on Jaccard index since it is numerically more sensi-

tive to mismatch when there is a fairly robust overlap, even though Dice Coefficient

is now more common because of the higher results for the same cases of segmen-

tation. If we consider an application to binary data, both coefficients measure the

similarity between two finite simple sets and, can be described in equation 5.5 for

the Dice Coefficient and 5.6 for Jaccard index.

DSC(A,B) =
2|A ∩B|
|A|+ |B|

(5.5)

J(A,B) =
|A ∩B|

|A|+ |B| − |A ∩B|
(5.6)

In the above equations, the A and B are the binary masks of the segmentation

algorithm and ground truth respectively.

5.2.2 Quantitative Results

The evaluation of the segmentation was performed by comparing the final segmen-

tation mask with the ground truth binary mask. Table 5.1 gives the overall seg-

mentation result of mean and standard deviation of the statistical measurements

described above.

Observing the table 5.1, it can be inferred that the performance of the segmen-

tation algorithm was good. The means of the statistical measurements are above

0.90 except for the Jaccard Index. On the other hand, when looking to the stan-

dard deviation, the values can range from a 0.0242 in the specificity to a 0.1148 in
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Mean Standard Deviation

Sensitivity 0.9084 0.0979
Specificity 0.9865 0.0242
Accuracy 0.9627 0.0354
Precision 0.9303 0.1148

Dice Coefficient 0.9129 0.0943
Jaccard Index 0.8487 0.1056

Table 5.1: Evaluation of segmentation algorithm using the statistical metrics Sen-
sitivity, Specificity, Accuracy, Precision, Dice Coefficient, and Jaccard Index.

precision.

Observing the distribution of Jaccard index values (see Figure 5.1), it is clear that

the distribution resembles a normal distribution centered between 0.90 and 0.95.

According to the standard normal model, in 95% of the cases, our segmentation

algorithm will score value of 0.8487 of Jaccard index. The reason for the algorithm

not being successful in the other cases is that the lesions have very low contrasts.

It is difficult, even for the human eye to detect the edges of the lesions (Figure

5.2) and thus it was not possible to define them precisely since the colors inside the

lesion have little or no difference with skin color surrounding. In other cases, the

segmentation was not satisfactory due to the presence of illumination artifacts or

for the incorrect acquisition of the pigmented skin lesions where the preprocessing

stage was incapable of correcting (see Figure 5.3).

Figure 5.1: Distribution of Jaccard Index values from segmentation results.
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Figure 5.2: Dermoscopic Images where the lesion has a low contrast comparing
with the healthy skin.

(a) (b)

Figure 5.3: Example of non acceptable segmentation. (a) Original dermoscopic
image and (b) binary mask resulting from our segmentation.

5.3 Feature Selection

We begin to examine our data distribution (see Figure 5.4) to see if it is possible

to observe distinctive groups in the 2D space. By looking at our data distribution

it is not possible to observe a distinctive groups between features in the 2D space.

However, it is possible to observe two different behaviours between features:

• A possible linear association between the features GGR and LGR, TA Rate

and GA Rate and TA Diff and GA Diff. Tha data points clearly concentrated

around the identity line (y=x).
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• A more dispersed distribution of data points with no clearly visible grouping.

Figure 5.4: Matrix of scatter plots of all features grouped by the labels. The
features GGR, LGR, GA Rate, TA Rate, GA Diff and TA Diff stands for Global
Growth Rate, Local Growth Rate, Green Area Rate, Total Area Rate, Green Area
Difference, Total Area Difference respectively.

To confirm our assumptions we used the Pearson’s coefficient as feature selection

technique to understand if the data contained some features that were either redu-

dant or irrelevant, in order to be removed and not having a big loss of information

as mentioned in Section 4.5. This was a necessary procedure to gain a better under-

standing of the features and their relationship to the response variables. In Figure

5.5 we depicted the resulting correlation coefficient matrix.

Taking a more in-depth look at the Correlation Coefficient Matrix, it is clear that

there are many correlated features, mainly the ones with similar characteristics.

Starting with the features extracted from the distance between border points of the

lesion, the strong linear correlation could be predictable. By analyzing the mathe-

matical equations of both features (see Equations 4.5 and 4.7) the only difference

between them is the denominator. If the lesion border is not well defined, the

difference between the two metrics could not be distinguishable, although the seg-

mentation step presents good results. Seeing that, we decided to remove the Global

Growth Rate. Features with the same behavior, i.e., with similar extraction for-

mula are those from the area of difference between the alignment of the two binary

images. There are features in the area that grew (Green Area, see Figure 4.13 and

explain in detail in Subsection 4.5) and the total area. This aspect had already been
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Figure 5.5: Matrix resulted from the calculation of correlation coefficient between
all features. The features GGR, LGR, GA Rate, TA Rate, GA Diff and TA Diff
stands for Global Growth Rate, Local Growth Rate, Green Area Rate, Total Area
Rate, Green Area Difference, Total Area Difference respectively.

mentioned in the Subsection 4.5 that it seemed that both areas were of the same

magnitude. The registration parameters were optimized in order to maximize the

likelihood between the reference and target images. However, it seems that in some

images, the areas in green and red were located in opposite directions, leading to

believe that the registration was not correctly performed. Besides, since lesions have

different sizes features of the Total Area can influence the performance of the evolu-

tion assessment. Seeing that, features related to the Total Area from the alignment

of images were removed.

The removal of some of the features was based on the Pearson’a correlation coeffi-

cient. However, this metric has some limitations that need to be taken into account.

The Pearson’s correlation coefficient being a univariate feature selection, shows to

be simple to understand and is overall particularly useful for gaining a better under-

standing of the data. Nevertheless, it does not make it necessarily appropriate for

optimization of the feature set. Also, one obvious drawback of Pearson correlation,

as a feature ranking mechanism, is that it is only sensitive to a linear relationship. If

the relationship is non-linear, Pearson correlation can be close to zero even if there is

a 1-1 correspondence between the two variables. In short, the decisions of removing

the features based on the Pearson’s correlation coefficient may be subject to errors

which can only be confirmed in the clustering algorithm.

In the end, the top features used for further analysis were: Local Growth Rate,
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Growth Area Rate, Green Area Difference and Perimeter Growth Rate.

5.4 Evolution Assessment

In this study, the primary goal is, through the analysis of evolution in a skin lesion,

present a warning sign to the dermatologists and patients if a significant growth has

occurred. With the segmentation mask of skin lesions captured at different times,

we can benefit from the alignment of the skin lesions to assess when a significant

growth has occurred in the skin lesion. However, as it is known, by observing the

skin lesions, it is hard to deduce if evolution has occurred and, without having labels

to identify, we resort to clustering. The primary goal is to cluster the data into two

groups: where a significant growth has occurred and when has not.

5.4.1 Data Labeling

The labeling of data was based on crowdsourcing [61], which consisted of a group

of people performing the label of images where a significant growth has occurred.

However, the people that participate in this task were not experts in the area which

could lead to a biased and erroneous label. As a result, there were skin lesions where

people were in doubt. In Figure 5.6 we present some cases where the choice of the

label was by minimum ”margin”. Examples, where the growth was evident, are

presented in Figure 5.7.

In order to identify the skin lesion evolution, a comparison is carried out of the

lesions’ visual properties such as size and shape. Human perception normally relies

on this information when the lesion evolves, because of its unique properties. Lesions

may have similar appearance over time, so we tended to observe the location of

details such as pores and spots within the lesion. This was a way to understand

how difficult is to evaluate the lesion growth. Thus, some possible explanations can

be given to justify such facts:

• Most of the times dermatologist rely on the digital dermoscopy only for better

observation of the lesion details, so there is no major concern of the lesion pose.

Thus, in some images, the lesion was in different perspective, difficulting to

quantify if the lesion had growth and sometimes even tell if the lesion was the

same.

54



5. Results and Discussion

Figure 5.6: Example of skin lesion where the evaluation of growth was difficult
and the labels were voted my minimal margin. The images on the left and right side
represent the first image and the last image captured chronologically.
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Figure 5.7: Example of skin lesion where the growth was evident and decided by
unanimous vote. The images on the left and right side represent the first image and
the last image captured chronologically.

• The dermoscope automatically focuses the skin lesion which causes some doubts

when assessing the real size of the lesion.

• Since images are acquired during long intervals of time. It is possible that

people may have gained weight or lost, causing the skin to stretch or shrink.

• The use of polarized light in dermoscopy is important since it reduces the

amount of light reflected off the skin surface allowing the observation of deeper

structures and the exact location of the lesion boundary. Although the digital

dermoscopy used in this study had a built-in polarized light, it appears that

in some lesions this function was not turned on, compromising the decision.
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5.4.2 Clustering

We started by understanding which of Clustering Methods better divide the groups

in question. As was mentioned in 4.6.2 we resort to Fuzzy C-Means and Gaussian

Mixture Models clustering methods to understand the effects to categorize the data

points.

However, for this problem in question, some important aspects of machine learning

should be referred before taking any conclusions. The dataset used for this problem

was extremely small, only having 64 pairs of images, from which about 73% were

negative class - no significant growth has occurred - leading to an unbalanced dataset

too. Moreover, with a few data points in clustering, the risk to overfit the learning

model is far higher, although the concept of overfitting is not usually applied to

unsupervised learning algorithms. Nonetheless, in a statistical setting, the finite

dataset is assumed to be sampled from the reality. That is, the goal is to approximate

the cluster groups to the underlying reality [66]. Moreover, the presence of outliers

can become troublesome, although for this problem we examined possible outliers

that could identify a significant growth.

Since the features and algorithms are decided, the plan of testing can now be for-

mulated. Two different data sets were used for this problem. These are the full

dataset containing all features extracted from the alignment of images and binary

masks and, the dataset only containing the top features selected after discarding

possible redundant features. For the plan of testing mentioned above, we run the

clustering algorithms one hundred times, and afterward, we analyzed the average of

the resulting precision, recall, and accuracy. The final results of the different met-

rics as well as the ROC curves 1 are displayed in Figure 5.12 and, Figures 5.13 and

5.14 respectively. In addition, we display the partition of the data in cluster from

Figure 5.8 to 5.11. Note that, the figures present the separation of the cluster with

two-to-two combinations of the features in question. In the case of cluster methods

using all features, we only displayed the behavior among the top features.

Looking at each cluster separation, we notice that there isn’t a notable separation

of the data, reached the point where some data points are mixed within the two

clusters. Furthermore, it is clear that a reduction of the initial features has none or

almost no impact on the clustering division. Since we knew the correct real labels

of eight skin lesions, all of them positive, we identify with a different color the ones

1ROC curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system
as its discrimination threshold is varied
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Figure 5.8: Cluster partition using Fuzzy C-Means with All Features. The colors
red, blue, yellow and green represent the cluster of lesion that did not evolve, where
a significant evolution has occurred, correct real labels and incorrect real labels.

Figure 5.9: Cluster partition using Fuzzy C-Means with Top Features. The colors
red, blue, yellow and green represent the cluster of lesion that did not evolve, where
a significant evolution as occurred, correct real labels and incorrect real labels.

right and wrong. From the eight lesions labeled by the Dermatologist, only two were

corrected identify in the Fuzzy C-Means and three in the Gaussian Mixture Models.

Taking a more in-depth look at overall results in Figure 5.12 it is evident that

both clustering algorithms fail do distinguish both groups. The metrics presented

barely exceed the barrier of 0.50 except for accuracy. The high number of accuracy

compared with the other metrics, especially in GMM can be explained by high

specificity of the GMM (0.78 with all features and 0.74 with top features) due to a

large number of negatives class.

The results presented in the ROC curves come to confirm our assumptions. The
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Figure 5.10: Cluster partition using Gaussian Mixture Model with All Features.
The colors red, cyan, yellow and green represent the cluster of lesion that did not
evolve, where a significant evolution has occurred, correct real labels and incorrect
real labels.

Figure 5.11: Cluster partition using Gaussian Mixture Model with Top Features.
The colors red, cyan, yellow and green represent the cluster of lesion that did not
evolve, where a significant evolution as occurred, correct real labels and incorrect
real labels.

Area under the curve extracted from the ROC curve quantifies the overall ability of

the classifier to discriminate between those individuals which have significant growth

and those which haven’t. Since the values of Under the Curve do not exceed the

0.60, the behavior of the clustering is similar to a Random guess(0.5).
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FCM GMM

All 2 3
Top 2 3

Table 5.2: Number of skin lesions that the clustering algorithms detect an signifi-
cant growth.

Figure 5.12: Average of Precision, Recall, and Accuracy by Clustering method,
built with all features and top features. The results are the average of one hundred
runs.

Figure 5.13: Average ROC curve for the dataset with all features (a) and top
features (b), with Fuzzy C-Means. The value of AUC was 0.50 and 0.51 respectively.

5.4.3 Decision Tree Learning

Through the application of clustering, we were not able to distinguish the group

where a lesion had evolved and where had not. Thus for our second experiment, we

decided to use supervised learning to understand if providing the extracted labels,

the algorithm can predict the distinctive groups from the input features.

Again, for this second experiment, we use the same dataset which led us to some

precautions of how we would test it. Since the dataset was small the risk of over-
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Figure 5.14: Average ROC curve for the dataset with all features (a) and top
features (b), with Gaussian Mixture Model. The value of AUC was 0.57 and 0.54
respectively.

fitting was much higher (as already mentioned in Subsection 5.4.2). Thus, to avoid

overfitting, a low complex method with few parameters was chosen to test our hy-

pothesis - Classification Tree. Seeing that, we decided to verify our results with a

Leave-one-out Cross-Validation. This is a special case of the K-fold cross-validation

where each observation is considered as a validation set, and the rest n− 1 observa-

tions are a training set, repeating this for n times for each observation as a validation

set. This testing method is appropriate for fewer data since it uses almost the entire

data set leading to a reduce bias and reduced over-estimation of the test error. The

training set is previously balanced by undersampling the bigger class.

There are many combinations of parameters which can change the performance of the

classifier. For Classification Tree the parameters were the following: SplitCriterion -

as split criterion of nodes; MinParent - minimum number of observations of branch

node observations; MinLeaf - minimum number of leaf node observations; MaxSplits

- maximal number of decision. The optimized classifier used ’gini’ criterion, at least

15 leaf node observation, a maximum of 2 splits with a total of 30 observations.

Therefore, for each dataset, we run one hundred times with Leave-One-out cross-

validation with their average values being computed. The final results of the different

metrics as well as the ROC curves are displayed in Figure 5.15 and, figure 5.16

respectively.

After taking a glimpse of the average results, it is evident that is far from desired.

The decision tree has similar results to both clustering algorithms Fuzzy C-Means

and Gaussian Mixture Model. Still, the values of Recall with Classification Tree were

a little higher. This means that this algorithm was capable of correctly guessing a

higher number of lesion that has evolved among the ones present in the target
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Figure 5.15: Average of Precision, Recall, and Accuracy by Classification Tree
method, built with all features and top features. The results are the average of one
hundred runs.

Figure 5.16: Average ROC curve for the dataset with all features (a) and top
features (b). The value of AUC was 0.51 and 0.62 respectively.

values comparing with both clustering algorithms. Taking a deeper look at how the

classifier responds to the different group of features, the results were the same for

all metrics.

5.5 Brief Conclusions

In the context of this dissertation, the objective of detecting groups where a signif-

icant growth has occurred were partially achieved.

The influence of a reduction of the number of features was invalid since there was

no discrepancy between results from the Top Features and All Features, leading to

the conclusion that these were not good features for this problem. By analyzing

the dermoscopic images of the skin lesions by the naked eye, we believed that these

features were very reasonable for the characterization of evolution thus we only

included features from the border and shape. PCA was also considered, but with the
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reduction of dimensionality, we would lose interpretability of features, not creating

a possible threshold where a significant evolution had occurred. For instance, GMM

fails to cluster the data accurately due to a large number of free parameters in the

covariance matrix [67].

As far as I am concerned the low precision values are directly dependent on the labels

extracted. Having a low precision means that the number of false positives was

very high, that is, there were many predictions which both clustering methods and

Classification Tree predict a significant evolution when in fact it did not happened.

However, it is essential to understand the type of dataset we are dealing with.

The dataset consists of dermoscopic images of people who are at risk of developing

a malignant lesion and need to be monitored regularly. From the outset, there

is a higher probability of having more cases of lesion evolution than the average

population. However, the group of people who participate in the extraction of labels

are not part of this group, not being accustomed to observe these suspicious lesions

on a regular basis. Therefore, when extracting the labels, there are only a few cases

where the majority vote in significant growth. Thus we believed if an area expert

provided the labels the results would be much different. Also, for lack of time we

didn’t had the opportunity to ask these labels to the partners of IPO. Probably on

the other way around, a higher number of real significant growth would exist and

consequently lowering the number of false positives. Therefore, the nature of labels

had a significant impact on this study.
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Conclusions

The thesis development aimed at contributing to the exploration of problems related

to the analysis of evolution in a skin lesion by comparing significant features that

could describe a significant growth. However, the problem of early detection of

malignancies of human skin is still a difficult task, and the monitoring of human

skin is fundamental. For that matter, the choice of this study aims at exploring

meaningful features that could characterize a significant growth over time.

The dermatologists look for early signs that would indicate a possible malignant

evolving of the skin lesion in order to remove it and avoid a possible metastasis

of cancer. However, the detection of early signs is strongly dependent on the pro-

fessional experience of the dermatologist. This was proven during our study when

a group of people was asked to annotate if a significant evolution has occurred in

the skin lesion. The appearance of the lesions over time and early detection can be

misleading.

Thus, the role of computer vision is to provide the necessary tools to help the

dermatologist monitoring a possible evolution of the human skin. Therefore, for

the aim of this study, a review of the literature was performed to understand the

application of computer vision in the early detection of malignant lesions. However,

there were few information in the literature regarding evolution detection. Most of

state of the art focus on developing CAD for classification of dermoscopic images.

Despite all of the efforts made in this area that are already strong and robust CAD,

that are achieving performance on par with expert dermatologists [68]. Regarding

the analysis of skin lesion evolution few attempts have been made, most of them

focusing more on extracting features that could characterize a significant evolution

[13] or performing an accurate registration for a better comparison [11]. This gave

the motivation to study an automatization of detecting a significant evolution of the

skin lesion, although the objective was only partially achieved and there is much

work to be done yet.
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6.1 Summary of Thesis

In the Introduction we briefly context the Melanoma skin cancer, presenting statis-

tics of its incidence and the importance of regularly monitoring of skin. In particular,

we exposed the difficulties that dermatologist experience everyday and also the lack

of tools researchers, which lead to an establishment of protocol with the Portuguese

Institute of Oncology of Coimbra Francisco Gentil. The pipeline of this study, it

was not chosen by chance but carefully determine for a better understanding of the

problem. As a result, the framework was based on the literature review that is

present in Chapter Two of this work.

In this chapter, we look deep into different approaches implemented for comparative

and evolution analysis of skin lesions and present the standard workflows of simi-

lar studies. Seeing that, in Chapter Three, the proposed pipeline was as follows:

Acquisition of skin lesions, Pre-processing of images, Segmentation of the region

of interest of our problem - the skin lesion, Registration of the segmented area for

comparison purposes and finally the evolution assessment of lesion. The prepro-

cessing stage and the segmentation were chosen together. The former process was

an algorithm based on Otsu’s Thresholding and Morphological operations. This

process was chosen since it has proven to be a simple and effective algorithm when

the preprocessing stage is done correctly. Regarding, the preprocessing stage it was

fundamental for correction and enhancement of essential details. Consequently, in

order to make a correct evaluation and direct comparisons of spaced time series

images registration was needed. Coherent point drift algorithm was preferred due

to its robustness to noise, outliers and missing points, fastening and reduction of its

complexity computation and finally for its accurate results. The final step of this

study consisted in evolution evaluation of registered images concerning the presence

of growth rate, local growth rate, perimeter rate, and total area difference. We pro-

posed the adoption of clustering algorithms to distinct a cluster where a significant

growth has occurred, based on features extracted from the alignment of the skin

lesions and the shape and border of the skin lesion.

Finally, in Chapter Four, we carefully justified and limit to present relevant re-

sults from evolution assessment. Overall the results regarding evolution assessment

were not high enough to achieve the goal of a complete and automatic evolution

assessment.
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6.2 Limitations and Future Work

The limitations presented in this study were practically all related to the dataset

most of them by lack of information. The first limitation was the lack of datasets

containing evolutive images of dermoscopic images. The majority of the dataset

available aims at classifying different skin lesions diseases especially Melanoma, only

providing single images of each lesion. An effort was necessary to provide useful

databases and more information on this subject, mainly for free access.

The second limitation of this dissertation was the inexistence of true labels regarding

the lesion evolution. Relying on the decision of people with no experience led to

uncertainty and possible errors when assessing the evolution. A better record of

dermatologists diagnosis regarding the evolution must be performed. Besides, with

a reduced dataset without ground truth labels, we were unable to draw consistent

and significative conclusions.

Also, it is essential to define standard conditions for capturing images of lesions and

treatments of them in order to give an alert to the dermatologists of when the lesion

may have evolved or not. Many dermoscopic images were acquired using different

poses, which makes the analysis difficult. Essentially doctors focus on the immediate

observation of microscopic details of the dermoscopic images. Therefore, a joint work

between dermatologists and computer science researchers must be established.

In addition, the assessment of evolution must rely on other features rather than

only border and shape of skin lesions. Although other types of features such as

color and texture have been explored for lesion classification, none of them focused

on characterizing the change of the lesion over time.

Finally, by addressing the problem of evolution assessment in this dissertation, is

safe to say that is indeed a challenging task. Still much work needs to be done, and

we hope this dissertation attracts more attention to the problem of assessing the

evolution of the skin lesion.
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