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RESUMO

Devido a relevancia das interacdes proteicas nas diferentes fungdes celulares, é importante
conseguir detetar a existéncia das mesmas. Como 0s métodos computacionais conseguem lidar
com um grande nimero de dados de forma rapida, tém sido muito usados na previsdo das
interacBes proteina-proteina. Dessa forma esta tese pretende, com o recurso a novas features,
desenvolver um método que melhore a performance da previsdo de interagcBes proteicas num
dataset aleatorio. O resultado destas pesquisas foram trés novas abordagens de extragdo de
features sendo elas o recurso a bases de dados de inibidores, o recurso a redes de co-expressdo
génica e o recurso a médulos de reconhecimento peptidico. Destas trés, devido a maior
simplicidade e praticabilidade, desenvolveu-se estudos usando a ultima abordagem enunciada,
recorrendo nomeadamente aos dominios SH3, SH2, PDZ, WW e LRR. Para saber se estes
dominios sdo uma boa fonte de features e que podem ser usados utilizando qualquer dataset,
analisaram-se 0s mesmos na dete¢do de novas interacOes entre proteinas que ndo 0s possuem.
Assim no decorrer do trabalho desta tese foram criadas trés estratégias, a primeira baseava-se na
extracdo de features pelo software PyDPI (fazendo uso dos descriptors AAC, CTD, Moranauto,
QSO, SOCN e CT) e na avaliacdo da performance dos datasets por descriptor; a segunda
estratégia recorreu as mesmas features mas avaliou a performance em datasets com todos os
descriptors; a terceira estratégia avaliou a performance como a segunda estratégia mas usando
features criadas para o artigo “A4 Sequence-Based Mesh Classifier for the Prediction of Protein-
Protein Interactions". As duas primeiras estratégias foram postas de parte devido a metodologia
incorreta e a valores pouco significativos. A terceira estratégia apesar de ter sido efetuada de uma
forma bastante controlada também resultou em valores pouco significativos, pelos que se

aconselha ao prosseguimento do estudo desta abordagem com novas estratégias e features.

Palavras-chave: Interacdo proteina-proteina, melhorar performance, extracdo de features,

maodulos de reconhecimento peptidico, PyDPI

Xl



COMPUTATIONAL METHODOLOGIES FOR PREDICTING PROTEIN-PROTEIN INTERACTIONS

XV



COMPUTATIONAL METHODOLOGIES FOR PREDICTING PROTEIN-PROTEIN INTERACTIONS

ABSTRACT

Due to the relevance of protein interactions in different cellular functions, it is important to be
able to detect their existence. Because computational methods can handle large numbers of data
quickly, they have been widely used in predicting protein-protein interactions. Thus, this thesis
intends, with the use of new features, to develop a method that improves the predictive
performance of protein interactions in a random dataset. The results of these researches were three
new approaches of extraction of features, being: the use of databases of inhibitors, the use of gene
co-expression networks and the use of peptide recognition modules. Of these three, due to the
greater simplicity and practicality, studies were developed using the last approach enunciated,
resorting in particular to the SH3, SH2, PDZ, WW and LRR domains. In order to know if these
domains are a good source of features and that can be used using any dataset, they were analyzed
in the detection of new interactions between proteins that do not possess them. Thus, in the course
of the work of this thesis three strategies were created, the first one was based on the extraction
of features by the software PyDPI (making use of descriptors AAC, CTD, Moranauto, QSO,
SOCN and CT) and in the performance evaluation of datasets by descriptor ; the second strategy
resorted to the same features but evaluated the performance in datasets with all descriptors; the
third strategy evaluated performance as the second strategy but using features created for the
article "The Sequence-Based Mesh Classifier for the Prediction of Protein-Protein Interactions.”
The first two strategies were set aside due to incorrect methodology and poor values. The third
strategy, despite being carried out in a very controlled manner, also resulted in insignificant
values, for which it is advisable to continue the study of this approach with new strategies and

features.

Keywords: Protein-protein interaction, performance inprovement, features extraction, peptide

recognition modules, PyDPI
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1. INTRODUCTION

1.1 Motivation

Currently, due to the great increase of information stored in databases regarding new protein
genomes, the experimental methods that allow to unravel the networks of protein interaction (are
the only ones able to validate protein interactions) are no longer relevant. Not only because they
cover a small fraction of the protein network but also because they are costly in terms of time and
money and have little precision and accuracy. In order to address these shortcomings,
computational methods were developed to predict regions of protein interaction more correctly
and economically than experimental methods (Melo, et al., 2016)(You, et al., 2015).

However, because of the need to study a large amount of information (there are many sequenced
proteins whose interactions have not yet been studied), existing computational methods have been
very time consuming and not very rigorous in detecting interactions (weak classifiers), especially
when interactions cause conformational changes (Reimand, et al., 2012). For these reasons, it is
imperative to improve existing methods, not only for a faster computational protein analysis but
also for a more correct analysis.

To solve the problem of improving computational methods, several strategies were developed.
Those strategies make use of the collection of new features from biochemical knowledge,
especially from inherent characteristics to proteins: prevalence of amino acids, peptides
(recognition or structural), functionality, presence in protein interfaces (interprotein contact),
existence of water molecules or co-relational networks.

Thus, to contribute to the improvement of computational methods, this thesis will make use of

some of the strategies listed above.
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1.2 Goal

In the case of this work, in order to improve the prediction method of protein interactions in a
random dataset, was used as solution, protein features whose interactions occur from the peptide
recognition modules SH3, SH2, WW, PDZ and LRR [see Figure 1].

This objective follows the recent strategies of improvement of the methods of prediction of
protein interaction, which from biochemical knowledge are added new features to an already
developed computational method of prediction.

One advantage of the use of features derived from proteins, whose interactions are mediated by
peptide recognition modules, is that they follow the feature extraction method, which,
computationally, is less demanding than an interface analysis and much more simple. This is
because in computational methods, there are two ways to predict the probability of interaction
between proteins: one is from the analysis of the interfaces where the protein intersections occur
(hot spots), the second is by feature extraction. As for the feature extraction method, it works from
a database that holds several sequences that are responsible for protein intersections, then compare
the characteristics of that sequences (features) with the ones of the proteins that are intended to
study, if they have these features it is probable that in that region there is an intersection (You, et
al., 2015)(Coelho, et al., 2013)(Coelho, et al., 2014)(Maruyama, O., 2013).

Finally, it is worth mentioning that the use of only datasets to prove the relevance of the use of
these new features (two different types of datasets are opposite, one with features of protein pairs
that only have generic protein interactions and another dataset equal to the previous one but with
features of protein pairs with interactions mediated by the domains cited above), is an extremely
easy and practical method whose relevance, when computationally demonstrated, requires an

experimental test to prove its veracity.

I Protein Aﬂmmein B | | Protein CﬂPmtein D | | Protein K }—' Protein L | | Protein M l—l Protein N |
[ protein E@Pmtein F| [protein (ﬂrotein H]| |[Proteino — Proteinp | Proteina — ProteinR |

| Protein| @Proteinl | | Protein S |—| Protein T | | Protein O |—| Protein P |

Features

Features

Dataset 1
Dataset 2

Protein Pairs with Domains
+ Generic Protein Pairs
Generic Protein Pairs

Relevance = a “_ Relevance = B

| Figure 1: Model developed in this thesis |
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2. BACKGROUND

2.1 Machine Learning

Machine learning consists of the ability of a computer program to improve the performance of a
task class from experience. Thus, to have a model of machine learning is therefore necessary to
define a task, a source of empirical values and performance measure to improve. In the case of
this thesis, the task is recognize protein-protein interactions, the source of empirical values are
the characteristics (protein-protein interactions, protein localization, biological processes of the
same proteins ...) present in the databases in which are the homologous proteins intended to study,
the performance measure are the protein-protein interactions correctly detected (values achieved
by the use of classifiers). In a general way, a machine learning model, adapted to this thesis, will
use the mentioned characteristics and divided them into two groups, those of the characteristics
present in homologous proteins that have interaction in the Y site and that of the characteristics
present in homologous proteins that have no interaction in the Y site; the results will came in the
form of a distribution of conditional probabilities that predict if two proteins have interactions

and where (You, et al., 2015)(Maruyama, O., 2013)[see Figure 2].

Non-Interaction Interaction Non-Interaction
Charactem’sltics (NIC) Chal’aChil’iSﬁCS (1€) Characterislﬁcs (NIC)

P 2 homologous protein

Classifier

000000
m....@@..

O

Conditional probability at the "Y" site
+

Quality Indicators

—

There is interaction There is no interaction

| Figure 2: Functioning of Classifiers |
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2.1.1 Performance Metrics

In order to analyse the quality of the different classifiers as well as the relevance of the outputs
there are several parameters that evaluate them, in particular:

Confusion matrix
(You, et al., 2015)(Maruyama, O., 2013)(Zhang, et al., 2016)(Zahiri, et al., 2013)

Quality Indicator

Meaning

Calculation

True Positives
(TP)

Predicted interactions
that are confirmed

experimentally

Analytical sum of cases

True Negatives
(TN)

Predicted interactions
that are experimentally

refuted

Analytical sum of cases

False Positivies
(FP)

Inexistence of
predicted interactions
that are confirmed

experimentally

Analytical sum of cases

False Negatives

Inexistence of

predicted interactions

Analytical sum of cases

(PPV)

detriment of existing

interactions

(FN) that are experimentally
refuted
Sensitivity, Percentage of
Recall or True interactions between TP
TPR = ———
Positive Rate correctly identified TP+ FN
(TPR) proteins
o Percentage of non-
Specificity or ) .
] interactions between TN
True Negative o TNR = ——
correctly identified TN + FP
Rate (TNR) )
proteins
o Proportion of
Precision or ) .
. interactions between
Positive . TP
o detected proteins to the PPV = ——
Predictive Value TP+ FP
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Quality Indicator Meaning Calculation
Proportion of interactions
Negative between non-existent -
Predictive Value proteins detected to the NPV = TNTFN
(NPV) detriment of all non-
existent proteins
Proportion of correctly
detected data (if you have p TN
Accuracy (ACC) | avery high value of TN ACC = TPETN :II__ PN
is no longer a good
evaluator)
Matthews
Correlation More accurate accuracy _ TP X TN — FP X FN
Coefficient measurement B \/(TP + FN) X (TN + FP) X (TP + FP) X (TN + FN)
(MCC)

Evaluates overall method
performance (balances

sensitivity and precision

Characteristic

side margins, the more

2 X TPR X PPV
F-score (F1) =
when unbalanced results TPR + PPV
are obtained — many
negatives)
Receiver The closer the ROC chart
Operating line is to its left and top

Obtained by the graphical representation of the precision [PPV]

versus negative predictive valiue [NPV]

as negative

(ROC) rigorous the method
P=TP+FP N=TN+FN
It is the probability of a
Area Under the classifier to classify a c P(P+1)
ROC Curve random data as positive AUC = ﬁ
(AUC) instead of a random data

* S is the sum of the classifications of all positive samples in the list of all

samples, ranked in ascending order by estimated probabilities belonging to

positive samples.

Table 1: Confusion matrix: Indicator, Meaning and Calculation
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2.1.2 Methods

Currently there are several classifiers for his frequent use seven stand out, naive Bayes, k-nearest
neighbors, support vector machine, logistic regression, stochastic gradient descent, decision tree

and neural network models.

The naive Bayes classifier is a probabilistic model based on the Bayes theorem that calculates
the probability of a given instance belonging to a class. In this case, "I" is a variable that represents
the class "protein-protein interaction" and "D" the variable representing pairs of protein sequences
to be studied (Maruyama, O., 2013)(Zhang, et al., 2016)(Zahiri, et al., 2013). "I" is a random
variable that has a value of 1 (there is interaction) or O (no interaction) and "D1, D2, ... Dx" are
random variables (independent of each other), each representing a pair of protein sequences
(Maruyama, O., 2013)(Zhang, et al., 2016)(Zahiri, et al., 2013)[see Figure 3].

The k-nearest neighbor classifier is one of the simplest methods to the extent that he attributes
to the result "W" of a sample, the category of the nearest k results. In that terms, for different
values of k there can be different classes assigned to W, depending on the features covered by k
(Zahiri, et al., 2013)(Hue, et al., 2010)[see Figure 4].

“” > Proteln protem interaction occurs |
‘ |
o] (o] ﬁ E
\
v v
No YES No

Using the Bayes
theorem

P(D1,D2,D3,D4, ..., Dx | )P(I)
P(D1,D2,D3,D4,.., Dx)

g

]
r

P(11D1,D2,D3,D4,...,Dx) =

[ Figure 3: Operation of the Naive Bayes method |

Interaction
feature

K=20

Figure 4: Operation of the nearest k-neighbour
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The support vector machine classifier is a machine learning technique that seeks to find the
optimal "hyperplane” that separates the samples from different classes. Achieving the optimum
hyperplane consists in reaching the maximum distance between the samples that indicate there is
protein-protein interaction from those indicating otherwise (You, et al., 2015)(Zahiri, et al.,
2013). To handle the samples, we use kernel functions capable of categorizing the different
samples in a high-dimensional space. These functions can be sigmoid, polynomial, linear or
radial-based (You, et al., 2015)(Zahiri, et al., 2013)[see Figure 5].

The logistic regression consists in a regression model in which is usually used a binary dependent
variable that is categorical, acquiring only the values 0 and 1 (Walker, et al., 1967). From the
logistic regression curve made by the data (0 and 1 correspond to the values in the data), it’s

estimated the probability of a new data value (Walker, et al., 1967)[see Figure 6].

The stochastic gradient descent classifier is an iterative method that minimizes a loss function
with a linear function (Forcier, et al., 2015). Taking one sample at a time, the algorithm
approximates a true gradient and updates the model simultaneously based on the loss function
gradient (Forcier, et al., 2015). For regression, it returns predictors as sum minimizers (Forcier,
et al., 2015).

@ Set of samples Hyperplane
without protein
interaction (NI) l
Makes use of a

linear kernel
function

@ Maximum
distance
Set of samples @
with protein
interaction (1)

| Figure 5: Support Vector Machine operation

v

Is there interaction?
“Yes” = 1; “No” = 0

| Protein A | X | Protein B |> Feature "a” }-—o 0 Prabability of
interaction
+

| Protein C | X | Protein D |> Feature “b” }__, 0

| Protein E | X | Protein F |> Feature “c” }—' 0
| Protein | |—| Protein ] |> Feature "d” }—- 1
| Protein G |—| Protein H |> Feature “e” }—- 1
| Protein K |—| Protein L |> Feature “f” )—- 1

| Protein M |? | Protein N |> Feature “g”

[ Figure 6: Logistic Regression method |

1
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The decision tree classifier is a machine learning technique characterized by its low
computational cost (Zahiri, et al., 2013). In the training phase, this technique constructs trees
whose branches are the positive or negative response to a certain value, so that the feature dataset
is subdivided recursively until we obtain subsets whose division does not change the classification
(Zahiri, et al., 2013)[see Figure 7].

Within the neuro network models the most used is the multilayer perceptron. This algorithm
contains three types of layers the input layer, the hidden layer (may be more than one), and the
output layer (Zahiri, et al., 2013). Each layer has several nodes, each of these nodes being
connected to all nodes of the next layer; in this algorithm the input layer nodes correspond to the
features and the hidden/output layers to the processing units that act as neurons with an activation
function in which the output layers classify the input ones by placing them in a class (Zahiri, et
al., 2013). In the case of the edges their weights are optimized from a supervised learning

approach in order to improve the performance of the model (Zahiri, et al., 2013)[see Figure 8].

“ Protein A | X I Protein B |Feature =1 No Interaction (NI)

|
‘I ProteinC |—| Protein D | Feature =3 Interaction (1)

! \
\.
/

) Yes

‘I Protein E | X I Protein F | Feature => No Interaction (NI)
' ProteinG |—| Protein H |Feature —> Interaction (1) @ @ @
‘I Protein| |X I Protein ) feature: 1> No Interaction (NI) ® @

“ ProteinK | ? I Protein L |Feature =7 Test

N

[ Figure 7: Operation of Decision Tree method |

Processing
G unit N
7y W\
{

Interaction
VN
Processing

unit

N
LN /
N /
N\
)
Processing A
N unit f /

W,

VN
‘.. “
' ‘
\ i /
\ \ / AN /
\ i A : b ! : I/
\ d \ Processing g ~3 Processing J/ "
Interaction? unit unit No Interaction
Iy I ]

A J
Input layer Hidden layers Qutput layer

[ Figure 8: Operation of Neuro network model |

Processing
unit
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2.2 Protein-Protein Interactions

Proteins are vital in cellular activity, mediating signal transduction, intracellular transport,
secretion, cell cycle, DNA replication, translation, transcription and splicing. To perform these
tasks proteins need to bind to other biomolecules with interactions, so that to better understand
cell activity it is important to identify and characterize interactions between biomolecules
(proteins) and their global network (Melo, et al., 2016)(Coelho, et al., 2013)(Coelho, et al., 2014).

With respect to protein interactions, these may be characterized in several ways: localization -
may interact with one or more polypeptide chains; force - can be permanent or transient;
specificity - can be specific or non-specific; chemical interaction - may be covalent or non-
covalent; similarity of the interacting subunits - may be homo or hetero-oligomers (Coelho, et al.,
2013).

A fundamental rule in the interaction between proteins is that in order to occur, the two proteins
have to be complementary, which is dependent on the interface size, the polar and nonpolar
residue alignments, and the number of water molecules (Moreira, et al., 2006). Moreover, in the
regions where they interact, there are conserved sequences that allow them to have physical-
chemical and structural affinity (Coelho, et al., 2013)(Coelho, et al., 2014).

Within these sequences, most of the binding energy is quantified from the interaction between
compacted and centralized regions in the form of small residues (mainly tryptophan, arginine and
tyrosine) called hot spots (Melo, et al., 2016)(Moreira, et al., 2006). Hot-spots are usually
organized in clusters and located near the centre of the binding region having a hydrophobic ring
conformation, charged residues that form salt bridges and hydrophobic residues that bind directly
to another protein (Moreira, et al., 2006). They present great adaptability because different
proteins bind to the same hot-spot (Moreira, et al., 2006).

Finally, the stabilization of these interactions is ensured by hydrophobicity (main force), by a gain
in the free energy variation, by the energy of desolvation and by the interactions of van der waals
(Gurung, et al., 2017). Hydrogen bonds are also of great importance because, in addition to
composing a fifth of the interface region, they contribute positively to the bond free energy and
are the ones that most promote the electrostatic interactions which stipulate the temporal longevity

of the interprotein complex (Gurung, et al., 2017)(Moreira, et al., 2007).
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2.2.1 Review of the state-of-the-art

In this section a survey of the previous work is carried out, evaluated by the mentioned indicators.

Objective: "Improve methods for predicting protein-protein interactions” (Huang,
etal., 2015)

To predict PPIs from amino acid sequences was used at first, substitution matrix representation
based on BLOSUMBG6?2 to portrait proteins as SMR matrixes. After that discrete cosine transform
was used to construct a 400-dimensional vector from the SMR matrixes, this lead to a 800-
dimensional feature vector for each protein pair. WSRC was then used as a classifier in the PPIs
datasets of Yeast, Human and H. pylori and its performance was compared with the support vector
machine classifier performance descript in the literature. In other part of this work, cross-species
experiments were made in five PPI datasets, where using the concept of the homologous proteins,
identified interactions in one organism was used to predict the interactions in the other five. The
results confirm the relevance of the developed model in detecting interacting protein pairs and
present a better performance than the previous methods.

Objective: ""Discover the best method to detect hotspots' (Melo, et al., 2016)

To discover the best method to detect hotspots were increased protein-protein complexes and 3D
complex structure-based features like interface size, the type of interaction at the interface and
the number of types of residues at the connection spot. In terms of features, a relevant point was
the use of Position-Specific Scoring Matrix in the evolutionary sequence-based features. In the
performing method, 27 algorithms were tested with many classifier models using different cost
functions. The results based on the performance of conditional inference random forest show that
the best predictor was c-forest algorithm, making these values higher than the previous

techniques.

Objective: "Construct a new method to better detect the sequence pairs of protein-
protein interactions™ (You, et al., 2015)

To detect pairs of sequences of protein interactions, each protein sequence was first transformed
into feature arrays, from which a new matrix-based protein descriptor is extracted and numbered
each protein sequence. Then, pairs of proteins with several characteristic vectors were analysed,
encoding the vectors of two proteins in that pair of proteins. To evaluate the performance, a SVM
model was used that has as input the vectors of the protein pair, in PPI datasets of Saccharomyces
cerevisiae and Helicobacter pylori. The results demonstrate the relevance of this method in the

detection and protein interactions.

10



COMPUTATIONAL METHODOLOGIES FOR PREDICTING PROTEIN-PROTEIN INTERACTIONS

Objective: ""Combine active learning and semi-evaluated learning by support vector

machine to improve the detection of protein interactions' (Song, et al., 2011)

To improve the detection of protein interactions, a new PPI extraction technique was developed
called PPISpotter, which uses SSL based on deterministic annealing and AL to extract PPI. A
large number of MEDLINE records were also imported by Natural Language Processing (NLP)
techniques, in which the syntactic, semantic and lexical properties of the text were very relevant
in feature selection, which increased performance and resulted in better values of performance of
SVM. As for the results, it has been proven by the use of three different PPI datasets, that the
technique developed is superior to the other techniques studied such as Random Sampling,
Clustering, and Transductive SVMs, proving to be an innovative and pertinent PPI detection

technique.

Objective: ""Develop methods that detect whether post-translational modifications
(PTM) are within or outside the protein interaction region® (Saethang, et al., 2016)
As the first strategy to predict whether posttranslational modifications occur within or outside the
regions of protein interaction, PDB and PhosphoSitePlus data describing the empirical location
of the modifications were first used. Then from the use of features derived from the index of
hydropathy, secondary structure, Position-Specific Scoring Matrix, sequence conservation and
web applications, the prediction of the location of the modifications was done resulting in a low
performance. The second strategy was to use machine learning, so the information from
PhosphoSitePlus was coded using AAindex (database of numerical indices representing amino
acid properties) and the data obtained were modelled using algorithms. As results of this second

strategy were obtained several models with quite high performance values.

Objective: "Develop a learning method for predicting heterodimeric protein
complexes™ (Maruyama, O., 2013)

In order to predict heterodimeric complexes, heterodimeric complexes from CYC2008 and PPIs
from WI-PHI (yeast database) were imported. From these data, features were obtained which,
based on the use of machine learning, served as a basis for a method that was evaluated by the
Naive Bayes classifier. Thus, the log-likelihood ratio, obtained from the performance values
equated by the Naive Bayes classifier, with the values of the parameters obtained by the maximum
likelihood estimation, gave a score that predicted if a protein pair was a heterodimeric complex.
Finally, a cross-validation with five replications was done and results were obtained with a good

performance, being even superior to other models described in the literature.

11



COMPUTATIONAL METHODOLOGIES FOR PREDICTING PROTEIN-PROTEIN INTERACTIONS

As a summary of the above mentioned works, below was created this table.

Results
Method Objective :
ACC (%) | TNR (%) | TPR (%) PPV (%) NPV (%) | MCC (%) | AUC (%) F1 (%) Conclusion
Improve
Weighted Sparse | methods for
- : - 0.10 - 0.44 0.29 - 0.19 0.54 -
with Discrete protein results were
- . - Humans Humans Humans Humans Humans .
Cosine interactions obtained
Transformation (Huang, et
al., 2015)
c-forest 80 82 76 70 86 i 78 73
algorithm Test Group | Test Group | Test Group | Test Group | Test Group Test Group | Test Group
SBHD2 71 71 70 56 82 ) 69 62
algorithm Test Group | Test Group | Test Group | Test Group | Test Group Test Group | Test Group
Robetta . 66 88 29 60 67 i 62 39
algorithm Discover the | Test Group | Test Group | Test Group | Test Group | Test Group Test Group | Test Group | The best
best method algorithm to
to detect use in the
hotspots proposed
KFC2-A (Melo, et al., 71 81 53 59 77 ) 66 56 methods is c-
algorithm 2016) Test Group | Test Group | Test Group | Test Group | Test Group Test Group | Test Group forest
KFC2-B 73 96 28 80 72 i 67 42
algorithm Test Group | Test Group | Test Group | Test Group | Test Group Test Group | Test Group
CPORT 49 47 54 35 66 i 54 42
algorithm Test Group | Test Group | Test Group | Test Group | Test Group Test Group | Test Group
Construct a The method
new method chosen,
Representation to better compared to
basgd on matrix detect the 90.06 + 94.37 + 85.74 + 93.84 + 86.89 + 82.03 + 95.28 £ 89.61 + existing ones,
rotein sequence sequence 0.64 0.95 0.94 0.98 0.48 1.03 0.64 0.76 better
P | Sequet pairs of Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian | distinguished
combined with . .
protein- kernel kernel kernel kernel kernel kernel kernel kernel the protein
the support - - - - - - - - - L
. protein function function function function function function function function pairs in
vector machine | . . . -
interactions interaction
(You, etal., from no
2015) interactions

12




COMPUTATIONAL METHODOLOGIES FOR PREDICTING PROTEIN-PROTEIN INTERACTIONS

Method Objective Resull :
ACC (%) TNR (%) TPR (%) PPV (%) MCC (%) | AUC (%) F1 (%) Conclusion
51.21 70.23 843 58.33
SVM ) i BioCreative | BioCreative i Biolﬁfer BioCreative
2 PPl data | 2 PPl data data set 2 PPI data
set set set
Combine active 56.54 71.70 84.7 62.50 This
RS- learning and ) i BioCreative | BioCreative i Biolﬁfer BioCreative | combination
SVM semi-evaluated 2 PPl data | 2 PPI data data set 2PPldata | of methods
learning by set set set results in a
support vector 88.68 78.23 86.0 83.65 better
C-SUM machine to ) i BioCreative | BioCreative i Biolﬁfer BioCreative | detection of
improve the 2 PPl data | 2 PPl data data set 2 PPI data protein-
detection of set set set protein
protein 93.50 81.75 918 85.96 interactions,
BT- interactions i ) BioCreative | BioCreative ) Biolnfer BioCreative the best
SVM (Song, et al., 2 PPl data | 2 PPl data 2 PPl data | method being
2011) set set data set set BTDA-SVM
95.32 85.92 93.0 86.85
BTDA- ) i BioCreative | BioCreative i Biolﬁfer BioCreative
SVM 2 PPl data | 2 PPl data 2 PPI data
data set
set set set
89 95 85 95 79 92
K-NN Phosphoryla Phosphoryl Phosphoryl Phosphoryl Phosphoryl Phosphoryl i
tion ation ation ation ation ation
Table 6 Table 6 Table 6 Table 6 Table 6 Table 6
90 80 93 It was
Ph_osphqryla Phospho_ryl Phospho_ryl possible to
RF Develop methods tion using - - - ation using ation using - create the
that detect Inform_atlon Inform_atlon Inform_atlon first models
whether post- Gain Gain Gain of detection
translational 91 97 87 96 84 92 of PTMinor
cas modifications Phosphoryla Phosphoryl Phosphoryl Phosphoryl Phosphoryl Phosphoryl i out of the
(PTM) are within tion ation ation ation ation ation protein-
or outside the Table 6 Table 6 Table 6 Table 6 Table 6 Table 6 protein
protein 89 79 93 interactions
interaction region | Phosphoryla Phosphoryl | Phosphoryl having
Kstar (Saethang, et al., | tion using - - - ation using | ation using - obtained the
2016) Information Information | Information obtained data
Gain Gain Gain with good
91 83 93 quality values
Phosphoryla Phosphoryl | Phosphoryl
MLP tion using - - - ation using | ation using -
Information Information | Information
Gain Gain Gain
The
95.5 developed
Develop a Calculated method
learning method from Table presented
for predicting ! 98.6 64.4 81.7 70.2 72.0 ergertrt:e:nce
Naive heterodimeric Calculated | Calculated | Calculated | Calculated 97.4 Calculated | P in the
Bayes protein from Table | from Table | from Table | from Table ' from Table - f
complexes 1 1 1 1 1 predlctlon_o
the protein
(Maruyama, O.,

2013) complexes
than the
existing
methods

Table 2: Previous work: Method, Objective and Results
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3. APPROACH

As already mentioned in "GOAL", the approach used consisted in the discovery of new features
that allowed to improve the performance of a random dataset. In this way a research was

elaborated by the scientific literature that resulted in the formulation of three strategies.

3.1 Use of co-expressed gene database

A co-expression network is characterized by holding nodes that correspond to genes and edges
that correspond to co-expression relationships, to the interconnected genes is assigned the same
co-regulation by the action of small RNAI, metabolites, proteins and epigenetic mechanisms
(Vella, et al., 2017).

In order to obtain a gene co-expression network, the expression levels of the genes are evaluated
from statistical tools (the result of certain alterations translates into different transcription values)
in this way one can identify genes functionally regulated by the same metabolic pathway. It is
usually intended to obtain the highest possible co-expression score (which is achieved if the genes
are topologically and functionally homologous), except when one intends to study the effect of
specific changes in the network (Vella, et al., 2017).

When an interaction occurs between species, namely viruses / bacteria with a host, this results in
the overexpression of several genes and in protein interactions which, because they are different
species, are difficult to detect (Zhang, et al., 2017)(Tugaeva, et al., 2017). Since the expression
of a gene normally results in a protein, and in the host / invader relationship the overexpression
of genes occurs, it is intended to study in the literature which proteins are overexpressed in two
different organisms during an infection and to analyse the performance in the detection of protein

interactions [see Figure 9].

Without virus-cell

XPTO virus @ @ contact @ I HTPO human

gene co- cell gene

expression @ @ @ expression
network @ network

HTPO human
- cell gene
XPTO virus expression
gene co- network
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| Figure 9: Predictive model of protein interactions based on gene co-expression network
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3.2 Use of inhibitor databases

Due to the large increase of databases containing interactions between proteins, the study of
compounds that inhibit this interaction was started (Sugaya, et al., 2009). These compounds can
inhibit by various mechanisms: by orthostatic inhibition the inhibitor interacts with the ligands
and obstructs the responsible sites (it does not bind them), by allosteric regulation the inhibitor
binds to the molecule outside the interface and triggers a conformational change that prevents the
interaction with ligands, finally, by the binding to the interface the inhibitor binds to the
interaction sites, preventing its contact with ligands (Gurung, et al., 2017).

With the progressive study of potential inhibitors of protein interactions, there are today several,
described as susceptible to being inhibited by "small molecules" from inhibition by interfacial
bonding, which are characterized by being joined with great affinity to the protein hot spots
responsible for interactions (Sugaya, et al., 2009).

However, this affinity is not uniform to all protein interactions, in the case of domain-domain
interactions (between two globular proteins) small molecule inhibition occurs if there is a main
segment responsible for the interconnection, in the case of peptide-domain interactions (mediated
by a peptide), all of them have the possibility of being inhibited by small molecules because the
interaction falls on a single continuous binding epitope (London, et al., 2013). It should be noted
that of the four classes of narrow, wide, tight or loose interactions, those that are more likely to
be inhibited are narrow and / or tight to the detriment of others (London, et al., 2013).

Thus a potential way to detect new interactions between proteins is to access databases of protein
inhibitors and find inhibitors that are common to two different proteins. Subsequently it is enough
to test the possibility of the proteins with the inhibitor in common to have interaction between

them [see Figure 10].
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Figure 10: Predictive model of protein interactions based on inhibitors of interactions
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3.3 Use of peptide recognition modules

Peptide recognition modules (SH3, SH2, PDZ, etc ...) exist mainly in complexes and their bonds
are usually responsible for restructuring the protein complexes and can be reused for various
cellular functions (Reimand, et al., 2012). They are widely used to detect protein interactions
because they are common in the eukaryotic genome and there are several well-studied modules
(they are easy to detect constituting a large database) (Reimand, et al., 2012)(Jain, et al., 2016).
Protein interactions are generally considered very likely if a binding site (activation) is accessible

and the proteins are expressed at the same time and site in the cell (Reimand, et al., 2012).

The SH3 domains are composed of about 60 amino acids distributed over 5 beta chains linked in
two perpendicular beta sheets interrupted by a 3-10 helix, mainly binding to proline rich regions,
also having affinity for regions rich in arginine and lysine , are involved in cell signalling,

regulation of the actin cytoskeleton and endocytosis (Jain, et al., 2016).

The SH2 domains are composed of about 100 amino acids with a central sheet having on each
face a short helix, bind primarily to phosphotyrosine peptides, but also to N-terminal arginine and
C-terminal histidine, are associated to the intracellular signal transduction, to the enzymatic

activity and to the activation of T-cell (Tong, et al., 1996).

The PDZ domains are composed of about 85 amino acids, which are in a compact structure with
5 to 6 beta chains and two alpha helices, bind primarily to the C-terminal of the proteins and are
involved in channel regulation, signal detection, stabilization of cellular polarity complexes and

in neural development (Reimand, et al., 2012).

The WW domains are composed of about 35 amino acids with a core anti-parallel beta-sheet
triple chain and two tryptophan residues conserved in signature separated by 20 residues, bind to
regions that are rich in proline and are involved in growth control and ubiquitin-mediated

proteolysis (Reimand, et al., 2012).

The LRR domains are composed of approximately 25 amino acids in the form of a horseshoe
with the concave having face parallel chains surrounded by loops and the convex face helical
structures, due to having a large amount of leptin (hydrophobic) interact with hydrophobic
residues, are associated with apoptosis, autophagy, processes related to ubiquitin, nuclear mRNA

transport and neuronal development (Ng, et al., 2010).
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In this way, was intended to analyse the possibility of the structure of pairs of proteins holding

interactions mediated by peptide recognition modules predict, based on structural similarity,

interactions between pairs of proteins that do not have peptide recognition modules. If this

possibility is validated, the features of the peptide recognition modules can then be used to predict

interactions in any dataset [see Figure 11].
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|Figure 11: Predictive model of protein interactions based on peptide recognition modulesl
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4. EXPERIMENTAL ANALYSIS

4.1 Preliminary work

In order to accomplish the proposed work, a learning process of Python and Machine Learning
was necessary.

In the consolidation of this learning, the task was to detect catalytic proteins in a dataset of human
proteins. For the success of this same task, 100 human catalytic proteins were imported from
Uniprot, the data were processed in order to obtain only the primary structure and to obtain
sequence features, an amino acid count was made. Subsequently, 100 human proteins were
imported from Uniprot and the same treatment was carried out. Then a vector was created in
which 1 corresponded to the existence of catalytic proteins and O to the non-existence of catalytic
proteins. Finally, the "Support Vector Machine" and "Naive Bayes" classifiers were used and their
performances evaluated [see Figures 12 and 13].

Models:
Target vector
70% X_train train

catalytic proteins Machine
f 0-— non-catalytic
- |- proteins - & oo STDOTCEEVAC
-+ proteins Naive Bayes
30% -Ex_test -—[ y_test
Cross Validation

| Figure 12: Operation of the developed model |

(Aminoacids) A R NDCQEGHILKMFPSTWYV

4Fj 34 30 17 27 17 21 26 54 29 25 77 16 18 27 37 37 29 16 13 )

Each line corresponds to a [ 42 43 20 27 825 27 56 18 24 52 18 9 21 37 37 34 17 28 26
different protein

[ 74 43 38 47 18 39 66 71 16 83 101 63 33 47 43 65 71 12 25 74)

‘P Accuracy: 0.47 (+/- 0.28)

Evaluation of "Support
Vector Machine"

Evaluation of “Support 639393939394

Vector Machine"

f1_score: 0.413793103448

Precision: 0.545454545455

Recall: 0.333333333333

AUC: 0458333333333

| Figure 13: Results of the developed model |

Later, proceeded to the analysis and understanding of the commands written in Python of the
model of Machine Learning present in the article “4 Sequence-Based Mesh Classifier for the
Prediction of Protein-Protein Interactions” where the process of collection of the used features

is detailed.
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From the previous approaches, we opted for the use of peptide recognition modules due to the
computational simplicity and because in literature there are more information addressing this
theme. Using this approach, three strategies were elaborated in the course of this thesis, two of
which were set aside because of the incorrect methodology used or the inconclusive values. In
this way, this section is divided in three parts each one with an executed strategy that are listed in
chronological order, being the last one the strategy to which this thesis refers.

4.2 Relevance of peptide recognition modules by descriptors PyDPI

4.2.1 Procedure

1 - In order to obtain datasets with protein IDs that interact with the peptide recognition modules
on the Uniprot site searched for the words "homo sapiens”. In the definition "View" had clicked
in "Gene Ontology" — "molecular function" — "binding" — "protein binding" — "protein
domain specific binding" — results of " SH3 / SH2 / PDZ / WW / LRR domain binding" (these
five domains were chosen because they were the ones that had the most results SH3=15763
results, PDZ = 567 results, WW = 39 results, SH2 = 38 results and LRR 19 results) — finally in
the side definition "Popular organisms" clicked on "Human".

2 — These 5 datasets (one for each domain) were downloaded in the "uncompressed” option for
Excel sheets.

2.1 — All information has been removed until there is only one protein ID in each cell of
column A and in front of it in the cell of column B the IDs of the proteins with which there is
interaction.

2.2 — In column B, the lines with blank cells and the word "ltself" were removed, cells
that had more than one ID were separated into different columns on the same line.

2.3 — Finally the ID's of column A and the ID's of column B were organized and it is
sometimes necessary to repeat the same ID several times. In order to avoid overfitting problems
(excessive repetition of features that damage classification), the smallest possible number of IDs
in column A was repeated, obtaining 144 pairs of SH3, SH2 and PDZ, 110 of WW and 80 of
LRR.

3 — In terms of interaction pairs with generic proteins (it is considered that due to the randomness
of their choice their interaction is not dependent on peptide recognition modules), protein pairs
were imported from the Uniprot by searching for the name "Homo sapiens”, having thus been

created two types of datasets, one with generic pairs and other with generic pairs and pairs of
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peptide recognition module. The protein pairs that were used as generic were 356 pairs for the
datasets with SH3, SH2 and PDZ, 390 pairs for the dataset with WW and 420 for the dataset with
LRR (in order to account for each dataset a total of 500 protein pairs). In this way, 5 datasets were
created with the pairs of each domain and with generic pairs (each having 500 protein pairs) and
3 different datasets with only generic pairs (having 356, 390 and 420 protein pairs).

4 — Subsequently the datasets were augmented and subdivided into four parts.

4.1 - In the case of datasets with interactions only between generic protein pairs, the first
part corresponded to the pairs taken from the Uniprot, in the second part a copy of the previous
one was made but changing the order of the pairs as the ID's that were in the column A from the
first part of the dataset, are passed to column B and vice versa (solution to the fact that the
performance evaluator does not distinguish which features will correspond to the IDs of column
A or B) , in the third part was created the negative dataset (protein pairs where no interactions
occur) for this columns from the first part were copied, however the first ID coming from column
A was placed at the end of the column, being at the beginning of the column A of the third part,
the second ID of the column A of the first part (it was considered that by changing the order of
the protein pairs in this way, the probability of them interacting with each other was low), in the
fourth part a copy of the previous one was made but changing the order of the pairs (ID's of
column A went to column B and vice versa). In the end the three datasets with only generic pairs
were left with 1424, 1560 and 1680 protein pairs.

Features Protein A (for Protein B is a copy of the columns below)

Moranauto SOCN
Dataset with 356 pairs of

AAC CTD Qso (9)
Protein | Protein pi] 147 240 100 512
A B columns | columns | columns columns | columns
protein interaction e o

The same positive dataset but o =
with the ID's changed in the |

columns because the evaluator 0 @

712 pairs with
protein
interaction

c2 o1

Negative dataset with 356 pairs e = 0
from the dataset with 356 pairs T | o = ’

cas6 Dx

does not distinguish the B = < 6
provenance of the features — — {

The same negative dataset but 0 P

— D3 Cx

of protein interaction o - @
D1 c2 &

with the ID's changed in the
columns because the evaluator

Dx cas6.

©ce o8 o @8 6 8B 6 B8 Rk B R B B B B B B R”

D356 c1

712 pairs
without
protein
interaction
(obtained by
random

pairing)

does not distinguish the
provenance of the features

Table 3: Generic dataset organization with 1424 protein pairs

The only difference for datasets with 1560 and 1680 pairs of proteins is that in the case of the dataset with 1560 pairs,
instead of 356 pairs imported are 390 pairs and instead of 712 pairs of interaction or non-pairs, they are 780 pairs,
In the case of the dataset with 1680 pairs, instead of 356 pairs imported are 420 pairs and instead of 712 pairs of
interaction or non-interaction, they are 840 pairs.
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4.2 — The datasets with pairs of proteins containing the enunciated domains plus the
generic pairs had the same procedure, the only change being the addition, to the previous datasets,
of the pairs with the corresponding domains (pairs with SH3, SH2 and PDZ were added to the
dataset with 1424 pairs, pairs with WW were added to the dataset with 1560 and pairs with LRR

were added to the dataset with 1680), the only difference was that in the third part in column A

the order of the proteins ID's with domains of the first part maintained and in column B generic
ID's were imported from column A of the first part. In the end the five datasets with pairs of

proteins having domains and generic pairs had 2000 protein pairs.

Dataset with 144 pairs of
protein interaction mediated by
SH3, SH2 or PDZ

Dataset with 356 pairs of
protein interaction

The same positive dataset but
with the ID's changed in the
columns because the evaluator
does not distinguish the
provenance of the features

Negative dataset with 144 pairs
holding a protein from each
dataset stated above

Negative dataset with 356 pairs
from the dataset with 356 pairs
of protein interaction

The same negative dataset but
with the ID's changed in the
columns because the evaluator
does not distinguish the
provenance of the features

Protein | Protein
A B

Al

D356

B1

Bx

B1a4

D1

D2

c3s6

c1

Features Protein A (for Protein B is a copy of the columns below)
AAC CTD Moranauto SOCN Qso CT

20 147 240 60 100 512
columns | columns | columns | columns | columns | columns

L

Q
9[
(//-es

Interaction

c/le o o o ® o6 6 o 8 ©6 6 6 8 © 68 K B B B B B B B BB oA BB R e R

Table 4: Organization of datasets with SH3, SH2 or PDZ and 1424 generic pairs

The only difference for the datasets with WW and LRR is that in the case of the dataset with WW pairs, instead of
144 pairs imported (mediated by WW) are 110 pairs and instead of 356 pairs imported, they are 390 pairs. In the
case of the dataset with LRR pairs, instead of 144 imported pairs (mediated by LRR) are 80 pairs and instead of 356
pairs imported, there are 420 pairs.

1000 pairs with
protein
interaction

1000 pairs
without
protein
interaction
(obtained by
random

pairing)

5—Then using the PyDPI 1.0 software and the Python language [Annex | — Page 36], six different
descriptors (structures that contain descriptive information of the different data) were used to
collect features, thus creating six equal groups with the eight previous datasets (in all worked with
48 different datasets). Each of the descriptors (AAC, CTD, Moranauto, SOCN, QSO and CT) has

a characteristic functioning and gives rise to different numbers of features.
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5.1 - The AAC descriptors also called amino acid composition obtain features using the
fraction between the number of the amino acid type and the length of the sequence having 20
different features (Cao, et al., 2012).

5.2 — The CTD descriptors also called composition, transition and distribution starts with
each amino acid acquiring an index (1,2 or 3) in result of their hydrophobicity, normalized van
der Waals volume, polarity, polarizability, charge, secondary structure or solvent accessibility
(Cao, et al., 2012). The composition is calculate using the fraction between the percentage of each
class in the sequence and the length of the sequence (Cao, et al., 2012). The transition is obtain
by the fraction between the frequency in each an index is follow by other one and the length of
sequence (Cao, et al., 2012). The distribution show the spreading of each index in the sequence,
is determined by the fraction between the position of an index (the first time an index appear or
when the same index reaches 25%, 50%, 75% or 100% of its distribution) and the length of the
sequence, all multiplied by 25%, 50%, 75% or 100% (taking care its distribution) (Cao, et al.,
2012). These descriptors have 147 different features.

5.3 — The Moranauto descriptors also called Moran autocorrelation use the distribution of
amino acid properties along the sequence in the form of indices, which are first centralized and
standardized, and then calculated by the Moran’s | formula (Cao, et al., 2012). These descriptors
have 240 different features.

5.4 — The SOCN descriptors also called sequence-order-coupling numbers use the
squared sum of the distance between 2 of the 20 amino acids at different positions, having 60
different features (Cao, et al., 2012).

5.5 —The QSO descriptors also called quasi-sequence-order QSO is obtain by the fraction
between the normalized occurrence of an amino acid and the sum of the normalized occurrence
of the same amino acid with the multiplication of the weighting factor with the different distances
between this amino acid and other (Cao, et al., 2012). These descriptors have 100 different
features.

5.6 — The CT descriptors also called conjoint triad to be calculated, at first the amino acids
are cluster in seven classes (the dipoles and the volume of its side chains are use to cluster them)
(Cao, et al., 2012). Then it’s used a binary space (V,F) where the vector V represent the features
(three neighbour amino acids in the form of classes) and the vector F the frequency of each feature
(Cao, et al., 2012). Finally, to normalized the value of frequencies it’s done a fraction between
the subtraction of the dimension of F with the minimum frequency of a feature and the maximum
frequency of the same feature. These descriptors have 512 different features (Cao, et al., 2012).
6 — Subsequently, the performances of the 48 datasets were evaluated using a Machine Learning
tool called "Orange”. For this, we used the classifiers naive Bayes, k-nearest neighbour (k=5),

support vector machine, tree decision, logistic regression and stochastic gradient descent, whose
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performance was evaluated by the following indicators: area under the ROC curve, accuracy, F-
score, precision and recall.
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|Figure 14: Model structure using the Orange tool |

6.1 — All of these values were subsequently treated and subtractions were made for each
quality indicator value, within the same descriptor but between datasets with generic / domains
and datasets with only corresponding generic ones. Subsequently we added the value of these
differences by classifier (analysis of the relevance of the classifiers by domain), the result of these
sums was also added to each other by domain (analysis of domain pertinence by descriptor) and

finally the results of these sums were also summed between them (analysis of the pertinence of
the descriptor) [Annex Il — Page 43].
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[Figure 15: Summary of the 1st strategy model |

23




COMPUTATIONAL METHODOLOGIES FOR PREDICTING PROTEIN-PROTEIN INTERACTIONS

4.2.2 Values

As can be seen in "Annex II" in the page 43, the values of the quality indicators are generally in
the range of values below 0.6. Overall performance improved from datasets that have domains to
the non-domain (shaded black are the values whose subtractions indicate otherwise). The k-
nearest neighbour classifier had the worst results because detected more times a better
performance in the domain-free datasets than in those who have a domain. In contrast, the naive
Bayes classifier had the best difference values. As for the quality indicators, the recall was the
one that detected fewer improvements of the datasets with domains for those that do not have
them whereas the precision was the one that had results that are more positive. In terms of the
SH2 domains and to a lesser extent the SH3 had the best values added of difference and the
datasets with LRR had the worst values added. Finally, the QSO was the descriptor that had the
highest value of sum of differences in the performance evaluation and the SOCN the one that had

the lowest value.

4.2.3 Discussion

The use of the "orange canvas" software although simple and easy to handle implies some
disadvantages, namely the fact that it can not run very large datasets and have a high cost in terms
of time. As for the PyDPI software is a seemingly viable source of features that, depending on the
chosen descriptors, makes a quick collection of features (CT and Moranauto take more time). In
addition, it uses as features several biochemical components present in proteins, which is why we
follow the methodology of the most recent strategies, which use biochemical knowledge to
improve the performance of computational methods. However, the relevance of the subtractions
made in the treatment part of the results is questionable, since what is important is to analyse the
performance values obtained. The mathematical operations performed with the obtained results
must be observed in the perspective of which descriptors that appear to have more discrepant
results (between the datasets with domain and the ones without domain) and can not be observed
in the perspective of which descriptor that worked best, because this is only detected if the
performance values are high. By analysing the values coming from the quality indicators it is
verified that the values are inconclusive since all are less than 0.6 (would be viable if they were
higher than 0.7). These poor values may be the result of the datasets being small (just 500 different
features) and being divided by the descriptors. Moreover, the part of the negative interactions of
the datasets with respect to the proteins with domains (it is at the beginning of the third and fourth
part of the datasets) did not have in column B ID's of proteins with domains, but of generic

proteins. For all these reasons this strategy was considered obsolete.
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4.3 Relevance of the domains interaction in a large dataset

In order to solve the shortcomings of the previous strategy, only two datasets were created, one
with pairs of generic proteins (more protein pairs were imported) and another with all protein

pairs whose interaction is mediated by domains plus generic pairs.

4.3.1 Procedure

1 - In order to obtain a dataset with protein IDs that interact with the peptide recognition modules,
were used those of the previous strategy, which is the 144 pairs of SH3, SH2 and PDZ, 110 of
WW and 80 of LRR with the difference that all them had gone to the same dataset.

2 — In terms of interaction pairs with generic proteins, protein pairs were imported from the
Uniprot by searching for the name "Homo sapiens", having thus been created two datasets, one
with generic pairs and other with generic pairs and pairs of all peptide recognition module. In this
way the generic dataset remained with 9388 protein pairs and the dataset with generic and domain-
mediated pairs with 10010 (there are 622 domain mediated interaction pairs).

3 — Subsequently, the datasets were augmented and subdivided into four parts like in the first
strategy. However, because they are very large datasets and so that the different parts are detected,
in the second part, the characters are blue, the third is yellow and the fourth is red. Also in the
third part was altered the way to generate negative data in the region that contains only non-
protein interactions mediated by domains, it was therefore maintained the order of the protein ID's
with domains coming from column A of the first part regarding the ID's of proteins with domains
from column B of the first part, the first ID passed to the end of the 622 ID's and the second ID

Features Protein A (for Protein B is a copy of the columns below)

AAC CTD Moranauto SOCN Qso cT

Protein | Protein 20 147 L] 60 100 512 .
Interaction
A ;] columns | columns | columns | columns | columns | columns
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with the ID's changed in the ms fos

columns because the evaluator 5 =

does not distinguish the B o= ® G
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Negative dataset with 9388 = o 0
pairs from dataset with 9388 || = = ,

The same negative dataset but o2 o
with the ID's changed in the T = o

pairs of protein interaction o _— e
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|Tab|e 5: Dataset organization of the 2nd strategy with generic protein pairs|
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of the column B of the first part became the first ID of the column B of the third part. At the end
the dataset with pairs of generic proteins and pairs of proteins with domains remained with 40040
protein pairs and the dataset with only pairs of generic proteins remained with 37552 protein pairs.

Features Protein A (for Protein B is a copy of the columns below)
AAC CTD SOCN Qso CcT
100 512

Moranauto
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4 — Then using the PyDPI 1.0 software and Python language [Annex | — Page 36] from the same
six descriptors were obtained the features of the generic proteins (the features of the pairs with
domains were copied from the first strategy).

5 — Subsequently, the performances of the two datasets were evaluated using Python
programming (the dataset was too large to be evaluated in a useful time by the "Orange" tool)
[Annex 111 —Page 49]. For this, the classifiers used were support vector machine, naive Bayes,
decisions tree, neuro network models, k-nearest neighbours (k=6) and stochastic gradient descent,
whose performance was evaluated by the following indicators:, accuracy, F-score, precision,

recall and area under the ROC curve.
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dataset using: Performance
2 Datasets ' f:::ﬁ']?;t;ecmr evaluated by:
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[Figure 16: Summary of the 2nd strategy model |
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4.3.2 Values

Classifiers Datasets Accuracy F-score Precision Recall Area under the ROC curve
SVM Domains + Generic | 0.5495984583343922 |0.24377737421215684| 0.8464391691394659 | 0.14239361038312742|  0.5582641549354098
Generic 0.5413887035491264 |0.23823663773412518| 0.8123052959501558 | 0.13958779443254818| 0.5538315180932114
Naive Bayes | Domains + Generic [0.49718674654982953| 0.634234396859064 |0.49674819737028136| 0.8769499563209784 0.4937042671771079
Generic 0.4957858698985277 | 0.631297672836807 | 0.4955380977804897 | 0.8695128479657388 0.4966851562652909
Decisions Tree| Domains +Generic | 0.505238061211202 | 0.5161727558375948 | 0.509734728644439 [NURYPIFLYLERYEIPYE) 0.5096696392041553
Generic 0.5021053136981447 | 0.5159511618747539 | 0.5063128059778408 MOUYAE RIS pZEior 0[] 0.5091733472646802
NNM Domains + Generic |0.49943130484859277| 0.6223141661573182 | 0.4992456246228123 | 0.8259078996630476 0.4982344696365969
Generic 0.4917022055438893 |0.43658769163060224(0.48303846778120435| 0.39828693790149894 |  0.48818837556089645
KNN (k=6) Domains + Generic | 0.5008217768506313 [ORiPFEIF:pRZVEPI Y SRR yaLLYRZ LR 0.3731436415824286 0.5010164040724838
Generic 0.500799115276487 [WRVELLRYLypPLY M oRlo [ Cxloplsyiby/oAN 0.37299250535331907 ORIV YL Ll vkl
SGD Domains + Generic | 0.5012157226154965 JORIGSYRRIRY2YPILE 0.5020576131687243 WORHWRI 0T v 0.5018007879517413
Generic 0.5003998254775998 JONREY/(ZEISPATLT 0 0.5007984183712265 ORIHEYRIELPAISLYL NN 0.5058861866923395

|Tab|e 7: Results of the 2nd strategy |

In the table above, in black are the quality values whose dataset performance with generic proteins

was higher than the values of the dataset with generic proteins and proteins with domains. Overall,

all values are around 0.5. The classifier that had the best performance comparing the dataset with

generic/domains protein pairs with the dataset with only generic protein pairs was the neuro

network models and the worst was stochastic gradient descent. As for the quality indicators, what

gave the best results in terms of demonstrating that the generic dataset / domains had a better

performance was the accuracy and what had worse results was the area under the ROC curve.

4.3.3 Discussion

The two datasets constructed, despite having a considerable size, may not have contained enough

features to give relevant values. Although each dataset has 10000 different features, there is the

possibility of having a repetition of feature values which implies values with a small significance.

In this case, since the values have been of little relevance, it is necessary to rethink the use of the

PyDPI software and its potential replacement by another source of features. The results obtained

were not high enough to be significant in that almost none was higher than 0.7. In addition, the

differences between the two datasets studied, although there is a tendency for the quality values

to be higher in the dataset with generic/domains pairs, it is not enough to conclude that the use of

features coming from protein pairs interacting from peptide recognition modules, improve the

performance of the detection of interactions in a random dataset. Another situation to point out

was the fact that several times the performance value was higher for the datasets without domain,

which in the case of kNN could be due to the use of an incorrect number of k. One of the reasons

these values are so insignificant may be that the construction of the datasets has been excessively

manual because it was not used computer tools in the construction of datasets and the correct

location of the features (all this work was done manually as well as the import of features). All of

this may have jeopardized the correct placement of the features and by the insignificant results.
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4.4 Pertinence of the protein domains using new features

As the reason for the values, being insignificant may have been due to the excessive manual
manipulation of the datasets, the third strategy was to use features from the article "A Sequence-
Based Mesh Classifier for the Prediction of Protein-Protein Interactions”. In order to increase
the significance of the values, the number of protein pairs whose interaction was dependent on

the enunciated domains as well as the generic proteins was also increased.

4.4.1 Procedure

1 - In order to obtain datasets with protein IDs that interact with the peptide recognition modules,
were used the same strategy of the last approach, with the difference that all the pairs of protein
with interaction performed by the five domains were saved. In this way were obtained 2333 pairs
of domain proteins with 1038 pairs of SH3, 439 pairs of SH2, 494 pairs of PDZ, 197 pairs of WW
and 165 pairs of LRR.
2 — In order to reduce the excess of manual manipulation of the datasets, we used the features
already calculated from the dataset of the article "A Sequence-Based Mesh Classifier for the
Prediction of Protein-Interactions” which had 963471 pairs of proteins. In this way, it was
sufficient to know the proteins of the dataset with 2333 pairs that existed in the dataset of the
article and, if so, to make use of the corresponding features (to detect proteins that existed
simultaneously in both datasets, we used the "COUNTIF" function of Excel). At the end, 2031
pairs of proteins were found to exist in the two datasets simultaneously, with 921 being SH3 pairs,
385 being SH2 pairs, 418 being PDZ pairs, 168 being WW pairs and 139 being pairs of LRRs.
2.1 - In terms of interaction pairs with generic proteins, pairs of proteins were imported
from the data of the article cited above, taking into account that, in order to supress overfitting,
the "RAND" function of Excel was needed to randomize the pairs that were in alphabetic order.
In this way was created the generic dataset with 100000 protein pairs and the dataset with generic
and domains with 102031 protein pairs.
3 — Subsequently, the datasets were augmented and subdivided into four parts like in the first
strategy. However, because they are very large datasets and so that the different parts are detected,
the protein pairs belonging to SH2 had their characters painted of red, the PDZ painted of blue,
the WW painted of green and the LRR painted of yellow. Also the four parts were distinguished,
in the second part the bottom were painted of green, in the third part of blue and in the fourth part
of yellow (in different shades of the protein domain IDs character colours). The third part was
also altered in that, column A was copied in full but, column B was randomized by the "RAND"
function which was used separately for the set of ID's that had only pairs of proteins mediated by

domains and the set of ID's of the generic proteins At the end the dataset with pairs of generic
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proteins and pairs of proteins with domains remained with 408124 protein pairs and the dataset
with only pairs of generic proteins remained with 400000 protein pairs.

600 features (Protein A) 600 features (Protein B)

Protein | Protein
600 columns 600 columns
A B
c1 D1

Dataset with 100000 pairs of

protein interaction @ 02
cz D2
The same positive dataset but o 0x 200000 pairs
with the ID's changed in the 100000 100000 —| with protein
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does not distinguish the n Z: z E
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[Table 8: Dataset organization of the 3rd strategy with generic protein pairs |
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4 — The method present in the article "A Sequence-Based Mesh Classifier for the Prediction of
Protein-Protein Interactions", from which the features were extracted consists of few steps, first
the amino acids are categorized by their physical and chemical characteristics and replaced by
seven different characters (1 — Ala, Gly,Val; 2 — lle, Leu, Phe, Pro; 3 — Tyr, Met, Thr, Ser; 4 —
His, Asn, GIn, Trp; 5 — Arg, Lys; 6 — Asp, Glu; 7 — Cys), then the Discrete Cosine Transform is
used to remove features from the primary protein structures (Coelho, et al., 2017). In this way,
600 features were created for each 91293 different proteins in a file called "data.xIs".

4.1 - To join these 600 features, with the corresponding pairs of ID's that proved to be
present in the dataset of the aforementioned article, had been used the programming in C# (C
Sharp) [Annex IV — Page 51]. That way the data.xls file was converted to data.csv just like the
"Generic" dataset only with generic pairs and the "Genericdomain" dataset with generic pairs and
those with domains interactions. The developed code allowed to open the file data.csv read it line
by line and write in memory a dictionary in which the key was the 1st column (ID's) and the value
the other 600 columns (features). Then the code read the datasets "Generic" and "Genericdomain”
if the previous dictionary contained the keys of column 1 and column 2 simultaneously, we obtain
a final string that is the value corresponding to key 1 and the value corresponding to the key 2. At
the end was recorded what was in memory, namely, two files with errors that were referring to
the lines in which at least one of the ID's of the columns of the datasets "Generic" and
"Genericdomain" was not present in the data.csv.

4.1.1 — Of the values with errors, 132 pairs that had no features were obtained,
corresponding to 66 pairs that were withdrawn in each part of the positive (first and second part)
and negative (third and fourth part) datasets.

5 — Subsequently, the performances of the two datasets were evaluated using Python
programming [Annex V — Page 55]. For this, the classifiers used were support vector machine,
naive Bayes, decisions tree and neuro network models, whose performance was evaluated by the

following indicators: F-score, precision, recall and area under the ROC curve.

2 Datasets with Cross vaIidat.ion was e
; features obtained performed in each o ormance-
Dataset with - dataset using: evaluated by:
SH3, SH2, Dataset with in"A Sequence- . Support vector Area under the
PDZ, WW, 100000 Collect Basgd Mesh machine ROC curve
LRR and generic features Classzﬁerr'for the - Naive Bayes F-score
100000 pairs Prediction of * Decisions tree Precision
generic pairs Protein-Protein *  Neuro network Recall
Interactions”
models

[Figure 17: Summary of the 3rd strategy model |
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4.4.2 Values

IINEIMMRRCENIEIY 0.5289767005798812 0.5026561520440822 0.5582060019786743 0.5010854415972757

Generic 0.5637514094606282 0.5033821430666067 0.640573688924271 0.5009834606821567
0.4678854514484599 KoRiyaNlZyEYRLEINERY 0.46467089272409706( 0.4697807269680197
Generic 0.4640195062788994 KWRIyAREPPISLEIOCRLEY 0.45687381829037715( 0.4695815116893084
DL [ TG IDIINE MR ACEN Nl 0.5246099023387617 0.5223862521647512 0.5268525643374494 0.520951735909318
Generic 0.5265636006376747 0.5231564472165606 0.5300154244203403 0.5209217853159069
0.5223614247213927 | 0.5192036199095023 MOURYRERYAVSYPFIEENS 0.5177959072718608
0.5142106114800412

SVM

Naive Bayes |Domains + Generic

NNM Domains + Generic
Generic 0.5213094350550527 | 0.5164882122407121 REORYIYRACHVEYiI0)

[ Table 10: Results of the 3rd strategy |

In the table above, in black are the quality values whose dataset performance with generic proteins
was higher than the values of the dataset with generic proteins and proteins with domains. Overall,
all values are around 0.5. The classifier that had the best performance comparing the dataset with
generic/domains protein pairs with the dataset with only generic protein pairs was the neuro
network models and the worst was support vector machine. As for the quality indicators, what
gave the best results in terms of demonstrating that the generic dataset / domains had a better
performance was the area under the ROC curve and what had worse results was the precision.

4.4.3 Discussion

In this case the datasets were quite large, the source of features was reliable (they gave rise to
positive results in the article "A Sequence-Based Mesh Classifier for the Prediction of Protein-
Protein Interactions") and minimal manual handling (manipulation was used manual only in the
initial organization of the datasets by the ID's). However the size of the datasets may have been
disadvantageous because, because they were too large, it was impossible to open and analyze
them (computationally the computer could not open such large documents), so potential
inconsistencies in the datasets could not be detected and corrected. Since it does not hold great
knowledge in the area of programming, perhaps the codes used may contain some error that may
have translated into errors that have taken significance to the values obtained. The results obtained
were not high enough to be significant in that almost none was higher than 0.7. In addition, the
differences between the two datasets studied, although there is a tendency for the quality values
to be higher in the dataset with generic/domains pairs, it is not enough to conclude that the use of
features coming from protein pairs interacting from peptide recognition modules, improve the
performance of the detection of interactions in a random dataset. However, it is quite relevant that
AUC, considered the quality indicator par excellence, has demonstrated in this strategy to always

be higher in the values corresponding to the Domains + Generic dataset.
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5. CONCLUSION

In this thesis, it was intended to improve the prediction of protein interactions from computational
methods using feature extraction. In this way, several methodologies were analysed, and three
pertinent approaches were formulated: the use of inhibitor databases, the use of gene co-
expression networks and the use of peptide recognition modules. From these three, due to the
greater pertinence, studies using the last mentioned approach were developed, using the SH3,
SH2, PDZ, WW and LRR domains that were evaluated in the detection of new interactions
between proteins that do not possess them (in order to evaluate the relevance of their features to
be used in a random dataset). Thus during the work of this thesis were created three strategies,
the first one was based on the extraction of features by the software PyDPI and in the evaluation
of the performance of the datasets by descriptor; the second strategy resorted to the same features
but evaluated the performance in datasets with all descriptors; the third strategy evaluated the
performance as the second strategy but using features created for the article "A Sequence-Based
Mesh Classifier for the Prediction of Protein-Protein Interactions".

Despite the different strategies employed in the context of this thesis, the relevance of peptide
recognition modules in the detection of protein interactions in random datasets could not be
conclusively verified. Although the performance values are generally in the order of 0.5, a
tendency of the same ones to be superior in the datasets that have interactions that are known to
be mediated by them is detected.

However, this work has contributed to the formulation of a new field of strategies in the detection
of protein-protein interactions using computational methodologies since, although no relevant
values have been obtained, it can serve as a basis for other working groups that, with better
training computing, can detect relevance in the approach used here, and even in the other two that
have not yet been explored (databases of inhibitors and co-expression networks).

As improvements a smaller dataset could have been used that was easier to handle (detect errors),
or have tried to get other features with other strategies. However, the lack of knowledge in the
programming area and the time available for the construction of new strategies was limiting.

For the future, should will be a focus on the use of new features and other strategies to prove the
appropriateness of the approach developed or the other two approaches, since the little
significance of the current values can be due to the lack of knowledge in the programming area

and to faults in the handling of the features.
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7. ANNEX

Annex | — Features import code by PyDPI

from pydpi import pypro

from pydpi.pypro import AAComposition

import csv

id_list = [XXX, XXX, XXX, XXX,XXX,XXX,XXX,XXX,XXX,...]

sequences = []

AAComp_features = ["A", "R", "N", "D", "C", "Q", "E", "G", "H", "I", "L", "K", "M", "F", "P",
IR I VA SR VAN |

def csv_writer(file_name, input_dict,input_name,input_feature_list):
with open(file_name,"ab") as csv_file:
writer = csv.writer(csv_file, delimiter =";")
final_comp_values = [input_name]
for AAC_comp in input_feature_list:
final_comp_values.append(input_dictfAAC_comp])

writer.writerow(final_comp_values)

for prot_id inid_list:
current_sequence = pypro.GetProteinSequence(prot_id)

sequences.append(current_sequence)

csv_writer("test.csv"',AAComposition.CalculateAAComposition(current_sequence),prot_id,AA

Comp_features)

Subtitle:

The "id_list" corresponds to the protein ID’s separated by commas;

The "test.csv" file was the csv file to which the features were exported;

In order to obtain the features of the other descriptors the following substitutions were made:
e Inthe case of CTD

Instead of "from pydpi.pypro import AAComposition” was used "from pydpi.pypro import

CTD"

Instead of "AAComposition.CalculateAAComposition™ was used "CTD.CalculateCTD"

AAComp_features = ['_NormalizedVDWVD1075',' PolarityD1075',' SecondaryStrD3025',

' PolarityD3100','_ChargeD1100','_SecondaryStrT23',"' PolarityD3025',
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' NormalizedVDWVCL',' NormalizedVDWVC3',' HydrophobicityT23',
'_SolventAccessibilityD1025', '_PolarityD1100', '_NormalizedvVDWVD2100', '_ChargeD3050',
'_PolarityD2001','_SolventAccessibilityD2025', ' _SecondaryStrD2025', ' PolarityT12',

' PolarityT13',' _ChargeT23','_HydrophobicityD2100', '_SolventAccessibilityD3001',

' ChargeD1075','_SecondaryStrD1075','_PolarizabilityD2050', '_SolventAccessibilityD3100',
'_PolarizabilityD1075', '_HydrophobicityD3025', '_PolarizabilityD3025', ' _SecondaryStrD3050',
"_SolventAccessibilityD2050', '_HydrophobicityD2001', ' _SecondaryStrD2075',
'_PolarityD3050', '_PolarityD1001','_ChargeD2075','_NormalizedvDWVD3025',
'_SolventAccessibilityD1100', '_SecondaryStrD1100', '_NormalizedvDWVD1001,

" NormalizedVDWVD2050', '_NormalizedVDWVC2',"' PolarizabilityC2',' PolarizabilityC3',
' PolarizabilityC1',' SecondaryStrC2',' SecondaryStrC3',' ChargeT12',' ChargeT13',

' ChargeD1001',' NormalizedvDWVD3001', ' NormalizedvVDWVD2025',

" NormalizedVDWVD3050', '_SecondaryStrD1025', ' SolventAccessibilityD1050',

' PolarizabilityD3001', '_PolarityD2075',' SecondaryStrD3001',' ChargeD2025',

" HydrophobicityD2050', ' PolarizabilityD1100', ' _HydrophobicityC1', ' HydrophobicityC2',
" SolventAccessibilityD2100', ' _PolarizabilityD2001','_PolarizabilityD1025',

' NormalizedVDWVT13',' PolarizabilityD3050', '_SolventAccessibilityT13',

" SolventAccessibilityT12',' PolarityD1050', ' ChargeD3075',' SolventAccessibilityD1001',
" HydrophobicityC3',' HydrophobicityD3100', '_SecondaryStrD1050', ' _ChargeD3001',

' SecondaryStrD2050', '_PolarityD2025', ' _NormalizedVDWVYD2001',
'"_HydrophobicityD3075','_ChargeD1025','_SolventAccessibilityD2001",
'"_HydrophobicityD1025',' ChargeD1050", '_SolventAccessibilityD3025',

' _PolarizabilityD3075', '_PolarityD2100','_SecondaryStrD3100', '_PolarizabilityT13',

' _PolarizabilityT12',' SecondaryStrD2001', ' _NormalizedVDWVD1050',

' PolarizabilityD1050', '_SolventAccessibilityT23',' ChargeC3','_ChargeC2',"' ChargeC1/

" NormalizedVDWVT23',' _NormalizedvVDWVD3100', '_PolarizabilityD2025',

" SolventAccessibilityD3075', ' _HydrophobicityD2075', ' _HydrophobicityD1075',

' ChargeD2050','_ChargeD3100','_SecondaryStrC1',' ChargeD3025', ' PolarityD3001',
'_PolarityD3075','_PolarityD1025','_SecondaryStrT13','_SecondaryStrT12',
'_HydrophobicityD1001', '_SolventAccessibilityD1075', ' _HydrophobicityD1050',
"_HydrophobicityT13','_HydrophobicityT12','_SecondaryStrD1001',

' NormalizedvDWVD1100', '_NormalizedvDWVD3075','_NormalizedVDWVD1025',
"_SolventAccessibilityD2075', '_SecondaryStrD2100', '_PolarizabilityD3100',
'_SecondaryStrD3075', '_NormalizedVDWVT12',' PolarizabilityT23,
'_SolventAccessibilityD3050', '_PolarityT23','_PolarityD2050", '_HydrophobicityD2025',
'_PolarizabilityD2075', '_HydrophobicityD3050', '_HydrophobicityD3001',
'_HydrophobicityD1100', '_ChargeD2001', '_SolventAccessibilityC1',
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" SolventAccessibilityC2',' SolventAccessibilityC3', '_PolarizabilityD1001',
" NormalizedVDWVD2075','_ChargeD2100','_PolarizabilityD2100', '_PolarityC1',
'_PolarityC3','_PolarityC2']

¢ In the case of Moranauto
Instead of "from pydpi.pypro import AAComposition" was used "from pydpi.pypro import
Autocorrelation™
Instead of "AAComposition.CalculateAAComposition™ was used
"Autocorrelation.CalculateMoranAutoTotal "
AAComp_features = ['MoranAuto_ResidueVol8', 'MoranAuto_ResidueVol9',
'MoranAuto_ResidueVol4', 'MoranAuto_ResidueVol5', 'MoranAuto_ResidueVol6',
'MoranAuto_ResidueVol7', 'MoranAuto_ResidueVoll', 'MoranAuto_ResidueVol2,
'‘MoranAuto_ResidueVol3', 'MoranAuto_Steric2', 'MoranAuto_FreeEnergyl’,
'MoranAuto_FreeEnergy?2', 'MoranAuto_FreeEnergy3', 'MoranAuto_FreeEnergy4',
'‘MoranAuto_FreeEnergy5', 'MoranAuto_FreeEnergy6', 'MoranAuto_FreeEnergy7",
'‘MoranAuto_FreeEnergy8', 'MoranAuto_FreeEnergy9', 'MoranAuto_Steric8',
'MoranAuto_Steric9', 'MoranAuto_Hydrophobicityl5', 'MoranAuto_ResidueASA30',
'MoranAuto_Steric28', 'MoranAuto_Steric30', 'MoranAuto _ResidueASA26',
'MoranAuto_Hydrophobicity13', 'MoranAuto_Stericl', 'MoranAuto_Steric7,
'‘MoranAuto_ResidueASA23', 'MoranAuto_ResidueASA20', ‘MoranAuto_AvFlexibility30',
'MoranAuto_Hydrophobicity10', 'MoranAuto_ResidueASA29', 'MoranAuto_ResidueASA28',
'‘MoranAuto_Hydrophobicity19', 'MoranAuto_Hydrophobicity18',
'‘MoranAuto_Hydrophobicity17', 'MoranAuto_Hydrophobicity16',
'‘MoranAuto_ResidueASA27', 'MoranAuto_Hydrophobicity14', 'MoranAuto_ResidueASA21',
'MoranAuto_Hydrophobicity12', 'MoranAuto_Hydrophobicityl11',
'MoranAuto_ResidueASA22', 'MoranAuto_Steric21', ‘MoranAuto_Steric20',
'MoranAuto_Steric23', 'MoranAuto_Steric22', 'MoranAuto_Steric25', ‘'MoranAuto_Steric24’,
'‘MoranAuto_ResidueVol18', 'MoranAuto_ResidueVol19', 'MoranAuto_ResidueVoll16',
'‘MoranAuto_ResidueVoll7', 'MoranAuto_ResidueVol14', 'MoranAuto_ResidueVoll15',
'‘MoranAuto_ResidueVol12', 'MoranAuto_ResidueVol13', 'MoranAuto_ResidueVol10',
'‘MoranAuto_ResidueVol11', 'MoranAuto_AvFlexibility26', 'MoranAuto_AvFlexibility27',
'‘MoranAuto_AvFlexibility24', 'MoranAuto_AvFlexibility25', ‘MoranAuto_AvFlexibility22',
'MoranAuto_AvFlexibility23', '"MoranAuto_AvFlexibility20', 'MoranAuto_AvFlexibility21',
'MoranAuto_ResidueASA25', 'MoranAuto_Steric6', 'MoranAuto_Mutability30',
'MoranAuto_AvFlexibility28', '"MoranAuto_AvFlexibility29', 'MoranAuto_AvFlexibility19',
'‘MoranAuto_AvFlexibilityl18', 'MoranAuto_Steric4', 'MoranAuto_Steric5',
'MoranAuto_AvFlexibilityl3', 'MoranAuto_AvFlexibilityl2', ‘MoranAuto_AvFlexibilityl1',
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'MoranAuto_AvFlexibility10', 'MoranAuto_AvFlexibilityl7', 'MoranAuto_AvFlexibility16',
'MoranAuto_AvFlexibilityl5', '"MoranAuto_AvFlexibility14', 'MoranAuto_ResidueASA1S;,
'MoranAuto_ResidueASA19', 'MoranAuto_ResidueASA24', 'MoranAuto_ResidueASA10',
'‘MoranAuto_ResidueASA1l', 'MoranAuto_ResidueASA12', 'MoranAuto_ResidueASAL3',
'‘MoranAuto_ResidueASA14', 'MoranAuto_ResidueASA15', 'MoranAuto_ResidueASAL6',
'MoranAuto_ResidueASAL7', 'MoranAuto_Steric14', ‘MoranAuto_Stericl5',
'‘MoranAuto_Stericl16', 'MoranAuto_Stericl7', ‘MoranAuto_Steric10', 'MoranAuto_Steric11',
'MoranAuto_Steric12', 'MoranAuto_Steric13', ‘MoranAuto_Steric18', 'MoranAuto_Steric19',
'‘MoranAuto_Mutability29', '"MoranAuto_Mutability6', ‘"MoranAuto_Mutability7',
'‘MoranAuto_Mutability4', 'MoranAuto_Mutability5', ‘MoranAuto_Mutability2',
'‘MoranAuto_Mutability3', 'MoranAuto_Mutabilityl', 'MoranAuto_Mutability8',
'MoranAuto_Mutability9', 'MoranAuto_Mutability10', '"MoranAuto_Mutability28',
'MoranAuto_Mutability12', '"MoranAuto_Mutability13', 'MoranAuto_Mutability14',
'MoranAuto_Mutability15', '"MoranAuto_Mutability16', 'MoranAuto_Mutability17",
'MoranAuto_ResidueVol30', 'MoranAuto_Mutability19', 'MoranAuto_Hydrophobicity9',
'MoranAuto_Hydrophobicity8', 'MoranAuto_Hydrophobicity7', 'MoranAuto_Hydrophobicity6',
'MoranAuto_Hydrophobicity5', 'MoranAuto_Hydrophobicity4', 'MoranAuto_Hydrophobicity3',
'MoranAuto_Hydrophobicity2', 'MoranAuto_Hydrophobicityl', 'MoranAuto_Polarizability19',
'MoranAuto_Polarizability18', 'MoranAuto_Steric3', 'MoranAuto_Polarizability11',
'MoranAuto_Polarizability10', '"MoranAuto_Polarizability13', 'MoranAuto_Polarizability12',
'MoranAuto_Polarizabilityl5', 'MoranAuto_Polarizabilityl4', 'MoranAuto_Polarizability17',
'MoranAuto_Polarizability16', 'MoranAuto_Hydrophobicity25', ‘MoranAuto_Steric27",
'‘MoranAuto_FreeEnergy18', 'MoranAuto_FreeEnergy19', 'MoranAuto_FreeEnergy12',
'‘MoranAuto_FreeEnergy13', ‘MoranAuto_FreeEnergy10', 'MoranAuto_FreeEnergy11',
'‘MoranAuto_FreeEnergy16', 'MoranAuto_FreeEnergyl7', 'MoranAuto_FreeEnergy14,
'MoranAuto_FreeEnergy15', 'MoranAuto_ResidueVol27', 'MoranAuto_ResidueVol26',
'MoranAuto_ResidueVol25', 'MoranAuto_ResidueVol24', 'MoranAuto_ResidueVol23',
'MoranAuto_ResidueVol22', 'MoranAuto_ResidueVol21', 'MoranAuto_ResidueVol20',
'MoranAuto_Steric26', 'MoranAuto_ResidueVol29', 'MoranAuto_ResidueVol28',
'‘MoranAuto_Polarizability28', ‘MoranAuto_Polarizability29', 'MoranAuto_Mutability11',
'‘MoranAuto_Polarizability24', ‘MoranAuto_Polarizability25', 'MoranAuto_Polarizability26',
'‘MoranAuto_Polarizability27', ‘MoranAuto_Polarizability20', 'MoranAuto_Polarizability21',
'‘MoranAuto_Polarizability22', ‘MoranAuto_Polarizability23', 'MoranAuto_Steric29',
'‘MoranAuto_Mutability18', 'MoranAuto_ResidueASAS8', ‘MoranAuto_ResidueASA9',
'MoranAuto_ResidueASAG', 'MoranAuto_ResidueASA7', 'MoranAuto_ResidueASA4',
'‘MoranAuto_ResidueASAS', 'MoranAuto_ResidueASA2', 'MoranAuto_ResidueASA3',
'MoranAuto_ResidueASAL', 'MoranAuto_Hydrophobicity26', 'MoranAuto_Hydrophobicity27,
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'MoranAuto_Hydrophobicity24', 'MoranAuto_Polarizability30',
'‘MoranAuto_Hydrophobicity22', 'MoranAuto_Hydrophobicity23',
'‘MoranAuto_Hydrophobicity20', 'MoranAuto_Hydrophobicity21',
'MoranAuto_Hydrophobicity28', 'MoranAuto_Hydrophobicity29', 'MoranAuto_AvFlexibility9',
'‘MoranAuto_AvFlexibility8', 'MoranAuto_AvFlexibility7', 'MoranAuto_AvFlexibility6',
'‘MoranAuto_AvFlexibility5', 'MoranAuto_AvFlexibility4', ‘MoranAuto_AvFlexibility3',
'‘MoranAuto_AvFlexibility2', 'MoranAuto_AvFlexibilityl', 'MoranAuto_Polarizability9',
'MoranAuto_Polarizability8', 'MoranAuto_FreeEnergy30', 'MoranAuto_Polarizabilityl',
'MoranAuto_Polarizability3', 'MoranAuto_Polarizability2', 'MoranAuto_Polarizability5',
'MoranAuto_Polarizability4', 'MoranAuto_Polarizability7', 'MoranAuto_Polarizability6',
'MoranAuto_Mutability25', 'MoranAuto_Hydrophobicity30', 'MoranAuto_Mutability24',
'MoranAuto_Mutability27', '"MoranAuto_Mutability26', 'MoranAuto_Mutability21',
'MoranAuto_Mutability20', '"MoranAuto_Mutability23', 'MoranAuto_Mutability22',
'MoranAuto_FreeEnergy23', '"MoranAuto_FreeEnergy22', 'MoranAuto_FreeEnergy21’,
'MoranAuto_FreeEnergy20', '"MoranAuto_FreeEnergy27', 'MoranAuto_FreeEnergy26',
'MoranAuto_FreeEnergy25', '"MoranAuto_FreeEnergy24', 'MoranAuto_FreeEnergy29',
'‘MoranAuto_FreeEnergy28']

e Inthe case of SOCN
Instead of "from pydpi.pypro import AAComposition™ was used "from pydpi.pypro import
QuasiSequenceOrder"
Instead of "AAComposition.CalculateAAComposition™ was used
"QuasiSequenceOrder.GetSequenceOrderCouplingNumberTotal"
AAComp_features = [taugrant23', 'taugrant24’, 'tausw8', 'tausw9', 'tausweé', 'tausw7', 'tausw4',
'tausw5', 'tausw?2', 'tausw3', 'tauswl', ‘taugrant26', ‘taugrant30', ‘tausw29', ‘tausw28', ‘taugrant25’,
‘tausw21', 'tausw?20', 'tausw?23', 'tausw22', 'tausw25', 'tausw24', ‘tausw27', ‘tausw26', ‘taugrant15’,
'taugrant14’, ‘taugrantl?’, ‘taugrant16', ‘taugrantll’, ‘taugrant10', ‘taugrant13', 'taugrant12’,
'taugrant19', ‘taugrant18', 'taugrant9’, ‘taugrant8', 'taugrants', ‘taugrant4', ‘taugrant7', ‘taugrant6’,
'taugrantl’, 'taugrant3', 'taugrant?', tausw30', 'taugrant27', ‘taugrant28', 'taugrant29', ‘tausw18s',
'tausw19', 'tauswi14', 'tausw15s', ‘tauswl16', ‘tauswl?7’, 'tauswl0’, 'tauswll’, 'tausw1?2', ‘tauswl3’,

‘taugrant20', ‘taugrant21’, ‘taugrant22']

e Inthe case of QSO
Instead of "from pydpi.pypro import AAComposition™ was used "from pydpi.pypro import
QuasiSequenceOrder"
Instead of "AAComposition.CalculateAAComposition™ was used

"QuasiSequenceOrder.GetSequenceOrderCouplingNumberTotal"
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AAComp_features = ['[QSOSW39', 'QSOSW38', 'QSOSW33', 'QSOSW32', 'QSOSW31',
'QSOSW30', 'QSOSW37', 'QSOSW36', 'QSOSW35', 'QSOSW34', 'QSOSW1', 'QSOSW3,
'QSOSW2', 'QSOSW5', 'QSOSW4', 'QSOSWT7', 'QSOSWE', 'QSOSW9', 'QSOSWS;,
'QSOgrant49’, 'QSOgrant48', 'QSOgrant41’, 'QSOgrant40', 'QSOgrant43', 'QSOgrant42’,
'QSOgrant45', 'QSOgrant44', '‘QSOgrant47', 'QSOgrant46', 'QSOSW28', 'QSOSW29',
'QSOSW20', 'QSOSW21', 'QSOSW22', 'QSOSW23', 'QSOSW24', 'QSOSW?25', 'QSOSW26',
'QSOSW27', 'QSOgrant38', 'QSOgrant39', 'QSOgrant30', 'QSOgrant31', 'QSOgrant32',
'QSOgrant33', 'QSOgrant34', 'QSOgrant35', 'QSOgrant36', 'QSOgrant37', 'QSOSW50",
'QSOgrant29', 'QSOgrant28', 'QSOgrant27', 'QSOgrant26', 'QSOSW18', 'QSOgrant24',
'QSOgrant23', 'QSOgrant25', 'QSOgrant21', 'QSOgrant20', 'QSOgrant22', 'QSOSW11',
'QSOSW10', 'QSOSW48', 'QSOSW49', 'QSOSW46', 'QSOSWA4T', 'QSOSW44', '\QSOSW45',
'QSOSW42', 'QSOSW43', 'QSOSW40', 'QSOSW4L', 'QSOgrant16', '‘QSOgrant17',
'QSOgrant14', 'QSOgrant15', 'QSOgrant12', 'QSOgrant13', 'QSOgrant10', '‘QSOgrant11’,
'QSOgrant50', 'QSOgrant18', 'QSOgrant19', 'QSOSW15', 'QSOSW14', 'QSOSW17,
'QSOSW16', 'QSOgrant8', 'QSOgrant9', 'QSOSW13', 'QSOSW12', 'QSOgrant4’, 'QSOgrant5’,
'QSOgrant6', 'QSOgrant7’, 'QSOSW19', 'QSOgrantl’, 'QSOgrant2', 'QSOgrant3']

e Inthecaseof CT
Instead of "from pydpi.pypro import AAComposition™ was used "from pydpi.pypro import
ConjointTriad"
Instead of "AAComposition.CalculateAAComposition™ was used
"ConjointTriad.CalculateConjointTriad"
AAComp_features = ['010', '011', '012', '013', '014", '015', '016", '017', ‘344", '345', '346', 347",
'340', '341', '342', '343', '717','716', '715', '714','713', '712', '711','710', '270', ‘271", ‘272", ‘273,
"274','275', '276', '277', '524', '525', '526', '527', '520", '521', '522', '523', '443', '442', 441", '440,
'447', '446', '445', '444','102', '103', '100', '101', '106', '107', '104', '105', '601', '641', '640', '643,
'642', '645', '644', '647', '646', '436', '437', '434','435', '432', '433', '430', '431', '335', '334', '337',
'336', '331', '330', '333', '332', '054', '055', '056', '057', '050', '051', '052', '053', '740", ‘741", '742,
'743','600', '745', '746', '747', '555', '554', '557", '556', '551", '550', '553', '552", '234', '235', '236",
'237','230', 231, '232', '233', '146', '147', '144', '145', '142', '143', '140', '141', '612', '613', '610",
'611', '616', '617', '614', '615', '133', '132', '131', '130", '137', '136', '135', '134', '407", '406'", '405',
'404', '403', '402', '401', '400', '025', '024', '027', '026', '021', '020', '023', '022', '371', ‘370", '373,
'372','375', '374','377', '376', '704', '705', '706', ‘707", '700', '701', '702', '703', '607", '245', ‘244",
247", '246', 241", 240", '243', '242','511", '510', '513', '5612', '515', '514', ‘517", '516', '623', '622,
'621', '620', '627", '626', '625', '624", '450Q", '451", '452', '453', '454', '455', '456', ‘457", '177', '176',
'175','174','173', '172', '171', 170", '656', '657", '654", '655', '652', '653', '650", '651', '061', ‘060",
'063', '062', '065', '064', '067', '066', '322', '323', '320", '321', '326', '327", '324','325', '201', ‘200",
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'203', '202', '205', '204', 207", '206', '667", '666', '665', '664", '663', '662', '661', '660', '542', '543',
'540', '541', '546', '547', '544','545', '120", 121", '122", '123", '124', '125', '126', 127", '414', '415',
'416', 'A17', '410', '411', '412', '413', 776", ‘313", '312', 311", '310", ‘317", '316', ‘315", '314', '032',
‘033", '030', '031', '036", '037", '034', '035', '366'", 367", 364", '365', 362", '363', ‘360", ‘361", '605',
'604', '573', '572', '571', '570', '577", '576", '575', '574', '606'", '252', 253", 250", ‘251", '256', ‘257",
'254', 255", '603', '602', '731', '730', '733', '732', '735', '734", '737", '736", '506', '507", '504', '505',
'502', '503', '500', '501", '630", '631', '632', '633', '634", '635', '636', '637", '465', '464', '467', '466',
'461', '460', '463', '462', '164', '165', '166', '167", '160", '161', '162', '163", '076', '077", '074', '075',
'072','073', '070', '071', '003', '002', ‘001", ‘000", '007", '006'", '005', '004", ‘357", '356', '355', '354',
‘353", '352', '351', '350", 216", 217", 214", '215', 212", '213', '210", 211", '762", '763', '760'", '761',
766", '767", 764", '765', '674', '675', '676', '677', '670', '671','672', '673', '263', '262', '261', '260',
'267','266', '265', '264', '537', '536', '535', '534', '533', '532', '531', '530', 775", "774', 777", 115,
'114','117', '116', '111', '110', '113', "112', 771", '770', 773", '772', '421', '420', '423', '422', '425',
'424', 427", '426', '300', ‘301", '302', '303', '304', '305', ‘306", 307", ‘047", '046', '045', '044",'043',
'042','041', '040', '744', '753', '752', "751', "750'", '757", "756', '755', '754', '560", '561', '562', '563,
'564', '565', '566', '567", 227", '226', '225', '224', '223', '222', 221", '220', '726', 727", '124', "125',
722','723', 720, '721', '151', '150', '153', '152", '155', '154', '157", '156', '472', '473', '470", 471,
‘476", 47T, ‘474", 475"
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Annex Il — Results of the 1st strategy

Descriptorl Domain Classifier AUC ACC F1 PPV TPR AUCdif | AcCdif [ F1dif | PPV dif | TPRdif 3> dif |3 domain|3 descriptor
AAC | sH3 |NaiveBayes| 0554 | 0551 | 0481 | 0569 | 0417 | 0335 | 0258 | 0190 | 0277 | 0126 | 1186 | 3,657 | 16,221
kNN 0451 | 0453 | 0498 | 0460 | 0543 | 0018 0025 | 0003 | 0053 | 0098
SYM 0577 | 0535 | 0612 | 0525 | 0733 | 0,069 0053 | 0032 | 0088 | 0286
Tree 0544 | 0539 | 0543 | 0538 | 0549 | 0085 | 0077 | 0091 | 0077 | 0105 | 0435
R 0619 | 0614 | 04% | 0722 | 0371 | 0299 | 0251 | 0135 | 0362 | 0020 | 1,067
SGD 0621 | 0621 | 0518 | 0710 | 0407 | 0,150 | 0159 | 0062 | 0,249 0,585
SH2 | NaiveBayes| 0562 | 0555 | 049 | 0572 | 0436 | 0343 | 0262 | 0204 | 0280 | 0145 | 1,234 | 3,744
kNN 0461 | 0466 | 0484 | 0469 | 0501 | 0,028 | 0012 | 0011 | 0012 | 0011 | 0074
SYM 0565 | 0532 | 0595 | 0524 | 0688 | 0057 | 0041 | 003 | 0031 | 0043 | 0,208
Tree 0572 | 0565 | 0561 | 0566 | 055 | 0113 | 0103 | 0109 | 0105 | 0112 | 0542
R 0631 | 0619 | 0498 | 0729 | 0379 | 0311 | 025 | 0143 | 0369 | 0028 | 1,107
SGD 0615 | 0615 | 0528 | 0683 | 0430 | 0153 | 0153 | 0072 | 0222 0,579
PDZ_|NaiveBayes| 0,567 | 0,551 | 0488 | 0568 | 0428 | 0348 0,276 3,421
kNN 0436 | 0447 | 0448 | 0447 | 0449 | 0,003
sYM 0,568 | 0,540 | 0600 | 0530 | 069 | 0060 | 0049 | 0041 | 0037 | 0045 | 0232
Tree 0,560 | 0557 | 0551 | 0559 | 0543 | 0,201 | 0,095 | 0099 | 0098 | 0099 | 049
R 0603 | 0618 | 0479 | 0750 | 0352 | 0283 | 0255 | 0124 | 0390 | 0001 | 1,03
SGD 0608 | 0608 | 0501 | 069 | 0393 | 0146 | 0,146 | 0045 | 0229 [N 0508
No Domain| Naive Bayes| 0219 | 0293 | 0291 | 0292 | 0291 | NA | NA | NA | NA | NA. | NA | NA
kNN 0433 | 0454 | 0473 | 0457 | 04% | NA. | NA. | NA | NA | NA | NA
sYM 0508 | 0491 | 0559 | 0493 | 0645 | NA. | NA. | NA | NA | NA | NA
Tree 0459 | 0462 | 0452 | 0461 | 0448 | NA. | NA. | NA | NA | NA | NA
R 0320 | 0363 | 035 | 0360 | 035 | NA. | NA. | NA | NA | NA | NA
SGD 0462 | 0462 | 0456 | 0461 | 0451 | NA. | NA. | NA | NA | NA | NA
LRR__|Naive Bayes| 0,488 | 0507 | 0406 | 0511 | 0,337 | 0178 | 0146 | 0044 | 0,150 0493 | 2233
kNN 0493 | 0494 | 0497 | 049 | 0499 | 0118 | 0095 | 0067 | 0085 | 0046 | 0411
sYM 0509 | 0504 | 0577 | 0503 | 0676 | 0009 | 0011 | 0014 | 0009 | 0022 | 0065
Tree 0550 | 0545 | 0538 | 0546 | 053 | 0133 | 0125 | 0129 | 0129 | 0129 | 0645
R 0569 | 0548 | 0378 | 0606 | 0275 | 0182 | 0,124 0152 [ERECN o293
SGD 0558 | 0558 | 0469 | 0588 | 03% | 008 | 0,108 | 0,020 | 0138 [EEEE 0316
No Domain| Naive Bayes| 0310 | 0361 | 0362 | 0361 | 0362 | NA. | NA | NA | NA. | NA. | NA | NA
kNN 0375 | 0399 | 0430 | 0409 | 0453 | NA. | NA. | NA | NA | NA | NA
SYM 0,500 | 0493 | 0563 | 04% | 065 | NA. | NA. | NA | NA | NA | NA
Tree 0417 | 0420 | 0409 | 0417 | 0401 | NA. | NA. | NA | NA | NA | NA
LR 0387 | 0424 | 0424 | 0424 | 0424 | NA. | NA. | NA | NA | NA | NA
SGD 0450 | 0450 | 0449 | 0450 | 0448 | NA. | NA. | NA | NA | NA | NA
WW__|NaiveBayes| 0511 | 0,540 | 0408 | 0572 | 0317 | 0,194 | 0172 | 0033 | 0201 0,537 | 3176
kNN 0498 | 0494 | 0514 | 049 | 0535 | 0129 | 0093 | 0084 | 0084 | 0083 | 0473
SYM 0564 | 0532 | 0598 | 0524 | 0697 | 0057 | 0035 | 0030 | 0027 | 0035 | 0,184
Tree 0566 | 0565 | 0561 | 0565 | 0557 | 047 | 0146 | 0,156 | 0150 | 0,61 | 0,760
R 0636 | 0598 | 0494 | 0665 | 0393 | 0249 | 0181 | 0081 | 0250 |NEYORAN 0744
SGD 0582 | 0581 | 0478 | 0634 | 0384 | 0136 | 0135 | 0049 | 0191 [EEWEEE 0478
No Domain| Naive Bayes| 0317 | 0368 | 0375 | 0371 | 0380 | NA | NA | NA | NA | NA. | NA | NA
kNN 0369 | 0401 | 0430 | 0410 | 0452 | NA. | NA | NA | NA | NA | NA
SYM 0,507 | 0497 | 0568 | 0497 | 0662 | NA. | NA. | NA | NA | NA | NA
Tree 0419 | 0419 | 0405 | 0415 | 03% | NA. | NA. | NA | NA | NA | NA
LR 0387 | 0417 | 0413 | 0415 | 0410 | NA. | NA. | NA | NA | NA | NA
SGD 0446 | 0446 | 0429 | 0443 | 0417 | NA. | NA. | NA | NA | NA | NA
Subtitle:

AUC dif — Difference, within the same descriptor/classifier, between the AUC value of a domain and corresponding non-domain

ACC dif — Difference, within the same descriptor/classifier, between the ACC value of a domain and corresponding non-domain

F1 dif — Difference, within the same descriptor/classifier, between the F1 value of a domain and corresponding non-domain

PPV dif — Difference, within the same descriptor/classifier, between the PPV value of a domain and corresponding non-domain

TPR dif — Difference, within the same descriptor/classifier, between the TPR value of a domain and corresponding non-domain

> dif — Sum, within the same descriptor/domain, of all values of differences for the same classifier

> domain — Sum, within the same descriptor, of all values of sum of differences for the same domain

> descriptor — Sum of all values of sum of sum of differences for the same descriptor

N.A. — Not covered by dataset values

In black are the negative values - values of differences in which the values of non-domain performance were higher than the

performance values of the corresponding domains
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Descriptor| Domain Classifier AUC ACC F1 PPV TPR AUC dif | ACCdif F1dif | PPV dif | TPRdif > dif |3 domain|3 descriptor
CTD SH3 Naive Bayes| 0,523 0,500 0,496 0,500 0,493 0,395 0,272 0,268 0,272 0,265 1,472 4,199 18,666
kNN 0,417 0,438 0,460 0,443 0,479
SVM 0,556 0,526 0,589 0,520 0,680 0,041 0,035 0,037 0,027 0,054 0,194
Tree 0,550 0,545 0,548 0,544 0,552 0,141 0,133 0,152 0,137 0,166 0,729
LR 0,520 0,516 0,463 0,520 0,417 0,339 0,261 0,217 0,271 0,174 1,262
SGD 0,538 0,538 0,519 0,542 0,498 0,124 0,124 0,114 0,131 0,099 0,592
SH2 Naive Bayes| 0,544 0,515 0,511 0,516 0,507 0,416 0,287 0,283 0,288 0,279 1,553 5,150
kNN 0,483 0,491 0,506 0,492 0,522 0,047 0,039 0,040 0,038 0,043 0,207
SVM 0,577 0,526 0,605 0,519 0,727 0,062 0,035 0,053 0,026 0,101 0,277
Tree 0,586 0,583 0,576 0,585 0,568 0,177 0,171 0,180 0,178 0,182 0,888
LR 0,578 0,566 0,470 0,603 0,385 0,397 0,311 0,224 0,354 0,142 1,428
SGD 0,583 0,583 0,557 0,593 0,524 0,169 0,169 0,152 0,182 0,125 0,797
PDZ Naive Bayes| 0,491 0,465 0,476 0,466 0,487 0,363 0,237 0,248 0,238 0,259 1,345 4,222
kNN 0,412 0,435 0,447 0,438 0,456
SVM 0,568 0,533 0,602 0,524 0,707 0,053 0,042 0,050 0,031 0,081 0,257
Tree 0,550 0,541 0,549 0,540 0,558 0,141 0,129 0,153 0,133 0,172 0,728
LR 0,545 0,526 0,475 0,532 0,429 0,364 0,271 0,229 0,283 0,186 1,333
SGD 0,546 0,546 0,536 0,548 0,525 0,132 0,132 0,131 0,137 0,126 0,658
No Domain|Naive Bayes| 0,128 0,228 0,228 0,228 0,228 N.A. N.A. N.A. N.A. N.A. N.A. N.A.
kNN 0,436 0,452 0,466 0,454 0,479 N.A. N.A. N.A. N.A. N.A. N.A.
SVM 0,515 0,491 0,552 0,493 0,626 N.A. N.A. N.A. N.A. N.A. N.A.
Tree 0,409 0,412 0,396 0,407 0,386 N.A. N.A. N.A. N.A. N.A. N.A.
LR 0,181 0,255 0,246 0,249 0,243 N.A. N.A. N.A. N.A. N.A. N.A.
SGD 0,414 0,414 0,405 0,411 0,399 N.A. N.A. N.A. N.A. N.A. N.A.
LRR Naive Bayes| 0,398 0,412 0,404 0,410 0,398 0,235 0,173 0,175 0,178 0,172 0,933 2,183
kNN 0,398 0,414 0,422 0,416 0,428
SVM 0,519 0,515 0,564 0,512 0,628
Tree 0,497 0,495 0,489 0,495 0,484 0,060 0,062 0,050 0,061 0,040 0,273
LR 0,462 0,455 0,424 0,450 0,401 0,254 0,181 0,158 0,181 0,138 0,912
SGD 0,496 0,496 0,493 0,496 0,489 0,044 0,044 0,051 0,046 0,054 0,239
No Domain|Naive Bayes| 0,163 0,239 0,229 0,232 0,226 N.A. N.A. N.A. N.A. N.A. N.A. N.A.
kNN 0,418 0,427 0,446 0,432 0,462 N.A. N.A. N.A. N.A. N.A. N.A.
SVM 0,503 0,504 0,588 0,503 0,707 N.A. N.A. N.A. N.A. N.A. N.A.
Tree 0,437 0,433 0,439 0,434 0,444 N.A. N.A. N.A. N.A. N.A. N.A.
LR 0,208 0,274 0,266 0,269 0,263 N.A. N.A. N.A. N.A. N.A. N.A.
SGD 0,452 0,452 0,442 0,450 0,435 N.A. N.A. N.A. N.A. N.A. N.A.
WwW Naive Bayes| 0,440 0,434 0,436 0,434 0,439 0,296 0,203 0,195 0,197 0,195 1,086 2,912
kNN 0,384 0,406 0,401 0,405 0,398
SVM 0,543 0,517 0,587 0,513 0,686 0,018 0,034 0,039 0,026 0,058 0,175
Tree 0,520 0,519 0,510 0,519 0,501 0,074 0,080 0,070 0,080 0,060 0,364
LR 0,523 0,494 0,454 0,492 0,421 0,327 0,218 0,190 0,223 0,161 1,119
SGD 0,527 0,527 0,516 0,529 0,504 0,075 0,075 0,065 0,077 0,054 0,346
No Domain|Naive Bayes| 0,144 0,231 0,241 0,237 0,244 N.A. N.A. N.A. N.A. N.A. N.A. N.A.
kNN 0,414 0,425 0,444 0,430 0,459 N.A. N.A. N.A. N.A. N.A. N.A.
SVM 0,525 0,483 0,548 0,487 0,628 N.A. N.A. N.A. N.A. N.A. N.A.
Tree 0,446 0,439 0,440 0,439 0,441 N.A. N.A. N.A. N.A. N.A. N.A.
LR 0,196 0,276 0,264 0,269 0,260 N.A. N.A. N.A. N.A. N.A. N.A.
SGD 0,452 0,452 0,451 0,452 0,450 N.A. N.A. N.A. N.A. N.A. N.A.
Subtitle:

AUC dif — Difference, within the same descriptor/classifier, between the AUC value of a domain and corresponding non-domain

ACC dif — Difference, within the same descriptor/classifier, between the ACC value of a domain and corresponding non-domain

F1 dif — Difference, within the same descriptor/classifier, between the F1 value of a domain and corresponding non-domain

PPV dif — Difference, within the same descriptor/classifier, between the PPV value of a domain and corresponding non-domain

TPR dif — Difference, within the same descriptor/classifier, between the TPR value of a domain and corresponding non-domain

> dif — Sum, within the same descriptor/domain, of all values of differences for the same classifier

> domain — Sum, within the same descriptor, of all values of sum of differences for the same domain

> descriptor — Sum of all values of sum of sum of differences for the same descriptor

N.A. — Not covered by dataset values

In black are the negative values - values of differences in which the values of non-domain performance were higher than the

performance values of the corresponding domains
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Descriptor| Domain | Classifier AUC ACC F1 PPV TPR AUCdif | ACCdif [ F1dif | PPV dif | TPRdif 3 dif |3 domain|3 descriptor
Moranauto| SH3 _ |Naive Bayes| 0,513 | 0492 | 0472 | 0492 | 0454 | 0376 | 0274 | 0262 | 0279 | 0246 | 1437 | 5291 | 22,364

kNN 0548 | 0,546 | 045 | 0,569 | 0,380 | 0277 | 0224 | 0093 | 02% 0,814
SVM 0481 | 0521 | 0597 | 0516 | 0,709 [N 0054 | 0065 | 0042 | 0104 | 0,85
Tree 0572 | 0562 | 0562 | 0562 | 0561 | 0148 | 0136 | 0134 | 0,135 | 0132 | 0,685
R 0518 | 0570 | 0429 | 0637 | 0324 | 0332 | 0302 | 0160 | 0368 | 0054 | 1216
SGD 0539 | 0539 | 0513 | 0544 | 048 | 0208 | 0208 | 0178 | 0211 | 0149 | 0954

SH2 _|NaiveBayes| 0422 | 0417 | 0428 | 0420 | 0437 | 0285 | 0199 | 0218 | 0207 | 0229 | 1,138 | 4727
kNN 0553 | 0530 | 0474 | 0538 | 0423 | 0282 | 0208 | 0111 | 0195 | 0037 | 0833
SVM 0548 | 0518 | 0586 | 0514 | 0681 0,051 | 0054 | 0040 | 0076 | 0208
Tree 0560 | 0558 | 0549 | 0561 | 0538 | 0136 | 0132 | 0121 | 0,134 | 0109 | 0,632
LR 052 | 0531 | 0437 | 0547 | 0364 | 0338 | 0263 | 0168 | 0278 | 0094 | 1,141
SGD 0497 | 0497 | 0482 | 0497 | 0468 | 0166 | 0166 | 0147 | 0164 | 0132 | 0,775

PDZ__|Naive Bayes| 0450 | 0445 | 0432 | 0442 | 0423 | 032 | 0227 | 0222 | 0229 | 0215 | 1,215 | 5383
kNN 0566 | 0534 | 0489 | 0541 | 0446 | 0295 | 0212 | 0126 | 0,198 | 0060 | 0,891
SVM 0561 | 0521 | 059% | 0516 | 0699 | 0000 | 0054 | 0062 | 0042 | 009 | 0252
Tree 0581 | 0573 | 0566 | 0575 | 0558 | 0157 | 0147 | 0138 | 0,148 | 0129 | 0,719
R 0548 | 0574 | 0449 | 0634 | 0347 | 0362 | 0306 | 0180 | 0365 | 0077 | 1,290
SGD 0547 | 0547 | 0529 | 0551 | 0508 | 0216 | 0216 | 0194 | 0218 | 0172 | 1,016

No Domain|Naive Bayes| 0,137 | 0218 | 0,210 | 0213 | 0208 | NA | NA. | NA. | NA | NA | NA | NA
kNN 0271 | 0322 | 0363 | 0343 | 038 | NA. | NA | NA | NA | NA | NA
SVM 0561 | 0467 | 0532 | 0474 | 0605 | NA | NA | NA | NA | NA | NA
Tree 042 | 042 | 0428 | 0427 | 0429 | NA. | NA | NA | NA | NA | NA
IR 0186 | 0268 | 0269 | 0269 | 0270 | NA. | NA | NA | NA | NA | NA
SGD 0331 | 0331 | 0335 | 0333 | 0336 | NA. | NA | NA | NA | NA | NA

LRR__ |NaiveBayes| 0316 | 0344 | 0343 | 0343 | 0343 | 0242 | 0197 | 0189 | 0191 | 0,188 | 1,007 | 2,726
kNN 0451 | 0422 | 0428 | 0424 | 0432 | 005 | 0044 | 0050 | 0046 | 0053 | 0298
SVM 0510 | 0497 | 0578 | 0498 | 0,689 0,007 | 0019 | 0006 | 0043 | 0062
Tree 0486 | 0484 | 0481 | 0484 | 0478 | 005 | 0052 | 0075 | 0059 | 0090 | 0330
LR 0416 | 0425 | 035 | 0405 | 0319 | 0285 | 0205 | 0121 | 0175 | 0080 | 0866
SGD 0438 | 0438 | 0436 | 0437 | 0435 | 0035 | 0035 | 0031 | 0033 | 0029 | 0163

No Domain|Naive Bayes| 0,074 | 0,147 | 0,154 | 0152 | 015 | NA. | NA. | NA | NA | NA | NA | NA
kNN 0346 | 0378 | 0378 | 0378 | 0379 | NA. | NA | NA | NA | NA | NA
SVM 0523 | 04% | 0559 | 049 | 0646 | NA. | NA | NA | NA | NA | NA
Tree 0432 | 0432 | 0406 | 0425 | 0388 | NA. | NA | NA | NA | NA | NA
IR 0131 | 0220 | 0235 | 0230 | 0239 | NA | NA | NA | NA | NA | NA
SGD 0403 | 0403 | 0405 | 0404 | 0406 | NA. | NA | NA | NA | NA | NA

WW__ [Naive Bayes| 0,350 | 0369 | 0370 | 0369 | 0371 | 0291 | 0240 | 0232 | 0232 | 0231 | 1,22 | 4237
kNN 0525 | 0489 | 0443 | 0486 | 0406 | 0188 | 0124 | 0142 | 0151 | 0133 | 0738
SVM 0515 | 0510 | 0,570 | 0,508 | 0,651 0,036 | 0030 | 0028 | 0033 | 0108
Tree 0522 | 0516 | 0513 | 0516 | 0509 | 0,101 | 0106 | 0116 | 0110 | 0121 | 0554
IR 04% | 0471 | 0403 | 0462 | 0358 | 038 | 0272 | 019 | 0257 | 0149 | 1,254
SGD 0473 | 0472 | 0467 | 0472 | 0462 | 0077 | 0076 | 0068 | 0075 | 0061 | 0357

No Domain|Naive Bayes| 0,059 0,129 0,138 0,137 0,140 N.A. N.A. N.A. N.A. N.A. N.A. N.A.
kNN 0337 | 0365 | 0301 | 0335 | 0273 | NA | NA | NA | NA | NA | NA
SVM 053 | 0474 | 0580 | 0480 | 0618 | NA. | NA | NA | NA | NA | NA
Tree 0421 | 0410 | 0397 | 0406 | 0388 | NA. | NA | NA | NA | NA | NA
LR 0116 | 0199 | 0207 | 0205 | 0209 | NA. | NA | NA | NA | NA | NA
SGD 03% | 03% | 039 | 0397 | 0401 | NA. | NA | NA. | NA | NA | NA

Subtitle:

AUC dif — Difference, within the same descriptor/classifier, between the AUC value of a domain and corresponding non-domain

ACC dif — Difference, within the same descriptor/classifier, between the ACC value of a domain and corresponding non-domain

F1 dif — Difference, within the same descriptor/classifier, between the F1 value of a domain and corresponding non-domain

PPV dif — Difference, within the same descriptor/classifier, between the PPV value of a domain and corresponding non-domain

TPR dif — Difference, within the same descriptor/classifier, between the TPR value of a domain and corresponding non-domain

> dif — Sum, within the same descriptor/domain, of all values of differences for the same classifier

> domain — Sum, within the same descriptor, of all values of sum of differences for the same domain

> descriptor — Sum of all values of sum of sum of differences for the same descriptor

N.A. — Not covered by dataset values

In black are the negative values - values of differences in which the values of non-domain performance were higher than the

performance values of the corresponding domains

45



COMPUTATIONAL METHODOLOGIES FOR PREDICTING PROTEIN-PROTEIN INTERACTIONS

Descriptor| Domain | Classifier AUC ACC F1 PPV TPR AUCdif | AcCdif | F1dif | PPV dif | TPRdif Y dif |3 domain|3 descriptor,|
SOCN SH3 Naive Bayes| 0,568 0,542 0,553 0,540 0,566 0,129 0,091 0,090 0,087 0,093 0,490 2,786 11,068
kNN 0,517 0,512 0,515 0,512 0,518 0,035 0,033 0,040 0,033 0,047 0,188
SVM 0,578 0,525 0,589 0,519 0,680 0,083 0,029 0,015 0,021 0,002 0,150
Tree 0,515 0,517 0,516 0,517 0,514 0,143 0,135 0,141 0,138 0,144 0,701
LR 0,588 0,586 0,469 0,653 0,366 0,243 0,199 0,080 0,265 0,763
SGD 0,620 0,620 0,550 0,674 0,464 0,124 0,124 0,070 0,178 0,494
SH2 Naive Bayes| 0,582 0,540 0,543 0,540 0,546 0,143 0,089 0,080 0,087 0,472 3,106
kNN 0,516 0,511 0,528 0,510 0,546 0,034 0,032
SVM 0,561 0,514 0,524 0,513 0,536 0,066 0,018 0,015 -0,142
Tree 0,575 0,575 0,562 0,579 0,546 0,203 0,193 0,176
LR 0,635 0,627 0,489 0,776 0,357 0,290 0,240 -0,033
SGD 0,626 0,626 0,572 0,668 0,500 0,130 0,130 0,092 0,172 0,034 0,558
PDZ Naive Bayes| 0,551 0,531 0,553 0,528 0,581 0,112 0,080 0,090 0,075 0,108 0,465 2,651
kNN 0,520 0,511 0,515 0,511 0,519 0,038 0,032
SVM 0,546 0,515 0,550 0,513 0,593 0,051 0,019
Tree 0,535 0,536 0,534 0,536 0,532 0,163 0,154
LR 0,584 0,592 0,470 0,671 0,362 0,239 0,205
SGD 0,613 0,613 0,536 0,669 0,448 0,117 0,117
No Domain|Naive Bayes| 0,439 0,451 0,463 0,453 0,473 N.A. N.A. N.A.
kNN 0,482 0,479 0,475 0,479 0,471 N.A. N.A.
SVM 0,495 0,496 0,574 0,498 0,678 N.A. N.A.
Tree 0,372 0,382 0,375 0,379 0,370 N.A. N.A.
LR 0,345 0,387 0,389 0,388 0,390 N.A. N.A.
SGD 0,496 0,496 0,480 0,496 0,466 N.A. N.A.
LRR Naive Bayes| 0,499 0,496 0,509 0,497 0,523 0,076 0,051 0,353
kNN 0,476 0,474 0,481 0,475 0,487 -0,042
SVM 0,502 0,502 0,484 0,502 0,466 -0,386
Tree 0,481 0,482 0,477 0,482 0,472 0,042
LR 0,499 0,501 0,399 0,501 0,331 -0,068
SGD 0,563 0,563 0,476 0,594 0,397 -0,079
No Domain|[Naive Bayes| 0,423 0,445 0,433 0,443 0,424 N.A.
kNN 0,511 0,501 0,514 0,501 0,529
SVM 0,490 0,498 0,629 0,499 0,852
Tree 0,441 0,444 0,436 0,442 0,430
LR 0,330 0,380 0,392 0,385 0,399
SGD 0,501 0,501 0,488 0,501 0,476 A,
Ww Naive Bayes| 0,559 0,531 0,547 0,529 0,566 0,136 0,093 0,111 0,091 0,133 0,564 2,172
kNN 0,528 0,519 0,531 0,519 0,544 0,022 0,025 0,132
SVM 0,543 0,501 0,576 0,501 0,679 0,043 0,004 0,043
Tree 0545 | 0537 | 0527 | 0539 | 0516 | 0,104 | 0,003 0,480
LR 0,579 0,577 0,417 0,671 0,302 0,273 0,217 -0,033 0,850
SGD 0,578 0,578 0,512 0,606 0,444 0,081 0,081 -0,142 0,103
No Domain|Naive Bayes| 0,423 0,438 0,436 0,438 0,433 N.A. N.A. N.A. N.A.
kNN 0,506 0,494 0,503 0,494 0,512 N.A. N.A. N.A.
SVM 0,500 0,497 0,577 0,498 0,685 N.A. N.A. N.A.
Tree 0,441 0,444 0,433 0,442 0,424 N.A. N.A. N.A.
LR 0,306 0,360 0,343 0,352 0,335 N.A. N.A. N.A.
SGD 0,497 0,497 0,538 0,497 0,586 N.A. N.A. N.A.
Subtitle:

AUC dif — Difference, within the same descriptor/classifier, between the AUC value of a domain and corresponding non-domain

ACC dif — Difference, within the same descriptor/classifier, between the ACC value of a domain and corresponding non-domain

F1 dif — Difference, within the same descriptor/classifier, between the F1 value of a domain and corresponding non-domain

PPV dif — Difference, within the same descriptor/classifier, between the PPV value of a domain and corresponding non-domain

TPR dif — Difference, within the same descriptor/classifier, between the TPR value of a domain and corresponding non-domain

> dif — Sum, within the same descriptor/domain, of all values of differences for the same classifier

> domain — Sum, within the same descriptor, of all values of sum of differences for the same domain

> descriptor — Sum of all values of sum of sum of differences for the same descriptor

N.A. — Not covered by dataset values

In black are the negative values - values of differences in which the values of non-domain performance were higher than the

performance values of the corresponding domains
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Descriptor| Domain | Classifier AUC ACC F1 PPV TPR AUCdif | ACCdif | F1dif | PPV dif | TPRdif S dif |3 domain|3 descriptor,|
aso SH3  |NaiveBayes| 0,554 | 0522 | 0528 | 0521 | 0535 | 0252 | 0161 | 0175 | 0164 | 0187 | 0939 | 5940 | 23253
KNN 0537 | 0514 | 0475 | 0516 | 0440 | 0248 | 0219 | 0193 | 0229 | 0163 | 1,052
SYM__| 0567 | 0519 | 0626 | 0512 | 0804 | 0067 | 0023 | 0127 | 0015 | 0303 | 0535
Tree | 0539 | 0538 | 053 | 0538 | 0530 | 0371 | 0267 | 0459 | 0436 | 0471 | 2,004
LR 0604 | 0650 | 0462 | 1,000 | 0300 | 0221 | 0227 | 0062 | 0584 |ENC 1,009
SGD__| 0575 | 0575 | 0542 | 0587 | 0504 | 0086 | 008 | 0075 | 0098 | 0056 | 0401
SH2 _|Naive Bayes| 0,563 | 0524 | 0513 | 0,526 | 0500 | 0261 | 0,163 | 0160 | 0,169 | 0152 | 0905 | 6,240
KNN 0591 | 055 | 0504 | 0570 | 0451 | 0302 | 0260 | 0222 | 0283 | 0174 | 1,241
SYM__ | 0561 | 0528 | 0605 | 0521 | 0722 | 0061 | 0032 | 0106 | 0024 | 0221 | 0444
Tree | 0591 | 0,583 | 0580 | 0584 | 0576 | 0423 | 0312 | 0505 | 0482 | 0517 | 2,239
IR 0638 | 0644 | 0447 | 1,000 | 0288 | 0255 | 0221 | 0047 | 0584 1,010
SGD__| 0574 | 0574 | 0543 | 058 | 0506 | 0,085 | 0085 | 0076 | 0097 | 0058 | 0401
PDZ__ |Naive Bayes| 0,524 | 0484 | 0497 | 0485 | 0509 | 0222 | 0123 | 0144 | 0128 | 0161 | 0778 | 5857
kNN 0557 | 0521 | 0492 | 0524 | 0464 | 0268 | 0226 | 0210 | 0237 | 0187 | 1,128
syM__| 0594 | 0532 | 0612 | 0523 | 0737 | 0094 | 0036 | 0113 | 002 | 0236 | 0505
Tree | 0585 | 0543 | 0545 | 0542 | 0548 | 0377 | 0272 | 0470 | 0440 | 0489 | 2,048
LR 0600 | 0650 | 0462 | 1,000 | 0300 | 0217 | 0227 | 0062 | 0584 Y 1,005
SGD__ | 0571 | 0571 | 0543 | 0580 | 0510 | 0082 | 0082 | 0076 | 0091 | 0062 | 0,393
No Domain|Naive Bayes| 0,302 | 0361 | 0353 | 0357 | 0348 | NA | NA. | NA. | NA | NA | NA | NA
kNN 0289 | 0295 | 0282 | 0287 | 0277 | NA. | NA | NA | NA | NA | NA
SYM__| 0500 | 04% | 0499 | 0497 | 0501 | NA. | NA. | NA | NA | NA | NA
Tree | 0168 | 0271 | 0075 | 0102 | 0059 | NA. | NA | NA. | NA | NA | NA
IR 0383 | 0423 | 0400 | 0416 | 038 | NA. | NA | NA | NA | NA | NA
SGD__ | 0489 | 0489 | 0467 | 0489 | 0448 | NA | NA | NA | NA | NA | NA
LRR__ |Naive Bayes| 0426 | 0429 | 0430 | 0429 | 0430 | 0178 | 0107 | 0,104 | 0105 | 0,101 | 0,595 | 1,79
kNN 048 | 0461 | 0455 | 0460 | 0450 | 0,113 | 0,059 0,053
sYM__ | 0535 | 0512 | 0587 | 0509 | 0695 | 0031 | 0017 [Tl oo RN
Tree 0503 | 0504 | 0497 [ 0504 | 0491 [ 0056 | 0,058
(R 0529 | 0583 | 0283 | 1,000 | 0165 | 0167 | 0,152 [JEEED 0243 IR
SGD__ | 0515 | 0515 | 0497 | 0516 | 0479 | 0,039 | 0039 0,026 IS
No Domain|Naive Bayes| 0,248 | 0322 | 032 | 0324 | 0329 | NA | NA. | NA. | NA | NA | NA | NA
kNN 0373 | 0402 | 0417 | 0407 | 0427 | NA. | NA | NA | NA | NA | NA
SYM__ | 0504 | 0495 | 0604 | 0497 | 0769 | NA. | NA. | NA | NA | NA | NA
Tree | 0447 | 0446 | 0448 | 0447 | 0449 | NA. | NA | NA | NA | NA | NA
LR 0362 | 0401 | 0405 | 0402 | 0408 | NA. | NA | NA | NA | NA | NA
SGD__| 0476 | 0476 | 04% | 0477 | 0505 | NA | NA. | NA. | NA | NA | NA
WW__|Naive Bayes| 0,487 | 0465 | 0483 | 0467 | 0501 | 0266 | 0160 | 0164 | 0154 | 0175 | 0919 | 3424
kNN 0539 | 0498 | 0471 | 0498 | 0446 | 0,169 | 0099 | 0051 | 0092 | 0011 | 0422
SYM__| 0545 | 0516 | 0613 | 0511 | 0767 | 0051 | 0003 | 0047 | 0001 | 0131 | 0233
Tree | 053 | 0529 | 0522 | 0530 | 0514 | 0097 | 00% | 0101 | 0100 | 0101 | 049
R 0581 | 0616 | 0376 | 1,000 | 0231 | 0239 | 0231 0,615 0,917
SGD__ | 0543 | 0542 | 0522 | 0546 | 0500 | 008 | 0085 | 0089 | 0093 | 0085 | 0438
No Domain|Naive Bayes| 0,221 | 0305 | 0319 | 0313 | 032%6 | NA | NA. | NA. | NA | NA | NA | NA
kNN 0370 | 0399 | 0420 | 0406 | 0435 | NA. | NA | NA. | NA | NA | NA
SYM__ | 049 | 0513 | 0566 | 0510 | 0636 | NA. | NA. | NA | NA | NA | NA
Tree | 0437 | 0433 | 0421 | 0430 | 0413 | NA | NA | NA | NA | NA | NA
R 0342 | 038 | 0387 | 038 | 0388 | NA | NA | NA | NA | NA | NA
SGD__ | 0457 | 0457 | 0433 | 0453 | 0415 | NA | NA. | NA. | NA | NA | NA
Subtitle:

AUC dif — Difference, within the same descriptor/classifier, between the AUC value of a domain and corresponding non-domain

ACC dif — Difference, within the same descriptor/classifier, between the ACC value of a domain and corresponding non-domain

F1 dif — Difference, within the same descriptor/classifier, between the F1 value of a domain and corresponding non-domain

PPV dif — Difference, within the same descriptor/classifier, between the PPV value of a domain and corresponding non-domain

TPR dif — Difference, within the same descriptor/classifier, between the TPR value of a domain and corresponding non-domain

> dif — Sum, within the same descriptor/domain, of all values of differences for the same classifier

> domain — Sum, within the same descriptor, of all values of sum of differences for the same domain

> descriptor — Sum of all values of sum of sum of differences for the same descriptor

N.A. — Not covered by dataset values

In black are the negative values - values of differences in which the values of non-domain performance were higher than the

performance values of the corresponding domains
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Descriptor] Domain | Classifier AUC ACC F1 PPV TPR AUC dif | ACCdif F1dif | PPV dif | TPRdif Y dif |3 domain|3 descriptor
CcT SH3 Naive Bayes| 0,484 0,490 0,487 0,490 0,484 0,363 0,281 0,304 0,301 0,307 1,556 4,049 16,996
kNN 0,384 0,411 0,447 0,421 0,476
SVM 0,523 0,513 0,597 0,509 0,720
Tree 0,540 0,537 0,538 0,537 0,538 0,087 0,095 0,108 0,097 0,118 0,505
LR 0,437 0,430 0,441 0,432 0,449 0,314 0,241 0,255 0,245 0,264 1,319
SGD 0,471 0,471 0,500 0,474 0,529 0,092 0,092 0,127 0,098 0,160 0,569
SH2 Naive Bayes| 0,491 0,491 0,470 0,491 0,451 0,370 0,282 0,287 0,302 0,274 1,515 4,889
kNN 0,470 0,482 0,488 0,482 0,494 0,075 0,063 0,031 0,053 0,004 0,226
SVM 0,550 0,524 0,598 0,518 0,708 0,026 0,028 0,040 0,021 0,072 0,187
Tree 0,601 0,597 0,587 0,602 0,573 0,148 0,155 0,157 0,162 0,153 0,775
LR 0,519 0,470 0,445 0,467 0,424 0,396 0,281 0,259 0,280 0,239 1,455
SGD 0,538 0,538 0,509 0,544 0,478 0,159 0,159 0,136 0,168 0,109 0,731
PDZ Naive Bayes| 0,406 0,431 0,438 0,433 0,443 0,285 0,222 0,255 0,244 0,266 1,272 3,595
kNN 0,373 0,399 0,401 0,400 0,401
SVM 0,511 0,512 0,583 0,509 0,681
Tree 0,542 0,539 0,538 0,539 0,538 0,089 0,097 0,108 0,099 0,118 0,511
LR 0,447 0,439 0,442 0,439 0,444 0,324 0,250 0,256 0,252 0,259 1,341
SGD 0,489 0,489 0,500 0,489 0,511 0,110 0,110 0,127 0,113 0,142 0,602
No Domain|Naive Bayes| 0,121 0,209 0,183 0,189 0,177 N.A. N.A. N.A. N.A. N.A. N.A. N.A.
kNN 0,395 0,419 0,457 0,429 0,490 N.A. N.A. N.A. N.A. N.A. N.A.
SVM 0,524 0,496 0,558 0,497 0,636 N.A. N.A. N.A. N.A. N.A. N.A.
Tree 0,453 0,442 0,430 0,440 0,420 N.A. N.A. N.A. N.A. N.A. N.A.
LR 0,123 0,189 0,186 0,187 0,185 N.A. N.A. N.A. N.A. N.A. N.A.
SGD 0,379 0,379 0,373 0,376 0,369 N.A. N.A. N.A. N.A. N.A. N.A.
LRR Naive Bayes| 0,347 0,377 0,394 0,384 0,405 0,174 0,113 0,111 0,108 0,115 0,621 1,676
kNN 0,367 0,391 0,394 0,392 0,395
SVM 0,502 0,494 0,597 0,496 0,748
Tree 0,497 0,498 0,493 0,498 0,488 0,047 0,053 0,051 0,054 0,048 0,253
LR 0,342 0,367 0,368 0,367 0,369 0,217 0,166 0,169 0,167 0,170 0,889
SGD 0,417 0,417 0,420 0,418 0,421 0,006 0,006 -0,013 -0,028 -0,028
No Domain|Naive Bayes| 0,173 0,264 0,283 0,276 0,290 N.A. N.A. N.A. N.A. N.A. N.A.
kNN 0,390 0,412 0,441 0,420 0,464 N.A. N.A. N.A. N.A. N.A.
SVM 0,515 0,493 0,560 0,495 0,645 N.A. N.A. N.A. N.A. N.A.
Tree 0,450 0,445 0,442 0,444 0,440 N.A. N.A. N.A. N.A. N.A.
LR 0,125 0,201 0,199 0,200 0,199 N.A. N.A. N.A. N.A. N.A.
SGD 0,411 0,411 0,433 0,417 0,449 N.A. N.A. N.A. N.A. N.A.
wWwW Naive Bayes| 0,379 0,400 0,427 0,409 0,447 0,242 0,179 0,203 0,221 1,031 2,787
kNN 0,387 0,406 0,417 0,409 0,425
SVM 0,521 0,512 0,581 0,509 0,678
Tree 0,550 0,544 0,539 0,545 0,533 0,105 0,098 0,114 0,123 0,544
LR 0,410 0,416 0,416 0,416 0,416 0,284 0,220 0,228 0,230 1,188
SGD 0,462 0,462 0,450 0,461 0,441 0,060 0,060 0,046 0,036 0,260
No Domain|Naive Bayes| 0,137 0,221 0,224 0,223 0,226 N.A. N.A. N.A. N.A. N.A. N.A.
kNN 0,396 0,423 0,448 0,429 0,468 N.A. N.A. N.A. N.A. N.A.
SVM 0,520 0,495 0,611 0,497 0,794 N.A. N.A. N.A. N.A. N.A.
Tree 0,445 0,446 0,425 0,441 0,410 N.A. N.A. N.A. N.A. N.A.
LR 0,126 0,196 0,188 0,190 0,186 N.A. N.A. N.A. N.A. N.A.
SGD 0,402 0,402 0,404 0,403 0,405 N.A. N.A. N.A. N.A. N.A.
Subtitle:

AUC dif — Difference, within the same descriptor/classifier, between the AUC value of a domain and corresponding non-domain

ACC dif — Difference, within the same descriptor/classifier, between the ACC value of a domain and corresponding non-domain

F1 dif — Difference, within the same descriptor/classifier, between the F1 value of a domain and corresponding non-domain

PPV dif — Difference, within the same descriptor/classifier, between the PPV value of a domain and corresponding non-domain

TPR dif — Difference, within the same descriptor/classifier, between the TPR value of a domain and corresponding non-domain

> dif — Sum, within the same descriptor/domain, of all values of differences for the same classifier

> domain — Sum, within the same descriptor, of all values of sum of differences for the same domain

> descriptor — Sum of all values of sum of sum of differences for the same descriptor

N.A. — Not covered by dataset values

In black are the negative values - values of differences in which the values of non-domain performance were higher than the

performance values of the corresponding domains
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Annex Ill — 2nd strategy evaluation code

import numpy as np

import 0s

import csv

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn import svm

from sklearn.naive_bayes import GaussianNB

from sklearn import tree

from sklearn.neural_network import MLPClassifier

from sklearn import neighbors

from sklearn.linear_model import SGDClassifier

from sklearn.model_selection import cross_val_score

from sklearn.metrics import f1_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.metrics import roc_auc_score

filename = "Generic.csv"

location = r"C:\Users\Joao Castanheira\Downloads\Tese"

os.chdir(location)
filename_target=1[1,1,1,1,...,0,0,0,0]

new_data_frame = pd.read_csv(filename, header = None, sep=";")

X_train, X_test, y_train, y_test = train_test_split(new_data_frame, filename_target,

test_size=0.4, random_state=0)

clf = svm.SVC(kernel="rbf', verbose=True, max_iter=5000, C=1).fit(X_train, y_train) #1

scores = cross_val_score(clf, new_data_frame, filename_target, cv=5) #2

y_scores = clf.predict(X_test) # Calculo do y_scores ouy_pred #3

print("Accuracy: %0.2f (+/- %0.2f)" % (scores.mean(), scores.std() * 2))

print("f1_score:", f1_score(y_test, y_scores, average='binary"))

print("Precision:", precision_score(y_test, y_scores, average='binary"))

print("Recall:", recall_score(y_test, y_scores, average="binary"))

print("AUC:", roc_auc_score(y_test, y_scores))
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gnb = GaussianNB().fit(X_train, y_train) #1

scores = cross_val_score(gnb, new_data_frame, filename_target, cv=5) #2 B
y_scores = gnb.predict(X_test) #3

clf = tree.DecisionTreeClassifier().fit(X_train, y_train) #1

scores = cross_val_score(clf, new_data_frame, filename_target, cv=5) #2 C
ly_scores = clf.predict(X_test) #3

clf = MLPClassifier().fit(X_train, y_train) #neural network #1

scores = cross_val_score(clf, new_data_frame, filename_target, cv=5) #2 D
y_scores = clf.predict(X_test) #3

nbrs = neighbors.KNeighborsClassifier(n_neighbors=6).fit(X_train, y_train)#1

scores = cross_val_score(nbrs, new_data_frame, filename_target, cv=5)  #2 E
y_scores = nbrs.predict(X_test) #3

clf = SGDClassifier(loss="log").fit(X_train, y_train) #1

scores = cross_val_score(clf, new_data_frame, filename_target, cv=5) #2 F
y_scores = clf.predict(X_test) #3

Subtitle:

The "filename" corresponds to the datasets, also using the dataset GenericDomain.csv;

The "filename_target" holds repeats of characters 1 and 0, corresponding to the existence or not
of interactions, with different numbers of replicates of the Generic.csv dataset for
GenericDomain.csv;

Lines# 1, # 2 and # 3 of group A were replaced by the corresponding lines of groups B, C and
D, Eand F.
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Annex IV — Add the features of the 3rd strategy with the ID's
using System;

using System.Collections.Generic;

using System.IO;

namespace ConsoleAppl

{

class Program

{

static void Main(string[] args)
{
Dictionary<string, string> dict = new Dictionary<string, string>();
Console.WriteLine("Opening data.csv");
inti=0;
using (var fileStream = File.OpenText(@"C:\tmp\joao-castanheira\data.csv'))

{
do

{
var fileLine = fileStream.ReadLine();
/[Console.WriteLine(fileLine.Substring(0, 30));
var key = fileLine.Substring(0, fileLine.IndexOf(","));
var rest = fileLine.Substring(fileLine.IndexOf(",") + 1);
/[Console.WriteLine(key);
/[Console.WriteLine(rest);
if (!dict.ContainsKey(key))

{
dict. Add(key, rest);
}
if (1%10000 == 0)
{
Console.WriteLine(i);
}
i++;
} while ('fileStream.EndOfStream);

}
Console.WriteLine(i);

Console.WriteLine("Data.csv opened™);
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/*

intg=0;

var list = new List<string>();

var genericErrors = new List<string>();

using (var fileStream = File.OpenText(@"C:\tmp\joao-castanheira\Generic.csv"))

{
do

{
Ilif (g==1)
1{
/I break;
I}
var fileLine = fileStream.ReadLine();
/[Console.WriteLine(fileLine);
var keyl = fileLine.Substring(0, fileLine.IndexOf(","));
var key2 = fileLine.Substring(fileLine.IndexOf(",") + 1);
/[Console.WriteLine(keyl);
/[Console.WriteLine(key2);
if (dict.ContainsKey(keyl))

{
if (dict.ContainsKey(key?2))

{
string final = string.Format("{0},{1}", dict[key1], dict[key2]);
//IConsole.WriteLine(final);
list. Add(final);

}

else

{
var error = string.Format("Key2 does not exist - {0}:{1}", g, key2);
genericErrors.Add(error);

Console.WriteLine(error);

¥

else

{
var error = string.Format("Keyl does not exist - {0}:{1}", g, keyl);

genericErrors.Add(error);
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Console.WriteLine(error);

}
if (g % 10000 == 0)
{
Console.WriteLine(g);
}
g++;
} while (fileStream.EndOfStream);

}
Console.WriteLine(g);

Console.WriteLine("Generic.csv processed™);

Console.WriteLine("Saving GenericErrors.txt");

File.WriteAllLines("GenericErrors.txt", genericErrors);

Console.WriteLine("Saving ProcessedGeneric.csv");

File.WriteAllLines("ProcessedGeneric.csv", list);

*/

intgd =0;

var listgd = new List<string>();

var genericDomainsErrors = new List<string>();

using (var fileStream = File.OpenText(@"C:\tmp\joao-
castanheira\GenericDomains.csv"))

{
do

{
/lif (gd == 1)
1§
/I break;
I}
var fileLine = fileStream.ReadL.ine();
/[Console.WriteLine(fileLine);
var keyl = fileLine.Substring(0, fileLine.IndexOf(","));
var key?2 = fileLine.Substring(fileLine.IndexOf(",") + 1);
/[Console.WriteLine(keyl);
/[Console.WriteLine(key?2);
if (dict.ContainsKey(key1))

{
if (dict.ContainsKey(key?2))
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string final = string.Format("{0},{1}", dict[key1], dict[key2]);
/IConsole.WriteLine(final);
listgd.Add(final);

}

else

{
var error = string.Format(""Key2 does not exist - {0}:{1}", gd, key2);
genericDomainsErrors.Add(error);
Console.WriteLine(error);

}

else

{
var error = string.Format("Key1 does not exist - {0}:{1}", gd, keyl);
genericDomainsErrors.Add(error);

Console.WriteLine(error);

}
if (gd % 10000 == 0)
{
Console.WriteLine(gd);
}
gd++;
} while (fileStream.EndOfStream);

}
Console.WriteLine(gd);

Console.WriteLine("GenericDomains.csv processed™);
Console.WriteLine("Saving GenericDomainsErrors.txt™);
File.WriteAllLines("GenericDomainsErrors.txt", genericDomainsErrors);
Console.WriteLine("Saving ProcessedGenericDomains.csv");
File.WriteAllLines("ProcessedGenericDomains.csv", listgd);
Console.WriteLine("Done!");

Console.ReadKey();
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Annex V — 3rd strategy evalution code

import numpy as np

import os

import csv

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn import svm

from sklearn.naive_bayes import GaussianNB

from sklearn import tree

from sklearn.neural_network import MLPClassifier
from sklearn import neighbors

from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import average_precision_score
from sklearn.metrics import f1_score

from sklearn.metrics import precision_score

from sklearn.metrics import recall_score

from sklearn.metrics import roc_auc_score

from sklearn import metrics

filename = "Generic.csv"

class_filename = "class_GD.txt"

target_class = np.genfromtxt(class_filename, delimiter=",")

target_class = target_class.transpose()

print(1)

location = r"/home/student/Desktop/Castanheira"

os.chdir(location)

new_data_frame = np.genfromtxt(filename, delimiter=",")

X_train, X _test, y_train, y_test = train_test_split(new_data_frame, target_class, test_size=0.4,

random_state=0)

print(3)

clf = MLPClassifier().fit(X_train, y_train) #neural network #1

print(4)

scores = cross_val_score(clf, new_data_frame, target_class, cv=>5) #2 A
print(5)

y_scores = clf.predict(X_test) #3
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print("f1_score:", f1_score(y_test, y_scores, average='binary"))
print("Precision:", precision_score(y_test, y_scores, average='binary"))
print("Recall:", recall_score(y_test, y_scores, average='binary"))
print("AUC:", roc_auc_score(y_test, y_scores))

gnb = GaussianNB().fit(X_train, y_train) #1

scores = cross_val_score(gnb, new_data_frame, filename_target, cv=>5) #2 B
y_scores = gnb.predict(X_test) #3

clf = tree.DecisionTreeClassifier().fit(X_train, y_train) #1

scores = cross_val_score(clf, new_data_frame, filename_target, cv=5) #2 C
y_scores = clf.predict(X_test) #3

clf = MLPClassifier().fit(X_train, y_train) #neural network #1

scores = cross_val_score(clf, new_data_frame, filename_target, cv=5) #2 D
y_scores = clf.predict(X_test) #3

Subtitle:

The "filename" corresponds to the datasets, also using the dataset GenericDomain.csv;

The "class_filename" is the document with the 1 and 0 corresponding to the existence or not of
interactions being used the document with the amount of 1 and O corresponding to the datasets
Generic.csv or GenericDomain.csv;

Lines# 1, # 2 and # 3 of group A were replaced by the corresponding lines of groups B, C and
D.
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