Mauro Filipe da Silva Pinto

Evaluation and Prediction of

Multiple Sclerosis Disease Progression

Thesis submitted to the Faculty of Sciences and Technology of the University of Coimbra for the degree of Master in Biomedical Engineering with specialisation in Bioinformatics, supervised by Prof. Dr. César Teixeira and Professor Dr. Pedro José Mendes Martins.

C .

Evaluation and Prediction of Multiple Sclerosis Disease Progression

Dissertion presented to the University of Coimbra
in order to complete the necessary requirements to
obtain the Master's degree in Biomedical Engineering.

Supervisors:

Prof. Dr. César Alexandre Domingues Teixeira (Orientator)
Prof. Dr. Pedro José Mendes Martins (Co-Orientator)

This work was developped in collaboration with:

Centre for Informatics and Systems of the University of Coimbra

Serviço de Neurologia dos Hospitais da Universidade de Coimbra

> SERVICCO DE NEUROLOGIA
> DOS HOSPITAIS
> DA UNIVERSIDADE
> DE COIMBRA

Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos de autor são pertença do autor da tese e que nenhuma citação ou informação obtida a partir dela pode ser publicada sem a referência apropriada.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognize that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without proper acknowledgement.

Acknowledgments

É mesmo hora, meu amor, de me ir embora. Coimbra, a cidade que Italo Calvino se esqueceu de descrever.

Em primeiro lugar, gostaria de agradecer aos Professores César Teixeira e Pedro Martins, não apenas por toda a orientação e disponibilidade mas também por todo o clima de à vontade que se proporcionou. Pelas conversas paralelas que, de Engenharia Biomédica, muito pouco tinham. E que bem que sabiam. Foi um prazer.

À Doutora Sónia Batista, um obrigado muito especial também pela orientação e por toda a paciência necessária para se conseguir fazer a ponte entre o modo de pensar médico e o modo de pensar informático. Neste tipo de trabalhos, sem esta recta final, perde-se a aplicabilidade toda do trabalho.

Ao Professor Alexandre Pinto, obrigado pela experiência das RAN's. Foi pena não poder ter entrado para este trabalho. Ficou, no entanto, a memória de um processo muito creativo acima de tudo, com grande liberdade e vontade de experimentar.

Aos Neurorradiologistas Luís Rito Cruz e Mafalda Mendes Pinto, o meu muito obrigado por toda a paciência e por todo o tempo e todo trabalho que vos foi pedido, não só a recolher as ressonâncias mas também a fazer a marcação das lesões. Tenho a certeza que esta base de dados servirá de ponto de partida para muitos trabalhos vindouros relacionados com esta área.

Ao Departamento de Física, para sempre DF, aos Professores que me inspiraram nesta aventura de 5 anos, quer pela paixão, quer pela sua maneira singular de ver esta coisa em que vivemos, ao Núcleo de Estudantes do Departamento de Física, o NEDF, à Rádio Universidade de Coimbra, a RUC dos 107.9 fm , o meu mais que sincero obrigado. Deram-me mais do que eu alguma vez vos poderei dar.

À Engenharia Biomédica e aos meus colegas de curso, que com vocês todos os dias aprendi algo.

Ao meu grupo de amigos da universidade, ao meu grupo de amigos de Estremoz, um muito obrigado. Vemo-nos por cá, por aí.

Se Coimbra é uma lição de sonho e tradição, se Coimbra é uma canção, se Coimbra é um livro, se Coimbra ainda é capital, se Coimbra é dos amores, se Coimbra é dos doutores, do Choupal e da Lapa e se aprende a dizer saudade, então Coimbra não foi Coimbra. Coimbra foi simplesmente alguém chamada Francisca Pereira que viveu em Celas. Coimbra foi tudo. Tão pequena que coube na palma da minha mão e tão grande que nunca me pude afastar o suficiente para deixar de a ver. Um obrigado especial a ti, Francisca.

Aos meus pais. Acabou uma luta, mas muitas mais virão. Cá estaremos os três na luta, cá estaremos.

Ao André. Serás sempre a pessoa modelo.
"É hora, meu amor, de me ir embora"
Balada da Despedida 2017, Grupo de Fado "Insígnia"

Abstract

Evaluating and predicting Multiple sclerosis disease progression can be a complicated task. With an original database from Centro Hospitalar e Universitário de Coimbra curated by the author, this progression was studied. This database is constituted by clinical history data and by MRI brain scans. The raw database was handled in order to be possible to create different databases with different progression perspectives. As a consequence, a deeper study was achieved.

For each created database, the predictors with higher discriminatory power were chosen regarding several labels, like MS course and others directly related to EDSS (the global scale used for quantifying the neurological condition of an MS patient and, as consequence, the disease progression). At the data processing level, an alternative MRI brain scan processing method was developed, as well as an extensive feature extraction from several brain structures/regions and tissues, such as white matter, grey matter and cerebrospinal fluid. This was possible due to the use of the MRI brain SRI-24 atlas.

For each database in each situation, machine learning algorithms were applied with different partition methods and with or without dimensionality reduction techniques. With the obtained results in the form of confusion matrix and area under the ROC curve, all databases were handled with not only a unification goal but also with a complementarity objective regarding the disease progression.

Thus, it was possible to build an evaluation performance system in order to choose the best-ranked labels in terms of prediction in a general term for every case scenario. At the clinical data level, the predictors' selection was significantly interesting. Not only the expected predictors were chosen, such as EDSS-related variables, gender, MS course, number of years with MS but also other non-expected but interesting factors. These were the ratio of pyramidal tract clinical manifestations in the first 2 years after MS onset and MS initial manifestations related to spinal cord and optic pathways.

At imaging level, the performed study had an intensive feature extraction, not only in the brain as a complete structure but also in several smaller specific structures
and tissues. In a similar process when compared to the one of finding the most important features in clinical data, two regions with a significant discriminatory power were found: superior frontal gyrus and orbitofrontal gyrus.

Keywords: Multiple sclerosis; Machine Learning; Disease Progression Tracking; MRI.

Resumo

Avaliar e prever a progressão de Esclerose Múltipla num doente pode ser uma tarefa complicada. Com uma base de dados tratada pelo autor, originária do Centro Hospitalar e Universitário de Coimbra, esta progressão foi estudada. A base de dados é constituída por dados clínicos e ressonâncias magnéticas ao cérebro. Devido ao número reduzido de doentes, esta foi tratada de modo a ser possível a criação de várias bases de dados com diferentes perspectivas da progressão de modo a abranger um estudo com a maior amplitude possível.

Para cada base de dados, foram escolhidos os predictores com maior poder discriminatório para determinados acontecimentos, tais como o subtipo de Esclerose Múltipla e outros relacionados com o EDSS (a escala global utilizada para quantificar a condição neurológica de um doente e, por consequência, da progressão da doença). Ao nível de tratamento de dados, este projeto conta ainda com um método alternativo de pré-processamento de ressonâncias magnéticas, bem como a extracção de estruturas cerebrais e de tecidos como matéria cinzenta, branca e líquido cefalorraquidiano, com a utilização do atlas cerebral SRI-24.

Para conjunto de predictores de cada base de dados e para cada acontecimento desejável de ser previsto, foram aplicados algoritmos de machine learning com diferentes métodos de partição e com ou não técnicas de redução de dimensionalidade. Com os resultados em forma de matriz confusão e em área debaixo da curva ROC, todas as bases de dados foram compreendidas com um objetivo de unificação e complementaridade relativamente à progressão da doença.

Assim, foi possível construir um sistema de avaliação de performance e escolher os acontecimentos com maior capacidade de serem previstos pelos modelos criados. Ao nível dos dados clínicos encontraram-se os predictores com maior poder, estando não só aqueles que já eram esperados, como variáveis relacionadas com o valor de EDSS, subtipo de Esclerose Múltipla, género, número de anos de doença mas também outros factores não esperados mas interessantes. Estes foram o rácio de manifestações de Esclerose Múltipla encontradas ao nível das vias piramidais nos primeiros dois anos da doença e manifestações iniciais da mesma ao nível da espinal
medula e das vias ópticas.
A nível imagiológico, o estudo teve uma extracção de predictores intensa, não só na totalidade do cérebro como também em inúmeras estruturas cerebrais específicas e tecidos. Num processo semelhante de encontrar as regiões com maior poder de discriminação nas bases de dados clínicas, foram encontradas duas regiões: córtex frontal superior e córtex orbitofrontal.

Palavras-chave: Esclerose Múltipla; Machine Learning; Rastreamento da progressão da doença; Ressonância Magnética.

List of Figures

2.1 Worldwide prevalence of MS per 100000 population, 2004 [1]. 6
2.2 Types of MS courses (from the top to the bottom): Relapsing and re- mitting (green), Relapsing secondary progressive (red), Non-relapsing secondary progressive (blue), Primary progressive (purple) and Progressive- relapsing (black), according to the 1996 MS clinical course descrip- tions [2]. Greater the EDSS, worser is the patient's neurological ca- pacity. 9
2.3 The differences observed between the 1996 and the 2013 MS pheno- type descriptions in the Relapsing remitting course [3]. 10
2.4 The differences observed between the 1996 and the 2013 MS pheno- type descriptions in the courses with progression symptoms [3] 11
2.5 An intuitive graphical view on the EDSS scale [4]. 14
3.1 The differences between the precessing direction in the presence (left) and absence (right) of an external magnetic field [3]. 18
3.2 Since there is a random distribution of a large number of spins with transverse components in all directions of the x -y plane, its sum will be zero, making the total magnetization parallel to the external mag- netic field direction [3]. 19
3.3 The basic design of the magnetic field gradient coils used. The arrows indicate the direction of the current flow, where each coil is consti- tuted by multiple turns of wire and responsible for the production of external magnetic fields [3]. 20
3.4 By selecting an adequate RF pulse and the respective magnetic gradi- ent fields, it is possible to capture images from different angles, having therefore coronal, axial and sagital slice orientations [3]. 22
3.5 The effect of the TR (left) and TE (right) time parameters on the relative signal intensity from CSF, white and gray matter in the brain [3]. 23
3.6 Different weighted images, from left to right: T1, T2 and FLAIR [5]. 24
3.7 Example of a juxtacortical lesion (red). From left to right: PD, T1, T2, and FLAIR images of an MS patient [6]. 25
4.1 Example of the existing variability when it comes to MS Lesions. From left to right: FLAIR, PD, T1 Gd-enhanced, T1 and T2. Blue: enhancing lesions, green: T2 lesions, red: black holes. Best viewed in color. [7]. 28
4.2 Difference between focal lesions (red) and diffuse regions of visible- abnormal WM (green). From left to right: FLAIR, PD and T1. [7] 29
4.3 Scheme of a general image registration algorithm [8]. 31
4.4 An example of a non-rigid transformation, which was implemented by a series of rigid registrations performed in local neighborhoods (as the ones shown in the box on the left) [8]. 32
4.5 An example of brain extraction activity with skull stripping. A quan- titative study of brain extraction by Boesen et al [9], example with subject B, dataset 3 33
4.6 An example of tissue segmentation into CSF, GM, WM, and Lesions. Segmentation results of different algorithms on BrainWeb data, slice 105 from [10]. Blue: CSF; Green: GM; Yellow: WM; Red: Lesions. (a)-(c) 3% noise, (d)-(f) 9% noise, (g) and (h) ground truth. Best viewwed in color. 35
4.7 An example of lesion-only segmentation, in this case a segmentation of contrast-enhanced lesions performed by He et al [11]. The identified lesions are shown in the upper row. 36
4.8 An example of a topological atlas in axial, coronal and saggital views, present in [12]. 37
4.9 An example of MRI sequences generated by BrainWeb [13], from left to right: T1,T2, PD. 41
5.1 MRI FLAIR scan from patient 349 in 2014, 22 slices displayed. Exam performed at RAD, classified as A. 56
5.2 MRI FLAIR scan from patient 349 in 2014, 5 slices displayed. Exam performed at RAD, classified as A. 56
5.3 MRI FLAIR scan from patient 93 in 2015, 35 slices displayed. Exam performed at ICNAS, classified as B. 59
5.4 MRI FLAIR scan from patient 93 in 2015, 7 slices displayed. Exam performed at ICNAS, classified as B. 59
5.5 MRI FLAIR scan from patient 79 in 2016, 35 slices displayed. Exam performed at ICNAS, classified as C. 60
5.6 MRI FLAIR scan from patient 79 in 2016, 14 slices displayed. Exam performed at ICNAS, classified as C. 60
5.7 MRI FLAIR scan from patient 894 in 2016, 25 slices displayed. Exam performed at ICNAS, classified as D. 61
5.8 MRI FLAIR scan from patient 894 in 2016, 10 slices displayed. Exam performed at ICNAS, classified as D. 61
6.1 Clinical data procedure scheme. 64
6.2 Clinical data procedure after first feature selection for EDSS-related features. 67
6.3 Clinical data procedure after first feature selection for non EDSS- related features. 67
6.4 Image data procedure scheme. 72
6.5 Image data procedure after first feature selection for EDSS-related features. 73
6.6 Image data procedure after first feature selection for non EDSS- related features. 73
6.7 The SRI24 T2 sequence. Slices displayed (left to right, top to bot- tom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150. 75
6.8 The SRI24 T2-brain sequence. Slices displayed (left to right, top to bottom): 10,20,30,40,50,60,70,80,90,100,110,120,130,140 and 150. 75
6.9 The SRI24 T1 sequence. Slices displayed (left to right, top to bot- tom): 10,20,30,40,50,60,70,80,90,100,110,120,130,140 and 150. 76
6.10 The SRI24 T1-brain sequence. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150 76
6.11 The SRI24 PD sequence. Slices displayed (left to right, top to bot- tom): 10,20,30,40,50,60,70,80,90,100,110,120,130,140 and 150. 77
6.12 The SRI24 PD-brain sequence. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150. 77
6.13 The SRI24 WM probability map. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150 78
6.14 The SRI24 GM probability map. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150 78
6.15 The SRI24 CSF probability map. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150. 79
6.16 The SRI24 tissues map. Black corresponds to background, white to WM, light gray to GM and dark gray to CSF. Slices displayed: $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150. 79
6.17 The SRI Anatomical Map I. This map divides the brain into 56 re- gions. Each different level of gray represents a different region. 80
6.18 The SRI Anatomical Map II. This map divides the brain into 404 regions. Each different level of gray represents a different region. 80
6.19 Sequence selection and image resizing procedure scheme. 81
6.20 Atlas slices 130 and 7, top head slice (on the left) and the atlas bottom head (on the right) 82
6.21 Top and bottom head limitation on real sequence procedure scheme. 83
6.22 Slice atlas/sequence slice assignment procedure scheme. 86
6.23 Registration procedure scheme. 87
6.24 Skull stripped sequence of the patient 894, PD scan. 88
6.25 Non brain structures sequence of the patient 894 , PD scan. 89
6.26 Lesion labeling example and its output as lesion mask. Patient 349, FLAIR scan, slice number 16. 89
6.27 Lesion labeling example output. Patient 349, FLAIR scan. Pair slices only. 90
6.28 Lesion labeling output as lesion mask. Patient 349, FLAIR scan. Pair slices only 90
6.29 Top head slice selected for patient 349, FLAIR sequence. 92
6.30 Top head slice 2D correlation values graph for patient 349, FLAIR sequence. 92
6.31 Bottom head slice selected for patient 349, FLAIR sequence. 92
6.32 Bottom head slice 2D correlation values graph for patient 349, FLAIR sequence. 93
6.33 Top head slice selected for patient 93, FLAIR sequence 93
6.34 Top head slice 2D correlation values graph for patient 93, FLAIR sequence. 94
6.35 Bottom head slice selected for patient 93, FLAIR sequence. 94
6.36 Bottom head slice 2D correlation values graph for patient 93, FLAIR sequence 94
6.37 Top head slice selected for patient 79, FLAIR sequence 95
6.38 Top head slice 2D correlation values graph for patient 79, FLAIR sequence. 95
6.39 Bottom head slice selected for patient 79, FLAIR sequence. 95
6.40 Bottom head slice 2D correlation values graph for patient 79, FLAIR sequence. 96
6.41 Top head slice selected for patient 894, FLAIR sequence. 96
6.42 Top head slice 2D correlation values graph for patient 894, FLAIR sequence. 97
6.43 Bottom head slice selected for patient 894, FLAIR sequence. 97
6.44 Bottom head slice 2D correlation values graph for patient 894, FLAIR sequence. 97
6.45 Top head slice selected for patient 349, T1 sequence. 98
6.46 Top head slice 2D correlation values graph for patient 349, T1 sequence. 98
6.47 Bottom head slice selected for patient 349, T1 sequence. 98
6.48 Bottom head slice 2D correlation values graph for patient 349, T1 sequence. 99
6.49 Top head slice selected for patient 93, T1sequence 99
6.50 Top head slice 2D correlation values graph for patient 93, T1 sequence. 100
6.51 Bottom head slice selected for patient 93, T1 sequence. 100
6.52 Bottom head slice 2D correlation values graph for patient 93, T1 sequence. 100
6.53 Top head slice selected for patient 79, T1 sequence. 101
6.54 Top head slice 2D correlation values graph for patient 79, T1 sequence. 101
6.55 Bottom head slice selected for patient 79, T 1 sequence. 101
6.56 Bottom head slice 2D correlation values graph for patient 79, T1 sequence. 102
6.57 Top head slice selected for patient 894, T1 sequence. 102
6.58 Top head slice 2D correlation values graph for patient 894, T1 sequence. 102
6.59 Bottom head slice selected for patient 894, T1 sequence. 103
6.60 Bottom head slice 2D correlation values graph for patient 894, T1 sequence. 103
6.61 Top head slice selected for patient 349, PD sequence. 103
6.62 Top head slice 2D correlation values graph for patient 349, PD sequence. 104
6.63 Bottom head slice selected for patient 349, PD sequence. 104
6.64 Bottom head slice 2D correlation values graph for patient 349, PD sequence. 104
6.65 Top head slice selected for patient 93, PD sequence 105
6.66 Top head slice 2D correlation values graph for patient 93, PD sequence. 105
6.67 Bottom head slice selected for patient 93 , PD sequence. 105
6.68 Bottom head slice 2D correlation values graph for patient 93, PD sequence. 106
6.69 Top head slice selected for patient 79, PD sequence 106
6.70 Top head slice 2D correlation values graph for patient 79, PD sequence. 106
6.71 Bottom head slice selected for patient 79, PD sequence. 107
6.72 Bottom head slice 2D correlation values graph for patient 79, PD sequence 107
6.73 Top head slice selected for patient 894, PD sequence. 107
6.74 Top head slice 2D correlation values graph for patient 894, PD sequence. 108
6.75 Bottom head slice selected for patient $894, \mathrm{PD}$ sequence. 108
6.76 Bottom head slice 2D correlation values graph for patient 894, PD sequence. 108
6.77 Atlas slices of the atlas/sequence slice assignment, for patient 349, FLAIR sequence. Pair slices only. 109
6.78 Sequence slices of the atlas/sequence slice assignment, for patient 349, FLAIR sequence. Pair slices only. 110
6.79 Atlas slices of the atlas/sequence slice assignment, for patient 93, FLAIR sequence. Slices that are multiple of 3 only. 110
6.80 Sequence slices of the atlas/sequence slice assignment, for patient 93 , FLAIR sequence. Slices that are multiple of 3 only. 111
6.81 Atlas slices of the atlas/sequence slice assignment, for patient 79, FLAIR sequence. Slices that are multiple of 6 only. 111
6.82 Sequence slices of the atlas/sequence slice assignment, for patient 79 , FLAIR sequence. Slices that are multiple of 6 only. 112
6.83 Atlas slices of the atlas/sequence slice assignment, for patient 894, FLAIR sequence. Slices that are multiple of 4 only. 112
6.84 Sequence slices of the atlas/sequence slice assignment, for patient 894, FLAIR sequence. Slices that are multiple of 4 only. 113
6.85 Atlas slices of the atlas/sequence slice assignment, for patient 349, T1 sequence. Pair slices only. 113
6.86 Sequence slices of the atlas/sequence slice assignment, for patient 349 , T1 sequence. Pair slices only. 114
6.87 Atlas slices of the atlas/sequence slice assignment, for patient 93, T1 sequence. Slices that are multiple of 3 only 114
6.88 Sequence slices of the atlas/sequence slice assignment, for patient 93 , T1 sequence. Slices that are multiple of 3 only 115
6.89 Atlas slices of the atlas/sequence slice assignment, for patient 79, T1 sequence. Slices that are multiple of 6 only. 115
6.90 Sequence slices of the atlas/sequence slice assignment, for patient 79, T1 sequence. Slices that are multiple of 6 only. 116
6.91 Atlas slices of the atlas/sequence slice assignment, for patient 894, T1 sequence. Slices that are multiple of 3 only. 116
6.92 Sequence slices of the atlas/sequence slice assignment, for patient 894, T1 sequence. Slices that are multiple of 3 only. 117
6.93 Atlas slices of the atlas/sequence slice assignment, for patient 349, PD sequence. Pair slices only. 117
6.94 Sequence slices of the atlas/sequence slice assignment, for patient 349, PD sequence. Pair slices only. 118
6.95 Atlas slices of the atlas/sequence slice assignment, for patient 93, PD sequence. Slices that are multiple of 3 only 118
6.96 Sequence slices of the atlas/sequence slice assignment, for patient 93 , PD sequence. Slices that are multiple of 3 only. 119
6.97 Atlas slices of the atlas/sequence slice assignment, for patient 79, PD sequence. Slices that are multiple of 3 only. 119
6.98 Sequence slices of the atlas/sequence slice assignment, for patient 79, PD sequence. Slices that are multiple of 3 only. 120
6.99 Atlas slices of the atlas/sequence slice assignment, for patient 894 , PD sequence. Slices that are multiple of 3 only. 120
6.100Sequence slices of the atlas/sequence slice assignment, for patient 894, PD sequence. Slices that are multiple of 3 only. 121
6.101Atlas/sequence slices paired before registration process, for patient 349, FLAIR sequence. Pair slices only. 122
6.102Atlas/sequence slices paired after registration process, for patient 349, FLAIR sequence. Pair slices only. 122
6.103Atlas/sequence slices paired before registration process, for patient 93, FLAIR sequence. Slices that are multiple of 3 only. 123
6.104Atlas/sequence slices paired after registration process, for patient 93, FLAIR sequence. Slices that are multiple of 3 only. 123
6.105Atlas/sequence slices paired before registration process, for patient 79, FLAIR sequence. Slices that are multiple of 6 only. 123
6.106Atlas/sequence slices paired after registration process, for patient 79, FLAIR sequence. Slices that are multiple of 6 only. 124
6.107Atlas/sequence slices paired before registration process, for patient 894, FLAIR sequence. Slices that are multiple of 4 only. 124
6.108Atlas/sequence slices paired after registration process, for patient 894, FLAIR sequence. Slices that are multiple of 4 only. 124
6.109Atlas/sequence slices paired before registration process, for patient 349, T1 sequence. Pair slices only 125
6.110Atlas/sequence slices paired after registration process, for patient 349, T1 sequence. Pair slices only. 125
6.111Atlas/sequence slices paired before registration process, for patient 93, T1 sequence. Slices that are multiple of 3 only. 125
6.112Atlas/sequence slices paired after registration process, for patient 93, T1 sequence. Slices that are multiple of 3 only. 126
6.113Atlas/sequence slices paired before registration process, for patient 79, T1 sequence. Slices that are multiple of 6 only. 126
6.114Atlas/sequence slices paired after registration process, for patient 79, T1 sequence. Slices that are multiple of 6 only. 126
6.115Atlas/sequence slices paired before registration process, for patient 894, T1 sequence. Slices that are multiple of 3 only. 127
6.116Atlas/sequence slices paired after registration process, for patient 894, T1 sequence. Slices that are multiple of 3 only. 127
6.117Atlas/sequence slices paired before registration process, for patient 349 , PD sequence. Pair slices only. 127
6.118Atlas/sequence slices paired after registration process, for patient 349, PD sequence. Pair slices only. 128
6.119Atlas/sequence slices paired before registration process, for patient 93, PD sequence. Slices that are multiple of 3 only. 128
6.120Atlas/sequence slices paired after registration process, for patient 93, PD sequence. Slices that are multiple of 3 only. 128
6.121Atlas/sequence slices paired before registration process, for patient 79 , PD sequence. Slices that are multiple of 3 only. 129
6.122Atlas/sequence slices paired after registration process, for patient 79, PD sequence. Slices that are multiple of 3 only. 129
6.123Atlas/sequence slices paired before registration process, for patient 894, T1 sequence. Slices that are multiple of 3 only. 129
6.124Atlas/sequence slices paired after registration process, for patient 894, T1 sequence. Slices that are multiple of 3 only. 130
6.125Full procedure pipeline for the construction of the $M R I$ whole head database. 131
6.126Full procedure pipeline from image processing untill database creation for lesion databases. 137
6.127Lesion databases creation method. 138
6.128Feature selection scheme for all clinical databases. 142
6.129Feature selection scheme for all image databases. 143
6.130The scheme of the supervised learning procedure. 146
8.1 Orbitofrontal gyrus region [14]. 190
8.2 Left superior frontal gyrus [15]. 190
8.3 Scatterplot with feature Pyramidal First 2 years with the complete Momentaneous database for the label highestEDSS>3. 194
8.4 Scatterplot with feature Pyramidal First 2 years with the complete Momentaneous database for the label highestEDSS >5. 195
8.5 Scatterplot with feature Pyramidal First 2 years with the relapse bifurcation database for the label highestEDSS >3. 195
8.6 Scatterplot with feature Pyramidal First 2 years with the relapse bifurcation database for the label highestEDSS>5. 195
8.7 Scatterplot with feature Spinal Cord with the complete Momenta- neous database for the label mediumEDSS >3. 196
8.8 Scatterplot with feature Spinal Cord with the complete Momenta- neous database for the label medium $E D S S>5$ 196
8.9 Scatterplot with feature Spinal Cord with the relapse bifurcation database for the label nextEDSS>3. 196
8.10 Scatterplot with feature Spinal Cord with the relapse bifurcation database for the label nextEDSS>5. 197
8.11 Scatterplot with feature Spinal Cord with the routine bifurcation database for the label highestEDSS>3. 197
8.12 Scatterplot with feature Spinal Cord with the routine bifurcation database for the label highestEDSS>5. 197
8.13 Scatterplot with feature Optical Pathways with the complete Momen- taneous database for the label next $E D S S>3$. 198
8.14 Scatterplot with feature Optical Pathways with the relapse bifurca- tion database for the label nextEDSS>3. 198
8.15 Scatterplot with feature Optical Pathways with the routine bifurca- tion database for the label nextEDSS>3. 198

List of Tables

2.1 The 2010 McDonald Criteria for Diagnosis of MS [16]. 8
2.2 Most common treatments regarding acute relapses. 12
2.3 Most common drugs used in MS therapy. 13
5.1 Image database scheme for MRI scans performed in IMI, RAD and ANIFC. 55
5.2 Image database scheme for MRI scans performed in ICNAS. 57
5.3 Image database scheme for MRI scans performed in HUC. 58
6.1 Class distribution of the labels msCourse, mediumEDSS, highest- EDSS, highestEDSS and first2EDSS for the Static and Groundzero databases. 66
6.2 Class distribution of the labels msCourse, mediumEDSS, highest- EDSS, highestEDSS, first2EDSS, currentEDSS, nextEDSS and ten- dencyEDSS for the Momentaneous and Momentaneous with past databases. 66
6.3 Scheme of all clinical features and databases regarding the Identifica- tion sheet. 68
6.4 Scheme of all clinical features and databases regarding the Visits sheet. 68
6.5 Scheme of all clinical features and databases regarding the Relapses sheet 69
6.6 Class distribution of the labels msCourse, mediumEDSS, highest- EDSS, highestEDSS, first2EDSS, currentEDSS, nextEDSS and ten- dencyEDSS for the MRI total head database and for One sample one study database. 71
6.7 Class distribution of the labels msCourse, mediumEDSS, highest- EDSS, highestEDSS, first2EDSS, currentEDSS and nextEDSS for the One sample one lesion database. 71
6.8 Class distribution of the labels msCourse, mediumEDSS, highest- EDSS, highestEDSS and first2EDSS for the One sample one patient database 72
6.9 Comparison between the existing tools in the IIT Human Brain Atlas, LPBA40, SRI24, ICB452 and SPM12 atlases. 74
6.10 The study performed with Table C. 1 in order to calculate its medium and standard deviation values to speed up the brain limits selection process 85
7.1 The evaluation metric used with the labels rank 152
7.2 The label scoring of the MRI total head database with AUC perfor- mance method. 153
7.3 The label scoring of the lesions database with AUC performance method. 153
7.4 The label scoring of all image source databases with AUC perfor- mance method. 153
7.5 The label scoring of all clinical source databases with AUC perfor- mance method. 154
7.6 The label scoring of all databases with AUC performance method. 154
7.7 The label scoring of all databases with the position score system using AUC performance method. 154
7.8 The label scoring of the ensemble of all databases, all image databases and all clinical databases with the position score system using AUC performance method. 155
7.9 The label scoring of the MRI total head database with Stats perfor- mance method. 155
7.10 The label scoring of the lesions database with stats performance method. 156
7.11 The label scoring of all image source databases with stats performance method 156
7.12 The label scoring of all clinical source databases with stats perfor- mance method. 156
7.13 The label scoring of all databases with stats performance method 157
7.14 The label scoring of all databases with the position score system using stats performance method. 157
7.15 The label scoring of the ensemble of all databases, all image databases and all clinical databases with the position score system using stats performance method. 157
7.16 Overview of the performance of highestEDSS label. The best perfor- mances are in bold. 158
7.17 Overview of the performance of mediumEDSS label. The best per- formances are in bold. 160
7.18 Overview of the performance of nextEDSS label. The best perfor- mances are in bold. 162
7.19 The presence of Spinal Cord feature in the best set of features for label highestEDSS. 164
7.20 The presence of Pyramidal first 2 Years feature in the best set of features for label highestEDSS. 164
7.21 The presence of Optical Pathways feature in the best set of features for label highestEDSS. 164
7.22 The presence of MS Course feature in the best set of features for label highestEDSS. 165
7.23 The presence of Visual Ratio feature in the best set of features for label highestEDSS. 165
7.24 The presence of Sensory Ratio feature in the best set of features for label highestEDSS. 165
7.25 The presence of Gender feature in the best set of features for label highestEDSS. 165
7.26 The presence of EDSS-related features in the best set of features for label highestEDSS. 166
7.27 The presence of No Years feature in the best set of features for label highestEDSS. 166
7.28 The presence of Spinal Cord feature in the best set of features for label mediumEDSS 166
7.29 The presence of Pyramidal first 2 years feature in the best set of features for label mediumEDSS. 167
7.30 The presence of Optical Pathways feature in the best set of features for label mediumEDSS. 167
7.31 The presence of MS Course feature in the best set of features for label mediumEDSS. 167
7.32 The presence of Visual ratio feature in the best set of features for label mediumEDSS. 167
7.33 The presence of Sensory ratio feature in the best set of features for label mediumEDSS. 168
7.34 The presence of Gender feature in the best set of features for label mediumEDSS. 168
7.35 The presence of EDSS-related features in the best set of features for label mediumEDSS 168
7.36 The presence of No Year feature in the best set of features for label mediumEDSS. 168
7.37 The presence of Spinal Cord feature in the best set of features for label nextEDSS 169
7.38 The presence of Pyramidal First 2 years feature in the best set of features for label nextEDSS. 169
7.39 The presence of Optic Pathways feature in the best set of features for label nextEDSS. 169
7.40 The presence of MS Course feature in the best set of features for label nextEDSS 170
7.41 The presence of Visual Ratio feature in the best set of features for label nextEDSS. 170
7.42 The presence of Sensory Ratio feature in the best set of features for label nextEDSS. 170
7.43 The presence of Gender feature in the best set of features for label nextEDSS. 170
7.44 The presence of EDSS-related features in the best set of features for label nextEDSS. 171
7.45 The presence of No Years feature in the best set of features for label nextEDSS. 171
7.46 The general overview of the feature presence in the studies performed with labels highestEDSS, nextEDSS and mediumEDSS. 172
7.47 The general overview of the feature presence in the studies performed with labels highestEDSS >3, nextEDSS >3 and mediumEDSS >3 173
7.48 The general overview of the feature presence in the studies performed with labels highestEDSS >5, nextEDSS >5 and mediumEDSS >5 173
7.49 The general overview of the EDSS-related features presence in the studies performed with labels highestEDSS, nextEDSS and medi- umEDSS. 174
7.50 The different set of features of all image databases for label highest- EDSS. 174
7.51 The region count of ones used in features for all image databases for label highestEDSS. 175
7.52 The tissue count of ones used in features for all image databases for label highestEDSS. 175
7.53 The modality count of ones used in features for all image databases for label highestEDSS. 175
7.54 The different set of features of all image databases for label medi- umEDSS. 176
7.55 The region count of ones used in features for all image databases for label mediumEDSS. 176
7.56 The tissue count of ones used in features for all image databases for label mediumEDSS. 177
7.57 The modality count of ones used in features for all image databases for label mediumEDSS. 177
7.58 The different set of features of all image databases for label nextEDSS. 177
7.59 The region count of ones used in features for all image databases for label nextEDSS. 178
7.60 The tissue count of ones used in features for all image databases for label nextEDSS. 178
7.61 The modality count of ones used in features for all image databases for label nextEDSS. 178
7.62 Overall modality count for labels nextEDSS, mediumEDSS and high- estEDSS. 179
7.63 Overall tissue count for labels nextEDSS, mediumEDSS and highest- EDSS. 179
8.1 The label correlation values between mediumEDSS, nextEDSS, high- estEDSS and msCourse in the clinical databases. 192
8.2 The label correlation values between mediumEDSS, nextEDSS, high- estEDSS and msCourse in the Momentaneous databases, regarding relapse visits and routine ones. 192
8.3 Analysis of Pyramidal First 2 years feature regarding the Momen- taneous with past database and both bifurcations regarding relapse visits and routine visits. 193
8.4 Analysis of Spinal cord feature regarding the Momentaneous with past database and both bifurcations regarding relapse visits and routine visits. 193
8.5 Analysis of Optical pathways feature regarding the Momentaneous with past database and both bifurcations regarding relapse visits and routine visits. 194
A. 1 FS Pyramidal grading system [17]. 215
A. 2 FS Cerebellar grading system [17]. 216
A. 3 FS Brain Stem grading system [17]. 216
A. 4 FS Sensory grading system [17]. 217
A. 5 FS Bowel \& Bladder grading system [17]. 217
A. 6 FS Visual grading system [17]. 218
A. 7 FS Cerebral grading system [17]. 218
A. 8 FS Other grading system [17] 218
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 245
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 246
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 247
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 248
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 249
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 250
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 251
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 252
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 253
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 254
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 255
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 256
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 257
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 258
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices. 259
C. 1 Study performed with CHUC's database for determination of a secu- rity search interval for top and head limit slices 260
D. 1 Static_Standard_Traditional_PCA_msCourse 262
D. 2 Static_Standard_Traditional_msCourse 262
D. 3 Static_Standard_kFold_PCA_msCourse 263
D. 4 Static_Standard_kFold_msCourse 263
D. 5 Static_Standard_LOO_PCA_msCourse 263
D. 6 Static_Standard_LOO_msCourse 264
D. 7 Static_Feature_Selection_Identification_mediumEDSS 264
D. 8 Static_Feature_Selection_Visits_mediumEDSS 264
D. 9 Static_Feature_Selection_Relapses_mediumEDSS 265
D. 10 Static_Standard_Traditional_PCA_mediumEDSS<3 265
D. 11 Static_Standard_Traditional_mediumEDSS <3 266
D. 12 Static_Standard_kFold_PCA_mediumEDSS<3 266
D. 13 Static_Standard_kFold_mediumEDSS<3 266
D. 14 Static_Standard_LOO_PCA_mediumEDSS <3 267
D. 15 Static_Standard_LOO_mediumEDSS <3 267
D. 16 Static_Feature_Selection_Identification_highestEDSS 267
D. 17 Static_Feature_Selection_Visits_highestEDSS 268
D. 18 Static_Feature_Selection_Relapses_highestEDSS 268
D. 19 Static_Standard_Traditional_PCA_highestEDSS <3 269
D. 20 Static_Standard_Traditional_highestEDSS < 3 269
D. 21 Static_Standard_kFold_PCA_highestEDSS <3 269
D. 22 Static_Standard_kFold_highestEDSS <3 270
D. 23 Static_Standard_LOO_PCA_highestEDSS<3 270
D. 24 Static_Standard_LOO_highestEDSS<3 270
D. 25 Static_Standard_Traditional_PCA_first2EDSS <3 271
D. 26 Static_Standard_Traditional_first2EDSS <3 271
D. 27 Static_Standard_kFold_PCA_first2EDSS <3 271
D. 28 Static_Standard_kFold_first2EDSS<3 272
D. 29 Static_Standard_LOO_PCA_first2EDSS <3 272
D. 30 Static_Standard_LOO_first2EDSS <3 272
D. 31 Static_Investigation_Traditional_PCA_msCourse 273
D. 32 Static_Investigation_Traditional_msCourse 273
D. 33 Static_Investigation_kFold_PCA_msCourse 274
D. 34 Static_Investigation_kFold_msCourse 274
D. 35 Static_Investigation_LOO_PCA_msCourse 274
D. 36 Static_Investigation_LOO_msCourse 275
D. 37 Static_Investigation_Traditional_PCA_mediumEDSS<3 275
D. 38 Static_Investigation_Traditional_mediumEDSS <3 276
D. 39 Static_Investigation_kFold_PCA_mediumEDSS <3 276
D. 40 Static_Investigation_kFold_mediumEDSS < 3 276
D. 41 Static_Investigation_LOO_PCA_mediumEDSS <3 277
D. 42 Static_Investigation_LOO_mediumEDSS <3 277
D. 43 Static_Investigation_Traditional_PCA_highestEDSS <3 278
D. 44 Static_Investigation_Traditional_highestEDSS <3 278
D. 45 Static_Investigation_kFold_PCA_highestEDSS <3 278
D. 46 Static_Investigation_kFold_highestEDSS < 3 279
D. 47 Static_Investigation_LOO_PCA_highestEDSS <3 279
D. 48 Static_Investigation_LOO_highestEDSS <3 279
D. 49 Static_Investigation_Traditional_PCA_first2EDSS <3 280
D. 50 Static_Investigation_Traditional_first2EDSS <3 280
D. 51 Static_Investigation_kFold_PCA_first2EDSS <3 280
D. 52 Static_Investigation_kFold_first2EDSS <3 281
D. 53 Static_Investigation_LOO_PCA_first2EDSS <3 281
D. 54 Static_Investigation_LOO_first2EDSS<3 281
D. 55 GroundZero_Standard_Traditional_PCA_msCourse 282
D. 56 GroundZero_Standard_Traditional_msCourse 282
D. 57 GroundZero_Standard_kFold_PCA_msCourse 283
D. 58 GroundZero_Standard_kFold_msCourse 283
D. 59 GroundZero_Standard_LOO_PCA_msCourse 283
D. 60 GroundZero_Standard_LOO_msCourse 284
D. 61 GroundZero_Feature_Selection_Identification_highestEDSS 284
D. 62 GroundZero_Feature_Selection_Visits_highestEDSS 284
D. 63 GroundZero_Feature_Selection_Relapses_highestEDSS 285
D. 64 GroundZero_Standard_Traditional_PCA_highestEDSS <3 285
D. 65 GroundZero_Standard_Traditional_highestEDSS<3 285
D. 66 GroundZero_Standard_kFold_PCA_highestEDSS <3 286
D. 67 GroundZero_Standard_kFold_highestEDSS <3 286
D. 68 GroundZero_Standard_LOO_PCA_highestEDSS < 3 286
D. 69 GroundZero_Standard_LOO_highestEDSS<3 287
D. 70 GroundZero_Standard_Traditional_PCA_first2EDSS <3 287
D. 71 GroundZero_Standard_Traditional_first2EDSS <3 287
D. 72 GroundZero_Standard_kFold_PCA_first2EDSS <3 288
D. 73 GroundZero_Standard_kFold_first2EDSS < 3 288
D. 74 GroundZero_Standard_LOO_PCA_first2EDSS <3 288
D. 75 GroundZero_Standard_LOO_first2EDSS <3 289
D. 76 GroundZero_Feature_Selection_Identification_mediumEDSS 289
D. 77 GroundZero_Feature_Selection_Visits_mediumEDSS 289
D. 78 GroundZero_Feature_Selection_Relapses_mediumEDSS 290
D. 79 GroundZero_Standard_Traditional_PCA_mediumEDSS<3 290
D. 80 GroundZero_Standard_Traditional_mediumEDSS <3 290
D. 81 GroundZero_Standard_kFold_PCA_mediumEDSS <3 291
D. 82 GroundZero_Standard_kFold_mediumEDSS <3 291
D. 83 GroundZero_Standard_LOO_PCA_mediumEDSS<3 291
D. 84 GroundZero_Standard_LOO_mediumEDSS <3 292
D. 85 GroundZero_Investigation_Traditional_PCA_msCourse 292
D. 86 GroundZero_Investigation_Traditional_msCourse 293
D. 87 GroundZero_Investigation_kFold_PCA_msCourse 293
D. 88 GroundZero_Investigation_kFold_msCourse 293
D. 89 GroundZero_Investigation_LOO_PCA_msCourse 294
D. 90 GroundZero_Investigation_LOO_msCourse 294
D. 91 GroundZero_Investigation_Traditional_PCA_highestEDSS <3 295
D. 92 GroundZero_Investigation_Traditional_highestEDSS <3 295
D. 93 GroundZero_Investigation_kFold_PCA_highestEDSS<3 295
D. 94 GroundZero_Investigation_kFold_highestEDSS < 3 296
D. 95 GroundZero_Investigation_LOO_PCA_highestEDSS< 3 296
D. 96 GroundZero_Investigation_LOO_highestEDSS < 3 296
D. 97 GroundZero_Investigation_Traditional_PCA_first2EDSS<3 297
D. 98 GroundZero_Investigation_Traditional_first2EDSS <3 297
D. 99 GroundZero_Investigation_kFold_PCA_first2EDSS <3 297
D.100GroundZero_Investigation_kFold_first2EDSS <3 298
D.101GroundZero_Investigation_LOO_PCA_first2EDSS<3 298
D.102GroundZero_Investigation_LOO_first2EDSS < 3 298
D.103GroundZero_Investigation_Traditional_PCA_mediumEDSS <3 299
D.104GroundZero_Investigation_Traditional_mediumEDSS <3 299
D.105GroundZero_Investigation_kFold_PCA_mediumEDSS < 3 300
D.100GroundZero_Investigation_kFold_mediumEDSS <3 300
D.107GroundZero_Investigation_LOO_PCA_mediumEDSS < 3 300
D.108GroundZero_Investigation_LOO_mediumEDSS <3 301
D.109Momentaneous_Standard_Traditional_PCA_msCourse 301
D.110Momentaneous_Standard_Traditional_msCourse 302
D.111Momentaneous_Standard_kFold_PCA_msCourse 302
D.112Momentaneous_Standard_kFold_msCourse 302
D.113Momentaneous_Standard_LOO_PCA_msCourse 303
D.114Momentaneous_Standard_LOO_msCourse 303
D.115Momentaneous_Standard_Traditional_PCA_currentEDSS <3 303
D.11@Momentaneous_Standard_Traditional_currentEDSS <3 304
D.117Momentaneous_Standard_kFold_PCA_currentEDSS <3 304
D.118Momentaneous_Standard_kFold_currentEDSS <3 304
D.119Momentaneous_Standard_LOO_PCA_currentEDSS < 3 305
D.120Momentaneous_Standard_LOO_currentEDSS <3 305
D.121Momentaneous_Standard_Traditional_PCA_currentEDSS <5 305
D.122Momentaneous_Standard_Traditional_currentEDSS < 5 306
D.123Momentaneous_Standard_kFold_PCA_currentEDSS < 5 306
D.124Momentaneous_Standard_kFold_currentEDSS <5 306
D.125Momentaneous_Standard_LOO_PCA_currentEDSS < 5 307
D.12@Momentaneous_Standard_LOO_currentEDSS <5 307
D.127Momentaneous_Feature_Selection_Identification_nextEDSS 307
D.128Momentaneous_Feature_Selection_Visits_nextEDSS 308
D.129Momentaneous_Feature_Selection_Relapses_nextEDSS 308
D.130Momentaneous_Standard_Traditional_PCA_nextEDSS <3 308
D.131Momentaneous_Standard_Traditional_nextEDSS <3 309
D.132Momentaneous_Standard_kFold_PCA_nextEDSS <3 309
D.133Momentaneous_Standard_kFold_nextEDSS < 3 309
D.134Momentaneous_Standard_LOO_PCA_nextEDSS <3 310
D.135Momentaneous_Standard_LOO_nextEDSS <3 310
D.136Momentaneous_Standard_Traditional_PCA_nextEDSS <3 310
D.137Momentaneous_Standard_Traditional_nextEDSS < 3 311
D.138Momentaneous_Standard_kFold_PCA_nextEDSS <3 311
D.139Momentaneous_Standard_kFold_nextEDSS < 3 311
D.140Momentaneous_Standard_LOO_PCA_nextEDSS <3 312
D.141Momentaneous_Standard_LOO_nextEDSS <3 312
D.142Momentaneous_Feature_Selection_Identification_highestEDSS 312
D.143Momentaneous_Feature_Selection_Visits_highestEDSS 313
D.144Momentaneous_Feature_Selection_Relapses_highestEDSS 313
D.145Momentaneous_Standard_Traditional_PCA_highestEDSS <3 313
D.14@Momentaneous_Standard_Traditional_highestEDSS <3 314
D.147Momentaneous_Standard_kFold_PCA_highestEDSS <3 314
D.148Momentaneous_Standard_kFold_highestEDSS < 3 314
D.149Momentaneous_Standard_LOO_PCA_highestEDSS <3 315
D.150Momentaneous_Standard_LOO_highestEDSS <3 315
D.151Momentaneous_Standard_Traditional_PCA_highestEDSS <5 315
D.152Momentaneous_Standard_Traditional_highestEDSS <5 316
D.153Momentaneous_Standard_kFold_PCA_highestEDSS <5 316
D.154Momentaneous_Standard_kFold_highestEDSS <5 316
D.155Momentaneous_Standard_LOO_PCA_highestEDSS <5 317
D.156Momentaneous_Standard_LOO_highestEDSS < 5 317
D.157Momentaneous_Standard_Traditional_PCA_first2EDSS <3 318
D. 158 Momentaneous_Standard_Traditional_first2EDSS <3 318
D.159Momentaneous_Standard_kFold_PCA_first2EDSS <3 318
D.160Momentaneous_Standard_kFold_first2EDSS <3 319
D.161Momentaneous_Standard_LOO_PCA_first2EDSS <3 319
D.162Momentaneous_Standard_LOO_PCA_first2EDSS < 3 319
D.163Momentaneous_Standard_Traditional_PCA_tendencyEDSS 320
D.164Momentaneous_Standard_Traditional_tendencyEDSS 320
D.165Momentaneous_Standard_kFold_PCA_tendencyEDSS 320
D.166Momentaneous_Standard_kFold_tendencyEDSS 321
D.167Momentaneous_Standard_LOO_PCA_tendencyEDSS 321
D.168Momentaneous_Standard_LOO_tendencyEDSS 321
D.169Momentaneous_Feature_Selection_Identification_mediumEDSS 322
D.17QMomentaneous_Feature_Selection_Visits_mediumEDSS 322
D.171Momentaneous_Feature_Selection_Relapses_mediumEDSS 322
D.172Momentaneous_Standard_Traditional_PCA_mediumEDSS ≥ 3 323
D.173Momentaneous_Standard_Traditional_mediumEDSS ≥ 3 323
D.174Momentaneous_Standard_kFold_PCA_mediumEDSS ≥ 3 323
D.175Momentaneous_Standard_kFold_mediumEDSS ≥ 3 324
D.17@Momentaneous_Standard_LOO_PCA_mediumEDSS ≥ 3 324
D.177Momentaneous_Standard_LOO_mediumEDSS ≥ 3 324
D.178Momentaneous_Investigation_Traditional_PCA_nextEDSS >3 325
D.179Momentaneous_Investigation_Traditional_nextEDSS > 3 326
D.180Momentaneous_Investigation_kFold_PCA_nextEDSS > 3 326
D.181Momentaneous_Investigation_kFold_nextEDSS > 3 326
D.182Momentaneous_Investigation_LOO_PCA_nextEDSS > 3 327
D.183Momentaneous_Investigation_LOO_nextEDSS > 3 327
D.184Momentaneous_Investigation_Traditional_PCA_nextEDSS >5 327
D.185Momentaneous_Investigation_Traditional_nextEDSS >5 328
D.186Momentaneous_Investigation_kFold_PCA_nextEDSS > 5 328
D. 187Momentaneous_Investigation_kFold_nextEDSS > 5 328
D.188Momentaneous_Investigation_LOO_PCA_nextEDSS > 5 329
D.189Momentaneous_Investigation_LOO_nextEDSS > 5 329
D.190Momentaneous_Investigation_Traditional_PCA_highestEDSS >3 329
D.191Momentaneous_Investigation_Traditional_highestEDSS > 3 330
D.192Momentaneous_Investigation_kFold_PCA_highestEDSS >3 330
D.193Momentaneous_Investigation_kFold_highestEDSS > 3 330
D.194Momentaneous_Investigation_LOO_PCA_highestEDSS > 3 331
D.195Momentaneous_Investigation_LOO_highestEDSS > 3 331
D.19@Momentaneous_Investigation_Traditional_PCA_highestEDSS >5 331
D.197Momentaneous_Investigation_Traditional_highestEDSS >5 332
D.198Momentaneous_Investigation_kFold_PCA_highestEDSS >5 332
D.199Momentaneous_Investigation_kFold_highestEDSS > 5 332
D.200Momentaneous_Investigation_LOO_PCA_highestEDSS > 5 333
D. 201Momentaneous_Investigation_LOO_highestEDSS > 5 333
D.202Momentaneous_Investigation_Traditional_PCA_first2EDSS > 3 334
D.203Momentaneous_Investigation_Traditional_first2EDSS > 3 334
D.204Momentaneous_Investigation_kFold_PCA_first2EDSS > 3 334
D.205Momentaneous_Investigation_kFold_first2EDSS > 3 335
D.20@Momentaneous_Investigation_LOO_PCA_first2EDSS > 3 335
D. 207Momentaneous_Investigation_LOO_first2EDSS > 3 335
D.208Momentaneous_Investigation_Traditional_PCA_mediumEDSS ≥ 3 336
D.209Momentaneous_Investigation_Traditional_mediumEDSS ≥ 3 336
D.210Momentaneous_Investigation_kFold_PCA_mediumEDSS ≥ 3 336
D. 211 Momentaneous_Investigation_kFold_mediumEDSS ≥ 3 337
D. 212Momentaneous_Investigation_LOO_PCA_mediumEDSS ≥ 3 337
D.213Momentaneous_Investigation_LOO_mediumEDSS ≥ 3 337
D.214Momentaneous_Past_Standard_Traditional_PCA_msCourse 338
D.215Momentaneous_Past_Standard_Traditional_msCourse 338
D.216Momentaneous_Past_Standard_kFold_PCA_msCourse 339
D.217Momentaneous_Past_Standard_kFold_msCourse 339
D.218Momentaneous_Past_Standard_LOO_PCA_msCourse 339
D.219Momentaneous_Past_Standard_LOO_msCourse 340
D.220Momentaneous_Past_Standard_Traditional_PCA_currentEDSS > 3 340
D.221Momentaneous_Past_Standard_Traditional_currentEDSS > 3 340
D.222Momentaneous_Past_Standard_kFold_PCA_currentEDSS > 3 341
D.223Momentaneous_Past_Standard_kFold_currentEDSS >3 341
D.224Momentaneous_Past_Standard_LOO_PCA_currentEDSS > 3 341
D.225Momentaneous_Past_Standard_LOO_currentEDSS > 3 342
D.226Momentaneous_Past_Standard_Traditional_PCA_currentEDSS > 5 342
D.227Momentaneous_Past_Standard_Traditional_currentEDSS > 5 342
D.228Momentaneous_Past_Standard_kFold_PCA_currentEDSS > 5 343
D.229Momentaneous_Past_Standard_kFold_currentEDSS >5 343
D.230Momentaneous_Past_Standard_LOO_PCA_currentEDSS > 5 343
D.231Momentaneous_Past_Standard_LOO_currentEDSS > 5 344
D.232Momentaneous_Past_Feature_Selection_Identification_nextEDSS 344
D.233Momentaneous_Past_Feature_Selection_Visits_nextEDSS 345
D.234Momentaneous_Past_Feature_Selection_Relapses_nextEDSS 345
D.235Momentaneous_Past_Standard_Traditional_PCA_nextEDSS > 3 346
D.230Momentaneous_Past_Standard_Traditional_nextEDSS > 3 346
D.237Momentaneous_Past_Standard_kFold_PCA_nextEDSS >3 346
D.238Momentaneous_Past_Standard_kFold_nextEDSS >3 347
D.239Momentaneous_Past_Standard_LOO_PCA_nextEDSS > 3 347
D.240Momentaneous_Past_Standard_LOO_nextEDSS > 3 347
D.241Momentaneous_Past_Standard_Traditional_PCA_nextEDSS > 5 348
D.242Momentaneous_Past_Standard_Traditional_nextEDSS > 5 348
D.243Momentaneous_Past_Standard_kFold_PCA_nextEDSS > 5 348
D.244Momentaneous_Past_Standard_kFold_nextEDSS > 5 349
D.245Momentaneous_Past_Standard_LOO_PCA_nextEDSS > 5 349
D.24@Momentaneous_Past_Standard_LOO_nextEDSS > 5 349
D.247Momentaneous_Past_Feature_Selection_Identification_highestEDSS 350
D.248Momentaneous_Past_Feature_Selection_Visits_highestEDSS 350
D.249Momentaneous_Past_Feature_Selection_Relapses_highestEDSS 351
D.250Momentaneous_Past_Standard_Traditional_PCA_highestEDSS > 3 351
D.251Momentaneous_Past_Standard_Traditional_highestEDSS > 3 352
D. 252 Momentaneous_Past_Standard_kFold_PCA_highestEDSS >3 352
D.253Momentaneous_Past_Standard_kFold_highestEDSS > 3 352
D.254Momentaneous_Past_Standard_LOO_PCA_highestEDSS > 3 353
D.255Momentaneous_Past_Standard_LOO_highestEDSS > 3 353
D.256Momentaneous_Past_Standard_Traditional_PCA_highestEDSS > 5 353
D.257Momentaneous_Past_Standard_Traditional_highestEDSS >5 354
D.258Momentaneous_Past_Standard_kFold_PCA_highestEDSS > 5 354
D.259Momentaneous_Past_Standard_kFold_highestEDSS > 5 354
D.260Momentaneous_Past_Standard_LOO_PCA_highestEDSS > 5 355
D. 261 Momentaneous_Past_Standard_LOO_highestEDSS >5 355
D.262Momentaneous_Past_Standard_Traditional_PCA_first2EDSS > 3 355
D.263Momentaneous_Past_Standard_Traditional_first2EDSS > 3 356
D.264Momentaneous_Past_Standard_kFold_PCA_first2EDSS > 3 356
D.265Momentaneous_Past_Standard_kFold_first2EDSS > 3 356
D.266Momentaneous_Past_Standard_LOO_PCA_first2EDSS > 3 357
D. 26 Momentaneous_Past_Standard_LOO_first2EDSS > 3 357
D.268Momentaneous_Past_Standard_Traditional_PCA_tendencyEDSS 358
D.269Momentaneous_Past_Standard_Traditional_tendencyEDSS 358
D.270Momentaneous_Past_Standard_kFold_PCA_tendencyEDSS 358
D.271Momentaneous_Past_Standard_kFold_tendencyEDSS 359
D. $272 \mathrm{Momentaneous} \mathrm{_Past} \mathrm{_Standard} \mathrm{_LOO} \mathrm{_PCA} \mathrm{_tendencyEDSS}$ 359
D.273Momentaneous_Past_Standard_LOO_tendencyEDSS 359
D.274Momentaneous_Past_Feature_Selection_Identification_mediumEDSS 360
D. 275 Momentaneous_Past_Feature_Selection_Visits_mediumEDSS 360
D.276Momentaneous_Past_Feature_Selection_Relapses_mediumEDSS 361
D.277Momentaneous_Standard_Traditional_PCA_mediumEDSS ≥ 3 362
D.278Momentaneous_Standard_Traditional_mediumEDSS ≥ 3 362
D.279Momentaneous_Standard_kFold_PCA_mediumEDSS ≥ 3 362
D.280Momentaneous_Standard_kFold_mediumEDSS ≥ 3 363
D.281Momentaneous_Standard_LOO_PCA_mediumEDSS ≥ 3 363
D.282Momentaneous_Standard_LOO_mediumEDSS ≥ 3 363
D.283Momentaneous_Past_Investigation_Traditional_PCA_msCourse 364
D.284Momentaneous_Past_Investigation_Traditional_msCourse 364
D.285Momentaneous_Past_Investigation_kFold_PCA_msCourse 365
D.286Momentaneous_Past_Investigation_kFold_msCourse 365
D.287Momentaneous_Past_Investigation_LOO_PCA_msCourse 365
D.288Momentaneous_Past_Investigation_LOO_msCourse 366
D.289Momentaneous_Past_Investigation_Tradition_PCA_currentEDSS >3 366
D.290Momentaneous_Past_Investigation_Tradition_currentEDSS > 3 367
D.291Momentaneous_Past_Investigation_kFold_PCA_currentEDSS > 3 367
D.292Momentaneous_Past_Investigation_kFold_currentEDSS > 3 367
D.293Momentaneous_Past_Investigation_LOO_PCA_currentEDSS > 3 368
D.294Momentaneous_Past_Investigation_LOO_currentEDSS > 3 368
D.295Momentaneous_Past_Investigation_Traditional_PCA_currentEDSS > 5 369
D.296Momentaneous_Past_Investigation_Traditional_currentEDSS > 5 369
D.297Momentaneous_Past_Investigation_kFold_PCA_currentEDSS >5 369
D.298Momentaneous_Past_Investigation_kFold_currentEDSS > 5 370
D.299Momentaneous_Past_Investigation_LOO_PCA_currentEDSS > 5 370
D.300Momentaneous_Past_Investigation_LOO_currentEDSS > 5 370
D.301Momentaneous_Past_Investigation_Traditional_PCA_nextEDSS >3 371
D.302Momentaneous_Past_Investigation_Traditional_nextEDSS >3 371
D.303Momentaneous_Past_Investigation_kFold_PCA_nextEDSS >3 371
D.304Momentaneous_Past_Investigation_kFold_nextEDSS > 3 372
D.305Momentaneous_Past_Investigation_LOO_PCA_nextEDSS > 3 372
D.306Momentaneous_Past_Investigation_LOO_nextEDSS > 3 372
D.307Momentaneous_Past_Investigation_Traditional_PCA_nextEDSS >5 373
D.308Momentaneous_Past_Investigation_Traditional_nextEDSS >5 373
D.309Momentaneous_Past_Investigation_kFold_PCA_nextEDSS > 5 374
D.310Momentaneous_Past_Investigation_kFold_nextEDSS > 5 374
D.311Momentaneous_Past_Investigation_LOO_PCA_nextEDSS > 5 374
D.312Momentaneous_Past_Investigation_LOO_nextEDSS > 5 375
D.313Momentaneous_Past_Investigation_Traditional_PCA_highestEDSS > 3 375
D.314Momentaneous_Past_Investigation_Traditional_highestEDSS > 3 376
D.315Momentaneous_Past_Investigation_kFold_PCA_highestEDSS >3 376
D.31@Momentaneous_Past_Investigation_kFold_highestEDSS > 3 376
D.317Momentaneous_Past_Investigation_LOO_PCA_highestEDSS > 3 377
D.318Momentaneous_Past_Investigation_LOO_highestEDSS > 3 377
D.319Momentaneous_Past_Investigation_Traditional_PCA_highestEDSS > 5 378
D.320Momentaneous_Past_Investigation_Traditional_highestEDSS >5 378
D. $32 \mathbb{1}$ Momentaneous_Past_Investigation_kFold_PCA_highestEDSS >5 378
D.322Momentaneous_Past_Investigation_kFold_highestEDSS > 5 379
D.323Momentaneous_Past_Investigation_LOO_PCA_highestEDSS > 5 379
D.324Momentaneous_Past_Investigation_LOO_highestEDSS > 5 379
D.325Momentaneous_Past_Investigation_Traditional_PCA_first2EDSS >3 380
D.32बMomentaneous_Past_Investigation_Traditional_first2EDSS >3 380
D.327Momentaneous_Past_Investigation_KFold_PCA_first2EDSS > 3 381
D.328Momentaneous_Past_Investigation_KFold_first2EDSS > 3 381
D.329Momentaneous_Past_Investigation_LOO_PCA_first2EDSS >3 381
D.330Momentaneous_Past_Investigation_LOO_first2EDSS > 3 382
D.331Momentaneous_Past_Investigation_Traditional_PCA_tendencyEDSS 382
D.332Momentaneous_Past_Investigation_Traditional_tendencyEDSS 383
D.333Momentaneous_Past_Investigation_kFold_PCA_tendencyEDSS 383
D.334Momentaneous_Past_Investigation_kFold_tendencyEDSS 383
D.335-Momentaneous_Past_Investigation_LOO_PCA_tendencyEDSS 384
D.336Momentaneous_Past_Investigation_LOO_tendencyEDSS 384
D.337Momentaneous_Past_Investigation_Traditional_PCA_mediumEDSS > 3 384
D.338Momentaneous_Past_Investigation_Traditional_mediumEDSS >3 385
D.339Momentaneous_Past_Investigation_kFold_PCA_mediumEDSS >3 385
D.34@Momentaneous_Past_Investigation_kFold_mediumEDSS > 3 385
D.341Momentaneous_Past_Investigation_LOO_PCA_mediumEDSS > 3 386
D. 342 Momentaneous_Past_Investigation_LOO_mediumEDSS >3 386
D. 343MRI_Traditional_PCA_msCourse 387
D.344MRI_Traditional_msCourse 387
D.345MRI_kFold_PCA_msCourse 387
D.34@RI_kFold_msCourse 388
D.347MRI_LOO_PCA_msCourse 388
D.348MRI_LOO_msCourse 388
D.34MRI_Traditional_PCA_currentEDSS ≥ 3 389
D.350MRI_Traditional_currentEDSS ≥ 3 389
D.351MRI_kFold_PCA_currentEDSS ≥ 3 389
D.352MRI_kFold_currentEDSS ≥ 3 390
D.353MRI_LOO_PCA_currentEDSS ≥ 3 390
D.354MRI_LOO_currentEDSS ≥ 3 390
D.355MRI_Traditional_PCA_currentEDSS ≥ 5 391
D.35@MRI_Traditional_currentEDSS ≥ 5 391
D. 357 MRI kFold_PCA_currentEDSS ≥ 5 391
D.358MRI_kFold_currentEDSS ≥ 5 392
D.359MRI_LOO_PCA_currentEDSS ≥ 5 392
D.360MRI_LOO_currentEDSS ≥ 5 392
D.361MRI_Traditional_PCA_nextEDSS ≥ 3 393
D.362MRI_Traditional_nextEDSS ≥ 3 393
D.363MRI_kFold_PCA_nextEDSS ≥ 3 393
D.364MRI_kFold_nextEDSS ≥ 3 394
D.365MRI_LOO_PCA_nextEDSS ≥ 3 394
D.366MRI_LOO_nextEDSS ≥ 3 394
D.367MRI_Traditional_PCA_nextEDSS ≥ 5 395
D.368MRI_Traditional_nextEDSS ≥ 5 395
D.369MRI_kFold_PCA_nextEDSS ≥ 5 395
D.370MRI_kFold_nextEDSS ≥ 5 396
D. 37 M MRI_LOO_PCA_nextEDSS ≥ 5 396
D.372MRI_LOO_nextEDSS ≥ 5 396
D.373MRI_Traditional_PCA_highestEDSS ≥ 3 397
D.37MRI_Traditional_highestEDSS ≥ 3 397
D.375MRI_kFold_PCA_highestEDSS ≥ 3 397
D.37@RI_kFold_highestEDSS ≥ 3 398
D.377MRI_LOO_PCA_highestEDSS ≥ 3 398
D. 378 MRI_LOO_highestEDSS ≥ 3 398
D.379MRI_Traditional_highestEDSS ≥ 5 399
D.380MRI_kFold_highestEDSS ≥ 5 399
D.381MRI_LOO_highestEDSS ≥ 5 399
D.382MRI_Traditional_PCA_first2EDSS ≥ 3 400
D. 383MRI_Traditional_first2EDSS ≥ 3 400
D. 384 MRI kFold_PCA first2EDSS ≥ 3 400
D.385MRI_kFold_first2EDSS ≥ 3 401
D.386MRI_LOO_PCA_first2EDSS ≥ 3 401
D.387MRI_LOO_first2EDSS ≥ 3 401
D.388MRI_Traditional_PCA_first2EDSS ≥ 5 402
D.389MRI_Traditional_first2EDSS ≥ 5 402
D.390MRI_kFold_PCA first2EDSS ≥ 5 402
D.391MRI_kFold_first2EDSS ≥ 5 403
D.392MRI_LOO_PCA_first2EDSS ≥ 5 403
D.393MRI_LOO_first2EDSS ≥ 5 403
D.394MRI_Traditional_PCA_tendencyEDSS 404
D.395MRI_Traditional_tendencyEDSS 404
D.39@MRI_kFold_PCA_tendencyEDSS 404
D.397MRI_kFold_tendencyEDSS 405
D.398MRI_LOO_PCA_tendencyEDSS 405
D.399MRI_LOO_tendencyEDSS 405
D.400MRI_Traditional_PCA_mediumEDSS ≥ 3 406
D.401MRI_Traditional_mediumEDSS ≥ 3 406
D. 402 MRI _kFold_PCA_mediumEDSS ≥ 3 406
D.403MRI_kFold_mediumEDSS ≥ 3 407
D.404MRI_LOO_PCA_mediumEDSS ≥ 3 407
D.405MRI_LOO_mediumEDSS ≥ 3 407
D.406MRI_Traditional_PCA_mediumEDSS ≥ 5 408
D.407MRI_Traditional_mediumEDSS ≥ 5 408
D.408MRI_kFold_PCA_mediumEDSS ≥ 5 408
D.409MRI_kFold_mediumEDSS ≥ 5 409
D.410MRI_LOO_PCA_mediumEDSS ≥ 5 409
D.411MRI_LOO_PCA_mediumEDSS ≥ 5 409
D.4120ne_sample_One_Lesion_Traditional_msCourse 410
D.413One_sample_One_Lesion_Traditional_PCA_msCourse 410
D.414One_sample_One_Lesion_Traditional_currentEDSS ≥ 3 411
D.4150ne_sample_One_Lesion_Traditional_PCA_currentEDSS ≥ 3 411
D.416One_sample_One_Lesion_Traditional_currentEDSS ≥ 5 412
D. 417 One_sample_One_Lesion_Traditional_PCA_currentEDSS ≥ 5 412
D.418One_sample_One_Lesion_Traditional_nextEDSS ≥ 3 412
D.419One_sample_One_Lesion_Traditional_nextEDSS ≥ 5 413
D.4200ne_sample_One_Lesion_Traditional_PCA_nextEDSS ≥ 5 413
D.4210ne_sample_One_Lesion_Traditional_mediumEDSS ≥ 3 414
D. 4220 ne_sample_One_Lesion_Traditional_PCA_mediumEDSS ≥ 3 414
D.4230ne_sample_One_Lesion_Traditional_mediumEDSS ≥ 5 414
D.4240ne_sample_One_Lesion_Traditional_PCA_mediumEDSS ≥ 5 415
D.425One_sample_One_Lesion_Traditional_highestEDSS ≥ 3 415
D.4200ne_sample_One_Lesion_Traditional_PCA_highestEDSS ≥ 3 415
D.4270ne_sample_One_Lesion_Traditional_highestEDSS ≥ 5 416
D.4280ne_sample_One_Lesion_Traditional_PCA_highestEDSS ≥ 5 416
D.4290ne_sample_One_Lesion_Traditional_first2EDSS ≥ 3 417
D.4300ne_sample_One_Lesion_Traditional_PCA_first2EDSS ≥ 3 417
D.431One_sample_One_Lesion_Traditional_first2EDSS ≥ 3 417
D. 432 One_sample_One_Lesion_Traditional_PCA_first2EDSS ≥ 3 418
D.4330ne_sample_One_Lesion_Ensemble_msCourse 418
D.4340ne_sample_One_Lesion_Ensemble_PCA_msCourse 418
D.4350ne_sample_One_Lesion_Ensemble_mediumEDSS ≥ 3 419
D.4360ne_sample_One_Lesion_Ensemble_PCA_mediumEDSS ≥ 3 419
D.4370ne_sample_One_Lesion_Ensemble_mediumEDSS ≥ 5 419
D.4380ne_sample_One_Lesion_Ensemble_PCA_mediumEDSS ≥ 5 420
D.4390ne_sample_One_Lesion_Ensemble_highestEDSS ≥ 3 420
D.4400ne_sample_One_Lesion_Ensemble_PCA_highestEDSS ≥ 3 420
D.441One_sample_One_Lesion_Ensemble_highestEDSS ≥ 5 421
D.4420ne_sample_One_Lesion_Ensemble_PCA_highestEDSS ≥ 5 421
D.4430ne_sample_One_Lesion_Ensemble_first2EDSS ≥ 3 421
D.4440ne_sample_One_Lesion_Ensemble_PCA_first2EDSS ≥ 3 422
D.4450ne_sample_One_Lesion_Ensemble_first2EDSS ≥ 5 422
D.446One_sample_One_Lesion_Ensemble_PCA_first2EDSS ≥ 5 422
D.447One_sample_One_Lesion_Ensemble_currentEDSS ≥ 3 423
D.4480ne_sample_One_Lesion_Ensemble_PCA_currentEDSS ≥ 3 423
D.4490ne_sample_One_Lesion_Ensemble_currentEDSS ≥ 5 423
D.4500ne_sample_One_Lesion_Ensemble_PCA_currentEDSS ≥ 5 424
D.451One_sample_One_Lesion_Ensemble_nextEDSS ≥ 3 424
D.4520ne_sample_One_Lesion_Ensemble_nextEDSS ≥ 5 424
D.453One_sample_One_Study_Traditional_PCA_msCourse 425
D.4540ne_sample_One_Study_Traditional_msCourse 425
D.4550ne_sample_One_Study_kFold_PCA_msCourse 425
D.4500ne_sample_One_Study_kFold_msCourse 426
D.457One_sample_One_Study_LOO_PCA_msCourse 426
D.4580ne_sample_One_Study_LOO_msCourse 426
D.4590ne_sample_One_Study_Traditional_PCA_currentEDSS ≥ 3 427
D.4600ne_sample_One_Study_Traditional_currentEDSS ≥ 3 427
D.461One_sample_One_Study_kFold_PCA_currentEDSS ≥ 3 427
D.4620ne_sample_One_Study_kFold_currentEDSS ≥ 3 428
D.4630ne_sample_One_Study_LOO_PCA_currentEDSS ≥ 3 428
D.4640ne_sample_One_Study_LOO_currentEDSS ≥ 3 428
D.4650ne_sample_One_Study_Traditional_PCA_currentEDSS ≥ 5 429
D.4600ne_sample_One_Study_Traditional_currentEDSS ≥ 5 429
D.4670ne_sample_One_Study_kFold_PCA_currentEDSS ≥ 5 429
D.4680ne_sample_One_Study_kFold_currentEDSS ≥ 5 430
D.4690ne_sample_One_Study_LOO_PCA_currentEDSS ≥ 5 430
D.4700ne_sample_One_Study_LOO_currentEDSS ≥ 5 430
D.4710ne_sample_One_Study_Traditional_PCA_nextEDSS ≥ 3 431
D. 4720 ne_sample_One_Study_Traditional_nextEDSS ≥ 3 431
D.4730ne_sample_One_Study_KFold_PCA_nextEDSS ≥ 3 431
D.4740ne_sample_One_Study_KFold_nextEDSS ≥ 3 432
D.4750ne_sample_One_Study_LOO_PCA_nextEDSS ≥ 3 432
D.4760ne_sample_One_Study_LOO_nextEDSS ≥ 3 432
D.477One_sample_One_Study_Traditional_PCA_nextEDSS ≥ 5 433
D.4780ne_sample_One_Study_Traditional_nextEDSS ≥ 5 433
D.4790ne_sample_One_Study_kFold_PCA_nextEDSS ≥ 5 433
D.4800ne_sample_One_Study_kFold_nextEDSS ≥ 5 434
D.4810ne_sample_One_Study_LOO_PCA_nextEDSS ≥ 5 434
D. 4820 ne_sample_One_Study_LOO_nextEDSS ≥ 5 434
D.4830ne_sample_One_Study_Traditional_PCA_mediumEDSS ≥ 3 435
D.4840ne_sample_One_Study_Traditional_mediumEDSS ≥ 3 435
D.485One_sample_One_Study_kFold_PCA_mediumEDSS ≥ 3 435
D.4860ne_sample_One_Study_kFold_mediumEDSS ≥ 3 436
D.4870ne_sample_One_Study_LOO_PCA_mediumEDSS ≥ 3 436
D.4880ne_sample_One_Study_LOO_mediumEDSS ≥ 3 436
D.4890ne_sample_One_Study_Traditional_PCA_highestEDSS ≥ 3 437
D.4900ne_sample_One_Study_Traditional_highestEDSS ≥ 3 437
D.491One_sample_One_Study_kFold_PCA_highestEDSS ≥ 3 438
D.4920ne_sample_One_Study_kFold_highestEDSS ≥ 3 438
D.4930ne_sample_One_Study_LOO_PCA_highestEDSS ≥ 3 438
D.4940ne_sample_One_Study_LOO_highestEDSS ≥ 3 439
D.495One_sample_One_Study_Traditional_PCA_highestEDSS ≥ 5 439
D.4960ne_sample_One_Study_Traditional_highestEDSS ≥ 5 439
D.4970ne_sample_One_Study_kFold_PCA_highestEDSS ≥ 5 440
D.4980ne_sample_One_Study_kFold_highestEDSS ≥ 5 440
D.4990ne_sample_One_Study_LOO_PCA_highestEDSS ≥ 5 440
D. 500 One_sample_One_Study_LOO_highestEDSS ≥ 5 441
D.501One_sample_One_Study_Traditional_PCA_first2EDSS ≥ 3 441
D.5020ne_sample_One_Study_Traditional_first2EDSS ≥ 3 441
D.5030ne_sample_One_Study_KFold_PCA_first2EDSS ≥ 3 442
D.5040ne_sample_One_Study_KFold_first2EDSS ≥ 3 442
D.5050ne_sample_One_Study_LOO_PCA_first2EDSS ≥ 3 442
D. 506 ne_sample_One_Study_LOO_first2EDSS ≥ 3 443
D.5070ne_sample_One_Patient_Traditional_PCA_msCourse 443
D.5080ne_sample_One_Patient_Traditional_msCourse 444
D.5090ne_sample_One_Patient_kFold_PCA_msCourse 444
D. 510 One_sample_One_Patient_kFold_msCourse 444
D.511One_sample_One_Patient_LOO_PCA_msCourse 445
D.5120ne_sample_One_Patient_LOO_msCourse 445
D.5130ne_sample_One_Patient_Traditional_PCA_mediumEDSS ≥ 3 446
D. $5140 n e _s a m p l e _O n e _P a t i e n t _T r a d i t i o n a l _m e d i u m E D S S ~ \geq 3 ~$ 446
D.5150ne_sample_One_Patient_kFold_PCA_mediumEDSS ≥ 3 446
D.5160ne_sample_One_Patient_kFold_mediumEDSS ≥ 3 447
D.517One_sample_One_Patient_LOO_PCA_mediumEDSS ≥ 3 447
D.518One_sample_One_Patient_LOO_mediumEDSS ≥ 3 447
D.5190ne_sample_One_Patient_Traditional_PCA_mediumEDSS ≥ 5 448
D.5200ne_sample_One_Patient_Traditional_mediumEDSS ≥ 5 448
D.521One_sample_One_Patient_KFold_PCA_mediumEDSS ≥ 5 448
D.5220ne_sample_One_Patient_KFold_mediumEDSS ≥ 5 449
D.5230ne_sample_One_Patient_LOO_PCA_mediumEDSS ≥ 5 449
D.5240ne_sample_One_Patient_LOO_mediumEDSS ≥ 5 449
D.5250ne_sample_One_Patient_Traditional_PCA_highestEDSS ≥ 3 450
D.5260ne_sample_One_Patient_Traditional_highestEDSS ≥ 3 450
D. 52 TOne_sample_One_Patient_kFold_PCA_highestEDSS ≥ 3 450
D.5280ne_sample_One_Patient_kFold_highestEDSS ≥ 3 451
D.5290ne_sample_One_Patient_LOO_PCA_highestEDSS ≥ 3 451
D.5300ne_sample_One_Patient_LOO_highestEDSS ≥ 3 451
D.531One_sample_One_Patient_Traditional_PCA_first2EDSS ≥ 3 452
D.5320ne_sample_One_Patient_Traditional_first2EDSS ≥ 3 452
D.5330ne_sample_One_Patient_kFold_PCA_first2EDSS ≥ 3 452
D.534One_sample_One_Patient_kFold_first2EDSS ≥ 3 453
D.5350ne_sample_One_Patient_LOO_PCA_first2EDSS ≥ 3 453
D.5360ne_sample_One_Patient_LOO_first2EDSS ≥ 3 453
E. 1 The AUC performance method, regarding the attributed points ac- cording to the value of the lowest stat value. 455
E. 2 The classification performance measures method, regarding the atributed points according to the value of the lowest stat value. 455
E. 3 The partition method multiplication factor, used in the stats perfor- mance method and in the AUC performance method. 456
E. 4 Results for the MRI Total Head database using the AUC performance method. 456
E. 5 Results for the One sample one lesion database using the AUC per- formance method. 457
E. 6 Results for the One sample one lesion database with lesion ensem- bling using the AUC performance method. 457
E. 7 Results for the One sample one study database using the AUC per- formance method. 458
E. 8 Results for the One sample one patient database using the AUC per- formance method. 458
E. 9 Results for the Static database with the standard procedure using the AUC performance method. 459
E. 10 Results for the Static database with the investigation procedure using the AUC performance method. 459
E. 11 Results for the Groundzero database with the standard procedure using the AUC performance method. 459
E. 12 Results for the Groundzero database with the investigation procedure using the AUC performance method. 460
E. 13 Results for the Momentaneous database with the standard procedure using the AUC performance method. 460
E. 14 Results for the Momentaneous database with the investigation pro- cedure using the AUC performance method. 461
E. 15 Results for the Momentaneous with past database with the standard procedure using the AUC performance method. 461
E. 16 Results for the Momentaneous with past database with the investiga- tion procedure using the AUC performance method. 462
E. 17 Results for the MRI Total Head database using the stats performance method 462
E. 18 Results for the One sample one lesion database using the stats per- formance method. 463
E. 19 Results for the One sample one lesion database with lesion ensem- bling using the stats performance method. 463
E. 20 Results for the One sample one study database using the stats per- formance method 464
E. 21 Results for the One sample one patient database using the stats per- formance method 464
E. 22 Results for the Static database with the standard procedure using the stats performance method. 465
E. 23 Results for the Static database with the investigation procedure using the stats performance method. 465
E. 24 Results for the Groundzero database with the standard procedure using the stats performance method. 465
E. 25 Results for the Groundzero database with the investigation procedure using the stats performance method. 466
E. 26 Results for the Momentaneous database with the standard procedure using the stats performance method. 466
E. 27 Results for the Momentaneous database with the investigation pro- cedure using the stats performance method. 467
E. 28 Results for the Momentaneous with past database with the standard procedure using the stats performance method. 467
E. 29 Results for the Momentaneous with past database with the investiga- tion procedure using the stats performance method 468

Acronyms

ANIFC Associação Nacional de Imagiologia Funcional Cerebral
AUC Area Under the Curve
CGMM Constrained Gaussian Mixture Model
CHUC Coimbra Hospital and University Centre
CIS Clinically Isolated Syndrome
CNN Convolutional Neural Network
CNS Central Nervous System
CSF Cerebrospinal Fluid
CT Computed Tomography
DIS Dissemination in Space
DIT Dissemination in Time
EDSS Expanded Disability Status
EM Expectation-Maximization
FCM Fuzzy C-Means
FFT Fast Fourier Transform
FLAIR T_2-weighted-Fluid_Attenuated Inversion Recovery
FS Functional System
GA Glatiramer Acetate
GLCM Gray Level Co-Ocurrence Matrix
GLM Generalized Linear Model
GM Grey Matter
HUC Hospitais da Universidade de Coimbra
ICBM International Consortium for Brain Mapping
ICNAS Instituto de Ciências Nucleares Aplicadas à Saúde
IIH Intensity Inhomogeneity
IIT Illinois Institute of Tecnhology
IM Intramuscular

IMI unidade de Ressonância Magnética in Centro Hospitalar de Leiria
IV Intravenous
KNN K-Nearest Neighbors
LDA Linear Discriminant Analysis
LONI Laboratory of Neuro Imaging
LOO Leave One Out
LPBA40 LONI Probabilistic Brain Atlas
MICCAI Medical Image Computing and Computer Assisted Intervention
MP Methylprednisolone
MRI Magnetic Resonance Imaging
mRMR minimum Redundancy Maximum Relevance
MS Multiple Sclerosis
NMO Neuromyelitis Optica
NPV Negative Predictive Value
PCA Principal Component Analysis
PD Proton Density-Weight MRI
PP Primary Progressive
PPV Predictive Positive Value
PR Progressive Relapsing
QDA Quadratic Discriminant Analysis
RAD HUC'S Radiology Service
RBF Radial Basis Function
ROC Receiver Operating Characteristic
RR Relapsing Remitting
SP Secondary Progressive
SPM Statistical Parametric Mapping
SVM Support Vector Machine
T1 T_1 weighted MRI
T2 T_2 weighted MRI
TOADS Topology preserving Anatomical Segmentation
VEP Visual Evoked Potential
WM White Matter

Index

List of Figures xi
List of Tables xxi
1 Introduction 1
1.1 Context 1
1.2 Motivation 2
1.3 Main goals 3
1.4 Structure 3
2 Multiple Sclerosis 5
2.1 Brief historical context 5
2.2 Epidemiology 6
2.3 Diagnosis 7
2.4 Types 8
2.5 Therapy 11
2.6 Expanded Disability Status Scale (EDSS) 14
3 Magnetic Resonance Imaging 17
3.1 Physical principles 17
3.2 Interaction with tissue 19
3.3 Imaging 21
3.3.1 Spin echo pulse Sequence 22
3.3.2 Weighted imaging 23
3.3.3 Contrast agents 24
3.4 Multiple Sclerosis findings on MRI 25
4 State of the Art 27
4.1 General aspects of MRI in MS 28
4.2 Preprocessing steps 29
4.2.1 Registration 30
4.2.2 Brain extraction 32
4.2.3 Intensity inhomogeneity (IIH) correction and noise reduction 32
4.2.4 Intensity normalization 34
4.3 MRI segmentation 34
4.3.1 Feature extraction 34
4.3.2 Tissue segmentation 35
4.3.3 Lesion-only segmentation 36
4.3.4 Learning based on atlas 37
4.3.5 Supervised learning 38
4.3.5.1 Learning based on manual segmentation 39
4.3.6 Unsupervised learning 40
4.4 Synthetic images 41
4.5 Clinical images 42
4.5.1 The ground truth 42
4.6 MICCAI 2008 Segmentation Workshop 43
4.6.1 The data 43
4.6.2 Performance evaluation 44
4.6.3 Teams performance 44
4.7 Patient's clinical history 45
4.8 Point of situation 46
5 Dataset description 49
5.1 Clinical database 50
5.1.1 Identification 51
5.1.2 Visits 52
5.1.3 Relapses 53
5.2 Image database 54
6 Experimental procedure 63
6.1 Clinical database 63
6.1.1 Databases construction 67
6.2 Image database 69
6.2.1 Image processing 73
6.2.1.1 SRI24 Atlas 73
6.2.1.2 Sequence selection and image resizing 81
6.2.1.3 Top and bottom head delimitation 82
6.2.1.4 Slice atlas/sequence assignment 85
6.2.1.5 Image registration 87
6.2.1.6 MRI total head database 88
6.2.1.7 Manual lesion labeling 89
6.2.2 Image processing results 91
6.2.2.1 Top and bottom head limitation 92
6.2.2.2 Slice atlas/sequence assignment 109
6.2.2.3 Image registration 121
6.2.3 Feature extraction 130
6.2.3.1 MRI Total Head database 130
6.2.3.2 Manual lesion labeling 136
6.3 Feature selection 141
6.4 Supervised learning 145
6.4.1 Partition methods 146
6.4.2 Dimensionality reduction 147
6.4.3 Classification algorithms 148
6.4.4 Evaluation metrics 149
7 Results 151
7.1 Performance metric analysis 152
7.1.1 AUC performance method analysis 153
7.1.1.1 Image databases 153
7.1.1.2 Clinical databases 154
7.1.1.3 Performance ensembling 154
7.1.2 Stats performance method analysis 155
7.1.2.1 Image databases 155
7.1.2.2 Clinical databases 156
7.1.2.3 Performance ensembling 157
7.1.3 Best scored labels 158
7.1.3.1 HighestEDSS 158
7.1.3.2 MediumEDSS 160
7.1.3.3 NextEDSS 162
7.1.4 Clinical feature analysis 163
7.1.4.1 In highestEDSS label 164
7.1.4.2 In mediumEDSS label 166
7.1.4.3 In nextEDSS label 169
7.1.4.4 Data interpretation 171
7.1.5 Image features 174
7.1.5.1 In highestEDSS label 174
7.1.5.2 In mediumEDSS label 176
7.1.5.3 In nextEDSS label 177
7.1.5.4 Data interpretation 178
8 Discussion 181
8.1 State of the Art 182
8.2 Dataset description 184
8.3 Experimental procedure 185
8.4 Results 188
8.5 Exploratory activity 191
9 Conclusion 199
Bibliography 203
Appendices 213
A Appendix I - EDSS grading Functional Systems 215
B Appendix II - Clinical databases description 219
C Appendix III - Experimental procedure 245
D Appendix IV - Machine learning results 261
E Appendix V - Results interpretation 455

Chapter 1

Introduction

1.1 Context

Multiple Sclerosis (MS) is a disabling neurological condition with a tremendous variability concerning clinical manifestations. It is considered to be an autoimmune disease of the Nervous Central System (CNS), characterized by its attacks directed against myelin, causing its loss. Myelin is a substance that surrounds the axon of neurons by forming an electrically insulating layer. It is very important for the CNS since it ables a faster communication between neurons. This condition is believed to be triggered by environmental agents acting in genetically susceptible people.

Currently, brain and spinal cord magnetic resonance imaging (MRI), cerebrospinal fluid (CSF) analysis and evoked potential tests are used as main diagnostic tools. However, it would be desirable to reduce the number of diagnostic tests. The MRI technique has as goal the visualization of brain and spinal cord lesions. The CSF liquid is obtained through a lumbar puncture, which is a very effective method in terms of diagnosis but very invasive and painful. Besides, it is tested for the presence of oligoclonal bands which are not specific for MS. Evoked potential tests are relatively easy to perform and a good complement. However, the most important diagnostic tools are clearly MRI and CSF $[2,6,18]$.

Although disease impact varies between patients, it is possible to list several probable symptoms due to lesions caused by the already mentioned myelin loss and axonal injury: optic lesions and sensitivity decrease, pain, weakness and sensory loss in the arms/legs, fatigue, memory problems and depression, among others.

Since these lesions are a pathological hallmark of MS, commonly seen in the
spinal cord, optic nerves, brainstem/cerebellum and periventricular white matter, imaging techniques are a very interesting approach when it comes to diagnosis and predicting prognosis. Actually, studies reveal a correlation between lesion dissemination in space and time on MRI and MS. This factor is one of the most important in the McDonald Criteria, which is the gold standard diagnosis method used by physicians [16].

This thesis aims to evaluate and predict the MS progression via pattern recognition techniques in the patient's medical and treatment history and in the patient's MRI history. In order to do this, image processing and segmentation tools for lesion detection and region examination will also be an interesting focus in this project. Another interesting focus is related to the source of the used database since it belongs to Coimbra Hospital and University Centre (CHUC) and since it was curated by the author for this dissertation.

1.2 Motivation

Evaluating and predicting the progression is not an easy task, due to its influence in the entire CNS and to the heterogeneous clinical manifestations. This can be comproved by the lack of efficient computational algorithms based on clinical and lesion information regarding this condition. Besides, there is not a gold standard method for segmentation and lesion detection for MS in brain MRI yet, despite the large quantity of investigation done in this area [6].

In order to gain effectiveness and to reduce time, the development of a standard acquisition protocol with an automatic trustful procedure would be an important key to assist a physician in the moment of a diagnosis and/or prognosis. Besides, some MS manifestations can take more time to be diagnosed or to develop into more severe scenarios, which makes interesting the possibility to predict sooner these cases.

The possibility to analyze and ensemble data from different sources, such as MRI image segmentation, temporal analysis and pattern recognition techniques via clinical and treatment history, also constitutes a very strong reason for the development of this work, since the last two have not been explored as much as the first one. Since lumbar puncture is an evasive and a very painful method but effective in the diagnosis, it is desirable to build an equally efficient algorithm mainly based on minimally invasive procedures.

1.3 Main goals

In order to fully evaluate and predict this disease progression, some goals must be accomplished:

1. Construction of a robust algorithm against different metrics, enabling a quantification of the disease progress through time and space lesion dissemination and several clinical events.
2. Application of several heuristics, biologic and clinical rules into a mathematical complex model, providing a total MS context and clear interpretation in order to get an automatic and assisted diagnosis and prognosis.
3. A clinical view with a clear interpretation of the obtained results in order to open new investigation scenarios regarding new variables and other factors.
Summing up, there is the need to provide an effective procedure for all case scenarios, standardizing a valid, efficient and trustful framework, able to ensemble different natures of data.

1.4 Structure

This dissertation is divided into nine chapters. Chapter 1 presents a brief discussion and context of MS, explaining the complexity and current situation regarding diagnosis and progression algorithms. The motivation of working in this condition is also addressed according to the previously mentioned situation. The main goals desirable to be achieved are also presented. At last, the thesis structure is presented.

Chapter 2 provides the basic and necessary knowledge of MS from a medical point of view in order to address this dissertation. It is explained its complexity, exploring several aspects like the existing subtypes of clinical manifestations, diagnosis and treatment. The historical context is also approached throughout the chapter in order to understand its medical evolution.

Chapter 3 provides the fundamentals of the MRI techniques.
Chapter 4 summarizes the current situation regarding computational algorithms using MRI lesions and clinical information. MS lesion detection and segmentation is also deepened since it is an area of development. Some other natures of work like different information ensemble or different pattern recognition approaches are also mentioned.

Chapter 5 presents a full description on CHUC's database, describing the way
the data was collected and also the way some related problems were addressed.
Chapter 6 describes all the experimental work performed on the database, moreover how feature engineering and data manipulation was used to construct more specific databases. Feature selection and machine learning techniques procedures are presented. The MRI images processing is also described.

Chapter 7 presents not only the obtained results of the machine learning algorithms,

Chapter 8 provides a detailed discussion about all thesis aspects and about the obtained results. A deeper data exploration regarding the results output is also performed.

Chapter 9 highlights the critical points found in chapter 8, along with a reflection about all the dissertation work and with future perspectives.

Chapter 2

Multiple Sclerosis

MS is the most common disabling neurological condition that affects young adults (from 20 to 45 years of age). Having a high social burden, its course is highly heterogeneous and unpredictable [2]. It is characterized by initial episodes of reversible neurological problems often followed by progressive neurological deterioration over time [19]. Like some other autoimmune diseases, it is more common in females.

2.1 Brief historical context

Jean Martin Charcot, a French neurologist, was the first to describe MS, in 1868. The observation of an unusual accumulation of inflammatory cells in a perivascular distribution within the brain and spinal cord white matter in patients suffering from episodes of neurologic dysfunction led to the term sclerose en plaques disseminées. Some years after, in 1948, it was observed an abnormal increase in the quantity of oligoclonal immunoglobulin in the Cerebrospinal Fluid (CSF) of patients with MS, evidencing its inflammatory character.

Currently, this condition is known to be associated with not only multiple sharply demarcated plaques in the CNS white matter, especially in periventricular regions, brain stem and spinal cord but also with substantial axonal injury and myelin loss [20]. Although its cause is unknown, a combination of genetic susceptibility and non-genetic events seem to be involved, resulting in a recurrent series of self-sustaining attacks against the CNS [19].

2.2 Epidemiology

There are temporal and geographic variations when it comes to MS risk, where the migrating activity is an influent factor. Despite the considerable number of potential causal factors studied, no single one was successfully identified as related to this condition [1].

MS is a rarer condition in tropical areas when compared to temperate ones. Regions where it is visible a higher prevalence include northern Europe, northern USA, Canada, southern Australia and New Zealand, while medium prevalence includes regions like southern Europe, northern Australia and the southern USA. Asia and South America seem to be low prevalence regions. Due to some high variations over very small geographic distances, it seems that ethnicity (and therefore genetics) and socioeconomic structure of a country constitute also an interesting demographic factor, as visible in Figure 2.1 [1, 21].

Figure 2.1: Worldwide prevalence of MS per 100000 population, 2004 [1].

The prevalence seems to increase with repeated surveys in the same areas over time. These results can be a consequence of better access to medical facilities, advances taken in this condition (eg: MRI techniques and the revised McDonald criteria) and an increase in life expectancy time [21]. As previously mentioned, migration activity seems to be an influent factor, where differences between migrants and their offspring reflect an early timing of environmental exposure or an inevitable phenotypical selection process. In fact, early studies claim that a critical age for migration activity regarding MS seems to be around 15 years [22].

The family relationship was also studied, providing some useful epidemiological insights. It seems to exist a relationship between family and MS. Monozygotic twins have higher concordance than dizygotic. In fact, some studies reveal a certain proportionality between the degree of kinship and the influence of this condition
[22, 21].

2.3 Diagnosis

There is important to denote the nonexistence of a single diagnostic test. The diagnosis must be based on a series of evidence, like the existence of lesion dissemination in time and space. The lesion dissemination can be seen in time and space through MRI $[16,19]$.

The gold standard criteria for this disease is the McDonald Criteria, which is directed for an early diagnosis with a high degree of both specificity and sensitivity. With this, it is expected a better counseling and an earlier treatment. Better results are achieved with a typical Caucasian adult as these criteria were built paying attention to higher prevalence regions.

In order to understand the diagnosis, it remains very important to do a correct interpretation of the symptoms and signs of a patient, like an attack/relapse, defined as an acute inflammatory demyelinating event in the CNS, current or historical, lasting at least 24 hours with an absence of fever or infection [16].

Regarding the criteria for the Dissemination in Space (DIS), it can be claimed its occurrence when a patient has at least one T2 Lesion in at least two of the following CNS areas: periventricular, juxtacortical, infratentorial and spinal cord. With respect to Dissemination in Time (DIT), its occurrence can be proved by the presence of a new T2 and/or gadolinium-enhancing lesion on a follow-up scan. However, it is possible to identify a dissemination without a follow-up MRI, if a simultaneous presence of gadolinium-enhancing and nonenhancing lesions can be identified [16].

Clinical findings in the CSF, such as an abnormal increase in the immunoglobulin G or other oligoclonal bands, strongly suggest inflammatory demyelinating lesions [16].

In order to understand the full diagnosis mechanism, it is presented in Table 2.1 from the 2010 McDonald Diagnostic Criteria [16].

As a result, if these criteria are satisfied and any other possible diagnoses are excluded, the patient is diagnosed with MS. If the criteria are not fully satisfied but there is suspicious of this disease, the diagnosis is "possible MS". The final result can also deny this condition if another diagnosis arises during the evaluation, resulting in a better explanation according to the clinical findings $[16,19]$.

Since the 2010 McDonald Criteria focused on differential diagnosis in order to avoid a treatment misguidance, special attention must be paid to Neuromyelitis

Table 2.1: The 2010 McDonald Criteria for Diagnosis of MS [16].

Clinical Presentation	Additional Criteria Needed for MS diagnosis
At least 2 attacks; objective clinical evidence of at least 2 lesions or objective clinical evidence of 1 lesion with reasonable historical evidence of a prior attack	None
At least 2 attacks; objective clinical evidence of 1 lesion	DIS; Await a further clinical attack implicating a different CNS site
1 attack; objective clinical evidence of at least 2 lesions	DIT; Await a second clinical attack
1 attack; objective clinical evidence of 1 lesion (CIS)	DIS and DIT; Await a second clinical attack
Insidious neurological progression suggestive of MS (PP)	1 year of disease progression plus 2 of the following: 1. Evidence for DIS in the brain base on $>1 \mathrm{~T} 2$ lesions in a MS characteristic region 2. Evidence for DIS in the spinal cord based on $>2 \mathrm{~T} 2$ lesions in the cord

Optica (NMO) and related disorders. This phenotype was agreed to be separated from typical MS due to the shown poor response against therapy [16].

2.4 Types

Since the course of this condition can have a high variability, several patterns of clinical manifestation were grouped. Thus, in 1996, the first standardized definitions were discussed and implemented, as shown below [23, 19, 2, 24]:

1. Relapsing-remitting (RR): the most common form, affecting 85% of MS patients, is characterized by a series of relapses followed by periods of neurological improvement and/or symptoms absence, known as remission periods.
2. Secondary progressive (SP): may be gradually developed in patients who suffer from relapsing-remitting type. With secondary progressive type, the patient's neurological condition continues to worsen with or without remission periods.
3. Primary progressive (PP): a less common form, affecting 10% of MS patients, associated with a gradual decrease in the patient's neurological condition without the occurrence of relapses or remission periods. It's also characterized by its higher resistance against treatment.
4. Progressive-relapsing (PR) : A rarer form, affecting this way less than 5% of the patients. It is progressive from the start accompanied by relapses and worsening symptoms, without any remission periods $[2,24]$.
In Figure 2.2, these clinical definitions are shown according to the respective
patient's Expanded Disability Status Scale (EDSS) score over time, it is possible to have a clearer vision about the existing differences between each MS course. The EDSS scale is described at the end of the present chapter.

Figure 2.2: Types of MS courses (from the top to the bottom): Relapsing and remitting (green), Relapsing secondary progressive (red), Non-relapsing secondary progressive (blue), Primary progressive (purple) and Progressive-relapsing (black), according to the 1996 MS clinical course descriptions [2]. Greater the EDSS, worser is the patient's neurological capacity.

In 2011, a Committee constituted by the European Committee for Treatment and Research in MS, the National Multiple Sclerosis Society and other experts like the MS Phenotype Group, started to review the 1996 clinical course descriptions, whose main goal was to improve the phenotype description by including an updated clinical terminology, MRI and other techniques [24].

It was decided that the basic features of 1996 would be maintained with some improvements and clarifications. Clinically Isolated Syndrome (CIS) was one of the terms included, which means the first clinical presentation of a disease with characteristics of an inflammatory demyelination. However, as it can be seen in Figure 2.3, a CIS may not correspond afterward to MS. In order to do so, the criteria of dissemination in time must also be accomplished.

Since it is possible to observe dissemination in time and in space with a single MRI scan, the problem of having a high number of patients categorized with CIS is diminished.

Activity was also introduced in this revision, where it is recommended to assess the disease activity by clinical and brain imaging criteria in an annual way. For progressive subtypes this is recommended, however, there was no consensus about the optimal assessment frequency in terms of imaging. Thus, as an example, a patient is

Figure 2.3: The differences observed between the 1996 and the 2013 MS phenotype descriptions in the Relapsing remitting course [3].
considered to have an RR active phenotype when a new gadolinium-enhancing lesion is present in a current MRI. If no signs of relapses, gadolinium-enhancing activity or newly enlarging T2 lesions during assessment period are present, the clinical course is considered as a non-active one.

Progression is another factor needing to be addressed, determining whether or not there is clinical evidence of this phenomenon. This progression is independent of relapses. It is characteristic of patients suffering from a progressive disease course. It was suggested that this should be determined with an annual period as progression is considered to have a non-uniform course. As a consequence, a disease course is considered to have progression if significant changes are observed over a period of a year. This way, as an example, a patient with SP course with a gradual worsening of its neurological condition and with gadolinium-enhancing lesions present on MRI is classified as an active SP with progression. In Figure 2.4, it is possible to see the different MS course phenotypes according to progression and an active or not form.

This way, in 2013 the new revision of the MS clinical courses was published, concluding the studies started in 2011. An MS course of a new patient starts with an active or a non-active CIS, where this factor is determined by clinical relapses and/or MRI activity, specifically by the existence of contrast-enhancing lesions or enlarging T2 lesions over an annual period. If there is a subsequent series of events that fulfill the current MS diagnostic criteria, the disease course becomes an RR one (this course can also be active or non-active).

Figure 2.4: The differences observed between the 1996 and the 2013 MS phenotype descriptions in the courses with progression symptoms [3].

If a progressive accumulation of disability is observed from the onset, the PP arises while SP is characterized by a progressive accumulation of disability after an initial relapsing course instead [24].

There are also the terms benign and malignant, which are not a standard pattern of MS clinical manifestation, but rather indicators of the severity over time. As a result, benign is not a common form, known by few attacks and little or no disability after 20 years, while malignant is known for frequent disabling attacks along with an incomplete recovery, resulting in a fast progressive development. Their criteria are not precise, since different experts tend to use varying the EDSS rating to define these indicators [2, 24, 25].

2.5 Therapy

The underlying pathologic mechanism of this condition as an inflammatory CNS disease was critical for the existing classes of immunomodulating options responsible for the course of MS. Studies with each drug separately showed common findings, such as a reduced number of relapses and a lower severity associated, a reduced development of new inflammation areas as shown in MRI and a clear delay in the short-term disease progression. In contrast to the variability of therapies for MS, a curing agent yet remains to be found [19, 20, 23].

Normally, either an induction or an escalation approach is taken as the first step for a patient's treatment. An escalation approach consists of a first-line medication followed by a second line if an unsatisfactory response is shown to the first drug. The first line consists of a drug with high safety and a moderate efficacy, while the second is more effective and less safe. An induction approach starts immediately with a second-line treatment, which is intended for patients with frequent and severe relapses. Normally, the decision of which approach to take is made taking special attention to the first symptoms. The commonest one is the escalation form [26, 25].

Regarding acute relapses (Table 2.2), they are treated with a short course, from 3 to 5 days with a corticosteroid, typically intravenous (IV) methylprednisolone (MP) or dexamethasone due to its rapid onset of action and to its low adverse effects. Besides MP or dexamethasone, there is also the possibility to use oral prednisolone over a period of 2 to 3 weeks. In a presence of a patient whose acute exacerbations do not react to steroid treatment, plasma exchange may be an effective alternative. Long-term use of these drugs is not recommended since is unclear its improvement in the long-term course of MS [23, 25].

Table 2.2: Most common treatments regarding acute relapses.

Name	Duration	Administration
Methylprednisolone	3-5 Days	IV
Dexamethasone	3-5 Days	IV
Prednisolone	2-3 Weeks	Oral
Plasma Exchange	NA	IV

Avonex, Rebif (Interferon beta-1a), Betaseron and Extavia (Interferon beta1b), are Beta Interferon drugs, produced naturally by the human body through the secretion of immune cells whose function is the regulation of the immune system. This class of drugs, used in first-line treatments, has been shown to reduce the relapse frequency, reducing the appearance of inflammatory brain MRI lesions by 50% to 80%. Side effects such as flu-like symptoms, liver, thyroid function abnormalities and depression are recurrent within patients having this drug. While Betaseron and Rebif are administered subcutaneously, Avonex is taken via intramuscular (IM) injection [2, 19, 23, 26].

Known as Copaxone, Glatiramer Acetate (GA) is a first-line treatment drug. Side effects differ from the ones found with Beta Interferon treatment, where transient skin reactions and tightness of the chest and facial flushing are the most common. Unlike Beta Interferon, GA is not associated with liver and thyroid abnormalities. Its administration occurs subcutaneously $[2,19,23,26]$.

Tysabri (Natalizumab) when used, is administered via IV once a month, reducing the relapse frequency. Its major adverse effect is the progressive multifocal leukoencephalopathy, known as a viral brain infection leading to death or to a severe disability condition. Longer the administration period, greater the risk of this adverse effect. Natalizumab is considered a second line treatment drug.

In the past, Novantrone (Mitoxantrone) was used to treat some forms of cancer, since it has the ability to suppress the activity of certain parts of the immune system, like T cells, B cells and macrophages. As MS is an autoimmune disease, these were responsible for leading attack against myelin. This drug should be used in patients whose episodes of relapses and remission are very frequent or whose MS course takes the secondary progressive form, which makes it a second or third line treatment. Posterior side effects of Mitoxantrone include cardiotoxicity, myelosuppression and leukemia, where the last one a rare situation. It is administered via IV infusion [2, 19, 26].

As seen, there is a great variety of drugs with the objective of MS treatment. The most common are mentioned and summarized above in Table 2.3, adapted from [19].

Table 2.3: Most common drugs used in MS therapy.

Name	Line of Treatment	Administration
Avonex	First line	IM
Rebif (Interferon beta-1a)	First line	Subcutaneously
Betaseron	First line	Subcutaneously
Extavia (Interferon beta-1b)	First line	Subcutaneously
Copaxone (Glatiramer acetate)	First Line	Subcutaneously
Tecfidera (Dimethyl fumarate)	First Line	Oral
Aubagio (Teriflunomide)	First Line	Oral
Gilenya (Fingolimod)	Second or Third Line	Oral
Tysabri (Natalizumab)	Second or Third Line	IV
Novantrone (Mitoxantrone)	Second or Third Line	IV

All mentioned drugs so far have been approved by FDA. However, the use of others for MS treatment is not a rare event, like the case of Azathioprine (Imuran),

Methotrexate or Mycophenolate Mofetil (CellCept) [19].
It is possible to verify a certain difficulty when it comes to choosing an appropriate treatment for the primary progressive form as it carries the worst prognosis. Thus, there is not a consensual treatment in these situations. Thus, it is often the use of off-label treatment drugs [26].

2.6 Expanded Disability Status Scale (EDSS)

EDSS is a proposed method by Kurtzke [17] to evaluate the neurological condition of an MS patient through time. With this scale, a grade is given according to the state of eight Functional Systems (FS): Pyramidal, Cerebellar, Brain Stem, Sensory, Bowel \& Bladder, Visual, Cerebral or Mental and Other or Miscellaneous. Higher the EDSS scale value, worst is the neurological condition of the patient. Figure 2.5 brings an intuitive and quick idea about its meaning. Basically, the EDSS will provide a scale ranging from 0 (normal) to 10 (death by MS). Levels from 1.0 to 4.5 correspond to patients still having a high degree of ambulatory ability. Patients with levels from 5.0 to 9.5 have a severe loss of ambulatory ability [17, 4].

Figure 2.5: An intuitive graphical view on the EDSS scale [4].

All FS except the Miscellaneous one are graded on a scale from 0 (normal condition) to 5 or 6 , corresponding to the worst system condition. The Other or Miscellaneous system is binary, where grade 0 corresponds to normal and 1 to some abnormality present. The FS Scale tables are present in section A.

Thus, the EDSS scale [17] is briefly enumerated below:

1. EDSS 0. Normal neurologic exam; Cerebral grade 1 acceptable.
2. EDSS 1.0. No disability, minimal signs in one FS; Cerebral grade 1 excluded.
3. EDSS 1.5. No disability, minimal signs in more than one FS; Cerebral grade 1 excluded.
4. EDSS 2.0. Minimal disability in one FS; one FS grade 2, others 0 or 1.
5. EDSS 2.5. Minimal disability in two FS; two FS grade 2, other 0 or 1.
6. EDSS 3.0. Moderate disability in one FS; one FS grade 2, others 0 or 1.
7. EDSS 3.5. Fully ambulatory but with moderate disability in one FS or mild disability in three or four FS though fully ambulatory; one FS grade 3 and others 0 or 1 or three/four FS grade 2, others 0 or 1 .
8. EDSS 4.0. Fully ambulatory without aid, self-sufficient. Able to walk 500 meters without aid or rest; one FS grade 4, others 0 or 1 or other combinations exceeding the previous limits.
9. EDSS 4.5. Fully ambulatory without aid, self-sufficient much of the day. Able to walk 300 meters without aid or rest; one FS grade 4, others 0 or 1 or other combinations exceeding the previous limits.
10. EDSS 5.0. Ambulatory without aid or rest for about 200 meters. Disability severe enough to impair full daily activities; one FS grade 5 and others 0 or 1 or other combinations exceeding the previous limits for EDSS 4.0.
11. EDSS 5.5. Ambulatory without aid or rest for about 100 meters. Disability severe enough to preclude full daily activities; one FS grade 5 and others 0 or 1 or other combinations exceeding step 4.0.
12. EDSS 6.0. Intermittent or unilateral constant assistance required to walk about 100 meters with or without resting; usually combinations with two FS having grade $3+$.
13. EDSS 6.5. Constant bilateral assistance required to walk about 20 meters without resting; usually combinations with more than two FS having more grade $3+$.
14. EDSS 7.0. Unable to walk beyond about 5 meters even with aid, essentially restricted to wheelchair; combinations with more than one FS with grade 4+, very rarely pyramidal grade 5 alone.
15. EDSS 7.5. Unable to take more than a few steps, restricted to wheelchair may need aid in transfer and may require a motorized wheelchair; combinations with more than one FS grade 4+.
16. EDSS 8.0. Essentially restricted to bed much of the day but may be out of bed itself much of the day. Retains many self-care functions; usually FS grade 4+ in several systems.
17. EDSS 8.5. Essentially restricted to bed much of the day, has some effective
use of arms and retains some self-care functions; usually FS grade 4+ in several systems.
18. EDSS 9.0. Helpless bed patient; can communicate and eat; usually combinations where most systems have grade $4+$.
19. EDSS 9.5. Totally helpless bed patient; almost all systems have grade 4+.
20. EDSS 10. Death to MS.

As it can be seen, the EDSS scale can be very helpful in evaluating neurologically a patient, since it was specifically designed for the MS disease progression. However, one must not forget that although its specific criteria, there is present some subjectivity. Sometimes it is hard to distinguish some criteria between the steps, happening the same in each FS scale. Nevertheless, it is the most used system for neurological condition evaluation in MS patients.

Chapter 3

Magnetic Resonance Imaging

MRI is a non-ionizing technique, with a good spatial resolution and excellent soft tissue contrast used to obtain anatomical images of human body parts containing hydrogen. In general, its temporal resolution is slower when compared with ultrasound techniques or with a CT, having scans lasting from three to ten minutes. As a result, an MRI exam is more susceptible to the patient's motion. In essence, it measures the magnetic properties of tissues by studying the behavior of atomic nuclei with spin and magnetic moment different than zero, through the application of external magnetic fields $[27,3]$.

3.1 Physical principles

MRI principles can be explained according to Quantum Mechanics, due to the intrinsic property of quantization: the measurement of a physical variable will result in a multiple of a unitary amount named quantum. Thus, when measuring an electron energy, its possible values are restricted to:

$$
E=-m \gamma \hbar B_{0}, \text { with } m=-j,-j+1, \ldots, j-1,1,
$$

The quantum is $\gamma \hbar B_{0}$, where B_{0} is the magnetic field intensity, γ the gyromagnetic ratio (ratio of its magnetic moment to its angular moment) and \hbar the Planck constant. The constant j is the spin quantum number, where a given nucleus is characterized by a unique spin value. This value will depend on the number of protons and neutrons present in the nucleus.

Focusing now on the proton (nucleus of ${ }_{1}^{1} \mathrm{H}$) example for being the simplest case ($\mathrm{j}=1 / 2$): logically, the spin value of the nuclei must be non-null, existing a
special preference for the proton, not only for having $\mathrm{j}=1 / 2$ but also because of its abundance in the human body. In the absence of an external magnetic field, the total magnetization is null due to the random precessing direction. When applied an external magnetic field, the precession takes a parallel direction, as visible in Figure 3.1.

Figure 3.1: The differences between the precessing direction in the presence (left) and absence (right) of an external magnetic field [3].

This way, there are two possible quantized energy levels:

$$
\begin{gathered}
E(\text { spin }-u p)=-\frac{1}{2} \gamma \hbar B_{0}, \\
E(\text { spin }- \text { down })=+\frac{1}{2} \gamma \hbar B_{0} .
\end{gathered}
$$

This phenomenon is known as the Zeeman effect, where the "spin-up" level has the lowest energy, being this way preferentially occupied. As a consequence, the total magnetization is no longer null. Since there is a random distribution of a large number of spins with transverse components in all directions of the $x-y$ plane, its sum will be zero, making the total magnetization parallel to the external magnetic field direction (3.2). The net magnetization vector \vec{M} in equilibrium will be:

$$
\vec{M}=\left(0,0, M_{0}\right) .
$$

The net magnetization \vec{M}_{0} in a volume element (voxel) is proportional to its spin quantity. Since direct measurement of the magnitude M_{0} is not possible, there is the need to disturb this equilibrium in order to measure the transverse component of the magnetization ($\mathrm{x}-\mathrm{y}$ component). To do this by interacting with the nuclei magnetic fields, the resonance condition through the transmission of photons with the frequency obtained by the Larmor equation must be achieved:

$$
\omega_{0}=\gamma B_{0}, \text { for a photon with energy } E=\hbar \omega_{0} .
$$

According to this, if $B_{0}=1 T$ (Tesla), for example, the Larmor frequency is approximately 42.6 MHz for the proton case, since $\gamma \hbar B_{0}$ is the needed energy for a spin on the "spin-up" (lowest energy) state transit to the "spin-down" (highest energy) one [27, 3].

Figure 3.2: Since there is a random distribution of a large number of spins with transverse components in all directions of the x-y plane, its sum will be zero, making the total magnetization parallel to the external magnetic field direction [3].

3.2 Interaction with tissue

As mentioned, the dynamic equilibrium can be disturbed via transmission of photons with the appropriate energy, as described by the Larmor Equation. Taking the proton case and the previous example: in the case of a magnetic field of 1 T , this can be realized with an electromagnetic wave at a frequency of 42.6 MHz , as calculated.

This electromagnetic wave is named as RF wave. It is generated by sending alternate currents in two coils (Figure 3.3) along the x and y -axis of the coordinate system. Since its energy is equal to the energy difference between the two proton possible states, spins can change its occupancy level, resulting in a disturbance leading to the appearance of a longitudinal component of the net magnetization vector \vec{M}. This field forces all individual spins to rotate in phase. This phenomenon is known as phase coherence. [27].

The application of this RF field is not enough to produce the MRI image: it is necessary to apply flip angles. Two of the most important flips are the $90^{\text {a }}$ pulse, bringing the \vec{M} along the y-axis and the 180° pulse, rotating \vec{M} to the negative z-axis.

With the 90° pulse, both energy levels will have the same occupancy of spins, having no longitudinal magnetization, that is:

$$
\vec{M}=\left(0, M_{0}, 0\right) .
$$

With the 180° pulse, also named as inversion pulse, the majority of spins occupy the highest energy level:

$$
\vec{M}=\left(0,0,-M_{0}\right) .
$$

When the RF magnetic field is turned off, the system will return to its dynamic

Figure 3.3: The basic design of the magnetic field gradient coils used. The arrows indicate the direction of the current flow, where each coil is constituted by multiple turns of wire and responsible for the production of external magnetic fields [3].
equilibrium, making the transverse component return to zero (Spin-Spin Relaxation) and the longitudinal component to return to M_{0} (Spin-Lattice Relaxation) [27, 28].

Physically, each spin vector has a different magnetic influence due to the surrounding molecules and atoms and its structures. A proton from a $\mathrm{H}_{2} \mathrm{O}$ will have a different influence from a proton belonging to a Methyl group. The spin-rotation will be influenced by this factor, resulting in a loss of phase coherence and, as a consequence, a decrease in the transverse component. This phase coherence can be conceptualized as the maintenance of a constant phase relationship between all the magnetic moments. Thus, even if the magnetic field B_{0} was homogeneous, the spin precession would be different due to the magnetic fields of the surrounding environment. This process can be modeled as a first-order model, where the time constant of the exponential decay is called the spin-spin relaxation time $\left(T_{2}\right)$:

$$
\vec{M}_{t r}(t)=\vec{M}_{t r}(0) e^{-\frac{t}{T_{2}}}
$$

In fact, the loss of coherence does not only arise from the surroundings, but also from spatial variations in the magnetic field within the body. These variations have two different origin sources: the impossibility to design a perfectly uniform magnetic field over the entire body and the local variations in the magnetic field due to the different tissues. The last one is more pronounced at boundaries, especially air/tissue and bone/tissue [27, 3].
T_{2} is the time needed for the transverse component to reach 37% of its maximum value [28].

Spin-lattice relaxation is the energy phenomenon responsible for the return of the longitudinal component of the net magnetization vector to M_{0}. Its physical
basis involves the loss of proton energy to the surrounding lattice, leading to an increase of molecule vibrations that will be transformed into heat. This process can be modeled as a first-order model, where the time constant of the exponential growth is called the spin-lattice relaxation time $\left(T_{1}\right)$. It is the time needed for the transverse magnetization to recover 63% of its maximum :

$$
\vec{M}_{z}(t)=\vec{M}_{0}\left(1-e^{\frac{-t}{T_{1}}}\right) .
$$

Thus, both T_{1} and T_{2} are properties that depend intrinsically on the tissue type. On every tissue, the first one is always larger when compared to the second [27, 3, 28].

3.3 Imaging

Most clinical studies acquire a series of slices of the anatomical region of interest. where each slice is characterized by a defined orientation and thickness. As a consequence, the slice selection is realized through the adequate choice of the RF field frequency and through the adequate magnetic field gradient.

To construct an image it is necessary a mechanism able to distinguish several points from a certain tissue. This problem was handled through the application of a magnetic field gradient. By applying a gradient and not a static field, the magnetic intensity will change evenly according to the propagation direction. As a consequence, spins from different slices (perpendicular regions to the propagation direction) will precess at different frequencies. This is the reason why slice selection is made by requiring the adequate choice of the RF field frequency and magnetic field gradient, existing this way a certain freedom for the possibility to capture images of the human body by different angles (Figure 3.4). By changing the axis of the magnetic fields and changing the axis of the magnetic fields gradients it is possible the existence of different slice orientations.

The thickness (T) of each slice can be determined with:

$$
T=\frac{2 \triangle \omega_{s}}{\gamma G_{\text {slice }}} .
$$

The slice thickness can be increased by the decrease of the magnetic field gradient or by the increase of the RF bandwidth. The ideal pulse shape for the RF is the rectangular one, having the same incidence angle applied to all protons. Besides this, its Fourier transform is a sinc function, having more frequency precision since the frequency spectrum is narrower.

Another magnetic field is applied, transversal to the other two (in the x -axis). Through the application of two perpendicular gradients, there is an encoding phase and a frequency phase. This way, it is possible to choose automatically a point to

Figure 3.4: By selecting an adequate RF pulse and the respective magnetic gradient fields, it is possible to capture images from different angles, having therefore coronal, axial and sagital slice orientations [3].
represent a certain volume (voxel) $[3,28]$.

3.3.1 Spin echo pulse Sequence

The two-dimensional Fourier transform Spin Echo imaging is the most used technique in MRI due to the existing pulse sequence flexibility and to the existing freedom when it comes to choosing the weight influence of either T_{1} or T_{2} relaxation times.

The 2D Spin Echo pulse sequence is constituted by the following steps:

1. Application of a slice selection gradient G_{z} with a 90° and a $180^{\circ} \mathrm{RF}$ pulse. The first pulse is responsible for the creation of the precess transverse magnetization, while the second one is responsible for removing most of the already mentioned artifacts present in T_{2} (non-magnetic homogeneities). Each pulse will be applied simultaneously with G_{z}.
2. Application of the phase-encoding gradient G_{y}.
3. Application of the frequency-encoding gradient G_{x} and signal measuring.

The acquired raw data constitutes a 256×256 matrix since 256 rows are measured by applying 256 phase-encoding gradients and 256 samples per row are taken during a measurement $[27,3]$.

3.3.2 Weighted imaging

The intensity of an axial image acquired through the spin-echo sequence is given by:

$$
\left.I(x, y) \propto \rho(x, y)\left(1-e^{\frac{-T R}{T_{1}}}\right)\right) e^{\frac{-T E}{T_{2}}},
$$

where $I(x, y)$ is the pixel intensity at each point ($\mathrm{x}, \mathrm{y})$ and $\rho(x, y)$ the number of points at each point, known as proton density. As it can be seen, the first order models of spin-spin relaxation and spin-lattice relaxation are present, representing T_{2} and T_{1} weighting: $1-e^{\frac{-T R}{T_{1}}}$ represents the extent to which the image intensity is influenced by the different T_{1} tissue values and $e^{\frac{-T E}{T_{2}}}$ the extent to which the image intensity is influenced by the different T_{2} tissue values.

TR and TE values are also chosen according to the target tissues, with the goal of providing the biggest contrast possible (Figure 3.5). For example, if TR is similar to the tissue T_{1} values, the image has a bigger T_{1}-weight. If the chosen TR is much greater than any T_{1} value, it will not be possible to distinguish any tissue with this term. A similar relationship is applied to TE and T_{2}-weighting [3].

Figure 3.5: The effect of the TR (left) and TE (right) time parameters on the relative signal intensity from CSF, white and gray matter in the brain [3].

This way, images can be acquired with proton density-weight, with T_{1} weight or T_{2} weight. To achieve a proton density-weight, one must choose a TR much longer than tissue T_{1} and a TE much smaller than the tissue T_{2}, producing this way contrast mainly based on the number of protons. To acquire a T_{1} weighted image, one must choose short TE and TR values, while to acquire a T_{2} weighted image one must use long TE and TR values [3, 28]. T_{1} weighted images are often called only T1, just like T_{1} weighted images (T2) and Proton Density-Weight (PDw or PD).

There is also a common weighted image named T2-weighted-Fluid_Attenuated

Inversion Recovery (FLAIR). Basically, the sequences use very long TR and TE values, removing the CSF from the resulting images. Figure 3.6 is illustrative of the image differences while using different TR and TE ponderations.

Figure 3.6: Different weighted images, from left to right: T1, T2 and FLAIR [5].

3.3.3 Contrast agents

In most of the clinical diagnoses, there is a contrast/noise ratio high enough on the acquired images to distinguish healthy tissue from pathological one. However, in some situations such as the detection of very small lesions, MRI contrast agents can be used to increase the contrast. There are two classes of MRI contrast agents: paramagnetic agents and superparamagnetic, also named as ferromagnetic agents.

Paramagnetic contrast agents are based on metal ions due to a large number of unpaired electrons, shortening the tissue T_{1} relaxation time. Since the magnetic moment of an electron is up to 660 times as big as the magnetic moment of the proton, these unpaired electrons will result in a big contrast due to the significant increase in the magnetic moment. Gadolinium is especially used due to its seven unpaired electrons $\left(G d^{3+}\right)$.

Since metal ions are toxic to the human body, there is the need to bind it to a chelate, working as a chemical cage. The detected signal does not have a direct source of the contrast agent, but rather its biodistribution through the effect on the relaxation times of the neighboring water molecules.

The most commonly used paramagnetic contrast agent is gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA).

Superparamagnetic MRI contrast agents consist of small magnetic particles containing iron, having high magnetic moments due to the cooperative alignment of the electron spins. These work by causing inhomogeneities in the local magnetic
field, causing a reduction in signal intensity in the tissues, shortening its $T_{2}[3]$.

3.4 Multiple Sclerosis findings on MRI

A patient suffering from MS will present characteristic abnormalities in the brain: T1-hypointense and T2-hyperintense lesions. These abnormalities are often found in a periventricular distribution. However, it's not uncommon to find these white matter lesions in other locations, such as the subcortical white matter, optic nerves, corpus callosum, internal capsule, cerebellar peduncles, brainstem and spinal cord.

With the administration of a contrast agent, some MS lesions are enhanced, depending on its age and activity. After 2 months of its activity period, the contrast will no longer exist on these. Therefore, contrast agents are useful for evaluating DIT.

When comparing T2 with T1 scans (Figure 3.7), it is visible a discrepancy between the size of the same lesion, reflecting different properties/components related to edema, inflammation and demyelination. Despite the fact that seems to exist a causal relation between lesions and symptoms, there is a poor correlation between MRI findings and clinical events, since it is common to find frequent enhancing lesions in clinically stable patients.

Figure 3.7: Example of a juxtacortical lesion (red). From left to right: PD, T1, T2, and FLAIR images of an MS patient [6].

For a proper detection of demyelinating lesions in the white matter, the MRI images must provide a high tissue/lesion and a high CSF/lesion ratios, permitting an immediate detection [29].

Chapter 4

State of the Art

There is already a considerable quantity of research work regarding segmentation of MS lesions in MRI scans. In fact, it is arguably the most common approach for computer-aided diagnosis of MS despite the possibility to ensemble different sources of data or despite the possibility to explore the disease progression via pattern recognition using several metrics, such as EDSS or MS type.

Lesion detection can be performed in three different ways: manually, semiautomatically and automatically. While a manual detection is time-consuming and very susceptible to variability as it depends on the evaluator's experience (usually a physician), automatic methods tend to be completely reproducible, enabling the efficient use and processing of a large quantity of data. A semi-automatic method is a compromise between these two methods, where an algorithm helps the expert by reducing lesion segmentation time and the associated variability. Most of the proposed semiautomatic methods allow the manual detection of existing lesions, whereas the rest of the process is conducted automatically, through region growing algorithms, either intensity gradients or even fuzzy connectivity. Despite the fact that several automatic algorithms have been proposed through time, none has been employed at a wide scale, since satisfactory results have not been accomplished yet [7, 30].

As a consequence of not existing a good validation framework and because only a limited number of methods are freely available to the community, there is a lack of comparative studies of different methods. To the best of our knowledge, the MS Lesion Segmentation Challenge at the Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2008 [31] is the exception to this scenario.

Both physicians and existing methods concentrate their efforts in detecting White Matter (WM) Lesions. However, it is currently known that a demyelination process occurs in parallel in the Grey Matter (GM) with MS patients, where these lesions are not easily detected as they do not alter the tissue properties of T2 and T1 in a sufficient way to be displayed in the respective MRI scans [7, 30].

The core lesion detection ideas are based on the physical properties demonstrated in Chapter 3: possible lesions as brighter regions when compared to the surrounding WM in T2 and FLAIR scans, and as darker regions in the T1 scans. These commonly have an ovoid or round shape, occurring in most cases in the periventricular WM, juxtacortical and infratentorial regions. Lesions can also be described into several groups, regarding the contrast enhancement, T2 hyperintensity and T 1 hypointensity, since their appearance in different modalities has a considerable heterogeneity as well (Figure 4.1).

Figure 4.1: Example of the existing variability when it comes to MS Lesions. From left to right: FLAIR, PD, T1 Gd-enhanced, T1 and T2. Blue: enhancing lesions, green: T2 lesions, red: black holes. Best viewed in color. [7].

Inflammation and atrophy are translated into diffuse regions in MRI, named as visible-abnormal (WM or GM) as these processes can appear outside of lesions whose borders are clearly defined (focal lesions). Thus, lesions can also be described according to its focalization and contrast, existing diffuse regions with visible-abnormal WM and clearly focal lesions (Figure 4.2)[7].

4.1 General aspects of MRI in MS

Since the intensity is the main key for detecting regions as lesions, there is a certain absence of precise criteria. Defining an ad hoc threshold can be an almost impossible task due to the MRI acquisitions variability. Even on the same exam, the same threshold would not be effective as the lesion intensity depends on the modality and quantity of partial volume. Usually, when looking at different scans, the neuroradiologist has the need for abstracting his/her mind in order to combine

Figure 4.2: Difference between focal lesions (red) and diffuse regions of visible-abnormal WM (green). From left to right: FLAIR, PD and T1. [7].
the different 2D sequences (coronal, sagittal or transversal) for reproducing a 3D structure of the brain.

Another problem that may arise is the occurrence of non-MS lesions related to other pathologies such as vascular ones or progressive multifocal leukoencephalopathy lesions, for example. The slice thickness and the magnet strength are both factors that will also influence directly the number of detected lesions [7, 32].

In MS lesion segmentation, detection is not the only challenge: once a lesion is identified, its boundaries must be determined, even on unclear boundary cases, such as fuzzy borders due to inflammation and atrophy processes. This delineation is not a straightforward task since the partial volume can have a distortion effect, by permitting that several tissue types contribute to the image intensity in the border voxels.

In manual segmentation, this is also a harder task for diffuse lesions than its detection, since the human visual system works better with local contrast than with absolute intensities [7].

4.2 Preprocessing steps

In the majority of automatic methods, there are a lot of processing steps which are applied before the segmentation procedure. These might be a fundamental key to the outcome.

Nonetheless, a great effort has been made to unravel these problems through the use of open source software specially developed for MRI brain processing. One of the most common is FreeSurfer: an open source suite of tools that aims for the analysis of neuroimaging data in order to quantify the functional, connectional and structural properties of the human brain. This tool is being constantly improved and extended, resulting in a very wide use for brain MRI analysis in MS patients.

SPM (Statistical Parametric Mapping), which was designed to work with MATLAB, is also a very common software regarding MRI analysis and processing.

Currently, these two software, among others, provide a series of possibilities for an easy and fast preprocessing, like skull stripping, bias field correction, gray and white matter segmentation, labeling of regions on the cortical surface and subcortical brain structures, motion correction among other functionalities [33].

4.2.1 Registration

Registration can be defined as the process of transforming different sets of data into the same coordinate system. Since MRI is susceptible to the patient's motion, it is desirable to correct this motion in the different scans for a better tissue position correlation.

Despite the existence of different methods and techniques, most of them work in an iterative way. Figure 4.3 presents an accurate scheme regarding the main idea behind the overall process of registration. An initial set of transformation parameters is applied to the floating image (the image about to be registered in a referenced one). The output of the transformed floating image is compared to the referenced by assessing the similarity between them, using a metric. If the similarity is high enough (defined through a series of conditions or through a defined threshold), the registration will be concluded. Otherwise, the transformation parameters will be iteratively updated and applied again to the floating image, and so on until the stoppage criteria are satisfied [34, 8].

In this procedure, it also might be interesting to make an alignment with an atlas, in order to provide an estimation probability map of the brain tissues. As some atlases are widely distributed, it offers the possibility to build reproducible methods more easily [7].

Given two image data sets, registration will require the determination of a transformation matrix T applied afterward to the floating image. Thus, the moving image will be aligned with the reference one. This transformation is achieved through maximizing similarity criteria. The two basic types of transformations are rigid body, where only translations and/or rotations are performed and non-rigid body, which includes more complex transformations, such as severe deformations. Figure 4.4 shows an example of a non-rigid body transformation, which was implemented by a series of rigid registrations performed in local neighborhoods (as the ones shown in the box on the left). By moving the box to different locations, a rigid body transformation is applied [8].

Figure 4.3: Scheme of a general image registration algorithm [8].

Some of the similarity measures can be through the surface and edge measures, minimizing the average distance between the correspondent ones in the given images, or through voxel intensity measures. Principal axes, the center of mass and orientation can also be determined in order to align the floating image. Variance can also play an important role, where the goal is to minimize it or to use crosscorrelation for similarity measures. Another popular technique is the maximization of mutual information through the use of the joint intensity histogram [8].

Most MRI registration methods use conventional optimization techniques with a multiresolution strategy in order to avoid unnecessary computational-heavy processing. Usually, these optimization techniques are based on a local search with a use of a smooth cost function in order to limit the searching region. As seen in [35], Jenkinson et al. showed that even the commonly used multiresolution local optimization methods can be substantially affected by local minima. However, there are also strategies using global optimization [34].

Sajja et al. [36] used a technique that combines a genetic algorithm in continuous space with a dividing rectangle [34]. The method was based on the combination of the GACS (Genetic Algorithm in Continuous Space) algorithm and with the DIRECT (DIviding RECTangle) optimization.

Klein et al. [37] performed the largest evaluation of nonlinear deformation

Figure 4.4: An example of a non-rigid transformation, which was implemented by a series of rigid registrations performed in local neighborhoods (as the ones shown in the box on the left) [8].
algorithms applied to brain MRI registration in 2008. One of the most significant findings was the fact that the relative performances of the compared registration methods do not have a significant difference when a different labeling protocol or a different patient is chosen. This way, it is possible to generalize a registration method to a new population with a different protocol without affecting performance.

4.2.2 Brain extraction

Brain extraction can be defined as the selection process of the slices corresponding to the brain, confining the segmentation activity to these ones. This can be done since MS lesions in MRI brain scans can only be found in the brain itself [7].

Klein et al. [37] extracted each brain from its whole-head image through the construction of a mask from the corresponding manually labeled image.

Inside brain extraction, it is possible to go deeper by applying skull stripping (Figure 4.5). This process eliminates fat, skull, skin and other non-brain tissues that may cause misclassification and whose presence is not necessary for the clinical context. Brain Extraction Tool (BET), Brain Surface Extractor (BSE), Minneapolis Consensus Strip (McStrip) and Statistical Parametric Mapping (SPM2) are examples of this process [38]. Boesen et al [9] made a quantitative comparison of these which revealed that McStrip consistently outperformed the others.

4.2.3 Intensity inhomogeneity (IIH) correction and noise reduction

IIH correction and noise reduction have as goal the simplification of the segmentation procedure by smoothly reducing variations of intensity of the existing

Figure 4.5: An example of brain extraction activity with skull stripping. A quantitative study of brain extraction by Boesen et al [9], example with subject B, dataset 3.
tissues. This can be useful to eliminate the inhomogeneities of the applied magnetic fields applied during the MRI exams, which are responsible for assigning different intensities to the same tissues [7].

From the point of view of the independence of these artifacts regarding the real image, it is common to simplify the situation by defining the intensity of each Voxel Y as:

$$
Y=\alpha X+\beta
$$

where X is the real intensity, α a constant bias factor causing intensity inhomogeneities and β additive noise, which is usually assumed to follow a Gaussian distribution [38].

Another path is through the use of atlases. By using statistical atlases, a prior probability of each voxel belonging to a certain tissue is obtained. By looking at the strategies based on atlas information, it is possible to distinguish between the use of both statistical and topological atlases. Thus, according to the situation, it is possible to identify inhomogeneities and noise cases by having deeper knowledge about the tissues [38].

Shiee et al. [12] took advantage of an atlas application by introducing modifications to Topology preserving Anatomical Segmentation (TOADS) algorithm in order to generalize the model for brain images with MS since this was meant for healthy brain images. By using a statistical and a topological atlas, a fuzzy segmentation was performed based on a model including inhomogeneities and noise artifacts.

According to Hou [39], the most popular models to describe the IIH field are the low frequency, the hypersurface and the statistical one. Some of the most appealing methods are the filter-based due to its speed and easy implementation. These can have a great variability as there is the possibility to be adaptative, surface fitting and to conjugate with other methods/techniques, like segmentation, registration,
feature extraction or clustering activity.

4.2.4 Intensity normalization

Intensity normalization is the step where all voxels are transformed into the same intensity range which allows a fair comparison between different acquisitions. Contrast, signal, contrast-to-noise ratios are non-uniform factors that can have a wide range of values even when using similar sequences with similar parameters. Thus, it is important to note that MRI imaging is not a quantitative imaging technique: it enhances the property differences between the existing tissues. Since these are not related to any medical or clinical factor, intensity normalization will not result in an information loss [7].

For instance, Sajja et al. [36] and Datta et al. [40] performed histogram normalization. Authors that use atlas approaches already have intensity normalization built-in in their methods, like Leemput et al. [41]. Wu et al. [42] took advantage of the Expectation-Maximization (EM) algorithm by using a component responsible for compensating intra-scan and inter-scan intensity variations. The EM segmenter has a component that compensates for intra and inter-scan intensity inhomogeneities and normalizes the observed scan intensities.

4.3 MRI segmentation

As already mentioned, MRI segmentation algorithms constitute the majority of investigation work regarding MS assisted diagnosis. However, these can have different functions and ideas behind their common goal: lesion detection. Some try to segment all the brain into different tissues, like bone, GM, WM, CSF. Other approaches consist in directly finding lesions while others consist in using machine learning mechanisms. More complex techniques ensemble all these ideas.

4.3.1 Feature extraction

Feature extraction consists in the extraction of characteristics that are discriminant to a given situation, making possible to distinguish types of lesions, to distinguish lesion from a non-lesion or to distinguish several tissues. For logical reasons (as it is the main feature physicians intuitively use), the voxel intensity in the different sequences constitutes a group of classical features.

However, voxel intensity may not be sufficient to solve this problem, as there is a considerable need to integrate more information from different natures, like
spatial and anatomical derived from previously studied atlas. Coordinate systems and distance metrics for the lesion locations are also often used. These features may not be raw, that is, directly extracted but actually an output of an operation [7].

4.3.2 Tissue segmentation

One common approach is a global tissue segmentation (Figure 4.6), where an algorithm has a wide sense of the existing structures in the brain.

Freifeld et al. [10] proposed the use of the Constrained Gaussian Mixture Model (CGMM) [43] to capture the brain structures spacial layout. This model was used as a probabilistic one based on a mixture of multiple spatially oriented Gaussians per tissue. The intensity of a certain tissue was considered a global parameter, constrained to be the same value for the entire set of Gaussians related to the same type. Like many other mentioned approaches, MS lesions were identified as outlier Gaussian components and grouped to form a new class. With a probability-based curve evolution technique, lesion boundary is redefined.

Figure 4.6: An example of tissue segmentation into CSF, GM, WM, and Lesions. Segmentation results of different algorithms on BrainWeb data, slice 105 from [10]. Blue: CSF; Green: GM; Yellow: WM; Red: Lesions. (a)-(c) 3% noise, (d)-(f) 9% noise, (g) and (h) ground truth. Best viewwed in color.

Garcia-Lorenzo et al. [44] proposed a combination of two different segmentation methods for an improved performance. Through the Mean Shift technique, a local segmentation is performed and through a variant of the Expectation-Maximization algorithm, this segmentation is refined by classifying these previously regions into normal appearing brain tissues or into lesions [38].

Another approach is texture analysis, which seems to be an underdeveloped field in MS lesion segmentation when compared to other techniques. As brain structures have patterns, Zhang et al. [45] evaluated these interpixel relationships using first and second-order statistical and spectral approaches. Techniques like Fourier and wavelet transforms are already common in lesion segmentation of other neurodegenerative diseases, such as Alzheimer or Parkinson.

4.3.3 Lesion-only segmentation

Lesion-only segmentation can be seen as a segmentation with more specific criteria, in a way that only lesions fulfill them (Figure 4.7). For instance, Bedell et al. [46] did a post-processing technique based on automatic image segmentation which identified successfully all lesions larger than a certain dimension ($5 \mathrm{~mm}^{3}$), producing no false-positives or false-negatives above the mentioned volume.

Figure 4.7: An example of lesion-only segmentation, in this case a segmentation of contrast-enhanced lesions performed by He et al [11]. The identified lesions are shown in the upper row.

Since contrast-enhanced lesions are clearly visible, it is possible to build stricter criteria for its identification regarding other structures. Likewise, He et al [11] proposed a segmentation of contrast-enhanced MS lesions. Its procedure relied on an adaptive local segmentation based on morphological operators. These worked in both lesion and non-lesions enhancements. Datta et al. [40] also took this approach by using morphological operators as well.

Lesion-only segmentation can also be seen as an after-step on tissue segmentation, when another condition is required for a certain structure to be considered a lesion, like Boudraa et al. [47] proposal. An initial segmentation with Fuzzy C-Means algorithm was performed to extract an external CSF/lesions mask preceded by a local image contrast enhancement. The created mask was afterward
superimposed on the corresponding data set containing only CSF structures and lesions. The clustering algorithm was applied a second time in order to remove false negatives under the base of a deeper anatomical knowledge due to the previous superimposition.

Saha et al. [48] proposed an alternative clustering technique for lesion segmentation, through the use of a fuzzy genetic clustering where a point symmetry base distance constitutes the membership value.

4.3.4 Learning based on atlas

Like previously mentioned, topological (Figure 4.8) and statistical atlases constitute a very common approach since they provide a trustful source of spatial information. Atlas consists in a detailed mapping of the brain, through the study of brain MRI of different patients.

Figure 4.8: An example of a topological atlas in axial, coronal and saggital views, present in [12].

A statistical one provides the prior probability of each voxel belonging to a certain tissue, previously built from a set of manual segmentations. Besides, in a creation of an atlas, the structure boundaries take into account not only anatomical variations but also smooth probability deviations. This way, besides classification, an atlas can also be very helpful when dealing with noise or inhomogeneities.

The greatest disadvantage with approaches based on atlas is the alignment with the dataset, existing the need for a good registration process [38].

These methods are particularly common in providing a healthy model to contrast with non-healthy ones, like Leemput et al. [49] by proposing and intensitybased tissue classification based on a normal brain model which detects MS lesions as outliers that were not well explained by the created model. Due to the atlas properties, inhomogeneities, noise and other artifacts were taken into account providing this way a built-in preprocessing by incorporating its contextual information by conjugating it with a Markov Random Field. The brain model was created by extracting information from the atlas with an EM algorithm [42].

Some authors applied classic classification algorithms like Wu et al. [50] by using k -Nearest Neighbour (kNN). This classifier was combined with an atlas segmentation in order to create masks that only extracted white matter, discarding this way lesions outside the masks. Besides classification methods, other authors like Shiee et al. [12] decided to apply clustering algorithms by conjugating a statistical and a topological atlas with the fuzzy C-means (FCM) algorithm.

The principle applied by Leemput et al. [49] was also reproduced by many authors. For instance, Bricq et al. [50] performed tissue classification with base on the Trimmed Likelihood Estimation of a mixture model with neighborhood information encoded by a hidden Markov chain while lesions were also detected as outliers. Prastawa and Gerig [51] segmented lesions as spatially coherent objects and avoid spurious lesion detected, making the algorithm more robust to noise. Thus, classification was performed on regions (connected groups of voxels) where each vocal location is assigned to a region according to criteria. In this case, the objective is to maximize the relative entropy or the Kullback-Leibler divergence between neighboring regions. Tomas and Warfield [52] used a similar principle by creating a distance based map and applied afterward a Bayes classification.

Besides clustering, other unsupervised methods were also applied on intermediate steps, like Kroon et al. [53] by using Principal Component Analysis (PCA). The proposed method was based on a local feature vector containing neighborhood voxel intensities and histogram information working as a filter and probabilistic atlas information to exclude false lesions in unlikely areas. PCA technique was applied with a log-likelihood ratio to classify each voxel. The atlas information also worked as a preprocessing tool.

As seen, atlas-based methods can be used to segment both tissues and lesions and to create structure models. The most significant drawback of these approaches is the adaptation of the atlas to the clinical images, requiring a very precise registration, which can be a very hard task when dealing with patients suffering severe atrophy, large number of lesions, among other factors [38].

4.3.5 Supervised learning

There is a certain freedom in this part, regarding the level of granularity desired to be achieved. It can be a case of a binary labeling (lesion or not lesion) or a multiclass problem regarding different types of lesions, contrast agents enhancement, activity or other factors.

With a supervised learning procedure, there is an inherent learning process
regarding the definition of lesions, using previously labeled examples. The most common labeled examples are performed by experts, providing a better reliability. These constitute a training database, where its info is used aftwerward to classify other data. Special attention needs to be paid to the database since variability is a very import factor due to the heterogeneity of this condition.

A standard pipeline for these methods consists of the following steps: normalizing the data, preprocessing, feature generation, learning or classifier training and post processing [7].

4.3.5.1 Learning based on manual segmentation

These approaches are mainly characterized by feature extraction and training in order to do the segmentation task. Likewise, Goldberg-Zimring et al. [54] proposed an automatic detection system constituted by three main stages: detection and contouring of all hyperintense signal regions, partial elimination of false positive segments using properties like size, shape index and anatomical location and Artificial Neuronal Network training in order to perform segmentation. Anbeek et al. [55] performed a kNN classification by using voxel location and signal intensity information, determining this way the probability of existing a lesion in a certain voxel. By applying a threshold on these probabilities, lesion segmentation was obtained.

Although this may be a classic approach from image processing/machine learning point of view, there are several possibilities. Sajja et al. [36] decided to use segmentation through the use of a Parzen windows classifier for CSF and lesions and to use contextual information through hidden Markov random field expectationmaximization algorithm to reduce misguided classifications by segmenting gray and white matter. A Parzen window classifier can be very interesting, as it is a nonparametric method. Thus, it assumes that lesions and CSF do not follow any known distribution.

Another alternative approach was the one taken by Morra et al. [56], by proposing an automatic subcortical segmentation using an auto-context model with a series of AdaBoost weak learners and with a probabilistic boosting tree. Each weak learner consisted of a feature, a threshold and a boolean stating the feature value regarding the threshold.

Decision trees are also a common technique among supervised learning methods since a random decision forest achieves a better generalization by growing an ensemble of many independent decision trees, resembling the existing variability in MS. Likewise, Geremia et al. [57] presented a discriminative random decision forest framework which provided a voxel-wise probabilistic classification of the volume
using spatial context and symmetry concepts.
Cerasa et al [58] presented a genetic algorithm evolving a Cellular Neural Network capable of segmenting lesions directly from 2-dimensional images as in these techniques (Cellular Neural Networks) it is possible to provide local spatial information since neighboring cells interact with each other.

Convolutional Neural Networks (CNN) is a technique whose interest has renewed in last few years in computer vision. Problems in brain imaging, especially in tissue segmentation and brain tumor segmentation have gained special interest but MS lesion segmentation is an exception since only a few number of CNN methods have been introduced so far. Besides, MS MRI databases tend to be small, constituted by a reduced number of patients which can be a significant drawback since CNN require a significant volume of data due to overfitting issues. In order to overcome this problem, authors like Valverde et al. [59] propose a simple architecture constituted by a cascade of two 3D patch-wise convolutional CNN. The first network was trained to be more sensitive regarding lesion detection while the second is specialized in detecting false detections from the first.

Brosh et al. [60] proposed a CNN encoder with shortcut connections. The architecture consists of two interconnected pathways, a convolutional one to learn increasingly more abstract and higher-level features, and a deconvolutional for predicting the final result at the voxel level.

Thus, supervised learning methods from manual segmentation make possible the integration of expert knowledge into the process. By proceeding to an initial segmentation, it is possible to have a significant variety of classifiers since a classical machine learning approach can be taken. One of the most significant disadvantages of these methods is the dependability of the acquisition protocol as features and properties extracted are based on the raw image characteristics. Thus, if one decides to apply supervised learning in lesion segmentation, a robust preprocessing is desirable for a good performance [38].

4.3.6 Unsupervised learning

Unsupervised learning methods work in an independent way of labels, where most procedures consist of clustering techniques by discriminating clusters of voxels into certain groups (clusters). These groups, according to the used features and to the existing tissues, usually represent either white matter, gray matter, CSF or lesions.

The information basis is the same as the one from the supervised learning. It
is also very often the use of atlas to reduce acquisition variability and to correlate with spatial and anatomical information.

The main advantage of using unsupervised learning is the possibility of using simultaneously the information of the whole brain, and not only chosen voxels (lesions) like in supervised learning. This way, data related to volume and properties of normal appearing healthy tissues can be used with a deeper meaning.

With unsupervised learning, especially clustering methods, it is easy to create a system able to identify not only clusters but also outliers. This was also an interesting approach: the creation of an unsupervised learning model of a healthy human brain, whereas consequence, lesions would be considered outliers [7].

4.4 Synthetic images

BrainWeb [13, 61] is a wildly known online database of synthetic MRI images. Originally, a healthy subject was scanned 20 times to obtain an image with a very high signal to noise ratio in order to create a healthy anatomical phantom. In this anatomical image, each voxel belongs to a specific tissue class, constituting an advantage when it comes to discrimination goals as there is less freedom to uncertainty. There are also available MS patients scans, through the implementation of real manually segmented lesions from patients with a different lesion load level. Currently, 20 more healthy subjects are available.

With these models, it is possible to create T1w, T2w and PDw (Figure 4.9) imaging sequences with the pretended MR parameters and with artifact parameters as well.

Figure 4.9: An example of MRI sequences generated by BrainWeb [13], from left to right: T1,T2, PD.

This online database, due to its small quantity of information, can be useful not to create new algorithms but to test new ones created with different datasets. Its significant advantage is the existing availability since it is free for the community,
transforming it into a comparison and evaluation reference in MS lesion segmentation as a validation database.

However, 21 brain models constitute a reduced number to represent a database with significant variability, having also the disadvantage of not covering all the lesion load levels. Its limitation to $\mathrm{T} 1 \mathrm{w}, \mathrm{T} 2 \mathrm{w}$ and PDw also constitutes a serious limitation, since most MRI protocols also perform FLAIR and Gd-enhanced T1 sequences. As the MS patient model was constructed by mixing a healthy brain along with manually segmented lesions from real patients, the final output is still far from the existing reality [7].

4.5 Clinical images

Since the main objective of MS lesion segmentation is the application to the clinical context, its use and validation with real clinical images is an absolute necessity. As already mentioned, variability is one of the properties that any database must possess, especially in problems with this level of heterogeneity.

As there is not a large availability of MS databases and since it is very unlikely to have a reasonable quantity of equal features with the same procedures, there is a significant lack of comparative studies and a lack of cross information.

Another considerable limitation to comparison activity is the differences between the employed MR protocols since most authors do not often provide a detailed description of the used ones in MRI acquisitions. As a consequence, there is a certain isotropy when it comes to creating a standard pipeline for MRI acquisitions.

4.5.1 The ground truth

This can be a significant limitation to the segmentation task in the validation level. Although a ground truth is not necessary for reproducibility, it is strictly necessary for measuring the performance of the algorithms.

Even though manual segmentation is the gold standard, its outputs will still have a considerable variability from expert to expert. With this case, a good alternative is the comparison of segmentations performed by different experts. There is always the possibility to use a semiautomatic method for this scenario.

The STAPLE method [62] is also used to define a ground truth, which is a very interesting approach. It is considered an EM algorithm for simultaneous truth and performance by considering a collection of segmentations and computing a probabilistic estimate of the true segmentation. It also computes a measure of the perfor-
mance level represented by each segmentation. This procedure was the one used in the MICCAI Challenge 2008 [31].

4.6 MICCAI 2008 Segmentation Workshop

The MICCAI 2008 Segmentation Workshop is one of the references in MS lesion segmentation. It is the most relevant and the largest comparative study. Several authors compared different algorithms on the same dataset. It represents the first public database available to the community for white matter lesion segmentation in MS. Besides that, using this database is the fairest way to compare new algorithms to the ones applied to this workshop, having a trustful comparison [7, 31].

Likewise, it was clearly noted that the initials steps of Bosc et al. [63], up to change detection, were considered since then the standard preprocessing steps for time-series data despite a recent relative death of work in automated segmentation time-series [31]. The proposed method uses an association of a nonlinear intensity normalization method with statistical hypothesis test methods to provide reliable change detection. In order to reduce the false rate detection, multimodal data is optionally exploited. A receiver operating characteristics (ROC) analysis was used.

4.6.1 The data

The validation dataset was constituted by MRI T1w, T2w, FLAIR and diffusionweighted scans from two different sites where the acquisition protocol was not provided. There was no other clinical information about the patients. This dataset was divided into a training set, off-site test set, and on-site test set.

All data suffered the same preprocessing: the baseline (first time-point) MPRAGE was inhomogeneity-corrected using N4, skull-stripped, dura stripped followed by a second N4 inhomogeneity correction and suffered a rigid body registration to a 1 mm isotropic MNI template [31]. Thus, teams preprocessing methods were less effective, especially the denoising ones. As noise is characterized by an independence from voxel to voxel, denoising methods are based on that principle. With the application of previous preprocessing methods, this assumption is no longer valid.This way, this decision had positive and negative aspects.

The training set had as the goal the adaptation/creation of each algorithm to the given sequences, consisting of 20 images along with a manual segmentation. The off-site test data set consisting of 25 images without a manual segmentation. Authors had to process the given data and send afterward the segmentation results.

The on-site test was provided during the workshop in order to test the performance within a time window, testing other factors besides results performance [7].

4.6.2 Performance evaluation

The performance of the authors' algorithms was measured by different metrics, such as the difference of total volumes divided by the reference volume, the distance between borders of the reference volume and the segmentation, true positives ratio, dice overlap, volume correlation, average symmetric surface distance, false positives ratio, among others. These metrics were all normalized ranging from 0 to 100 , where 100 was the maximum score and 90 the typical score of an expert in MS. This way, it is possible to verify if there are theoretically automatic algorithms performing better than an expert.

Two experts performed manual segmentation on the given datasets, obtaining a significative variability when it came to the final output. The two only agreed on 68% of the lesions, limiting the maximum accuracy, since the procedures will not agree with both segmentations simultaneously [7, 31].

4.6.3 Teams performance

Team IIT Madras won the contest while Team PVG One and Team IMI ranked second and third, respectively. The final score difference between these three was minimal, existing an equal interest in these three algorithms. Despite they are all based on machine learning principles and in supervised learning, their steps are significantly different. Team IIT Madras modeled a voxel-wise classifier with multichannel 3D patches of MRI volumes as input by training a CNN and segmented lesions by combined the probabilities obtained through the created CNN. Team PVG One built a hierarchical framework for segmenting not lesions but also healthy tissues through the use of MRF combined with multi-atlas, using a random forest classifier for a region level refinement. Team IMI also used random forest methods, however, the procedure is different than the one from PVG One as it is given a lot more emphasis on decision trees.

Carass et al.[31], when looking back at the performances and rankings, had some surprises regarding some techniques and algorithms, such as a low performance of CNN in some teams and a low performance of Lesion-TOADS. Nonetheless, the authors attributed an uncertainty about the reasons that might explain the low performance, pointing out that it could be due, in part, to the differences in the training data and choices about how much and which portion of the available data
was used to train the method. However, it may simply reflect a basic instability in machine learning based approaches.

4.7 Patient's clinical history

There is some investigation work regarding other patient aspects of MS. However, it is worth denoting that there is a large difference between the existing volume of work between MRI lesion segmentation and other MS fields. Most of the existing studies are related with correlations and statistical tests, which makes rare its direct machine learning application. This particular reason may have to do with the difficulty in reaching a trustful and large enough database, whose variability reaches all case scenarios.

Another motive is directly connected to the fact that MRI is the most used tool by the physician to perform the diagnosis along with the general concept of relapse, as it can be demonstrated by the McDonald diagnosis criteria [16] and by the 2013 revisions of MS clinical course [24].

Treatment can be a difficult decision for the physician to take as there are several options with different characteristics regarding the condition, especially in the early stages where MS subtype is unknown and there is no information about how the severity is going to evolve. These two problems were addressed by Rodrígues et al [64] by proposing multidimensional Bayesian network classifiers to model and exploit the existing relations. However, this study recurred not only to clinical information but also to DNA.

Feinstein et al. [65] performed a longitudinal study taking into account MRI, psychometric and psychiatric abnormalities, showing an emphasized lack of close correlation between psychiatric morbidity and extent of measurable brain pathology. Boiko et al. [66] enhanced a significant correlation between the number of relapses during the first year of disease and its course. This way, a high frequency of relapses is proportionally correlated with disability.
A. Brex et al. [67] developed a longitudinal study of abnormalities on MRI conjugating them with the disability, more precisely with the EDSS scale. The reached conclusions pointed out a moderated correlation, retrieving an inadequacy for choosing the disease-modifying treatment based only in the brain lesion volume. Sastre-Garriga et al. [68] studied the relation between grey and white matter volume in the early phases of patients with PP by examining brain volume changes due to MRI scans, with the EDSS scale and Multiple Sclerosis Functional Composite. The developed study retrieved some interesting conclusions, like significant volume
changes over 1 year due to mainly changes in grey matter in PP patients.
Tedeschi et al. [69] showed similar findings regarding reduced white matter and grey matter volume fraction and fatigue. These findings are coherent with the ones showed by Zivadinov et al. [70] where the main pathological substrate of brain atrophy in the early stage of the disease is an early axonal loss (demonstrated by grey and white matter volume reduction), causing the progression of neurological deficits and the development of cognitive impairment.

Crimi et al. [71] proposed a totally different approach from the previous literature by characterizing CIS patients according to lesion pattern, capable of identifying three major different lesion patterns. Moreover, patients were classified according to the nature of the inflammatory lesion patterns recurring to a two-tire classification discovering spatiotemporal lesions that would characterize groups of patients. Minneboo et al. [72] performed a study within some similar guidelines by retrieving specific lesion characteristics in order to predict a severe long-term disability, by emphasizing in lesion location within the different MRI scans. Thus, it was noted that several MRI criteria derived from baseline T2w images were strongly related to progression to an EDSS score of 3 at follow-up, where the presence of at least 2 infratentorial lesions was the strongest predictor. However, it was not found any criteria derived from T1w or gadolinium-enhancing lesions for an EDSS prediction progression.

More recently, Zhao et al. [73] performed an exploratory work of machine learning techniques in predicting MS disease course using only clinical observations. Race, family history of MS and brain parenchymal fraction were the best-ranked predictors of the non-worsening group while brain T2 lesion volume ranked high as a predictor for the worsening group.

4.8 Point of situation

The interest in investigation work related to MS lesion segmentation and disease prediction is far from finished. Despite the quantity of work, literature, and advances, a suitable automated method is still not available.

Besides, the retrieved conclusions from a investigation still remain limited due to the employed methods. Regarding supervised learning, the procedure can be roughly described as a black box system, since it is only constituted by the set of features and a classification algorithm, which may not have in concern the clinical contextualization. With supervised learning, there is the problem of not being possible to discriminate the participation of each feature and each classification algorithm
individually, difficulting its adaptation to a logical and universal series of steps.
Regarding lesion segmentation, algorithms must not focus only on one nature of information but in different ones. The use of multimodal information is necessary, as it ables a confirmation of lesions through different scans, avoiding false positives. Thus, image intensity is necessary but not sufficient. Spatial and anatomical information provides a significant noise reduction and an improved coherence of results.

On MS image segmentation, there is not a clear vision about the best type of learning, unsupervised or supervised. While supervised has the advantage of requiring a ground truth, making it simpler for a future adaptation to a different acquisition protocol, there is the need to have a full variability integrated and is not possible to evaluate non-detected lesions. On the other hand, unsupervised learning algorithms act on the entire part of the image, making use of spatial and anatomical information more significantly, while taking advantage of outliers.

Besides the volume of literature in MS prediction and detection through the use of MRI lesion segmentation, there is an existing gap on integrating other medical information, such as the patient's clinical history, relapses, treatments, among other factors. It can be found some literature regarding clinical history in prediction and detection, where is shown a lack of correlation between MS progression and different aspects. No paper was found that integrated in a meaningful way these two natures of information.

Besides, most work that integrates clinical and observation data are based only on statistical inferences and parameterization, pointing out an existing gap in machine learning application.

Chapter 5

Dataset description

The database from CHUC is constituted by clinical and MRI data. Although the clinical database contains information of 1135 patients, many were not valid for this study since there was a lot of missing data in important fields, such as visits made to the hospital, onset and diagnosis dates and clinical exam history. Besides, some suffer from Neuromyelitis Optica (NMO) which is a different situation. The PP cases were also excluded due to being a different course and its proportion was considerably reduced when compared with RR and SP. Besides, in the database the number of PP patients was minimal.

As one of the goals of this thesis was to integrate different sources of information, the first step consisted in selecting an adequate number of patients to retrieve its clinical history and respective MRI scans. Since retrieving the MRI scans was a very complex and time-consuming issue regarding CHUC's database (due to the hospital servers and its changes, where it took about 30 to 45 minutes to retrieve an exam of one patient), there was the need for a compromise between an adequate quantity of data and time consumed by the Doctors Luís Rito Cruz and Mafalda Mendes Pinto.

Thus, a selection of 47 patients was performed. In order to obtain a representative database regarding MS course (RR or SP), 32 RR patients and 17 SP patients were chosen. The choosing process was made by guaranteeing the accomplishment of several criteria. The group of RR patients guaranteed the following criteria:

1. all patients have made at least 5 MRI exams with brain scans,
2. all patients have the MS onset age (the age when MS condition starts to manifest) between 20 and 40 years old.

As the SP course is a rarer form, there was a considerable reduction of the
number of patients regarding this condition. As a consequence, the group of the selected SP patients had less restricted criteria:

1. all patients have made at least 2 MRI exams with brain scans,
2. all patients have the MS onset age (the age when MS condition starts to manifest) between 20 and 40 years old.
However, due to problems related to the MRI scans extraction from the hospital servers, this list had to be shortened to 36 patients. Thus, the RR group consisted of 25 patients and the SP group consisted of 11 patients, as it was not possible to retrieve any MRI exam from any of the other 11 excluded patients due to time and server issues. This also affected the quantity of MRI scans of the 36 patients, since not all exams could be retrieved. This way, in the thesis database there are patients with only one MRI exam. From the 36 selected patients, 20 were women, which is a representative factor of MS gender reality, as mentioned in Chapter 2.

5.1 Clinical database

The raw database of clinical data consisted of an .xls file automatically exported from the hospital's Neurology Department database. This file is very extense which includes several sheets. Some were considered and others were not, as indicated below:

1. Identification (used): general information regarding patients, such as age, onset date, diagnosis date, initial MS manifestations.
2. Concomitant Diseases (not used): contains information of a reduced quantity of patients.
3. Family History (not used): contains information of a reduced quantity of patients.
4. Visits (used): information regarding the visits a patient made to the hospital, such as the momentaneous EDSS and the score of the functional systems of EDSS scale (mentioned in Chapter 2).
5. MRI (used): only for patient selection regarding the number of brain MRI scans performed. Contains a considerable volume of missing data.
6. CSF (not used): despite the fact it contains considerably interesting and pertinent information regarding the patient status, there was a considerable volume of missing data and a reduced number of patients.
7. Evoked Potential (not used): despite the fact it contains considerably interesting and pertinent information regarding the patient status, there was a
considerable volume of missing data and a reduced number of patients.
8. Laboratory Test (not used): despite the fact it contains considerably interesting and pertinent information regarding the patient status, there was a considerable volume of missing data and a reduced number of patients.
9. Relapses (used): contains information about the functional systems of EDSS, treatment and its duration and corticosteroids use or not.
10. Adverse Event (not used): contains a reduced number of patients as samples.
11. Pregnancy (not used): contains a reduced number of patients as samples.
12. Treatments (not used): contains information regarding the treatments of each patient and relapses treatment as well. It also contains MS non-related treatment. Despite the quality of information, the decision of prescribing a treatment or drug is directly related to the rest of other clinical factors. This way, if data from this sheet would be used, a bias would certainly happen, as explained and advised by Doctor Sónia Batista.
13. Flexifields Paraclinical Test (not used): a case of complete missing data and a minimal number of samples.
14. Flexifields Medical Event (not used): a case of complete missing data and a minimal number of samples.
In order to get a quick but deep insight of the features, each used sheet will be explored in order to describe each raw feature extracted.

5.1.1 Identification

In this section, the used raw features present in the Identification sheet are presented with a brief explanation of them or their use:

1. Patient ID: the identification number of each patient. As it is entirely dependent on the Neurology Department database, it is independent of the health's patient code.
2. Birth date: this date will be used along with the onset date, diagnosis date and with the secondary progressive diagnosis date, in order to calculate the patient's age at these events.
3. Gender.
4. Date of onset: the moment when MS is believed to have started in the patients. To use along with birth date, diagnosis date and with the secondary progressive diagnosis date in order to calculate these time intervals.
5. Supratentorial: binary field, if there were initial manifestations of MS related to the supratentorial region.
6. Optic Pathways: binary field, if there were initial manifestations of MS related to the optic pathways.
7. Brainstem-Cerebellum: binary field, if there were initial manifestations of MS related to the brainstem and/or cerebellum.
8. Spinal Cord: binary field, if there were initial manifestations of MS related to the spinal cord.
9. Date of diagnosis: the moment MS was diagnosed. To use along with birth date and secondary progressive diagnosis date.
10. Clinical findings: binary field, if there were pieces of clinical evidence in the MS initial manifestations.
11. MRI: binary field, if there were initial MS manifestations visualized in MRI scans (lesions).
12. Evoked Potentials: binary field, if there were initial MS manifestations in the evoked potentials test.
13. CSF: binary field, if there were MS initial manifestations presents in the lumbar puncture exam.
14. Date SP: the moment when secondary progressive course was diagnosed. To use along with birth date and diagnosis date.
15. MS Course/McDonald Classification: binary field, the actual MS course a patient is believed to have (RR or SP).
16. Active: binary field, if the disease progression is active or not, as explained in Chapter 2.

5.1.2 Visits

In this section, the used raw features present in the Visits sheet are presented with a brief explanation of them or their use:

1. Patient ID: the identification number of each patient. As it is entirely dependent on the Neurology Department database, it is independent of the health's patient code.
2. Visit date: the moment when the visit to the hospital was made. To use along with the birth date.
3. Routine: binary field, if a visit it is a routine or an emergency one.
4. Suspected relapse: binary field, if a relapse is expected or not.
5. EDSS: 0-10, the EDSS value of the patient at the visit moment.
6. Score Pyramidal: 0-6, the momentaneous score for the Pyramidal FS.
7. Score Cerebellar: 0-5, the momentaneous score for the Cerebellar FS.
8. Cerebellar Weakness: yes or no, if there are manifestations of cerebellar weakness.
9. Score BrainStem: 0-5, the momentaneous score for the Brain Stem FS.
10. Score Sensory: 0-6, the momentaneous score for the Sensory FS.
11. Score Bowel: 0-6, the momentaneous score for the Bowel and Bladder FS.
12. Score Visual: 0-6, the momentaneous score for the Visual FS.
13. Visual Symptom: yes or no, if there are visual symptoms.
14. Score Mental: 0-6, the momentaneous score for the Cerebral FS.

5.1.3 Relapses

In this section, the used raw features present in the Visits sheet are presented with a brief explanation of them or their use:

1. Patient ID: the identification number of each patient. As it is entirely dependent on the Neurology Department database, it is independent of the health's patient code.
2. Relapse date: the moment when the relapse occurred. To use along with the birth date.
3. CNS Pyramidal Tract: binary field, if there were MS manifestations related to the Pyramidal tract.
4. CNS Brain Stem: binary field, if there were MS manifestations related to the brain stem.
5. CNS Bowel Bladder: binary field, if there were MS manifestations related to the bowel and bladder.
6. CNS Neuropsycho Functions: binary field, if there were MS manifestations related to neuropsycho functions.
7. CNS Cerebellum: binary field, if there were MS manifestations related to the cerebellum.
8. CNS Visual Functions: binary field, if there were MS manifestations related to visual functions.
9. CNS Sensory Functions: binary field, if there were MS manifestations related to sensory functions.
10. Hospital: binary field, if the relapse required hospital admission.
11. Ambulatory: binary field, if the relapse did not required hospital admission.
12. Corticosteroids: if it was used a drug for relapse treatment. If positive, it presents the drug name.
13. Treatment start: the moment when treatment regarding the relapse starts. To use along with treatment ending date.
14. Treatment end: the moment when treatment regarding the relapse starts. To use along with treatment starting date.

5.2 Image database

The retrieval of MRI brain scans from CHUC's database was not a simple task, as mentioned. Despite this difficulty, more obstacles appeared. As not all MRI scans were performed in the same machine/location, the heterogeneity of these was large in several aspects, such as brightness, contrast, number of slices and magnetic field intensity. In 98 MRI exams, 75 were considered to be normal (group A). In other words, they were performed with a similar procedure resulting in scans with similar brightness, contrast and noise levels. From these 75,13 were considered to have smooth perturbations from what was considered a normal scan (group B). However, these changes were minimal when examining the total heterogeneity of the image database. The other 24 were considered to have some considerable obstacles (group C), not only considerable differences in brightness and contrast levels but also parts of the human head not included in the scan, such as the lateral part of the skull and nose. The lack of head parts may have led to problems during the registration process. From these 24, 11 were considered to be really problematic (group D), since the brightness, contrast levels and noise levels had a large difference leading to very bad quality scans.

The MRI scans were acquired in 5 different places: HUC'S Radiology Service (RAD), Instituto de Ciências Nucleares Aplicadas à Saúde (ICNAS), Hospitais da Universidade de Coimbra (HUC), unidade de Ressonância Magnética in Centro Hospitalar de Leiria (IMI Leiria) and Associação Nacional de Imagiologia Funcional Cerebral (ANIFC), which is also in ICNAS. The scans performed in RAD, HUC and IMI Leiria have a magnetic field intensity of 1.5 T , while the ones performed in ICNAS and ANIFC have a magnetic field intensity of 3T. This magnetic field difference increases contrast in scans, generally improving the scan quality. However, most of MRI belonging to group D have a magnetic field intensity of group D and the majority of group A have a magnetic field intensity of 1.5 T. Despite brightness, color and noise, scans with magnetic field intensity of 3 T have a higher number of slices. The most common protocol with 3 T magnetic field intensity scans was 3 mm of slice thickness, 3.9 mm of space between slices and a variable number of slices, from 35 to 140 . The most common protocol with 1.5 T magnetic field intensity scans
was 5 mm of slice thickness, 6 mm of space between slices, and a more homogenous number of slices, from 20 to 24. This information can be seen in Tables 5.1, 5.2 and 5.3.

Table 5.1: Image database scheme for MRI scans performed in IMI, RAD and ANIFC.

Patient ID	Patient Code	Study	Exam Place	$\begin{aligned} & \text { Magnetic Field } \\ & \text { Intensity (T) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Slice } \\ \text { thickness (mm) } \end{gathered}$	Number of slices	Space between slices (mm)	Group
349	19460100198	2014	RAD	1.5	5	24	6	A
142	19640800325	27.11.2007	RAD	1.5	3	16	3	A
142	19640800325	2014	RAD	1.5	5	24	6	A
212	19670100799	2008	RAD	1.5	5	20	6	B
310	19700500561	2015	RAD	1.5	5	24	6	A
788	19721001493	2014	RAD	1.5	5	22	6	C
627	19741201396	2014	RAD	1.5	5	24	6	A
894	19751001167	2014	RAD	1.5	5	24	6	A
49	19760600961	2014	RAD	1.5	5	24	6	A
287	19780700241	2014	RAD	1.5	5	22	6	A
662	19890500969	2015	RAD	1.5	5	25	6.5	A
252	19790501183	2011	ANIFC	3	3	60	NA	A
1077	19830601318	2013	IMI LEIRIA	1.5	5	24	6.5	B
1077	19830601318	2014	IMI LEIRIA	1.5	5	24	6.5	B

In order to understand the scan quality between groups (A, B, C, D), some examples will be shown. From group A, a MRI scan from patient 349 in 2014 was selected (Figures 5.1 and 5.2). As seen, the majority of MRI scans classified as A were acquired with a 1.5 T magnetic intensity field. However, there were also several 3.T MRI scans classified as A. Regarding group B, it was selected as an example an MRI exam from patient 93 in 2015 (Figures 5.3 and 5.4). These scans, although similar, have a significantly increased contrast, which is normal since the majority of MRI B scans have a magnetic intensity field of 3T. As these are in a minor quantity regarding the other similar ones, the letter B was assigned to them.

Regarding MRI scan groups considered to have more obstacles at processing level, for group C was selected an exam from patient 79 in 2016 (Figures 5.5 and 5.6) and for D was selected an exam from patient 894 in 2016 (Figures 5.7 and 5.8). In patient 79, it is visible that parts of the head are not displayed (lateral and anterior parts). In patient 894 it is visible a considerable difference in brightness levels. Due to the present darkness in the mentioned scan, there are some structures not shown in the MRI, especially at the bottom of the brain.

Figure 5.1: MRI FLAIR scan from patient 349 in 2014, 22 slices displayed. Exam performed at RAD, classified as A.

Figure 5.2: MRI FLAIR scan from patient 349 in 2014, 5 slices displayed. Exam performed at RAD, classified as A.

Table 5.2: Image database scheme for MRI scans performed in ICNAS.

Patient ID	Study	Exam Place	Magnetic Field Intensity (T)	$\begin{gathered} \text { Slice } \\ \text { thickness (mm) } \end{gathered}$	Number of slices	Space between slices (mm)	Group
79	2016	ICNAS	3	2	70	NA	C
645	2015	ICNAS	3	3	35	3.9	D
645	2016	ICNAS	3	3	35	3.9	D
93	2015	ICNAS	3	3	35	3.9	B
142	2013	ICNAS	3	3	40	3.9	B
142	2015	ICNAS	3	3	36	3.9	B
4	2013	ICNAS	3	3	35	3.9	B
275	2016	ICNAS	3	3	35	3.9	D
90	2014	ICNAS	3	3	40	3.9	B
90	2016	ICNAS	3	2	65	NA	C
90	2017	ICNAS	3	3	35	3.9	C
756	2015	ICNAS	3	3	37	3.9	B
756	2016	ICNAS	3	3	35	3.9	B
750	2016	ICNAS	3	2	140	NA	C
777	2016	ICNAS	3	3	35	3.9	B
376	2016	ICNAS	3	3	70	NA	A
788	2015	ICNAS	3	3	37	3.9	C
788	2016	ICNAS	3	1	70	NA	D
788	2017	ICNAS	3	3	35	3.9	A
627	2016	ICNAS	3	2	65	NA	B
894	2016	ICNAS	3	3	35	3.9	D
760	2017	ICNAS	3	3	37	3.9	C
49	2016	ICNAS	3	3	45	NA	C
287	2016	ICNAS	3	3	35	3.9	A
734	2014	ICNAS	3	3	37	3.9	A
734	2016	ICNAS	3	2	70	NA	B
252	2015	ICNAS	3	3	37	3.9	A
903	2013	ICNAS	3	3	35	3.9	A
903	2015	ICNAS	3	3	35	3.9	A
903	2017	ICNAS	3	3	35	3.9	D
708	2016	ICNAS	3	3	35	3.9	C
970	2016	ICNAS	3	1	65	NA	A
317	2016	ICNAS	3	2	65	NA	A
785	2017	ICNAS	3	3	35	3.9	A
22	2015	ICNAS	3	3	35	3.9	A
22	2017	ICNAS	3	3	35	3.9	D
1077	2016	ICNAS	3	1	70	NA	D
1077	2017	ICNAS	3	3	35	3.9	D
795	2016	ICNAS	3	3	35	3.9	A
764	2016	ICNAS	3	1	65	NA	D
673	2017	ICNAS	3	3	35	3.9	A
662	2014	ICNAS	3	3	35	3.9	A
662	2016	ICNAS	3	3	35	3.9	B

Table 5.3: Image database scheme for MRI scans performed in HUC.

Patient ID	Study	Exam Place	Magnetic Field Intensity (T)	Slice thickness (mm)	Number of slices	Space between slices (mm)	Group
93	2009	HUC	1.5	5	20	6	A
93	2012	HUC	1.5	5	22	6	A
142	16.01.2007	HUC	1.5	5	20	6	A
142	2009	HUC	1.5	5	20	6	A
142	2010	HUC	1.5	5	22	6	A
142	2011	HUC	1.5	5	22	6	A
212	2013	HUC	1.5	5	24	6	B
212	2015	HUC	1.5	5	24	6	A
275	2008	HUC	1.5	5	20	6	A
275	2009	HUC	1.5	5	22	6	A
275	2013	HUC	1.5	5	24	6	A
90	2010	HUC	1.5	5	22	6	A
310	2008	HUC	1.5	5	22	6	A
310	2009	HUC	1.5	5	22	6	A
750	2014	HUC	1.5	5	22	6	A
777	2015	HUC	1.5	5	24	6	A
376	23.4.2008	HUC	1.5	5	20	6.5	A
376	4.6.2008	HUC	1.5	5	20	6.5	A
376	25.3.2011	HUC	1.5	5	24	6	A
376	14.10.2011	HUC	1.5	5	24	6	A
376	2012	HUC	1.5	5	24	6	A
376	2013	HUC	1.5	5	24	6	A
894	2008	HUC	1.5	5	20	6	C
894	2009	HUC	1.5	5	22	6	C
894	2012	HUC	1.5	5	22	6	A
49	2007	HUC	1.5	5	20	6	A
654	2014	HUC	1.5	5	22	6	A
654	2015	HUC	1.5	5	24	6	A
287	2009	HUC	1.5	5	20	6	A
287	2011	HUC	1.5	5	22	6	A
287	2012	HUC	1.5	5	20	6	A
252	2010	HUC	1.5	5	24	6	A
528	2010	HUC	1.5	5	22	6	D
708	2015	HUC	1.5	5	22	6	A
317	2008	HUC	1.5	5	20	6	A
317	2009	HUC	1.5	5	22	6	A
317	2010	HUC	1.5	5	22	6	A
317	2014	HUC	1.5	5	24	6	A
774	2014	HUC	1.5	5	25	6	A
22	2009	HUC	1.5	5	22	6	A
22	2011	HUC	1.5	5	22	6	A
22	2013	HUC	1.5	5	22	6	A

Figure 5.3: MRI FLAIR scan from patient 93 in 2015, 35 slices displayed. Exam performed at ICNAS, classified as B.

Figure 5.4: MRI FLAIR scan from patient 93 in 2015, 7 slices displayed. Exam performed at ICNAS, classified as B.

Figure 5.5: MRI FLAIR scan from patient 79 in 2016, 35 slices displayed. Exam performed at ICNAS, classified as C.

Figure 5.6: MRI FLAIR scan from patient 79 in 2016, 14 slices displayed. Exam performed at ICNAS, classified as C.

Figure 5.7: MRI FLAIR scan from patient 894 in 2016, 25 slices displayed. Exam performed at ICNAS, classified as D.

Figure 5.8: MRI FLAIR scan from patient 894 in 2016, 10 slices displayed. Exam performed at ICNAS, classified as D.

Chapter 6

Experimental procedure

The experimental procedure will be described in two parts due to the origins of data: clinical and image. As its origin it is completely different, the methods used for handling the information were different. Nevertheless, the processing pipeline used for both was the same: feature extraction, data normalization, feature selection according to label and machine learning prediction algorithms.

6.1 Clinical database

In the clinical database procedure (Figure 6.1), the first step consisted of feature extraction by using the present raw features. As there was data regarding several moments of the same patient (dynamic data) and intemporal data (static data), it was possible to extract features with different purposes. As a consequence, in order to explore the clinical database in a meaningful way, it was possible to create 4 different datasets: 1 static, where features were obtained by using all moment information as static and where time is no longer a changing factor, and 3 dynamics, regarding specific moments in time.

In the static database, one sample is one patient, in other words: a sample is constituted by the information regarding all clinic history of a patient. In the dynamic databases, one sample is a patient appointment, in other words: a sample is constituted by the information regarding all clinic history from the beginning until a defined moment or only the information regarding the mentioned defined moment. The 3 dynamic databases are intuitively named Groundzero, Momentaneous and Momentaneous with past. Groundzero is constituted only by information about the
entry at the clinic of each patient, Momentaneous by the momentaneous information regarding a defined moment of a patient when visited the clinic and Momentaneous with past has the same information of Momentaneous with the addition of data regarding previous moments.

After building the 4 raw databases, there is the need to apply feature normalization. This is extremely important, not only due to the use of machine learning algorithms but also to compensate the database flaws. As known, a patient goes to the clinic on routine appointments with a 3 or 6 -month frequency. However, the database does not possess the same number of appointments for all patients, i.e., the amount of data varies from patient to patient without a logical reason. This way, by normalizing the information through the use of ratios, for example, it is possible to balance missing information in some cases.

Figure 6.1: Clinical data procedure scheme.

Afterwards, feature selection according to different labels was performed. As a consequence, each database had a different set of features for different labels.

The chosen labels are related to MS course (PP or SP) and to EDSS, since it is the worldwide neurological scale used to evaluate the patient's condition and the disease progression. The procedures were always made with binary labels. This way, the EDSS-related labels were transformed from scales of 0-10 to binary ones. For each EDSS-related label, two different labels were created: EDSS-related value higher than $3(>3)$ and EDSS-related value higher than 5 (>5). Using 5 as threshold was a natural decision, since not only is the medium value of the scale but also represents the beginning of a severe loss of ambulatory ability. 3 was also used as a threshold since Doctor Sónia Batista claimed it would be interesting as well, since physicians are also interested in this threshold. The first feature selection was performed entirely with the value 5 as it makes a clear separation of ambulatory ability in a considerable way.

The mediumEDSS label is the average value per year of a patient. When the patient has visited the clinic more than once in a year, the EDSS value of a defined year is the average of that time period. The highestEDSS label is the highest EDSS value that a patient might present during all appointments. CurrentEDSS label it is the EDSS value of a patient during a defined appointment. NextEDSS label is the EDSS of that patient next time he goes to the clinic. First2EDSS is the average EDSS value per year during the first 2 years in which the patient has visited the clinic. TendencyEDSS represents the fact that the EDSS will increase or not for a patient on the next visit to the clinic.

Due to the nature of the features, it was not possible to choose a set of features for each label in all databases. Thus, in Static and Groundzero databases it was only possible to do this for labels msCourse, mediumEDSS, highestEDSS and first2EDSS. After having the primary set of features for each possible label, a division for each set occurred (Figures 6.2 and 6.3): investigation procedure and standard procedure. Standard procedure works like a bypass, where nothing happens in this step. However, during the development of investigation procedure, clinically obvious features for the used label were deleted, as it is one of the thesis goals to discover some hidden feature influence.

Afterwards, a stricter feature selection was performed according to the pretended label, where only a reduced number of features was taken into account. There was the need for a small number of features due to overfitting since all databases have a small number of samples. Groundzero and Static databases have 37 samples each while Momentaneous and Momentaneous with past databases have 87 samples each. In Tables 6.1 and 6.2 , it is possible to see the class distribution of each label for each database.

Table 6.1: Class distribution of the labels msCourse, mediumEDSS, highestEDSS, highestEDSS and first2EDSS for the Static and Groundzero databases.

Label	Samples of class 1 (number)	Samples of class 1 (\%)
msCourse	11	29.73
mediumEDSS >3	15	40.54
mediumEDSS >5	6	16.22
highestEDSS >3	17	45.95
highestEDSS >5	7	18.92
first2EDSS >3	10	27.03
first2EDSS >5	1	2.70

Table 6.2: Class distribution of the labels msCourse, mediumEDSS, highestEDSS, highestEDSS, first2EDSS, currentEDSS, nextEDSS and tendencyEDSS for the Momentaneous and Momentaneous with past databases.

Label	Samples of class 1 (number)	Samples of class 1 (\%)
msCourse	25	28.74
mediumEDSS >3	35	40.23
mediumEDSS >5	10	11.49
highestEDSS >3	45	51.72
highestEDSS >5	24	27.59
first2EDSS >3	22	25.29
first2EDSS >5	5	5.75
currentEDSS >3	35	40.23
currentEDSS >5	16	18.39
nextEDSS >3	34	39.08
nextEDSS >5	19	21.84
tendencyEDSS	11	12.64

Figure 6.2: Clinical data procedure after first feature selection for EDSS-related features.

Figure 6.3: Clinical data procedure after first feature selection for non EDSS-related features.

6.1.1 Databases construction

Tables 6.3, 6.4 and 6.5 present a scheme of all features and all databases along with the normalization value (every feature is divided by this value in order to be normalized into a range of $0-1$). The full explanation regarding every feature and its normalization process according to each database can be found in Appendix II (Clinical databases description).

Table 6.3: Scheme of all clinical features and databases regarding the Identification sheet.

Feature Name	Static	Groundzero	Momentaneous	Momentaneous with past	Normalization Value
Gender	X	X	X	X	1
Age of onset	X	X	X	X	50
Supratentorial	X	X	X	X	1
Optic Pathways	X	X	X	X	1
Brainstem-Cerebellum	X	X	X	X	1
Spinal Cord	X	X	X	X	1
Age of diagnosis	X	X	X	X	50
Years from onset to diagnosis	X	X	X	X	20
Clinical Findings	X	X	X	X	1
MRI	X	X	X	X	1
Evoked potentials	X	X	X	X	1
CSF	X	X	X	X	1
Age at SP diagnosis	X	X	X	X	60
Years from onset to diagnosis SP	X	X	X	X	25
MS Course	X		X	X	1
Active:	X		X	X	1
Age Visit			X	70	
Years since onset			X		

Table 6.4: Scheme of all clinical features and databases regarding the Visits sheet.

Feature Name	Static	Groundzero	Momentaneous	Momentaneous with past	Normalization Value
Nb of visits per year	X			X	3
Nb of visits 1st year	X			X	3
Nb of visits first 2 years	X			X	5
Suspected Relapses ratio per year	X			X	3
Suspected relapses ratio 1st year	X			X	3
Suspected relapses ratio first 2 years	X			X	5
EDSS medium value/year	X			X	10
EDSS 1st year	X			X	10
EDSS first 2 years	X			X	10
EDSS std/year	X			X	3
EDSS 1st year std	X			X	3
EDSS first 2 years std	X			X	3
EDSS medium variation/year	X			X	2
EDSS medium variation 1st year	X			X	3
EDSS medium variation first 2 years	X			X	3
EDSS std of variation/year	X			X	2
EDSS std of variation 1st year	X			X	3
EDSS std of variation first 2 years	X			X	3
EDSS increase 1st year	X			X	1
EDSS increase first 2 years	X			X	1
Ratio nb EDSS increase	X			X	1
Ratio nb EDSS decrease	X			X	1
Ratio nb EDSS decrease 1st year	X			X	1
Ratio nb EDSS decrease first 2 years	X			X	1
Routine visits ratio	X			X	1
Routine visits ratio 1st year	X			X	1
Routine visits first 2 years	X			X	1
No years	X			X	32
EDSS (momentaneous)		X	X		10
Routine (momentaneous)		X	X		1
Suspected Relapse (momentaneous)		X	X		1
Weakness (momentaneous)			X		1
Sympton (momentaneous)			X		1
Visit Age		X			60

Table 6.5: Scheme of all clinical features and databases regarding the Relapses sheet.

Feature Name	Static	Groundzero	Momentaneous	Momentaneous with past	Normalization Value
Relapses per year	X			X	4
Relapses 1st year	X			X	4
Relapses First 2 years	X			X	6
Pyramidal Ratio	X			X	1
Pyramidal 1st year	X			X	1
Pyramidal first 2 years	X			X	1
Brain Stem ratio	X			X	1
Brain Stem 1st year	X			X	1
Brain Stem first 2 years	X			X	1
Bowel ratio	X			X	1
Bowel 1st year	X			X	1
Bowel first 2 years	X			X	1
Neuropsycho ratio	X			X	1
Neuropsycho 1st year	X			X	1
Neuropsycho first 2 years	X			X	1
Cerebellum ratio	X			X	1
Cerebellum 1st year	X			X	1
Cerebellum 2 years	X			X	1
Visual ratio	X			X	1
Visual 1st year	X			X	1
Visual first 2 years:	X			X	1
Sensory ratio	X			X	1
Sensory 1st year	X			X	1
Sensory first 2 years	X			X	1
Corticosteroids ratio	X			X	1
Corticosteroids/year	X			X	1
Corticosteroids 1st year	X			X	1
Corticosteroids first 2 years	X			X	1
Average treatment intensity	X			X	3
Average treatment 1st year	X			X	3
Average treatment first 2 years	X			X	3
Average duration	X			X	10
Average duration 1st year	X			X	10
Average duration first 2 years	X			X	10
Relapse age		X			60
Time since onset		X			20
Pyramidal Tract (momentaneous)		X	X	X	1
Brain Stem (momentaneous)		X	X	X	1
Bowel Bladder (momentaneous)		X	X	X	1
Neuropsycho functions (momentaneous)		X	X	X	1
Cerebellum (momentaneous)		X	X	X	1
Visual functions (momentaneous)		X	X	X	1
Sensory functions (momentaneous)		X	X	X	1
Hospital (momentaneous)		X	X	X	1
Ambulatory (momentaneous)		X	X	X	1
Corticosteroids (momentaneous)		X	X	X	1
Treatment name (momentaneous)		X	X	X	3
Duration days (momentaneous)		X	X	X	10

6.2 Image database

For the MRI database (Figure 6.4), the first step consisted of processing the MRI scans in order to reduce the heterogeneity and to overcome the natural obstacles implied in this exam. Regarding the objective, this processing procedure has
different endings, although its structure is the same.
From this database, four databases were created. One is called MRI Total Head database as it is comprised of features extracted directly from the scans by ignoring the existence of lesions. In this database, a sample corresponds to features extracted from an MRI scan from a patient. The remaining databases are created by extracting features exclusively from regions manually marked as lesions. This procedure was performed by the Neuroradiologists Luís Rito Cruz and Mafalda Mendes Pinto. From the marked lesion regions, it was possible to extract different features and to sort them into different databases like it was performed with the clinical data. By corresponding one sample to one lesion, one sample to one study and one sample to one study, three databases are created regarding different levels of data:One sample-One lesion, One sample-One study, One sample-One patient. Intuitively, one can understand that One sample one lesion has only features extracted from a marked lesion, One sample one study has features extracted from all marked lesions regarding one MRI scan and One sample one patient has features extracted from all marked lesions from a patient.

Due to the structure of feature extraction for each database, the sample number was different. One sample one lesion is the largest as it is comprised of 6030 samples. MRI total head and One sample one study have the same number of samples, since the extracted features have an MRI study as a source of data (99 samples each). Finally, One sample one patient contains 36 samples, as it is the number of patients in the database. In Tables 6.6-6.8, it is possible to see the class distribution of each label for every database.

Table 6.6: Class distribution of the labels msCourse, mediumEDSS, highestEDSS, highestEDSS, first2EDSS, currentEDSS, nextEDSS and tendencyEDSS for the MRI total head database and for One sample one study database.

Label	Samples with value 1 (number)	Samples with value 1 (\%)
msCourse	20	20.20
mediumEDSS >3	41	41.41
mediumEDSS >5	15	15.15
highestEDSS >3	51	51.52
highestEDSS >5	21	21.21
first2EDSS >3	19	19.19
first2EDSS >5	8	8.08
currentEDSS >3	37	37.37
currentEDSS>5	21	21.21
nextEDSS >3	39	39.39
nextEDSS >5	22	22.22
tendencyEDSS	26	26.26

Table 6.7: Class distribution of the labels msCourse, mediumEDSS, highestEDSS, highestEDSS, first2EDSS, currentEDSS and nextEDSS for the One sample one lesion database.

Label	Samples with value 1 (number)	Samples with value 1 (\%)
msCourse	1840	30.51
mediumEDSS >3	2864	47.50
mediumEDSS >5	902	14.96
highestEDSS >3	3492	57.91
highestEDSS >5	1501	24.89
first2EDSS >3	1094	18.14
first2EDSS >5	172	2.85
currentEDSS >3	2872	47.63
currentEDSS >5	1753	29.07
nextEDSS >3	2843	47.15
nextEDSS >5	1810	30.02

Table 6.8: Class distribution of the labels msCourse, mediumEDSS, highestEDSS, highestEDSS and first2EDSS for the One sample one patient database.

Label	Samples with value 1 (number)	Samples with value 1 (\%)
msCourse	10	27.78
mediumEDSS >3	14	38.89
mediumEDSS >5	5	13.89
highestEDSS >3	16	44.44
highestEDSS >5	7	19.44
first2EDSS >3	7	19.44
first2EDSS >5	2	5.56

Figure 6.4: Image data procedure scheme.

As with the other (clinical) databases, each database suffered a feature selection process regarding specific labels: msCourse, mediumEDSS, highestEDSS, first2EDSS, currentEDSS, nextEDSS, tendencyEDSS, the same used with the clinical databases. However, the procedure from this step on was different (Figures 6.5 and 6.6) : there was not an investigation and a standard procedure since all features were image related. Thus, the risk of having obvious predictors was non existential. After the first feature selection, there was an immediate stricter selection regarding each label. If the label was EDSS-related, two different feature selections were performed, regarding the value 3 and 5 as binary labeling thresholds. If the label was
not EDSS-related, in other words, if it was already binary, the stricter selection is performed immediately. Afterwards, machine learning algorithms were applied.

Figure 6.5: Image data procedure after first feature selection for EDSS-related features.

Figure 6.6: Image data procedure after first feature selection for non EDSS-related features.

6.2.1 Image processing

MRI brain scans analysis require a rigorous processing due to the existing heterogeneity of its procedure. Factors like the MRI machine, magnetic field intensity, slice thickness, spacing between slices and even body patient movement have a considerable influence on the final outcome.

6.2.1.1 SRI24 Atlas

Due to the research work described in Chapter 4, the use of an atlas seemed very adequate, not only due to the idea of using a statistical brain constructed by several different brains but also due to the variability of the MRI scans of CHUC's database.

Thus, a reference MRI scan was needed. As no atlas with MRI longitudinal scans was found, this study only comprised of transversal scans.

Several atlases were found, with the Illinois Institute of Technology (IIT) Human Brain Atlas (v4.1), the Laboratory of Neuro Imaging (LONI) Probabilistic Brain Atlas (LPBA40) [74], SRI24 [75], International Consortium for Brain Mapping (ICBM) 452 [76] and SPM12 atlas being the most interesting ones.

The chosen one was the SRI24, as it was the most complete in terms of information regarding the MRI scans. Besides having the T1, T2 and PD scans, it also contained brain-only sequences of the mentioned modalities, tissue probability density maps for CSF, GM, WM, tissue segmentation map and two anatomical maps of the brain. In Table 6.9, a comparison between atlases is made where it is possible to confirm that SRI24 is the atlas with more study tools.

Table 6.9: Comparison between the existing tools in the IIT Human Brain Atlas, LPBA40, SRI24, ICB452 and SPM12 atlases.

Atlas	IIT Human Brain Atlas	LPBA40	SRI24	ICBM 452	SPM12
T 1	X	X	X		X
T 2	X		X		X
PD scan			X		X
T (brain only)			X		
T 2 (brain only)	X		X		
PD (brain only)	X	X	X	X	
CSF probability map	X	X	X	X	
GM probability map	X	X	X		
WM probability map			X		
Background, CSF, GM and WM full tissue map	X	X	X	X	
Anatomical Map					

The SRI24 atlas is an MRI-based atlas of normal adults through the use of template-free non-rigid registration from images of 24 normal subjects. Its image resolution is 1 mm and the magnetic field intensity is 3 T . Additionally, it has been proved that this atlas allows equally accurate spatial normalization of MRI scans when compared to atlases acquired at 1.5 T . As CHUC's database consists largely of by 1.5 T scans, this factor constitutes a primary key to the image processing procedure. This atlas comprises 155 slices where each slice has a dimension of 240×240. Thus, all sequences and maps have dimensions of $240 \times 240 \times 155$. Figures 6.7-6.18 provide a full insight of the SRI atlas, showing all study tools that will be necessary for the image processing procedure and feature extraction.

Figure 6.7: The SRI24 T2 sequence. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150.

Figure 6.8: The SRI24 T2-brain sequence. Slices displayed (left to right, top to bottom): 10,20,30,40,50,60,70,80,90,100,110,120,130,140 and 150.

Figure 6.9: The SRI24 T1 sequence. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150.

Figure 6.10: The SRI24 T1-brain sequence. Slices displayed (left to right, top to bottom): 10,20,30,40,50,60,70,80,90,100,110,120,130,140 and 150.

Figure 6.11: The SRI24 PD sequence. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150.

Figure 6.12: The SRI24 PD-brain sequence. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150.

Figure 6.13: The SRI24 WM probability map. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150.

Figure 6.14: The SRI24 GM probability map. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150.

Figure 6.15: The SRI24 CSF probability map. Slices displayed (left to right, top to bottom): $10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150.

Figure 6.16: The SRI24 tissues map. Black corresponds to background, white to WM, light gray to GM and dark gray to CSF. Slices displayed:
$10,20,30,40,50,60,70,80,90,100,110,120,130,140$ and 150.

Figure 6.17: The SRI Anatomical Map I. This map divides the brain into 56 regions. Each different level of gray represents a different region.

Figure 6.18: The SRI Anatomical Map II. This map divides the brain into 404 regions. Each different level of gray represents a different region.

6.2.1.2 Sequence selection and image resizing

The sequence selection and image resizing procedure is summed up in Figure 6.19. The first step consisted of checking the modality of the scan. An MRI study of the image database comprises a T1, T1-Gde, T2, FLAIR and PD sequences. Each sequence had this image processing procedure separately since patient movement and image characteristics were influencing factors.

Figure 6.19: Sequence selection and image resizing procedure scheme.

The procedure for every sequence was similar, where the only modification was regarding the atlas sequence to be used. If the sequence to be analyzed was a T 1 or a T1-Gde, the chosen atlas sequence would be a T1. If it was a T2 or FLAIR, the
chosen sequence would be a T2. At last, if it was a PD, the chosen atlas sequence would be the PD one. The chosen atlas sequence was converted into a grayscale image. The same operation was performed to the real sequence. Besides, reducing the differences between both was useful in the next steps.

As known, CHUC's database has different sources of MRI scans. Thus, the dimensions of all scans were not equal. Besides, the atlas dimensions also needed to be taken into account. As there was the need to work with the same dimensions regarding the real MRI scan and the atlas, the dimensions of both images were compared. If the atlas width was larger than the one from the real sequence, the atlas would be resized to the sequence dimension. Otherwise, the real sequence would be resized to the atlas dimensions. It was chosen to always reduce the dimension instead of increasing it, since the last one would create artifacts. By reducing the dimension, some information is lost, but theoretically the created artifacts would be less than the ones created by an increase process. The resizing process was performed with a bicubic interpolation.

6.2.1.3 Top and bottom head delimitation

The top and bottom head delimitation procedure is summed up in Figure 6.21. Not all MRI scans started and ended at the exact same slice number. As a consequence, a process that chooses the slices delimiting the volume of the brain had to be performed. As the atlas is not mutable, it seemed appropriate to first choose the starting and ending slices in the atlas. The chosen bottom head slice was the seventh one and the top slice was the 130th one (Figure 6.20).

Figure 6.20: Atlas slices 130 and 7, top head slice (on the left) and the atlas bottom head (on the right).

The methods for choosing the adequate slice were different regarding top and bottom slices. As seen in Figure 6.20, the evolving complexity regarding the top and bottom head was quite different. While at the top there will be always a great homogeneity regarding the slice, at the bottom, there are many structures, such as the ending and beginning of the brain, spinal cord ending, bones, eyes, among other tissues. Thus, the top head slice search was relatively straightforward: the sequence slice with the highest 2D correlation with atlas 130th slice was defined as the head ending.

Figure 6.21: Top and bottom head limitation on real sequence procedure scheme.

This method was attempted for the bottom head but it was not successful.

A deeper approach was taken despite the decisive metric being the same: 2D correlation value with the bottom head atlas slice. This way, before calculating the correlation between the two images, an intermediate two-step process was driven in order to reduce the variability between both. Firstly, for each slice, it was performed an intensity-based image registration, where the fixed image was the reference (atlas slice). The geometric transformation applied was an affine one, which is a combination of translation, rotation, scale and shear operations. As MATLAB was the used software, it was possible to use function imregister along with function imregconfig where multimodal mode was chosen due to differences in brightness and/or contrast. Normally, when comparing two MRI images, the monomodal mode is the chosen one. However, the results with this modality mode were not satisfactory. After the slice is registered into the atlas slice, a histogram 2D adjustment was applied to the atlas image to match the histogram of the registered image. Afterwards, the 2 D correlation was calculated between the two, where the highest slice value determined the slice to be used as the bottom of the brain.

Since this process required a certain computational power due do to the registration process, some conditions were applied to speed up the process. As all MRI scans direction is from the bottom to the top, the top image slice will never be found in the first slices. The same applies to the last slices and the bottom of the head. Thus, a manual study regarding all MRI scans was made in order to explore a safety search interval for both slices (see Table C. 1 in Appendix III). In this study, all top and bottom slices were chosen manually. Afterwards, the standard deviation from MRI ending and start was calculated regarding the number of slices for each scan, in order to have the deviation results as a proportion value. With the normalized deviation values, an average and standard deviation values for top and bottom slices were calculated (Table 6.10).

With these calculated values and since the study comprised approximately 500 MRI sequences, it was assumed it followed a Gaussian distribution. By the law of large numbers, theoretically, there is a 99.7% probability of finding the correct slice in the chosen secure interval since it was used a distance of $\mu+3 \sigma$, where μ represents the mean value and σ the standard deviation. Thus:

1. Top slice search interval: from slicesNumber to (slicesNumber - (μ TopSlice+ 3σ TopSlice) \times slicesNumber).
2. Bottom slice search interval:: from Firstslice to $(\mu$ BottomSlice $+3 \sigma$ TopSlice $) \times$ slicesNumber)

Table 6.10: The study performed with Table C. 1 in order to calculate its medium and standard deviation values to speed up the brain limits selection process

Bottom Slice	Top Slice
μ (Bottom - first)	μ (Last - top)
0.11	0.15
σ (Bottom - first)	σ (End - top)
0.48	0.29

6.2.1.4 Slice atlas/sequence assignment

The slice atlas/sequence slice assignment procedure is summed up in Figure 6.22. With the existence of starting and ending slices for the MRI scans to be examined, the ones outside the starting-ending interval were removed. As the atlas and the MRI scans had a different number of slices, a slice matching between both was performed. A simple method would be to make the atlas slice assignment by choosing the one with the highest correlation value for each real sequence slice since the number of slices is always higher than in the real sequence.

However, the results were not successful since significant differences in brightness and contrast made some assignments without any anatomical logic. Thus, a more complex method was followed, where the order of each slice and its relative position were significant for the slice assignment process.

The first step consisted of creating two vectors of relative spatial positions, one for the atlas and another for the sequence. Both started at 0 and ende at 1 where values increased according to a regular scale determined by the length of the vectors. From the number of slices of each source, a search factor (N) was defined:

$$
N=\operatorname{round}\left(\frac{\text { AtlasNumberOfSlices }}{\text { SequenceNumberOfSlices }}\right) .
$$

N denotes the number of possible atlas slices that can be assigned to a real sequence. Thus, for every real sequence slice, it was computed the theoretical N closest atlas slices through the use of the two relative spatial position vectors. As a result, there was not a repetition of atlas slices assigned and the slices order was always respected.

From the N slices assigned to the sequence, there can only be a chosen one. A procedure similar to the one used for the bottom head slice followed up: for all the possible slices, an intensity-based image registration process (also affine and in multimodal mode) followed by a histogram adjustment was performed. However, in this case, the adapted histogram was the one from the atlas to the sequence one and not the inverse as in the previous case. The slice that presented the highest 2D

Figure 6.22: Slice atlas/sequence slice assignment procedure scheme.
correlation with the real sequence slice was is the assigned one.
However, this method had its flaws. Atlases are statistical studies of several patients and it is known that each brain is different. Thus, it was possible to encounter patients with brains having different structure size proportions. Despite this, this method seemed to be an interesting one since it took into account the relative positions and eliminated an incorrect order assignment while it still offered some freedom since there was a choice between $N($ if $N>1)$ atlas slices.

6.2.1.5 Image registration

The registration procedure is summed up in Figure 6.23. As each sequence slice had assigned an atlas slice, there was the need for transforming one of them in order to reduce as maximum possible their differences. Although a registration process had been used two times, it was only to improve the reliability of the 2D correlation results in the previous steps.

Figure 6.23: Registration procedure scheme.

The first step consisted in adjusting the real sequence intensity values followed by the application of a 2D median filter. In the used median filter, each output pixel contained the median value in a 3-by-3 neighborhood around the corresponding pixel. This filter eliminated some singularities and transformed each slice into a smoother and more uniform one. To improve contrast, the image was sharpened by using an unsharp masking method. In this method, an image is sharpened by subtracting a blurred (unsharp) version of the image from itself.

After this, an intensity-based image registration was performed. However, with a different form: the reference image was the real sequence slice and not the atlas slice. This change was decisive for the next steps regarding feature extraction. As properties like area, diameter, length, among others, were used, registering the real image into the atlas would leave to distortions and artifact creation. So, theoretically, it was more reasonable to adapt the atlas to the real sequence and not the
other way around.

6.2.1.6 MRI total head database

In order to proceed to the feature extraction regarding the MRI total head database, there was still an extra step. As features were extracted from different structures and used as ratios and differences against others, a skull stripping action was performed. Thus, it was possible to select only the brain in each MRI scan and it was also possible to select the non-brain structures, as seen in Figures 6.24 and 6.25.

Both sequences were constructed by using the brain-only atlas sequence and the head atlas sequence. To perform the skull stripping, the brain-only atlas sequence was turned into a binary mask and applied to the sequence. To perform the nonbrain structures extraction, both total head and brain-only atlas sequences were turned into binary masks and applied to the sequence. Then the brain-only sequence was subtracted from the total head sequence.

MRI noise outside the head from the total scan was also eliminated, by applying the total head sequence as a mask. Therefore, every pixel positioned outside the registered head atlas was turned into value 0 . To smooth the surfaces of the obtained scans by applying masks, a closing operation was performed with a disk of 12 pixels of diameter.

Figure 6.24: Skull stripped sequence of the patient 894, PD scan.

Figure 6.25: Non brain structures sequence of the patient 894, PD scan.

6.2.1.7 Manual lesion labeling

The first step of this process was performed by two neuroradiologists: Luís Rito Cruz and Mafalda Mendes Pinto. Their task was to label lesions by marking the existing lesions in FLAIR scans. The ones that presented contrast in T1-Gde sequences were also labeled. This labeling job was done through a DICOM reader software where it was possible to mark regions with green ellipses. Thus, a detection algorithm was performed by extracting the color green from the images followed by an automated circle detection function. This was applied to all FLAIR and T1-Gde contrasting lesions. An example can be seen in Figures 6.26, 6.27 and 6.28.

Figure 6.26: Lesion labeling example and its output as lesion mask. Patient 349, FLAIR scan, slice number 16.

Figure 6.27: Lesion labeling example output. Patient 349, FLAIR scan. Pair slices only.

Figure 6.28: Lesion labeling output as lesion mask. Patient 349, FLAIR scan. Pair slices only

This process was also one of the reasons why the registration procedure was
performed with the atlas as moving image and not as reference. If it would have been the other way around, the lesion masks would have to suffer a registration process as well, modifying directly its shape, among other properties.

As these masks were made with FLAIR and not with the other sequences as well, these masks constituted an approximation for other modalities besides FLAIR. However, since all the modalities were acquired in a short period of time and it is known to the patient that is not allowed movement, the differences must not be significant. A process that could overcome this obstacle would be the registration of the lesion mask into the used sequence using the FLAIR sequence. However, that procedure was not as effective as the one when an atlas is used. An alternative strategy would be to label manually the other scans as well, which was a considerable hard task due to the time it consumes.

As a consequence, in order to minimize the computational complexity and to avoid hard time-consuming tasks, the one-modality lesion masks (FLAIR and T1Gde) were used as approximations to the other modalities sequences, since the sequences were necessarily almost identical in terms of the number of slices and positioning. However, not all modalities had the exact same number of slices, as confirmed manually. So, a way of overcoming this obstacle was through the relative spatial position vector used in the registration process, in order to attribute lesion positioning in different locations. Each region marked in each slice was be considered a lesion since the existing differences between slices spacing and slice thickness would make a significant difference when calculating lesion volume.

In this process, the regions identified were the ones inside the circles. Initially, the idea was to use a region-growing algorithm by using the lesion center only. However, the attempted methods were not effective, since there was always the need to tune in extremely sensitive thresholds, which was not the direction intended for this project.

6.2.2 Image processing results

The same example from each MRI scan group described in Chapter 5 will be provided. Thus, patient 349 will be again representative of group A, patient 93 of group B, patient 79 of group C and patient 894 of group D, since the intra-group homogeneity is considerably higher than the inter-group one. For each one, the FLAIR, T1 and PD density scan results will be presented, as each one required a different atlas sequence as a reference. With this distribution, all case scenarios are approached.

6.2.2.1 Top and bottom head limitation

In group A, more specifically patient 349 regarding FLAIR scan, it is possible to observe in Figures 6.29-6.32 that the head delimitation process was successful. The slices were correctly chosen in both cases (top and bottom) and the graph results are coherent as it exists a logical correlation shape in the graphs where the maximum value is clearly distinct from the rest.

Figure 6.29: Top head slice selected for patient 349, FLAIR sequence.

Figure 6.30: Top head slice 2D correlation values graph for patient 349, FLAIR sequence.

Figure 6.31: Bottom head slice selected for patient 349, FLAIR sequence.

Figure 6.32: Bottom head slice 2D correlation values graph for patient 349, FLAIR sequence.

In group B, more specifically patient 93 regarding FLAIR scan, it is possible to observe in Figures 6.33-6.36 that the head delimitation process was successful. The slices were correctly chosen in both cases (top and bottom) and the graph results are coherent as it exists a logical correlation shape in the graphs where the maximum value is clearly distinct from the rest.

Figure 6.33: Top head slice selected for patient 93, FLAIR sequence.

Figure 6.34: Top head slice 2D correlation values graph for patient 93, FLAIR sequence.

Figure 6.35: Bottom head slice selected for patient 93, FLAIR sequence.

Figure 6.36: Bottom head slice 2D correlation values graph for patient 93, FLAIR sequence.

In group C, more specifically patient 79 regarding FLAIR scan, it is possible to observe in Figures 6.37-6.40 that the head delimitation process had some constraints. For the higher limit, the slices were correctly chosen and the graph results are
coherent as it exists a logical correlation shape in the graph where the maximum value is clearly distinct from the rest. However, for the bottom delimitation, it is possible to check that the graph shape has two peaks, where it should have only one. The chosen slice process could be better in this case. However, one can see that it is not a unsatisfactory performance though.

Figure 6.37: Top head slice selected for patient 79, FLAIR sequence.

Figure 6.38: Top head slice 2D correlation values graph for patient 79, FLAIR sequence.

Figure 6.39: Bottom head slice selected for patient 79, FLAIR sequence.

Figure 6.40: Bottom head slice 2D correlation values graph for patient 79, FLAIR sequence.

In group D, more specifically patient 894 regarding FLAIR scan, it is possible to observe in Figures 6.41-6.44 that the head delimitation process was successful. The slices were correctly chosen in both cases (top and bottom) and the graph results are coherent as it exists a logical correlation shape in the graphs where the maximum value is clearly distinct from the rest.

Figure 6.41: Top head slice selected for patient 894, FLAIR sequence.

Figure 6.42: Top head slice 2D correlation values graph for patient 894, FLAIR sequence.

Figure 6.43: Bottom head slice selected for patient 894, FLAIR sequence.

Figure 6.44: Bottom head slice 2D correlation values graph for patient 894, FLAIR sequence.

To conclude, the head delimitation with respect to FLAIR scans was successful. Despite the constraints presented for the bottom delimitation in group C, the output it is a satisfactory result. One can readily see this slide is relatively near to the ideal one.

In group A, more specifically patient 349 regarding T1 scan, it is possible to observe in Figures 6.45-6.48 that the head delimitation process was successful for the bottom delimitation. Despite the graph shape, the top slice had not a fully successful performance. It would have been considered more effective if a lower slice would have been chosen. However, the chosen slice is not distant from the ideal one.

Figure 6.45: Top head slice selected for patient 349, T1 sequence.

Figure 6.46: Top head slice 2D correlation values graph for patient 349, T1 sequence.

Figure 6.47: Bottom head slice selected for patient 349, T1 sequence.

Figure 6.48: Bottom head slice 2D correlation values graph for patient 349, T1 sequence.

In group B, more specifically patient 93 regarding T1 scan, it is possible to observe in Figures 6.49-6.52 that the head delimitation process had some constraints. For the top delimitation, the slices were correctly chosen. However, for the bottom delimitation, it is possible to check that the assigned slice should have been a higher one. The graph shape shows logical results, nevertheless. As checked before, despite the wrong slice has been assigned, it is not distant from the desired one.

Figure 6.49: Top head slice selected for patient 93, T1sequence.

Figure 6.50: Top head slice 2D correlation values graph for patient 93, T1 sequence.

Figure 6.51: Bottom head slice selected for patient 93, T1 sequence.

Figure 6.52: Bottom head slice 2D correlation values graph for patient 93, T1 sequence.

In group C, more specifically patient 79 regarding T1 scan, it is possible to observe in Figures 6.53-6.56 that the top delimitation process had some constraints. For the top delimitation, the process could have had a more satisfactory output,
despite not being distant from the desired one. This failure can be interpreted in the correlation graph as there were three slices with very similar values. The bottom delimitation procedure was successful.

Figure 6.53: Top head slice selected for patient 79, T1 sequence.

Figure 6.54: Top head slice 2D correlation values graph for patient 79, T1 sequence.

Figure 6.55: Bottom head slice selected for patient 79, T1 sequence.

Figure 6.56: Bottom head slice 2D correlation values graph for patient 79, T1 sequence.

In group D, more specifically patient 894 regarding T1 scan, it is possible to observe in Figures 6.57-6.60 that both delimitation processes were successful.

Figure 6.57: Top head slice selected for patient 894, T1 sequence.

Figure 6.58: Top head slice 2D correlation values graph for patient 894, T1 sequence.

Figure 6.59: Bottom head slice selected for patient 894, T1 sequence.

Figure 6.60: Bottom head slice 2D correlation values graph for patient 894, T1 sequence.

As a conclusion, the head delimitation regarding T1 scans was successful. There were more obstacles than with FLAIR scans. However, when the final output is not ideal, is not unsatisfactory either. These obstacles were verified in both delimitation processes.

In group A, more specifically patient 349 regarding PD scan, it is possible to observe in Figures 6.61-6.64 that both delimitation processes were successful.

Figure 6.61: Top head slice selected for patient 349, PD sequence.

Figure 6.62: Top head slice 2D correlation values graph for patient 349, PD sequence.

Figure 6.63: Bottom head slice selected for patient 349, PD sequence.

Figure 6.64: Bottom head slice 2D correlation values graph for patient 349, PD sequence.

In group B , more specifically patient 93 regarding PD scan, it is possible to observe in Figures 6.65-6.68 that top head delimitation process was successful.

The bottom delimitation, however, was not successful despite the correlation graph shape. A higher slice should have been chosen.

Figure 6.65: Top head slice selected for patient 93, PD sequence.

Figure 6.66: Top head slice 2D correlation values graph for patient 93, PD sequence.

Figure 6.67: Bottom head slice selected for patient 93, PD sequence.

Figure 6.68: Bottom head slice 2D correlation values graph for patient 93, PD sequence.

In group C, more specifically patient 79 regarding PD scan, it is possible to observe in Figures 6.69-6.72 that top head delimitation process was successful. The bottom delimitation, however, was not successful despite the correlation graph shape (Figure 6.72). A higher slice number should have been chosen.

Figure 6.69: Top head slice selected for patient 79, PD sequence.

Figure 6.70: Top head slice 2D correlation values graph for patient 79, PD sequence.

Figure 6.71: Bottom head slice selected for patient 79, PD sequence.

Figure 6.72: Bottom head slice 2D correlation values graph for patient 79, PD sequence.

In group D, more specifically patient 894 regarding PD scan, it is possible to observe in Figures 6.73-6.76 that both delimitation processes were successful.

Figure 6.73: Top head slice selected for patient 894, PD sequence.

Figure 6.74: Top head slice 2D correlation values graph for patient 894, PD sequence.

Figure 6.75: Bottom head slice selected for patient 894, PD sequence.

Figure 6.76: Bottom head slice 2D correlation values graph for patient 894, PD sequence.

Regarding PD scans, the results were similar when compared to FLAIR ones. In general terms, the head delimitation processes were successful.

By analyzing PD, T1 and FLAIR scans simultaneously, one can see that Group D outperformed the rest, which was not expected. Group A had the second best
performance while B and C performances were tied. Despite the brightness and contrast levels of Group D, it was possible to achieve a good performance. With this, it is known that the image adjusting and registration process were critical for its success. However, it is important to notice that this is one of the first steps of the image processing. In order to achieve conclusions, one must not only look at all intermediate steps but also at the final output.

6.2.2.2 Slice atlas/sequence assignment

In group A, more specifically patient 349 regarding FLAIR scan, it is possible to see in Figures 6.77 and 6.78 that the general slice assignment was successful. However, one can see that there are two slices slightly out of phase regarding the ventricles position.

Figure 6.77: Atlas slices of the atlas/sequence slice assignment, for patient 349, FLAIR sequence. Pair slices only.

Figure 6.78: Sequence slices of the atlas/sequence slice assignment, for patient 349, FLAIR sequence. Pair slices only.

In group B, more specifically patient 93 regarding FLAIR scan, it is possible to see in Figures 6.79 and 6.80 that the slice assignment was successful.

Figure 6.79: Atlas slices of the atlas/sequence slice assignment, for patient 93, FLAIR sequence. Slices that are multiple of 3 only.

Figure 6.80: Sequence slices of the atlas/sequence slice assignment, for patient 93, FLAIR sequence. Slices that are multiple of 3 only.

In group C, more specifically patient 79 regarding FLAIR scan, it is possible to see in Figures 6.81 and 6.82 that the general slice assignment was successful. However, one can see that there is clearly one slice out of phase regarding the ventricles thickness.

Figure 6.81: Atlas slices of the atlas/sequence slice assignment, for patient 79, FLAIR sequence. Slices that are multiple of 6 only.

Figure 6.82: Sequence slices of the atlas/sequence slice assignment, for patient 79, FLAIR sequence. Slices that are multiple of 6 only.

In group D, more specifically patient 894 regarding FLAIR scan, it is possible to see in Figures 6.83 and 6.84 that the slice assignment was successful.

Figure 6.83: Atlas slices of the atlas/sequence slice assignment, for patient 894, FLAIR sequence. Slices that are multiple of 4 only.

Figure 6.84: Sequence slices of the atlas/sequence slice assignment, for patient 894, FLAIR sequence. Slices that are multiple of 4 only.

Regarding the FLAIR scans, the slice assignment was successful, where the only obstacles observed were the ones regarding ventricles position and thickness. However, as already mentioned, this is also patient-dependent, since it is possible to have different structure brain proportions. In these cases, the slice assignment method used does not work so effectively. However, it provides an effective spatial matching in general terms.

In group A, more specifically patient 349 regarding T1 scan, it is possible to see in Figures 6.85 and 6.86 that the general slice assignment was successful.

Figure 6.85: Atlas slices of the atlas/sequence slice assignment, for patient 349, T1 sequence. Pair slices only.

Figure 6.86: Sequence slices of the atlas/sequence slice assignment, for patient 349, T1 sequence. Pair slices only.

In group B, more specifically patient 93 regarding T1 scan, it is possible to see in Figures 6.87 and 6.88 that the general slice assignment was successful. However, there is a slice out of phase regarding ventricles position, once again.

Figure 6.87: Atlas slices of the atlas/sequence slice assignment, for patient 93, T1 sequence. Slices that are multiple of 3 only.

Figure 6.88: Sequence slices of the atlas/sequence slice assignment, for patient 93, T1 sequence. Slices that are multiple of 3 only.

In group C, more specifically patient 79 regarding T1 scan, it is possible to see in Figures 6.89 and 6.90 that the general slice assignment was successful. However, there are two slices out of phase regarding ventricles position and its thickness.

Figure 6.89: Atlas slices of the atlas/sequence slice assignment, for patient 79, T1 sequence. Slices that are multiple of 6 only.

Figure 6.90: Sequence slices of the atlas/sequence slice assignment, for patient 79, T1 sequence. Slices that are multiple of 6 only.

In group D, more specifically patient 894 regarding T1 scan, it is possible to see in Figures 6.91 and 6.92 that the general slice assignment was successful.

Figure 6.91: Atlas slices of the atlas/sequence slice assignment, for patient 894, T1 sequence. Slices that are multiple of 3 only.

Figure 6.92: Sequence slices of the atlas/sequence slice assignment, for patient 894, T1 sequence. Slices that are multiple of 3 only.

Regarding T1 scans, the situation was similar to the one found in FLAIR scans. The obstacles found were related to the ventricles position and thickness.

In group A, more specifically patient 349 regarding PD scan, it is possible to see in Figures 6.93 and 6.94 that the general slice assignment was successful.

Figure 6.93: Atlas slices of the atlas/sequence slice assignment, for patient 349, PD sequence. Pair slices only.

Figure 6.94: Sequence slices of the atlas/sequence slice assignment, for patient 349 , PD sequence. Pair slices only.

In group B, more specifically patient 93 regarding PD scan, it is possible to see in Figures 6.95 and 6.96 that the general slice assignment was successful. However, the first three shown slices show a reasonable performance at the beginning. Nevertheless, in the rest of the slices, the output is the desired one. This can be interpreted due to this patient performance at the previous task in PD scans (top and bottom head limitation) as the bottom head slice chosen was not the most adequate.

Figure 6.95: Atlas slices of the atlas/sequence slice assignment, for patient 93, PD sequence. Slices that are multiple of 3 only.

Figure 6.96: Sequence slices of the atlas/sequence slice assignment, for patient 93 , PD sequence. Slices that are multiple of 3 only.

In group C, more specifically patient 79 regarding PD scan, it is possible to see in Figures 6.97 and 6.98 that the ventricle thickness is still a significant obstacle in this case, as verified in the other scans with the same patient.

Figure 6.97: Atlas slices of the atlas/sequence slice assignment, for patient 79, PD sequence. Slices that are multiple of 3 only.

Figure 6.98: Sequence slices of the atlas/sequence slice assignment, for patient 79 , PD sequence. Slices that are multiple of 3 only.

In group D, more specifically patient 894 regarding PD scan, it is possible to see in Figures 6.99 and 6.100 that the general slice assignment was successful. However, there is one slice out of phase regarding ventricles thickness.

Figure 6.99: Atlas slices of the atlas/sequence slice assignment, for patient 894, PD sequence. Slices that are multiple of 3 only.

Figure 6.100: Sequence slices of the atlas/sequence slice assignment, for patient 894, PD sequence. Slices that are multiple of 3 only.

In a general form, the slice assignment process was successful since most of the slices assigned are the desired ones. When it is not the case, the desirable slice is not distant from the one chosen. These results are valid for an MRI scan at any modality, which is very interesting since it can be considered an effective and computationally efficient processing method. However, there are cases, such as the group C, that can be more complex. As the head is not shown entirely at the beginning of the head in most scans of this group, this might have led to bottom delimitation problems, affecting afterward the slice assignment task. However, it is very interesting to see how this procedure can recover the problems at the starting slices by choosing the correct slices towards higher positions.

6.2.2.3 Image registration

In image registration, it is not straightforward to evaluate and compare registration performances among different scans and modalities. The 2D correlation value could be an interesting metric, however it would not be precise due to the heterogeneity of the brain regarding non-interesting structures. Thus, the correlation value would not account only for the brain registration but also for the totality of the image, taking into account contrast, brightness and noise differences. This was proved since it was verified that, even in the best registration scenario, the correlation value never reached high values (never higher than 0.70 , for example). In the slice assignment procedure, it was easier to evaluate since it is easy to compare visually the important brain structures and their positions.

Regarding intergroup performance, it is also very interesting to see that the methods allowed to overcome the announced problems. This can be a major step
when it comes to interpreting the reality: the possibility to have MRI scans from the same patient with complete different image properties due to different protocols and MRI scan machines.

Regarding the four mentioned patients regarding FLAIR scans, it is possible to see in Figures 6.101-6.108 that the registration was successful. Although it is not perfect, the important parts were registered adequately. By looking at the T1 scans (Figures 6.110-6.116) and at the PD scans (Figures 6.118-6.124), one can see the final output was satisfactory.

Figure 6.101: Atlas/sequence slices paired before registration process, for patient 349, FLAIR sequence. Pair slices only.

Figure 6.102: Atlas/sequence slices paired after registration process, for patient 349, FLAIR sequence. Pair slices only.

Figure 6.103: Atlas/sequence slices paired before registration process, for patient 93, FLAIR sequence. Slices that are multiple of 3 only.

Figure 6.104: Atlas/sequence slices paired after registration process, for patient 93, FLAIR sequence. Slices that are multiple of 3 only.

Figure 6.105: Atlas/sequence slices paired before registration process, for patient 79, FLAIR sequence. Slices that are multiple of 6 only.

Figure 6.106: Atlas/sequence slices paired after registration process, for patient 79, FLAIR sequence. Slices that are multiple of 6 only.

Figure 6.107: Atlas/sequence slices paired before registration process, for patient 894, FLAIR sequence. Slices that are multiple of 4 only.

Figure 6.108: Atlas/sequence slices paired after registration process, for patient 894, FLAIR sequence. Slices that are multiple of 4 only.

Regarding the four mentioned patients regarding T1 scans, it is possible to see in Figures 6.109-6.116 that the registration was successful.

Figure 6.109: Atlas/sequence slices paired before registration process, for patient 349, T1 sequence. Pair slices only.

Figure 6.110: Atlas/sequence slices paired after registration process, for patient 349, T1 sequence. Pair slices only.

Figure 6.111: Atlas/sequence slices paired before registration process, for patient 93, T1 sequence. Slices that are multiple of 3 only.

Figure 6.112: Atlas/sequence slices paired after registration process, for patient 93, T1 sequence. Slices that are multiple of 3 only.

Figure 6.113: Atlas/sequence slices paired before registration process, for patient 79, T1 sequence. Slices that are multiple of 6 only.

Figure 6.114: Atlas/sequence slices paired after registration process, for patient 79, T1 sequence. Slices that are multiple of 6 only.

Figure 6.115: Atlas/sequence slices paired before registration process, for patient 894, T1 sequence. Slices that are multiple of 3 only.

Figure 6.116: Atlas/sequence slices paired after registration process, for patient 894, T1 sequence. Slices that are multiple of 3 only.

Regarding the four mentioned patients regarding FLAIR scans, it is possible to see in Figures 6.117-6.124 that the registration was successful.

Figure 6.117: Atlas/sequence slices paired before registration process, for patient 349, PD sequence. Pair slices only.

Figure 6.118: Atlas/sequence slices paired after registration process, for patient 349 , PD sequence. Pair slices only.

Figure 6.119: Atlas/sequence slices paired before registration process, for patient 93, PD sequence. Slices that are multiple of 3 only.

Figure 6.120: Atlas/sequence slices paired after registration process, for patient 93, PD sequence. Slices that are multiple of 3 only.

Figure 6.121: Atlas/sequence slices paired before registration process, for patient 79 , PD sequence. Slices that are multiple of 3 only.

Figure 6.122: Atlas/sequence slices paired after registration process, for patient 79 , PD sequence. Slices that are multiple of 3 only.

Figure 6.123: Atlas/sequence slices paired before registration process, for patient 894, T1 sequence. Slices that are multiple of 3 only.

Figure 6.124: Atlas/sequence slices paired after registration process, for patient 894, T1 sequence. Slices that are multiple of 3 only.

6.2.3 Feature extraction

It is possible to proceed to the feature extraction process. As the final steps of the image processing were different for the lesion manual labeling databases and for the MRI total head database, there was the need to individualize both feature extraction methods. However, the main ideas were the same. As mentioned for the MRI total head database, the extracted features had as origin defined head regions where there was not a previous knowledge about lesion existence. On the other hand, for the lesion databases, features were extracted only from regions classified by the physicians as lesions.

6.2.3.1 MRI Total Head database

There are available different sequences extracted directly from the real MRI scan: brain only sequence, non-brain sequence structures and total sequence. With the rest of the atlas tools, there was possible to extract three more regarding the tissue nature: CSF, GM and WM. For this, it was used the atlas that characterized the brain as background, CSF, GM and WM.

The same principle was applied to the anatomical atlases, where it was possible to make a sequence for each individualized region of each atlas. However, in these regions, some extra measures were required. As known, these atlas tools suffered the same registration process that the total head sequence atlas did, making some approximations and artifact misguidances. In order to avoid some made discrepancies, these anatomical atlases previously suffered a numerical round process followed by an image opening procedure. This opening procedure was made with a disk of one pixel of diameter.

This was performed for every available sequence: brain only sequence, non-brain sequence, total sequence, GM sequence, WM sequence, CSF sequence and for each anatomical atlas region sequence. This process was performed for any modality: T1, T1-Gde, T2, Flair and PD, as shown in Figure 6.125. The main concepts behind the feature extraction were:

Figure 6.125: Full procedure pipeline for the construction of the MRI whole head database.

1. Area: exploratory method in order to check if there are modified areas due
to the presence of lesions.
2. Fast Fourier Transform (FFT): by decomposing an image into its sine and cosine components and entering frequency domain, some new discriminative factors may arise.
3. Color histogram: lesions are easily distinguished in the MRI scans by their intensity differences regarding non-lesion tissues. Thus, image intensity histogram can be interesting.
4. Symmetry: lesion placement is not symmetrical as a lesion can appear at any brain part. Thus, if a brain has lesions, the symmetry will be naturally affected.
5. Gray Level Co-Occurrence Matrix (GLCM) properties: GLCM is a statistical method of examining texture by considering the spatial relationship of pixels. This way, non-lesion tissues and lesion tissues will possess different GLCM property values. Thus, local variations, homogeneity, joint probability occurrence of certain pixels and uniformity will be measured.
6. Entropy: the measurement of the order of an image. A brain with a higher number of lesions will theoretically have a higher entropy value as its information amount is greater.
7. Raw features: related to pixel intensity. As physicians tend to do this process automatically due to pixel intensity, this kind of procedure will also be attempted.

The extracted features with pixel intensity as the main concept are:

1. Mean area: the sum of the area calculated in each slice divided by the total number of slices.
2. Median area: the median of all area slices.
3. Std area: the standard deviation of all area slices.

In the extracted FFT features, it waas firstly computed for each slice the respective log-normalized FFT spectrum. In other words, the 2D FFT of each slice was computed and then log-divided by its DC mean-component. The final output, regarding all slices, was named as volume_fft. Its symmetrical part was also removed. The extracted features were:

1. Mean_mean fft: the mean value of the volume_ftt mean.
2. Std_mean fft: the standard deviation value of the volume_ftt mean.
3. Median_mean fft: the median value of the volume_ftt mean.
4. Mean_std fft: the mean value of the volume_ftt standard deviation.
5. Median_std fft: the median value of the volume_ftt standard deviation.
6. Std_std fft: the standard deviation value of the volume_ftt standard deviation.
7. Mean_median fft: the mean value of the volume_ftt median.
8. Median_median fft: the median value of the volume_ftt median.
9. Std_median fft: the standard deviation value of the volume_ftt median.
10. Mean_intensity fft: the mean intensity value at mean intensity frequency of all volume_fft slices.
11. Median_intensity fft: the median intensity value at median intensity frequency of all volume_fft slices.
12. Mean_intensity_freq fft: the mean intensity frequency of volume_fft.
13. Median_intensity_freq fft: the median intensity frequency of volume_fft.

The extracted features with color histogram as the main concept were:

1. Mean_histogram_(1:20): 20 features, each for each histogram bin, since the histogram was divided in 20 bins. Each feature is the mean value of the respective bin.
2. Median_histogram_(1:20): 20 features, each for each histogram bin, since the histogram was divided in 20 bins. Each feature is the median value of the respective bin.
3. Bin_location_mean_mean histogram: the mean bin location regarding the mean intensity.
4. Bin_location_median_mean histogram: the median bin location regarding the mean intensity.
5. Bin_location_mean_median histogram: the mean bin location regarding the median intensity.
6. Bin_location_median_median histogram: the median bin location regarding the median intensity.
7. Std_median histogram: the standard deviation of the median histogram.
8. Std_mean histogram: the standard deviation of the mean histogram.
9. Std_bin_location_mean histogram: the standard deviation of the bin location regarding the mean intensity.
10. Std_bin_location_median histogram: the standard deviation of the bin location regarding the median intensity.
11. Std_histogram_(1:20): 20 features, each for each histogram bin, since the histogram was divided in 20 bins. Each feature is the standard deviation of the respective bin.
12. Median_std histogram: the median value of the standard deviations values
regarding all intensity values.
13. Mean_std histogram: the mean value of the standard deviations values regarding all intensity values.
14. Std_std histogram: the standard deviatin value of the standard deviations values regarding all intensity values.
15. Bin_location_median_std histogram: the median bin location regarding the standard deviation of the intensity.
16. Bin_location_mean_std histogram: the median bin location regarding the standard deviation of the intensity.
17. Bin_location_max_std histogram: the max bin location regarding the standard deviation of the intensity.
The extracted features with symmetry as the main concept were:
18. Mean_symmetry_lr: mean symmetry value of all slices regarding a vertical axis.
19. Median_symmetry_lr: median symmetry value of all slices regarding a vertical axis.
20. Std_symmetry_lr: standard deviation symmetry value of all slices regarding a vertical axis.
21. Mean_symmetry_ud: mean symmetry value of all slices regarding an horizontal axis.
22. Median_symmetry_ud: median symmetry value of all slices regarding an horizontal axis.
23. Std_symmetry_ud: standard deviation value of all slices regarding an horizontal axis.

The extracted features with GLCM properties as the main concept were:

1. Mean_contrast_glcm: mean contrast value of all slices.
2. Median_contrast_glcm: median contrast value of all slices.
3. Std_contrast_glcm: standard deviation contrast value of all slices.
4. Mean_correlation_glcm: mean correlation value of all slices.
5. Median_correlation_glcm: median correlation value of all slices.
6. Std_correlation_glcm: standard deviation correlation value of all slices.
7. Mean_energy_glcm: mean energy value of all slices.
8. Median_energy_glcm: median energy value of all slices.
9. Std_energy_glcm: standard deviation energy value of all slices.
10. Max_energy_glcm: maximum energy value of all slices.
11. Min_energy_glcm: minimum energy value of all slices.
12. Mean_homogeneity_glcm: mean homogeneity value of all slices.
13. Median_homogeneity_glcm: median homogeneity value of all slices.
14. Std_homogeneity_glcm: standard deviation homogeneity value of all slices.
15. Max_homogeneity_glcm: maximum homogeneity value of all slices.
16. Min_homogeneity_glcm: minimum homogeneity value of all slices. The extracted features with entropy as the main concept were:
17. Volumetric_entropy: sum of all entropy slices.
18. Mean_entropy: mean entropy value.
19. Median_entropy: median entropy value.
20. Std_entropy: standard deviation entropy value.
21. Max_entropy: maximum entropy value.
22. Min_entropy: minimum entropy value.

The extracted features with raw feature extraction as the main concept were:

1. Raw_mean_mean: mean value of the mean pixel intensity.
2. Raw_median_mean: median value of the mean pixel intensity.
3. Raw_std_mean: standard deviation of the mean pixel intensity.
4. Raw_mean_median: mean value of the median pixel intensity.
5. Raw_median_median: median value of the median pixel intensity.
6. Raw_std_median: standard deviation of the median pixel intensity.
7. Raw_mean_std: mean value of the standard deviation pixel intensity.
8. Raw_median_std: median value of the standard deviation pixel intensity.
9. Raw_std_std: standard deviation of the standard deviation pixel intensity.

The feature extraction did not stop here. As the number of samples was reduced and it was desirable to explore the fastest way the largest number of different features, several ones were calculated by combining them. In other words, there were features extracted by combining different ones through the use of simple mathematical operations as subtraction and division.

Thus, with all the features extracted, ratios and differences were also calculated and used as features. Here are the combinations performed:

1. A1_BO_ratio(diff): Anatomical Volume I/(-)Brain only sequence (for all regions from anatomical map I).
2. A1_NB_ratio(diff): Anatomical Volume I/(-)Non brain structures sequence (for all regions from anatomical map I).
3. A1_WB_ratio(diff): Anatomical Volume I/(-)Total head sequence (for all regions from anatomical map I).
4. A1_CSF_ratio(diff): Anatomical Volume I/(-)CSF sequence (for all regions
from anatomical map I).
5. A1_GM_ratio(diff): Anatomical Volume I/(-)GM sequence (for all regions from anatomical map I).
6. A1_WM_ratio(diff): Anatomical Volume I/(-)WM sequence (for all regions from anatomical map I).
7. A2_BO_ratio(diff): Anatomical Volume II/(-)Brain only sequence (for all regions from anatomical map II).
8. A2_NB_ratio(diff): Anatomical Volume II/(-)Non brain structures sequence (for all regions from anatomical map II).
9. A2_WB_ratio(diff): Anatomical Volume II/(-)Total head sequence (for all regions from anatomical map II).
10. A2_CSF_ratio(diff): Anatomical Volume II/(-)CSF sequence (for all regions from anatomical map II).
11. A2_GM_ratio(diff): Anatomical Volume II/(-)GM sequence (for all regions from anatomical map II).
12. A2_WM_ratio(diff): Anatomical Volume II/(-)WM sequence (for all regions from anatomical map II)
13. Raw_CSF_brain_ratio(diff): CSF sequence/(-) Total head sequence.
14. Raw_GM_brain_ratio(diff): GM sequence/(-) Total head sequence.
15. Raw_WM_brain_ratio(diff): WM sequence/(-) Total head sequence.
16. Raw_CSF_BO_ratio(diff): CSF sequence/(-) Brain only sequence.
17. Raw_GM_BO_ratio(diff): GM sequence/(-) Brain only sequence.
18. Raw_WM_BO_ratio(diff) WM sequence/(-) Brain only sequence.
19. Raw_CSF_NB_ratio(diff): CSF sequence/(-)Non brain structures sequence.
20. Raw_GM_NB_ratio(diff): GM sequence/(-)Non brain structures sequence.
21. Raw_WM_NB_ratio(diff): WM sequence/(-)Non brain structures sequence.

6.2.3.2 Manual lesion labeling

As mentioned, the last processing steps were different regarding which database was desirable to build. The base features extracted for all databases are the same. In One lesion one sample database case, the extracted features were directly the ones from the mentioned database. In One study one sample database case, the used features were calculated using One lesion one sample database features. In One patient one sample database, the used features are calculated using One study one sample database, as it can be seen in Figures 6.126 and 6.127. The CSF, GM, WM, tissue maps and anatomical maps were also used to extract features from lesions.

The other sequences, such as the brain and non-brain structures, were not needed for natural reasons (brain lesions).

Figure 6.126: Full procedure pipeline from image processing untill database creation for lesion databases.

Figure 6.127: Lesion databases creation method.

As the features were extracted directly from lesions, they differed from the MRI total head database ones. Some concept ideas were excluded in this case since it was verified that its output always was a NaN or an infinite value, such as the FFT case. Regarding entropy and symmetry, theoreticaly it does not make sense to retrieve related features since the extracted characteristics were only regarding the lesions themselves. Thus, the main ideas behind the feature extraction were:

1. Shape: it is interesting to have an opportunity to study the influence of the lesion shape as these constitute characteristics easily extracted.
2. Positioning: it is also interesting to be able to study the influence of the lesion positioning.
3. Pixel intensity: the most intuitive characteristics that one can extract. The ones that make possible to automatically identify a region as a potential lesion.
4. Histogram: the same reason why the intensity values will be extracted.
5. GLCM properties: it is interesting to have an opportunity to perform texture analysis regarding the lesion regions only.
The extracted features with shape as the main concept are:
6. Lesion area/slice_area: lesion area divided by the skull slice area.
7. Major axis length/slice_perimeter: the major axis length divided by the skull slice perimeter.
8. Minor axis length/slice_perimeter: the inner axis length divided by the skull slice perimeter.
9. Eccentricity: eccentricity is a parameter associated with the conic section, where it can be interpreted as the measure of how much the conic section deviates from a circular shape. Thus, a perfect circle has 0 value of eccentricity.
10. Orientation: the absolute of the angle between the x -axis and the major axis of the ellipse that has the same second-moments as the region.
11. ConvexArea/slice_area: the number of pixels inside the convex hull specified by the lesion divided by the skull slice area.
12. EquivDiameter/slice_perimeter: diameter of a circle with the same area as the region divided by the skull slice perimeter.
13. Solidity: the proportion of pixels in the convex hull that is also in the region.
14. Extent: the ratio of pixels in the region to pixels in the total bounding box.
15. Perimeter/slice_perimeter: the perimeter divided by the skull slice perimeter.

The extracted features with positioning as the main concept were:

1. Refspace: the position value regarding the relative spatial position vector.
2. Distance to the centre of skull: the Euclidean distance to the centre of the skull slice.
The extracted features with pixel intensity as the main concept are:
3. Mean pixel intensity/slice_meanPixel: mean lesion pixel intensity divided by the skull slice mean pixel intensity.
4. Median pixel intensity/slice_meanPixel: median lesion pixel intensity divided by the skull slice mean pixel intensity.
5. Max pixel intensity/slice_meanPixel: maximum lesion pixel intensity divided by the skull slice mean pixel intensity.
6. Min pixel intensity/slice_meanPixel: minimum lesion pixel intensity divided by the skull slice mean pixel intensity.
7. Var pixel intensity/slice_meanPixel: variance of the lesion pixel intensity divided by the skull slice mean pixel intensity.
The extracted features with GLCM propoerties as the main concept were:
8. Lesion contrast/slice contrast: lesion contrast normalized by the skull slice contrast.
9. Lesion correlation/slice correlation: lesion correlation normalized by the skull slice correlation.
10. Lesion energy/slice energy: lesion energy normalized by the skull slice energy.
11. Lesion homogeneity/slice homogeneity: lesion homogeneity normalized
by the skull slice homogeneity.
As mentioned, GM, WM and CSF atlas sequences were also used. With these, other features were extracted related to the lesion location. For each one, the extracted features were:
12. Squares numbers lesion region $90 \% /$ total region with 90 : number of pixels occupied by the lesion where the probability of a certain tissue (GM, WM, CSF) is at least 90% divided by the total number of pixels with at least 90%.
13. Mean tissue prob: the mean probability value regarding the tissue probability pixels occupied by the lesion.
14. Median tissue prob: the median probability value regarding the tissue probability pixels occupied by the lesion.
15. Var tissue prob: the variance of the probability value regarding the tissue probability pixels occupied by the lesion.
16. Max tissue prob: the maximum probability value regarding the tissue probability pixels occupied by the lesion.
17. Min tissue prob: the minimum probability value regarding the tissue probability pixels occupied by the lesion.

The extracted features related to the atlas tissue map were:

1. Belongs to the $\mathbf{3}$ tissues: binary feature, it the lesion occupies pixels of the three possible tissues.
2. Percentage of GM: the percentage of pixels occupied by the lesion belonging to GM.
3. Percentage of WM: the percentage of pixels occupied by the lesion belonging to WM.
4. Percentage of CSF: the percentage of pixels occupied by the lesion belonging to CSF.
5. Belongs mostly to GM: binary feature, if the majority of pixels occupy GM tissue.
6. Belongs mostly to WM: binary feature, if the majority of pixels occupy WM tissue.
7. Belongs mostly to CSF: binary feature, if the majority of pixels occupy CSF tissue.

The extracted features related to the atlas anatomical maps for each region were:

1. Lesion in the region: binary feature, if at least one lesion pixel occupies the
anatomical region in question.
2. Ratio on the region affected by lesion: the number of lesion pixels that occupy the anatomical region divided by the total area in pixels of the region.
3. Mean pixel intensity: the mean pixel intensity of the pixels that occupy the anatomical region in question.
4. Median pixel intensity: the median pixel intensity of the pixels that occupy the anatomical region in question.
5. Var pixel intensity: the variance of the pixel intensity of the pixels that occupy the anatomical region in question.
6. Max pixel intensity: the maximum pixel intensity of the pixels that occupy the anatomical region in question.
7. Min pixel intensity: the minimum pixel intensity of the pixels that occupy the anatomical region in question.

As seen in Figure 6.127, One study one sample database was constructed by using One lesion one sample database features and performing some calculations with them. Thus, One study one sample can be seen as the interpretation of all lesion features at the same time regarding a study. To do this, the minimum, maximum, variance, mean and median of all lesion features are calculated and turned into the One study one sample features. Besides these, it is also calculated the number of regions that a certain lesion occupies in both anatomical maps, separately.

The same mechanism was applied to One study one database to build theOne patient one sample database. The mean, median, variance, minimum and maximum were applied to the existing features and used as the new features for the new database.

6.3 Feature selection

In this project, the amount of initial features was very large when compared to the number of samples. As known, this could have led to overfitting problems, due to the curse of dimensionality. Thus, it was necessary to reduce them in order to have a reduced set of discriminative ones. Besides, if one would work with the complete set of features, not only it would have overfitting problems but it would also be very complex to obtain an interpretation (clinical or not).

The used strategy to evaluate the features discriminative power consisted in a series of tests as a first step. Afterwards, a correlation between features was performed in order to avoid redundancy (if two features had a very high correlation,
only one was needed since they provided the same information). Depending on the number of features that remained when compared to the number of samples, an extra step was made. One of the feature tests used in the first step was used as final selection in order to reduce them to a minimal number. The criteria for the selection of the used test consisted in being directly related to the classification process. Thus, theoretically it is the test that will ensure the best set of features regarding classification performance. The pipeline scheme of the feature selection can be seen in Figure 6.128, which was used for all clinical databases.

Figure 6.128: Feature selection scheme for all clinical databases.

Regarding image databases, since the number of features was significantly higher, the computation task would be tremendously heavy if one would apply the same procedure. Thus, to the clinical feature selection pipeline, a previous step is added: features had a first selection regarding its correlation to label and its performance in Kruskal-Wallis test. As it was needed some robust test and since it was impossible to use one that used the whole set of features simultaneously, there was the need to choose one that evaluated each feature independently. As a consequence, it was decided to use two. The correlation with the label offered a good measure of how directly was the discriminative power regarding the feature. Besides, it is not a parametric test, not assuming a Gaussian distribution over the data (as several tests do). This can be seen in Figure 6.129:

Figure 6.129: Feature selection scheme for all image databases.

The used feature tests are:

1. Boxplot visualization: test A.
2. Kruskal-Wallis test: test B.
3. Correlation with label: test C.
4. F-score: test D.
5. Feature and label AUC: test E.
6. Minimum redundancy maximum relevance test: test F.
7. ReliefF algorithm: test G.
8. Decision tree feature importance: test H.
9. Ansari-Bradley test: test I.
10. Two sample Kolmogorov-Smirnov test: test J.
11. Wilcoxon rank sum test: test L.

Boxplot is a method that makes able to evaluate graphically the discriminative power of a feature. Boxplots are non-parametric, since they display the variation of samples without making any assumptions regarding its statistical distribution. The spaces between the different box parts are directly related to data dispersion. A feature was considered to have discriminative power when its boxes (one box for
each class) did not intersect. By other words, when the first quartile of one box was higher than the third one of the other box.

Kruskal-Wallis is also a non-parametric test to verify if two samples come from the same distribution. These samples can have different sizes. As Kruskal-Wallis is a statistical test, the α value used as threshold was 0.05 . Thus, it is possible to deny the null hypothesis if p -value $<\alpha$.

Correlation with the label is an intuitive feature as it provides a direct feature relation regarding the label. The used threshold value was 0.25 due to the observed results.

F-score is directly related to the mean differences between the two classes and their standard deviation. Features with good discriminative power will have a high F-score value, where the used threshold is 0.1 due to the observed results. Higher the difference of the means and lower the standard deviation of each one, higher is the F-score value, as it can be seen in the following equation, where X_{0} and X_{1} represent the data belonging to each class (0 and 1):

$$
\text { Fscore }=\frac{\left(\text { mean }\left(X_{0}\right)-\operatorname{mean}\left(X_{1}\right)\right)^{2}}{\operatorname{std}\left(X_{0}\right)^{2}+\operatorname{std}\left(X_{1}\right)^{2}} .
$$

It is possible to create a Receiver Operator Characteristic (ROC) curve specifically for every feature. A ROC curve is created by plotting the true positive rate against false positive rate by changing the feature threshold regarding a classification decision. The AUC is the area under the ROC curve. The higher its value, the greater is the feature predictive value. An area of value 1 represents a perfect feature, where an area of 0.5 represents a random behavior. The used threshold for the AUC was 0.65 due to the observed results.

Minimum Redundancy Maximum Relevance (mRMR) is an algorithm that takes as input the whole set of features, ranking them by its discriminative power and intra-correlation. This way, the top-ranked features will not only have the higher discriminative power but also the lowest redundancy regarding the rest of the features. Relevance can be calculated with F-statistic or mutual information, regarding feature nature (continuous/discrete) and redundancy can be calculated by using Pearson correlation coefficient or mutual information, regarding feature nature once again [77].

ReliefF is a feature selection algorithm used in binary classification. This takes as input the whole set of features, ranking them by its discriminative power. However, it does not take into account the possibility of information redundancy. ReliefF was used by applicating it in a regression with k nearest neighbors as it was used MATLAB relieff function. It was used a $\mathrm{K}=3$.

Decision tree feature importance is a very interesting test as it is directly re-
lated to the classification process (a decision tree is a classification algorithm). In this test, a fitted binary classification tree is created based on the whole set of features. Afterwards, the feature importance of each one is calculated by analyzing the tree structure. Besides, it is also an interesting test since decision trees are easily interpreted.

Ansari-Bradley, Two-sample Kolmogorov-Smirnov and Wilcoxon rank sum are all statistical tests, where each of them has a null hypothesis. Similarly to the Kruskal-Wallis, Ansari-Bradley test, the threshold value (α) for rejecting the null hypothesis is 0.05 . Ansari-Bradleys null hypothesis test is that the data in the two classes come from the same distribution. The two sample Kolmogorov-Smirnov null hypothesis test is that the data in the two classes come from the same continuous distribution. Wilcoxon rank sum null hypothesis test is that the data in the two classes are samples from continuous distributions with equal medians.

It was naturally expected that no feature would get a score of value 11 (to each passed test is attributed 1 point) as some tests are for certain types of features (parametric/non-parametric, continuous/discrete). The goal of this feature selection step was to select the ones that had a relatively higher score regarding the others. The goal with this set of tests is was explore all possibilities and to analyze each feature from different perspectives.

6.4 Supervised learning

After the set of features was chosen for each database regarding each label, supervised learning algorithms were performed in order to evaluate the predictors quality. As the number of samples was reduced in all databases, except One lesion one sample database, it was desired to test these cases in the most variable situations. It was a valid path to give an insight on how the model would generalize to a set of independent datasets and cases. If one case is succeeded in different conditions, the level of trust in the given results is naturally higher. Besides, trying different methods also reduces some existing bias, since some cases can have outstanding performances due to certain data circumstances.

This is the reason why three different partition methods were attempted: KFold with $\mathrm{K}=10$, LOO and the traditional one (70:30 ratio). Dimensionality reduction was also an approach method, in order to check if the results would improve or not with it. The used dimensionality reduction technique was PCA. For the same reasons, there were tested 11 different classification algorithms: decision tree, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Sup-
port Vector Machine (SVM), K-Nearest Neighbors (KNN) with K=1,3 and 5, Naive Bayes classifier, Generalized Linear Model (GLM) regression and minimum distance classifier with Euclidean and Mahalanobis distance. Thus, all combinations were tested, as shown in Figure 6.130.

Afterwards, the results were analyzed regarding different metrics calculated with a confusion matrix and with a ROC curve.

Figure 6.130: The scheme of the supervised learning procedure.

6.4.1 Partition methods

The most common method for partition the data is to consider 70% of data for training and the other 30% for testing. As it is the classical approach, it was used. However, as already mentioned, the number of samples of the existing databases is reduced. Due to the randomness of the training/test set, some performances may be extremely good or bad due to a certain selection for each set. So, in order to avoid these discrepancies, this process was repeated 100 times and its results were averaged. This partition method does not seem to be the most adequate for a reduced number of samples.

K-Fold 10 is a more appropriate method for a reduced number of samples. In k -Fold partitioning, the dataset is divided into k equal-sized groups. Again, this division is random. While one of the k groups will be used as the test set, the others $\mathrm{k}-1$ will constitute the training set. This process is repeated k times in order to every k group to be the train set. As the dataset is small, by experimenting
different combinations of training and test samples, a more insight will be provided. Besides, this process was repeated 100 times and its results were averaged. This method is considered to be more appropriate since it theoretically allows a deeper use of the existing samples as there are performed k different combinations per step.

Leave One Out (LOO) partition method can be seen as a particular method of K -Fold, where $\mathrm{K}=$ number of samples. Thus, all samples are used as the test set individually while the rest (all samples except the selected one) constitutes the training set. In this case, since there are no random set attributions, the process was not repeated for each sample.

6.4.2 Dimensionality reduction

Principal Component Analysis (PCA) is a statistical procedure where a set of observations are transformed into a set of values linearly uncorrelated variables, commonly named principal components. The amount of principal components is the same as features. This transformation is performed by analyzing the direction and orientation where the existing variance will be the highest. Thus, the first principal component will have the largest possible variable. After the first, every orthogonal component will be evaluated and selected the one with the highest variance, and so on. A common procedure in PCA analysis is to discard the principal components having the least quantity of information. In other words, the ones that possess the lowest variance value.

In this thesis, the number of principal components was choosed according to the relative amount of information (0.85 as threshold). In other words, the variance of all principal components is summed and a cumulative sum operation is performed from the first to the last components. When the amount of information divided by the total reaches a significant value regarding the number of components (3/4), no more components are selected. This number of components was taken into account due to the database size, in order to reduce overfitting. 0.85 was the commonest threshold that complied with this number of principal components. This technique is interesting because it is a path to reduce the number of features and therefore to reduce overfitting risk.

However, since PCA constitutes a transformation in the data, features lose its original meaning, since a principal component is constituted by several weights of different features.

6.4.3 Classification algorithms

Decision trees go from observations (represented in the branches) to conclusions about a sample value (a certain class of a label, represented in the leaves). These mentioned observations are simple conditions, where a threshold is used upon a feature. For example, the condition feature $x>0.5$ will result in a bifurcation. A tree is constructed by evaluating the set of features regarding the class, resulting in several branches until leaves are reached. As a final output, an interpretable scheme with a tree shape is presented as an algorithm to predict new data. The advantage of trees, besides the real world intuitive interpretation, it is the possibility to analyze all sample cases and to decide the most important ones. This decision criteria can be variate, where entropy is commonly an used one. The used decision tree was the one created with the default definitions of MATLAB function fitctree.

LDA, besides being a classification algorithm, is also a dimensionality reduction technique, where it projects multidimensional data into a 1D space. In other words, LDA natively projects multidimensional data into a $\mathrm{C}-1$ dimension, where C is the number of classes. This means that, for binary problems, it projects the data into 1 dimension. However, LDA is a supervised learning technique, while PCA does not take into account the labels (its procedures are based only on data intrinsic properties). The data is projected with the goal of increasing the distance between the two class means and with the goal of minimizing the intra-class variance. QDA has a similar procedure, however, instead of projecting the data into a linear space, it is projected into a quadratic one (2D).

The goal of KNN is the application of a database where new data is labeled simply regarding the training samples position. Thus, to predict a new point, the k nearest points of the point to be predicted are chosen, where the predicted label is the most common between these. K should not be even in order to exclude the possibility to have equally common labels regarding the k nearest points. KNN was performed with $\mathrm{K}=1,3$ and 5 as these are odd numbers. Besides, the K value must not be large in order to be sensitive to the points localizations. Thus, these 3 values were tested to verify how the algorithm reacts to different levels of noise and position sensitivity.

SVM algorithms project the training set in a high dimensional space through the use of a kernel function. The non-linear data suffers a transformation in a way that a line (discriminative hyperplane) can be generated to separate the existing classes. This class distance must be maximized. Some samples are used to define separation margins and to define the decision hyperplane. These samples are named
support vectors. The data to be tested is, therefore, projected into the high dimensionality space created with the training set where it will be classified according to its localization regarding the discriminative hyperplane. These calculations are performed with a kernel function, where the Radial Basis Function (RBF) was the used one. A standard SVM algorithm has the objective of finding a space were is possible to be drawn a plane able to separate the existing classes.

Naive Bayes classifier is different from all the presented algorithms so far as it is not essentially dependent in the spatial distribution of the samples. This classifier has statistical ideas as the main concept since it is considered a conditional probability model. By taking into the account the Bayes theorem, it is possible to decompose the conditional probability into the multiplication of the prior probability and likelihood divided by the evidence. Since the evidence is a constant value, the core of this algorithm is present in the multiplication operation. By assuming conditional independence of all features, the model gets simplified and intuitive. This model is combined with a decision rule, where the most common it is to choose the one with the higher probability (argmax operation).

A regression analysis was made with GLM. GLM consists in a flexible generalization of a standard linear regression. With the GLM trained, a regression is made by applying a decision criteria regarding a chosen threshold. The chosen threshold was 0.5 as it is the most common one applied in standard linear regressions.

In the minimum distance classifier, the distance of a new point is measured regarding the medium feature value of each class of the training set. The predicted class will be the one that ensured the lowest distance to the new point. In this project, two different metrics were tested: Euclidean and Mahalanobis distances. The difference between these two distances, in practical terms, is that Mahalanobis distance is independent of feature scaling.

6.4.4 Evaluation metrics

With the given results and with the real labels, a confusion matrix was calculated for each case. As all problems were binary, this matrix will always be a 2×2 one, indicating the number of false positives, false negatives, true positives and true positives. With this matrix, it is possible to calculate some metrics in order to have a deeper insight regarding a certain performance. True positives and true negatives represent the successfully predicted cases, while false positives and negatives represent the failed ones. The calculated metrics were:

1. Specificity: the ratio of successfully classified negative predicted cases re-
garding all negative ones.
2. Sensitivity: the ratio of successfully classified positive predicted cases regarding all positive ones.
3. PPV: the ratio of successfully classified positive predicted cases regarding all cases predicted as positive.
4. NPV: the ratio of successfully classified negative predicted cases regarding all cases predicted as negative.
5. Accuracy: the ratio of successfully classified predicted cases.

The ROC curve is also an interesting output regarding the predicting results. As mentioned in the feature selection procedure, it is a graphical plot that illustrates the capacity of a binary classifier regarding the decision threshold variation. This curve is created by changing the threshold value in order to find all labeling decision cases. For each threshold value, the true positive rate and false positive rate are calculated. In fact, the true positive rate it is commonly known as sensitivity and false positive rate can be calculated by (1-specificity). The AUC is an interesting estimator regarding the ROC as it provides an overall view regarding the performance with every threshold value. The ideal case is the one where both classes are totally linearly separatable by a certain threshold value. In this case, the AUC has value 1. The higher the AUC value, higher the performance.

Chapter 7

Results

Since the results were very extense, an evaluation system was created in order to make them simpler to interpret. Since these have a significant variability due to the use of different datasets, partition methods, classifiers and sets of features, it was decided to grade the overall performance among labels. The best-graded labels were the ones explored in a deeper level as the degree of trust in them is logically higher.

As it can be seen, the existing labels are all correlated in a certain way, since are all EDSS-related (except label msCourse). Thus, among the best ranked-labels, the most common features were highlighted as a sign of coherence in these processes. In other words, if a feature was described as a good predictor in several different databases and different labels, it was considered to be an influent factor for MS disease progression evaluation.

Two overall performance methods were used, one using AUC (area under the curve) and the other using the set of classification performance measures (Specificity, Sensibility, PPV, NPV, Accuracy).

The AUC performance method consisted in attributing 1 point to a classifier whose AUC is higher than $0.69,2$ points to higher than 0.79 and 3 points to values higher than 0.89 (Table E. 2 in Appendix V). If the performance was obtained using the 70:30 ratio partition method, it was multiplied by 1 , by 2 with k-Fold method and by 3 with LOO method (Table E. 3 in Appendix V). The total score of a set of features to a certain label is the sum of points of all the classifiers within the same database. This way, the performance had the influence of the different partition methods and was considered to be better if the set of features evaluated had a
higher number of classifiers performing effectively.
The method using classification performance measures consisted in attributing 1 point to a classifier if the lowest stat (specificity or sensibility or PPV or NPV or accuracy) was higher than $0.49,2$ points if higher than $0.59,3$ points if higher than $0.69,4$ points if higher than $0.79,5$ points if higher than 0.89 (Table E. 2 in Appendix V). Similarly to the AUC performance method, the points were multiplied (Table E. 3 in Appendix V) regarding the partition method.

With these two performance methods, the most trustful paths in order to explore were found. The classification performances measures can be found in Appendix V .

7.1 Performance metric analysis

With the obtained results on different databases, an overall integration of the scores was made. With this, aiming to find the most reliable set of features/set of labels in order to make a deeper analysis afterward to get some insights about MS progression.

In each database, the three highest scored labels were selected (the ones in bold in each table) and attributed points, according to Table 7.1.

The analysis is agglomerative as it starts by grouping the database scoring according to the source of data (clinical or image origin). In the image databases, there is a separation between the lesion source and the total MRI source. Then, an overall one is calculated, where the result score is the sum of all databases scores (tables 7.6 and 7.13). Two alternatives of overall metrics are also calculated, using again the system of Table 7.1, one gathering all databases (tables 7.7 and 7.14) and another with the all image databases, all clinical databases and the already mentioned overall one (tables 7.8 and 7.15).

Table 7.1: The evaluation metric used with the labels rank.

Position	Score
1st	3 points
2 nd	2 points
3rd	1 point

7.1.1 AUC performance method analysis

7.1.1.1 Image databases

Table 7.2: The label scoring of the MRI total head database with AUC performance method.

Label	Score
msCourse	$\mathbf{1}$
highestEDSS	$\mathbf{3}$
currentEDSS	0
nextEDSS	0
first2EDSS	0
tendencyEDSS	0
mediumEDSS	$\mathbf{2}$

Table 7.3: The label scoring of the lesions database with AUC performance method.

Label	Score
msCourse	0
highestEDSS	$\mathbf{5}$
currentEDSS	0
nextEDSS	$\mathbf{5}$
first2EDSS	0
tendencyEDSS	0
mediumEDSS	0

Table 7.4: The label scoring of all image source databases with AUC performance method.

Label	Score
msCourse	1
highestEDSS	$\mathbf{8}$
currentEDSS	0
nextEDSS	$\mathbf{5}$
first2EDSS	0
tendencyEDSS	0
mediumEDSS	$\mathbf{2}$

7.1.1.2 Clinical databases

Table 7.5: The label scoring of all clinical source databases with AUC performance method.

Label	Score
msCourse	3
highestEDSS	$\mathbf{1 6}$
currentEDSS	1
nextEDSS	$\mathbf{1 0}$
first2EDSS	4
tendencyEDSS	0
mediumEDSS	$\mathbf{9}$

7.1.1.3 Performance ensembling

Table 7.6: The label scoring of all databases with AUC performance method.

Label	Score
msCourse	4
highestEDSS	$\mathbf{2 4}$
currentEDSS	1
nextEDSS	$\mathbf{1 5}$
first2EDSS	4
tendencyEDSS	0
mediumEDSS	$\mathbf{1 1}$

Table 7.7: The label scoring of all databases with the position score system using AUC performance method.

Label	Score
msCourse	1
highestEDSS	$\mathbf{1 5}$
currentEDSS	0
nextEDSS	$\mathbf{9}$
first2EDSS	0
tendencyEDSS	0
mediumEDSS	$\mathbf{5}$

Table 7.8: The label scoring of the ensemble of all databases, all image databases and all clinical databases with the position score system using AUC performance method.

Label	Score
msCourse	0
highestEDSS	$\mathbf{9}$
currentEDSS	0
nextEDSS	$\mathbf{6}$
first2EDSS	0
tendencyEDSS	0
mediumEDSS	$\mathbf{3}$

7.1.2 Stats performance method analysis

7.1.2.1 Image databases

Table 7.9: The label scoring of the MRI total head database with Stats performance method.

Label	Score
msCourse	0
highestEDSS	$\mathbf{3}$
current	0
nextEDSS	$\mathbf{1}$
first2EDSS	0
tendencyEDSS	0
mediumEDSS	$\mathbf{2}$

Table 7.10: The label scoring of the lesions database with stats performance method.

Label	Score
msCourse	1
highestEDSS	$\mathbf{6}$
currentEDSS	0
nextEDSS	$\mathbf{5}$
first2EDSS	1
tendencyEDSS	0
mediumEDSS	$\mathbf{5}$

Table 7.11: The label scoring of all image source databases with stats performance method.

Label	Score
msCourse	1
highestEDSS	$\mathbf{9}$
currentEDSS	0
nextEDSS	$\mathbf{6}$
first2EDSS	1
tendencyEDSS	0
mediumEDSS	$\mathbf{7}$

7.1.2.2 Clinical databases

Table 7.12: The label scoring of all clinical source databases with stats performance method.

Label	Score
msCourse	0
highestEDSS	$\mathbf{1 2}$
currentEDSS	0
nextEDSS	$\mathbf{5}$
first2EDSS	0
tendencyEDSS	0
mediumEDSS	$\mathbf{8}$

7.1.2.3 Performance ensembling

Table 7.13: The label scoring of all databases with stats performance method.

Label	Score
msCourse	5
highestEDSS	$\mathbf{3 3}$
currentEDSS	0
nextEDSS	$\mathbf{1 3}$
first2EDSS	4
tendencyEDSS	0
mediumEDSS	$\mathbf{1 6}$

Table 7.14: The label scoring of all databases with the position score system using stats performance method.

Label	Stats
msCourse	0
highestEDSS	$\mathbf{1 5}$
currentEDSS	0
nextEDSS	$\mathbf{6}$
first2EDSS	0
tendencyEDSS	0
mediumEDSS	$\mathbf{1 0}$

Table 7.15: The label scoring of the ensemble of all databases, all image databases and all clinical databases with the position score system using stats performance method.

Label	Score
msCourse	0
highestEDSS	$\mathbf{9}$
currentEDSS	0
nextEDSS	$\mathbf{3}$
first2EDSS	0
tendencyEDSS	0
mediumEDSS	$\mathbf{6}$

7.1.3 Best scored labels

By analyzing the results by both metrics, it's possible to see a coherence in the results: the top 3 best ranked labels were in both cases the highestEDSS, mediumEDSS, nextEDSS, where the highestEDSS takes always the first place. With the AUC performance method, mediumEDSS takes second place and nextEDSS third, while on the stats performance method, they switch positions.

In order to focus the attention on these three cases, the information regarding them and the set of features will be displayed again, making easier the following interpretations and calculations.

7.1.3.1 HighestEDSS

Table 7.16: Overview of the performance of highestEDSS label. The best performances are in bold.

Database	Label	Stats method score	AUC method score
MRI Total Head	highestEDSS>3	131	24
MRI Total Head	highestEDSS>5	0	0
One sample one lesion	highestEDSS >3	0	0
One sample one lesion	highestEDSS >5	0	0
One sample one lesion ensemble	highestEDSS>3	0	0
One sample one lesion ensemble	highestEDSS >5	0	0
One sample one study	highestEDSS>3	61	4
One sample one study	highestEDSS >5	0	2
One sample one patient	highestEDSS>3	109	0
One sample one patient	highestEDSS >5	not performed	not performed
Static_Normal	highestEDSS>3	231	45
Static_Normal	highestEDSS >5	not performed	not performed
Static_Investigation	highestEDSS >3	110	14
Static_Investigation	highestEDSS>5	not performed	not performed
Groundzero_Normal	highestEDSS >3	145	20
Groundzero_Normal	highestEDSS>5	not performed	not performed
Groundzero_Investigation	highestEDSS>3	71	0
Groundzero_Investigation	highestEDSS >5	not performed	not performed
Momentaneous_Normal	highestEDSS>3	189	82
Momentaneous_Normal	highestEDSS >5	not performed	80
Momentaneous_Investigation	highestEDSS>3	146	61
Momentaneous_Investigation	highestEDSS >5	110	63
Momentaneous_Past_Normal	highestEDSS>3	233	124
Momentaneous_Past_Normal	highestEDSS>5	118	92
Momentaneous_Past_Investigation	highestEDSS >3	283	142
Momentaneous_Past_Investigation	highestEDSS >5	126	90

The set of features for each clinical database for highestEDSS label:

1. Static Standard for highestEDSS $>$ 3: EDSS Medium Value/year, EDSS 1st year, No Years.
2. Static Standard for highestEDSS >5 : not performed.
3. Static Investigation for highestEDSS $>$ 3: MS Course, No Years, Pyramidal first 2 years.
4. Static Investigation for highestEDSS >5 : not performed.
5. Groundzero Standard for highestEDSS $>$ 3: Optic Pathways, Ms Course, EDSS.
6. Groundzero Standard for highestEDSS >5 : not performed.
7. Groundzero Investigation for highestEDSS $>$ 3: Time since onset, Relapse Age.
8. Groundzero Investigation for highestEDSS >5 : not performed.
9. Momentaneous Standard for highestEDSS $>$ 3: Years since Onset, Last EDSS.
10. Momentaneous Standard for highestEDSS $>$ 5: MS Course, Years since Onset, Last EDSS, Gender.
11. Momentaneous Investigation for highestEDSS $>$ 3: Spinal Cord, Age Visit, Years since Onset.
12. Momentaneous Investigation for highestEDSS >5 : Spinal Cord, MS Course, Age Visit, Gender.
13. Momentaneous with past Standard for highestEDSS $>$ 3: Age Visit, EDSS Medium Value/Year, Average Treatment 2 first years.
14. Momentaneous with past Standard for highestEDSS >5 : Optic Pathways, EDSS Medium Value/Year, Pyramidal first 2 years, Corticosteroids 1st year.
15. Momentaneous with past Investigation for highestEDSS $>$ 3: Spinal Cord, Age Visit, Years since Onset, Nb of visits per Year, Sensory ratio, Corticosteroids Ratio.
16. Momentaneous with past Investigation for highestEDSS >5 : Optic Pathways, Pyramidal first 2 years, Corticosteroids 1st year.

The databases with the highest score belong to clinical origins, where the Momentaneous with past takes the first and second place of maximum scores. The investigation method seems to achieve better results, which is a very interesting fact, since it does not include EDSS-related features. The Static database also has an interesting performance.

7.1.3.2 MediumEDSS

Table 7.17: Overview of the performance of mediumEDSS label. The best performances are in bold.

Database	Label	Stats method score	AUC method score
MRI Total Head	mediumEDSS >3	48	20
MRI Total Head	mediumEDSS >5	0	0
One sample one lesion	mediumEDSS >3	6	0
One sample one lesion	mediumEDSS >5	0	0
One sample one lesion ensemble	mediumEDSS >3	0	0
One sample one lesion ensemble	mediumEDSS >5	0	0
One sample one study	mediumEDSS >3	10	0
One sample one study	mediumEDSS >5	not performed	not performed
One sample one patient	mediumEDSS >3	76	0
One sample one patient	mediumEDSS >5	10	0
Static_Normal	mediumEDSS >3	100	20
Static_Normal	mediumEDSS >5	not performed	not performed
Static_Investigation	mediumEDSS >3	66	5
Static_Investigation	mediumEDSS >5	not performed	not performed
Groundzero_Normal	mediumEDSS >3	38	20
Groundzero_Normal	mediumEDSS >5	not performed	not performed
Groundzero_Investigation	mediumEDSS >3	18	0
Groundzero_Investigation	mediumEDSS >5	not performed	not performed
Momentaneous_Normal	mediumEDSS >3	189	115
Momentaneous_Normal	mediumEDSS >5	not performed	not performed
Momentaneous_Investigation	mediumEDSS >3	132	83
Momentaneous_Investigation	mediumEDSS >5	not performed	not performed
Momentaneous_Past_Normal	mediumEDSS >3	104	73
Momentaneous_Past_Normal	mediumEDSS >5	not performed	not performed
Momentaneous_Past_Investigation	mediumEDSS >3	104	62
Momentaneous_Past_Investigation	mediumEDSS >5	not performed	not performed

The set of features for each clinical database for mediumEDSS label:

1. Static Standard for mediumEDSS $>$ 3: EDSS 1st year, Ratio nb EDSS increase, No Years.
2. Static Standard for medium $\boldsymbol{E D S S}>5$: not performed.
3. Static Investigation for mediumEDSS $>$ 3: Gender, Age of Onset, Nb of visits first 2 years, Pyramidal first 2 years, No Years.
4. Static Investigation for mediumEDSS >5 : not performed.
5. Groundzero Standard for mediumEDSS $>$ 3: Spinal Cord, CNS Pyramidal Tract, Brainstem-Cerebellum, Time since onset.
6. Groundzero Standard for mediumEDSS >5 : not performed.
7. Groundzero Investigation for mediumEDSS $>$ 3: Gender, Age of Onset, Nb of visits first 2 years, Pyramidal first 2 years, No Years.
8. Groundzero Investigation for mediumEDSS >5 : not performed.
9. Momentaneous Standard for mediumEDSS $>$ 3: Age of Diagnosis, Years from Onset to Diagnosis, Years since Onset, Last EDSS.
10. Momentaneous Standard for mediumEDSS >5 : not performed.
11. Momentaneous Investigation for mediumEDSS >3 : Age of Diagnosis, MS Course, Years since Onset.
12. Momentaneous Investigation for mediumEDSS >5 : not performed.
13. Momentaneous with past Standard for mediumEDSS >3 : Ratio nb EDSS increase, Last EDSS.
14. Momentaneous with past Standard for mediumEDSS >5 : not performed.
15. Momentaneous with past Investigation for mediumEDSS $>$ 3: Spinal Cord, MS Course, No Years, Pyramidal ratio, Pyramidal first 2 years.
16. Momentaneous with past Investigation for mediumEDSS >5 : not performed.
The databases with the highest score belong to clinical origins, where the Momentaneous and Momentaneous with past take the first three places. The investigation procedure occupies the second place, which is a very interesting fact since it does not include direct EDSS-related features.

7.1.3.3 NextEDSS

Table 7.18: Overview of the performance of nextEDSS label. The best performances are in bold.

Database	Label	Stats method score	AUC method score
MRI Total Head	nextEDSS>3	42	4
MRI Total Head	nextEDSS >5	6	0
One sample one lesion	nextEDSS >3	0	0
One sample one lesion	nextEDSS>5	0	0
One sample one lesion ensemble	nextEDSS>3	1	0
One sample one lesion ensemble	nextEDSS >5	0	0
One sample one study	nextEDSS >3	10	4
One sample one study	nextEDSS>5	19	2
One sample one patient	nextEDSS >3	not performed	not performed
One sample one patient	nextEDSS >5	not performed	not performed
Static_Normal	nextEDSS >3	not performed	not performed
Static_Normal	nextEDSS >5	not performed	not performed
Static_Investigation	nextEDSS >3	not performed	not performed
Static_Investigation	nextEDSS >5	not performed	not performed
Groundzero_Normal	nextEDSS >3	not performed	not performed
Groundzero_Normal	nextEDSS >5	not performed	not performed
Groundzero_Investigation	nextEDSS >3	not performed	not performed
Groundzero_Investigation	nextEDSS >5	not performed	not performed
Momentaneous_Normal	nextEDSS >3	146	122
Momentaneous_Normal	nextEDSS >5	92	50
Momentaneous_Investigation	nextEDSS >3	136	94
Momentaneous_Investigation	nextEDSS >5	6	6
Momentaneous_Past_Normal	nextEDSS >3	179	123
Momentaneous_Past_Normal	nextEDSS>5	98	59
Momentaneous_Past_Investigation	nextEDSS >3	148	109
Momentaneous_Past_Investigation	nextEDSS>5	32	21

The set of features for each clinical database for nextEDSS label:

1. Static Standard for nextEDSS $>$ 3: not performed.
2. Static Standard for nextEDSS >5 : not performed.
3. Static Investigation for $\boldsymbol{n e x t} \boldsymbol{E} \boldsymbol{D S S}>\mathbf{3}$: not performed.
4. Static Investigation for $\boldsymbol{n e x t} \boldsymbol{E} \boldsymbol{D S S}>\mathbf{5}$: not performed.
5. Groundzero Standard for $\boldsymbol{n e x t E D S S}>3$: not performed.
6. Groundzero Standard for $\boldsymbol{n e x t E D S S}>5$: not performed.
7. Groundzero Investigation for $n e x t E D S S>3$: not performed.
8. Groundzero Investigation for $\boldsymbol{n e x t} \boldsymbol{E} \boldsymbol{D} \boldsymbol{S S}>5$: not performed.
9. Momentaneous Standard for nextEDSS $>\mathbf{3}$: Years since Onset, Last

EDSS.
10. Momentaneous Standard for nextEDSS >5 : MS Course, Years since Onset, Last EDSS, Gender.
11. Momentaneous Investigation for nextEDSS $>$ 3: Spinal Cord, Age Visit, Years since Onset.
12. Momentaneous Investigation for $\boldsymbol{n e x t E D S S}>5$: Spinal Cord, MS Course, Age Visit, Gender.
13. Momentaneous with past Standard for nextEDSS $>$ 3: Optic Pathways, EDSS Medium Value/year, EDSS first 2 years std, Relapses Per Year, Visual 1 ratio
14. Momentaneous with past Standard for nextEDSS >5 : EDSS Medium Value/Year, EDSS first 2 years, EDSS std/year, Last EDSS.
15. Momentaneous wth past Investigation for nextEDSS >3 : MS Course, No Years, Pyramidal first 2 years, Visual 1 ratio, Average Duration.
16. Momentaneous with past Investigation for nextEDSS >5 : Optic Pathways, No Years, Pyramidal first 2 years, Sensory 1 ratio, Average Duration. The databases with the highest score belong to clinical origins, where the Momentaneous with past and Momentaneous take the first three places. The investigation procedure occupies the half of the second and third place, which is an interesting fact since it does not include direct EDSS-related features.

7.1.4 Clinical feature analysis

Some features like Spinal Cord, MS Course, Gender, Pyramidal First 2 years, Visual Ratio, EDSS-related features, Optical Pathways, Sensory Ratio and No Year appeared in different databases and in different labels, showing some potential in order to be MS disease progression predictors. Some of them, as the MS Course, No Years, Gender and EDSS-related features are previously considered obvious. Patients with SP type tend to have worst prognostics. MS is related to gender, since women are more affected by this condition when compared to men. The more years a patient suffers from MS, the more likely its EDSS is larger. However, others may not be that obvious, like Spinal Cord, Pyramidal First 2 Years, Visual Ratio, Optical Pathways and Sensory Ratio.

In the next tables (Tables 7.19-7.45), the presence of the mentioned features is counted in order to evaluate their discriminative power, regarding the different labels.

7.1.4.1 In highestEDSS label

Table 7.19: The presence of Spinal Cord feature in the best set of features for label highestEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
3	0	3	
For highestEDSS >3			
2	0	2	
For highestEDSS $>\mathbf{5}$	0	1	
1			

Table 7.20: The presence of Pyramidal first 2 Years feature in the best set of features for label highestEDSS.

Total of studies it appear	Standard procedure	Investigation procedure
3	1	2
For highestEDSS $>\mathbf{3}$	0	1
1		
For highestEDSS >5	1	1
2		

Table 7.21: The presence of Optical Pathways feature in the best set of features for label highestEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
3	2	1	
For highestEDSS $>\mathbf{3}$	1	0	
1	1	1	
For highestEDSS $>\mathbf{5}$			
2			

Table 7.22: The presence of MS Course feature in the best set of features for label highestEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
3	1	2	
For highestEDSS >3			
1	0	1	
For highestEDSS >5	1	1	
2			

Table 7.23: The presence of Visual Ratio feature in the best set of features for label highestEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
0	0	0	
For highestEDSS >3			
0	0	0	
For highestEDSS >5	0	0	
0			

Table 7.24: The presence of Sensory Ratio feature in the best set of features for label highestEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
1	0	1	
For highestEDSS $>\mathbf{3}$	0	1	
1			
For highestEDSS >5	0	0	
0			

Table 7.25: The presence of Gender feature in the best set of features for label highestEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	1	
For highestEDSS >3			
0	0	0	
For highestEDSS >5			
1	0	1	

Table 7.26: The presence of EDSS-related features in the best set of features for label highestEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
7	7	1	
For highestEDSS $>\mathbf{3}$	5	0	
5			
For highestEDSS >5	2	0	
2			

Table 7.27: The presence of No Years feature in the best set of features for label highestEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	1	
For highestEDSS >3			
2	0	1	
For highestEDSS >5	0	0	
0			

7.1.4.2 In mediumEDSS label

Table 7.28: The presence of Spinal Cord feature in the best set of features for label mediumEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	1	
For highestEDSS $>\mathbf{3}$	0	1	
2			
For highestEDSS >5	0	0	
0			

Table 7.29: The presence of Pyramidal first 2 years feature in the best set of features for label mediumEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
3	0	3	
For highestEDSS >3			
3	0	3	
For highestEDSS $>\mathbf{5}$	0	0	
0			

Table 7.30: The presence of Optical Pathways feature in the best set of features for label mediumEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
0	0	0	
For highestEDSS $>\mathbf{3}$	0	0	
0			
For highestEDSS >5	0	0	
0			

Table 7.31: The presence of MS Course feature in the best set of features for label mediumEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	2	
For highestEDSS >3			
2	0	2	
For highestEDSS >5	0	0	
0			

Table 7.32: The presence of Visual ratio feature in the best set of features for label mediumEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
0	0	0	
For highestEDSS >3			
0	0	0	
For highestEDSS >5			
0	0	0	

Table 7.33: The presence of Sensory ratio feature in the best set of features for label mediumEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
0	0	0	
For highestEDSS $>\mathbf{3}$	0	0	
0			
For highestEDSS >5	0	0	
0			

Table 7.34: The presence of Gender feature in the best set of features for label mediumEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	2	
For highestEDSS >3			
2	0	2	
For highestEDSS >5	0	0	
0			

Table 7.35: The presence of EDSS-related features in the best set of features for label mediumEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
4	4	0	
For highestEDSS >3			
4	4	0	
For highestEDSS >5			
0	0	0	

Table 7.36: The presence of No Year feature in the best set of features for label mediumEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
4	0	3	
For highestEDSS >3			
4	0	3	
For highestEDSS >5			
0	0	0	

7.1.4.3 In nextEDSS label

Table 7.37: The presence of Spinal Cord feature in the best set of features for label nextEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	2	
For highestEDSS >3			
1	0	1	
For highestEDSS >5	0	1	
1			

Table 7.38: The presence of Pyramidal First 2 years feature in the best set of features for label nextEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	2	
For highestEDSS >3	0	1	
1			
For highestEDSS >5	0	1	
1			

Table 7.39: The presence of Optic Pathways feature in the best set of features for label nextEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	1	
For highestEDSS $>\mathbf{3}$	0	0	
1	0	1	
For highestEDSS $>\mathbf{5}$			
1			

Table 7.40: The presence of MS Course feature in the best set of features for label nextEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	1	
For highestEDSS >3	0	1	
1			
For highestEDSS >5	0	0	
1			

Table 7.41: The presence of Visual Ratio feature in the best set of features for label nextEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	1	
For highestEDSS $>\mathbf{3}$	0	1	
2			
For highestEDSS $>\mathbf{5}$	0	0	
0			

Table 7.42: The presence of Sensory Ratio feature in the best set of features for label nextEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
1	0	1	
For highestEDSS $>\mathbf{3}$	0	0	
0			
For highestEDSS >5	0	1	
1			

Table 7.43: The presence of Gender feature in the best set of features for label nextEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
1	0	1	
For highestEDSS >3			
0	0	0	
For highestEDSS >5			
1	0	1	

Table 7.44: The presence of EDSS-related features in the best set of features for label nextEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
8	8	0	
For highestEDSS $>\mathbf{3}$	3	0	
3			
For highestEDSS $>\mathbf{5}$	5	0	
5			

Table 7.45: The presence of No Years feature in the best set of features for label nextEDSS.

Total of studies it appear	Standard procedure	Investigation procedure	
2	0	2	
For highestEDSS >3	0	1	
1			
For highestEDSS >5	0	1	
1			

7.1.4.4 Data interpretation

If one decides to integrate the feature information regarding all highlighted features, it is possible to construct a hierarchy of feature presence with to the obtained results. Features as Spinal Cord, MS Course, Pyramidal First 2 years, EDSS-related features and No Years are present at least one time in the studies made with the labels considered to be trustful (highestEDSS, nextEDSS, mediumEDSS). Features as Sensory Ratio and Optical Pathways appear in studies of two of these labels (nextEDSS and highestEDSS). At least, Visual Ratio only appears in studies of one label ($n e x t E D S S$).

By analyzing the number of presences of each feature in all cases, some interesting facts come across. The results seem trustful since EDSS feature related appear as the most important (a score of 19 in Table 7.46). Gender, No Years and MS Course, which are obvious predictors of the disease progression, also appear with a good score (6,8 and 7 , respectively). However, some surprise features also appear with a very interesting score: Spinal Cord with 7 points and Pyramidal First 2 Years with 8 points.

When comparing these feature presences of labeling for >3 studies only (Table 7.47), the best-ranked features are EDSS feature related (12 points), No Years (7
points) and Spinal Cord and Pyramidal First 2 Years (5 points each). Features like Gender and MS Course scored 3 and 4 points, respectively.

When comparing these feature presences of labeling for >5 studies only (Table 7.48), one can see the results are significantly worst. No feature was present in any set for predicting mediumEDSS >5 properly. The best-ranked features are EDSS-related features (7 points), Pyramidal First 2 years, Optical Pathways and MS Course (3 points each).

If one explores the EDSS-related features (Table 7.49) will understand that the best predictor is, in fact, the last EDSS value of a patient, with a score of 8 points. The second best is EDSS Medium Value/Year with 5 points. It is interesting to note that Pyramidal First 2 Years achieved the same points with the same criteria (8 points as well) and that Spinal Cord achieved 7 points.

Table 7.46: The general overview of the feature presence in the studies performed with labels highestEDSS, nextEDSS and mediumEDSS.

Feature	nextEDSS	highestEDSS	mediumEDSS	Total
Spinal Cord	2	3	2	$\mathbf{7}$
Pyramidal First 2 Years	2	3	3	$\mathbf{8}$
Optical Pathways	2	3	0	5
MS Course	2	3	2	7
Visual Ratio	2	0	0	2
Sensory Ratio	1	1	0	2
Gender	2	2	2	6
EDSS-related features	8	7	4	$\mathbf{1 9}$
No Years	2	2	2	$\mathbf{8}$

Table 7.47: The general overview of the feature presence in the studies performed with labels highestEDSS >3, nextEDSS >3 and mediumEDSS >3.

Feature	nextEDSS	highestEDSS	mediumEDSS	Total
Spinal Cord	1	2	2	$\mathbf{5}$
Pyramidal First 2 Years	1	1	3	$\mathbf{5}$
Optical Pathways	1	1	0	2
MS Course	1	1	2	4
Visual Ratio	2	0	0	2
Sensory Ratio	0	1	0	1
Gender	1	0	2	3
EDSS-related features	3	5	4	$\mathbf{1 2}$
No Years	1	2	4	$\mathbf{7}$

Table 7.48: The general overview of the feature presence in the studies performed with labels highestEDSS >5, nextEDSS >5 and mediumEDSS >5.

Feature	nextEDSS	highestEDSS	mediumEDSS	Total
Spinal Cord	1	1	0	$\mathbf{2}$
Pyramidal First 2 Years	1	2	0	$\mathbf{3}$
Optical Pathways	1	2	0	$\mathbf{3}$
MS Course	1	2	0	$\mathbf{3}$
Visual Ratio	0	0	0	0
Sensory Ratio	1	0	0	1
Gender	1	1	0	$\mathbf{2}$
EDSS-related features	5	2	0	$\mathbf{7}$
No Years	1	0	0	1

Table 7.49: The general overview of the EDSS-related features presence in the studies performed with labels highestEDSS, nextEDSS and mediumEDSS.

Feature	nextEDSS	highestEDSS	mediumEDSS	Total
EDSS medium Value/year	2	3	0	5
EDSS/ Last EDSS	3	3	2	8
EDSS 1st Year	0	1	0	1
Ratio Nb EDSS Increase	0	0	1	1
EDSS first 2 Years std	1	0	0	1
EDSS first 2 Years	1	0	0	1
EDSS std Year	1	0	1	1

7.1.5 Image features

Since clinic and image are different sources of data, it is reasonable to separate their results. Not only due to the origin itself but also due to the results obtained, where it is possible to evidence a better understanding of MS progression through the use of clinical descriptors. With the different set of features for all image databases with each label, an analysis was made, counting the used regions, modalities and the tissues used in features. Since the features have a larger variety of options, this was the chosen path, in order to get a briefer insight. In the region tables (Tables 7.51-7.59), the common features for different labels appear in bold.

7.1.5.1 In highestEDSS label

Table 7.50: The different set of features of all image databases for label highestEDSS.

Database	Label	Features
MRI Total Head	highestEDSS>3	164_A1_CSF_ratio_T2_max_entropy, 22_A1_WM_diff_FLAIR_max_entropy
MRI Total Head	highestEDSS>5	22_A1_WM_ratio_FLAIR_bin_location_median_median histogram
One sample one lesion	highestEDSS>3	Orientation,Var Pixel Intensity/slice_meanPixel, WM_squares numbers lesion region 90\%/total,region with 90, T1_Var Pixel Intensity/slice_meanPixel, T1_gdeVar,Pixel Intensity/slice_meanPixel
One sample one lesion	highestEDSS>5	Solidity, Max Pixel Intensity/slice_meanPixel, T2_Mean Pixel Intensity/slice_meanPixel, T2_Min Pixel Intensity/slice_meanPixel, T1_gdeMean Pixel Intensity/slice_meanPixel, T1_gdeMax Pixel Intensity/slice_meanPixel, DP_Mean Pixel Intensity/slice_meanPixel, DP_Max Pixel Intensity/slice_meanPixel, DP_Min Pixel,Intensity/slice_meanPixel
One sample one study	highestEDSS>3	Var_Solidity, Mean_GM_min tissue prob, Var_GM_min tissue prob, Mean_Anatomical_I_162_lesion in,the region, Max_Anatomical_I_162_ratio on,region affected by lesion, Var_Anatomical_I_162_ratio on,region affected by lesion, Mean_Anatomical_I_162_ratio on,region affected by lesion, Var_Anatomical_I_162_median pixel,intensity, Max_Anatomical_I_162_lesion in the,region, Max_Anatomical_I_162_max, pixel intensity
One sample one study	highestEDSS>5	Var_Anatomical_II_39_mean,pixel intensity, Var_Anatomical_I_122_median pixel intensity, Mean_Anatomical_II_39_lesion in,the region
One sample one patient	highestEDSS>3	Max_Max_Anatomical_I_29_ratio on region affected by lesion, Mean_Var_Anatomical_II_40_var pixel intensity, Var_Max_Anatomical_II_40_var pixel intensity, Mean_Mean_Anatomical_II_40_var pixel,intensity, Var_Var_Anatomical_II_40_var pixel intensity
One sample one patient	highestEDSS>5	Not performed

Table 7.51: The region count of ones used in features for all image databases for label highestEDSS.

Region	Count
$\mathbf{2 2}$	$\mathbf{2}$
$\mathbf{1 6 4}$	$\mathbf{1}$
29	1
39	4
40	4
122	1
162	7

Table 7.52: The tissue count of ones used in features for all image databases for label highestEDSS.

Tissue	Count
WM	4
GM	2
CSF	1

Table 7.53: The modality count of ones used in features for all image databases for label highestEDSS.

Modality	Count
Flair	2
T1 Gde	5
T1	2
PD	6
T2	3

7.1.5.2 In mediumEDSS label

Table 7.54: The different set of features of all image databases for label mediumEDSS.

Database	Label	Features
MRI Total Head	mediumEDSS >3	66_A1_BO_ratio_T2_std_entropy, 121_A1_BO_ratio_T2_raw_std_-mean, 48_A1_CSF_ratio_T2_std_energy_glem, 92_A1_CSF_ratio_T2_mean_std,histogram, 22_A1_WM_diff_FLAIR_max_entropy, 22_A1_WM_ratio_FLAIR_max_entropy, 85_A1_WM_ratio_FLAIR_max_entropy
MRI Total Head	mediumEDSS >5	48_A1_BO_diff_T2_raw_std_-mean, 48_A1_BO_ratio_T2_raw_mean_mean, 48_A1_BO_ratio_T2_raw_std__mean, 61_A1_BO_ratio_T2_raw_std__mean, Anatomical_31_DP_mean_histogram_18, Anatomical_31_DP_std_histogram_18
One sample one lesion	mediumEDSS >3	T2_Mean,Pixel Intensity/slice_meanPixel, T2_Min Pixel,Intensity/slice_meanPixel, T1_Mean Pixel,Intensity/slice_meanPixel, T1_Min Pixel,Intensity/slice_meanPixel, T1_gdeMean Pixel,Intensity/slice_meanPixel, T1_gdeMin Pixel,Intensity/slice_meanPixel, DP_Mean Pixel,Intensity/slice_meanPixel
One sample one lesion	mediumEDSS >5	Solidity, WM_mean tissue prob, T2_Mean Pixel Intensity/slice_meanPixel, T2_Min Pixel Intensity/slice_meanPixel, T1_Mean Pixel Intensity/slice_meanPixel, T1_Max Pixel Intensity/slice_meanPixel, T1_Min Pixel Intensity/slice_meanPixel, T1_Median Pixel Intensity/slice_meanPixel, T1_gdeMax Pixel Intensity/slice_meanPixel, T1_gdeMedian Pixel Intensity/slice_meanPixel, DP_Median,Pixel Intensity/slice_meanPixel
One sample one study	mediumEDSS >3	Var_Solidity, Mean_Anatomical_II_408_mean pixel intensity, Mean_Anatomical_I__408_median pixel intensity, Mean_Anatomical_II_408_min pixel intensity, Var_Anatomical_II_408_min pixel intensity, Max_Anatomical_II_408_mean pixel intensity, Max_Anatomical_II_408_median pixel intensity, Mean_Anatomical_II_408_lesion,in the region
One sample one study	mediumEDSS >5	Not performed
One sample one patient	mediumEDSS >3	Max_Mean_RefSpace, Max_Median_RefSpace, Var_Var_Anatomical_I_31_var pixel,intensity, Max_Mean_Anatomical_I_25_ratio on,region affected by lesion, Mean_Var_Anatomical_I_25_ratio on,region affected by lesion, Mean_Var_Anatomical_I_29_ratio on,region affected by lesion, Max_Var_Anatomical_I_31_mean pixel intensity, Mean_Max_Anatomical_I_31_var,pixel intensity
One sample one patient	mediumEDSS >5	Max_Max_Anatomical_II_14_ratio on region affected by lesion, Max_Mean_Anatomical_I_43_lesion in the region, Max_Mean_Anatomical_I_43_max pixel intensity, Max_Var_Anatomical_I_43_mean pixel intensity, Max_Var_Anatomical_I_31_mean pixel intensity, Max_Var_Anatomical_I_31_min pixel intensity, Max_Max_Anatomical_II_54_ratio on region,affected by lesion, Max_Mean_Anatomical_I_43_mean,pixel intensity

Table 7.55: The region count of ones used in features for all image databases for label mediumEDSS.

Region	Count
66	1
121	1
48	4
92	1
$\mathbf{2 2}$	$\mathbf{2}$
85	1
61	1
31	6
25	2
$\mathbf{1 4}$ (Anatomical map II)	1
43	4
$\mathbf{2 9}$	$\mathbf{1}$

Table 7.56: The tissue count of ones used in features for all image databases for label mediumEDSS.

Tissue	Count
WM	5
GM	0
CSF	2

Table 7.57: The modality count of ones used in features for all image databases for label mediumEDSS.

Modality	Count
Flair	3
T1 Gde	5
T1	11
PD	5
T2	15

7.1.5.3 In nextEDSS label

Table 7.58: The different set of features of all image databases for label nextEDSS.

Database	Label	Features
MRI Total Head	nextEDSS >3	164_A1_CSF_ratio_T2_max_entropy, 22_A1_WM_diff_FLAIR_max_entropy
MRI Total Head	nextEDSS>5	22_A1_WM_ratio_FLAIR_bin_location_median_median histogram
One sample one lesion	nextEDSS >3	T1_gdeVar Pixel,Intensity/slice_meanPixel
One sample one lesion	nextEDSS >5	RefSpace, Mean Pixel Intensity/slice_meanPixel, Max Pixel Intensity/slice_meanPixel, T2_Mean Pixel Intensity/slice_meanPixel, T2_Min Pixel Intensity/slice_meanPixel, T1_Mean Pixel Intensity/slice_meanPixel, T1_Min Pixel Intensity/slice_meanPixel, T1_gdeMax Pixel Intensity/slice_meanPixel, T1_gdeMin Pixel Intensity/slice_meanPixel, T1_gdeMedian Pixel Intensity/slice_meanPixel, DP_Mean Pixel Intensity/slice_meanPixel, DP_Max Pixel Intensity/slice_meanPixel
One sample one study	nextEDSS >3	Var_GM_min tissue prob, Max_GM_min tissue prob, Var_Anatomical_I_21_var pixel intensity, Mean_Anatomical_I_21_var pixel intensity, Max_Anatomical_I_29_ratio on region affected,by lesion, Mean_Anatomical_I_29_var pixel intensity, Max_Anatomical_I_29_var pixel intensity, Var_Anatomical_I_42_var pixel,intensity, Var_Anatomical_I_21_ratio on,region affected by lesion, Var_Var,Pixel Intensity/slice_meanPixel
One sample one study	nextEDSS >5	Median_T1_Var,Pixel Intensity/slice_meanPixel, Var_GM_min tissue prob, Max_GM_min tissue prob, Max_Anatomical_I_21_var pixel,intensity, Max_GM_mean tissue prob, Var_Anatomical_I_21_var pixel,intensity, Var_Anatomical_I_29_ratio on region affected by lesion, Mean_Anatomical_I_21_var pixel,intensity, Var_Anatomical_I_29_var pixel intensity, Max_Anatomical_I_29_ratio on region affected by lesion, Mean_Anatomical_I_29_var pixel intensity, Mean_Anatomical_I_42_var pixel,intensity, Mean_Anatomical_I_29_ratio on,region affected by lesion,Var_Var,Pixel Intensity/slice_meanPixel
One sample one patient	nextEDSS >3	Not performed
One sample one patient	nextEDSS >5	Not performed

Table 7.59: The region count of ones used in features for all image databases for label nextEDSS.

Region	Count
$\mathbf{2 2}$	2
21	6
$\mathbf{2 9}$	5
42	1
$\mathbf{1 6 4}$	1

Table 7.60: The tissue count of ones used in features for all image databases for label nextEDSS.

Tissue	Count
WM	2
GM	5
CSF	1

Table 7.61: The modality count of ones used in features for all image databases for label nextEDSS.

Modality	Count
Flair	7
T1 Gde	8
T1	5
PD	4
T2	4

7.1.5.4 Data interpretation

Since the performance results are not as good as the clinical ones, the degree of trust in the obtained interpretations is smaller. The region 22 (right superior frontal gyrus) and 29 (left middle orbitofrontal gyrus) appear in at least one study of each label. The region 22 appears always in the set of features for studies in the MRI Total Head database. The region 29 appears in One sample one study and in One sample one patient databases. Region 164 (right putamen) appears in studies of two different labels (nextEDSS and highestEDSS) in MRI Total Head database.

When it comes to modality count, it is possible to form a hierarchy (Table 7.62) using the already mentioned position system for attributing points (3 points
for first place, 2 points for second and 1 point for third one). However, the results were not as clear as in other situations. In the modality, T1-Gde appears to have a better performance, however, with PD, T2 and T1 (4 points, 4 points and 3 points respectively) the performance seemed to be similar.

When it comes to tissue count, the hierarchy is clearer (Table 7.63) and makes it possible to verify some already known facts about MS lesion exploration, as the importance of analyzing the WM regions. GM also appears better than CSF, which was also a given fact before the start of the study.

Table 7.62: Overall modality count for labels nextEDSS, mediumEDSS and highestEDSS.

Modality	Count
Flair	2
T1 Gde	$\mathbf{6}$
T1	3
PD	4
T2	4

Table 7.63: Overall tissue count for labels nextEDSS, mediumEDSS and highestEDSS.

Tissue	Count
WM	$\mathbf{8}$
GM	6
CSF	4

Chapter 8

Discussion

In this chapter, the most pertinent topics touched in this thesis are here discussed. Despite the fact that the goal of this master's dissertation was to study the progression of MS disease, some general aspects regarding this condition were not approached. Epidemiology appears to be a very interesting factor, however, it was impossible to study its influence, since all patients were not only caucasian but also born and live in Europe.

MS diagnosis could have been a very interesting aspect, however, this was impossible due to the time-consuming tasks of retrieving the MRI scans from CHUC's database. Naturally, all of the selected patients suffered from MS condition. For handling a diagnosis situation, it would be necessary to have non-MS patients in the database. This situation, however, would have been very interesting not only to study the diagnosis of MS/healthy but also between MS/other neurologic condition. NMO is a particular case, where there is a significant number of patients suffering from this condition.

PP form was not accounted due to the minimal number of patients suffering from it and because it is very distinct from the other two forms, RR and SP. These last two are quite interesting as all patients start with RR form, evolving or not to SP. This particularity constitutes a strong reason for focusing on the first years of MS manifestations. Although the results regarding label msCourse were not considered as trustful as the ones with labels nextEDSS, highestEDSS and mediumEDSS, there is a latent curiosity remaining regarding $\mathrm{RR} / \mathrm{SP}$ distinction. As SP form is known to be more severe, intuitively confirmed by checking the EDSS, there must be an intrinsic relation between the last three mentioned labels and msCourse.

Therapy was also an excluded factor from this dissertation as it is not a straightforward aspect. A physician prescribes necessarily a stronger drug to a patient with a more severe condition. In a certain way, the used therapy constitutes an evaluation of the MS patient progression performed by the physician. The only way to properly study therapy influence would have been with a different database, where all patients or groups of patients would have very similarly MS progressions and taken different drugs. Besides the difficulty inherent to the patient's selection and MRI retrieval, this hypothetical database would not offer the same conditions to study the disease progression in a general form.

EDSS turned out to be the most important analyzed and explored factor, which is logical as it is the global scale used to evaluate the physical condition of an MS patient. As the disease tracking was attempted through machine learning algorithms, there was the necessity of transforming the EDSS into intervals. For a more simple process, all case scenarios were approached in binary situations. Using an EDSS of 5 as threshold was an intuitive and natural decision. Not only constitutes an equal division into the scale but also symbolizes the difference between severe/smooth affected mobility. However, there was not a reasonable number of samples in some created databases that possessed an EDSS value higher or equal to 5 . This was the reason why sometimes some studies regarding EDSS labels with value 5 as threshold were not performed. Using value 3 as threshold, the problem of non-sufficient samples was surpassed. The decision to use this value also as threshold was advised by Doctor Sónia Batista as it can be interesting for physicians.

Exploring MS progression with simultaneously two different thresholds was very interesting as it provided a deeper insight despite the obstacles found. This exploration could have been made in several forms, however, the one performed was chosen in order to highlight one of the thresholds (5). Thus, instead of performing the initial feature selection for each label for values 3 and 5 as thresholds, it was only made for 5 . By doing this, this threshold was clearly highlighted, since it provided an extra degree of trust to the selected features in terms of severity.

8.1 State of the Art

The state of the art turned out to be a very interesting inspiration for this work, especially since there are very specific approaches for MRI brain image processing. At the beginning, it was expected to be possible to use several techniques and algorithms mentioned. Nevertheless, it was not possible. Many algorithms are already included in MRI analysis software or in programming language packages,
as the case of the Python language, originally considered for the image processing procedure. This was not possible as many of the MRI scans were not compatible with these tools. In other words, most of the preprocessing steps in some scans had as output not processed images but only missing values. Software algorithms were decided not to be used. Besides constituting a black box at some point, it would not have been an automatic procedure, as pretended. It still would have been possible to develop the existing algorithms, however, that would have been a hard time-consuming task. Thus, by checking the existing algorithms, the core ideas for the used image processing were developed, such as the top/bottom head limitation, image registering and atlas use.

Although the great volume of investigation performed regarding lesion segmentation, this theme was not deeply explored. In fact, it was attempted to build a machine learning procedure for lesion detecting through lesion/non-lesion distinction. For this, extra regions (non-lesion ones) were labeled by the author and the same features were also extracted from them. These regions that were labeled presented very similar characteristics in terms of pixel intensity, shape and localization regarding lesions. This was not described in this dissertation since the results were not satisfactory. Despite the labeled non-lesion regions were seen as "hard" ones, there is a high degree of trust in the used labeling. The labeling process was performed by two neuroradiologists while looking at the respective scan reports (performed by other neuroradiologist).

As a consequence, the proposed procedure evolved from automatic to semiautomatic, where a physician lesion labeling was needed. It can be seen as a compromise made between effort (by the physician) and performance (by the algorithm). Thus, the physician only takes part in the beginning stage of the process by delineating the lesion regions. It was also attempted to reduce the physician effort by only being necessary to choose one point of each lesion. Ideally, with the selected point, it would have been possible to delineate the respective lesion through the use of a region growing algorithm. However, the results were not satisfactory as well, as it was needed to tune several thresholds regarding different scans and modalities.

Some aspects regarding lesion segmentation were not taken into account, as types of lesions due to contrast (focal/diffuse lesions), which seems a very interesting path for a future work. However, contrast and lesion localization were deeply approached. A method of deepening this analysis regarding lesions would be to integrate longitudinal scans, which were not used since it could not be found horizontal sequences in atlases. Another compelling approach seemed to be the exploration of the atlases anatomical maps and tissue maps as features from lesions and non-
lesions were extracted directly from certain specific regions. This way, a detailed brain investigation was obtained.

Regarding clinical data, as seen, there are a reduced number of studies that integrated this source of data. By integrating pattern recognition techniques and machine learning concepts, the analysis goes significantly beyond the main tools used with clinical data, such as correlations and statistical tests. EDSS is the most used information regarding this source of data, existing already some interesting findings. As checked not only in this project but also in the state of the art, there is evidence of a stronger correlation between clinical manifestations and several brain factors in the first years.

8.2 Dataset description

A big limitation of this project is the database size (36 patients). Despite the reduced number, it was a hard time-consuming task due to the existing problems in CHUC's database. The clinical data curation was a hard task as the original one was in a significant raw condition. This part of the project happens to be an accurate representation of the existing problems in this kind of investigation work. Due to missing data, there were some engaging features that were excluded related to family clinical history, to concomitant diseases, to CSF and related to evoked potentials exam, since there are already known by the physicians to be influent factors.

Besides these limitations, there is also one not mentioned directly until now. As known, the EDSS values are regarding patient visits, routine or not. If it is a routine one, the EDSS is regarding the normal condition of the patient. However, if not, it is most probably regarding a relapse. If it is a relapse, this value can increase abnormally and then decay to values that correspond the normal progression condition of the patient. Naturally, the existence of relapses will naturally influence the EDSS-related labels. The advantage of this is having an indirect influence of the number of registered relapses taken into account in the labels. The disadvantage is the fact of not existing a separation of EDSS values for relapses and non-relapses. This, however, could have been done but there would be a tremendous reduction in the number of samples of the database. As the number of samples in the Momentaneous and in the Momentaneous with past databases is 87 and 46 of them are routine ones, there would have been a database reduction of 41 samples, by other words, an approximate reduction of 47%.

The heterogeneity of the MRI scans was a considerable obstacle, since the procedure, MRI machine, slice thickness, number of slices of each scan affected deeply
this step. Besides, despite the similarity of protocols regarding some groups of scans, the image quality may not be similar. As consequence, the division of MRI scans regarding the image quality is a more practical approach since it can be more useful in terms of evaluating the performance of image processing. This image processing performance evaluation was not a simple task due to the inexistence of proper metrics. Although there are several image metrics that can make a quantification of the sequences/atlas similarity, the information given would not be trustful. An MRI scan has a tremendous complexity due to the existing heterogeneity between brains. Besides, one must remember that an MRI scan also shows all non-brain structures and, as known, even the brain structures can have different proportions. These facts are taken into account in the metrics output, adultering the real performance value. Thus, an optimal image processing can have a lower 2D correlation value with the atlas regarding a bad one, for example. By attributing groups regarding the FLAIR sequence quality, it is simpler to visualize the overall process. To do this division group, it was chosen the FLAIR sequence since it was the one used for the lesion labeling. Therefore, it was primordial to guarantee the best performance possible, as the study of certain brain regions, tissues and structures was a priority as well.

8.3 Experimental procedure

As the number of patients was reduced, there was a special need to have more information. Thus, in order to increase the quantity of data and to explore the largest number of possible situations, the raw database was treated in order to provide different natures of information. It was possible to build 3 dynamic databases. One with the existing information from each patient at the beginning of the MS onset (Groundzero) and two regarding specific moments of each patient (Momentaneous and Momentaneous with past). Nevertheless, it was also possible to create the Static database, containing all existing information regarding each patient. This one has a curious factor: all features were normalized in order to be possible to compare patients with a different number of years passed since onset. This way, a new patient can be introduced in the database, while its features are continuously updated with the passage of time, which is the optimal situation for a hospital database.

In order to explore in a deeper level, several labels were created: tendencyEDSS, msCourse, nextEDSS, mediumEDSS, highestEDSS and first2EDSS, where the EDSS-related labels were thresholded at 3 and 5 . Despite its differences, they are all indirectly related. Higher the EDSS value, the more probable it is to pass the chosen threshold. Besides, msCourse is indirectly related to EDSS as previously
mentioned. TendencyEDSS, however, it is a complicated issue. Curiously, the results were coherent with the non-routine visits: it was expected a bad performance since the tendency had also taken into account the relapses. From all the used labels, the tendencyEDSS is the most affected by this factor, without any doubt. Nevertheless, it would have been curious to have a good performance. If so, a deeper analysis would have been done, in order to check if it was possible to predict an upcoming relapse or not. For the lesion databases, the same principles were performed. For the MRI total head database, only the principle of the different labels was applied. Due to this being a time-consuming task and since the major focus was on the lesions themselves and the clinical data, the MRI total head database was not unwrapped into different ones. Due to the given results with this database, it is a very interesting approach for future work to develop this database into static and dynamic and evaluate the performance.

Regarding the image processing, the overall performance was good. It is impossible to achieve optimal performance in every case, specially because each human possesses a different brain in terms of structure ratios and dimensions. In general terms, the results were satisfactory and, most important, there was not any unreasonable output. It is with a good degree of trust that is possible to claim that the algorithm was able to surpass brightness, contrast and image registration obstacles without great difficulty.

As this dissertation has an exploratory perspective, the feature extraction was a detailed procedure. In clinical terms, due to the findings of the first years of MS manifestation, many interesting characteristics were transformed into features by analyzing its behavior not only during all moments but also specially during the first year and the during the first two years. Regarding MRI scans, features from concept ideas as FFT, color histogram, symmetry, entropy and pixel intensity were retrieved. The novelty of this procedure in this dissertation is its extraction from not only the brain as a total structure but also from different small brain regions and defined tissues as GM, WM and CSF.

Volumes were not used, only areas, due to the existing difficulties regarding a different number of slices, slice thickness and spacing between slices. Another obstacle was the characterization of a lesion as a 3D structure. It can be a complicated issue due to differences in slice thickness and inter-modality differences. Thus, in order to avoid this, each region was assumed as a 2D structure.

Regarding the feature selection method, the goal of having a first feature selection with several different tests was to be able to compare the features regarding its overall behavior. It was never expected that a feature would pass in every test as
some are specifically made for certain types of data. This way, a selection through these tests was always performed by comparing a feature performance with all the other features performance. This feature selection was performed by steps not only due to the large number of features but also to understand the hierarchy of them in terms of performance. The last feature selection step is performed with a decision tree so it can happen the optimal selection in order to best succeed in the classification step.

Forcing the called investigation procedure was also an interesting approach as clinically obvious features were previously deleted. Only the ones with direct influence, such as the EDSS-related ones. Therefore, features like Spinal Cord and Gender, for example, were still considered. This is important to have a reference of its discriminative power regarding novelty features so that a reasonable comparison can be performed.

The principles used for the multi-labeling use and for the different natures of database construction were the same used for the classification process: to go the furthest possible in analyzing the data. Thus, to have a higher degree of trust and to explore the data in the deepest way, three different partition methods, a possibility of dimensionality reduction and eleven classifiers were combined. The classifiers' selection was based on their properties and on their simplicity. As the number of samples in every database is reduced, the classifiers must be simple as well due to overfitting and to be simple to interpret. Decision trees and SVM's have the advantage of being easy to interpret clinically and to visually describe its process. LDA and QDA have the advantage of transforming the data into a simpler one. GLM ables the model fitting of any order and transforms it into a regression. KNN takes into account the number of training samples in specific positions. The Naive Bayes classifier, contrary to the other classifiers, is not based in geometric properties but in statistical ones. The minimum distance classifiers are the simplest ones, measuring the distance of a point to the centroid of each class. However, it is important to denote that not always was possible to apply all classifiers. For example, with QDA and Naive Bayes, frequently it was impossible since one of the classes had 0 variance and these two algorithms needed that both class variances would be non-null. Regarding GLM fitting, not always it was possible to transform the fitted model into a regression.

Several metrics were used to evaluate the performances by calculating the confusion matrix and the ROC curve. With the confusion matrix, several metrics were calculated and integrated in order to have an overall insight of several aspects. With the ROC curve, the AUC was calculated in order to have an overall insight as well.

In a certain way, the ROC curve is able to provide a more detailed information of the data separation regarding the two different classes. The confusion matrix is more directed to the final classification performance.

8.4 Results

As seen in the Appendices, the results are constituted by more than 400 tables, each one regarding a database, a label, a partition method and the usage or not of dimensionality reduction method. It is a tremendously hard task to be able to interpret these tables by just looking at them. Thus, to make this process simpler, objective and in order to unify all studies performed, a scoring system was created. By doing this, an assumption of all studies being related was developed, which was an interesting view of the disease progression by assembling many case scenarios simultaneously. The first taken step was to evaluate the performances and to choose the labels that are associated with the best performances. By using only these, the degree of trust in the next interpretations was naturally higher since a certain level of doubt was eliminated.

Two simple systems were created, one for the confusion matrix metrics and the other for the AUC value. Higher is the value of these, higher are the attributed points to each classifier performance. To these points, another system was applied taking into account the partition method. As the number of samples of each database is reduced, it was given more importance to the partition method that explore the deepest the dataset. Thus, to LOO method it was attributed 3 points as $\mathrm{N}-1$ sets of N-1 training samples were tested, where N is the number of samples. To K-Fold 10 method it was attributed 2 points as 10 different training datasets were testes. Finally, to the $30: 70$ ratio method it was attributed 1 point. The partition method score was multiplied by the one obtained in the classifier's performance.

With the obtained performances, another classification system was used regarding relative classification of the labels for the same database. In other words, in a defined database, the first classified label got 3 points, the second one 2 points and the third one 1 point. As seen by the results, the labels that outperformed were highestEDSS, nextEDSS and mediumEDSS. In these, a high degree of trust was taken into account regarding these mentioned ones. With these, a feature search of the most discriminative ones was performed. This was able to be made since as mentioned already, the whole set of databases and labels was seen and interpreted as a unified system. By counting the number of features in the different datasets of these three mentioned labels, it was possible to build an hierarchy of feature
importance/discriminatory power.
Thus, in the clinical data, the results were satisfactory. As obvious and theoretically expected, the EDSS-related features were the most predictive. Features like the number of years that a patient suffers from MS, initial MS manifestations related to spinal Cord, MS course and even gender had optimal performances, being already expected as well. This was very important to confirm that the study, in fact, is totally coherent with the clinic established ideas of MS progression. The engaging part of the results is the other features: Pyramidal First 2 Years, Spinal Cord, Optical Pathways, Sensorial Ratio and Visual Ratio, specially the first three because their attributed points were significantly higher.

At first sight, Pyramidal First 2 Years seems to be logical as well and, in fact, it is. As known, the Pyramidal tract is responsible for the mobility, which is a tremendously important factor in the EDSS scale. Besides, as seen in [17], the Pyramidal FS is the most involved in the determination of the EDSS with 84.9% of involvement. What makes this feature so interesting is that it is only regarding the first two years of MS manifestation. Thus, the known importance of the Pyramidal tract regarding the EDSS scale and the findings on a more significant cause-effect relationship in the first two years of MS manifestation, makes this feature a very pertinent one. Not only because of the separated given facts but also because it merged them into one unified fact. As known, the Pyramidal ratio was used as feature for the first year, the first two and for its totality of data and the chosen one was always the one regarding the first two years. As this feature was also tested in patients with more than two years of tracking, it can be interpreted as a crutial factor for the future disease progression.

Spinal cord is a different case. When showing these results to Doctor Sónia Batista, it was mentioned that this fact is an empirical evidence. Patients that showed MS initial manifestations at spinal cord level are likely to have a more severe disease progression. However, there were no studies or reasons that could explain it. As said, it is an empirical evidence, which also is satisfactory and provides extra confidence levels in the obtained results.

Optical pathways feature had a slightly reduced performance when compared to Spinal cord and Pyramidal First 2 Years features, however, it was still considered to be relevant. There is no concrete clinic evidence or findings besides this paper for this source of feature. So, some extra investigation must be done in order to understand how it can affect MS progression. Visual Ratio and Sensory Ratio only had 2 points, so the degree of trust in them is considered to be not relevant for this dissertation. However, it can still be interesting to see how it would be its
performance in a deeper study with a bigger database.
In the image databases, the same principles were applied. However, with some changes. Instead of counting the features themselves, the tissues and regions were the ones counted. As the number of features was tremendously high, another strategy had to be chosen. By taking this path, 2 regions from Anatomical Map I were present in studies regarding the three labels: regions 22 (right superior frontal gyrus) and 99 (left middle orbitofrontal gyrus) (Figures 8.1 and 8.2).

Figure 8.1: Orbitofrontal gyrus region [14].

Figure 8.2: Left superior frontal gyrus [15].
As there are not any evidence or findings of MS disease progression at any specific brain region, these findings cannot be compared to any other studies. Besides,
the features are not the same in some studies, but only the region in question. This issue needs to be addressed more deeply in a future work. The degree of trust in the image results is not the same as the ones in clinical data. Besides the fact that there are no evidence of cause-effect relationships by other authors and no clinical empirical facts, the overall results of the classifiers were not as good as the clinical ones.

However, the results seem quite engaging, since the tissue predictive power turned out to be the one predicted, which is very coherent to clinical evidence. white matter was considered to be the most predictive tissue, grey matter the second one and cerebrospinal fluid the third one. This fact provides to the image results some degree of trust.

A very intriguing fact was the obtained results at the modalities predictive power. T1-Gde was the sequence with most predictive power, followed by T2 and PD. FLAIR sequence was the one considered to have less predictive power, which is intriguing since it was in this sequence that the manual labeling was performed. Besides, clinically it is one of the most helpful sequences in terms of deciding if a certain region is a lesion or not. The fact of T1-Gde having the best discriminative power is also very interesting as it provides contrast to the recent lesions. With this modality, it is taken into account a temporal factor that other sequences cannot take advantage of.

8.5 Exploratory activity

In order to clarify the interpretations regarding the obtained results at a clinical level, some post exploration was performed. As mentioned, the whole set of databases and labels was visualized as a unified system and, therefore, was interpreted as all the labels being indirectly related. In order to verify the level of trust in this unification, especially regarding label MS course since a soon prediction of SP course would be tremendously interesting, the correlations between the labels were calculated. The SP course prediction has a special interest not only due to the difficulty of physicians at predicting it at the beginning of onset but also due to the time nature of the extracted features of Pyramidal first 2 years, Spinal cord and Optical pathways: two of them are retrieved at the MS diagnosis moment and the first one only needs the first two years. With this fact, it would be ideal for a physician to have a course prediction within a temporal space of 2 years only with every patient.

However, as seen in Tables 8.1 and 8.2, the correlation values between msCourse
and the other labels is not satisfactory. Thus, the idea of only working with the best-ranked labels due to a certain degree of trust was, indeed, a reasonable move to walk towards a unified system. With the correlation results, the idea of testing these features with the MS course was left apart, since the necessary conditions were not reunited. To fully deepen and to clarify completely this question, the same procedure was made in the Momentaneous databases, separating it into two different ones: one regarding relapses visits only and other regarding routine visits only. The results showed a week relationship between msCourse and the other labels again, excluding for completely this working line. The correlation values between the other labels oscillated but maintained its relationship in a general way.

Table 8.1: The label correlation values between mediumEDSS, nextEDSS, highestEDSS and msCourse in the clinical databases.

Labels	Static		Momentaneous (and with past)		Groundzero	
	label $>\mathbf{3}$	label $>\mathbf{5}$	label $>\mathbf{3}$	label $>\mathbf{5}$	label $>\mathbf{3}$	label $>\mathbf{5}$
mediumEDSS \& msCourse	0.79	0.52	0.67	0.39	0.48	0.11
nextEDSS \& msCourse	NA	NA	0.69	0.46	NA	NA
highestEDSS \& msCourse	0.59	0.44	0.46	0.63	0.59	0.52
mediumEDSS \& nextEDSS	NA	NA	0.88	0.51	NA	NA
mediumEDSS \& highestEDSS	0.79	0.35	0.75	0.42	0.59	0.46
highestEDSS \& nextEDSS	NA	NA	0.68	0.73	NA	NA

Table 8.2: The label correlation values between mediumEDSS, nextEDSS, highestEDSS and msCourse in the Momentaneous databases, regarding relapse visits and routine ones.

Labels	Relapse		Routine	
	label $>\mathbf{3}$	label $>\mathbf{5}$	label $>\mathbf{3}$	label $>\mathbf{5}$
mediumEDSS \& msCourse	0.72	0.62	0.63	0.07
nextEDSS \& msCourse	0.61	0.48	0.75	0.45
highestEDSS \& msCourse	0.45	0.70	0.47	0.58
mediumEDSS \& nextEDSS	0.86	0.52	0.91	0.49
mediumEDSS \& highestEDSS	0.68	0.42	0.80	0.43
highestEDSS \& nextEDSS	0.67	0.82	0.70	0.65

Afterwards, the three highlighted features were tested regarding this performed bifurcation made in the Momentaneous with past database (relapse visits and routine visits). The correlation between feature and label, AUC of ROC curve between feature and label and the scatterplot visualization were performed for the whole totality of the database and for each bifurcation for all three labels, as seen in Tables 8.3, 8.4 and 8.5.

By analyzing the following tables, one can see that the routine bifurcation had not only better results than the relapse bifurcation but also than the database with

Table 8.3: Analysis of Pyramidal First 2 years feature regarding the Momentaneous with past database and both bifurcations regarding relapse visits and routine visits.

Metrics/Labels		Relapse \& Routine			Relapse			Routine		
		highestEDSS	nextEDSS	mediumEDSS	highestEDSS	nextEDSS	mediumEDSS	highestEDSS	nextEDSS	mediumEDSS
Correlation	label>3	0.40	0.58	0.57	0.26	0.42	0.41	0.53	0.68	0.71
	label>5	0.67	0.43	0.21	0.60	0.45	0.18	0.77	0.44	0.25
AUC	label >3	0.73	0.81	0.80	0.48	0.58	0.54	0.82	0.86	0.89
	label>5	0.82	0.66	0.58	0.61	0.65	0.44	0.91	0.68	0.62

Table 8.4: Analysis of Spinal cord feature regarding the Momentaneous with past database and both bifurcations regarding relapse visits and routine visits.

Metrics/Labels		Relapse \& Routine			Relapse			Routine		
		highestEDSS	nextEDSS	mediumEDSS	highestEDSS	nextEDSS	mediumEDSS	highestEDSS	nextEDSS	mediumEDSS
Correlation	label>3	0.16	0.28	0.30	0.23	0.03	0.06	0.37	0.46	0.35
	label>5	0.31	0.31	0.30	0.09	0.21	0.28	0.51	0.39	0.33
AUC	label>3	0.66	0.65	0.58	0.63	0.52	0.47	0.69	0.74	0.68
	label>5	0.65	0.64	0.60	0.55	0.60	0.60	0.73	0.67	0.61

no bifurcations, in the 3 feature cases. These were the theoretically expected results as relapses are unpredictable. It is extremely hard to not only predict a relapse but also to guess its severity. Thus, the 3 highlighted features lose discriminative power regarding the relapse bifurcation. With only routine visits, their discriminative power increases, confirming its potential for MS disease progression and tracking.

An intriguing factor is the fact of the overall feature results are coherent with the feature discriminative power selection regarding all databases: the best is the Pyramidal First 2 years, the second best is Spinal cord and Optic pathways appears at last. As expected, the existence of spinal cord initial MS manifestations is correlated positively with the EDSS increase. By other words, with the presence of spinal cord initial MS manifestations, higher is the probability of the patient having a more severe progression. The same principle is confirmed with pyramidal tract signs in the first 2 years.

By looking at the scatterplots, more specific conclusions can be retrieved. If one visualizes the scatterplots of Pyramidal first 2 years for the highestEDSS >3 and highestEDSS >5, intuitively will check the feature power (Figures 8.3 and 8.4). The most interesting regarding the feature when it comes to scatterplotting is its comparison with the relapse bifurcation: it becomes a stronger relation regarding the strongest relapse severity a patient can suffer (Figures 8.5 and 8.6). This feature seems to be more discriminative with labels with threshold 3 than with 5 .

By looking at the Spinal cord scatterplots, it is intuitive to see it is an important factor to a severe disease progression, specially regarding labels thresholded with EDSS value 5 (Figures 8.7-8.12). However, this is seen in the complete dataset, in the complete one and in each bifurcation.

The Optical pathways feature is the opposite, which was intuitively noticed

Table 8.5: Analysis of Optical pathways feature regarding the Momentaneous with past database and both bifurcations regarding relapse visits and routine visits.

Metrics/Labels		Relapse \& Routine			Relapse			Routine		
		highestEDSS	nextEDSS	mediumEDSS	highestEDSS	nextEDSS	mediumEDSS	highestEDSS	nextEDSS	mediumEDSS
Correlation	label>3	0.41	0.32	0.33	0.40	0.27	0.31	0.42	0.37	0.34
	label>5	0.25	0.21	0.14	0.24	0.20	0.14	0.25	0.22	0.15
AUC	label>3	0.20	0.27	0.27	0.19	0.31	0.26	0.21	0.24	0.27
	label>5	0.34	0.37	0.43	0.33	0.38	0.43	0.35	0.37	0.44

Figure 8.3: Scatterplot with feature Pyramidal First 2 years with the complete Momentaneous database for the label highestEDSS >3.
since all correlation values were negative. This can be seen easily in the scatterplots regarding this feature (Figures 8.13, 8.14 and 8.15). If a patient has an MS initial manifestation at the optic pathways levels, the disease progression will be certainly less severe. This is seen in all datasets tested: the complete one and each bifurcation.

Figure 8.4: Scatterplot with feature Pyramidal First 2 years with the complete Momentaneous database for the label highestEDSS >5.

Figure 8.5: Scatterplot with feature Pyramidal First 2 years with the relapse bifurcation database for the label highestEDSS> 3 .

Figure 8.6: Scatterplot with feature Pyramidal First 2 years with the relapse bifurcation database for the label highestEDSS>5.

Figure 8.7: Scatterplot with feature Spinal Cord with the complete Momentaneous database for the label mediumEDSS >3.

Figure 8.8: Scatterplot with feature Spinal Cord with the complete Momentaneous database for the label mediumEDSS>5.

Figure 8.9: Scatterplot with feature Spinal Cord with the relapse bifurcation database for the label nextEDSS>3.

Figure 8.10: Scatterplot with feature Spinal Cord with the relapse bifurcation database for the label nextEDSS>5.

Figure 8.11: Scatterplot with feature Spinal Cord with the routine bifurcation database for the label highestEDSS>3.

Figure 8.12: Scatterplot with feature Spinal Cord with the routine bifurcation database for the label highest $E D S S>5$.

Figure 8.13: Scatterplot with feature Optical Pathways with the complete Momentaneous database for the label nextEDSS >3.

Figure 8.14: Scatterplot with feature Optical Pathways with the relapse bifurcation database for the label nextEDSS>3.

Figure 8.15: Scatterplot with feature Optical Pathways with the routine bifurcation database for the label nextEDSS >3.

Chapter 9

Conclusion

The goal of this project was to evaluate and predict MS progression with an original database from Centro Hospitalar Universitário de Coimbra curated by the author. As already known before this dissertation, this was not an easy task, which is proved by the fact of not existing a gold standard algorithm to perform this process.

In order to evaluate and study the disease progression, it was desired to build a robust algorithm against different metrics, enabling quantification of the disease progression. Thus, as a product of assembling clinical and algorithmic knowledge, biological, heuristic and clinical rules would be required in order to be more than a simple mathematical model. In other words, a clinical perspective had to be attributed to the model. To make it easy to apply in the daily physician life, it would have to be automatic and standardized.

As seen, not all objectives were accomplished. In fact, the evaluation and prediction of MS progression was performed with an original database and with an automatic procedure for clinical data. However, regarding the imaging part, the obtained algorithm is a semi-automatic process, since previous lesion manual labeling is required. A method for lesion detection was attempted but the results were not satisfactory. Thus, it was decided that performance should not be sacrificed significantly, but rather to have a time-consuming task initially.

Clinical data has a stronger predictive power when compared to image data, which is natural since imaging features are extractions with a strong mathematical basis and with a reasonable clinical one. Besides, it does not exist an actual consense regarding the best image features, which can show the real complexity of this task.

Predicting and studying progression was not the only task, discovering some new unknown patterns was another goal, which led to the most interesting part of the job, according to the author's point of view. At clinical level it was possible to show 3 interesting features that may be relevant for progression assessment: the ratio of times there were MS manifestations at the pyramidal tract in the first 2 years (Pyramidal First 2 Years feature), MS initial manifestations at spinal cord level (Spinal Cord feature) and at the optic pathways (Optic Pathways feature). The most interesting part of these 3 is the temporality factor: the first one only needs the first 2 years of MS onset and the other two are immediately extracted at the onset moment. As they can be acquired in a relative fast way, they become interesting and useful in life applications for a future prediction.

An attractive fact about the results was the presence of the most clinical obvious and already known predictors: EDSS-related, gender, MS course and number of years with MS. This provides a certain degree of trust to the obtained results as it is significantly coherent with clinical knowledge. Spinal cord was already an empirical fact known by the doctors, which is now mathematically proven. As it was possible to explore deeper the features influence, the Momentaneous database was bifurcated into relapse/routine visits in order to fully comprehend MS progression. Despite the unpredictability of relapses, spinal cord MS initial manifestations and pyramidal tract evidences in the first 2 years showed to be influent factors, and not only in non-relapse disease progression.

Regarding the obtained results at imaging level, since there are no findings related to any brain region, it is very hard and risky to assume an interpretation with the same degree of confidence. Since the number of features was significantly larger, the strategy was also different, as the feature counting was performed not by the feature itself but by the tissue/region in question. Besides, the image results were not as good as the clinical ones. Nevertheless, the most reliable labels obtained with only the imaging results were the same 3: highestEDSS, nextEDSS and mediumEDSS. The most appealing parts of the imaging procedure were the new MRI simple processing method and the extensive feature extraction regarding tissue extraction and brain structures.

The greatest obstacle of this dissertation was the database curation due to the spent time retrieving the MRI scans, the significant quantity of missing data regarding some important features and, as naturally, the number of patients (36). Lower the number of patients, theoretically lower is the representativity of the population. Besides, most of the algorithms applied may not work properly with such reduced number of samples. In order to fight this problem, the database was handled in mul-
tiple perspectives, with multiple goals and with multiple metrics. Another appealing technique used in order to accomplish this multiple perspective was the visualization and comprehension of the multiple created databases as a unified system of the MS progression.

However, this is not simple, since a physician must be able to fully understand this process in order to evaluate it with a clinical view. This perception of a unified system is not totally correct, as stated by Doctor Sónia Batista. Some ways of how the data was handled seemed to a physician a mathematical process only and not clinical. Ratios, standard variations of certain features may lose its clinical meaning. For example, by using a medium EDSS or the highest EDSS achieved value as labels, a clinical value meaning is lost since EDSS values are respective to both relapses and routines in the database. Besides, these are metrics never used in real life. The extra exploration performed in Chapter 8, besides guaranteeing the cause-effect relationship of the mentioned features, also had as objective the increase of the existing clinical meaning and application.

Making a clear bridge between the mathematical and clinical concepts can be extremely complicated as clinical points of view have completely different rules than the ones in computation. Besides, the complexity of the image processing and pattern recognition algorithms make the communication task even harder, since the number of calculations performed may be a big obstacle to lose the clinical sense.

This dissertation opens paths to many research fronts, not only to improve the algorithms and procedure themselves but also to keep adding samples to the database in order to verify if the same results are still obtained. Studying in a deeper way these 3 clinical features and to verify the 2 obtained brain regions seems a very natural evolution of this work. However, there are always other issues equally interesting, such as different labels, different approaches for the same original database or even different backbones and alternative ways of interpreting the same results.

Bibliography

[1] R. A. Marrie, "Environmental risk factors in multiple sclerosis aetiology," The Lancet Neurology, vol. 3, no. 12, pp. 709-718, 2004.
[2] K. Rejdak, S. Jackson, and G. Giovannoni, "Multiple sclerosis: a practical overview for clinicians," British medical bulletin, vol. 95, no. 1, pp. 79-104, 2010.
[3] A. Webb, Introduction to biomedical imaging. Wiley-Interscience, 2003.
[4] H. S. MS, "Edss scale," 2015. [Web; accessed in 19/12/2017].
[5] M. R. I. M. of the Brain and S. Basics, "Magnetic resonance imaging (mri) of the brain and spine: Basics," 2017. [Web; accessed in 20/12/2017].
[6] D. García-Lorenzo, S. Francis, S. Narayanan, D. L. Arnold, and D. L. Collins, "Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging," Medical image analysis, vol. 17, no. 1, pp. 1-18, 2013.
[7] D. García-Lorenzo, S. Francis, S. Narayanan, D. L. Arnold, and D. L. Collins, "Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging," Medical image analysis, vol. 17, no. 1, pp. 1-18, 2013.
[8] B. F. Hutton and M. Braun, "Software for image registration: algorithms, accuracy, efficacy," in Seminars in nuclear medicine, vol. 33, pp. 180-192, Elsevier, 2003.
[9] K. Boesen, K. Rehm, K. Schaper, S. Stoltzner, R. Woods, E. Lüders, and D. Rottenberg, "Quantitative comparison of four brain extraction algorithms," NeuroImage, vol. 22, no. 3, pp. 1255-1261, 2004.
[10] O. Freifeld, H. Greenspan, and J. Goldberger, "Multiple sclerosis lesion detection using constrained gmm and curve evolution," Journal of Biomedical Imaging, vol. 2009, p. 14, 2009.
[11] R. He and P. A. Narayana, "Automatic delineation of gd enhancements on magnetic resonance images in multiple sclerosis," Medical physics, vol. 29, no. 7,
pp. 1536-1546, 2002.
[12] N. Shiee, P.-L. Bazin, A. Ozturk, D. S. Reich, P. A. Calabresi, and D. L. Pham, "A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions," NeuroImage, vol. 49, no. 2, pp. 1524-1535, 2010.
[13] C. A. Cocosco, V. Kollokian, R. K.-S. Kwan, G. B. Pike, and A. C. Evans, "Brainweb: Online interface to a 3d mri simulated brain database," in NeuroImage, Citeseer, 1997.
[14] D. C. f. L. S. D. Wikipedia, "Orbital gyrus animation," 2010.
[15] D. C. f. L. S. D. Wikipedia, "Superior frontal gyrus animation," 2010.
[16] C. H. Polman, S. C. Reingold, B. Banwell, M. Clanet, J. A. Cohen, M. Filippi, K. Fujihara, E. Havrdova, M. Hutchinson, L. Kappos, et al., "Diagnostic criteria for multiple sclerosis: 2010 revisions to the mcdonald criteria," Annals of neurology, vol. 69, no. 2, pp. 292-302, 2011.
[17] J. F. Kurtzke, "Rating neurologic impairment in multiple sclerosis an expanded disability status scale (edss)," Neurology, vol. 33, no. 11, pp. 1444-1444, 1983.
[18] G. DeLuca, G. Ebers, and M. Esiri, "Axonal loss in multiple sclerosis: a pathological survey of the corticospinal and sensory tracts," Brain, vol. 127, no. 5, pp. 1009-1018, 2004.
[19] M. M. Goldenberg, "Multiple sclerosis review," Pharmacy and Therapeutics, vol. 37, no. 3, p. 175, 2012.
[20] D. A. Hafler, "Multiple sclerosis," The Journal of Clinical Investigation, vol. 113, no. 6, pp. 789-794, March 2004.
[21] N. Koch-Henriksen and P. S. Sørensen, "The changing demographic pattern of multiple sclerosis epidemiology," The Lancet Neurology, vol. 9, no. 5, pp. 520532, 2010.
[22] G. C. Ebers, "Environmental factors and multiple sclerosis," The Lancet Neurology, vol. 7, no. 3, pp. 268-277, 2008.
[23] S. W. Courtney, All About Multiple Sclerosis. Multiple Sclerosis Association of America, 3 ed., 2006.
[24] F. D. Lublin, S. C. Reingold, J. A. Cohen, G. R. Cutter, P. S. Sørensen, A. J. Thompson, J. S. Wolinsky, L. J. Balcer, B. Banwell, F. Barkhof, et al., "Defining the clinical course of multiple sclerosis the 2013 revisions," Neurology, vol. 83, no. 3, pp. 278-286, 2014.
[25] B. A. Cohen, "Current and emerging treatment strategies for multiple sclerosis,"
[26] A. Gajofatto and M. D. Benedetti, "Treatment strategies for multiple sclerosis:
when to start, when to change, when to stop?," World Journal of Clinical Cases: WJCC, vol. 3, no. 7, p. 545, 2015.
[27] P. Suetens, Fundamentals of Medical Imaging. Katholieke Universiteit Leuven, 2 ed., 2009.
[28] R. B. Lufkin, The MRI manual. Mosby Incorporated, 1998.
[29] P. Reimer, P. M. Parizel, J. F. Meaney, and F. A. Stichnoth, Clinical MR Imaging: A practical approach 3rd Edition. No. 1, Springer, 2010.
[30] J. W. Peterson, L. Bö, S. Mörk, A. Chang, and B. D. Trapp, "Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions," Annals of neurology, vol. 50, no. 3, pp. 389-400, 2001.
[31] A. Carass, S. Roy, A. Jog, J. L. Cuzzocreo, E. Magrath, A. Gherman, J. Button, J. Nguyen, F. Prados, C. H. Sudre, et al., "Longitudinal multiple sclerosis lesion segmentation: Resource and challenge," NeuroImage, vol. 148, pp. 77102, 2017.
[32] M. Filippi, M. Horsfield, A. Campi, S. Mammi, C. Pereira, and G. Comi, "Resolution-dependent estimates of lesion volumes in magnetic resonance imaging studies of the brain in multiple sclerosis," Annals of neurology, vol. 38, no. 5, pp. 749-754, 1995.
[33] B. Fischl, "Freesurfer," Neuroimage, vol. 62, no. 2, pp. 774-781, 2012.
[34] R. He and P. A. Narayana, "Global optimization of mutual information: application to three-dimensional retrospective registration of magnetic resonance images," Computerized Medical Imaging and Graphics, vol. 26, no. 4, pp. 277292, 2002.
[35] M. Jenkinson, P. Bannister, M. Brady, and S. Smith, "Improved optimization for the robust and accurate linear registration and motion correction of brain images," Neuroimage, vol. 17, no. 2, pp. 825-841, 2002.
[36] B. R. Sajja, S. Datta, R. He, M. Mehta, R. K. Gupta, J. S. Wolinsky, and P. A. Narayana, "Unified approach for multiple sclerosis lesion segmentation on brain mri," Annals of biomedical engineering, vol. 34, no. 1, pp. 142-151, 2006.
[37] A. Klein, J. Andersson, B. A. Ardekani, J. Ashburner, B. Avants, M.-C. Chiang, G. E. Christensen, D. L. Collins, J. Gee, P. Hellier, et al., "Evaluation of 14 nonlinear deformation algorithms applied to human brain mri registration," Neuroimage, vol. 46, no. 3, pp. 786-802, 2009.
[38] X. Lladó, A. Oliver, M. Cabezas, J. Freixenet, J. C. Vilanova, A. Quiles, L. Valls, L. Ramió-Torrentà, and À. Rovira, "Segmentation of multiple sclerosis lesions in brain mri: a review of automated approaches," Information Sciences, vol. 186, no. 1, pp. 164-185, 2012.
[39] Z. Hou, "A review on mr image intensity inhomogeneity correction," International Journal of Biomedical Imaging, vol. 2006, 2006.
[40] S. Datta, B. R. Sajja, R. He, R. K. Gupta, J. S. Wolinsky, and P. A. Narayana, "Segmentation of gadolinium-enhanced lesions on mri in multiple sclerosis," Journal of Magnetic Resonance Imaging, vol. 25, no. 5, pp. 932-937, 2007.
[41] K. Van Leemput, F. Maes, D. Vandermeulen, A. Colchester, and P. Suetens, "Automated segmentation of multiple sclerosis lesions by model outlier detection," IEEE transactions on medical imaging, vol. 20, no. 8, pp. 677-688, 2001.
[42] Y. Wu, S. K. Warfield, I. L. Tan, W. M. Wells, D. S. Meier, R. A. van Schijndel, F. Barkhof, and C. R. Guttmann, "Automated segmentation of multiple sclerosis lesion subtypes with multichannel mri," NeuroImage, vol. 32, no. 3, pp. 1205-1215, 2006.
[43] H. Greenspan, A. Ruf, and J. Goldberger, "Constrained gaussian mixture model framework for automatic segmentation of mr brain images," IEEE transactions on medical imaging, vol. 25, no. 9, pp. 1233-1245, 2006.
[44] D. García-Lorenzo, S. Prima, D. L. Collins, D. Arnold, S. P. Morrissey, and C. Barillot, "Combining robust expectation maximization and mean shift algorithms for multiple sclerosis brain segmentation," in MICCAI workshop on Medical Image Analysis on Multiple Sclerosis (validation and methodological issues)(MIAMS'2008), pp. 82-91, 2008.
[45] Y. Zhang, "Mri texture analysis in multiple sclerosis," Journal of Biomedical Imaging, vol. 2012, p. 2, 2012.
[46] B. J. Bedell and P. A. Narayana, "Automatic segmentation of gadoliniumenhanced multiple sclerosis lesions," Magnetic resonance in medicine, vol. 39, no. 6, pp. 935-940, 1998.
[47] A.-O. Boudraa, S. M. R. Dehak, Y.-M. Zhu, C. Pachai, Y.-G. Bao, and J. Grimaud, "Automated segmentation of multiple sclerosis lesions in multispectral mr imaging using fuzzy clustering," Computers in biology and medicine, vol. 30, no. 1, pp. 23-40, 2000.
[48] S. Saha and S. Bandyopadhyay, "A new point symmetry based fuzzy genetic clustering technique for automatic evolution of clusters," Information Sciences, vol. 179, no. 19, pp. 3230-3246, 2009.
[49] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the em algorithm," Journal of the royal statistical society. Series B (methodological), pp. 1-38, 1977.
[50] J. A. S. Bricq, C. Collet, "Ms lesion segmentation based on hidden markov chains," Mult. Scler. Lesion Segm. Challenge, pp. 1-9, 2008.
[51] M. Prastawa and G. Gerig, "Automatic ms lesion segmentation by outlier detection and information theoretic region partitioning," Grand Challenge Work.: Mult. Scler. Lesion Segm. Challenge, pp. 1-8, 2008.
[52] X. Tomas and S. K. Warfield, "Fully-automatic generation of training points for automatic multiple sclerosis segmentation," Work Med Image Anal Mult Scler, pp. 5-14, 2009.
[53] D.-J. Kroon, E. van Oort, and C. Slump, "Multiple sclerosis detection in multispectral magnetic resonance images with principal components analysis," 2008.
[54] D. Goldberg-Zimring, A. Achiron, S. Miron, M. Faibel, and H. Azhari, "Automated detection and characterization of multiple sclerosis lesions in brain mr images," Magnetic resonance imaging, vol. 16, no. 3, pp. 311-318, 1998.
[55] P. Anbeek, K. L. Vincken, and M. A. Viergever, "Automated ms-lesion segmentation by k-nearest neighbor classification," MIDAS J, 2008.
[56] J. Morra, Z. Tu, A. Toga, and P. Thompson, "Automatic segmentation of ms lesions using a contextual model for the miccai grand challenge," Multiple Sclerosis Lesion Segmentation Challenge, pp. 1-7, 2008.
[57] E. Geremia, O. Clatz, B. H. Menze, E. Konukoglu, A. Criminisi, and N. Ayache, "Spatial decision forests for ms lesion segmentation in multi-channel magnetic resonance images," NeuroImage, vol. 57, no. 2, pp. 378-390, 2011.
[58] A. Cerasa, E. Bilotta, A. Augimeri, A. Cherubini, P. Pantano, G. Zito, P. Lanza, P. Valentino, M. C. Gioia, and A. Quattrone, "A cellular neural network methodology for the automated segmentation of multiple sclerosis lesions," Journal of neuroscience methods, vol. 203, no. 1, pp. 193-199, 2012.
[59] S. Valverde, M. Cabezas, E. Roura, S. González-Villà, D. Pareto, J. C. Vilanova, L. Ramió-Torrentà, A. Rovira, A. Oliver, and X. Lladó, "Improving automated multiple sclerosis lesion segmentation with a cascaded 3d convolutional neural network approach," NeuroImage, vol. 155, pp. 159-168, 2017.
[60] T. Brosch, L. Y. Tang, Y. Yoo, D. K. Li, A. Traboulsee, and R. Tam, "Deep 3d convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation," IEEE transactions on medical imaging, vol. 35, no. 5, pp. 1229-1239, 2016.
[61] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes, and A. C. Evans, "Design and construction of a realistic digital brain phantom," IEEE transactions on medical imaging, vol. 17, no. 3, pp. 463-468, 1998.
[62] S. K. Warfield, K. H. Zou, and W. M. Wells, "Simultaneous truth and performance level estimation (staple): an algorithm for the validation of image
segmentation," IEEE transactions on medical imaging, vol. 23, no. 7, pp. 903921, 2004.
[63] M. Bosc, F. Heitz, J.-P. Armspach, I. Namer, D. Gounot, and L. Rumbach, "Automatic change detection in multimodal serial mri: application to multiple sclerosis lesion evolution," Neuroimage, vol. 20, no. 2, pp. 643-656, 2003.
[64] J. D. Rodriguez, A. Perez, D. Arteta, D. Tejedor, and J. A. Lozano, "Using multidimensional bayesian network classifiers to assist the treatment of multiple sclerosis," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1705-1715, 2012.
[65] A. Feinstein, L. Kartsounis, D. H. Miller, B. D. Youl, and M. A. Ron, "Clinically isolated lesions of the type seen in multiple sclerosis: a cognitive, psychiatric, and mri follow up study.," Journal of Neurology, Neurosurgery \mathcal{B} Psychiatry, vol. 55, no. 10, pp. 869-876, 1992.
[66] A. Boiko, G. Vorobeychik, D. Paty, V. Devonshire, D. Sadovnick, et al., "Early onset multiple sclerosis a longitudinal study," Neurology, vol. 59, no. 7, pp. 1006-1010, 2002.
[67] P. A. Brex, O. Ciccarelli, J. I. O'riordan, M. Sailer, A. J. Thompson, and D. H. Miller, "A longitudinal study of abnormalities on mri and disability from multiple sclerosis," New England Journal of Medicine, vol. 346, no. 3, pp. 158164, 2002.
[68] J. Sastre-Garriga, G. T. Ingle, D. T. Chard, M. Cercignani, L. Ramió-Torrentà, D. H. Miller, and A. J. Thompson, "Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study," Brain, vol. 128, no. 6, pp. 1454-1460, 2005.
[69] G. Tedeschi, D. Dinacci, L. Lavorgna, A. Prinster, G. Savettieri, A. Quattrone, P. Livrea, C. Messina, A. Reggio, G. Servillo, et al., "Correlation between fatigue and brain atrophy and lesion load in multiple sclerosis patients independent of disability," Journal of the neurological sciences, vol. 263, no. 1, pp. 15-19, 2007.
[70] R. Zivadinov, J. Sepcic, D. Nasuelli, R. De Masi, L. M. Bragadin, M. Tommasi, S. Zambito-Marsala, R. Moretti, A. Bratina, M. Ukmar, et al., "A longitudinal study of brain atrophy and cognitive disturbances in the early phase of relapsing-remitting multiple sclerosis," Journal of Neurology, Neurosurgery ${ }^{6}$ Psychiatry, vol. 70, no. 6, pp. 773-780, 2001.
[71] A. Crimi, O. Commowick, A. Maarouf, J.-C. Ferré, E. Bannier, A. Tourbah, I. Berry, J.-P. Ranjeva, G. Edan, and C. Barillot, "Predictive value of imaging markers at multiple sclerosis disease onset based on gadolinium-and uspio-
enhanced mri and machine learning," PloS one, vol. 9, no. 4, p. e93024, 2014.
[72] A. Minneboo, F. Barkhof, C. H. Polman, B. M. Uitdehaag, D. L. Knol, and J. A. Castelijns, "Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis," Archives of neurology, vol. 61, no. 2, pp. 217-221, 2004.
[73] Y. Zhao, B. C. Healy, D. Rotstein, C. R. Guttmann, R. Bakshi, H. L. Weiner, C. E. Brodley, and T. Chitnis, "Exploration of machine learning techniques in predicting multiple sclerosis disease course," PloS one, vol. 12, no. 4, p. e0174866, 2017.
[74] D. W. Shattuck, M. Mirza, V. Adisetiyo, C. Hojatkashani, G. Salamon, K. L. Narr, R. A. Poldrack, R. M. Bilder, and A. W. Toga, "Construction of a 3d probabilistic atlas of human cortical structures," Neuroimage, vol. 39, no. 3, pp. 1064-1080, 2008.
[75] T. Rohlfing, N. M. Zahr, E. V. Sullivan, and A. Pfefferbaum, "The sri24 multichannel atlas of normal adult human brain structure," Human brain mapping, vol. 31, no. 5, pp. 798-819, 2010.
[76] J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster, "A probabilistic atlas of the human brain: Theory and rationale for its development: The international consortium for brain mapping (icbm)," Neuroimage, vol. 2, no. 2, pp. 89-101, 1995.
[77] M. Radovic, M. Ghalwash, N. Filipovic, and Z. Obradovic, "Minimum redundancy maximum relevance feature selection approach for temporal gene expression data," BMC bioinformatics, vol. 18, no. 1, p. 9, 2017.

Appendices

Chapter A

Appendix I - EDSS grading Functional Systems

Table A.1: FS Pyramidal grading system [17].

Grade	Meaning
0	Normal
1	Abnormal signs without disability
2	Minimal disability
3	Mild or moderate paraparesis or hemiparesis
4	Marked paraparesis or hemiparesis; moderate quadriparesis or monoplegia
5	Paraplegia, hemiplegia or marked quadriparesis
6	Quadriplegia
V	Unknown

Table A.2: FS Cerebellar grading system [17].

Grade	Meaning
0	Normal
1	Abnormal signs without disability
2	Mild ataxia
3	Moderate truncal or limb ataxia
4	Severe ataxia, all limbs
5	Unable to perform coordinated movements due to ataxia
V	Unknown
X	Used after each number when weakness (grade 3+ on pyramidal) interferes with testing

Table A.3: FS Brain Stem grading system [17].

Grade	Meaning
0	Normal
1	Signs only
2	Moderate nystagmus or other mild disability
3	Severe nystagmus, marked extraocular weakness, or moderate disability of other cranial nerves
4	Marked dysarthria or other marked disability
5	Inability to swallow or speak
V	Unknown

Table A.4: FS Sensory grading system [17].

Grade	Meaning
0	Normal
1	Vibration or figure-writing decrease only, in one or two limbs
2	Mild decrease in touch or pain or position sense, and/or moderate decrease in vibration in one or two limbs; or vibratory decrease alone in three or four limbs
3	Moderate decrease in touch or pain or position sense, and/or essentially lost vibration in one or two limbs; or mild decrease in touch or pain and/or moderate decrease in all proprioreceptive tests in three or four limbs
4	Marked decrease in touch or pain or loss of proprioception, alone or ocmbined, in one or two limbs; or moderate decrease in touch or pain and/or severe proprioception for most of the body below the head
5	Loss of sensation in one or two limbs; or moderate decrease in touch or pain and/or loss of proprioception for most of the body below the hand
6	Sensation essentially lost below the head
V	Unknown

Table A.5: FS Bowel \& Bladder grading system [17].

Grade	Meaning
0	Normal
1	Mild Urinary hesitancy, urgency or retention
2	Moderate hesitancy, urgency, retention of bowel or bladder, or rare urinary incontinence
3	Frequent urinary incontinence
4	In need of almost constant catheterization
5	Loss of bladder function
6	Loss of bowel and bladder function
V	Unknown

Table A.6: FS Visual grading system [17].

Grade	Meaning
0	Normal
1	Scotoma with visual acuity (corrected) better than $20 / 30$
2	Worse eye with scotoma with maximal visual acuity (corrected) of $20 / 30$ to $20 / 59$
3	Worse eye with large scotoma, or moderate decrease in fields, but with maximal visual acuity (corrected) of $20 / 60$ to $20 / 99$
4	Worse eye with marked decrease of fields and maximal visual acuity (corrected) of $20 / 100$ to $20 / 200 ;$ grade 3 plus maximal acuity of better eye of $20 / 60$ or less.
5	Worse eye with maximal visual acuity (corrected) less than 20/200; grade 4 plus maximal acuity of better eye of $20 / 60$ or less
6	Grade 5 plus maximal visual acuity of better eye of $20 / 60$ or less
V	Unknown
X	Is added to grades 0 to 6 for presence of temporal pallor

Table A.7: FS Cerebral grading system [17].

Grade	Meaning
0	Normal
1	Mood alteration only
2	Mild decrease in mentation
3	Moderate decrease in mentation
4	Marked decrease in mentation (chronic brain syndrome - moderate)
5	Dementia or chronic brain syndrome - severe or incompetent
V	Unknown

Table A.8: FS Other grading system [17].

Grade	Meaning
0	None
1	Any other neurologic findings attributed to MS
V	Unknown

Chapter B

Appendix II - Clinical databases description

The clinical databases are here described with the maximum detail. Not only each feature is explained but also the normalization process is explained.

B. 1 Static database

B.1.1 Identification sheet

From Identification sheet, the Static database is constituted by the following features (binary features were transformed into $1 / 0$):

Pathways

1. Gender: equal to the raw feature description described in Chapter 5.
2. Age of onset: the age at which MS started to manifest.
3. Supratentorial: equal to the raw feature description described in Chapter 5.
4. Optic: equal to the raw feature description described in Chapter 5.
5. Brainstem-Cerebellum: equal to the raw feature description described in Chapter 5.
6. Spinal Cord: equal to the raw feature description described in Chapter 5.
7. Age of diagnosis: the age at which the patient was diagnosed with MS.
8. Years from onset to diagnosis: years passed from onset to diagnosis.
9. Clinical findings: equal to the raw feature description described in Chapter
10.
11. MRI: equal to the raw feature description described in Chapter 5.
12. Evoked potentials: equal to the raw feature description described in Chapter 5.
13. CSF: equal to the raw feature description described in Chapter 5.
14. Age at SP diagnosis: equal to the raw feature description described in Chapter 5.
15. Years from onset to diagnosis SP: time passed since MS onset and SP diagnosis.
16. MS Course: equal to the raw feature description described in Chapter 5.
17. Active: equal to the raw feature description described in Chapter 5.

The feature normalization process occurred in the following form:

1. Gender: no need for normalization process.
2. Age of onset: it was decided to normalize the feature using as maximum value 50 years old. This way, if a patient has an onset age superior to 50 , its feature value will be 1. In this thesis, the target patients have onset ages of from 20 to approximately 40 years old.
3. Supratentorial: no need for normalization process.
4. Optic Pathways: no need for normalization process.
5. Brainstem-Cerebellum: no need for normalization process.
6. Spinal Cord: no need for normalization process.
7. Age of diagnosis: it was decided to use as normalization factor the same value as used in age of onset (50).
8. Years from onset to diagnosis: it was used 20 years as normalization factor since this feature has a tremendous variability.
9. Clinical findings: no need for normalization process.
10. MRI: no need to normalization process.
11. Evoked potentials: no need for normalization process.
12. CSF: no need for normalization process.
13. Age at SP diagnosis: it was used 60 years old as value, since there were patients with more than 50 years old when SP was diagnosed.
14. Years from onset to diagnosis SP: it was used 25 years as normalization factor since this feature has a tremendous variability and since its maximum value surpasses the 20 years value used as limit in feature "years from onset to diagnosis".
15. MS Course: no need for normalization process.
16. Active: no need for normalization process.

B.1.2 Visits sheet

From Visits sheet, the Static database is constituted by the following features:

1. Nb of visits per year: the average of visits made per year.
2. Nb of visits 1st year: the number of visits made in the first year.
3. Nb of visits first 2 years: the number of visits made in the first 2 years.
4. Suspected Relapses ratio per year: the average of the annual numbers of suspected relapses regarding all visits made to the clinic.
5. Suspected relapses ratio 1st year: the average of suspected relapses regarding the first year the patient visited the clinic.
6. Suspected relapses ratio first 2 years: the average of suspected relapses regarding the first two years the patient visited the clinic.
7. EDSS medium value/year: the average value of the anual EDSS medium values values regarding all visits made to the clinic.
8. EDSS 1st year: the average value of all EDSS values regarding the first year the patient visited the clinic.
9. EDSS first 2 years: the average value of all EDSS values regarding the first two years the patient visited the clinic.
10. EDSS std/year: the standard deviation of the annual EDSS medium values.
11. EDSS 1st year std: the standard deviation of the EDSS values regarding the first year the patient visited the clinic.
12. EDSS first 2 years std: the standard deviation of the EDSS values regarding the first two years the patient visited the clinic.
13. EDSS medium variation/year: the average value of all annual EDSS variations per year regarding all visits made to the clinic.
14. EDSS medium variation 1st year: the medium variation of EDSS values regarding the first year the patient has visited the clinic.
15. EDSS medium variation first 2 years: the medium variation of EDSS values regarding the first year the patient has visited the clinic.
16. EDSS std of variation/year: the standard deviation of the annual EDSS variations regarding all visits made to the clinic.
17. EDSS std of variation 1st year: the standard deviation of the EDSS variations regarding the first year the patient visited the clinic.
18. EDSS std of variation first 2 years: the standard deviation of the EDSS
variations regarding the first 2 years the patient visited the clinic.
19. EDSS increase 1st year: the ratio of times the EDSS value has increased from consecutive visits regarding the first year the patient has visited the clinic.
20. EDSS increase first 2 years: the ratio of times the EDSS value has increased from consecutive visits regarding the first two years the patient has visited the clinic.
21. Ratio nb EDSS increase: the ratio of times the EDSS value has increased from consecutive visits regarding all visits made to the clinic.
22. Ratio nb EDSS decrease: the ratio of times the EDSS value has decreased from consecutive visits regarding all visits made to the clinic.
23. Ratio nb EDSS decrease 1st year: the ratio of times the EDSS value has decreased from consecutive visits regarding the first year the patient has visited the clinic.
24. Ratio nb EDSS decrease first 2 years: the ratio of times the EDSS value has decreased from consecutive visits regarding the first two years the patient has visited the clinic.
25. Routine visits ratio: the ratio of routine visits regarding all visits made to the clinic.
26. Routine visits ratio 1st year: the ratio of routine visits regarding the first year the patient has visited the clinic.
27. Routine visits first 2 years: the ratio of routine visits regarding the first two years the patient has visited the clinic.
28. No years: the number of years the patient.

The feature normalization process occurred in the following form:

1. Nb of visits per year: the normalization factor was 3 visits per year since it was the maximum registered.
2. Nb of visits 1 st year: the normalization factor mas 3 visits since it was the maximum registered.
3. Nb of visits first 2 years: the normalization factor mas 5 visits since it was the maximum registered.
4. Suspected Relapses ratio per year: the normalization factor was 3 suspected relapses since it is the maximum integer in order to normalize the data between 0 and 1.
5. Suspected relapses ratio 1st year: the normalization factor was 3 suspected relapses since it is the maximum registered.
6. Suspected relapses ratio first 2 years: the normalization factor was 5
suspected relapses since it is the maximum registered.
7. EDSS medium value/year: the normalization factor was 10 since the EDSS scale maximum value is 10 .
8. EDSS 1st year: the normalization factor was 10 since the EDSS scale maximum value is 10 .
9. EDSS first 2 years: the normalization factor was 10 since the EDSS scale maximum value is 10 .
10. EDSS std/year: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1.
11. EDSS 1st year std: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1 .
12. EDSS first 2 years std: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1 .
13. EDSS medium variation/year: the normalization factor was 2 since it is the maximum integer in order to normalize the data between 0 and 1.
14. EDSS medium variation 1st year: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1 .
15. EDSS medium variation first 2 years: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1.
16. EDSS std of variation/year: the normalization factor was 2 since it is the maximum integer in order to normalize the data between 0 and 1 .
17. EDSS std of variation 1st year: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1 .
18. EDSS std of variation first 2 years: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1 .
19. EDSS increase 1st year: no need for normalization process.
20. EDSS increase first 2 years:no need for normalization process.
21. Ratio nb EDSS increase: no need for normalization process.
22. Ratio nb EDSS decrease: no need for normalization process.
23. Ratio nb EDSS decrease 1st year: no need to normalization process.
24. Ratio nb EDSS decrease first 2 years: no need for normalization process.
25. Routine visits ratio: no need for normalization process.
26. Routine visits ratio 1st year: no need for normalization process.
27. Routine visits first 2 years: no need for normalization process.
28. No years: the normalization factor was 32 , due to the maximum of number
of years registered in the relapses sheet in No years feature.

B.1.3 Relapses sheet

From Relapses sheet, the Static database is constituted by the following features:

1. Relapses per year: the average of the annual numbers of relapses regarding all relapses.
2. Relapses 1st year: the number of relapses regarding the first year the patient suffered relapses.
3. Relapses first 2 years: the number of relapses regarding the first two years the patient suffered relapses.
4. Pyramidal Ratio: the ratio of times there were MS manifestations in the pyramidal tract due to a relapse regarding all relapses.
5. Pyramidal 1st year: the ratio of times there were MS manifestations related to the pyramidal tract due to a relapse regarding the first year a patient suffered relapses.
6. Pyramidal first 2 years: the ratio of times there were MS manifestations related to the pyramidal tract due to a relapse regarding the first two years a patient suffered relapses.
7. Brain Stem ratio: the ratio of times there were MS manifestations related to the brain stem due to a relapse regarding all relapses.
8. Brain Stem 1st year: the ratio of times there were MS manifestations related to the brain stem due to a relapse regarding the first year a patient suffered relapses.
9. Brain Stem first 2 years: the ratio of times there were MS manifestations related to the brain stem due to a relapse regarding the first two years a patient suffered relapses.
10. Bowel ratio: the ratio of times there were MS manifestations related to the bowel and bladder due to a relapse regarding all relapses.
11. Bowel 1st year: the ratio of times there were MS manifestations related to the bowel and bladder due to a relapse regarding the first year a patient suffered relapses.
12. Bowel first 2 years: the ratio of times there were MS manifestations related to the bowel and bladder due to a relapse regarding the first two years a patient suffered relapses.
13. Neuropsycho ratio: the ratio of times there were MS manifestations related
to the neuropsycho functions due to a relapse regarding all relapses.
14. Neuropsycho 1st year: the ratio of times there were MS manifestations related to the neuropsycho functions due to a relapse regarding the first year a patient suffered relapses.
15. Neuropsycho first 2 years: the ratio of times there were MS manifestations related to the bowel and bladder due to a relapse regarding the first two years a patient suffered relapses.
16. Cerebellum ratio: the ratio of times there were MS manifestations related to the cerebellum due to a relapse regarding all relapses.
17. Cerebellum 1st year: the ratio of times there were MS manifestations related to the cerebellum due to a relapse regarding the first year a patient suffered relapses.
18. Cerebellum 2 years: the ratio of times there were MS manifestations related to the cerebellum due to a relapse regarding the first two years a patient suffered relapses.
19. Visual ratio: the ratio of times there were MS manifestations related to visual functions due to a relapse regarding all relapses.
20. Visual 1st year: the ratio of times there were MS manifestations related to visual functions due to a relapse regarding the first year a patient suffered relapses.
21. Visual first 2 years: the ratio of times there were MS manifestations related to visual functions due to a relapse regarding the first two years a patient suffered relapses.
22. Sensory ratio: the ratio of times there were MS manifestations related to sensory functions due to a relapse regarding all relapses.
23. Sensory 1st year: the ratio of times there were MS manifestations related to sensory functions due to a relapse regarding the first year a patient suffered relapses.
24. Sensory first 2 years: the ratio of times there were MS manifestations related to sensory functions due to a relapse regarding the first two years a patient suffered relapses.
25. Corticosteroids Ratio: the ratio of times corticosteroids were used as treatment relapse treatment regarding all relapses.
26. Corticosteroids/year: the average of the annual ratios of corticosteroids use as relapse treatment.
27. Corticosteroids 1st year: the ratio of corticosteroids use regarding the first
year the patient suffered relapses.
28. Corticosteroids first 2 years: the ratio of corticosteroids use regarding the first two years the patient suffered relapses.
29. Average treatment intensity: the average treatment intensity regarding relapse treatment regarding all relapses. No corticosteroids use has value 0 , hydrocortisone use has value 1 , methylprednisolone has value 2 and plasmapheresis value 3 .
30. Average treatment 1st year: the average treatment intensity regarding relapse treatment regarding the first year the patient suffered relapses. No corticosteroids use has value 0 , hydrocortisone use has value 1 , methylprednisolone has value 2 and plasmapheresis value 3 .
31. Average treatment first 2 years: the average treatment intensity regarding relapse treatment regarding the first two years the patient suffered relapses. no corticosteroids use has value 0 , hydrocortisone use has value 1 , methylprednisolone has value 2 and plasmapheresis value 3 .
32. Average duration: the average duration in days of corticosteroids treatment regarding all relapses.
33. Average duration 1st year: the average duration in days of corticosteroids use treatment regarding the first year the patient suffered relapses.
34. Average duration first 2 years: the average duration in days of corticosteroids use treatment regarding the first two years the patient suffered relapses. The feature normalization process occurred in the following form:
35. Relapses per year: the normalization factor was 4 , since it is the maximum integer in order to normalize the data between 0 and 1.
36. Relapses 1st year: the normalization factor was 4 , since the maximum value registered was 3 . Value 3 was not chosen since the normalization factor in feature relapses per year is 4 .
37. Relapses first 2 years: the normalization factor was 6 , since the maximum value registered was 6 .
38. Pyramidal Ratio: no need to normalization process.
39. Pyramidal 1st year: no need to normalization process.
40. Pyramidal first 2 years: no need to normalization process.
41. Brain Stem ratio: no need to normalization process.
42. Brain Stem 1st year: no need to normalization process.
43. Brain Stem first 2 years: no need to normalization process.
44. Bowel ratio: no need to normalization process.
45. Bowel 1st year: no need to normalization process.
46. Bowel first 2 years: no need to normalization process.
47. Neuropsycho ratio: no need to normalization process.
48. Neuropsycho 1st year: no need to normalization process.
49. Neuropsycho first 2 years: no need to normalization process.
50. Cerebellum ratio: no need to normalization process.
51. Cerebellum 1st year: no need to normalization process.
52. Cerebellum 2 years: no need to normalization process.
53. Visual ratio: no need to normalization process.
54. Visual 1st year: no need to normalization process.
55. Visual first 2 years: no need to normalization process.
56. Sensory ratio: no need to normalization process.
57. Sensory 1st year: no need to normalization process.
58. Sensory first 2 years: no need to normalization process.
59. Corticosteroids Ratio: no need to normalization process.
60. Corticosteroids/year: no need to normalization process.
61. Corticosteroids 1st year: no need to normalization process.
62. Corticosteroids first 2 years:no need to normalization process.
63. Average treatment intensity: the normalization factor was 3 , since it is the maximum possible value (plasmapheresis treatment).
64. Average treatment 1st year: the normalization factor was 3 , since it is the maximum possible value (plasmapheresis treatment).
65. Average treatment first 2 years: the normalization factor was 3 , since it is the maximum possible value (plasmapheresis treatment).
66. Average duration: the normalization factor was 10, since it is the maximum registered value. Besides, it is not benefic to do a corticosteroids treatment for a long period.
67. Average duration 1st year: the normalization factor was 10, since it is the maximum registered value. Besides, it is not benefic to do a corticosteroids treatment for a long period.
68. Average duration first 2 years: the normalization factor was 10 , since it is the maximum registered value. Besides, it isn not benefic to do a corticosteroids treatment for a long period.

B. 2 Groundzero database

B.2.1 Identification sheet

From Identification sheet, the Groundzero database is constituted by the following features:

1. Gender: equal to the raw feature description described in Chapter 5.
2. Age of onset: the age at which MS started to manifest.
3. Supratentorial: equal to the raw feature description described in Chapter 5.
4. Optic Pathways: equal to the raw feature description described in Chapter 5.
5. Brainstem-Cerebellum: equal to the raw feature description described in Chapter 5.
6. Spinal Cord: equal to the raw feature description described in Chapter 5.
7. Age of diagnosis: the age at which the patient was diagnosed with MS.
8. Years from onset to diagnosis: years passed from onset to diagnosis.
9. Clinical findings: equal to the raw feature description described in Chapter 5.
10. MRI: equal to the raw feature description described in Chapter 5.
11. Evoked potentials: equal to the raw feature description described in Chapter 5.
12. CSF: equal to the raw feature description described in Chapter 5.
13. Age at SP diagnosis: equal to the raw feature description described in Chapter 5.
14. Years from onset to diagnosis SP: time passed since MS onset and SP diagnosis.

The feature normalization process occurred in the following form:

1. Gender: no need for normalization process.
2. Age of onset: it was decided to normalize the feature using as maximum value 50 years old. This way, if a patient has an onset age superior to 50 , its feature value will be 1. In this thesis, the target patients have onset ages of from 20 to approximately 40 years old.
3. Supratentorial: no need for normalization process.
4. Optic Pathways: no need for normalization process.
5. Brainstem-Cerebellum: no need for normalization process.
6. Spinal Cord: no need for normalization process.
7. Age of diagnosis: it was decided to use as normalization factor the same value as used in the age of onset (50).
8. Years from onset to diagnosis: it was used 20 years as normalization factor since this feature has a tremendous variability.
9. Clinical findings: no need for normalization process.
10. MRI: no need to normalization process.
11. Evoked potentials: no need for normalization process.
12. CSF: no need for normalization process.
13. Age at SP diagnosis: it was used 60 years old as value since there were patients with more than 50 years old when SP was diagnosed.

B.2.2 Visits sheet

From Visits sheet, the Groundzero database is constituted by the following features:

1. Visit age: the patient's age when suffered the first relapse.
2. Routine: if the first visit to the clinic was a routine one.
3. Suspected relapse: if in the first visit to the clinic there were suspicions of an upcoming relapse.
4. EDSS: the EDSS value at the first visit to the clinic.

The feature normalization process occurred in the following form:

1. Visit age: the normalization factor was 60 , since the maximum registered value is 55 .
2. Routine: no need to normalization process.
3. Suspected relapse: no need to normalization process.
4. EDSS: the normalization factor is 10 , since it is the maximum value of the EDSS scale.

B.2.3 Relapses sheet

From Relapses sheet, the Groundzero database is constituted by the following features:

1. Relapse age: the patient's age at the moment of the first relapse.
2. Time since onset: the time that has passed from MS onset to the first relapse.
3. CNS Pyramidal tract: if there were MS initial manifestations related to the pyramidal tract.
4. CNS Brain Stem: if there were MS initial manifestations related to the brain stem.
5. CNS Bowel Bladder: if there were MS initial manifestations related to the bowel and bladder.
6. CNS Neuropsycho functions: if there were MS initial manifestations related to neuropsycho functions.
7. CNS Cerebellum: if there were MS initial manifestations related to the cerebellum.
8. CNS Visual functions: if there MS initial manifestations related to visual functions.
9. CNS Sensory functions: if there MS initial manifestations related to sensory functions.
10. Hospital: if there was the need to be internalized at the hospital during the first appointment.
11. Ambulatory: if the patient seriously harmed its ambulatory capacity during the first appointment.
12. Corticosteroids: if the patient had corticosteroids treatment at the moment of the first appointment.
13. Treatment name: the corticosteroids treatment used at the moment of the first relapse. No corticosteroids use has value 0 , hydrocortisone use has value 1, methylprednisolone has value 2 and plasmapheresis value 3.
14. Duration Days: the corticosteroids treatment duration in days. The feature normalization process occurred in the following form:
15. Relapse age: the normalization factor was 60 , since the maximum registered value is 55 .
16. Time since onset: the normalization factor was 20 , since the maximum registered value is 19 .
17. CNS Pyramidal tract: no need to normalization process.
18. CNS Brain Stem: no need to normalization process.
19. CNS Bowel Bladder: no need to normalization process.
20. CNS Neuropsycho functions: no need to normalization process.
21. CNS Cerebellum: no need to normalization process.
22. CNS Visual functions: no need to normalization process.
23. CNS Sensory functions: no need to normalization process.
24. Hospital: no need to normalization process.
25. Ambulatory: no need to normalization process.
26. Corticosteroids: no need to normalization process.
27. Treatment name: the normalization factor was 3 , since it is the maximum possible value (plasmapheresis treatment).
28. Duration Days: the normalization factor was 10, since it is the maximum registered value. Besides, it is not benefic to do a corticosteroids treatment for a long period.

B. 3 Momentaneous database

B.3.1 Identification sheet

From Identification sheet, the Momentaneous database is constituted by the following features:

1. Gender: equal to the raw feature description described in Chapter 5.
2. Age of onset: the age at which MS started to manifest.
3. Supratentorial: equal to the raw feature description described in Chapter 5.
4. Optic Pathways: equal to the raw feature description described in Chapter 5.
5. Brainstem-Cerebellum: equal to the raw feature description described in Chapter 5.
6. Spinal Cord: equal to the raw feature description described in Chapter 5.
7. Age of diagnosis: the age at which the patient was diagnosed with MS.
8. Years from onset to diagnosis: years passed from onset to diagnosis.
9. Clinical findings: equal to the raw feature description described in Chapter 5.
10. MRI: equal to the raw feature description described in Chapter 5.
11. Evoked potentials: equal to the raw feature description described in Chapter 5.
12. CSF: equal to the raw feature description described in Chapter 5.
13. Age at SP diagnosis: equal to the raw feature description described in Chapter 5.
14. Years from onset to diagnosis SP: time passed since MS onset and SP diagnosis.
15. MS Course: equal to the raw feature description described in Chapter 5.
16. Active: equal to the raw feature description described in Chapter 5.
17. Age visit: patient's age at the moment of the visit to the clinic.
18. Years since onset: the time passed from onset to the moment of the visit to the clinic.

The feature normalization process occurred in the following form:

1. Gender: no need to normalization process.
2. Age of onset: it was decided to normalize the feature using as maximum value 50 years old. This way, if a patient has an onset age superior to 50 , its feature value will be 1. In this thesis, the target patients have onset ages of from 20 to approximately 40 years old.
3. Supratentorial: no need for normalization process.
4. Optic Pathways: no need for normalization process.
5. Brainstem-Cerebellum: no need for normalization process.
6. Spinal Cord: no need for normalization process.
7. Age of diagnosis: it was decided to use as normalization factor the same value as used in age of onset (50).
8. Years from onset to diagnosis: it was used 20 years as normalization factor since this feature has a tremendous variability.
9. Clinical findings: no need for normalization process.
10. MRI: no need for normalization process.
11. Evoked potentials: no need for normalization process.
12. CSF: no need for normalization process.
13. Age at SP diagnosis: it was used 60 years old as value since there were patients with more than 50 years old when SP was diagnosed.
14. Years from onset to diagnosis SP: it was used 25 years as normalization factor since this feature has a tremendous variability and since its maximum value surpasses the 20 years value used as the limit in feature "years from onset to diagnosis".
15. MS Course: no need to normalization process.
16. Active: no need to normalization process.
17. Age visit: the normalization factor was 70 since the maximum registered value is 66 .
18. Years since onset: the normalization was 35 since the maximum registered value is 31 .

B.3.2 Visits sheet

From Visits sheet, the Momentaneous database is constituted by the following features:

1. Last routine: if the last visit to the clinic was a routine one.
2. Last suspected: ifonn the last visit to the clinic there were suspicions of an upcoming relapse.
3. Last EDSS: the EDSS value at the last visit to the clinic.
4. Last weakness: if in the last visit to the clinic there were MS manifestations of cerebral weakness.
5. Last sympton: if in the last visit to the clinic there were MS manifestations of visual symptons.
The feature normalization process occured in the following form:
6. Last routine: no need for normalization process.
7. Last suspected: no need for normalization process.
8. Last EDSS: the normalization factor is 10 , since it is the maximum value of the EDSS scale.
9. Last weakness: no need for normalization process.
10. Last sympton: no need for normalization process.

B.3.3 Relapses sheet

From Relapses sheet, the Momentaneous database is constituted by the following features:

1. Last Pyramidal: if there were MS manifestations related to the pyramidal tract regarding the last relapse.
2. Last Brain Stem: if there were MS manifestations related to the brain stem due regarding the last relapse.
3. Last Bowel Bladder: if there were MS manifestations related to the bowel and bladder regarding the last relapse.
4. Last Neuropsycho functions: if there were MS manifestations related to neuropsycho functions regarding the last relapse.
5. Last Cerebellum: if there were MS manifestations related to the cerebellum regarding the last relapse.
6. Last Visual functions: if there were MS manifestations related to visual functions regarding the last relapse.
7. Last Sensory functions: if there were MS manifestations related to sensory
functions regarding the last relapse.
8. Last hospital: if there was the need to be internalized at the hospital during the last relapse.
9. Last ambulatory: f the patient seriously harmed its ambulatory capacity during the last relapse.
10. Last corticosteroids: if the patient had corticosteroids treatment at the moment of the last relapse.
11. Last treatment name: the corticosteroids treatment used at the moment of the last relapse. No corticosteroids use has value 0 , hydrocortisone use has value 1 , methylprednisolone has value 2 and plasmapheresis value 3 .
12. Last duration Days: the corticosteroids treatment duration in days. The feature normalization process occurred in the following form:
13. Last Pyramidal: no need for normalization process.
14. Last Brain Stem: no need for normalization process.
15. Last Bowel Bladder: no need for normalization process.
16. Last Neuropsycho functions: no need for normalization process.
17. Last Cerebellum: no need for normalization process.
18. Last Visual functions: no need for normalization process.
19. Last Sensory functions: no need for normalization process.
20. Last hospital: no need for normalization process.
21. Last ambulatory: no need for normalization process.
22. Last corticosteroids: no need for normalization process.
23. Last treatment name: the normalization factor was 3, since it is the maximum possible value (plasmapheresis treatment).
24. Last duration Days: the normalization factor was 10, since it is the maximum registered value. Besides, it is not benefic to do a corticosteroids treatment for a long period.

B. 4 Momentaneous with past database

B.4.1 Identification sheet

From Identification sheet, the Momentaneous with past database is constituted by the following features:

1. Gender: equal to the raw feature description described in Chapter 5.
2. Age of onset: the age at which MS started to manifest.
3. Supratentorial: equal to the raw feature description described in Chapter 5.
4. Optic Pathways: equal to the raw feature description described in Chapter 5.
5. Brainstem-Cerebellum: equal to the raw feature description described in Chapter 5.
6. Spinal Cord: equal to the raw feature description described in Chapter 5.
7. Age of diagnosis: the age at which the patient was diagnosed with MS.
8. Years from onset to diagnosis: years passed from onset to diagnosis.
9. Clinical findings: equal to the raw feature description described in Chapter 5.
10. MRI: equal to the raw feature description described in Chapter 5.
11. Evoked potentials: equal to the raw feature description described in Chapter 5.
12. CSF: equal to the raw feature description described in Chapter 5.
13. Age at SP diagnosis: equal to the raw feature description described in Chapter 5.
14. Years from onset to diagnosis SP: time passed since MS onset and SP diagnosis.
15. MS Course: equal to the raw feature description described in Chapter 5.
16. Active: equal to the raw feature description described in Chapter 5.
17. Age visit: patient's age at the moment of the visit to the clinic.
18. Years since onset: the time passed from onset to the moment of the visit to the clinic.

The feature normalization process occurred in the following form:

1. Gender: no need for normalization process.
2. Age of onset: it was decided to normalize the feature using as maximum value 50 years old. This way, if a patient has an onset age superior to 50 , its feature value will be 1. In this thesis, the target patients have onset ages of from 20 to approximately 40 years old.
3. Supratentorial: no need for normalization process.
4. Optic Pathways: no need for normalization process.
5. Brainstem-Cerebellum: no need for normalization process.
6. Spinal Cord: no need for normalization process.
7. Age of diagnosis: it was decided to use as normalization factor the same value as used in age of onset (50).
8. Years from onset to diagnosis: it was used 20 years as normalization factor
since this feature has a tremendous variability.
9. Clinical findings: no need for normalization process.
10. MRI: no need for normalization process.
11. Evoked potentials: no need for normalization process.
12. CSF: no need for normalization process.
13. Age at SP diagnosis: it was used 60 years old as value, since there were patients with more than 50 years old when SP was diagnosed.
14. Years from onset to diagnosis SP: it was used 25 years as normalization factor since this feature has a tremendous variability and since its maximum value surpasses the 20 years value used as the limit in feature "years from onset to diagnosis".
15. MS Course: no need for normalization process.
16. Active: no need for normalization process.
17. Age visit: the normalization factor was 70 since the maximum registered value is 66 .
18. Years since onset: the normalization was 35 since the maximum registered value is 31 .

B.4.2 Visits sheet

From Visits sheet, the Momentaneous with past database is constituted by the following features:

1. Nb of visits per year: the average of visits made per year.
2. Nb of visits 1st year: number of visits made in the first year.
3. $\mathbf{N b}$ of visits first 2 years: number of visits made in the first 2 years.
4. Suspected Relapses ratio per year: the average of the annual numbers of suspected relapses regarding all visits made to the clinic.
5. Suspected relapses ratio 1st year: the average of suspected relapses regarding the first year the patient visited the clinic.
6. Suspected relapses ratio first 2 years: the average of suspected relapes regarding the first two years the patient visited the clinic.
7. EDSS medium value/year: the average value of the annual EDSS medium values regarding all visits made to the clinic.
8. EDSS 1st year: the average value of all EDSS values regarding the first year the patient visited the clinic.
9. EDSS first 2 years: the average value of all EDSS values regarding the first
two years the patient visited the clinic.
10. EDSS std/year: the standard deviation of the annual EDSS medium values.
11. EDSS 1st year std: the standard deviation of the EDSS values regarding the first year the patient visited the clinic.
12. EDSS first 2 years std: the standard deviation of the EDSS values regarding the first two years the patient visited the clinic.
13. EDSS medium variation/year: the average value of all annual EDSS variations per year regarding all visits made to the clinic.
14. EDSS medium variation 1st year: the medium variation of EDSS values regarding the first year the patient has visited the clinic.
15. EDSS medium variation first 2 years:
16. EDSS medium variation first 2 years: the medium variation of EDSS values regarding the first year the patient has visited the clinic.
17. EDSS std of variation/year: the standard deviation of the annual EDSS variations regarding all visits made to the clinic.
18. EDSS std of variation 1st year: the standard deviation of the EDSS variations regarding the first year the patient visited the clinic.
19. EDSS std of variation first 2 years: the standard deviation of the EDSS variations regarding the first 2 years the patient visited the clinic.
20. EDSS increase 1st year: the ratio of times the EDSS value has increased from consecutive visits regarding the first year the patient has visited the clinic.
21. EDSS increase first 2 years: the ratio of times the EDSS value has increased from consecutive visits regarding the first two years the patient has visited the clinic.
22. Ratio nb EDSS increase: the ratio of times the EDSS value has increased from consecutive visits regarding all visits made to the clinic.
23. Ratio nb EDSS decrease: the ratio of times the EDSS value has decreased from consecutive visits regarding all visits made to the clinic.
24. Ratio nb EDSS decrease 1st year: the ratio of times the EDSS value has decreased from consecutive visits regarding the first year the patient has visited the clinic.
25. Ratio nb EDSS decrease first 2 years: the ratio of times the EDSS value has decreased from consecutive visits regarding the first two years the patient has visited the clinic.
26. Routine visits ratio: the ratio of routine visits regarding all visits made to the clinic.
27. Routine visits ratio 1st year: the ratio of routine visits regarding the first year the patient has visited the clinic.
28. Routine visits first 2 years: the ratio of routine visits regarding the first two years the patient has visited the clinic.
29. No years: the number of years the patient.
30. Last routine: if the last visit to the clinic was a routine one.
31. Last suspected: if on the last visit to the clinic there were suspicions of an upcoming relapse.
32. Last EDSS: the EDSS value at the last visit to the clinic.
33. Last weakness: if on the last visit to the clinic there were manifestations related to cerebral weakness.
34. Last sympton: if on the last visit to the clinic there were manifestations related to visual symptons.
The feature normalization process occurred in the following form:
35. Nb of visits per year: the normalization factor was 3 visits per year since it was the maximum registered.
36. Nb of visits 1st year: the normalization factor mas 3 visits, since it was the maximum registered.
37. $\mathbf{N b}$ of visits first 2 years: the normalization factor mas 5 visits since it was the maximum registered.
38. Suspected Relapses ratio per year: the normalization factor was 3 suspected relapses since it is the maximum integer in order to normalize the data between 0 and 1.
39. Suspected relapses ratio 1st year: the normalization factor was 3 suspected relapses since it is the maximum registered.
40. Suspected relapses ratio first 2 years: the normalization factor was 5 suspected relapses since it is the maximum registered.
41. EDSS medium value/year: the normalisation factor was 10 since the EDSS scale maximum value is 10 .
42. EDSS 1st year: the normalization factor was 10 since the EDSS scale maximum value is 10 .
43. EDSS first 2 years: the normalization factor was 10 since the EDSS scale maximum value is 10 .
44. EDSS std/year: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1 .
45. EDSS 1st year std: the normalization factor was 3 since it is the maximum
integer in order to normalize the data between 0 and 1.
46. EDSS first 2 years std: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1 .
47. EDSS medium variation/year: the normalization factor was 2 since it is the maximum integer in order to normalize the data between 0 and 1 .
48. EDSS medium variation 1st year: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1.
49. EDSS medium variation first 2 years: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1.
50. EDSS std of variation/year: the normalization factor was 2 since it is the maximum integer in order to normalize the data between 0 and 1 .
51. EDSS std of variation 1st year: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1.
52. EDSS std of variation first 2 years: the normalization factor was 3 since it is the maximum integer in order to normalize the data between 0 and 1 .
53. EDSS increase 1st year: no need for normalization process.
54. EDSS increase first 2 years:no need for normalization process.
55. Ratio nb EDSS increase: no need for normalization process.
56. Ratio nb EDSS decrease: no need for normalization process.
57. Ratio nb EDSS decrease 1st year: no need for normalization process.
58. Ratio nb EDSS decrease first 2 years: no need for normalization process.
59. Routine visits ratio: no need for normalization process.
60. Routine visits ratio 1st year: no need for normalization process.
61. Routine visits first 2 years: no need for normalization process.
62. No years: the normalisation factor was 32 , due to the maximum of number of years registered in the relapses sheet in No years feature.
63. Last routine: no need for normalization process.
64. Last suspected: no need for normalization process.
65. Last EDSS: the normalization factor is 10 since it is the maximum value of the EDSS scale.
66. Last weakness: no need for normalization process.
67. Last sympton: no need for normalization process.

B.4.3 Relapses sheet

From Relapses sheet, the Momentaneous with past database is constituted by the following features:

1. Relapses per year: the average of the annual numbers of relapses regarding all relapses.
2. Relapses 1st year: the number of relapses regarding the first year the patient suffered relapses.
3. Relapses first 2 years: the number of relapses regarding the first two years the patient suffered relapses.
4. Pyramidal Ratio: the ratio of times there were MS manifestations in the pyramidal tract due to a relapse regarding all relapses.
5. Pyramidal 1st year: the ratio of times there were MS manifestations related to the pyramidal tract due to a relapse regarding the first year a patient suffered relapses.
6. Pyramidal first 2 years: the ratio of times there were MS manifestations related to the pyramidal tract due to a relapse regarding the first two years a patient suffered relapses.
7. Brain Stem ratio: the ratio of times there were MS manifestations related to the brain stem due to a relapse regarding all relapses.
8. Brain Stem 1st year: the ratio of times there were MS manifestations related to the brain stem due to a relapse regarding the first year a patient suffered relapses.
9. Brain Stem first 2 years: the ratio of times there were MS manifestations related to the brain stem due to a relapse regarding the first two years a patient suffered relapses.
10. Bowel ratio: the ratio of times there were MS manifestations related to the bowel and bladder due to a relapse regarding all relapses.
11. Bowel 1st year: the ratio of times there were MS manifestations related to the bowel and bladder due to a relapse regarding the first year a patient suffered relapses.
12. Bowel first 2 years: the ratio of times there were MS manifestations related to the bowel and bladder due to a relapse regarding the first two years a patient suffered relapses.
13. Neuropsycho ratio: the ratio of times there were MS manifestations related to the neuropsycho functions due to a relapse regarding all relapses.
14. Neuropsycho 1st year: the ratio of times there were MS manifestations
related to the neuropsycho functions due to a relapse regarding the first year a patient suffered relapses.
15. Neuropsycho first 2 years: the ratio of times there were MS manifestations related to the bowel and bladder due to a relapse regarding the first two years a patient suffered relapses.
16. Cerebellum ratio: the ratio of times there were MS manifestations related to the cerebellum due to a relapse regarding all relapses.
17. Cerebellum 1st year: the ratio of times there were MS manifestations related to the cerebellum due to a relapse regarding the first year a patient suffered relapses.
18. Cerebellum 2 years: the ratio of times there were MS manifestations related to the cerebellum due to a relapse regarding the first two years a patient suffered relapses.
19. Visual ratio: the ratio of times there were MS manifestations related to visual functions due to a relapse regarding all relapses.
20. Visual 1st year: the ratio of times there were MS manifestations related to visual functions due to a relapse regarding the first year a patient suffered relapses.
21. Visual first 2 years: the ratio of times there were MS manifestations related to visual functions due to a relapse regarding the first two years a patient suffered relapses.
22. Sensory ratio: the ratio of times there were MS manifestations related to sensory functions due to a relapse regarding all relapses.
23. Sensory 1st year: the ratio of times there were MS manifestations related to sensory functions due to a relapse regarding the first year a patient suffered relapses.
24. Sensory first 2 years: the ratio of times there were MS manifestations related to sensory functions due to a relapse regarding the first two years a patient suffered relapses.
25. Corticosteroids Ratio: the ratio of times corticosteroids were used as treatment relapse treatment regarding all relapses.
26. Corticosteroids/year: the average of the annual ratios of corticosteroids use as relapse treatment.
27. Corticosteroids 1st year: the ratio of corticosteroids use regarding the first year the patient suffered relapses.
28. Corticosteroids first 2 years: the ratio of corticosteroids use regarding the
first two years the patient suffered relapses.
29. Average treatment intensity: the average treatment intensity regarding relapse treatment regarding all relapses. No corticosteroids use has value 0 , hydrocortisone use has value 1, methylprednisolone has value 2 and plasmapheresis value 3.
30. Average treatment 1st year: the average treatment intensity regarding relapse treatment regarding the first year the patient suffered relapses. No corticosteroids use has value 0 , hydrocortisone use has value 1 , methylprednisolone has value 2 and plasmapheresis value 3 .
31. Average treatment first 2 years: the average treatment intensity regarding relapse treatment regarding the first two years the patient suffered relapses. no corticosteroids use has value 0 , hydrocortisone use has value 1 , methylprednisolone has value 2 and plasmapheresis value 3 .
32. Average duration: the average duration in days of corticosteroids treatment regarding all relapses.
33. Average duration 1st year: the average duration in days of corticosteroids use treatment regarding the first year the patient suffered relapses.
34. Average duration first 2 years: the average duration in days of corticosteroids use treatment regarding the first two years the patient suffered relapses.
35. Last Pyramidal: if there were MS manifestations related to the pyramidal tract regarding the last visit.
36. Last Brain Stem: if there were MS manifestations related to the brain stem due regarding the last visit.
37. Last Bowel Bladder: if there were MS manifestations related to the bowel and bladder regarding the last visit.
38. Last Neuropsycho functions: if there were MS manifestations related to neuropsycho functions regarding the last visit.
39. Last Cerebellum: if there were MS manifestations related to the cerebellum regarding the last visit.
40. Last Visual functions: if there were MS manifestations related to visual functions regarding the last visit.
41. Last Sensory functions: if there were MS manifestations related to sensory functions regarding the last visit.
42. Last hospital: if there was the need to be internalized at the hospital during the last visit.
43. Last ambulatory: if the patient seriously harmed its ambulatory capacity
during the last visit.
44. Last corticosteroids: if the patient had corticosteroids treatment at the moment of the last visit.
45. Last treatment name: the corticosteroids treatment used at the moment of the last relapse. No corticosteroids use has value 0 , hydrocortisone use has value 1 , methylprednisolone has value 2 and plasmapheresis value 3 .
46. Last duration Days: the corticosteroids treatment duration in days. The feature normalization process occurred in the following form:
47. Relapses per year: the normalization factor was 4 , since it is the maximum integer in order to normalize the data between 0 and 1.
48. Relapses 1st year: the normalization factor was 4 , since the maximum value registered was 3 . Value 3 was not chosen since the normalization factor in feature relapses per year is 4 .
49. Relapses first 2 years: the normalization factor was 6 , since the maximum value registered was 6 .
50. Pyramidal Ratio: no need for normalization process.
51. Pyramidal 1st year: no need for normalization process.
52. Pyramidal first 2 years: no need for normalization process.
53. Brain Stem ratio: no need for normalization process.
54. Brain Stem 1st year: no need for normalization process.
55. Brain Stem first 2 years: no need for normalization process.
56. Bowel ratio: no need for normalization process.
57. Bowel 1st year: no need for normalization process.
58. Bowel first 2 years: no need for normalization process.
59. Neuropsycho ratio: no need for normalization process.
60. Neuropsycho 1st year: no need for normalization process.
61. Neuropsycho first 2 years: no need for normalization process.
62. Cerebellum ratio: no need for normalization process.
63. Cerebellum 1st year: no need for normalization process.
64. Cerebellum 2 years: no need for normalization process.
65. Visual ratio: no need for normalization process.
66. Visual 1st year: no need for normalization process.
67. Visual first 2 years: no need for normalization process.
68. Sensory ratio: no need for normalization process.
69. Sensory 1st year: no need for normalization process.
70. Sensory first 2 years: no need for normalization process.
71. Corticosteroids Ratio: no need for normalization process.
72. Corticosteroids/year: no need for normalization process.
73. Corticosteroids 1st year: no need for normalization process.
74. Corticosteroids first 2 years:no need for normalization process.
75. Average treatment intensity: the normalization factor was 3 since it is the maximum possible value (plasmapheresis treatment).
76. Average treatment 1st year: the normalization factor was 3 since it is the maximum possible value (plasmapheresis treatment).
77. Average treatment first 2 years: the normalization factor was 3 since it is the maximum possible value (plasmapheresis treatment).
78. Average duration: the normalization factor was 10 since it is the maximum registered value. Besides, it is not benefic to do a corticosteroids treatment for a long period.
79. Average duration 1st year: the normalization factor was 10 since it is the maximum registered value. Besides, it is not benefic to do a corticosteroids treatment for a long period.
80. Average duration first 2 years: the normalization factor was 10 since it is the maximum registered value. Besides, it is not benefic to do a corticosteroids treatment for a long period.
81. Last Pyramidal: no need for normalization process.
82. Last Brain Stem: no need for normalization process.
83. Last Bowel Bladder: no need for normalization process.
84. Last Neuropsycho functions: no need for normalization process.
85. Last Cerebellum: no need for normalization process.
86. Last Visual functions: no need for normalization process.
87. Last Sensory functions: no need for normalization process.
88. Last hospital: no need for normalization process.
89. Last ambulatory: no need for normalization process.
90. Last corticosteroids: no need for normalization process.
91. Last treatment name: the normalization factor was 3 , since it is the maximum possible value (plasmapheresis treatment).
92. Last duration Days: the normalization factor was 10 , since it is the maximum registered value. Besides, it is not benefic to do a corticosteroids treatment for a long period.

Chapter C

Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
4	20	22	0.09	0.18
5	21	24	0.13	0.21
4	22	24	0.08	0.17
4	22	24	0.08	0.17
3	31	35	0.11	0.09
7	63	70	0.10	0.10
7	63	70	0.10	0.10
7	63	70	0.10	0.10
3	31	35	0.11	0.09
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
6	33	37	0.11	0.16
4	32	35	0.09	0.11
4	32	35	0.09	0.11
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
4	31	35	0.11	0.11
5	41	45	0.09	0.11
4	31	35	0.11	0.11
5	40	45	0.11	0.11
4	31	35	0.11	0.11
2	18	20	0.10	0.10
2	18	20	0.10	0.10
2	18	20	0.10	0.10
2	18	20	0.10	0.10
3	18	20	0.10	0.15
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
5	31	35	0.11	0.14
4	31	35	0.11	0.11
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
4	18	20	0.10	0.20
3	18	20	0.10	0.15
3	18	20	0.10	0.15
3	18	20	0.10	0.15
3	19	20	0.05	0.15
3	18	20	0.10	0.15
4	20	22	0.09	0.18

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
3	18	20	0.10	0.15
2	19	20	0.05	0.10
2	18	20	0.10	0.10
2	18	20	0.10	0.10
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
3	19	22	0.14	0.14
3	19	22	0.14	0.14
3	19	22	0.14	0.14
3	19	22	0.14	0.14
3	19	22	0.14	0.14
9	35	40	0.13	0.23
9	35	40	0.13	0.23
9	35	40	0.13	0.23
9	35	40	0.13	0.23
9	35	40	0.13	0.23
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
3	19	22	0.14	0.14
4	21	40	0.48	0.10
5	31	36	0.14	0.14
5	31	36	0.14	0.14
5	31	36	0.14	0.14
5	31	36	0.14	0.14
5	31	36	0.14	0.14
6	31	35	0.11	0.17
6	31	35	0.11	0.17
6	31	35	0.11	0.17
6	31	35	0.11	0.17

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
6	31	35	0.11	0.17
6	31	35	0.11	0.17
2	18	20	0.10	0.10
2	18	20	0.10	0.10
2	18	20	0.10	0.10
2	18	20	0.10	0.10
2	18	20	0.10	0.10
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
3	18	20	0.10	0.15
3	18	20	0.10	0.15
3	18	20	0.10	0.15
3	18	20	0.10	0.15
3	18	20	0.10	0.15
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
5	30	35	0.14	0.14
7	58	65	0.11	0.11

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
5	30	35	0.14	0.14
7	58	65	0.11	0.11
5	30	35	0.14	0.14
3	21	22	0.05	0.14
3	21	22	0.05	0.14
3	21	22	0.05	0.14
3	21	22	0.05	0.14
3	21	22	0.05	0.14
8	35	40	0.13	0.20
8	35	40	0.13	0.20
8	35	40	0.13	0.20
8	35	40	0.13	0.20
8	35	40	0.13	0.20
3	32	35	0.09	0.09
3	32	35	0.09	0.09
3	32	35	0.09	0.09
6	62	65	0.05	0.09
6	62	65	0.05	0.09
4	32	35	0.09	0.11
4	32	35	0.09	0.11
6	43	45	0.04	0.13
6	43	45	0.04	0.13
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
4	31	35	0.11	0.11
4	31	35	0.13	0.11
5	39	45	0.13	0.11
5	39	45	0.13	0.11
4	31	35	0.11	0.11
4	21	22	0.05	0.18

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
3	19	22	0.14	0.14
3	19	22	0.14	0.14
3	19	22	0.14	0.14
3	19	22	0.14	0.14
3	19	22	0.14	0.14
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
6	33	37	0.11	0.16
13	127	140	0.09	0.09
13	127	140	0.09	0.09
13	127	140	0.09	0.09
6	33	37	0.11	0.16
5	22	24	0.08	0.21
5	22	24	0.08	0.21
5	22	24	0.08	0.21
5	22	24	0.08	0.21
5	22	24	0.08	0.21
4	33	35	0.06	0.11
4	33	35	0.06	0.11
4	33	35	0.06	0.11
6	57	65	0.12	0.09

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
6	57	65	0.12	0.09
6	57	65	0.12	0.09
3	19	20	0.05	0.15
3	19	20	0.05	0.15
3	19	20	0.05	0.15
3	19	20	0.05	0.15
3	19	20	0.05	0.15
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	19	20	0.05	0.20
4	19	20	0.05	0.20
4	19	20	0.05	0.20
4	19	20	0.05	0.20
4	19	20	0.05	0.20
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
4	22	24	0.08	0.17
5	31	35	0.11	0.14

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
2	20	22	0.09	0.09
2	20	22	0.09	0.09
2	20	22	0.09	0.09
2	20	22	0.09	0.09
2	20	22	0.09	0.09
4	33	37	0.11	0.11
4	33	37	0.11	0.11
4	33	37	0.11	0.11
4	33	37	0.11	0.11
4	33	37	0.11	0.11
3	31	37	0.16	0.08
3	31	37	0.16	0.08
7	64	70	0.09	0.10
7	64	70	0.09	0.10
7	64	70	0.09	0.10
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
6	22	24	0.08	0.25
6	22	24	0.08	0.25
6	22	24	0.08	0.25
6	22	24	0.08	0.25
6	22	24	0.08	0.25
5	31	35	0.11	0.14
5	31	35	0.11	0.14
8	60	65	0.08	0.12
3	20	20	0.00	0.15
3	20	20	0.00	0.15
3	20	20	0.00	0.15
3	20	20	0.00	0.15
3	20	20	0.00	0.15
3	21	22	0.05	0.14
3	21	22	0.05	0.14

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
3	21	22	0.05	0.14
3	21	22	0.05	0.14
3	21	22	0.05	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
4	20	24	0.17	0.17
4	20	24	0.17	0.17
4	20	24	0.17	0.17
4	20	24	0.17	0.17
4	20	24	0.17	0.17
3	30	35	0.14	0.09
3	30	35	0.14	0.09
3	30	35	0.14	0.09
9	45	50	0.10	0.18
9	45	50	0.10	0.18
5	32	37	0.14	0.14
5	32	37	0.14	0.14
5	32	37	0.14	0.14
5	40	45	0.11	0.11
5	40	45	0.11	0.11
4	20	20	0.00	0.20
5	20	24	0.17	0.21
3	20	24	0.17	0.13
3	20	24	0.17	0.13
3	20	24	0.17	0.13
5	39	46	0.15	0.11
12	66	78	0.15	0.15
5	31	35	0.11	0.14
5	31	35	0.11	0.14
4	38	45	0.16	0.09

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
4	38	45	0.16	0.09
4	38	45	0.16	0.09
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
2	20	24	0.17	0.08
2	20	24	0.17	0.08
2	20	24	0.17	0.08
2	20	24	0.17	0.08
2	20	24	0.17	0.08
4	35	40	0.13	0.10
4	35	40	0.13	0.10
3	18	20	0.10	0.15
3	18	20	0.10	0.15
3	18	20	0.10	0.15
3	18	20	0.10	0.15
4	19	22	0.14	0.18
4	19	22	0.14	0.18
4	19	22	0.14	0.18
3	19	20	0.05	0.15
3	19	20	0.05	0.15
3	19	20	0.05	0.15
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
5	31	35	0.11	0.14
5	31	35	0.11	0.14
7	58	65	0.11	0.11
4	19	23	0.17	0.17

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
6	32	37	0.14	0.16
6	32	37	0.14	0.16
6	32	37	0.14	0.16
6	32	37	0.14	0.16
6	32	37	0.14	0.16
10	60	70	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
10	60	70	0.14	0.14
10	60	70	0.14	0.14
3	21	24	0.13	0.13
3	21	24	0.13	0.13
3	21	24	0.13	0.13
3	21	24	0.13	0.13
3	21	24	0.13	0.13
12	48	60	0.20	0.20
12	48	60	0.20	0.20
12	48	60	0.20	0.20
12	48	60	0.20	0.20
12	48	60	0.20	0.20
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
6	33	37	0.11	0.16
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
6	29	35	0.17	0.17
6	29	35	0.17	0.17
6	29	35	0.17	0.17

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
6	29	35	0.17	0.17
6	29	35	0.17	0.17
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
16	47	55	0.15	0.29
6	37	45	0.18	0.13
5	20	22	0.09	0.23
5	20	22	0.09	0.23
5	20	22	0.09	0.23
5	20	22	0.09	0.23
5	20	22	0.09	0.23
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
7	39	45	0.13	0.16
7	39	45	0.13	0.16
5	40	35	0.14	0.14
5	40	35	0.14	0.14
5	40	35	0.14	0.14
5	57	65	0.12	0.08
5	57	65	0.12	0.08
5	57	65	0.12	0.08
2	29	35	0.17	0.06
2	29	35	0.17	0.06
3	19	20	0.05	0.15
3	19	20	0.05	0.15
3	19	20	0.05	0.15
3	19	20	0.05	0.15
3	19	20	0.05	0.15
4	21	22	0.05	0.18

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	21	24	0.13	0.17
4	30	35	0.14	0.11
4	30	35	0.14	0.11
8	58	65	0.11	0.12
8	58	65	0.11	0.12
8	58	65	0.11	0.12
4	22	25	0.12	0.16
4	22	25	0.12	0.16
4	22	25	0.12	0.16
4	22	25	0.12	0.16
4	22	25	0.12	0.16
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
6	41	45	0.09	0.13
6	41	45	0.09	0.13
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14
3	20	22	0.09	0.14

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
3	20	22	0.09	0.14
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	21	22	0.05	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
4	20	22	0.09	0.18
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	30	35	0.14	0.14
5	20	24	0.17	0.21
5	20	24	0.17	0.21
5	20	24	0.17	0.21
5	20	24	0.17	0.21
5	20	24	0.17	0.21
9	62	70	0.11	0.13
9	62	70	0.11	0.13
9	62	70	0.11	0.13
6	31	35	0.11	0.17
6	31	35	0.11	0.17
6	32	35	0.09	0.17
6	32	35	0.09	0.17

C. Appendix III - Experimental procedure

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
6	32	35	0.09	0.17
6	40	45	0.11	0.13
6	40	45	0.11	0.13
4	30	35	0.14	0.11
4	30	35	0.14	0.11
4	30	35	0.14	0.11
7	58	65	0.11	0.11
7	58	65	0.11	0.11
6	31	35	0.11	0.17
6	31	35	0.11	0.17
8	58	65	0.11	0.12
8	58	65	0.11	0.12
8	58	65	0.11	0.12
5	32	35	0.09	0.14
5	32	35	0.09	0.14
5	32	35	0.09	0.14
6	41	45	0.09	0.13
6	41	45	0.09	0.13
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	31	35	0.11	0.14
5	22	25	0.12	0.20
5	22	25	0.12	0.20
5	22	25	0.12	0.20
5	22	25	0.12	0.20
5	22	25	0.12	0.20
5	31	36	0.14	0.14
5	31	36	0.14	0.14
5	31	36	0.14	0.14
6	40	46	0.13	0.13
6	40	46	0.13	0.13

Table C.1: Study performed with CHUC's database for determination of a security search interval for top and head limit slices.

Bottom Slice	Top Slice	Number of Slices	Bottom-Start	End-Top
6	40	46	0.13	0.13

Chapter D

Appendix IV - Machine learning results

The machine learning results are here presented. In order to do so, these are split by the origin set, type of procedure and label in question. Classification results will be the output (supervised), in order to provide final conclusions regarding the actual prediction power of groups of features and to explore the potential of certain labels. In some cases, the intermediate feature selection process will be displayed in order to have a deeper understanding oh the predictors influence and power. These are only shown in the situations chosen to study more deeply (in labels highestEDSS, mediumEDSS and nextEDSS in the clinical databases), since they are more trustful because the performances were clearly better.

These steps were performed with and without PCA. The best results (where sensibility, specificity, negative predictive value, positive predictive value and accuracy are all above 50%) are in bold.

Besides this procedure, there is also a deeper investigation, since features can have a medical point of view. This way, the investigation procedure presents extra studies about a more specific group of features, where some of the standard procedure set are excluded for being already clinically very obvious predictors. This way, the main concern in these try-outs it is to come across with new factors and predictors that might open doors to new investigation paths.

Since these are very extense, a code name system was constructed to name the tables, regarding the data set, partition method and label. The code system is constituted by Used Database_Standard or Investigation_Partition Method_Label.

If PCA is applied, the term PCA is written between the partition method and the label. The 70:30 ratio partition method was named as traditional in the present tables.

D. 1 Clinic Data

D.1.1 Static Set

D.1.1.1 Standard procedure

For label msCourse (0/1-RR-SP):
Final Features: EDSS Medium Value/Year.

Table D.1: Static_Standard_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.85	0.76	0.71	0.62	0.68	0.76	0.77	0.85	0.85	0.86
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	100.00	66.67	66.67	33.33	33.33	66.67	66.67	100.00	100.00	100.00
16.67	83.33	77.78	77.78	83.33	88.89	88.89	77.78	83.33	83.33	83.33
100.00	100.00	93.33	93.33	88.24	88.89	94.12	93.33	100.00	100.00	100.00
16.67	50.00	33.33	33.33	25.00	33.33	50.00	33.33	50.00	50.00	50.00
28.57	85.71	76.19	76.19	76.19	80.95	85.71	76.19	85.71	85.71	85.71
Confusion Matrix										
315	153	144	144	153	162	162	144	153	153	153
03	03	12	12	21	21	12	12	03	03	03

Table D.2: Static_Standard_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.51	0.50	0.49	0.50	0.50	0.51	0.50	0.50	0.50
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NaN										
14.29	14.29	14.29	14.29	14.29	14.29	14.29	14.29	14.29	14.29	14.29
14.29	14.29	14.29	14.29	14.29	14.29	14.29	14.29	14.29	14.29	14.29
Confusion Matrix										
018	018	018	018	018	018	018	018	018	018	018
03	03	03	03	03	03	03	03	03	03	03

Table D.3: Static_Standard_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.64	0.64	0.55	0.63	0.60	0.53	0.62	0.64	0.47	0.66
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
63.64	81.82	81.82	63.64	81.82	72.73	54.55	72.73	81.82	54.55	90.91
88.46	88.46	92.31	92.31	88.46	88.46	92.31	92.31	88.46	84.62	84.62
85.19	92.00	92.31	85.71	92.00	88.46	82.76	88.89	92.00	81.48	95.65
70.00	75.00	81.82	77.78	75.00	72.73	75.00	80.00	75.00	60.00	71.43
81.08	86.49	89.19	83.78	86.49	83.78	81.08	86.49	86.49	75.68	86.49
Confusion Matrix										
233	233	242	242	233	233	242	242	233	224	224
47	29	29	47	29	38	56	38	29	56	110

Table D.4: Static_Standard_kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.64	0.69	0.69	0.55	0.50	0.70	0.71	0.69	0.69	0.71	0.71
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
81.82	90.91	90.91	63.64	54.55	90.91	90.91	90.91	90.91	100.00	100.00
88.46	92.31	92.31	88.46	88.46	92.31	88.46	92.31	92.31	92.31	92.31
92.00	96.00	96.00	85.19	82.14	96.00	95.83	96.00	96.00	100.00	100.00
75.00	83.33	83.33	70.00	66.67	83.33	76.92	83.33	83.33	84.62	84.62
86.49	91.89	91.89	81.08	78.38	91.89	89.19	91.89	91.89	94.59	94.59
Confusion Matrix										
233	242	242	233	233	242	233	242	242	242	242
29	110	110	47	56	110	110	110	110	011	011

Table D.5: Static_Standard_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.47	0.48	0.52	0.47	0.35	0.36	0.48	0.47	0.43	0.43
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
27.27	27.27	27.27	27.27	27.27	9.09	9.09	27.27	27.27	18.18	27.27
76.92	65.38	69.23	76.92	65.38	61.54	65.38	69.23	65.38	69.23	57.69
71.43	68.00	69.23	71.43	68.00	61.54	62.96	69.23	68.00	66.67	65.22
33.33	25.00	27.27	33.33	25.00	9.09	10.00	27.27	25.00	20.00	21.43
62.16	54.05	56.76	62.16	54.05	45.95	48.65	56.76	54.05	54.05	48.65
Confusion Matrix										
206	179	188	206	179	1610	179	188	179	188	1511
83	83	83	83	83	101	101	83	83	92	83

Table D.6: Static_Standard_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.64	0.69	0.69	0.55	0.50	0.70	0.71	0.69	0.69	0.51	0.51
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
36.36	27.27	27.27	18.18	27.27	27.27	36.36	27.27	27.27	36.36	36.36
69.23	65.38	65.38	69.23	76.92	65.38	65.38	65.38	65.38	65.38	65.38
72.00	68.00	68.00	66.67	71.43	68.00	70.83	68.00	68.00	70.83	70.83
33.33	25.00	25.00	20.00	33.33	25.00	30.77	25.00	25.00	30.77	30.77
59.46	54.05	54.05	54.05	62.16	54.05	56.76	54.05	54.05	56.76	56.76
Confusion Matrix										
188	179	179	188	206	179	179	179	179	179	179
74	83	83	92	83	83	74	83	83	74	74

First feature selection process for mediumEDSS:
Table D.7: Static_Feature_Selection_Identification_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	1	1	1	1	1	1	1	0	0	1	
Age of Onset	0	0	0	0	1	0	1	1	0	0	0	
Optic Pathways	0	0	0	1	0	0	0	0	0	0	0	
Brainstem-Cerebellum	0	0	0	0	0	1	0	0	0	0	0	1
Spinal Cord	0	0	0	0	0	1	1	0	0	0	0	
Age of Diagnosis	0	1	1	1	1	0	0	0	0	0	1	$\mathbf{2}$
Years from Onset to Diagnosis	1	0	1	1	1	0	0	1	0	1	1	
MRI	0	0	0	0	0	0	1	0	0	0	0	$\mathbf{7}$
CSF	0	0	0	0	0	1	0	0	0	0	0	
Active	0	0	0	0	0	0	1	0	0	0	0	1

Selected features: Gender, Age of Onset, Spinal Cord, Age of Diagnosis, Years from Onset to Diagnosis.

Table D.8: Static_Feature_Selection_Visits_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Nb of visits per Year	0	0	0	1	0	0	0	0	0	0	0	1
Nb of Visits 1st Year	0	0	1	1	0	0	0	0	0	0	0	2
Nb of visits first 2 years	1	1	1	1	0	0	0	0	0	1	1	6
Suspected Relapses Ratio per year	0	0	0	1	0	0	0	0	0	0	0	1
Suspected Relapses Ratio 1st year	0	0	0	1	0	0	0	0	0	0	0	1
Suspected Relapses Ratio first 2 years	1	1	1	1	0	0	0	0	0	1	1	6
EDSS 1st year	1	1	1	1	1	0	1	1	0	0	1	8
EDSS std/year	1	1	1	0	1	0	1	0	0	0	1	6
EDSS 1st year std	0	0	0	0	0	0	1	1	0	0	0	2
EDSS first 2 years std	0	0	0	0	0	0	1	0	0	0	0	1
EDSS medium variation/Year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS medium variation 1st year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS medium variation first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
EDSS std of variation/year	0	0	0	0	1	0	1	0	0	0	0	2
EDSS std of variation 1st year	0	0	0	0	0	0	1	1	0	0	0	2
EDSS std of variation first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
EDSS Increase 1st Year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS Increase first 2 years	0	1	1	1	1	0	0	0	0	0	1	5
Ratio nb EDSS increase	0	1	1	1	1	0	1	0	0	1	1	7
Ratio nb EDSS decrease first 2 years	0	1	1	1	0	0	1	0	0	1	1	6
Routine Visits first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
No Years	0	0	1	1	1	0	0	0	0	0	0	3

Selected features: Nb of Visits 1st Year, Nb of visits first 2 years, Suspected

Relapses Ratio first 2 years, EDSS 1st year, EDSS std/year, EDSS 1st year std, EDSS std of variation/year, EDSS std of variation 1st year. EDSS increase first 2 years, Ratio nb EDSS increase, Ratio nb EDSS decrease first 2 years.

Table D.9: Static_Feature_Selection_Relapses_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Relapses first 2 years	0	0	0	0	0	0	1	0	0	0	0	
Pyramidal ratio	0	1	1	1	1	0	0	1	0	0	1	
Pyramidal 1st year	0	0	0	0	0	1	0	0	0	0	0	$\mathbf{6}$
Pyramidal first 2 years	0	1	1	1	1	0	0	1	1	1	1	1
BrainStem 1st year	0	0	0	0	0	0	1	0	0	0	0	
Brain Stem first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Neuropsycho 1st year	0	0	0	0	0	0	0	0	1	1	0	
Visual ratio	0	0	0	0	0	0	1	0	0	0	0	1
Visual 1st year	0	0	0	0	0	0	1	0	0	0	0	$\mathbf{8}$
Visual first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Sensory ratio	1	1	1	1	0	0	1	1	0	0	1	
Sensory 1st year	0	0	0	0	0	1	0	0	0	0	0	1
Sensory first 2 years	0	0	0	0	0	1	0	0	0	0	0	
Corticosteroids Ratio	0	0	0	0	0	1	0	0	0	0	0	
Corticosteroids 1st year	0	0	0	0	0	1	0	0	0	0	0	1
Corticosteroids first 2 years	0	0	0	0	0	1	0	0	0	0	0	
Average Duration	0	0	0	0	0	0	0	1	0	0	0	1
No Years	0	0	1	1	1	0	1	1	1	1	0	1

Selected features: Pyramidal ratio, Pyramidal first 2 years, Neuropsycho 1st year, Sensory ratio, No Years.

For label mediumEDSS $(0 / 1-(<3) /(\geq 3))$:
Final Features: EDSS 1st Year, Ratio nb EDSS increase, Number of Years

Table D.10: Static_Standard_Traditional_PCA_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.77	0.74	0.68	0.62	0.67	0.66	0.72	0.77	0.75	0.75
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00	75.00
54.55	81.82	72.73	54.55	45.45	54.55	63.64	81.82	81.82	81.82	81.82
85.71	90.00	88.89	85.71	83.33	85.71	87.50	90.00	90.00	90.00	90.00
37.50	60.00	50.00	37.50	33.33	37.50	42.86	60.00	60.00	60.00	60.00
60.00	80.00	73.33	60.00	53.33	60.00	66.67	80.00	80.00	80.00	80.00
Confusion Matrix										
65	92	83	65	56	65	74	92	92	92	92
13	13	13	13	13	13	13	13	13	13	13

D. Appendix IV - Machine learning results

Table D.11: Static_Standard_Traditional_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.50	0.66	0.67	0.55	0.59	0.64	0.77	0.50	0.50	0.50
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
50.00	100.00	50.00	75.00	25.00	25.00	50.00	100.00	100.00	100.00	100.00
63.64	0.00	81.82	63.64	90.91	81.82	81.82	63.64	0.00	0.00	0.00
77.78	NaN	81.82	87.50	76.92	75.00	81.82	100.00	NaN	NaN	NaN
33.33	26.67	50.00	42.86	50.00	33.33	50.00	50.00	26.67	26.67	26.67
60.00	26.67	73.33	66.67	73.33	66.67	73.33	73.33	26.67	26.67	26.67
Confusion Matrix										
74	011	92	74	101	92	92	74	011	011	011
22	04	22	13	31	31	22	04	04	04	04

Table D.12: Static_Standard_kFold_PCA_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.59	0.56	0.17	0.63	0.44	0.45	0.48	NA	0.60	0.57
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
53.33	60.00	53.33	6.67	66.67	40.00	40.00	46.67	NA	73.33	60.00
77.27	90.91	86.36	77.27	77.27	72.73	72.73	86.36	NA	81.82	86.96
70.83	76.92	73.08	54.84	77.27	64.00	64.00	70.37	NA	81.82	76.92
61.54	81.82	72.73	16.67	66.67	50.00	50.00	70.00	MA	73.33	75.00
67.57	78.38	72.97	48.65	72.97	59.46	59.46	70.27	NA	78.38	76.32
Confusion Matrix										
175	202	193	175	175	166	166	193	NA	184	203
78	69	78	141	510	96	96	87	NA	411	69

Table D.13: Static_Standard_kFold_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.77	0.63	0.69	0.70	0.58	0.71	0.60	0.72	0.64	0.62	0.71
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
86.67	66.67	80.00	80.00	60.00	80.00	60.00	80.00	66.67	66.67	80.00
90.91	86.36	86.36	81.82	81.82	90.91	95.45	90.91	86.36	86.36	81.82
90.91	79.17	86.36	85.71	75.00	86.96	77.78	86.96	79.17	79.17	85.71
86.67	76.92	80.00	75.00	69.23	85.71	90.00	85.71	76.92	76.92	75.00
89.19	78.38	83.78	81.08	72.97	86.49	81.08	86.49	78.38	78.38	81.08
Confusion Matrix										
202	193	193	184	184	202	211	202	193	193	184
213	510	312	312	69	312	69	312	510	510	312

Table D.14: Static_Standard_LOO_PCA_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.40	0.41	0.45	0.73	0.40	0.57	0.57	0.43	0.41	0.40	0.41
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
26.67	20.00	26.67	26.67	26.67	40.00	40.00	20.00	20.00	26.67	20.00
54.55	63.64	63.64	95.45	54.55	72.73	72.73	68.18	63.64	54.55	63.64
52.17	53.85	56.00	65.63	52.17	64.00	64.00	55.56	53.85	52.17	53.85
28.57	27.27	33.33	80.00	28.57	50.00	50.00	30.00	27.27	28.57	27.27
43.24	45.95	48.65	67.57	43.24	59.46	59.46	48.65	45.95	43.24	45.95
Confusion Matrix										
1210	148	148	211	1210	166	166	157	148	1210	148
114	123	114	114	114	96	96	123	123	114	123

Table D.15: Static_Standard_LOO_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.54	0.61	0.56	0.60	0.52	0.60	0.58	0.54	0.54	0.51
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
53.33	40.00	53.33	53.33	46.67	40.00	40.00	53.33	40.00	40.00	46.67
63.64	68.18	68.18	59.09	72.73	63.64	77.27	63.64	68.18	68.18	54.55
66.67	62.50	68.18	65.00	66.67	60.87	65.38	66.67	62.50	62.50	60.00
50.00	46.15	53.33	47.06	53.85	42.86	54.55	50.00	46.15	46.15	41.18
59.46	56.76	62.16	56.76	62.16	54.05	62.16	59.46	56.76	56.76	51.35
Confusion Matrix										
148	157	157	139	166	148	175	148	157	157	1210
78	96	78	78	87	96	96	78	96	96	87

For label mediumEDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with medium $E D S S \geq 5$ was minimal.

First feature selection process for highestEDSS:
Table D.16: Static_Feature_Selection_Identification_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	0	0	1	0	1	0	0	0	0	0	
Age of Onset	0	0	0	1	0	0	1	0	0	0	0	
Optic Pathways	0	1	1	0	0	0	0	0	1	0	1	
Brainstem-Cerebellum	0	0	0	0	0	1	1	0	0	0	0	
Spinal Cord	0	0	1	1	0	1	1	0	0	0	0	2
Age of Diagnosis	0	0	1	1	1	0	0	0	0	0	0	4
Years from Onset to Diagnosis	0	0	0	0	0	0	0	1	0	0	0	
Evoked Potentials	0	0	0	0	0	1	0	0	0	0	0	1
CSF	0	0	0	0	0	1	0	0	0	0	0	
Age at SP Diagnosis	0	1	1	1	1	0	1	1	1	1	1	1
Years from Diagnosis to SP	0	1	1	1	1	0	0	0	1	1	1	
Years from Diagnosis to Onset	0	1	1	1	1	0	0	0	1	1	1	
MS Course	0	1	1	1	1	1	1	0	1	1	1	$\mathbf{9}$

Selected features: Optic Pathways, Spinal-Cord, Age at SP Diagnosis, Years from Diagnosis to SP, Years from Diagnosis to Onset, MS Course.

Table D.17: Static_Feature_Selection_Visits_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Nb of visits first 2 years	4	1	1	1	1	0	0	0	0	0	0	4
Suspected Relapses Ratio first 2 years	7	1	1	1	1	0	0	0	0	0	0	4
EDSS Medium Value/year	8	1	1	1	1	1	0	1	1	0	1	9
EDSS 1st year	9	1	1	1	1	1	0	1	1	0	1	9
EDSS first 2 years	10	1	1	1	1	1	0	1	0	0	1	8
EDSS std/year	11	1	1	1	1	1	0	1	0	0	1	8
EDSS 1st year std	12	0	0	0	0	0	0	1	0	0	0	1
EDSS first 2 years std	13	0	0	0	0	0	0	1	0	0	0	1
EDSS medium variation/Year	14	0	0	0	0	0	0	1	0	0	0	1
EDSS medium variation 1st year	15	0	0	0	0	0	0	1	0	0	0	1
EDSS medium variation first 2 years	16	0	0	0	0	0	0	1	0	0	0	1
EDSS std of variation/year	17	0	0	0	0	0	0	1	0	0	0	1
EDSS std of variation 1st year	18	0	0	0	0	0	0	1	0	0	0	1
EDSS std of variation first 2 years	19	0	0	0	0	0	0	1	0	0	0	1
EDSS Increase 1st Year	20	0	0	0	0	0	0	1	0	0	0	1
EDSS Increase first 2 years	21	0	1	1	1	1	0	0	0	0	0	5
Ratio nb EDSS increase	22	0	1	1	1	1	0	1	0	0	1	7
Ratio nb EDSS decrease 1st year	24	0	0	1	1	0	0	1	0	0	0	3
Ratio nb EDSS decrease first 2 years	25	0	0	0	1	0	0	1	0	0	0	2
Routine Visits Ratio 1st Year	27	0	0	0	0	0	1	0	0	0	0	1
No Years	29	1	1	1	1	1	0	0	1	0	1	8

Selected features: Nb of visits first 2 years, Suspected Relapses Ratio first 2 years, EDSS Medium Value/year, EDSS 1st year, EDSS first 2 years, EDSS std/year, EDSS Increase first 2 years, Ratio nb EDSS increase, No Years.

Table D.18: Static_Feature_Selection_Relapses_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Relapses Per Year	0	0	0	0	0	0	0	1	0	0	0	1
Relapses first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Pyramidal ratio	0	1	1	0	1	0	0	1	0	0	1	5
Pyramidal 1st year	0	0	0	0	0	1	0	0	0	0	0	1
Pyramidal first 2 years	0	1	1	0	1	0	0	0	1	0	1	5
BrainStem 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Brain Stem first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Neuropsycho ratio	0	0	0	0	0	0	1	1	0	0	0	2
Neuropsycho 1st year	0	0	0	0	0	0	0	0	1	0	0	1
Neuropsycho first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Cerebellum ratio	0	0	0	1	0	0	0	0	0	0	0	1
Visual ratio	0	0	0	0	0	0	1	0	0	0	0	1
Visual first 2 years	0	0	0	1	0	0	1	0	0	0	0	2
Sensory ratio	0	0	0	1	0	0	0	0	0	0	0	1
Sensory 1st year	0	0	0	0	0	1	0	0	0	0	0	1
Corticosteroids Ratio	0	0	0	0	0	1	0	0	0	0	0	1
Corticosteroids 1st year	0	0	0	0	0	1	0	0	0	0	0	1
Corticosteroids first 2 years	0	0	0	0	0	1	0	0	0	0	0	1
Average Duration	0	0	0	0	0	0	1	0	0	0	0	1
Average Duration first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
No Years	0	0	0	1	1	0	1	1	1	0	0	5

Selected features: Pyramidal ratio, Pyramidal first 2 years, No Years.
For label highestEDSS (0/1-(<3)/($\geq 3)$):
Final Features: EDSS Medium Value/Year, EDSS 1st Year, Number of Years

Table D.19: Static_Standard_Traditional_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.65	0.79	0.79	0.74	0.78	0.77	0.78	0.79	0.79	0.80	0.80
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
80.00	60.00	80.00	60.00	80.00	80.00	60.00	80.00	60.00	60.00	60.00
50.00	87.50	87.50	75.00	75.00	87.50	87.50	87.50	87.50	87.50	87.50
80.00	77.78	87.50	75.00	85.71	87.50	77.78	87.50	77.78	77.78	77.78
50.00	75.00	80.00	60.00	66.67	80.00	75.00	80.00	75.00	75.00	75.00
61.54	76.92	84.62	69.23	76.92	84.62	76.92	84.62	76.92	76.92	76.92
Confusion Matrix										
44	71	71	62	62	71	71	71	71	71	71
14	23	14	23	14	14	23	14	23	23	23

Table D.20: Static_Standard_Traditional_highestEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.50	0.50	0.51	0.50	0.50	0.50	0.50
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NaN										
38.46	38.46	38.46	38.46	38.46	38.46	38.46	38.46	38.46	38.46	38.46
38.46	38.46	38.46	38.46	38.46	38.46	38.46	38.46	38.46	38.46	38.46
Confusion Matrix										
08	08	08	08	08	08	08	08	08	08	08
05	05	05	05	05	05	05	05	05	05	05

Table D.21: Static_Standard_kFold_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.64	0.64	0.67	0.65	0.72	0.72	0.65	0.63	0.64	0.64	0.65
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
70.59	64.71	70.59	70.59	82.35	82.35	70.59	64.71	64.71	64.71	66.67
85.00	95.00	80.00	85.00	90.00	90.00	85.00	85.00	95.00	95.00	95.00
77.27	76.00	76.19	77.27	85.71	85.71	77.27	73.91	76.00	76.00	76.00
80.00	91.67	75.00	80.00	87.50	87.50	80.00	78.57	91.67	91.67	92.31
78.38	81.08	75.68	78.38	86.49	86.49	78.38	75.68	81.08	81.08	81.58
Confusion Matrix										
173	191	164	173	182	182	173	173	191	191	191
512	611	512	512	314	314	512	611	611	611	612

Table D.22: Static_Standard_kFold_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.79	0.72	0.78	0.79	0.79	0.80	0.79	0.81	NA	0.80	0.75
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
94.12	76.47	94.12	94.12	94.12	94.12	94.12	100.00	NA	88.24	76.47
95.00	95.00	95.00	95.00	95.00	95.00	95.00	95.00	NA	95.00	95.00
95.00	82.61	95.00	95.00	95.00	95.00	95.00	100.00	NA	90.48	82.61
94.12	92.86	94.12	94.12	94.12	94.12	94.12	94.44	NA	93.75	92.86
94.59	86.49	94.59	94.59	94.59	94.59	94.59	97.30	NA	91.89	86.49
Confusion Matrix										
191	191	191	191	191	191	191	191	NA	191	191
116	413	116	116	116	116	116	017	NA	215	413

Table D.23: Static_Standard_LOO_PCA_highestEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.67	0.72	0.70	0.67	0.70	0.70	0.67	0.68	0.72	0.53	0.56
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
58.82	52.94	64.71	58.82	64.71	64.71	58.82	52.94	52.94	35.29	41.18
75.00	85.00	75.00	75.00	75.00	75.00	75.00	80.00	85.00	70.00	70.00
68.18	68.00	71.43	68.18	71.43	71.43	68.18	66.67	68.00	56.00	58.33
66.67	75.00	68.75	66.67	68.75	68.75	66.67	69.23	75.00	50.00	53.85
67.57	70.27	70.27	67.57	70.27	70.27	67.57	67.57	70.27	54.05	56.76
Confusion Matrix										
155	173	155	155	155	155	155	164	173	146	146
710	89	611	710	611	611	710	89	89	116	107

Table D.24: Static_Standard_LOO_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.48	0.56	0.56	0.56	0.51	0.51	0.54	NA	0.65	0.65
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
47.06	35.29	52.94	52.94	52.94	47.06	47.06	52.94	NA	58.82	52.94
55.00	60.00	60.00	60.00	60.00	55.00	55.00	55.00	NA	70.00	75.00
55.00	52.17	60.00	60.00	60.00	55.00	55.00	57.89	NA	66.67	65.22
47.06	42.86	52.94	52.94	52.94	47.06	47.06	50.00	NA	62.50	64.29
51.35	48.65	56.76	56.76	56.76	51.35	51.35	54.05	NA	64.86	64.86
Confusion Matrix										
119	128	128	128	128	119	119	119	NA	146	155
98	116	89	89	89	98	98	89	NA	710	89

For label highestEDSS (0/1-(<5)/($\geq 5)$):
The via pattern recognition study was not performed since the number of patients with highestEDSS ≥ 5 was minimal.

For label first2EDSS $(0 / 1-(<3) /(\geq 3))$:

Final Features: EDSS 1st Year, Sensory 1 Ratio.

Table D.25: Static_Standard_Traditional_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.72	0.68	0.57	0.51	0.58	0.64	0.68	0.72	0.73	0.72
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	66.67	66.67	33.33	33.33	33.33	66.67	66.67	66.67	66.67	66.67
35.00	65.00	65.00	70.00	60.00	70.00	66.67	65.00	65.00	65.00	65.00
87.50	92.86	92.86	87.50	85.71	87.50	93.33	92.86	92.86	92.86	92.86
13.33	22.22	22.22	14.29	11.11	14.29	22.22	22.22	22.22	22.22	22.22
39.13	65.22	65.22	65.22	56.52	65.22	66.67	65.22	65.22	65.22	65.22
Confusion Matrix										
713	137	137	146	128	146	147	137	137	137	137
12	12	12	21	21	21	12	12	12	12	12

Table D.26: Static_Standard_Traditional_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.58	0.58	0.60	0.60	0.64	0.64	0.60	0.58	0.68	0.68
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
10.00	20.00	25.00	30.00	30.00	30.00	30.00	35.00	20.00	40.00	15.00
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
14.29	15.79	16.67	17.65	17.65	17.65	17.65	18.75	15.79	20.00	15.00
21.74	30.43	34.78	39.13	39.13	39.13	39.13	43.48	30.43	47.83	26.09
Confusion Matrix										
218	416	515	614	614	614	614	713	416	812	317
03	03	03	03	03	03	03	03	03	03	03

Table D.27: Static_Standard_kFold_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.33	0.35	0.35	0.29	0.52	0.47	0.33	0.34	0.34	0.56	0.49
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
30.00	30.00	30.00	30.00	60.00	50.00	30.00	30.00	30.00	80.00	60.00
77.78	85.19	81.48	92.59	81.48	81.48	81.48	81.48	85.19	70.37	70.37
75.00	76.67	75.86	78.13	84.62	81.48	75.86	75.86	76.67	90.48	82.61
33.33	42.86	37.50	60.00	54.55	50.00	37.50	37.50	42.86	50.00	42.86
64.86	70.27	67.57	75.68	75.68	72.97	67.57	67.57	70.27	72.97	67.57
Confusion Matrix										
216	234	225	252	225	225	225	225	234	198	198
73	73	73	73	46	55	73	73	73	28	46

Table D.28: Static_Standard_kFold_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.58	0.55	0.52	0.62	0.46	0.46	0.55	NA	0.58	0.64
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
80.00	80.00	80.00	70.00	90.00	60.00	60.00	80.00	NA	90.00	90.00
92.59	96.30	96.30	96.30	96.30	96.30	100.00	100.00	NA	62.96	92.59
92.59	92.86	92.86	89.66	96.30	86.67	87.10	93.10	NA	94.44	96.15
80.00	88.89	88.89	87.50	90.00	85.71	100.00	100.00	NA	47.37	81.82
89.19	91.89	91.89	89.19	94.59	86.49	89.19	94.59	NA	70.27	91.89
Confusion Matrix										
252	261	261	261	261	261	270	270	NA	1710	252
28	28	28	37	19	46	46	28	NA	19	19

Table D.29: Static_Standard_LOO_PCA_first2EDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.42	0.41	0.46	0.44	0.38	0.33	0.41	0.42	0.58	0.63
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
20.00	10.00	10.00	10.00	20.00	10.00	0.00	10.00	10.00	60.00	60.00
74.07	77.78	74.07	85.19	66.67	66.67	70.37	74.07	77.78	59.26	70.37
71.43	70.00	68.97	71.88	69.23	66.67	65.52	68.97	70.00	80.00	82.61
22.22	14.29	12.50	20.00	18.18	10.00	0.00	12.50	14.29	35.29	42.86
59.46	59.46	56.76	64.86	54.05	51.35	51.35	56.76	59.46	59.46	67.57
Confusion Matrix										
207	216	207	234	189	189	198	207	216	1611	198
82	91	91	91	82	91	100	91	91	46	46

Table D.30: Static_Standard_LOO_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.47	0.54	0.49	0.59	0.60	0.54	0.49	NA	0.60	0.57
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
30.00	20.00	30.00	20.00	40.00	30.00	20.00	20.00	NA	70.00	40.00
74.07	74.07	77.78	77.78	77.78	85.19	85.19	77.78	NA	55.56	74.07
74.07	71.43	75.00	72.41	77.78	76.67	74.19	72.41	NA	83.33	76.92
30.00	22.22	33.33	25.00	40.00	42.86	33.33	25.00	NA	36.84	36.36
62.16	59.46	64.86	62.16	67.57	70.27	67.57	62.16	NA	59.46	64.86
Confusion Matrix										
207	207	216	216	216	234	234	216	NA	1512	207
73	82	73	82	64	73	82	82	NA	37	64

For label first2EDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with first2EDSS ≥ 5 was minimal.

D.1.1.2 Investigation procedure

In the investigation procedure, after excluding on purpose features that are already clinically obviously for a physician, a final feature test is made. The selected one was the evaluation of the features importance in order to build a decision tree (already used in previous tests).

For label msCourse (0/1-RR/SP):
Features before selection: Age at Onset, Number of visits per year, Pyramidal ratio, Pyramidal 1st year, Pyramidal first 2 years.

Excluded features: EDSS Medium Value/year, EDSS 1st year, EDSS first 2 years, EDSS std/year.

Final Features:Age at Onset, Number of visits per year, Pyramidal 1 ratio.

Table D.31: Static_Investigation_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.64	0.63	0.57	0.56	0.60	0.58	0.64	0.64	0.64	0.63
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
33.33	66.67	66.67	66.67	33.33	33.33	33.33	33.33	66.67	66.67	66.67
77.78	72.22	72.22	61.11	77.78	88.89	94.44	88.89	72.22	72.22	72.22
87.50	92.86	92.86	91.67	87.50	88.89	89.47	88.89	92.86	92.86	92.86
20.00	28.57	28.57	22.22	20.00	33.33	50.00	33.33	28.57	28.57	28.57
71.43	71.43	71.43	61.90	71.43	80.95	85.71	80.95	71.43	71.43	71.43
Confusion Matrix										
144	135	135	117	144	162	171	162	135	135	135
21	12	12	12	21	21	21	21	12	12	12

Table D.32: Static_Investigation_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.62	NA	0.52	0.46	0.56	0.59	0.63	0.62	0.59	0.60
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	66.67	NA	33.33	33.33	33.33	33.33	66.67	66.67	66.67	66.67
50.00	66.67	NA	66.67	44.44	77.78	83.33	55.56	66.67	38.89	66.67
90.00	92.31	NA	85.71	80.00	87.50	88.24	90.91	92.31	87.50	92.31
18.18	25.00	NA	14.29	9.09	20.00	25.00	20.00	25.00	15.38	25.00
52.38	66.67	NA	61.90	42.86	71.43	76.19	57.14	66.67	42.86	66.67
Confusion Matrix										
99	126	NA	126	810	144	153	108	126	711	126
12	12	NA	21	21	21	21	12	12	12	12

D. Appendix IV - Machine learning results

Table D.33: Static_Investigation_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.34	0.32	0.39	0.20	0.31	0.29	0.27	0.34	0.30	0.50	0.45
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
27.27	27.27	36.36	18.18	18.18	27.27	18.18	27.27	27.27	54.55	45.45
76.92	92.31	84.62	92.31	69.23	88.46	92.31	84.62	92.31	80.77	76.92
71.43	75.00	75.86	72.73	66.67	74.19	72.73	73.33	75.00	80.77	76.92
33.33	60.00	50.00	50.00	20.00	50.00	50.00	42.86	60.00	54.55	45.45
62.16	72.97	70.27	70.27	54.05	70.27	70.27	67.57	72.97	72.97	67.57
Confusion Matrix										
206	242	224	242	188	233	242	224	242	215	206
83	83	74	92	92	83	92	83	83	56	65

Table D.34: Static_Investigation_kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.32	0.39	0.37	0.02	0.33	0.33	0.27	0.37	0.37	0.55	0.45
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
27.27	36.36	36.36	0.00	27.27	27.27	25.00	36.36	36.36	63.64	45.45
73.08	92.31	92.31	100.00	80.77	80.77	88.46	92.31	92.31	80.77	73.08
70.37	77.42	77.42	70.27	72.41	72.41	71.88	77.42	77.42	84.00	76.00
30.00	66.67	66.67	NaN	37.50	37.50	50.00	66.67	66.67	58.33	41.67
59.46	75.68	75.68	70.27	64.86	64.86	68.42	75.68	75.68	75.68	64.86
Confusion Matrix										
197	242	242	260	215	215	233	242	242	215	197
83	74	74	110	83	83	93	74	74	47	65

Table D.35: Static_Investigation_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.45	0.44	0.47	0.34	0.50	0.44	0.56	0.49	0.44	0.48	0.48
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
18.18	9.09	18.18	0.00	27.27	9.09	18.18	18.18	9.09	27.27	27.27
73.08	84.62	76.92	88.46	73.08	84.62	88.46	80.77	84.62	69.23	69.23
67.86	68.75	68.97	67.65	70.37	68.75	71.88	70.00	68.75	69.23	69.23
22.22	20.00	25.00	0.00	30.00	20.00	40.00	28.57	20.00	27.27	27.27
56.76	62.16	59.46	62.16	59.46	62.16	67.57	62.16	62.16	56.76	56.76
Confusion Matrix										
197	224	206	233	197	224	233	215	224	188	188
92	101	92	110	83	101	92	92	101	83	83

Table D.36: Static_Investigation_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.62	0.62	0.00	0.55	0.55	0.68	0.52	0.62	0.53	0.65
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
36.36	27.27	27.27	0.00	27.27	27.27	27.27	18.18	27.27	36.36	54.55
80.77	88.46	88.46	100.00	80.77	80.77	92.31	84.62	88.46	69.23	76.92
75.00	74.19	74.19	70.27	72.41	72.41	75.00	70.97	74.19	72.00	80.00
44.44	50.00	50.00	NaN	37.50	37.50	60.00	33.33	50.00	33.33	50.00
67.57	70.27	70.27	70.27	64.86	64.86	72.97	64.86	70.27	59.46	70.27
Confusion Matrix										
215	233	233	260	215	215	242	224	233	188	206
74	83	83	110	83	83	83	92	83	74	56

For label mediumEDSS $(0 / 1-(<3) /(\geq 3))$:
Features before selection: Gender, Age of Onset, Spinal Cord, Nb of Visits 1st Year, Nb of visits first 2 years, Number of Years, Pyramidal ratio, Pyramidal first 2 years, Sensory 1 ratio.

Excluded features: EDSS 1st year, EDSS std/year, EDSS 1st year std, EDSS std of variation/year, EDSS Increase first 2 years, Ratio nb EDSS increase, Ratio nb EDSS decrease first 2 years.

Final Features: Gender, Age of Onset, Nb of Visits first 2 Years, Pyramidal ratio, Number of years.

Table D.37: Static_Investigation_Traditional_PCA_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.73	0.71	0.64	0.63	0.62	0.59	0.67	0.73	0.73	0.75
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
75.00	75.00	75.00	75.00	75.00	75.00	75.00	50.00	75.00	75.00	75.00
45.45	72.73	72.73	54.55	54.55	54.55	54.55	72.73	72.73	72.73	72.73
83.33	88.89	88.89	85.71	85.71	85.71	85.71	80.00	88.89	88.89	88.89
33.33	50.00	50.00	37.50	37.50	37.50	37.50	40.00	50.00	50.00	50.00
53.33	73.33	73.33	60.00	60.00	60.00	60.00	66.67	73.33	73.33	73.33
Confusion Matrix										
56	83	83	65	65	65	65	83	83	83	83
13	13	13	13	13	13	13	22	13	13	13

D. Appendix IV - Machine learning results

Table D.38: Static_Investigation_Traditional_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.65	0.62	0.67	0.56	0.62	0.62	0.68	0.65	0.66	0.62
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
50.00	75.00	50.00	75.00	50.00	50.00	50.00	50.00	75.00	75.00	75.00
63.64	54.55	72.73	72.73	63.64	63.64	81.82	72.73	54.55	45.45	54.55
77.78	85.71	80.00	88.89	77.78	77.78	81.82	80.00	85.71	83.33	85.71
33.33	37.50	40.00	50.00	33.33	33.33	50.00	40.00	37.50	33.33	37.50
60.00	60.00	66.67	73.33	60.00	60.00	73.33	66.67	60.00	53.33	60.00
Confusion Matrix										
74	65	83	83	74	74	92	83	65	56	65
22	13	22	13	22	22	22	22	13	13	13

Table D.39: Static_Investigation_kFold_PCA_mediumEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.57	0.54	0.14	0.49	0.44	0.53	0.48	0.57	0.58	0.56
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
46.67	60.00	53.33	6.67	46.67	40.00	53.33	46.67	60.00	66.67	60.00
63.64	90.91	81.82	77.27	72.73	72.73	72.73	81.82	90.91	72.73	86.36
63.64	76.92	72.00	54.84	66.67	64.00	69.57	69.23	76.92	76.19	76.00
46.67	81.82	66.67	16.67	53.85	50.00	57.14	63.64	81.82	62.50	75.00
56.76	78.38	70.27	48.65	62.16	59.46	64.86	67.57	78.38	70.27	75.68
Confusion Matrix										
148	202	184	175	166	166	166	184	202	166	193
87	69	78	141	87	96	78	87	69	510	69

Table D.40: Static_Investigation_kFold_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.57	0.49	0.58	0.49	0.62	0.57	0.56	NA	0.55	0.62
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
53.33	60.00	46.67	60.00	46.67	66.67	53.33	53.33	NA	66.67	66.67
63.64	86.36	81.82	77.27	68.18	81.82	86.36	86.36	NA	68.18	86.36
66.67	76.00	69.23	73.91	65.22	78.26	73.08	73.08	NA	75.00	79.17
50.00	75.00	63.64	64.29	50.00	71.43	72.73	72.73	NA	58.82	76.92
59.46	75.68	67.57	70.27	59.46	75.68	72.97	72.97	NA	67.57	78.38
Confusion Matrix										
148	193	184	175	157	184	193	193	NA	157	193
78	69	87	69	87	510	78	78	NA	510	510

Table D.41: Static_Investigation_LOO_PCA_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.54	0.57	0.50	0.54	0.57	0.52	0.56	0.54	0.58	0.56
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
53.33	33.33	40.00	13.33	40.00	40.00	40.00	33.33	33.33	66.67	60.00
63.64	72.73	72.73	86.36	68.18	72.73	63.64	77.27	72.73	72.73	86.36
66.67	61.54	64.00	59.38	62.50	64.00	60.87	62.96	61.54	76.19	76.00
50.00	45.45	50.00	40.00	46.15	50.00	42.86	50.00	45.45	62.50	75.00
59.46	56.76	59.46	56.76	56.76	59.46	54.05	59.46	56.76	70.27	75.68
Confusion Matrix										
148	166	166	193	157	166	148	175	166	166	193
78	105	96	132	96	96	96	105	105	510	69

Table D.42: Static_Investigation_LOO_mediumEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.51	0.50	0.35	0.46	0.40	0.45	0.47	0.51	0.43	0.48
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
46.67	33.33	26.67	20.00	33.33	26.67	26.67	26.67	33.33	40.00	33.33
59.09	68.18	72.73	50.00	59.09	54.55	63.64	68.18	68.18	45.45	63.64
61.90	60.00	59.26	47.83	56.52	52.17	56.00	57.69	60.00	52.63	58.33
43.75	41.67	40.00	21.43	35.71	28.57	33.33	36.36	41.67	33.33	38.46
54.05	54.05	54.05	37.84	48.65	43.24	48.65	51.35	54.05	43.24	51.35
Confusion Matrix										
139	157	166	1111	139	1210	148	157	157	1012	148
87	105	114	123	105	114	114	114	105	96	105

For label mediumEDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with mediumEDSS ≥ 5 was minimal.

For label highestEDSS (0/1-(<3)/($\geq 3)$):
Features before selection: Optic Pathways, Spinal Cord, MS Course, Number of years, Pyramidal 1 ratio, Pyramidal first 2 years, Neuropsycho 1 ratio, Visual first 2 years.

Excluded features: Nb of visits first 2 years, EDSS Medium Value/year, EDSS 1st year, EDSS first 2 years, EDSS std/year, EDSS Increase first 2 years, Ratio nb EDSS increase, Ratio nb EDSS decrease.

Final features: MS Course, Number of years, Pyramidal 1 ratio.
D. Appendix IV - Machine learning results

Table D.43: Static_Investigation_Traditional_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.73	0.76	0.72	0.66	0.66	0.66	0.71	0.74	0.76	0.76	0.75
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00
87.50	87.50	75.00	75.00	62.50	75.00	87.50	75.00	87.50	87.50	87.50
77.78	77.78	75.00	75.00	71.43	75.00	77.78	75.00	77.78	77.78	77.78
75.00	75.00	60.00	60.00	50.00	60.00	75.00	60.00	75.00	75.00	75.00
76.92	76.92	69.23	69.23	61.54	69.23	76.92	69.23	76.92	76.92	76.92
Confusion Matrix										
71	71	62	62	53	62	71	62	71	71	71
23	23	23	23	23	23	23	23	23	23	23

Table D.44: Static_Investigation_Traditional_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.73	0.76	0.72	0.66	0.66	0.66	0.71	0.74	0.76	0.76	0.75
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00	60.00
87.50	87.50	75.00	75.00	62.50	75.00	87.50	75.00	87.50	87.50	87.50
77.78	77.78	75.00	75.00	71.43	75.00	77.78	75.00	77.78	77.78	77.78
75.00	75.00	60.00	60.00	50.00	60.00	75.00	60.00	75.00	75.00	75.00
76.92	76.92	69.23	69.23	61.54	69.23	76.92	69.23	76.92	76.92	76.92
Confusion Matrix										
71	71	62	62	53	62	71	62	71	71	71
23	23	23	23	23	23	23	23	23	23	23

Table D.45: Static_Investigation_kFold_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.63	0.48	0.54	0.54	0.66	0.62	0.61	0.63	0.62	0.62
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
64.71	64.71	82.35	52.94	52.94	70.59	64.71	64.71	64.71	64.71	64.71
75.00	95.00	45.00	75.00	75.00	80.00	80.00	75.00	95.00	90.00	95.00
71.43	76.00	75.00	65.22	65.22	76.19	72.73	71.43	76.00	75.00	76.00
68.75	91.67	56.00	64.29	64.29	75.00	73.33	68.75	91.67	84.62	91.67
70.27	81.08	62.16	64.86	64.86	75.68	72.97	70.27	81.08	78.38	81.08
Confusion Matrix										
155	191	911	155	155	164	164	155	191	182	191
611	611	314	89	89	512	611	611	611	611	611

Table D.46: Static_Investigation_kFold_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.63	0.62	NA	0.73	0.65	0.64	0.64	NA	NA	0.60	0.65
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
70.59	64.71	NA	82.35	70.59	64.71	64.71	NA	NA	58.82	64.71
85.00	90.00	NA	90.00	80.00	95.00	95.00	NA	NA	95.00	90.00
77.27	75.00	NA	85.71	76.19	76.00	76.00	NA	NA	73.08	75.00
80.00	84.62	NA	87.50	75.00	91.67	91.67	NA	NA	90.91	84.62
78.38	78.38	NA	86.49	75.68	81.08	81.08	NA	NA	78.38	78.38
Confusion Matrix										
173	182	NA	182	164	191	191	NA	NA	191	182
512	611	NA	314	512	611	611	NA	NA	710	611

Table D.47: Static_Investigation_LOO_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.63	0.47	0.51	0.53	0.62	0.56	0.54	0.63	0.44	0.47
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
35.29	41.18	64.71	47.06	41.18	52.94	47.06	47.06	41.18	29.41	29.41
60.00	80.00	30.00	55.00	65.00	70.00	65.00	60.00	80.00	60.00	65.00
52.17	61.54	50.00	55.00	56.52	63.64	59.09	57.14	61.54	50.00	52.00
42.86	63.64	44.00	47.06	50.00	60.00	53.33	50.00	63.64	38.46	41.67
48.65	62.16	45.95	51.35	54.05	62.16	56.76	54.05	62.16	45.95	48.65
Confusion Matrix										
128	164	614	119	137	146	137	128	164	128	137
116	107	611	98	107	89	98	98	107	125	125

Table D.48: Static_Investigation_LOO_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.49	0.54	0.54	0.53	0.59	0.49	NA	0.63	0.56
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
41.18	35.29	47.06	47.06	47.06	35.29	41.18	47.06	NA	41.18	41.18
60.00	65.00	50.00	60.00	60.00	70.00	75.00	50.00	NA	80.00	70.00
54.55	54.17	52.63	57.14	57.14	56.00	60.00	52.63	NA	61.54	58.33
46.67	46.15	44.44	50.00	50.00	50.00	58.33	44.44	NA	63.64	53.85
51.35	51.35	48.65	54.05	54.05	54.05	59.46	48.65	NA	62.16	56.76
Confusion Matrix										
128	137	1010	128	128	146	155	1010	NA	164	146
107	116	98	98	98	116	107	98	NA	107	107

For label highestEDSS (0/1-(<5)/($\geq 5)$):
The via pattern recognition study was not performed since the number of patients with highestEDSS ≥ 5 was minimal.

Features before selection: Gender, Pyramidal 1 ratio, Pyramidal first 2 years, BrainStem 1st year, Visual 1 ratio, Visual first 2 years, Sensory 1 ratio.

Excluded features: EDSS 1st year, EDSS std/year, EDSS first 2 years std, EDSS Increase first 2 years, Ratio nb EDSS increase.

Final features: Pyramidal ratio, Sensory ratio.
Table D.49: Static_Investigation_Traditional_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.70	0.66	0.57	0.56	0.60	0.63	0.63	0.70	0.70	0.69
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	66.67	66.67	33.33	33.33	66.67	66.67	66.67	66.67	66.67	66.67
35.00	65.00	60.00	75.00	75.00	65.00	65.00	65.00	65.00	65.00	65.00
87.50	92.86	92.31	88.24	88.24	92.86	92.86	92.86	92.86	92.86	92.86
13.33	22.22	20.00	16.67	16.67	22.22	22.22	22.22	22.22	22.22	22.22
39.13	65.22	60.87	69.57	69.57	65.22	65.22	65.22	65.22	65.22	65.22
Confusion Matrix										
713	137	128	155	155	137	137	137	137	137	137
12	12	12	21	21	12	12	12	12	12	12

Table D.50: Static_Investigation_Traditional_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.69	NA	0.58	0.51	0.61	0.65	0.66	0.69	0.67	0.68
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	66.67	NA	66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67
60.00	70.00	NA	50.00	45.00	50.00	50.00	55.00	55.00	65.00	65.00
92.31	93.33	NA	90.91	90.00	90.91	90.91	91.67	91.67	92.86	92.86
20.00	25.00	NA	16.67	15.38	16.67	16.67	18.18	18.18	22.22	22.22
60.87	69.57	NA	52.17	47.83	52.17	52.17	56.52	56.52	65.22	65.22
Confusion Matrix										
128	146	NA	1010	911	1010	1010	119	119	137	137
12	12	NA	12	12	12	12	12	12	12	12

Table D.51: Static_Investigation_kFold_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.30	0.27	0.44	0.27	0.54	0.42	0.39	0.28	0.26	0.56	0.45
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
30.00	20.00	50.00	30.00	60.00	40.00	30.00	20.00	20.00	70.00	60.00
74.07	88.89	81.48	96.30	77.78	81.48	77.78	85.19	88.89	66.67	70.37
74.07	75.00	81.48	78.79	84.00	78.57	75.00	74.19	75.00	85.71	82.61
30.00	40.00	50.00	75.00	50.00	44.44	33.33	33.33	40.00	43.75	42.86
62.16	70.27	72.97	78.38	72.97	70.27	64.86	67.57	70.27	67.57	67.57
Confusion Matrix										
207	243	225	261	216	225	216	234	243	189	198
73	82	55	73	46	64	73	82	82	37	46

Table D.52: Static_Investigation_kFold_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.34	0.30	0.35	0.07	0.44	0.37	0.31	0.32	0.28	0.45	0.46
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
40.00	30.00	40.00	10.00	50.00	30.00	30.00	30.00	30.00	60.00	60.00
88.89	96.30	88.89	100.00	66.67	62.96	85.19	88.89	96.30	55.56	59.26
80.00	78.79	80.00	75.00	78.26	70.83	76.67	77.42	78.79	78.95	80.00
57.14	75.00	57.14	100.00	35.71	23.08	42.86	50.00	75.00	33.33	35.29
75.68	78.38	75.68	75.68	62.16	54.05	70.27	72.97	78.38	56.76	59.46
Confusion Matrix										
243	261	243	270	189	1710	234	243	261	1512	1611
64	73	64	91	55	73	73	73	73	46	46

Table D.53: Static_Investigation_LOO_PCA_first2EDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.46	0.57	0.63	0.55	0.54	0.59	0.44	0.46	0.52	0.47
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
30.00	10.00	30.00	20.00	40.00	30.00	40.00	10.00	10.00	50.00	30.00
81.48	85.19	81.48	92.59	70.37	77.78	77.78	81.48	85.19	55.56	62.96
75.86	71.88	75.86	75.76	76.00	75.00	77.78	70.97	71.88	75.00	70.83
37.50	20.00	37.50	50.00	33.33	33.33	40.00	16.67	20.00	29.41	23.08
67.57	64.86	67.57	72.97	62.16	64.86	67.57	62.16	64.86	54.05	54.05
Confusion Matrix										
225	234	225	252	198	216	216	225	234	1512	1710
73	91	73	82	64	73	64	91	91	55	73

Table D.54: Static_Investigation_LOO_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.63	0.58	0.88	0.63	0.63	0.60	0.58	0.63	0.44	0.44
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
20.00	20.00	20.00	10.00	60.00	60.00	30.00	20.00	20.00	40.00	40.00
85.19	92.59	88.89	100.00	70.37	70.37	85.19	88.89	92.59	44.44	44.44
74.19	75.76	75.00	75.00	82.61	82.61	76.67	75.00	75.76	66.67	66.67
33.33	50.00	40.00	100.00	42.86	42.86	42.86	40.00	50.00	21.05	21.05
67.57	72.97	70.27	75.68	67.57	67.57	70.27	70.27	72.97	43.24	43.24
Confusion Matrix										
234	252	243	270	198	198	234	243	252	1215	1215
82	82	82	91	46	46	73	82	82	64	64

For label first2EDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with first $2 E D S S \geq 5$ was minimal.

D.1.2 Ground zero Set

D.1.2.1 Standard procedure

For label msCourse (0/1-RR/SP):

Final Features: Relapse age, Time since onset.

Table D.55: GroundZero_Standard_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.66	0.60	0.58	0.55	0.56	0.58	0.65	0.66	0.51	0.50
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	66.67	66.67	66.67	66.67	66.67	33.33	66.67	66.67	33.33	33.33
11.11	66.67	44.44	50.00	44.44	50.00	72.22	72.22	66.67	61.11	55.56
100.00	92.31	88.89	90.00	88.89	90.00	86.67	92.86	92.31	84.62	83.33
15.79	25.00	16.67	18.18	16.67	18.18	16.67	28.57	25.00	12.50	11.11
23.81	66.67	47.62	52.38	47.62	52.38	66.67	71.43	66.67	57.14	52.38
Confusion Matrix										
216	126	810	99	810	99	135	135	126	117	108
03	12	12	12	12	12	21	12	12	21	21

Table D.56: GroundZero_Standard_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.50	NA	0.56	0.59	0.60	0.59	NA	0.50	0.50	0.50
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	66.67	100.00	100.00	NA	100.00	100.00	100.00
22.22	0.00	NA	16.67	33.33	27.78	22.22	NA	0.00	0.00	0.00
100.00	NaN	NA	100.00	85.71	100.00	100.00		NaN	NaN	NaN
17.65	14.29	NA	16.67	14.29	18.75	17.65	NA	14.29	14.29	14.29
33.33	14.29	NA	28.57	38.10	38.10	33.33	NA	14.29	14.29	14.29
Confusion Matrix										
414	018	NA	315	612	513	414	NA	018	018	018
03	03	NA	03	12	03	03	NA	03	03	03

Table D.57: GroundZero_Standard_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.37	0.38	0.37	0.07	0.27	0.29	0.13	0.42	NA	0.3603	0.3573
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
45.45	36.36	36.36	0.00	18.18	18.18	9.09	45.45	NA	36.36	36.36
88.46	80.77	84.62	92.31	73.08	84.62	88.46	80.77	NA	73.08	76.92
79.31	75.00	75.86	68.57	67.86	70.97	69.70	77.78	NA	73.08	74.07
62.50	44.44	50.00	0.00	22.22	33.33	25.00	50.00	NA	36.36	40.00
75.68	67.57	70.27	64.86	56.76	64.86	64.86	70.27	NA	62.16	64.86
Confusion Matrix										
233	215	224	242	197	224	233	215	NA	197	206
65	74	74	110	92	92	101	65	NA	74	74

Table D.58: GroundZero_Standard_kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.61	0.34	0.44	0.43	0.53	0.62	0.55	0.36	NA	0.49	0.60
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
72.73	36.36	45.45	45.45	63.64	81.82	63.64	36.36	NA	54.55	72.73
88.46	96.15	92.31	88.46	84.62	88.46	88.46	96.15	NA	88.46	80.77
88.46	78.13	80.00	79.31	84.62	92.00	85.19	78.13	NA	82.14	87.50
72.73	80.00	71.43	62.50	63.64	75.00	70.00	80.00	NA	66.67	61.54
83.78	78.38	78.38	75.68	78.38	86.49	81.08	78.38	NA	78.38	78.38
Confusion Matrix										
233	251	242	233	224	233	233	251	NA	233	215
38	74	65	65	47	29	47	74	NA	56	38

Table D.59: GroundZero_Standard_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.62	0.60	0.63	0.52	0.60	0.76	0.34	0.71	0.60	0.60	0.60
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
18.18	9.09	9.09	9.09	18.18	18.18	0.00	9.09	9.09	36.36	36.36
84.62	69.23	73.08	92.31	73.08	80.77	88.46	65.38	69.23	80.77	80.77
70.97	64.29	65.52	70.59	67.86	70.00	67.65	62.96	64.29	75.00	75.00
33.33	11.11	12.50	33.33	22.22	28.57	0.00	10.00	11.11	44.44	44.44
64.86	51.35	54.05	67.57	56.76	62.16	62.16	48.65	51.35	67.57	67.57
Confusion Matrix										
224	188	197	242	197	215	233	179	188	215	215
92	101	101	101	92	92	110	101	101	74	74

Table D.60: GroundZero_Standard_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.61	0.49	0.47	0.48	0.47	0.48	0.56	0.61	0.38	0.38
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
27.27	18.18	18.18	18.18	27.27	27.27	27.27	18.18	18.18	9.09	18.18
65.38	92.31	80.77	76.92	69.23	65.38	69.23	88.46	92.31	69.23	53.85
68.00	72.73	70.00	68.97	69.23	68.00	69.23	71.88	72.73	64.29	60.87
25.00	50.00	28.57	25.00	27.27	25.00	27.27	40.00	50.00	11.11	14.29
54.05	70.27	62.16	59.46	56.76	54.05	56.76	67.57	70.27	51.35	43.24
Confusion Matrix										
179	242	215	206	188	179	188	233	242	188	1412
83	92	92	92	83	83	83	92	92	101	92

First feature selection process for highestEDSS:

Table D.61: GroundZero_Feature_Selection_Identification_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	0	1	1	1	1	0	0	0	0	0	
Age of Onset	0	0	0	0	1	0	1	1	0	0	0	
Optic Pathways	0	1	1	0	0	0	1	0	1	0	1	$\mathbf{3}$
Brainstem-Cerebellum	0	0	0	0	0	1	0	0	0	0	0	
Spinal Cord	0	0	1	1	1	1	1	0	0	0	0	1
Progression From Onset	0	0	0	0	0	0	0	0	1	0	0	
Age of Diagnosis	0	0	1	1	1	0	0	1	0	0	0	1
Years from Onset to Diagnosis	1	0	1	1	1	0	0	1	0	0	0	
MRI	0	0	0	0	0	0	1	0	0	0	0	
Evoked Potentials	0	0	0	0	0	1	0	0	0	0	0	$\mathbf{5}$
CSF	0	0	0	0	0	1	0	0	0	0	0	
Age at SP Diagnosis	1	1	1	1	1	0	1	1	1	1	1	1
Years from Diagnosis to SP	0	1	1	1	1	0	0	0	1	1	1	
Ms Course	0	1	1	1	1	1	1	0	1	1	1	$\mathbf{1}$

Selected features: Gender, Age of Onset, Optic Pathways, Spinal Cord, Age of Diagnosis, Years from Onset to Diagnosis, Age at SP Diagnosis, MS Course.

Table D.62: GroundZero_Feature_Selection_Visits_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Relapse Age	0	0	1	1	1	0	0	0	0	0	0	
Routine	0	0	0	0	0	0	1	0	0	0	0	$\mathbf{3}$
Suspected Relapse	0	0	0	0	0	0	1	0	0	0	0	1
EDSS	1	1	1	1	1	0	0	1	0	1	1	1

Selected features: Relapse Age, EDSS.

Table D.63: GroundZero_Feature_Selection_Relapses_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Relapse Age	0	0	0	1	1	0	0	1	0	0	0	
Time since onset	0	1	0	0	1	0	1	1	0	0	1	
CNS Brain Stem	0	0	0	0	0	0	1	1	0	0	0	$\mathbf{5}$
CNS Neuropsycho Functions	0	0	0	0	0	0	0	0	1	0	0	
CNS Cerebellum	0	0	0	0	0	0	1	0	0	0	0	
CNS Visual Functions	0	0	0	1	0	0	0	0	0	0	0	1
CNS Sensory Functions	0	0	0	0	0	1	0	0	0	0	0	
Hospital	0	0	0	0	0	1	1	0	0	0	0	
Ambulatory	0	0	0	1	0	0	0	0	0	0	0	
Corticosteroids	0	0	0	0	0	1	0	0	0	0	0	
Duration Days	0	0	0	0	0	0	0	1	0	0	0	

Selected features: Relapse Age, Time since onset, CNS Brain Stem, Hospital.
For label highestEDSS (0/1-(<3)/($\geq 3)$):
Final features: Optic pathways, MS Course, EDSS

Table D.64: GroundZero_Standard_Traditional_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.76	0.70	0.69	0.61	0.67	0.62	0.65	0.71	0.70	0.70	0.70
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	60.00	80.00	60.00	60.00	60.00	60.00	80.00	60.00	60.00	60.00
62.50	75.00	62.50	62.50	62.50	62.50	75.00	62.50	75.00	75.00	75.00
100.00	75.00	83.33	71.43	71.43	71.43	75.00	83.33	75.00	75.00	75.00
62.50	60.00	57.14	50.00	50.00	50.00	60.00	57.14	60.00	60.00	60.00
76.92	69.23	69.23	61.54	61.54	61.54	69.23	69.23	69.23	69.23	69.23
Confusion Matrix										
53	62	53	53	53	53	62	53	62	62	62
05	23	14	23	23	23	23	14	23	23	23

Table D.65: GroundZero_Standard_Traditional_highestEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.60	NA	0.60	0.48	0.56	0.63	NA	0.59	0.60	0.60
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	80.00	80.00	100.00	80.00	NA	100.00	100.00	100.00
12.50	25.00	NA	25.00	12.50	12.50	37.50	NA	22.22	25.00	25.00
100.00	100.00	NA	66.67	50.00	100.00	75.00	NA	100.00	100.00	100.00
41.67	45.45	NA	40.00	36.36	41.67	44.44	NA	41.67	45.45	45.45
46.15	53.85	NA	46.15	38.46	46.15	53.85	NA	50.00	53.85	53.85
Confusion Matrix										
17	26	NA	26	17	17	35	NA	17	26	26
05	05	NA	14	14	05	14	NA	05	05	05

D. Appendix IV - Machine learning results

Table D.66: GroundZero_Standard_kFold_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.58	0.62	0.52	0.58	0.56	0.51	0.60	0.58	0.58	0.57
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
64.71	64.71	76.47	58.82	70.59	64.71	52.94	64.71	64.71	64.71	64.71
70.00	75.00	70.00	70.00	65.00	60.00	65.00	75.00	75.00	80.00	75.00
70.00	71.43	77.78	66.67	72.22	66.67	61.90	71.43	71.43	72.73	71.43
64.71	68.75	68.42	62.50	63.16	57.89	56.25	68.75	68.75	73.33	68.75
67.57	70.27	72.97	64.86	67.57	62.16	59.46	70.27	70.27	72.97	70.27
Confusion Matrix										
146	155	146	146	137	128	137	155	155	164	155
611	611	413	710	512	611	89	611	611	611	611

Table D.67: GroundZero_Standard_kFold_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.67	NA	0.67	0.64	0.74	0.69	NA	NA	0.58	0.66
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
64.71	70.59	NA	70.59	88.24	88.24	76.47	NA	NA	58.82	76.47
80.00	90.00	NA	85.00	65.00	85.00	85.00	NA	NA	90.00	90.00
72.73	78.26	NA	77.27	86.67	89.47	80.95	NA	NA	72.00	81.82
73.33	85.71	NA	80.00	68.18	83.33	81.25	NA	NA	83.33	86.67
72.97	81.08	NA	78.38	75.68	86.49	81.08	NA	NA	75.68	83.78
Confusion Matrix										
164	182	NA	173	137	173	173	NA	NA	182	182
611	512	NA	512	215	215	413	NA	NA	710	413

Table D.68: GroundZero_Standard_LOO_PCA_highestEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.65	0.65	0.60	0.62	0.73	0.68	0.59	0.67	0.65	0.67	0.67
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
58.82	58.82	64.71	64.71	76.47	70.59	52.94	64.71	58.82	58.82	64.71
70.00	70.00	55.00	60.00	70.00	65.00	65.00	70.00	70.00	75.00	70.00
66.67	66.67	64.71	66.67	77.78	72.22	61.90	70.00	66.67	68.18	70.00
62.50	62.50	55.00	57.89	68.42	63.16	56.25	64.71	62.50	66.67	64.71
64.86	64.86	59.46	62.16	72.97	67.57	59.46	67.57	64.86	67.57	67.57
Confusion Matrix										
146	146	119	128	146	137	137	146	146	155	146
710	710	611	611	413	512	89	611	710	710	611

Table D.69: GroundZero_Standard_LOO_highestEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.00	0.00	NA	0.00	0.00	0.00	0.00	NA	0.00	0.59	0.67
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
0.00	0.00	NA	0.00	0.00	0.00	0.00	NA	0.00	41.1765	58.82
100.00	100.00	NA	100.00	100.00	100.00	100.00	NA	100.00	75.00	75.00
54.05	54.05	NA	54.05	54.05	54.05	54.05	NA	54.05	60.00	68.18
NaN	NaN	NA	NaN	NaN	NaN	NaN	NA	NaN	58.33	66.67
54.05	54.05	NA	54.05	54.05	54.05	54.05	NA	54.05	59.46	67.57
Confusion Matrix										
200	200	NA	200	200	200	200	NA	200	155	155
170	170	NA	170	170	170	170	NA	170	107	710

For label highestEDSS (0/1-(<5)/($\geq 5)$):
The via pattern recognition study was not performed since the number of patients with highestEDSS ≥ 5 was minimal.

For label first2EDSS $(0 / 1-(<3) /(\geq 3))$:
Final features: EDSS
Table D.70: GroundZero_Standard_Traditional_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.61	0.77	0.61	0.75	0.70	0.72	0.68	0.69	NA	0.79	0.76
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	100.00	66.67	100.00	100.00	100.00	100.00	100.00	NA	100.00	66.67
45.00	65.00	55.00	60.00	55.00	55.00	45.00	45.00	NA	70.00	70.00
90.00	100.00	91.67	100.00	100.00	100.00	100.00	100.00	NA	100.00	93.33
15.38	30.00	18.18	27.27	25.00	25.00	21.43	21.43	NA	33.33	25.00
47.83	69.57	56.52	65.22	60.87	60.87	52.17	52.17	NA	73.91	69.57
Confusion Matrix										
911	137	119	128	119	119	911	911	NA	146	146
12	03	12	03	03	03	03	03	NA	03	12

Table D.71: GroundZero_Standard_Traditional_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.51	0.50	0.51	0.64	0.52	0.52	0.50	0.51	0.51	0.51
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
5.00	0.00	0.00	0.00	40.00	5.00	5.00	0.00	0.00	0.00	0.00
100.00	NaN	NaN	NaN	100.00	100.00	100.00	NaN	NaN	NaN	NaN
13.64	13.04	13.04	13.04	20.00	13.64	13.64	13.04	13.04	13.04	13.04
17.39	13.04	13.04	13.04	47.83	17.39	17.39	13.04	13.04	13.04	13.04
Confusion Matrix										
119	020	020	020	812	119	119	020	020	020	020
03	03	03	03	03	03	03	03	03	03	03

D. Appendix IV - Machine learning results

Table D.72: GroundZero_Standard_kFold_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.60	0.55	0.36	0.46	0.50	0.49	0.45	0.60	0.54	0.58
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
80.00	80.00	70.00	40.00	50.00	60.00	60.00	60.00	80.00	70.00	80.00
88.89	92.59	88.89	96.30	92.59	92.59	88.89	100.00	92.59	85.19	92.59
92.31	92.59	88.89	81.25	83.33	86.21	85.71	87.10	92.59	88.46	92.59
72.73	80.00	70.00	80.00	71.43	75.00	66.67	100.00	80.00	63.64	80.00
86.49	89.19	83.78	81.08	81.08	83.78	81.08	89.19	89.19	81.08	89.19
Confusion Matrix										
243	252	243	261	252	252	243	270	252	234	252
28	28	37	64	55	46	46	46	28	37	28

Table D.73: GroundZero_Standard_kFold_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.60	0.55	0.36	0.46	0.50	0.49	0.45	0.60	0.54	0.58
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
80.00	80.00	70.00	40.00	50.00	60.00	60.00	60.00	80.00	70.00	80.00
88.89	92.59	88.89	96.30	92.59	92.59	88.89	100.00	92.59	85.19	92.59
92.31	92.59	88.89	81.25	83.33	86.21	85.71	87.10	92.59	88.46	92.59
72.73	80.00	70.00	80.00	71.43	75.00	66.67	100.00	80.00	63.64	80.00
86.49	89.19	83.78	81.08	81.08	83.78	81.08	89.19	89.19	81.08	89.19
Confusion Matrix										
243	252	243	261	252	252	243	270	252	234	252
28	28	37	64	55	46	46	46	28	37	28

Table D.74: GroundZero_Standard_LOO_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.42	0.45	0.52	0.46	0.42	0.41	0.39	0.46	0.45	0.50	0.45
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
20.00	20.00	30.00	10.00	10.00	10.00	10.00	10.00	20.00	30.00	20.00
62.96	70.37	74.07	85.19	77.78	74.07	70.37	85.19	70.37	70.37	70.37
68.00	70.37	74.07	71.88	70.00	68.97	67.86	71.88	70.37	73.08	70.37
16.67	20.00	30.00	20.00	14.29	12.50	11.11	20.00	20.00	27.27	20.00
51.35	56.76	62.16	64.86	59.46	56.76	54.05	64.86	56.76	59.46	56.76
Confusion Matrix										
1710	198	207	234	216	207	198	234	198	198	198
82	82	73	91	91	91	91	91	82	73	82

Table D.75: GroundZero_Standard_LOO_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.49	0.50	0.50	0.51	0.49	0.50	0.50	0.49	0.44	0.44
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
30.00	20.00	30.00	30.00	20.00	20.00	30.00	30.00	20.00	20.00	20.00
70.37	77.78	70.37	70.37	81.48	77.78	70.37	70.37	77.78	66.67	66.67
73.08	72.41	73.08	73.08	73.33	72.41	73.08	73.08	72.41	69.23	69.23
27.27	25.00	27.27	27.27	28.57	25.00	27.27	27.27	25.00	18.18	18.18
59.46	62.16	59.46	59.46	64.86	62.16	59.46	59.46	62.16	54.05	54.05
Confusion Matrix										
198	216	198	198	225	216	198	198	216	189	189
73	82	73	73	82	82	73	73	82	82	82

For label first2EDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with first2EDSS ≥ 5 was minimal.

First feature selection process for mediumEDSS:

Table D.76: GroundZero_Feature_Selection_Identification_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	0	1	1	1	1	1	1	0	0	0	
Age of Onset	0	0	0	0	0	0	0	1	0	0	0	
Supratentorial	0	0	1	0	0	0	1	0	0	0	0	
Optic Pathways	0	0	1	0	0	0	0	0	0	0	0	$\mathbf{2}$
Brainstem-Cerebellum	0	0	0	0	0	1	1	0	0	0	0	
Spinal Cord	0	1	1	1	0	1	1	0	1	0	1	$\mathbf{2}$
Progression From Onset	0	0	0	0	0	0	0	0	1	0	0	$\mathbf{7}$
MRI	0	0	0	0	0	0	1	0	0	0	0	1
Evoked Potentials	0	0	0	0	0	1	0	0	0	0	0	
CSF	0	1	1	1	1	1	1	0	1	0	1	
Age at SP Diagnosis	0	1	1	1	1	0	1	1	1	1	1	
Years from Diagnosis to SP	1	1	0	1	1	0	1	0	1	0	1	
Ms Course	0	1	1	1	1	1	1	0	1	0	1	$\mathbf{8}$

Selectd features: Gender, Supratentorial, Brainstem-Cerebellum, Spinal Cord, CSF, Age at SP Diagnosis, Years from Diagnosis to SP, MS Course.

Table D.77: GroundZero_Feature_Selection_Visits_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Relapse Age	0	0	0	0	0	0	1	1	0	0	0	
Routine	0	0	0	1	1	0	1	0	0	0	0	
EDSS	1	1	1	1	1	0	1	1	1	1	1	$\mathbf{2}$

Selected features: Relapse Age, Routine, EDSS.

Table D.78: GroundZero_Feature_Selection_Relapses_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Relapse Age	0	0	0	0	0	0	1	1	0	0	0	
Time since onset	0	0	0	0	1	0	1	0	0	0	0	
CNS Pyramidal Tract	0	1	1	1	1	1	1	1	1	0	1	2
CNS Brain Stem	0	0	0	0	0	0	1	0	0	0	0	
CNS Bowel Bladder	0	0	1	0	0	0	0	0	0	0	0	1
CNS Neuropsycho Functions	0	0	0	0	0	0	0	0	1	0	0	1
CNS Cerebellum	0	0	0	0	0	0	1	0	0	0	0	1
CNS Visual Functions	0	0	0	0	0	1	1	0	0	0	0	
CNS Sensory Functions	0	0	0	0	0	1	0	0	0	0	0	
Hospital	0	1	1	1	1	1	1	0	1	0	1	1
Ambulatory	0	0	1	0	0	0	0	0	0	0	0	
Corticosteroids	0	0	0	0	0	1	0	0	0	0	0	

Selected features: CNS Pyramidal Tract, CNS Visual Functions, Hospital.
For label mediumEDSS $(0 / 1-(<3) /(\geq 3))$:
Final features: Spinal Cord, CNS Pyramidal Tract, Brainstem-Cerebellum, Time since onset.

Table D.79: GroundZero_Standard_Traditional_PCA_mediumEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.65	0.72	0.66	0.74	0.71	0.71	0.69	0.71	0.72	0.72	0.71
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67
61.11	72.22	55.56	77.78	77.78	83.33	77.78	72.22	72.22	72.22	72.22
91.67	92.86	90.91	93.33	93.33	93.75	93.33	92.86	92.86	92.86	92.86
22.22	28.57	20.00	33.33	33.33	40.00	33.33	28.57	28.57	28.57	28.57
61.90	71.43	57.14	76.19	76.19	80.95	76.19	71.43	71.43	71.43	71.43
Confusion Matrix										
117	135	108	144	144	153	144	135	135	135	135
12	12		12	12	12	12	12	12		12

Table D.80: GroundZero_Standard_Traditional_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.62	0.60	NA	0.65	0.63	0.61	0.63	NA	NA	0.57	0.56
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	100.00	NA	66.67	33.33	66.67	66.67	NA	NA	100.00	100.00
72.22	27.78	NA	61.11	77.78	72.22	66.67	NA	NA	27.78	16.67
92.86	100.00	NA	91.67	87.50	92.86	92.31	NA	NA	100.00	100.00
28.57	18.75	NA	22.22	20.00	28.57	25.00	NA	NA	18.75	16.67
71.43	38.10	NA	61.90	71.43	71.43	66.67	NA	NA	38.10	28.57
Confusion Matrix										
135	513	NA	117	144	135	126	NA	NA	513	315
12	03	NA	12	21	12	12	NA	NA	03	03

Table D.81: GroundZero_Standard_kFold_PCA_mediumEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.55	0.44	0.35	0.56	0.42	0.43	0.55	NA	0.55	0.55
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
63.64	63.64	45.45	36.36	63.64	45.45	45.45	63.64	NA	63.64	63.64
84.62	92.31	88.46	96.15	88.46	96.15	92.31	84.62	NA	92.31	88.46
84.62	85.71	79.31	78.13	85.19	80.65	80.00	84.62	NA	85.71	85.19
63.64	77.78	62.50	80.00	70.00	83.33	71.43	63.64	NA	77.78	70.00
78.38	83.78	75.68	78.38	81.08	81.08	78.38	78.38	NA	83.78	81.08
Confusion Matrix										
224	242	233	251	233	251	242	224	NA	242	233
47	47	65	74	47	65	65	47	NA	47	47

Table D.82: GroundZero_Standard_kFold_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.44	0.47	NA	0.43	0.59	0.46	0.33	NA	NA	0.53	0.56
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
45.45	45.45	NA	45.45	81.82	54.55	27.27	NA	NA	63.64	72.73
76.92	88.46	NA	92.31	65.38	65.38	92.31	NA	NA	76.92	84.62
76.92	79.31	NA	80.00	89.47	77.27	75.00	NA	NA	83.33	88.00
45.45	62.50	NA	71.43	50.00	40.00	60.00	NA	NA	53.85	66.67
67.57	75.68	NA	78.38	70.27	62.16	72.97	NA	NA	72.97	81.08
Confusion Matrix										
206	233	NA	242	179	179	242	NA	NA	206	224
65	65	NA	65	29	56	83	NA	NA	47	38

Table D.83: GroundZero_Standard_LOO_PCA_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.68	0.67	0.71	0.79	0.64	0.72	0.72	0.68	0.67	0.52	0.50
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
54.55	45.45	45.45	36.36	45.45	36.36	36.36	54.55	45.45	27.27	27.27
80.77	84.62	88.46	96.15	80.77	92.31	92.31	80.77	84.62	76.92	73.08
80.77	78.57	79.31	78.13	77.78	77.42	77.42	80.77	78.57	71.43	70.37
54.55	55.56	62.50	80.00	50.00	66.67	66.67	54.55	55.56	33.33	30.00
72.97	72.97	75.68	78.38	70.27	75.68	75.68	72.97	72.97	62.16	59.46
Confusion Matrix										
215	224	233	251	215	242	242	215	224	206	197
56	65	65	74	65	74	74	56	65	83	83

Table D.84: GroundZero_Standard_LOO_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.60	0.52	0.58	0.43	0.51	0.62	0.57	0.60	0.49	0.47
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
18.18	36.36	27.27	27.27	36.36	45.45	27.27	36.36	36.36	36.36	36.36
69.23	80.77	76.92	84.62	46.15	57.69	88.46	76.92	80.77	61.54	57.69
66.67	75.00	71.43	73.33	63.16	71.43	74.19	74.07	75.00	69.57	68.18
20.00	44.44	33.33	42.86	22.22	31.25	50.00	40.00	44.44	28.57	26.67
54.05	67.57	62.16	67.57	43.24	54.05	70.27	64.86	67.57	54.05	51.35
Confusion Matrix										
188	215	206	224	1214	1511	233	206	215	1610	1511
92	74	83	83	74	65	83	74	74	74	74

For label mediumEDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with medium $E D S S \geq 5$ was minimal.

D.1.2.2 Investigation procedure

For label msCourse (0/1-RR/SP):
Features before selection: Age of onset, Relapse age, CNS pyramidal tract, CNS sensory functions;

Excluded features: EDSS, Relapse Age, Time since onset, Hospital.
Final features: Age of onset, Relapse age.

Table D.85: GroundZero_Investigation_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.60	0.55	0.53	0.54	0.54	0.53	0.55	0.60	0.59	0.60
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	66.67	33.33	33.33	33.33	33.33	33.33	33.33	66.67	66.67	66.67
50.00	66.67	61.11	72.22	72.22	83.33	88.89	66.67	66.67	61.11	61.11
90.00	92.31	84.62	86.67	86.67	88.24	88.89	85.71	92.31	91.67	91.67
18.18	25.00	12.50	16.67	16.67	25.00	33.33	14.29	25.00	22.22	22.22
52.38	66.67	57.14	66.67	66.67	76.19	80.95	61.90	66.67	61.90	61.90
Confusion Matrix										
99	126	117	135	135	153	162	126	126	117	117
12	12	12	21	21	21	21	21	12	12	12

Table D.86: GroundZero_Investigation_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.64	0.50	0.51	0.61	0.58	0.60	0.59	0.51	0.50	0.50	0.50
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	66.67	66.67	66.67	100.00	100.00	100.00	100.00
33.33	0.00	0.00	38.89	33.33	44.44	38.89	0.00	0.00	0.00	0.00
100.00	NaN	NaN	100.00	85.71	88.89	87.50	NaN	NaN	NaN	NaN
20.00	14.29	14.29	21.43	14.29	16.67	15.38	14.29	14.29	14.29	14.29
42.86	14.29	14.29	47.62	38.10	47.62	42.86	14.29	14.29	14.29	14.29
Confusion Matrix										
612	018	018	711	612	810	711	018	018	018	018
03	03	03	03	12	12	12	03	03	03	03

Table D.87: GroundZero_Investigation_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.35	0.37	0.22	0.39	0.21	0.06	0.36	0.34	0.35	0.51
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
45.45	27.27	36.36	18.18	36.36	18.18	0.00	36.36	27.27	36.36	63.64
73.08	84.62	84.62	92.31	73.08	88.46	92.31	88.46	84.62	84.62	61.54
76.00	73.33	75.86	72.73	73.08	71.88	68.57	76.67	73.33	75.86	80.00
41.67	42.86	50.00	50.00	36.36	40.00	0.00	57.14	42.86	50.00	41.18
64.86	67.57	70.27	70.27	62.16	67.57	64.86	72.97	67.57	70.27	62.16
Confusion Matrix										
197	224	224	242	197	233	242	233	224	224	1610
65	83	74	92	74	92	110	74	83	74	47

Table D.88: GroundZero_Investigation_kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.43	0.42	0.31	0.48	0.38	0.40	0.52	NA	0.57	0.53
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
63.64	45.45	45.45	27.27	54.55	36.36	45.45	54.55	NA	72.73	63.64
80.77	96.15	96.15	92.31	80.77	92.31	92.31	76.92	NA	65.38	84.62
84.00	80.65	80.65	75.00	80.77	77.42	80.00	80.00	NA	85.00	84.62
58.33	83.33	83.33	60.00	54.55	66.67	71.43	50.00	NA	47.06	63.64
75.68	81.08	81.08	72.97	72.97	75.68	78.38	70.27	NA	67.57	78.38
Confusion Matrix										
215	251	251	242	215	242	242	206	NA	179	224
47	65	65	83	56	74	65	56	NA	38	47

Table D.89: GroundZero_Investigation_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.49	0.47	0.61	0.48	0.44	0.34	0.42	0.49	0.58	0.59
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
27.27	18.18	18.18	18.18	27.27	9.09	0.00	9.09	18.18	27.27	63.64
65.38	80.77	76.92	92.31	69.23	84.62	92.31	80.77	80.77	84.62	57.69
68.00	70.00	68.97	72.73	69.23	68.75	68.57	67.74	70.00	73.33	78.95
25.00	28.57	25.00	50.00	27.27	20.00	0.00	16.67	28.57	42.86	38.89
54.05	62.16	59.46	70.27	56.76	62.16	64.86	59.46	62.16	67.57	59.46
Confusion Matrix										
179	215	206	242	188	224	242	215	215	224	1511
83	92	92	92	83	101	110	101	92	83	47

Table D.90: GroundZero_Investigation_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.38	0.42	0.42	0.33	0.35	0.42	0.40	0.47	0.42	0.39	0.42
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
18.18	9.09	9.09	0.00	9.09	9.09	9.09	27.27	9.09	27.27	18.18
53.85	80.77	80.77	80.77	61.54	80.77	76.92	65.38	80.77	46.15	65.38
60.87	67.74	67.74	65.63	61.54	67.74	66.67	68.00	67.74	60.00	65.38
14.29	16.67	16.67	0.00	9.09	16.67	14.29	25.00	16.67	17.65	18.18
43.24	59.46	59.46	56.76	45.95	59.46	56.76	54.05	59.46	40.54	51.35
Confusion Matrix										
1412	215	215	215	1610	215	206	179	215	1214	179
92	101	101	110	101	101	101	83	101	83	92

For label highestEDSS (0/1-(<3)/($\geq 3)$):
Features before selection: Optic Pathways, Spinal Cord, Time since onset, CNS Brain Stem, Gender, Age of Onset, Relapse Age.

Excluded features: MS Course, EDSS, Relapse Age.
Final Features: Time since onset, Relapse age.

Table D.91: GroundZero_Investigation_Traditional_PCA_highestEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.68	0.63	0.50	0.42	0.54	0.68	0.58	0.68	0.66	0.66
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
60.00	80.00	80.00	60.00	80.00	80.00	80.00	100.00	80.00	60.00	60.00
62.50	62.50	50.00	37.50	12.50	37.50	50.00	25.00	62.50	62.50	62.50
71.43	83.33	80.00	60.00	50.00	75.00	80.00	100.00	83.33	71.43	71.43
50.00	57.14	50.00	37.50	36.36	44.44	50.00	45.45	57.14	50.00	50.00
61.54	69.23	61.54	46.15	38.46	53.85	61.54	53.85	69.23	61.54	61.54
Confusion Matrix										
53	53	44	35	17	35	44	26	53	53	53
23	14	14	23	14	14	14	05	14	23	23

Table D.92: GroundZero_Investigation_Traditional_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.50	0.54	0.52	0.52	0.57	0.56	0.55	0.50	0.50	0.50
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
60.00	100.00	80.00	60.00	40.00	40.00	50.00	80.00	100.00	100.00	100.00
37.50	0.00	25.00	37.50	75.00	62.50	62.50	25.00	0.00	0.00	0.00
60.00	NaN	66.67	60.00	66.67	62.50	62.50	66.67	NaN	NaN	NaN
37.50	38.46	40.00	37.50	50.00	40.00	50.00	40.00	38.46	38.46	38.46
46.15	38.46	46.15	46.15	61.54	53.85	57.14	46.15	38.46	38.46	38.46
Confusion Matrix										
35	08	26	35	62	53	53	26	08	08	08
23	05	14	23	32	32	33	14	05	05	05

Table D.93: GroundZero_Investigation_kFold_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.55	0.47	0.59	0.60	0.52	0.61	0.27	0.55	0.61	0.56
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
70.59	64.71	88.24	76.47	64.71	64.71	82.35	100.00	64.71	76.47	76.47
75.00	60.00	40.00	65.00	80.00	60.00	65.00	20.00	60.00	65.00	60.00
75.00	66.67	80.00	76.47	72.73	66.67	81.25	100.00	66.67	76.47	75.00
70.59	57.89	55.56	65.00	73.33	57.89	66.67	51.52	57.89	65.00	61.90
72.97	62.16	62.16	70.27	72.97	62.16	72.97	56.76	62.16	70.27	67.57
Confusion Matrix										
155	128	812	137	164	128	137	416	128	137	128
512	611	215	413	611	611	314	017	611	413	413

D. Appendix IV - Machine learning results

Table D.94: GroundZero_Investigation_kFold_highestEDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.49	0.45	0.43	0.44	0.56	0.54	0.50	NA	0.48	0.50
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
64.71	47.06	41.18	41.18	47.06	52.94	52.94	41.18	NA	47.06	52.94
70.00	65.00	70.00	75.00	55.00	75.00	75.00	80.00	NA	85.00	65.00
70.00	59.09	58.33	60.00	55.00	65.22	65.22	61.54	NA	65.38	61.90
64.71	53.33	53.85	58.33	47.06	64.29	64.29	63.64	NA	72.73	56.25
67.57	56.76	56.76	59.46	51.35	64.86	64.86	62.16	NA	67.57	59.46
Confusion Matrix										
146	137	146	155	119	155	155	164	NA	173	137
611	98	107	107	98	89	89	107	NA	98	89

Table D.95: GroundZero_Investigation_LOO_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.54	0.44	0.52	0.39	0.46	0.44	0.46	0.54	0.46	0.44
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
41.18	52.94	58.82	64.71	29.41	47.06	52.94	47.06	52.94	52.94	52.94
50.00	55.00	30.00	40.00	50.00	45.00	35.00	45.00	55.00	40.00	35.00
50.00	57.89	46.15	57.14	45.45	50.00	46.67	50.00	57.89	50.00	46.67
41.18	50.00	41.67	47.83	33.33	42.11	40.91	42.11	50.00	42.86	40.91
45.95	54.05	43.24	51.35	40.54	45.95	43.24	45.95	54.05	45.95	43.24
Confusion Matrix										
1010	119	614	812	1010	911	713	911	119	812	713
	89	710	611	125	98	89	98	89	89	89

Table D.96: GroundZero_Investigation_LOO_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.62	0.56	0.56	0.51	0.51	0.65	0.65	0.62	0.47	0.56
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
58.82	52.94	41.18	41.18	47.06	41.18	52.94	47.06	52.94	29.41	52.94
60.00	70.00	70.00	70.00	55.00	60.00	75.00	80.00	70.00	65.00	60.00
63.16	63.64	58.33	58.33	55.00	54.55	65.22	64.00	63.64	52.00	60.00
55.56	60.00	53.85	53.85	47.06	46.67	64.29	66.67	60.00	41.67	52.94
59.46	62.16	56.76	56.76	51.35	51.35	64.86	64.86	62.16	48.65	56.76
Confusion Matrix										
128	146	146	146	119	128	155	164	146	137	128
710	89	107	107	98	107	89	98	89	125	89

For label highestEDSS (0/1-(<5)/($\geq 5)$):
The via pattern recognition study was not performed since the number of patients with highestEDSS ≥ 5 was minimal.

For label first2EDSS $(0 / 1-(<3) /(\geq 3))$:

Features before selection: Gender, Time since onset, CNS Brain Stem, Supratentorial, Optic Pathways, Brainstem-Cerebellum, CNS Sensory Functions.

Excluded features: MS Course, EDSS.
Final features: Gender, Time since onset, CNS Brain Stem, Supratentorial, Optic Pathways, CNS Sensory Functions.

Table D.97: GroundZero_Investigation_Traditional_PCA_first2EDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.61	NA	0.56	0.51	0.51	0.53	0.59	NA	0.63	0.62
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	66.67	NA	66.67	66.67	66.67	100.00	100.00	NA	66.67	66.67
45.00	55.00	NA	40.00	35.00	25.00	15.00	20.00	NA	55.00	55.00
90.00	91.67	NA	88.89	87.50	83.33	100.00	100.00	NA	91.67	91.67
15.38	18.18	NA	14.29	13.33	11.76	15.00	15.79	NA	18.18	18.18
47.83	56.52	NA	43.48	39.13	30.43	26.09	30.43	NA	56.52	56.52
Confusion Matrix										
911	119	NA	812	713	515	317	416	NA	119	119
12	12	NA	12	12	12	03	03	NA	12	12

Table D.98: GroundZero_Investigation_Traditional_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	NA	NA	0.53	0.52	0.52	0.51	NA	NA	0.52	0.56
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
66.67	NA	NA	33.33	33.33	33.33	33.33	NA	NA	33.33	33.33
50.00	NA	NA	75.00	80.00	70.00	65.00	NA	NA	70.00	85.00
90.91	NA	NA	88.24	88.89	87.50	86.67	NA	NA	87.50	89.47
16.67	NA	NA	16.67	20.00	14.29	12.50	NA	NA	14.29	25.00
52.17	NA	NA	69.57	73.91	65.22	60.87	NA	NA	65.22	78.26
Confusion Matrix										
1010	NA	NA	155	164	146	137	NA	NA	146	173
12	NA	NA	21	21	21	21	NA	NA	21	21

Table D.99: GroundZero_Investigation_kFold_PCA first2EDSS<3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.38	NA	0.08	0.46	0.22	0.53	0.55	0.36	0.54	0.52
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
50.00	40.00	NA	0.00	50.00	10.00	60.00	60.00	40.00	70.00	80.00
77.78	88.89	NA	92.59	70.37	77.78	81.48	77.78	88.89	66.67	66.67
80.77	80.00	NA	71.43	79.17	70.00	84.62	84.00	80.00	85.71	90.00
45.45	57.14	NA	0.00	38.46	14.29	54.55	50.00	57.14	43.75	47.06
70.27	75.68	NA	67.57	64.86	59.46	75.68	72.97	75.68	67.57	70.27
Confusion Matrix										
216	243	NA	252	198	216	225	216	243	189	189
55	64	NA	100	55	91	46	46	64	37	28

D. Appendix IV - Machine learning results

Table D.100: GroundZero_Investigation_kFold_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.43	NA	0.29	0.49	0.44	0.50	NA	0.39	0.52	0.53
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
40.00	50.00	NA	30.00	60.00	50.00	60.00	NA	40.00	70.00	70.00
74.07	85.19	NA	92.59	62.96	59.26	77.78	NA	85.19	62.96	59.26
76.92	82.14	NA	78.13	80.95	76.19	84.00	NA	79.31	85.00	84.21
36.36	55.56	NA	60.00	37.50	31.25	50.00	NA	50.00	41.18	38.89
64.86	75.68	NA	75.68	62.16	56.76	72.97	NA	72.97	64.86	62.16
Confusion Matrix										
207	234	NA	252	1710	1611	216	NA	234	1710	1611
64	55	NA	73	46	55	46	NA	64	37	37

Table D.101: GroundZero_Investigation_LOO_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.60	NA	0.62	0.59	0.64	0.63	0.63	0.60	0.43	0.43
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
30.00	30.00	NA	10.00	50.00	30.00	50.00	60.00	30.00	30.00	30.00
74.07	85.19	NA	96.30	70.37	88.89	77.78	70.37	85.19	51.85	51.85
74.07	76.67	NA	74.29	79.17	77.42	80.77	82.61	76.67	66.67	66.67
30.00	42.86	NA	50.00	38.46	50.00	45.45	42.86	42.86	18.75	18.75
62.16	70.27	NA	72.97	64.86	72.97	70.27	67.57	70.27	45.95	45.95
Confusion Matrix										
207	234	NA	261	198	243	216	198	234	1413	1413
73	73	NA	91	55	73	55	46	73	73	73

Table D.102: GroundZero_Investigation_LOO_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.39	NA	0.46	0.54	0.48	0.49	NA	0.34	0.52	0.47
Stats (Specificity, Sensibility, PPV, NPV, Accuracy) \%										
40.00	10.00	NA	10.00	50.00	40.00	30.00	NA	0.00	50.00	40.00
59.26	70.37	NA	85.19	59.26	55.56	66.67	NA	77.78	55.56	51.85
72.73	67.86	NA	71.88	76.19	71.43	72.00	NA	67.74	75.00	70.00
26.67	11.11	NA	20.00	31.25	25.00	25.00	NA	0.00	29.41	23.53
54.05	54.05	NA	64.86	56.76	51.35	56.76	NA	56.76	54.05	48.65
Confusion Matrix										
1611	198	NA	234	1611	1512	189	NA	216	1512	1413
64	91	NA	91	55	64	73	NA	100	55	64

For label first2EDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with first2EDSS ≥ 5 was minimal.

For label mediumEDSS $(0 / 1-(<3) /(\geq 3))$:

Features before selection: Gender, Spinal Cord, CNS Pyramidal Tract, Supratentorial, Brainstem-Cerebellum, CSF, Relapse Age, Routine, Relapse Age, Time since onset, CNS Visual Functions.

Excluded features: MS Course.
Final features: Spinal Cord, CNS Pyramidal Tract, Brainstem-Cerebellum, Time since onset.

Table D.103: GroundZero_Investigation_Traditional_PCA_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.68	0.64	0.66	0.63	0.67	0.66	0.66	0.68	0.68	0.69
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67	66.67
61.11	61.11	55.56	66.67	61.11	66.67	66.67	61.11	61.11	61.11	61.11
91.67	91.67	90.91	92.31	91.67	92.31	92.31	91.67	91.67	91.67	91.67
22.22	22.22	20.00	25.00	22.22	25.00	25.00	22.22	22.22	22.22	22.22
61.90	61.90	57.14	66.67	61.90	66.67	66.67	61.90	61.90	61.90	61.90
Confusion Matrix										
117	117	108	126	117	126	126	117	117	117	117
12	12	12	12	12	12	12	12	12	12	12

Table D.104: GroundZero_Investigation_Traditional_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.58	NA	0.65	0.62	0.60	0.62	NA	0.50	0.56	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	100.00	NA	66.67	33.33	33.33	66.67	NA	100.00	100.00	100.00
66.67	27.78	NA	61.11	77.78	72.22	72.22	NA	11.11	22.22	16.67
92.31	100.00	NA	91.67	87.50	86.67	92.86	NA	100.00	100.00	100.00
25.00	18.75	NA	22.22	20.00	16.67	28.57	NA	15.79	17.65	16.67
66.67	38.10	NA	61.90	71.43	66.67	71.43	NA	23.81	33.33	28.57
Confusion Matrix										
126	513	NA	117	144	135	135	NA	216	414	315
12	03	NA	12	21	21	12	NA	03	03	03

D. Appendix IV - Machine learning results

Table D.105: GroundZero_Investigation_kFold_PCA_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.49	0.47	0.26	0.45	0.44	0.46	0.46	0.49	0.52	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
54.55	54.55	45.45	27.27	45.45	45.45	45.45	45.45	54.55	63.64	63.64
73.08	88.46	73.08	96.15	84.62	88.46	80.77	92.31	88.46	76.92	73.08
79.17	82.14	76.00	75.76	78.57	79.31	77.78	80.00	82.14	83.33	82.61
46.15	66.67	41.67	75.00	55.56	62.50	50.00	71.43	66.67	53.85	50.00
67.57	78.38	64.86	75.68	72.97	75.68	70.27	78.38	78.38	72.97	70.27
Confusion Matrix										
197	233	197	251	224	233	215	242	233	206	197
56	56	65	83	65	65	65	65	56	47	47

Table D.106: GroundZero_Investigation_kFold_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.44	0.47	NA	0.44	0.60	0.48	0.33	NA	NA	0.52	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
45.45	54.55	NA	45.45	81.82	54.55	27.27	NA	NA	66.67	72.73
76.92	88.46	NA	92.31	65.38	65.38	92.31	NA	NA	76.92	84.62
76.92	82.14	NA	80.00	89.47	77.27	75.00	NA	NA	83.33	88.00
45.45	66.67	NA	71.43	50.00	40.00	60.00	NA	NA	57.14	66.67
67.57	78.38	NA	78.38	70.27	62.16	72.97	NA	NA	73.68	81.08
Confusion Matrix										
206	233	NA	242	179	179	242	NA	NA	206	224
65	56	NA	65	29	56	83	NA	NA	48	38

Table D.107: GroundZero_Investigation_LOO_PCA_mediumEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.55	0.49	0.61	0.52	0.55	0.50	0.55	0.55	0.40	0.49
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
36.36	27.27	36.36	18.18	27.27	27.27	27.27	27.27	27.27	18.18	36.36
57.69	80.77	61.54	92.31	76.92	80.77	73.08	80.77	80.77	61.54	61.54
68.18	72.41	69.57	72.73	71.43	72.41	70.37	72.41	72.41	64.00	69.57
26.67	37.50	28.57	50.00	33.33	37.50	30.00	37.50	37.50	16.67	28.57
51.35	64.86	54.05	70.27	62.16	64.86	59.46	64.86	64.86	48.65	54.05
Confusion Matrix										
1511	215	1610	242	206	215	197	215	215	1610	1610
74	83	74	92	83	83	83	83	83	92	74

Table D.108: GroundZero_Investigation_LOO_mediumEDSS < 3

Classifier										Mahalanobis
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	
AUC										
0.50	0.60	0.60	0.58	0.54	0.57	0.62	0.57	0.60	0.61	0.59
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
27.27	36.36	36.36	27.27	54.55	54.55	27.27	36.36	36.36	54.55	54.55
73.08	80.77	80.77	84.62	53.85	61.54	88.46	76.92	80.77	69.23	65.38
70.37	75.00	75.00	73.33	73.68	76.19	74.19	74.07	75.00	78.26	77.27
30.00	44.44	44.44	42.86	33.33	37.50	50.00	40.00	44.44	42.86	40.00
59.46	67.57	67.57	67.57	54.05	59.46	70.27	64.86	67.57	64.86	62.16
Confusion Matrix										
197	215	215	224	1412	1610	233	206	215	188	179
83	74	74	83	56	56	83	74	74	56	56

For label mediumEDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with mediumEDSS ≥ 5 was minimal.

D.1.3 Momentaneous Set

D.1.3.1 Standard procedure

For label msCourse (0/1-RR/SP):
Final features: Age Visit, Last EDSS, Last BrainStem, Last Duration.

Table D.109: Momentaneous_Standard_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.66	0.73	0.69	0.69	0.63	0.65	0.66	0.71	0.73	0.70	0.72
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
71.43	85.71	85.71	85.71	71.43	85.71	85.71	85.71	85.71	71.43	85.71
56.82	61.36	54.55	50.00	50.00	50.00	47.73	52.27	61.36	63.64	61.36
92.59	96.43	96.00	95.65	91.67	95.65	95.45	95.83	96.43	93.33	96.43
20.83	26.09	23.08	21.43	18.52	21.43	20.69	22.22	26.09	23.81	26.09
58.82	64.71	58.82	54.90	52.94	54.90	52.94	56.86	64.71	64.71	64.71
Confusion Matrix										
2519	2717	2420	2222	2222	2222	2123	2321	2717	2816	2717
25	16	16	16	25	16	16	16	16	25	16

D. Appendix IV - Machine learning results

Table D.110: Momentaneous_Standard_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.53	NA	0.51	0.53	0.50	0.50	NA	0.53	0.51	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	100.00	100.00	100.00	NA	100.00	100.00	100.00
6.82	6.82	NA	2.27	6.82	0.00	0.00	NA	6.82	2.27	6.82
100.00	100.00	NA	100.00	100.00	NaN	NaN	NA	100.00	100.00	100.00
14.58	14.58	NA	14.00	14.58	13.73	13.73	NA	14.58	14.00	14.58
19.61	19.61	NA	15.69	19.61	13.73	13.73	NA	19.61	15.69	19.61
Confusion Matrix										
341	341	NA	143	341	044	044	NA	341	143	341
07	07	NA	07	07	07	07	NA	07	07	07

Table D.111: Momentaneous_Standard_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.69	0.61	0.64	0.55	0.61	0.69	0.66	0.62	0.61	0.63	0.68
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
60.00	44.00	57.69	32.00	52.00	56.00	52.00	48.00	40.00	64.00	76.00
82.26	83.87	74.19	93.55	72.58	83.87	82.26	82.26	85.48	70.97	69.35
83.61	78.79	80.70	77.33	78.95	82.54	80.95	79.69	77.94	83.02	87.76
57.69	52.38	48.39	66.67	43.33	58.33	54.17	52.17	52.63	47.06	50.00
75.86	72.41	69.32	75.86	66.67	75.86	73.56	72.41	72.41	68.97	71.26
Confusion Matrix										
5111	5210	4616	584	4517	5210	5111	5111	539	4418	4319
1015	1411	1115	178	1213	1114	1213	1312	1510	916	619

Table D.112: Momentaneous_Standard_kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.73	0.77	NA	0.85	0.81	0.83	0.84	NA	0.77	0.78	0.81
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
64.00	72.00	NA	80.00	76.00	84.00	84.00	NA	72.00	84.00	84.00
88.71	90.32	NA	93.65	91.94	90.32	91.94	NA	90.32	82.26	87.10
85.94	88.89	NA	92.19	90.48	93.33	93.44	NA	88.89	92.73	93.10
69.57	75.00	NA	83.33	79.17	77.78	80.77	NA	75.00	65.63	72.41
81.61	85.06	NA	89.77	87.36	88.51	89.66	NA	85.06	82.76	86.21
Confusion Matrix										
557	566	NA	594	575	566	575	NA	566	5111	548
916	718	NA	520	619	421	421	NA	718	421	421

Table D.113: Momentaneous_Standard_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.51	0.59	0.60	0.51	0.49	0.52	0.48	0.49	0.51	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	24.00	48.00	20.00	36.00	28.00	28.00	24.00	20.00	40.00	48.00
66.13	77.42	70.97	90.32	66.13	70.97	75.81	72.58	79.03	61.29	56.45
67.21	71.64	77.19	73.68	71.93	70.97	72.31	70.31	71.01	71.70	72.92
19.23	30.00	40.00	45.45	30.00	28.00	31.82	26.09	27.78	29.41	30.77
52.87	62.07	64.37	70.11	57.47	58.62	62.07	58.62	62.07	55.17	54.02
Confusion Matrix										
4121	4814	4418	566	4121	4418	4715	4517	4913	3824	3527
	196	1312	205	169	187	187	196	205	1510	1312

Table D.114: Momentaneous_Standard_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.47	NA	0.49	0.53	0.53	0.52	NA	0.47	0.43	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
24.00	24.00	NA	28.00	32.00	36.00	32.00	NA	24.00	24.00	24.00
67.74	70.97	NA	70.97	74.19	70.97	72.58	NA	70.97	61.29	62.90
68.85	69.84	NA	70.97	73.02	73.33	72.58	NA	69.84	66.67	67.24
23.08	25.00	NA	28.00	33.33	33.33	32.00	NA	25.00	20.00	20.69
55.17	57.47	NA	58.62	62.07	60.92	60.92	NA	57.47	50.57	51.72
Confusion Matrix										
4220	4418	NA	4418	4616	4418	4517	NA	4418	3824	3923
196		NA	187	178	169	178		196	196	196

For label currentEDSS $(0 / 1-(<3) /(\geq 3))$:
Final features: Spinal Cord, MS Course, Age Visit, Years since onset, Last cerebrellum.

Table D.115: Momentaneous_Standard_Traditional_PCA_currentEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.75	0.78	0.77	0.74	0.67	0.65	0.65	0.75	0.78	0.77	0.76
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	70.00	80.00	70.00	80.00	80.00	80.00	80.00	70.00	70.00	70.00
74.07	81.48	77.78	77.78	55.56	51.85	51.85	66.67	81.48	85.19	81.48
90.91	88.00	91.30	87.50	88.24	87.50	87.50	90.00	88.00	88.46	88.00
53.33	58.33	57.14	53.85	40.00	38.10	38.10	47.06	58.33	63.64	58.33
75.68	75.68	78.38	75.68	62.16	59.46	59.46	70.27	78.38	81.08	78.38
Confusion Matrix										
207	207	216	216	1512	1413	1413	189	225	234	225
28	28	28	37	28	28	28	28	37	37	37

D. Appendix IV - Machine learning results

Table D.116: Momentaneous_Standard_Traditional_currentEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.64	0.53	NA	0.56	0.71	0.70	0.71	NA	0.53	0.50	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	100.00	NA	100.00	60.00	80.00	90.00	NA	100.00	100.00	100.00
48.15	7.41	NA	14.81	77.78	62.96	55.56	NA	7.41	0.00	7.41
86.67	100.00	NA	100.00	84.00	89.47	93.75	NA	100.00	NaN	100.00
36.36	28.57	NA	30.30	50.00	44.44	42.86	NA	28.57	27.03	28.57
56.76	32.43	NA	37.84	72.97	67.57	64.86	NA	32.43	27.03	32.43
Confusion Matrix										
1314	225	NA	423	216	1710	1512	NA	225	027	225
28	010	NA	010	46	28	19	NA	010	010	010

Table D.117: Momentaneous_Standard_kFold_PCA_currentEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.80	0.79	0.80	0.76	0.80	0.77	0.82	0.75	0.79	0.78	0.76
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
77.14	62.86	85.71	58.33	77.14	74.29	77.14	65.71	62.86	65.71	65.71
84.62	92.31	76.92	90.38	84.62	79.25	86.54	84.62	92.31	88.46	84.62
84.62	78.69	88.89	75.81	84.62	82.35	84.91	78.57	78.69	79.31	78.57
77.14	84.62	71.43	80.77	77.14	70.27	79.41	74.19	84.62	79.31	74.19
81.61	80.46	80.46	77.27	81.61	77.27	82.76	77.01	80.46	79.31	77.01
Confusion Matrix										
448	484	4012	475	448	4211	457	448	484	466	448
827	1322	530	1521	827	926	827	1223	1322	1223	1223

Table D.118: Momentaneous_Standard_kFold_currentEDSS < 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.72	0.77	0.75	0.78	0.81	0.78	0.75	0.74	0.77	0.74	0.73
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
71.43	62.86	65.71	71.43	74.29	68.57	65.71	62.86	62.86	62.86	62.86
75.00	90.38	82.69	86.54	88.46	88.46	86.54	84.62	90.38	86.54	84.62
79.59	78.33	78.18	81.82	83.64	80.70	78.95	77.19	78.33	77.59	77.19
65.79	81.48	71.88	78.13	81.25	80.00	76.67	73.33	81.48	75.86	73.33
73.56	79.31	75.86	80.46	82.76	80.46	78.16	75.86	79.31	77.01	75.86
Confusion Matrix										
3913	475	439	457	466	466	457	448	475	457	448
1025	1322	1223	1025	926	1124	1223	1322	1322	1322	1322

Table D.119: Momentaneous_Standard_LOO_PCA_currentEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.53	0.50	0.53	0.55	0.54	0.56	0.46	0.53	0.44	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
28.57	20.00	40.00	20.00	28.57	25.71	25.71	28.57	20.00	28.57	34.29
53.85	65.38	40.38	65.38	51.92	48.08	51.92	59.62	65.38	59.62	65.38
52.83	54.84	50.00	54.84	51.92	49.02	50.94	55.36	54.84	55.36	59.65
29.41	28.00	31.11	28.00	28.57	25.00	26.47	32.26	28.00	32.26	40.00
43.68	47.13	40.23	47.13	42.53	39.08	41.38	47.13	47.13	47.13	52.87
Confusion Matrix										
2824	3418	2131	3418	2725	2527	2725	3121	3418	3121	3418
2510	287	2114	287	2510	269	269	2510	287	2510	2312

Table D.120: Momentaneous_Standard_LOO_currentEDSS < 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.37	0.38	0.40	0.40	0.41	0.42	0.45	0.40	0.38	0.43	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.43	17.14	25.71	25.71	25.71	25.71	28.57	22.86	17.14	25.71	31.43
42.31	61.54	55.77	53.85	57.69	59.62	61.54	57.69	61.54	61.54	63.46
47.83	52.46	52.73	51.85	53.57	54.39	56.14	52.63	52.46	55.17	57.89
26.83	23.08	28.13	27.27	29.03	30.00	33.33	26.67	23.08	31.03	36.67
37.93	43.68	43.68	42.53	44.83	45.98	48.28	43.68	43.68	47.13	50.57
Confusion Matrix										
2230	3220	2923	2824	3022	3121	3220	3022	3220	3220	3319
2411	296	269	269	269	269	2510	278	296	269	2411

For label currentEDSS $(0 / 1-(<5) /(\geq 5))$:
Final features: Spinal Cord, MS Course, Age Visit, Years since onset, Last Sensory.

Table D.121: Momentaneous_Standard_Traditional_PCA_currentEDSS < 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.65	0.72	NA	0.64	0.60	0.60	0.61	0.67	NA	0.71	0.71
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	80.00	NA	60.00	80.00	80.00	80.00	80.00	NA	80.00	80.00
51.67	65.00	NA	61.67	40.00	38.33	41.67	48.33	NA	66.67	65.00
96.88	97.50	NA	94.87	96.00	95.83	96.15	96.67	NA	97.56	97.50
12.12	16.00	NA	11.54	10.00	9.76	10.26	11.43	NA	16.67	16.00
53.85	66.15	NA	61.54	43.08	41.54	44.62	50.77	NA	67.69	66.15
Confusion Matrix										
3129	3921	NA	3723	2436	2337	2535	2931	NA	4020	3921
14	14	NA	23	14	14	14	14	NA	14	14

D. Appendix IV - Machine learning results

Table D.122: Momentaneous_Standard_Traditional_currentEDSS < 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.60	NA	0.57	0.60	0.61	0.67	NA	0.60	0.53	0.60
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	100.00	NA	80.00	60.00	80.00	80.00	NA	100.00	100.00	100.00
43.33	26.67	NA	26.67	51.67	41.67	46.67	NA	26.67	5.00	26.67
96.30	100.00	NA	94.12	93.94	96.15	96.55	NA	100.00	100.00	100.00
10.53	10.20	NA	8.33	9.38	10.26	11.11	NA	10.20	8.06	10.20
46.15	32.31	NA	30.77	52.31	44.62	49.23	NA	32.31	12.31	32.31
Confusion Matrix										
2634	1644	NA	1644	3129	2535	2832	NA	1644	357	1644
14	05	NA	14	23	14	14	NA	05	05	05

Table D.123: Momentaneous_Standard_kFold_PCA_currentEDSS < 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.55	NA	0.15	0.60	0.45	0.51	0.47	0.45	0.65	0.62
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
37.50	43.75	NA	0.00	56.25	31.25	37.50	31.25	31.25	68.75	62.50
87.32	90.14	NA	94.37	84.51	85.92	95.77	92.96	91.55	80.28	76.06
86.11	87.67	NA	80.72	89.55	84.72	87.18	85.71	85.53	91.94	90.00
40.00	50.00	NA	0.00	45.00	33.33	66.67	50.00	45.45	44.00	37.04
78.16	81.61	NA	77.01	79.31	75.86	85.06	81.61	80.46	78.16	73.56
Confusion Matrix										
629	647	NA	674	6011	6110	683	665	656	5714	5417
106	97	NA	160	79	115	106	115	115	511	610

Table D.124: Momentaneous_Standard_kFold_currentEDSS < 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.51	0.45	0.30	0.71	0.53	0.33	0.55	0.39	0.64	0.59
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.25	37.50	31.25	18.75	68.75	37.50	18.75	43.75	25.00	68.75	56.25
90.14	90.14	87.32	97.18	94.37	88.73	94.37	85.92	91.55	77.46	77.46
85.33	86.49	84.93	84.15	93.06	86.30	83.75	87.14	84.42	91.67	88.71
41.67	46.15	35.71	60.00	73.33	42.86	42.86	41.18	40.00	40.74	36.00
79.31	80.46	77.01	82.76	89.66	79.31	80.46	78.16	79.31	75.86	73.56
Confusion Matrix										
647	647	629	692	674	638	674	6110	656	5516	5516
115	106	115	133	511	106	133	97	124	511	79

Table D.125: Momentaneous_Standard_LOO_PCA_currentEDSS <5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.52	0.48	0.40	0.54	0.52	0.51	0.47	0.54	0.65	0.62
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
18.75	18.75	37.50	0.00	31.25	18.75	12.50	6.25	18.75	68.75	62.50
81.69	84.51	56.34	94.37	78.87	84.51	88.73	90.14	87.32	80.28	76.06
81.69	82.19	80.00	80.72	83.58	82.19	81.82	81.01	82.67	91.94	90.00
18.75	21.43	16.22	0.00	25.00	21.43	20.00	12.50	25.00	44.00	37.04
70.11	72.41	52.87	77.01	70.11	72.41	74.71	74.71	74.71	78.16	73.56
Confusion Matrix										
5813	6011	4031	674	5615	6011	638	647	629	5714	5417
133	133	106	160	115	133	142	151	133	511	610

Table D.126: Momentaneous_Standard_LOO_currentEDSS < 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.40	0.53	0.57	0.40	0.43	0.47	0.56	0.50	0.57	0.50	0.48
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
0.00	18.75	25.00	0.00	6.25	12.50	12.50	18.75	18.75	31.25	25.00
85.92	85.92	87.32	92.96	78.87	81.69	92.96	80.28	90.14	69.01	70.42
79.22	82.43	83.78	80.49	78.87	80.56	82.50	81.43	83.12	81.67	80.65
0.00	23.08	30.77	0.00	6.25	13.33	28.57	17.65	30.00	18.52	16.00
70.11	73.56	75.86	75.86	65.52	68.97	78.16	68.97	77.01	62.07	62.07
Confusion Matrix										
6110	6110	629	665	5615	5813	665	5714	647	4922	5021
160	133	124	160	151	142	142	133	133	115	124

First feature selection process for nextEDSS:
Table D.127: Momentaneous_Feature_Selection_Identification_nextEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	0	0	0	0	1	1	0	0	0	0	
Age of Onset	0	0	0	0	0	0	1	1	0	0	0	
Optic Pathways	0	1	1	0	0	0	1	0	1	0	1	
Brainstem-Cerebellum	0	0	0	0	0	1	0	0	0	0	0	
Spinal Cord	0	1	0	1	0	1	0	1	1	0	1	1
Progression From Onset	0	0	0	0	0	0	0	0	1	0	0	
Age of Diagnosis	0	1	1	1	1	0	1	0	0	1	1	1
Years from Onset to Diagnosis	0	1	1	1	1	0	1	1	0	1	1	
MRI	0	0	0	0	0	0	1	0	0	0	0	
CSF	0	0	0	0	0	1	0	0	0	0	0	
Age at SP Diagnosis	0	1	1	1	1	0	0	1	1	1	1	
Years from Diagnosis to SP	0	1	1	1	1	0	0	0	1	1	1	1
Years from Diagnosis to Onset	0	1	1	1	1	0	0	0	1	1	1	
MS Course	0	1	1	1	1	1	0	0	1	1	1	$\mathbf{8}$
Age Visit	0	1	1	1	1	0	1	0	0	1	1	
Years since Onset	1	1	1	1	1	0	1	1	0	1	1	$\mathbf{7}$

Selected features: Optic Pathways, Spinal Cord, Age of Diagnosis, Years from Onset to Diagnosis, Age at SP Diagnosis, Years from Diagnosis to SP, Years from Diagnosis to Onset, MS Course, Age Visit, Years since Onset.

Table D.128: Momentaneous_Feature_Selection_Visits_nextEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Last Suspected	0	0	0	0	0	0	1	1	0	0	0	2
Last EDSS	1	1	1	1	0	0	1	1	0	1	1	8
Last Sympton	0	0	0	0	0	0	0	0	1	0	0	1

Selected features: Last EDSS.

Table D.129: Momentaneous_Feature_Selection_Relapses_nextEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Last Pyramidal	0	1	0	0	0	1	0	0	1	0	1	
Last BrainStem	0	0	0	0	0	0	1	1	0	0	0	
Last Bowel	0	0	0	0	0	0	0	0	1	0	0	2
Last Neuropsycho	0	0	0	0	0	0	1	0	0	0	0	1
Last Cerebellum	0	0	0	0	0	0	1	0	0	0	0	1
Last Visual	0	0	0	0	0	0	1	0	0	0	0	
Last Sensory	0	1	1	1	0	1	1	1	1	1	1	1
Last Hospital	0	0	0	0	0	1	1	0	0	0	0	
Last ambulatory	0	0	0	0	0	1	1	0	0	0	0	
Last Corticosteroid	0	0	0	0	0	0	1	0	0	0	0	2

Selected features: Last Pyramidal, Last Sensory.
For label nextEDSS (0/1-(<3)/($\geq 3)$):
Final features: Age Visit, Years since onset, Last EDSS.

Table D.130: Momentaneous_Standard_Traditional_PCA_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.80	0.86	0.83	0.81	0.73	0.78	0.81	0.83	0.86	0.83	0.85
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	80.00	90.00	70.00	80.00	90.00	90.00	80.00	80.00	70.00	80.00
79.31	93.10	79.31	89.66	62.07	65.52	72.41	82.76	93.10	93.10	93.10
92.00	93.10	95.83	89.66	90.00	95.00	95.45	92.31	93.10	90.00	93.10
57.14	80.00	60.00	70.00	42.11	47.37	52.94	61.54	80.00	77.78	80.00
79.49	89.74	82.05	84.62	66.67	71.79	76.92	82.05	89.74	87.18	89.74
Confusion Matrix										
236	272	236	263	1811	1910	218	245	272	272	272
28	28	19	37	28	19	19	28	28	37	28

Table D.131: Momentaneous_Standard_Traditional_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NaN										
25.64	25.64	25.64	25.64	25.64	25.64	25.64	25.64	25.64	25.64	25.64
25.64	25.64	25.64	25.64	25.64	25.64	25.64	25.64	25.64	25.64	25.64
Confusion Matrix										
029	029	029	029	029	029	029	029	029	029	029
010	010	010	010	010	010	010	010	010	010	010

Table D.132: Momentaneous_Standard_kFold_PCA_nextEDSS < 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.83	0.82	0.84	0.82	0.88	0.84	0.84	0.84	0.82	0.86	0.84
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
76.47	67.65	70.59	67.65	88.24	79.41	76.47	70.59	67.65	70.59	67.65
86.79	96.23	96.23	96.23	92.45	90.57	92.45	96.23	96.23	96.23	96.23
85.19	82.26	83.61	82.26	92.45	87.27	85.96	83.61	82.26	83.61	82.26
78.79	92.00	92.31	92.00	88.24	84.38	86.67	92.31	92.00	92.31	92.00
82.76	85.06	86.21	85.06	90.80	86.21	86.21	86.21	85.06	86.21	85.06
Confusion Matrix										
467	512	512	512	494	485	494	512	512	512	512
826	1123	1024	1123	430	727	826	1024	1123	1024	1123

Table D.133: Momentaneous_Standard_kFold_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.91	0.95	0.90	0.94	0.87	0.91	0.91	0.91	NA	0.90	0.93
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.29	88.24	91.18	91.18	85.29	85.29	85.29	91.18	NA	91.18	88.24
94.34	98.11	90.57	96.23	88.68	96.23	96.23	92.45	NA	92.45	98.11
90.91	92.86	94.12	94.44	90.38	91.07	91.07	94.23	NA	94.23	92.86
90.63	96.77	86.11	93.94	82.86	93.55	93.55	88.57	NA	88.57	96.77
90.80	94.25	90.80	94.25	87.36	91.95	91.95	91.95	NA	91.95	94.25
Confusion Matrix										
503	521	485	512	476	512	512	494	NA	494	521
529	430	331	331	529	529	529	331	NA	331	430

D. Appendix IV - Machine learning results

Table D.134: Momentaneous_Standard_LOO_PCA_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.51	0.50	0.51	0.52	0.50	0.52	0.50	0.51	0.58	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
38.24	29.41	29.41	29.41	41.18	38.24	38.24	29.41	29.41	38.24	35.29
62.26	71.70	69.81	71.70	62.26	62.26	66.04	69.81	71.70	75.47	75.47
61.11	61.29	60.66	61.29	62.26	61.11	62.50	60.66	61.29	65.57	64.52
39.39	40.00	38.46	40.00	41.18	39.39	41.94	38.46	40.00	50.00	48.00
52.87	55.17	54.02	55.17	54.02	52.87	55.17	54.02	55.17	60.92	59.77
Confusion Matrix										
3320	3815	3716	3815	3320	3320	3518	3716	3815	4013	4013
2113	2410	2410	2410	2014	2113	2113	2410	2410	2113	2212

Table D.135: Momentaneous_Standard_LOO_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.47	0.49	0.48	0.41	0.45	0.47	0.51	0.47	0.46	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
38.24	32.35	41.18	35.29	29.41	29.41	32.35	41.18	32.35	35.29	29.41
64.15	62.26	56.60	60.38	52.83	60.38	62.26	60.38	62.26	56.60	60.38
61.82	58.93	60.00	59.26	53.85	57.14	58.93	61.54	58.93	57.69	57.14
40.63	35.48	37.84	36.36	28.57	32.26	35.48	40.00	35.48	34.29	32.26
54.02	50.57	50.57	50.57	43.68	48.28	50.57	52.87	50.57	48.28	48.28
Confusion Matrix										
3419	3320	3023	3221	2825	3221	3320	3221	3320	3023	3221
2113	2311	2014	2212	2410	2410	2311	2014	2311	2212	2410

For label nextEDSS $(0 / 1-(<5) /(\geq 5))$:

Table D.136: Momentaneous_Standard_Traditional_PCA_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.70	0.77	0.73	0.67	0.57	0.65	0.73	0.76	0.77	0.77	0.77
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
83.33	83.33	66.67	83.33	66.67	66.67	66.67	83.33	83.33	83.33	83.33
54.55	72.73	70.91	54.55	47.27	63.64	72.73	74.55	72.73	72.73	72.73
96.77	97.56	95.12	96.77	92.86	94.59	95.24	97.62	97.56	97.56	97.56
16.67	25.00	20.00	16.67	12.12	16.67	21.05	26.32	25.00	25.00	25.00
57.38	73.77	70.49	57.38	49.18	63.93	72.13	75.41	73.77	73.77	73.77
Confusion Matrix										
3025	4015	3916	3025	2629	3520	4015	4114	4015	4015	4015
15	15	24	15	24	24	24	15	15	15	15

Table D.137: Momentaneous_Standard_Traditional_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.63	0.50	0.51	0.62	0.70	0.77	0.69	0.51	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	83.33	100.00	100.00	100.00	100.00	100.00	100.00
25.45	0.00	1.82	23.64	58.18	54.55	38.18	1.82	1.82	0.00	0.00
100.00	NaN	100.00	100.00	96.97	100.00	100.00	100.00	100.00	NaN	NaN
12.77	9.84	10.00	12.50	17.86	19.35	15.00	10.00	10.00	9.84	9.84
32.79	9.84	11.48	31.15	60.66	59.02	44.26	11.48	11.48	9.84	9.84
Confusion Matrix										
1441	055	154	1342	3223	3025	2134	154	154	055	055
06	06	06	06	15	06	06	06	06	06	06

Table D.138: Momentaneous_Standard_kFold_PCA_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.62	0.56	0.24	0.74	0.43	0.37	0.54	0.58	0.69	0.67
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
42.11	52.63	47.37	10.53	68.42	26.32	21.05	42.11	42.11	73.68	68.42
89.71	88.24	82.35	95.59	94.12	94.12	94.12	88.24	89.71	80.88	82.35
84.72	86.96	84.85	79.27	91.43	82.05	81.01	84.51	84.72	91.67	90.32
53.33	55.56	42.86	40.00	76.47	55.56	50.00	50.00	53.33	51.85	52.00
79.31	80.46	74.71	77.01	88.51	79.31	78.16	78.16	79.31	79.31	79.31
Confusion Matrix										
617	608	5612	653	644	644	644	608	617	5513	5612
118	910	109	172	613	145	154	118	118	514	613

Table D.139: Momentaneous_Standard_kFold_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.80	0.80	0.80	0.80	0.76	0.80	0.80	0.80	0.80	0.77	0.77
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
84.21	84.21	84.21	84.21	78.95	84.21	84.21	84.21	84.21	84.21	84.21
98.53	98.53	98.53	98.53	98.53	98.53	98.53	98.53	98.53	91.18	91.18
95.71	95.71	95.71	95.71	94.37	95.71	95.71	95.71	95.71	95.38	95.38
94.12	94.12	94.12	94.12	93.75	94.12	94.12	94.12	94.12	72.73	72.73
95.40	95.40	95.40	95.40	94.25	95.40	95.40	95.40	95.40	89.66	89.66
Confusion Matrix										
671	671	671	671	671	671	671	671	671	626	626
316	316	316	316	415	316	316	316	316	316	316

Table D.140: Momentaneous_Standard_LOO_PCA_nextEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.47	0.46	0.38	0.54	0.50	0.52	0.41	0.44	0.58	0.61
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
21.05	15.79	15.79	0.00	26.32	10.53	10.53	5.26	10.53	47.37	47.37
85.29	77.94	75.00	92.65	80.88	89.71	91.18	79.41	79.41	73.53	77.94
79.45	76.81	76.12	76.83	79.71	78.21	78.48	75.00	76.06	83.33	84.13
28.57	16.67	15.00	0.00	27.78	22.22	25.00	6.67	12.50	33.33	37.50
71.26	64.37	62.07	72.41	68.97	72.41	73.56	63.22	64.37	67.82	71.26
Confusion Matrix										
5810	5315	5117	635	5513	617	626	5414	5414	5018	5315
154	163	163	190	145	172	172	181	172	109	109

Table D.141: Momentaneous_Standard_LOO_nextEDSS < 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.58	0.58	0.58	0.60	0.58	0.58	0.58	0.58	0.43	0.43
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.58	31.58	31.58	31.58	31.58	31.58	31.58	31.58	31.58	15.79	15.79
83.82	83.82	83.82	83.82	85.29	83.82	83.82	83.82	83.82	67.65	67.65
81.43	81.43	81.43	81.43	81.69	81.43	81.43	81.43	81.43	74.19	74.19
35.29	35.29	35.29	35.29	37.50	35.29	35.29	35.29	35.29	12.00	12.00
72.41	72.41	72.41	72.41	73.56	72.41	72.41	72.41	72.41	56.32	56.32
Confusion Matrix										
5711	5711	5711	5711	5810	5711	5711	5711	5711	4622	4622
136	136	136	136	136	136	136	136	136	163	163

First feature selection process for highestEDSS:

Table D.142: Momentaneous_Feature_Selection_Identification_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	0	0	0	0	1	1	1	0	0	0	
Age of Onset	0	0	0	0	0	0	1	1	0	0	0	
Optic Pathways	0	1	1	0	0	0	1	0	1	1	1	2
Brainstem-Cerebellum	0	0	0	0	0	1	1	0	0	0	0	
Spinal Cord	0	1	1	1	0	1	1	1	1	0	1	2
Progression From Onset	0	0	0	0	0	0	0	0	1	0	0	
Age of Diagnosis	0	0	0	0	0	0	1	1	0	1	0	$\mathbf{8}$
Years from Onset to Diagnosis	0	1	1	1	1	0	1	1	0	1	1	
MRI	0	0	0	0	0	0	1	0	0	0	0	
Evoked Potentials	0	0	0	0	0	0	1	0	0	0	0	
CSF	0	0	0	0	0	1	1	0	0	0	0	1
Age at SP Diagnosis	0	1	1	1	1	0	1	1	1	1	1	
Years from Diagnosis to SP	0	1	1	1	1	0	1	0	1	1	1	2
Years from Diagnosis to Onset	0	1	1	1	1	0	0	0	1	1	1	
MS Course	0	1	1	1	1	1	0	0	1	1	1	
Family History	0	0	0	0	0	0	1	0	0	0	0	
Active	0	0	0	0	0	0	1	0	0	0	0	
Age Visit	0	1	1	1	1	0	0	1	0	1	1	$\mathbf{8}$
Years since Onset	1	1	1	0	1	0	1	0	0	1	1	

Feature selection: Optic Pathways, Spinal-Cord, Age of Diagnosis, Years from

Onset to Onset to Diagnosis, Age at SP Diagnosis, Years from Diagnosis to Onset, MS Course, Age Visit, Years since Onset.

Table D.143: Momentaneous_Feature_Selection_Visits_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
ID	0	0	0	0	0	0	0	0	0	0	0	
Last Routine	0	0	0	0	0	0	0	1	0	0	0	
Last Suspected	0	0	0	0	0	0	0	0	0	0	0	1
Last EDSS	1	1	1	1	1	0	1	1	0	1	1	0
Last Weakness	0	0	0	0	0	0	0	0	0	0	0	$\mathbf{9}$
Last Sympton	0	0	0	0	0	0	0	0	1	0	0	0

Feature selection: Last EDSS.

Table D.144: Momentaneous_Feature_Selection_Relapses_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Last Pyramidal	0	0	0	0	0	1	0	1	0	0	0	
Last BrainStem	0	0	0	0	0	0	1	1	0	0	0	
Last Bowel	0	0	0	0	0	0	0	0	1	0	0	2
Last Neuropsycho	0	0	0	0	0	0	1	0	0	0	0	1
Last Cerebellum	0	0	0	0	0	0	1	1	0	0	0	1
Last Visual	0	0	0	0	0	0	1	0	0	0	0	
Last Sensory	0	1	1	1	0	1	1	1	1	1	1	
Last Hospital	0	0	0	0	0	1	1	1	0	0	0	1
Last ambulatory	0	0	0	0	0	1	0	0	0	0	0	
Last Corticosteroid	0	0	0	0	0	0	1	0	0	0	0	
Last Treatment	0	0	0	0	0	0	1	0	1	0	0	
Last Duration	0	0	0	0	0	0	1	1	0	0	0	1

Feature selection: Last Pyramidal, Last Sensory.
For label highestEDSS (0/1-(<3)/($\geq 3)$):
Final Features: Years since Onset, Last EDSS.

Table D.145: Momentaneous_Standard_Traditional_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.78	0.77	0.75	0.63	0.65	0.73	0.73	0.76	0.77	0.77	0.76
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
92.86	71.43	71.43	50.00	64.29	71.43	64.29	71.43	71.43	71.43	71.43
63.64	81.82	81.82	72.73	63.64	72.73	81.82	81.82	81.82	81.82	81.82
87.50	69.23	69.23	53.33	58.33	66.67	64.29	69.23	69.23	69.23	69.23
76.47	83.33	83.33	70.00	69.23	76.92	81.82	83.33	83.33	83.33	83.33
80.00	76.00	76.00	60.00	64.00	72.00	72.00	76.00	76.00	76.00	76.00
Confusion Matrix										
74	92	92	83	74	83	92	92	92	92	92
113	410	410	77	59	410	59	410	410	410	410

D. Appendix IV - Machine learning results

Table D.146: Momentaneous_Standard_Traditional_highestEDSS < 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.71	0.50	0.50	0.50	0.50	0.53	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	92.86	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	45.45	0.00	0.00	0.00	0.00	9.09	0.00	0.00	0.00
NaN	NaN	83.33	NaN	NaN	NaN	NaN	100.00	NaN	NaN	NaN
56.00	56.00	68.42	56.00	56.00	56.00	56.00	58.33	56.00	56.00	56.00
56.00	56.00	72.00	56.00	56.00	56.00	56.00	60.00	56.00	56.00	56.00
Confusion Matrix										
011	011	56	011	011	011	011	110	011	011	011
014	014	113	014	014	014	014	014	014	014	014

Table D.147: Momentaneous_Standard_kFold_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.80	0.78	0.77	0.76	0.81	0.75	0.77	0.78	0.78	0.77	0.77
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	73.33	80.00	80.00	86.67	75.56	77.78	84.44	73.33	68.89	68.89
78.57	80.95	71.43	69.05	76.19	73.81	76.19	71.43	80.95	83.33	83.33
78.57	73.91	76.92	76.32	84.21	73.81	76.19	81.08	73.91	71.43	71.43
80.00	80.49	75.00	73.47	79.59	75.56	77.78	76.00	80.49	81.58	81.58
79.31	77.01	75.86	74.71	81.61	74.71	77.01	78.16	77.01	75.86	75.86
Confusion Matrix										
339	348	3012	2913	3210	3111	3210	3012	348	357	357
936	1233	936	936	639	1134	1035	738	1233	1431	1431

Table D.148: Momentaneous_Standard_kFold_highestEDSS < 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.87	0.86	0.84	0.91	0.87	0.88	0.89	0.82	0.86	0.81	0.85
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
88.89	75.56	77.78	91.11	88.89	86.67	91.11	73.33	75.56	71.11	75.56
88.10	95.24	90.48	90.48	85.71	90.48	90.48	90.48	95.24	90.48	95.24
88.10	78.43	79.17	90.48	87.80	86.36	90.48	76.00	78.43	74.51	78.43
88.89	94.44	89.74	91.11	86.96	90.70	91.11	89.19	94.44	88.89	94.44
88.51	85.06	83.91	90.80	87.36	88.51	90.80	81.61	85.06	80.46	85.06
Confusion Matrix										
375	402	384	384	366	384	384	384	402	384	402
540	1134	1035	441	540	639	441	1233	1134	1332	1134

Table D.149: Momentaneous_Standard_LOO_PCA_highestEDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.48	0.52	0.53	0.53	0.52	0.49	0.47	0.48	0.60	0.61
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
57.78	42.22	57.78	55.56	57.78	53.33	51.11	55.56	42.22	51.11	53.33
47.62	54.76	45.24	50.00	47.62	50.00	47.62	38.10	54.76	69.05	69.05
51.28	46.94	50.00	51.22	51.28	50.00	47.62	44.44	46.94	56.86	58.00
54.17	50.00	53.06	54.35	54.17	53.33	51.11	49.02	50.00	63.89	64.86
52.87	48.28	51.72	52.87	52.87	51.72	49.43	47.13	48.28	59.77	60.92
Confusion Matrix										
2022	2319	1923	2121	2022	2121	2022	1626	2319	2913	2913
1926	2619	1926	2025	1926	2124	2223	2025	2619	2223	2124

Table D.150: Momentaneous_Standard_LOO_highestEDSS < 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.51	0.52	0.49	0.46	0.49	0.49	0.54	0.51	0.56	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
53.33	42.22	46.67	51.11	48.89	48.89	51.11	46.67	42.22	46.67	44.44
47.62	59.52	57.14	47.62	42.86	50.00	47.62	61.90	59.52	64.29	61.90
48.78	49.02	50.00	47.62	43.90	47.73	47.62	52.00	49.02	52.94	50.98
52.17	52.78	53.85	51.11	47.83	51.16	51.11	56.76	52.78	58.33	55.56
50.57	50.57	51.72	49.43	45.98	49.43	49.43	54.02	50.57	55.17	52.87
Confusion Matrix										
2022	2517	2418	2022	1824	2121	2022	2616	2517	2715	2616
2124	2619	2421	2223	2322	2322	2223	2421	2619	2421	2520

For label highestEDSS (0/1-(<5)/($\geq 5)$):
Final features: MS Course, Years since onset, Last EDSS, Gender.

Table D.151: Momentaneous_Standard_Traditional_PCA_highestEDSS <5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.76	0.84	0.79	0.80	0.70	0.76	0.78	0.84	0.84	0.84	0.85
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	85.71	85.71	85.71	71.43	85.71	85.71	85.71	85.71	85.71	100.00
60.87	78.26	76.09	80.43	67.39	71.74	73.91	78.26	78.26	78.26	78.26
96.55	97.30	97.22	97.37	93.94	97.06	97.14	97.30	97.30	97.30	100.00
25.00	37.50	35.29	40.00	25.00	31.58	33.33	37.50	37.50	37.50	41.18
64.15	79.25	77.36	81.13	67.92	73.58	75.47	79.25	79.25	79.25	81.13
Confusion Matrix										
2818	3610	3511	379	3115	3313	3412	3610	3610	3610	3610
16	16	16	16	25	16	16	16	16	16	07

D. Appendix IV - Machine learning results

Table D.152: Momentaneous_Standard_Traditional_highestEDSS < 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.56	NA	0.74	0.65	0.69	0.68	NA	0.56	0.51	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	85.71	85.71	85.71	NA	100.00	100.00	100.00
23.91	13.04	NA	54.35	47.83	54.35	47.83	NA	13.04	2.17	13.04
100.00	100.00	NA	100.00	95.65	96.15	95.65	NA	100.00	100.00	100.00
16.67	14.89	NA	25.00	20.00	22.22	20.00	NA	14.89	13.46	14.89
33.96	24.53	NA	60.38	52.83	58.49	52.83	NA	24.53	15.09	24.53
Confusion Matrix										
1135	640	NA	2521	2224	2521	2224	NA	640	145	640
07	07	NA	07	16	16	16	NA	07	07	07

Table D.153: Momentaneous_Standard_kFold_PCA_highestEDSS < 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.76	0.77	0.75	0.65	0.76	0.73	0.68	0.75	0.77	0.76	0.77
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
75.00	75.00	70.83	54.17	75.00	66.67	58.33	70.83	75.00	79.17	79.17
90.48	88.89	90.48	92.06	88.89	88.89	88.89	88.89	88.89	87.30	88.89
90.48	90.32	89.06	84.06	90.32	87.50	84.85	88.89	90.32	91.67	91.80
75.00	72.00	73.91	72.22	72.00	69.57	66.67	70.83	72.00	70.37	73.08
86.21	85.06	85.06	81.61	85.06	82.76	80.46	83.91	85.06	85.06	86.21
Confusion Matrix										
576	567	576	585	567	567	567	567	567	558	567
618	618	717	1113	618	816	1014	717	618	519	519

Table D.154: Momentaneous_Standard_kFold_highestEDSS < 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.83	0.82	0.88	0.86	0.84	0.85	0.82	0.82	0.82	0.80	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
87.50	83.33	95.83	87.50	87.50	87.50	79.17	87.50	83.33	75.00	87.50
90.48	92.06	93.65	95.24	93.65	95.24	95.24	90.48	92.06	88.89	90.48
95.00	93.55	98.33	95.24	95.16	95.24	92.31	95.00	93.55	90.32	95.00
77.78	80.00	85.19	87.50	84.00	87.50	86.36	77.78	80.00	72.00	77.78
89.66	89.66	94.25	93.10	91.95	93.10	90.80	89.66	89.66	85.06	89.66
Confusion Matrix										
576	585	594	603	594	603	603	576	585	567	576
321	420	123	321	321	321	519	321	420	618	321

Table D.155: Momentaneous_Standard_LOO_PCA_highestEDSS < 5

Classifier								
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM
AUC								
0.60	0.56	0.57	0.56	0.56	0.57	0.59	0.57	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%								
37.50	37.50	37.50	25.00	37.50	37.50	37.50	37.50	37.50
80.95	74.60	76.19	84.13	74.60	76.19	79.37	76.19	74.60
77.27	75.81	76.19	74.65	75.81	76.19	76.92	76.19	75.81
42.86	36.00	37.50	37.50	36.00	37.50	40.91	37.50	36.00
68.97	64.37	65.52	67.82	64.37	65.52	67.82	65.52	64.37
Confusion Matrix								
5112	4716	4815	5310	4716	4815	5013	4815	4716
159	159	159	186	159	159	159	159	159

Table D.156: Momentaneous_Standard_LOO_highestEDSS < 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.50	0.46	0.47	0.47	0.48	0.44	0.52	0.50	0.47	0.49
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.00	29.17	25.00	25.00	25.00	25.00	25.00	33.33	29.17	25.00	29.17
68.25	71.43	66.67	69.84	69.84	71.43	71.43	71.43	71.43	69.84	68.25
70.49	72.58	70.00	70.97	70.97	71.43	71.43	73.77	72.58	70.97	71.67
23.08	28.00	22.22	24.00	24.00	25.00	25.00	30.77	28.00	24.00	25.93
56.32	59.77	55.17	57.47	57.47	58.62	58.62	60.92	59.77	57.47	57.47
Confusion Matrix										
4320	4518	4221	4419	4419	4518	4518	4518	4518	4419	4320
186		186	186	186	186	204	168		186	177

For label first2EDSS $(0 / 1-(<3) /(\geq 3))$:
Final features: Supratentorial, Spinal Cord, Years since Onset, Last EDSS.
D. Appendix IV - Machine learning results

Table D.157: Momentaneous_Standard_Traditional_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.81	0.82	0.79	0.82	0.79	0.81	0.79	0.78	0.82	0.83	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	85.71	85.71	85.71	85.71	85.71	85.71	85.71	85.71	100.00	100.00
72.00	72.00	72.00	72.00	70.00	72.00	68.00	64.00	72.00	72.00	72.00
97.30	97.30	97.30	97.30	97.22	97.30	97.14	96.97	97.30	100.00	100.00
30.00	30.00	30.00	30.00	28.57	30.00	27.27	25.00	30.00	33.33	33.33
73.68	73.68	73.68	73.68	71.93	73.68	70.18	66.67	73.68	75.44	75.44
Confusion Matrix										
3614	3614	3614	3614	3515	3614	3416	3218	3614	3614	3614
16	16	16	16	16	16	16	16	16	07	07

Table D.158: Momentaneous_Standard_Traditional_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.57	NA	0.56	0.64	0.58	0.58	NA	0.57	0.60	0.58
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	85.71	100.00	100.00	NA	100.00	100.00	100.00
20.00	14.00	NA	12.00	40.00	22.00	18.00	NA	14.00	20.00	16.00
100.00	100.00	NA	100.00	95.24	100.00	100.00	NA	100.00	100.00	100.00
14.89	14.00	NA	13.73	16.67	15.22	14.58	NA	14.00	14.89	14.29
29.82	24.56	NA	22.81	45.61	31.58	28.07	NA	24.56	29.82	26.32
Confusion Matrix										
1040	743	NA	644	2030	1139	941	NA	743	1040	842
07	07	NA	07	16	07	07	NA	07	07	07

Table D.159: Momentaneous_Standard_kFold_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.78	0.81	0.76	0.77	0.82	0.78	0.77	0.76	0.80	0.79	0.79
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
72.73	77.27	63.64	68.18	81.82	68.18	63.64	63.64	72.73	90.91	86.36
93.85	92.31	95.38	98.46	93.85	95.38	96.92	95.38	93.85	84.62	83.08
91.04	92.31	88.57	90.14	93.85	89.86	88.73	88.57	91.04	96.49	94.74
80.00	77.27	82.35	93.75	81.82	83.33	87.50	82.35	80.00	66.67	63.33
88.51	88.51	87.36	90.80	90.80	88.51	88.51	87.36	88.51	86.21	83.91
Confusion Matrix										
614	605	623	641	614	623	632	623	614	5510	5411
616	517	814	715	418	715	814	814	616	220	319

Table D.160: Momentaneous_Standard_kFold_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.85	0.83	NA	0.75	0.87	0.82	0.73	NA	0.83	0.74	0.80
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
90.91	86.36	NA	63.64	95.45	86.36	63.64	NA	86.36	77.27	86.36
93.85	90.77	NA	95.45	95.38	90.77	95.38	NA	90.77	84.62	87.69
96.83	95.16	NA	88.73	98.41	95.16	88.57	NA	95.16	91.67	95.00
83.33	76.00	NA	82.35	87.50	76.00	82.35	NA	76.00	62.96	70.37
93.10	89.66	NA	87.50	95.40	89.66	87.36	NA	89.66	82.76	87.36
Confusion Matrix										
614	596	NA	633	623	596	623	NA	596	5510	578
220	319	NA	814	121	319	814	NA	319	517	319

Table D.161: Momentaneous_Standard_LOO_PCA_first2EDSS <3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.53	0.46	0.50	0.51	0.54	0.55	0.45	0.53	0.55	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
27.27	27.27	13.64	18.18	27.27	27.27	22.73	13.64	27.27	45.45	40.91
78.46	78.46	80.00	81.54	75.38	80.00	84.62	78.46	78.46	67.69	67.69
76.12	76.12	73.24	74.65	75.38	76.47	76.39	72.86	76.12	78.57	77.19
30.00	30.00	18.75	25.00	27.27	31.58	33.33	17.65	30.00	32.26	30.00
65.52	65.52	63.22	65.52	63.22	66.67	68.97	62.07	65.52	62.07	60.92
Confusion Matrix										
5114	5114	5213	5312	4916	5213	5510	5114	5114	4421	4421
166	166	193	184	166	166	175	193	166	1210	139

Table D.162: Momentaneous_Standard_LOO_PCA_first2EDSS < 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.46	NA	0.50	0.53	0.50	0.53	NA	0.46	0.59	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.91	22.73	NA	18.18	31.82	31.82	22.73	NA	22.73	45.45	36.36
72.31	69.23	NA	81.54	73.85	69.23	81.54	NA	69.23	73.85	70.77
78.33	72.58	NA	74.65	76.19	75.00	75.71	NA	72.58	80.00	76.67
33.33	20.00	NA	25.00	29.17	25.93	29.41	NA	20.00	37.04	29.63
64.37	57.47	NA	65.52	63.22	59.77	66.67	NA	57.47	66.67	62.07
Confusion Matrix										
4718	4520	NA	5312	4817	4520	5312	NA	4520	4817	4619
139	175	NA	184	157	157	175	NA	175	1210	148

For label first2EDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with first2EDSS ≥ 5 was minimal.

For label tendencyEDSS (0/1-(Down/Equal \& Up):
D. Appendix IV - Machine learning results

Final features: MS Course, Age Visit, Years since Onset, Last EDSS;

Table D.163: Momentaneous_Standard_Traditional_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.45	0.45	0.47	0.47	0.45	0.46	0.45	0.45	0.44	0.43
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.00	40.00	40.00	40.00	40.00	40.00	40.00	20.00	40.00	40.00	40.00
58.33	48.33	55.00	48.33	55.00	51.67	53.33	65.00	48.33	48.33	46.67
92.11	90.63	91.67	90.63	91.67	91.18	91.43	90.70	90.63	90.63	90.32
7.41	6.06	6.90	6.06	6.90	6.45	6.67	4.55	6.06	6.06	5.88
56.92	47.69	53.85	47.69	53.85	50.77	52.31	61.54	47.69	47.69	46.15
Confusion Matrix										
3525	2931	3327	2931	3327	3129	3228	3921	2931	2931	2832
32	32	32	32	32	32	32	41	32	32	32

Table D.164: Momentaneous_Standard_Traditional_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.48	NA	0.51	0.52	0.50	0.47	NA	0.48	0.50	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.00	60.00	NA	60.00	40.00	40.00	40.00	NA	60.00	60.00	60.00
58.33	38.33	NA	45.00	58.33	51.67	51.67	NA	38.33	31.67	40.00
92.11	92.00	NA	93.10	92.11	91.18	91.18	NA	92.00	90.48	92.31
7.41	7.50	NA	8.33	7.41	6.45	6.45	NA	7.50	6.82	7.69
56.92	40.00	NA	46.15	56.92	50.77	50.77	NA	40.00	33.85	41.54
Confusion Matrix										
3525	2337	NA	2733	3525	3129	3129	NA	2337	1941	2436
32	23	NA	23	32	32	32	NA	23	23	23

Table D.165: Momentaneous_Standard_kFold_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.34	0.01	0.10	0.07	0.39	0.22	0.06	0.03	0.00	0.42	0.43
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
6.25	0.00	0.00	0.00	18.75	0.00	0.00	0.00	0.00	25.00	25.00
81.69	100.00	94.37	97.18	85.92	90.14	98.59	98.59	100.00	54.93	50.70
79.45	81.61	80.72	81.18	82.43	80.00	81.40	81.40	81.61	76.47	75.00
7.14	NaN	0.00	0.00	23.08	0.00	0.00	0.00	NaN	11.11	10.26
67.82	81.61	77.01	79.31	73.56	73.56	80.46	80.46	81.61	49.43	45.98
Confusion Matrix										
5813	710	674	692	6110	647	701	701	710	3932	3635
151	160	160	160	133	160	160	160	160	124	124

Table D.166: Momentaneous_Standard_kFold_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.35	0.01	0.27	0.01	0.48	0.22	0.14	0.24	0.00	0.49	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
12.50	0.00	12.50	0.00	25.00	0.00	0.00	12.50	0.00	31.25	31.25
83.10	100.00	94.37	100.00	81.69	88.89	94.37	95.77	100.00	71.83	54.93
80.82	81.61	82.72	81.61	82.86	80.00	80.72	82.93	81.61	82.26	78.00
14.29	NaN	33.33	NaN	23.53	0.00	0.00	40.00	NaN	20.00	13.51
70.11	81.61	79.31	81.61	71.26	72.73	77.01	80.46	81.61	64.37	50.57
Confusion Matrix										
5912	710	674	710	5813	648	674	683	710	5120	3932
142	160	142	160	124	160	160	142	160	115	115

Table D.167: Momentaneous_Standard_LOO_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.00	0.40	0.41	0.53	0.40	0.41	0.41	0.00	0.56	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
18.75	0.00	0.00	0.00	18.75	0.00	0.00	0.00	0.00	56.25	56.25
81.69	100.00	95.77	97.18	85.92	90.14	97.18	98.59	100.00	61.97	52.11
81.69	81.61	80.95	81.18	82.43	80.00	81.18	81.40	81.61	86.27	84.09
18.75	NaN	0.00	0.00	23.08	0.00	0.00	0.00	NaN	25.00	20.93
70.11	81.61	78.16	79.31	73.56	73.56	79.31	80.46	81.61	60.92	52.87
Confusion Matrix										
5813	710	683	692	6110	647	692	701	710	4427	3734
133	160	160	160	133	160	160	160	160	79	79

Table D.168: Momentaneous_Standard_LOO_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.00	0.49	0.00	0.45	0.56	0.61	0.40	0.00	0.51	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
18.75	0.00	6.25	0.00	12.50	12.50	12.50	0.00	0.00	31.25	31.25
84.51	100.00	92.96	100.00	77.46	92.96	95.77	94.37	100.00	71.83	57.75
82.19	81.61	81.48	81.61	79.71	82.50	82.93	80.72	81.61	82.26	78.85
21.43	NaN	16.67	NaN	11.11	28.57	40.00	0.00	NaN	20.00	14.29
72.41	81.61	77.01	81.61	65.52	78.16	80.46	77.01	81.61	64.37	52.87
Confusion Matrix										
6011	710	665	710	5516	665	683	674	710	5120	4130
133	160	151	160	142	142	142	160	160	115	115

First feature selection process for mediumEDSS:

Table D.169: Momentaneous_Feature_Selection_Identification_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	0	0	0	0	1	1	0	0	0	0	
Age of Onset	0	0	0	0	0	0	1	0	0	0	0	
Supratentorial	0	0	0	0	0	0	1	0	0	0	0	1
Optic Pathways	0	1	0	0	0	0	1	0	1	0	1	
Brainstem-Cerebellum	0	0	0	1	0	1	1	0	0	0	0	
Spinal Cord	0	0	0	0	0	1	1	0	0	0	0	4
Progression From Onset	0	0	0	0	0	0	0	0	1	0	0	3
Age of Diagnosis	1	1	1	1	1	0	1	0	0	1	1	2
Years from Onset to Diagnosis	0	1	1	1	1	0	1	1	1	1	1	
MRI	0	0	0	0	0	0	1	0	0	0	0	
Evoked Potentials	0	0	0	0	0	1	1	0	0	0	0	
CSF	0	0	0	0	0	1	1	0	0	0	0	
Age at SP Diagnosis	0	1	1	1	1	0	1	1	1	1	1	
Years from Diagnosis to SP	0	1	1	1	1	0	1	0	1	1	1	2
Years from Diagnosis to Onset	0	1	1	1	1	0	1	0	1	1	1	
MS Course	0	1	1	1	1	1	1	0	1	1	1	
Active	0	1	0	0	0	0	0	0	1	0	1	
Age Visit	1	1	1	1	1	0	1	0	0	1	1	$\mathbf{8}$
Years since Onset	1	1	1	1	1	0	1	0	0	1	1	$\mathbf{8}$

Selected features: Optic Pathways, Spinal Cord, Age of Diagnosis, Years from Onset to Diagnosis, Age at SP Diagnosis, Years from Diagnosis to SP, Years from Diagnosis to Onset, MS Course, Age Visit, Years since Onset.

Table D.170: Momentaneous_Feature_Selection_Visits_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Last Suspected	0	0	0	0	0	0	1	0	0	0	0	1
Last EDSS	1	1	1	1	1	0	1	1	0	1	1	$\mathbf{9}$
Last Weakness	0	1	0	0	0	0	0	0	1	0	0	2
Last Sympton	0	0	0	0	0	0	0	0	1	0	0	1

Selected features: Last EDSS.

Table D.171: Momentaneous_Feature_Selection_Relapses_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Last Pyramidal	0	1	1	1	0	1	0	1	1	0	1	
Last BrainStem	0	1	0	1	0	0	1	1	1	0	1	
Last Bowel	0	0	0	0	0	0	0	0	0	0	0	$\mathbf{7}$
Last Neuropsycho	0	0	0	0	0	0	1	0	0	0	0	0
Last Cerebellum	0	0	0	0	0	0	1	1	0	0	0	1
Last Visual	0	0	0	0	0	0	1	1	0	0	0	
Last Sensory	0	1	1	1	0	1	1	1	1	1	1	
Last Hospital	0	0	0	0	0	1	1	0	0	0	0	2
Last ambulatory	0	0	0	0	0	1	1	1	0	0	0	
Last Corticosteroid	0	0	0	0	0	0	1	0	0	0	0	
Last Treatment	0	0	0	0	0	0	0	0	1	0	0	
Last Duration	0	0	0	0	0	0	0	1	1	0	0	

Selected features: Last Pyramidal, BrainStem, Last Sensory.
For label medium EDSS $(0 / 1-(<3) /(\geq 3))$:
Final features: Age of Diagnosis, Years from Onset to Diagnosis, Years since Onset, Last EDSS.

Table D.172: Momentaneous_Standard_Traditional_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.81	0.87	0.86	0.80	0.80	0.79	0.78	0.91	NA	0.87	0.87
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
90.00	80.00	90.00	90.00	90.00	90.00	90.00	90.00	NA	80.00	80.00
74.07	92.59	77.78	70.37	66.67	62.96	62.96	92.59	NA	92.59	92.59
95.24	92.59	95.45	95.00	94.74	94.44	94.44	96.15	NA	92.59	92.59
56.25	80.00	60.00	52.94	50.00	47.37	47.37	81.82	NA	80.00	80.00
78.38	89.19	81.08	75.68	72.97	70.27	70.27	91.89	NA	89.19	89.19
Confusion Matrix										
207	252	216	198	189	1710	1710	252	NA	252	252
19	28	19	19	19	19	19	19	NA	28	28

Table D.173: Momentaneous_Standard_Traditional_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.67	NA	0.52	0.59	0.58	0.58	NA	NA	0.56	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	100.00	100.00	100.00	NA	NA	100.00	100.00
3.70	37.04	NA	3.70	18.52	14.81	14.81	NA	NA	11.11	11.11
100.00	100.00	NA	100.00	100.00	100.00	100.00	NA	NA	100.00	100.00
27.78	37.04	NA	27.78	31.25	30.30	30.30	NA	NA	29.41	29.41
29.73	54.05	NA	29.73	40.54	37.84	37.84	NA	NA	35.14	35.14
Confusion Matrix										
126	1017	NA	126	522	423	423	NA	NA	324	324
010	010	NA	010	010	010	010	NA	NA	010	010

Table D.174: Momentaneous_Standard_kFold_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.91	0.86	0.89	0.91	0.90	0.92	0.92	0.89	0.86	0.87	0.88
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
88.57	71.43	80.00	82.86	88.57	91.43	88.57	80.00	71.43	77.14	80.00
94.23	96.15	96.15	96.15	92.31	94.23	94.23	96.15	96.15	94.23	94.23
92.45	83.33	87.72	89.29	92.31	94.23	92.45	87.72	83.33	85.96	87.50
91.18	92.59	93.33	93.55	88.57	91.43	91.18	93.33	92.59	90.00	90.32
91.95	86.21	89.66	90.80	90.80	93.10	91.95	89.66	86.21	87.36	88.51
Confusion Matrix										
493	502	502	502	484	493	493	502	502	493	493
431	1025	728	629	431	332	431	728	1025	827	728

D. Appendix IV - Machine learning results

Table D.175: Momentaneous_Standard_kFold_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.90	0.85	0.88	0.90	0.89	0.92	0.91	0.88	0.85	0.86	0.87
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
88.57	71.43	80.00	82.86	88.57	91.43	88.57	80.00	71.43	77.14	80.00
94.23	96.15	96.15	96.15	90.38	94.23	94.23	96.15	96.15	94.23	94.23
92.45	83.33	87.72	89.29	92.16	94.23	92.45	87.72	83.33	85.96	87.50
91.18	92.59	93.33	93.55	86.11	91.43	91.18	93.33	92.59	90.00	90.32
91.95	86.21	89.66	90.80	89.66	93.10	91.95	89.66	86.21	87.36	88.51
Confusion Matrix										
493	502	502	502	475	493	493	502	502	493	493
431	1025	728	629	431	332	431	728	1025	827	728

Table D.176: Momentaneous_Standard_LOO_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.50	0.47	0.50	0.50	0.47	0.47	0.47	0.50	0.47	0.46
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.00	31.43	31.43	37.14	40.00	37.14	37.14	31.43	31.43	31.43	31.43
63.46	69.23	63.46	63.46	59.62	57.69	57.69	63.46	69.23	63.46	61.54
61.11	60.00	57.89	60.00	59.62	57.69	57.69	57.89	60.00	57.89	57.14
42.42	40.74	36.67	40.63	40.00	37.14	37.14	36.67	40.74	36.67	35.48
54.02	54.02	50.57	52.87	51.72	49.43	49.43	50.57	54.02	50.57	49.43
Confusion Matrix										
3319	3616	3319	3319	3121	3022	3022	3319	3616	3319	3220
2114	2411	2411	2213	2114	2213	2213	2411	2411	2411	2411

Table D.177: Momentaneous_Standard_LOO_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.40	0.45	0.42	0.38	0.40	0.38	0.38	0.42	0.45	0.42	0.41
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.71	25.71	25.71	22.86	28.57	25.71	25.71	25.71	25.71	25.71	25.71
53.85	65.38	59.62	53.85	51.92	50.00	50.00	59.62	65.38	59.62	57.69
51.85	56.67	54.39	50.91	51.92	50.00	50.00	54.39	56.67	54.39	53.57
27.27	33.33	30.00	25.00	28.57	25.71	25.71	30.00	33.33	30.00	29.03
42.53	49.43	45.98	41.38	42.53	40.23	40.23	45.98	49.43	45.98	44.83
Confusion Matrix										
2824	3418	3121	2824	2725	2626	2626	3121	3418	3121	3022
269	269	269	278	2510	269	269	269	269	269	269

For label nextEDSS $(0 / 1-(<3) /(\geq 3))$:
The via pattern recognition study was not performed since the number of patients with currentEDSS ≥ 5 was minimal.

D.1.3.2 Investigation procedure

For label msCourse (0/1-(RR/SP):
It was not performed since the features used in standard procedure were not considered obvious.

For label currentEDSS $(0 / 1-(<3) /(\geq 3))$:
It was not performed since the features used in standard procedure were not considered obvious.

For label currentEDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with currentEDSS ≥ 5 was minimal.

For label nextEDSS $(0 / 1-(<3) /(\geq 3))$:
Features before selection: Optic Pathways, Spinal Cord, MS Course, Age Visit, Years since Onset, Last EDSS, Last Pyramidal, Last Sensory.

Excluded features: Last EDSS.
Final features: Optic Pathways, MS Course, Age Visit, Years since Onset, Years since Onset.

Table D.178: Momentaneous_Investigation_Traditional_PCA_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.78	0.82	0.80	0.79	0.70	0.72	0.78	0.82	0.82	0.83	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	70.00	80.00	70.00	70.00	80.00	80.00	80.00	70.00	70.00	80.00
75.86	89.66	75.86	89.66	68.97	68.97	72.41	82.76	89.66	89.66	89.66
91.67	89.66	91.67	89.66	86.96	90.91	91.30	92.31	89.66	89.66	92.86
53.33	70.00	53.33	70.00	43.75	47.06	50.00	61.54	70.00	70.00	72.73
76.92	84.62	76.92	84.62	69.23	71.79	74.36	82.05	84.62	84.62	87.18
Confusion Matrix										
227	263	227	263	209	209	218	245	263	263	263
28	37	28	37	37	28	28	28	37	37	28

D. Appendix IV - Machine learning results

Table D.179: Momentaneous_Investigation_Traditional_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.71	NA	0.54	0.58	0.61	0.58	NA	0.71	0.66	0.70
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
90.00	100.00	NA	100.00	80.00	100.00	100.00	NA	100.00	100.00	100.00
24.14	41.38	NA	10.34	31.03	24.14	17.24	NA	41.38	31.03	37.93
87.50	100.00	NA	100.00	81.82	100.00	100.00	NA	100.00	100.00	100.00
29.03	37.04	NA	27.78	28.57	31.25	29.41	NA	37.04	33.33	35.71
41.03	56.41	NA	33.33	43.59	43.59	38.46	NA	56.41	48.72	53.85
Confusion Matrix										
722	1217	NA	326	920	722	524	NA	1217	920	1118
19	010	NA	010	28	010	010	NA	010	010	010

Table D.180: Momentaneous_Investigation_kFold_PCA_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.79	0.83	0.85	0.82	0.85	0.84	0.84	0.85	0.83	0.84	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
73.53	67.65	70.59	67.65	85.29	82.35	82.35	70.59	67.65	70.59	67.65
84.91	96.23	96.23	96.23	86.79	86.79	86.79	96.23	96.23	96.23	96.23
83.33	82.26	83.61	82.26	90.20	88.46	88.46	83.61	82.26	83.61	82.26
75.76	92.00	92.31	92.00	80.56	80.00	80.00	92.31	92.00	92.31	92.00
80.46	85.06	86.21	85.06	86.21	85.06	85.06	86.21	85.06	86.21	85.06
Confusion Matrix										
458	512	512	512	467	467	467	512	512	512	512
925	1123	1024	1123	529	628	628	1024	1123	1024	1123

Table D.181: Momentaneous_Investigation_kFold_nextEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.81	0.83	NA	0.79	0.86	0.89	0.82	NA	0.83	0.83	0.81
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
82.35	67.65	NA	70.59	82.35	91.18	85.29	NA	67.65	67.65	70.59
83.02	94.34	NA	88.68	88.68	88.68	83.02	NA	94.34	96.23	90.57
88.00	81.97	NA	82.46	88.68	94.00	89.80	NA	81.97	82.26	82.76
75.68	88.46	NA	80.00	82.35	83.78	76.32	NA	88.46	92.00	82.76
82.76	83.91	NA	81.61	86.21	89.66	83.91	NA	83.91	85.06	82.76
Confusion Matrix										
449	503	NA	476	476	476	449	NA	503	512	485
628	1123	NA	1024	628	331	529	NA	1123	1123	1024

Table D.182: Momentaneous_Investigation_LOO_PCA_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.51	0.50	0.51	0.47	0.51	0.57	0.50	0.51	0.36	0.34
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
41.18	29.41	29.41	29.41	38.24	41.18	50.00	29.41	29.41	14.71	11.76
62.26	71.70	69.81	71.70	56.60	60.38	64.15	69.81	71.70	60.38	60.38
62.26	61.29	60.66	61.29	58.82	61.54	66.67	60.66	61.29	52.46	51.61
41.18	40.00	38.46	40.00	36.11	40.00	47.22	38.46	40.00	19.23	16.00
54.02	55.17	54.02	55.17	49.43	52.87	58.62	54.02	55.17	42.53	41.38
Confusion Matrix										
3320	3815	3716	3815	3023	3221	3419	3716	3815	3221	3221
2014	2410	2410	2410	2113	2014	1717	2410	2410	295	304

Table D.183: Momentaneous_Investigation_LOO_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.40	0.46	NA	0.48	0.39	0.42	0.49	NA	0.46	0.51	0.49
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
32.35	26.47	NA	32.35	26.47	32.35	44.12	NA	26.47	29.41	32.35
47.17	66.04	NA	64.15	50.94	50.94	52.83	NA	66.04	71.70	66.04
52.08	58.33	NA	59.65	51.92	54.00	59.57	NA	58.33	61.29	60.34
28.21	33.33	NA	36.67	25.71	29.73	37.50	NA	33.33	40.00	37.93
41.38	50.57	NA	51.72	41.38	43.68	49.43	NA	50.57	55.17	52.87
Confusion Matrix										
2528	3518	NA	3419	2726	2726	2825	NA	3518	3815	3518
2311	259	NA	2311	259	2311	1915	NA	259	2410	2311

For label nextEDSS (0/1-(<5)/($\geq 5)$):
Features before selection: Optic Pathways, Spinal Cord, MS Course, Age Visit, Years since Onset, Last EDSS, Last Pyramidal, Last Sensory.

Excluded features: Last EDSS.
Final features: Spinal Cord, MS Course, Age Visit.
Table D.184: Momentaneous_Investigation_Traditional_PCA_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.68	0.73	0.72	0.64	0.61	0.63	0.69	0.73	0.73	0.73	0.74
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
83.33	83.33	66.67	66.67	66.67	66.67	66.67	66.67	83.33	83.33	83.33
50.91	70.91	70.91	60.00	61.82	65.45	76.36	74.55	70.91	70.91	70.91
96.55	97.50	95.12	94.29	94.44	94.74	95.45	95.35	97.50	97.50	97.50
15.63	23.81	20.00	15.38	16.00	17.39	23.53	22.22	23.81	23.81	23.81
54.10	72.13	70.49	60.66	62.30	65.57	75.41	73.77	72.13	72.13	72.13
Confusion Matrix										
2827	3916	3916	3322	3421	3619	4213	4114	3916	3916	3916
15	15	24	24	24	24	24	24	15	15	15

D. Appendix IV - Machine learning results

Table D.185: Momentaneous_Investigation_Traditional_nextEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.63	0.53	NA	0.57	0.60	0.67	0.71	NA	0.53	0.50	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	100.00	NA	83.33	50.00	66.67	83.33	NA	100.00	100.00	100.00
60.00	7.27	NA	38.18	72.73	65.45	63.64	NA	7.27	0.00	9.09
94.29	100.00	NA	95.45	93.02	94.74	97.22	NA	100.00	NaN	100.00
15.38	10.53	NA	12.82	16.67	17.39	20.00	NA	10.53	9.84	10.71
60.66	16.39	NA	42.62	70.49	65.57	65.57	NA	16.39	9.84	18.03
Confusion Matrix										
3322	451	NA	2134	4015	3619	3520	NA	451	055	550
24	06	NA	15	33	24	15	NA	06	06	06

Table D.186: Momentaneous_Investigation_kFold_PCA_nextEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.60	0.50	0.30	0.65	0.55	0.42	0.52	0.55	0.68	0.66
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
42.11	47.37	36.84	10.53	57.89	36.84	26.32	36.84	36.84	68.42	63.16
88.24	88.24	80.88	95.59	85.29	85.29	95.59	89.71	91.18	80.88	80.88
84.51	85.71	82.09	79.27	87.88	82.86	82.28	83.56	83.78	90.16	88.71
50.00	52.94	35.00	40.00	52.38	41.18	62.50	50.00	53.85	50.00	48.00
78.16	79.31	71.26	77.01	79.31	74.71	80.46	78.16	79.31	78.16	77.01
Confusion Matrix										
608	608	5513	653	5810	5810	653	617	626	5513	5513
118	109	127	172	811	127	145	127	127	613	712

Table D.187: Momentaneous_Investigation_kFold_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.60	0.65	0.31	0.57	0.62	0.34	0.64	0.52	0.66	0.64
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
47.37	47.37	57.89	15.79	42.11	47.37	15.79	57.89	36.84	68.42	63.16
86.76	89.71	88.24	94.12	85.29	92.65	92.65	83.82	91.18	77.94	80.88
85.51	85.92	88.24	80.00	84.06	86.30	79.75	87.69	83.78	89.83	88.71
50.00	56.25	57.89	42.86	44.44	64.29	37.50	50.00	53.85	46.43	48.00
78.16	80.46	81.61	77.01	75.86	82.76	75.86	78.16	79.31	75.86	77.01
Confusion Matrix										
599	617	608	644	5810	635	635	5711	626	5315	5513
109	109	811	163	118	109	163	811	127	613	712

Table D.188: Momentaneous_Investigation_LOO_PCA_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.39	0.40	0.43	0.45	0.42	0.39	0.38	0.42	0.41	0.48	0.49
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
5.26	5.26	10.53	5.26	10.53	5.26	0.00	5.26	5.26	26.32	26.32
72.06	76.47	75.00	89.71	72.06	73.53	88.24	82.35	80.88	69.12	72.06
73.13	74.29	75.00	77.22	74.24	73.53	75.95	75.68	75.34	77.05	77.78
5.00	5.88	10.53	12.50	9.52	5.26	0.00	7.69	7.14	19.23	20.83
57.47	60.92	60.92	71.26	58.62	58.62	68.97	65.52	64.37	59.77	62.07
Confusion Matrix										
4919	5216	5117	617	4919	5018	608	5612	5513	4721	4919
181	181	172	181	172	181	190	181	181	145	145

Table D.189: Momentaneous_Investigation_LOO_nextEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.47	0.46	0.47	0.54	0.52	0.50	0.54	0.53	0.52	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
21.05	15.79	15.79	5.26	26.32	21.05	10.53	31.58	15.79	31.58	31.58
79.41	77.94	76.47	92.65	80.88	82.35	89.71	76.47	88.24	72.06	75.00
78.26	76.81	76.47	77.78	79.71	78.87	78.21	80.00	78.95	79.03	79.69
22.22	16.67	15.79	16.67	27.78	25.00	22.22	27.27	27.27	24.00	26.09
66.67	64.37	63.22	73.56	68.97	68.97	72.41	66.67	72.41	63.22	65.52
Confusion Matrix										
5414	5315	5216	635	5513	5612	617	5216	608	4919	5117
154	163	163	181	145	154	172	136	163	136	136

For label highestEDSS (0/1-(<3)/($\geq 3)$):
Features before selection: Optic Pathways, Spinal Cord, MS Course, Age Visit, Years since Onset, Last Sensory, Gender, Last Hospital.

Excluded features: Last EDSS.
Final features: Spinal Cord, Age Visit, Years Since Onset.
Table D.190: Momentaneous_Investigation_Traditional_PCA_highestEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.76	0.76	0.76	0.59	0.61	0.71	0.71	0.75	0.76	0.74	0.74
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	71.43	71.43	42.86	50.00	64.29	64.29	64.29	71.43	64.29	64.29
63.64	81.82	81.82	72.73	72.73	81.82	81.82	81.82	81.82	81.82	81.82
77.78	69.23	69.23	50.00	53.33	64.29	64.29	64.29	69.23	64.29	64.29
75.00	83.33	83.33	66.67	70.00	81.82	81.82	81.82	83.33	81.82	81.82
76.00	76.00	76.00	56.00	60.00	72.00	72.00	72.00	76.00	72.00	72.00
Confusion Matrix										
74	92	92	83	83	92	92	92	92	92	92
212	410	410	86	77	59	59	59	410	59	59

D. Appendix IV - Machine learning results

Table D.191: Momentaneous_Investigation_Traditional_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.72	0.53	0.74	0.59	0.71	0.72	0.70	0.72	0.53	0.50	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	100.00	78.57	92.86	78.57	71.43	78.57	92.86	100.00	100.00	100.00
63.64	9.09	72.73	18.18	63.64	72.73	63.64	54.55	9.09	0.00	9.09
77.78	100.00	72.73	66.67	70.00	66.67	70.00	85.71	100.00	NaN	100.00
75.00	58.33	78.57	59.09	73.33	76.92	73.33	72.22	58.33	56.00	58.33
76.00	60.00	76.00	60.00	72.00	72.00	72.00	76.00	60.00	56.00	60.00
Confusion Matrix										
74	110	83	29	74	83	74	65	110	011	110
212	014	311	113	311	410	311	113	014	014	014

Table D.192: Momentaneous_Investigation_kFold_PCA_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.78	0.75	0.77	0.75	0.77	0.76	0.77	0.77	0.75	0.75	0.75
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	68.89	80.00	77.78	75.56	77.78	80.00	80.00	68.89	66.67	66.67
76.19	78.57	71.43	69.05	76.19	73.81	73.81	71.43	78.57	83.33	80.95
78.05	70.21	76.92	74.36	74.42	75.61	77.50	76.92	70.21	70.00	69.39
78.26	77.50	75.00	72.92	77.27	76.09	76.60	75.00	77.50	81.08	78.95
78.16	73.56	75.86	73.56	75.86	75.86	77.01	75.86	73.56	74.71	73.56
Confusion Matrix										
3210	339	3012	2913	3210	3111	3111	3012	339	357	348
936	1431	936	1035	1134	1035	936	936	1431	1530	1530

Table D.193: Momentaneous_Investigation_kFold_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.71	0.74	0.76	0.79	0.83	0.78	0.75	0.74	0.74	0.68	0.74
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
68.89	68.89	73.33	77.78	84.44	80.00	71.11	69.57	68.89	51.11	68.89
71.43	78.57	78.57	80.95	80.95	73.81	76.19	78.57	78.57	83.33	78.57
68.18	70.21	73.33	77.27	82.93	77.50	71.11	70.21	70.21	61.40	70.21
72.09	77.50	78.57	81.40	82.61	76.60	76.19	78.05	77.50	76.67	77.50
70.11	73.56	75.86	79.31	82.76	77.01	73.56	73.86	73.56	66.67	73.56
Confusion Matrix										
3012	339	339	348	348	3111	3210	339	339	357	339
1431	1431	1233	1035	738	936	1332	1431	1431	2223	1431

Table D.194: Momentaneous_Investigation_LOO_PCA_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.48	0.40	0.43	0.45	0.44	0.40	0.41	0.48	0.56	0.57
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
53.33	42.22	46.67	53.33	44.44	46.67	44.44	46.67	42.22	44.44	48.89
33.33	54.76	33.33	33.33	45.24	40.48	35.71	35.71	54.76	66.67	64.29
40.00	46.94	36.84	40.00	43.18	41.46	37.50	38.46	46.94	52.83	54.00
46.15	50.00	42.86	46.15	46.51	45.65	42.55	43.75	50.00	58.82	59.46
43.68	48.28	40.23	43.68	44.83	43.68	40.23	41.38	48.28	55.17	56.32
Confusion Matrix										
1428	2319	1428	1428	1923	1725	1527	1527	2319	2814	2715
2124	2619	2421	2124	2520	2421	2520	2421	2619	2520	2322

Table D.195: Momentaneous_Investigation_LOO_highestEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.3915	0.4722	0.4945	0.4603	0.5167	0.4452	0.4715	0.4030	0.4722	0.5377	0.5192
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
35.56	44.44	48.89	44.44	53.33	51.11	46.67	35.56	44.44	37.78	46.67
42.86	50.00	50.00	47.62	50.00	38.10	47.62	45.24	50.00	69.05	57.14
38.30	45.65	47.73	44.44	50.00	42.11	45.45	39.58	45.65	50.88	50.00
40.00	48.78	51.16	47.62	53.33	46.94	48.84	41.03	48.78	56.67	53.85
39.08	47.13	49.43	45.98	51.72	44.83	47.13	40.23	47.13	52.87	51.72
Confusion Matrix										
1824	2121	2121	2022	2121	1626	2022	1923	2121	2913	2418
2916	2520	2322	2520	2124	2223	2421	2916	2520	2817	2421

For label highestEDSS (0/1-(<5)/($\geq 5)$):
Features before selection: Optic Pathways, Spinal Cord, MS Course, Age Visit, Years since Onset, Last Sensory, Gender, Last Hospital.

Excluded features: Last EDSS.
Final features: Spinal Cord, MS Course, Age Visit, Gender.
Table D.196: Momentaneous_Investigation_Traditional_PCA_highestEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.75	0.83	0.78	0.80	0.70	0.75	0.76	0.82	0.83	0.81	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	85.71	85.71	85.71	71.43	85.71	71.43	85.71	85.71	85.71	85.71
63.04	78.26	73.91	80.43	71.74	71.74	73.91	76.09	78.26	78.26	76.09
96.67	97.30	97.14	97.37	94.29	97.06	94.44	97.22	97.30	97.30	97.22
26.09	37.50	33.33	40.00	27.78	31.58	29.41	35.29	37.50	37.50	35.29
66.04	79.25	75.47	81.13	71.70	73.58	73.58	77.36	79.25	79.25	77.36
Confusion Matrix										
2917	3610	3412	379	3313	3313	3412	3511	3610	3610	3511
16	16	16	16	25	16	25	16	16	16	16

D. Appendix IV - Machine learning results

Table D.197: Momentaneous_Investigation_Traditional_highestEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.72	0.53	NA	0.61	0.70	0.70	0.72	NA	0.53	0.51	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
71.43	100.00	NA	85.71	85.71	85.71	85.71	NA	100.00	100.00	100.00
67.39	8.70	NA	32.61	60.87	58.70	58.70	NA	8.70	2.17	8.70
93.94	100.00	NA	93.75	96.55	96.43	96.43	NA	100.00	100.00	100.00
25.00	14.29	NA	16.22	25.00	24.00	24.00	NA	14.29	13.46	14.29
67.92	20.75	NA	39.62	64.15	62.26	62.26	NA	20.75	15.09	20.75
Confusion Matrix										
3115	442	NA	1531	2818	2719	2719	NA	442	145	442
25	07	NA	16	16	16	16	NA	07	07	07

Table D.198: Momentaneous_Investigation_kFold_PCA_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.77	0.78	0.76	0.66	0.75	0.76	0.69	0.75	0.78	0.77	0.78
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
75.00	75.00	70.83	50.00	70.83	70.83	54.17	70.83	75.00	75.00	75.00
88.89	88.89	90.48	93.65	90.48	87.50	87.30	87.30	88.89	87.30	87.30
90.32	90.32	89.06	83.10	89.06	88.89	83.33	88.71	90.32	90.16	90.16
72.00	72.00	73.91	75.00	73.91	68.00	61.90	68.00	72.00	69.23	69.23
85.06	85.06	85.06	81.61	85.06	82.95	78.16	82.76	85.06	83.91	83.91
Confusion Matrix										
567	567	576	594	576	567	558	558	567	558	558
618	618	717	1212	717	717	1113	717	618	618	618

Table D.199: Momentaneous_Investigation_kFold_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.74	0.77	0.74	0.76	0.82	0.78	0.70	0.77	0.77	0.77	0.77
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	75.00	66.67	62.50	83.33	70.83	62.50	75.00	75.00	75.00	75.00
88.89	88.89	90.48	95.24	93.65	90.48	85.71	88.89	88.89	88.89	88.89
87.50	90.32	87.69	86.96	93.65	89.06	85.71	90.32	90.32	90.32	90.32
69.57	72.00	72.73	83.33	83.33	73.91	62.50	72.00	72.00	72.00	72.00
82.76	85.06	83.91	86.21	90.80	85.06	79.31	85.06	85.06	85.06	85.06
Confusion Matrix										
567	567	576	603	594	576	549	567	567	567	567
816	618	816	915	420	717	915	618	618	618	618

Table D.200: Momentaneous_Investigation_LOO_PCA_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.42	0.45	0.41	0.45	0.46	0.39	0.43	0.45	0.45	0.52	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
16.67	20.83	12.50	12.50	20.83	12.50	16.67	20.83	20.83	33.33	33.33
66.67	68.25	69.84	79.37	71.43	65.08	69.84	68.25	68.25	71.43	71.43
67.74	69.35	67.69	70.42	70.31	66.13	68.75	69.35	69.35	73.77	73.77
16.00	20.00	13.64	18.75	21.74	12.00	17.39	20.00	20.00	30.77	30.77
52.87	55.17	54.02	60.92	57.47	50.57	55.17	55.17	55.17	60.92	60.92
Confusion Matrix										
4221	4320	4419	5013	4518	4122	4419	4320	4320	4518	4518
204	195	213	213	195	213	204	195	195	168	168

Table D.201: Momentaneous_Investigation_LOO_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.50	0.50	0.49	0.54	0.54	0.47	0.50	0.50	0.45	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.00	29.17	25.00	20.83	33.33	33.33	25.00	29.17	29.17	20.83	20.83
73.02	71.43	74.60	77.78	74.60	74.60	69.84	71.43	71.43	68.25	68.25
71.88	72.58	72.31	72.06	74.60	74.60	70.97	72.58	72.58	69.35	69.35
26.09	28.00	27.27	26.32	33.33	33.33	24.00	28.00	28.00	20.00	20.00
59.77	59.77	60.92	62.07	63.22	63.22	57.47	59.77	59.77	55.17	55.17
Confusion Matrix										
$\begin{gathered} 4617 \\ 186 \end{gathered}$	$\begin{gathered} 4518 \\ 177 \end{gathered}$	$\begin{gathered} 4716 \\ 186 \end{gathered}$	$\begin{gathered} 4914 \\ 195 \end{gathered}$	$\begin{gathered} 4716 \\ 168 \end{gathered}$	$\begin{gathered} 4716 \\ 168 \end{gathered}$	$\begin{gathered} 4419 \\ 186 \end{gathered}$	$\begin{gathered} 4518 \\ 177 \end{gathered}$	4518 177	$\begin{gathered} 4320 \\ 195 \end{gathered}$	$\begin{gathered} 4320 \\ 195 \end{gathered}$

For label first2EDSS $(0 / 1-(<3) /(\geq 3))$:
Features before selection: Supratentorial, Optic Pathways, Brainstem-Cerebellum, Spinal Cord, Evoked Potentials, MS Course, Years since Onset, Last Pyramidal, Last Sensory, Last Hospital.

Excluded features: Last EDSS.
Final features: Supratentorial, Spinal Cord, MS Course, Years Since Onset, Last Hospital.
D. Appendix IV - Machine learning results

Table D.202: Momentaneous_Investigation_Traditional_PCA_first2EDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.79	0.84	0.78	0.81	0.81	0.81	0.78	0.76	0.84	0.83	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	85.71	85.71	85.71	85.71	85.71	85.71	85.71	100.00	87.50	100.00
70.00	72.00	70.00	70.00	72.00	72.00	68.00	60.00	72.00	72.00	72.00
97.22	97.30	97.22	97.22	97.30	97.30	97.14	96.77	100.00	97.30	100.00
28.57	30.00	28.57	28.57	30.00	30.00	27.27	23.08	33.33	33.33	33.33
71.93	73.68	71.93	71.93	73.68	73.68	70.18	63.16	75.44	74.14	75.44
Confusion Matrix										
$\begin{gathered} 3812 \\ 16 \end{gathered}$	$\begin{gathered} 3614 \\ 16 \end{gathered}$	$\begin{gathered} 3515 \\ 16 \end{gathered}$	$\begin{gathered} 3515 \\ 16 \end{gathered}$	$\begin{gathered} 3614 \\ 16 \end{gathered}$	$\begin{gathered} 3614 \\ 16 \end{gathered}$	$\begin{gathered} 3416 \\ 16 \end{gathered}$	$\begin{gathered} 3020 \\ 16 \end{gathered}$	$\begin{gathered} 3614 \\ 07 \end{gathered}$	3614 17	$\begin{gathered} 3614 \\ 07 \end{gathered}$

Table D.203: Momentaneous_Investigation_Traditional_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.77	NA	NA	0.60	0.78	0.76	0.74	NA	0.74	0.58	0.74
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	NA	NA	100.00	100.00	100.00	100.00	NA	100.00	100.00	100.00
72.00	NA	NA	20.00	60.00	56.00	50.00	NA	52.00	18.00	54.00
97.30	NA	NA	100.00	100.00	100.00	100.00	NA	100.00	100.00	100.00
30.00	NA	NA	14.89	25.93	24.14	21.88	NA	22.58	14.58	23.33
73.68	NA	NA	29.82	64.91	61.40	56.14	NA	57.89	28.07	59.65
Confusion Matrix										
3614	NA	NA	1040	3020	2822	2525	NA	2624	941	2723
16	NA	NA	07	07	07	07	NA	07	07	07

Table D.204: Momentaneous_Investigation_kFold_PCA_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.74	0.77	0.73	0.73	0.77	0.78	0.72	0.68	0.77	0.78	0.78
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
68.18	73.91	63.64	63.64	72.73	68.18	63.64	54.55	72.73	86.36	86.36
90.77	92.31	93.85	98.46	93.85	95.38	95.38	93.85	93.85	83.08	83.08
89.39	90.91	88.41	88.89	91.04	89.86	88.57	85.92	91.04	94.74	94.74
71.43	77.27	77.78	93.33	80.00	83.33	82.35	75.00	80.00	63.33	63.33
85.06	87.50	86.21	89.66	88.51	88.51	87.36	83.91	88.51	83.91	83.91
Confusion Matrix										
596	605	614	641	614	623	623	614	614	5411	5411
715	617	814	814	616	715	814	1012	616	319	319

Table D.205: Momentaneous_Investigation_kFold_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.71	0.77	NA	0.75	0.72	0.73	0.74	NA	0.77	0.78	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
68.18	72.73	NA	68.18	68.18	68.18	72.73	NA	72.73	90.91	95.45
89.23	93.85	NA	93.85	87.69	90.77	90.77	NA	95.38	83.08	89.23
89.23	91.04	NA	89.71	89.06	89.39	90.77	NA	91.18	96.43	98.31
68.18	80.00	NA	78.95	65.22	71.43	72.73	NA	84.21	64.52	75.00
83.91	88.51	NA	87.36	82.76	85.06	86.21	NA	89.66	85.06	90.80
Confusion Matrix										
587	614	NA	614	578	596	596	NA	623	5411	587
715	616	NA	715	715	715	616	NA	616	220	121

Table D.206: Momentaneous_Investigation_LOO_PCA_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.40	0.47	0.41	0.39	0.43	0.47	0.42	0.43	0.47	0.50	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
9.09	18.18	9.09	4.55	13.64	18.18	9.09	9.09	18.18	36.36	45.45
72.31	75.38	75.38	80.00	73.85	76.92	78.46	80.00	75.38	64.62	67.69
70.15	73.13	71.01	71.23	71.64	73.53	71.83	72.22	73.13	75.00	78.57
10.00	20.00	11.11	7.14	15.00	21.05	12.50	13.33	20.00	25.81	32.26
56.32	60.92	58.62	60.92	58.62	62.07	60.92	62.07	60.92	57.47	62.07
Confusion Matrix										
4718	4916	4916	5213	4817	5015	5114	5213	4916	4223	4421
202	184	202	211	193	184	202	202	184	148	1210

Table D.207: Momentaneous_Investigation_LOO_first2EDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.52	NA	0.50	0.54	0.49	0.49	NA	0.52	0.55	0.57
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
27.27	22.73	NA	22.73	31.82	22.73	22.73	NA	22.73	45.45	45.45
73.85	80.00	NA	76.92	75.38	75.38	75.38	NA	80.00	66.15	70.77
75.00	75.36	NA	74.63	76.56	74.24	74.24	NA	75.36	78.18	79.31
26.09	27.78	NA	25.00	30.43	23.81	23.81	NA	27.78	31.25	34.48
62.07	65.52	NA	63.22	64.37	62.07	62.07	NA	65.52	60.92	64.37
Confusion Matrix										
4817	5213	NA	5015	4916	4916	4916	NA	5213	4322	4619
166	175	NA	175	157	175	175	NA	175	1210	1210

For label first2EDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with first2EDSS ≥ 5 was minimal.

For label tendencyEDSS (0/1-(Down/Equal \& Up)):
D. Appendix IV - Machine learning results

It was not performed since the features used in standard procedure were not considered obvious.

For label mediumEDSS $(0 / 1-(<3) /(\geq 3))$:
Final features: Age of Diagnosis, MS Course, Years since Onset.
Table D.208: Momentaneous_Investigation_Traditional_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.57	0.58	0.57	0.57	0.57	0.55	0.59	0.54	0.59	0.41
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	90.00	90.00	90.00	90.00	100.00	100.00	100.00	100.00	25.71
22.22	14.81	22.22	25.93	22.22	18.52	11.11	22.22	11.11	22.22	57.69
100.00	100.00	85.71	87.50	85.71	83.33	100.00	100.00	100.00	100.00	53.57
32.26	30.30	30.00	31.03	30.00	29.03	29.41	32.26	29.41	32.26	29.03
43.24	37.84	40.54	43.24	40.54	37.84	35.14	43.24	35.14	43.24	44.83
Confusion Matrix										
621	423	621	720	621	522	324	621	324	621	3022
010	010	19	19	19	19	010	010	010	010	269

Table D.209: Momentaneous_Investigation_Traditional_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.72	NA	0.55	0.62	0.58	0.56	NA	0.72	0.62	0.72	0.41
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
90.91	NA	100.00	90.00	100.00	100.00	NA	90.91	100.00	90.91	25.71
48.15	NA	11.11	29.63	18.52	11.11	NA	48.15	25.93	48.15	57.69
92.86	NA	100.00	88.89	100.00	100.00	NA	92.86	100.00	92.86	53.57
41.67	NA	29.41	32.14	31.25	29.41	NA	41.67	33.33	41.67	29.03
60.53	NA	35.14	45.95	40.54	35.14	NA	60.53	45.95	60.53	44.83
Confusion Matrix										
1017	1314	NA	324	819	522	324	NA	1314	720	1314
28	110	NA	010	19	010	010	NA	110	010	110

Table D.210: Momentaneous_Investigation_kFold_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.88	0.83	0.83	0.86	0.83	0.88	0.88	0.83	0.83	0.81	0.84
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
82.86	71.43	71.43	74.29	77.14	85.71	82.86	71.43	71.43	71.43	74.29
92.31	94.23	94.23	96.15	88.46	92.31	94.23	94.23	94.23	90.38	94.23
88.89	83.05	83.05	84.75	85.19	90.57	89.09	83.05	83.05	82.46	84.48
87.88	89.29	89.29	92.86	81.82	88.24	90.63	89.29	89.29	83.33	89.66
88.51	85.06	85.06	87.36	83.91	89.66	89.66	85.06	85.06	82.76	86.21
Confusion Matrix										
484	493	493	502	466	484	493	493	493	493	493
629	1025	1025	926	827	530	629	1025	1025	926	926

Table D.211: Momentaneous_Investigation_kFold_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.87	0.87	NA	0.86	0.90	0.88	0.91	NA	NA	0.83	0.87
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
91.43	74.29	NA	80.00	88.89	82.86	82.86	NA	NA	71.43	80.00
86.54	96.15	NA	90.38	90.38	92.31	96.15	NA	NA	94.23	92.31
93.75	84.75	NA	87.04	92.16	88.89	89.29	NA	NA	83.05	87.27
82.05	92.86	NA	84.85	86.49	87.88	93.55	NA	NA	89.29	87.50
88.51	87.36	NA	86.21	89.77	88.51	90.80	NA	NA	85.06	87.36
Confusion Matrix										
457	502	NA	475	475	484	502	NA	NA	493	484
332	926	NA	728	432	629	629	NA	NA	1025	728

Table D.212: Momentaneous_Investigation_LOO_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.52	0.52	0.51	0.48	0.51	0.49	0.52	0.52	0.50	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
34.29	34.29	34.29	34.29	34.29	40.00	37.14	34.29	34.29	34.29	34.29
59.62	69.23	69.23	67.31	61.54	61.54	61.54	69.23	69.23	65.38	67.31
57.41	61.02	61.02	60.34	58.18	60.38	59.26	61.02	61.02	59.65	60.34
36.36	42.86	42.86	41.38	37.50	41.18	39.39	42.86	42.86	40.00	41.38
49.43	55.17	55.17	54.02	50.57	52.87	51.72	55.17	55.17	52.87	54.02
Confusion Matrix										
3121	3616	3616	3517	3220	3220	3220	3616	3616	3418	3517
2312	2312	2312	2312	2312	2114	2213	2312	2312	2312	2312

Table D.213: Momentaneous_Investigation_LOO_mediumEDSS ≥ 3

Classifier								
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM
AUC								
0.38	0.48	0.00	0.47	0.48	0.49	0.50	0.00	0.00
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%								
31.43	31.43	0.00	34.29	40.00	37.14	37.14	0.00	0.00
44.23	65.38	100.00	59.62	55.77	61.54	63.46	100.00	100.00
48.94	58.62	59.77	57.41	58.00	59.26	60.00	59.77	59.77
27.50	37.93	NaN	36.36	37.84	39.39	40.63	NaN	NaN
39.08	51.72	59.77	49.43	49.43	51.72	52.87	59.77	59.77
Confusion Matrix								
2329	3418	520	3121	2923	3220	3319	520	520
2411	2411	350	2312	2114	2213	2213	350	350

For label nextEDSS $(0 / 1-(<3) /(\geq 3))$:
The via pattern recognition study was not performed since the number of patients with currentEDSS ≥ 5 was minimal.

D.1.4 Momentaneous with past Set

D.1.4.1 Standard procedure

For label msCourse (0/1-RR/SP):
Final features: Age Visit, Years since Onset, EDSS Medium Value/Year, EDSS std/year, EDSS std of variance, Pyramidal 1st year.

Table D.214: Momentaneous_Past_Standard_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.70	0.80	0.77	0.75	0.70	0.69	0.68	0.68	0.80	0.81	0.82
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	85.71	85.71	85.71	85.71	85.71	85.71	100.00	85.71	85.71	85.71
54.55	70.45	70.45	65.91	52.27	45.45	43.18	36.36	70.45	72.73	70.45
96.00	96.88	96.88	96.67	95.83	95.24	95.00	100.00	96.88	96.97	96.88
23.08	31.58	31.58	28.57	22.22	20.00	19.35	20.00	31.58	33.33	31.58
58.82	72.55	72.55	68.63	56.86	50.98	49.02	45.10	72.55	74.51	72.55
Confusion Matrix										
2420	3113	3113	2915	2321	2024	1925	1628	3113	3212	3113
16	16	16	16	16	16	16	07	16	16	16

Table D.215: Momentaneous_Past_Standard_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.52	NA	0.54	0.73	0.77	0.76	NA	0.52	0.50	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	57.14	71.43	71.43	NA	100.00	100.00	100.00
13.64	4.55	NA	9.09	84.09	81.82	77.27	NA	4.55	0.00	2.27
100.00	100.00	NA	100.00	92.50	94.74	94.44	NA	100.00	NaN	100.00
15.56	14.29	NA	14.89	36.36	38.46	33.33	NA	14.29	13.73	14.00
25.49	17.65	NA	21.57	80.39	80.39	76.47	NA	17.65	13.73	15.69
Confusion Matrix										
638	242	NA	440	377	368	3410	NA	242	044	143
07	07	NA	07	34	25	25	NA	07	07	07

Table D.216: Momentaneous_Past_Standard_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.67	0.70	0.75	0.57	0.69	0.67	0.63	0.73	0.70	0.71	0.78
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
56.00	60.00	80.00	32.00	60.00	52.00	44.00	72.00	56.00	64.00	84.00
83.87	85.48	79.03	95.16	87.10	85.48	88.71	80.65	87.10	83.87	83.87
82.54	84.13	90.74	77.63	84.38	81.54	79.71	87.72	83.08	85.25	92.86
58.33	62.50	60.61	72.73	65.22	59.09	61.11	60.00	63.64	61.54	67.74
75.86	78.16	79.31	77.01	79.31	75.86	75.86	78.16	78.16	78.16	83.91
Confusion Matrix										
5210	539	4913	593	548	539	557	5012	548	5210	5210
1114	1015	520	178	1015	1213	1411	718	1114	916	421

Table D.217: Momentaneous_Past_Standard_kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.74	0.77	0.77	0.79	0.80	0.76	0.74	0.78	0.77	0.75	0.82
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
68.00	72.00	76.00	72.00	72.00	64.00	64.00	76.00	68.00	65.38	84.00
87.10	91.94	87.10	95.16	96.77	95.16	93.55	88.71	91.94	88.71	90.32
87.10	89.06	90.00	89.39	89.55	86.76	86.57	90.16	87.69	85.94	93.33
68.00	78.26	70.37	85.71	90.00	84.21	80.00	73.08	77.27	70.83	77.78
81.61	86.21	83.91	88.51	89.66	86.21	85.06	85.06	85.06	81.82	88.51
Confusion Matrix										
548	575	548	593	602	593	584	557	575	557	566
817	718	619	718	718	916	916	619	817	917	421

Table D.218: Momentaneous_Past_Standard_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.45	0.49	0.49	0.48	0.52	0.48	0.48	0.45	0.53	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
12.00	28.00	48.00	12.00	12.00	28.00	16.00	32.00	28.00	36.00	32.00
66.13	74.19	66.13	87.10	67.74	75.81	80.65	64.52	74.19	70.97	61.29
65.08	71.88	75.93	71.05	65.63	72.31	70.42	70.18	71.88	73.33	69.09
12.50	30.43	36.36	27.27	13.04	31.82	25.00	26.67	30.43	33.33	25.00
50.57	60.92	60.92	65.52	51.72	62.07	62.07	55.17	60.92	60.92	52.87
Confusion Matrix										
4121	4616	4121	548	4220	4715	5012	4022	4616	4418	3824
223	187	1312	223	223	187	214	178	187	169	178

D. Appendix IV - Machine learning results

Table D.219: Momentaneous_Past_Standard_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.52	0.53	0.50	0.51	0.49	0.51	0.49	0.52	0.56	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
36.00	28.00	36.00	24.00	24.00	20.00	24.00	28.00	28.00	36.00	40.00
70.97	75.81	70.97	75.81	77.42	79.03	77.42	69.35	75.81	75.81	72.58
73.33	72.31	73.33	71.21	71.64	71.01	71.64	70.49	72.31	74.60	75.00
33.33	31.82	33.33	28.57	30.00	27.78	30.00	26.92	31.82	37.50	37.04
60.92	62.07	60.92	60.92	62.07	62.07	62.07	57.47	62.07	64.37	63.22
Confusion Matrix										
4418	4715	4418	4715	4814	4913	4814	4319	4715	4715	4517
169	187	169	196	196	205	196	187	187	169	1510

For label currentEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: Age visit, EDSS Medium Value/Year, EDSS increase first 2 years.

Table D.220: Momentaneous_Past_Standard_Traditional_PCA_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.73	0.85	0.80	0.82	0.75	0.76	0.75	0.81	0.85	0.83	0.84
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
90.00	90.00	90.00	90.00	80.00	80.00	80.00	90.00	90.00	80.00	90.00
55.56	81.48	74.07	77.78	74.07	74.07	70.37	77.78	81.48	85.19	81.48
93.75	95.65	95.24	95.45	90.91	90.91	90.48	95.45	95.65	92.00	95.65
42.86	64.29	56.25	60.00	53.33	53.33	50.00	60.00	64.29	66.67	64.29
64.86	83.78	78.38	81.08	75.68	75.68	72.97	81.08	83.78	83.78	83.78
Confusion Matrix										
$\begin{gathered} 1512 \\ 19 \end{gathered}$	$\begin{gathered} 225 \\ 19 \end{gathered}$	$\begin{gathered} 207 \\ 19 \end{gathered}$	$\begin{gathered} 216 \\ 19 \end{gathered}$	$\begin{gathered} 207 \\ 28 \end{gathered}$	$\begin{gathered} 207 \\ 28 \end{gathered}$	$\begin{gathered} 198 \\ 28 \end{gathered}$	$\begin{gathered} 216 \\ 19 \end{gathered}$	$\begin{gathered} 225 \\ 19 \end{gathered}$	$\begin{gathered} 234 \\ 28 \end{gathered}$	$\begin{gathered} 225 \\ 19 \end{gathered}$

Table D.221: Momentaneous_Past_Standard_Traditional_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.52	0.54	0.61	0.66	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	0.00	3.70	7.41	22.22	33.33	0.00	0.00	0.00	0.00
NaN	NaN	NaN	100.00	100.00	100.00	100.00	NaN	NaN	NaN	NaN
27.03	27.03	27.03	27.78	28.57	32.26	35.71	27.03	27.03	27.03	27.03
27.03	27.03	27.03	29.73	32.43	43.24	51.35	27.03	27.03	27.03	27.03
Confusion Matrix										
027	027	027	126	225	621	918	027	027	027	027
010	010	010	010	010	010	010	010	010	010	010

Table D.222: Momentaneous_Past_Standard_kFold_PCA_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.77	0.83	0.77	0.77	0.81	0.78	0.80	0.77	0.83	0.79	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
68.57	71.43	74.29	62.86	74.29	65.71	68.57	60.00	71.43	65.71	80.00
84.62	92.31	78.85	86.54	88.46	90.38	90.38	90.38	92.31	90.38	88.46
80.00	82.76	82.00	77.59	83.64	79.66	81.03	77.05	82.76	79.66	86.79
75.00	86.21	70.27	75.86	81.25	82.14	82.76	80.77	86.21	82.14	82.35
78.16	83.91	77.01	77.01	82.76	80.46	81.61	78.16	83.91	80.46	85.06
Confusion Matrix										
448	484	4111	457	466	475	475	475	484	475	466
1124	1025	926	1322	926	1223	1124	1421	1025	1223	728

Table D.223: Momentaneous_Past_Standard_kFold_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.92	0.92	0.96	0.96	0.94	0.96	0.94	0.97	NA	0.91	0.94
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
97.14	82.86	97.14	94.44	97.14	94.29	88.57	97.14	NA	85.71	85.71
90.38	100.00	96.15	96.15	94.23	96.15	98.08	98.08	NA	96.15	100.00
97.92	89.66	98.04	96.15	98.00	96.15	92.73	98.08	NA	90.91	91.23
87.18	100.00	94.44	94.44	91.89	94.29	96.88	97.14	NA	93.75	100.00
93.10	93.10	96.55	95.45	95.40	95.40	94.25	97.70	NA	91.95	94.25
Confusion Matrix										
475	520	502	502	493	502	511	511	NA	502	520
134	629	134	234	134	233	431	134	NA	530	530

Table D.224: Momentaneous_Past_Standard_LOO_PCA_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.37	0.41	0.40	0.39	0.36	0.37	0.34	0.39	0.41	0.42	0.37
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	22.86	31.43	20.00	20.00	17.14	14.29	17.14	22.86	22.86	22.86
55.77	59.62	48.08	59.62	53.85	59.62	55.77	63.46	59.62	63.46	51.92
50.88	53.45	51.02	52.54	50.00	51.67	49.15	53.23	53.45	55.00	50.00
23.33	27.59	28.95	25.00	22.58	22.22	17.86	24.00	27.59	29.63	24.24
41.38	44.83	41.38	43.68	40.23	42.53	39.08	44.83	44.83	47.13	40.23
Confusion Matrix										
2923	3121	2527	3121	2824	3121	2923	3319	3121	3319	2725
287	278	2411	287	287	296	305	296	278	278	278

D. Appendix IV - Machine learning results

Table D.225: Momentaneous_Past_Standard_LOO_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.57	0.58	0.58	0.60	0.61	0.60	0.59	NA	0.50	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
54.29	40.00	51.43	51.43	54.29	54.29	48.57	51.43	NA	37.14	31.43
59.62	73.08	65.38	65.38	65.38	67.31	71.15	67.31	NA	63.46	63.46
65.96	64.41	66.67	66.67	68.00	68.63	67.27	67.31	NA	60.00	57.89
47.50	50.00	50.00	50.00	51.35	52.78	53.13	51.43	NA	40.63	36.67
57.47	59.77	59.77	59.77	60.92	62.07	62.07	60.92	NA	52.87	50.57
Confusion Matrix										
3121	3814	3418	3418	3418	3517	3715	3517	NA	3319	3319
1619	2114	1718	1718	1619	1619	1817	1718	NA	2213	2411

For label currentEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Final features: EDSS Medium Value/Year, Ratio nb EDSS increase, Visual ratio.

Table D.226: Momentaneous_Past_Standard_Traditional_PCA_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.64	0.79	0.66	0.73	0.68	0.62	0.67	0.75	0.79	0.75	0.79
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	80.00	60.00	80.00	80.00	80.00	80.00	100.00	80.00	80.00	100.00
43.33	68.33	78.33	65.00	55.00	46.67	51.67	58.33	68.33	68.33	68.33
96.30	97.62	95.92	97.50	97.06	96.55	96.88	100.00	97.62	97.62	100.00
10.53	17.39	18.75	16.00	12.90	11.11	12.12	16.67	17.39	17.39	20.83
46.15	69.23	76.92	66.15	56.92	49.23	53.85	61.54	69.23	69.23	70.77
Confusion Matrix										
$\begin{gathered} 2634 \\ 14 \end{gathered}$	$\begin{gathered} 4119 \\ 14 \end{gathered}$	$\begin{gathered} 4713 \\ 23 \end{gathered}$	$\begin{gathered} 3921 \\ 14 \end{gathered}$	$\begin{array}{r} 3327 \\ 14 \end{array}$	$\begin{gathered} 2832 \\ 14 \end{gathered}$	$\begin{gathered} 3129 \\ 14 \end{gathered}$	$\begin{gathered} 3525 \\ 05 \end{gathered}$	$\begin{gathered} 4119 \\ 14 \end{gathered}$	$\begin{gathered} 4119 \\ 14 \end{gathered}$	$\begin{gathered} 4119 \\ 05 \end{gathered}$

Table D.227: Momentaneous_Past_Standard_Traditional_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	NA	NA	0.62	0.55	0.54	0.54	NA	0.51	0.53	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	NA	NA	100.00	80.00	100.00	100.00	NA	100.00	100.00	100.00
23.33	NA	NA	25.00	25.00	10.00	10.00	NA	1.69	8.33	1.67
93.33	NA	NA	100.00	93.75	100.00	100.00	NA	100.00	100.00	100.00
8.00	NA	NA	10.00	8.16	8.47	8.47	NA	7.94	8.33	7.81
27.69	NA	NA	30.77	29.23	16.92	16.92	NA	9.38	15.38	9.23
Confusion Matrix										
1446	NA	NA	1545	1545	654	654	NA	158	555	159
14	NA	NA	05	14	05	05	NA	05	05	05

Table D.228: Momentaneous_Past_Standard_kFold_PCA_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.57	0.56	0.33	0.67	0.48	0.41	0.54	0.45	0.66	0.70
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.25	43.75	50.00	18.75	68.75	31.25	25.00	43.75	31.25	68.75	87.50
84.51	90.14	83.10	95.77	92.96	88.73	92.96	91.55	91.55	84.51	78.87
84.51	87.67	88.06	83.95	92.96	85.14	84.62	87.84	85.53	92.31	96.55
31.25	50.00	40.00	50.00	68.75	38.46	44.44	53.85	45.45	50.00	48.28
74.71	81.61	77.01	81.61	88.51	78.16	80.46	82.76	80.46	81.61	80.46
Confusion Matrix										
6011	647	5912	683	665	638	665	656	656	6011	5615
115	97	88	133	511	115	124	97	115	511	214

Table D.229: Momentaneous_Past_Standard_kFold_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.69	0.82	NA	0.76	0.79	0.77	0.73	NA	0.78	0.75	0.78
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
68.75	93.75	NA	81.25	93.75	87.50	81.25	NA	81.25	93.75	100.00
95.77	95.77	NA	97.18	94.37	92.96	92.96	NA	97.18	87.32	90.14
93.15	98.55	NA	95.83	98.53	97.06	95.65	NA	95.83	98.41	100.00
78.57	83.33	NA	86.67	78.95	73.68	72.22	NA	86.67	62.50	69.57
90.80	95.40	NA	94.25	94.25	91.95	90.80	NA	94.25	88.51	91.95
Confusion Matrix										
683	683	NA	692	674	665	665	NA	692	629	647
511	115	NA	313	115	214	313	NA	313	115	016

Table D.230: Momentaneous_Past_Standard_LOO_PCA_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.47	0.41	0.40	0.39	0.39	0.40	0.44	0.45	0.47	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.00	12.50	6.25	0.00	0.00	0.00	0.00	6.25	6.25	18.75	18.75
71.83	81.69	73.24	88.73	78.87	78.87	87.32	83.10	85.92	73.24	63.38
80.95	80.56	77.61	79.75	77.78	77.78	79.49	79.73	80.26	80.00	77.59
16.67	13.33	5.00	0.00	0.00	0.00	0.00	7.69	9.09	13.64	10.34
63.22	68.97	60.92	72.41	64.37	64.37	71.26	68.97	71.26	63.22	55.17
Confusion Matrix										
5120	5813	5219	638	5615	5615	629	5912	6110	5219	4526
124	142	151	160	160	160	160	151	151	133	133

Table D.231: Momentaneous_Past_Standard_LOO_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	NA	NA	0.46	0.48	0.48	0.49	NA	0.47	0.46	0.43
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
12.50	NA	NA	12.50	18.75	18.75	18.75	NA	12.50	18.75	12.50
81.69	NA	NA	80.28	77.46	76.06	78.87	NA	81.69	70.42	70.42
80.56	NA	NA	80.28	80.88	80.60	81.16	NA	80.56	79.37	78.13
13.33	NA	NA	12.50	15.79	15.00	16.67	NA	13.33	12.50	8.70
68.97	NA	NA	67.82	66.67	65.52	67.82	NA	68.97	60.92	59.77
Confusion Matrix										
5813	NA	NA	5714	5516	5417	5615	NA	5813	5021	5021
142	NA	NA	142	133	133	133	NA	142	133	142

First feature selection process for nextEDSS:

Table D.232: Momentaneous_Past_Feature_Selection_Identification_nextEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	0	0	0	0	1	1	1	0	0	0	
Age of Onset	0	0	0	0	0	0	1	0	0	0	0	
Optic Pathways	0	1	1	0	0	0	1	0	1	0	1	1
Brainstem-Cerebellum	0	0	0	0	0	1	0	1	0	0	0	
Spinal Cord	0	1	1	1	0	1	0	0	1	0	1	2
Progression From Onset	0	0	0	0	0	0	0	0	1	0	0	
Age of Diagnosis	0	1	1	1	1	0	1	1	0	1	1	6
Years from Onset to Diagnosis	0	1	1	1	1	0	1	0	0	1	1	
MRI	0	0	0	0	0	0	1	0	0	0	0	
CSF	0	0	0	0	0	1	0	1	0	0	0	
Age at SP Diagnosis	0	1	1	1	1	0	0	0	1	1	1	1
Years from Diagnosis to SP	0	1	1	1	1	0	0	0	1	1	1	
Years from Diagnosis to Onset	0	1	1	1	1	0	0	0	1	1	1	$\mathbf{7}$
MS Course	0	1	1	1	1	1	0	0	1	1	1	
Age Visit	0	1	1	1	1	0	1	1	0	1	1	$\mathbf{7}$
Years since Onset	1	1	1	1	1	0	1	0	0	1	1	

Selected features: Optic Pathways, Spinal Cord, Age of Diagnosis, Years from Onset to Diagnosis, Age at SP Diagnosis, Years from Diagnosis to SP, Years from Diagnosis to Onset, MS Course, Age Visit, Years since Onset.

Table D.233: Momentaneous_Past_Feature_Selection_Visits_nextEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Nb of visits first 2 years	0	0	0	0	0	0	0	0	1	0	0	1
Suspected Relapses Ratio first 2 years	0	0	0	0	0	0	0	0	1	0	0	1
EDSS Medium Value/year	1	1	1	1	1	0	1	1	0	1	1	9
EDSS 1st year	0	1	1	1	1	0	1	0	0	1	1	7
EDSS first 2 years	1	1	1	1	1	0	1	0	0	1	1	8
EDSS std/year	0	1	1	1	1	0	0	0	1	1	1	7
EDSS 1st year std	0	0	0	0	0	0	1	0	0	0	0	1
EDSS first 2 years std	0	1	0	0	0	0	1	0	1	1	1	5
EDSS medium variation 1st year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS medium variation first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
EDSS std of variation 1st year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS std of variation first 2 years	0	0	0	0	0	0	1	0	1	1	0	3
EDSS Increase 1st Year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS Increase first 2 years	0	1	1	1	1	0	1	1	1	1	1	9
Ratio nb EDSS increase	0	1	1	1	1	0	1	0	1	1	1	8
Ratio nb EDSS decrease	0	0	0	0	0	0	1	0	0	0	0	1
Ratio nb EDSS decrease 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Ratio nb EDSS decrease first 2 years	0	0	0	0	0	0	1	0	1	1	0	3
Routine Visits Ratio 1st Year	0	0	0	0	0	1	0	0	0	0	0	1
Routine Visits first 2 years	0	0	0	0	0	1	1	0	0	0	0	2
No Years	0	1	1	1	1	0	0	0	0	0	1	5
Last Routine	0	0	0	0	0	1	0	0	0	0	0	1
Last Suspected	0	0	0	0	0	0	1	0	0	0	0	1
Last EDSS	1	1	1	1	1	0	1	1	0	1	1	9
Last Sympton	0	0	0	0	0	0	0	0	1	0	0	1

Selected features: Last EDSS.

Table D.234: Momentaneous_Past_Feature_Selection_Relapses_nextEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Relapses Per Year	0	1	1	0	0	0	0	1	0	1	1	5
Relapses 1st Year	0	0	0	0	0	0	1	0	0	0	0	1
Relapses first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Pyramidal ratio	0	1	1	1	1	0	0	0	0	1	1	6
Pyramidal 1st year	0	1	1	1	0	1	1	0	1	0	1	7
Pyramidal first 2 years	0	1	1	1	1	0	1	1	1	1	1	9
Brain Stem ratio	0	0	0	1	0	0	1	0	0	0	0	2
BrainStem 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Brain Stem first 2 years	0	1	0	1	0	0	1	1	0	0	1	5
Neuropsycho ratio	0	0	0	0	0	0	1	0	0	0	0	1
Neuropsycho 1st year	0	0	0	0	0	0	0	0	1	0	0	1
Neuropsycho first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Cerebellum 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Visual ratio	0	1	0	1	0	0	0	1	0	1	1	5
Visual 1st year	0	1	1	1	0	0	0	0	1	0	1	5
Visual first 2 years	0	1	1	1	0	0	1	0	1	1	1	7
Sensory ratio	0	1	1	1	0	0	1	1	1	1	1	8
Sensory 1st year	0	0	0	0	0	1	1	0	0	0	0	2
Sensory first 2 years	0	0	0	0	0	0	1	0	1	0	0	2
Corticosteroids Ratio	0	1	0	1	0	0	0	0	0	0	1	3
Corticosteroids/year	0	1	1	1	0	0	0	0	0	1	1	5
Corticosteroids 1st year	0	1	1	1	0	1	1	0	1	1	1	8
Corticosteroids first 2 years	0	0	0	0	0	0	1	1	0	0	0	2
Average Treatment Intensity	0	1	1	1	0	0	0	1	0	0	1	5
Average Treatment 1st year	0	1	1	1	0	0	0	0	1	0	1	5
Average Treatment 2 first years	0	1	0	1	0	0	1	0	0	1	1	5
Average Duration	0	1	1	1	0	0	1	0	0	0	1	5
Average Duration 1st year	0	1	1	1	0	0	1	0	1	1	1	7
Average Duration first 2 years	0	1	0	1	0	0	1	0	0	1	1	5
Last Pyramidal	0	1	0	0	0	1	0	0	1	0	1	4
Last BrainStem	0	0	0	0	0	0	1	0	0	0	0	1
Last Bowel	0	0	0	0	0	0	0	0	1	0	0	1
Last Sensory	0	1	1	1	0	1	0	0	1	1	1	7
Last Hospital	0	0	0	0	0	1	0	0	0	0	0	1
Last ambulatory	0	0	0	0	0	1	0	0	0	0	0	1
Last Corticosteroid	0	0	0	0	0	1	0	0	0	0	0	1
Last Treatment	0	0	0	0	0	0	1	0	0	0	0	1

D. Appendix IV - Machine learning results

Selected features: Last Pyramidal, Last Sensory.
For label nextEDSS >3 (0/1-(<3)/($\geq 3)$:
Final features: Optic Pathways, EDSS Medium Value/year, EDSS first 2 years std, Relapses Per Year, Visual 1 ratio.

Table D.235: Momentaneous_Past_Standard_Traditional_PCA_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.80	0.90	0.87	0.84	0.75	0.75	0.76	0.88	0.90	0.88	0.89
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
90.00	90.00	90.00	90.00	80.00	80.00	90.00	90.00	90.00	90.00	90.00
68.97	89.66	82.76	75.86	68.97	65.52	68.97	86.21	89.66	89.66	89.66
95.24	96.30	96.00	95.65	90.91	90.48	95.24	96.15	96.30	96.30	96.30
50.00	75.00	64.29	56.25	47.06	44.44	50.00	69.23	75.00	75.00	75.00
74.36	89.74	84.62	79.49	71.79	69.23	74.36	87.18	89.74	89.74	89.74
Confusion Matrix										
209	263	245	227	209	1910	209	254	263	263	263
19	19	19	19	28	28	19	19	19	19	19

Table D.236: Momentaneous_Past_Standard_Traditional_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.64	0.62	0.62	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	90.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	0.00	0.00	34.48	27.59	24.14	0.00	0.00	0.00	0.00
NaN	NaN	NaN	NaN	90.91	100.00	100.00	NaN	NaN	NaN	NaN
25.64	25.64	25.64	25.64	32.14	32.26	31.25	25.64	25.64	25.64	25.64
25.64	25.64	25.64	25.64	48.72	46.15	43.59	25.64	25.64	25.64	25.64
Confusion Matrix										
029	029	029	029	1019	821	722	029	029	029	029
010	010	010	010	19	010	010	010	010	010	010

Table D.237: Momentaneous_Past_Standard_kFold_PCA_nextEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.86	0.85	0.86	0.87	0.89	0.88	0.84	0.85	0.85	0.89	0.89
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
82.35	73.53	79.41	76.47	88.24	85.29	76.47	73.53	73.53	79.41	82.35
90.57	94.34	92.45	94.34	92.45	90.57	92.45	94.34	94.34	96.23	94.34
88.89	84.75	87.50	86.21	92.45	90.57	85.96	84.75	84.75	87.93	89.29
84.85	89.29	87.10	89.66	88.24	85.29	86.67	89.29	89.29	93.10	90.32
87.36	86.21	87.36	87.36	90.80	88.51	86.21	86.21	86.21	89.66	89.66
Confusion Matrix										
485	503	494	503	494	485	494	503	503	512	503
628	925	727	826	430	529	826	925	925	727	628

Table D.238: Momentaneous_Past_Standard_kFold_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.93	0.90	0.89	0.92	0.89	0.91	0.88	0.90	0.90	0.89	0.91
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
91.18	82.35	91.18	88.24	85.29	85.29	79.41	91.18	82.35	79.41	85.29
96.23	98.11	90.57	96.23	92.45	96.23	96.23	92.45	98.11	98.11	96.23
94.44	89.66	94.12	92.73	90.74	91.07	87.93	94.23	89.66	88.14	91.07
93.94	96.55	86.11	93.75	87.88	93.55	93.10	88.57	96.55	96.43	93.55
94.25	91.95	90.80	93.10	89.66	91.95	89.66	91.95	91.95	90.80	91.95
Confusion Matrix										
512	521	485	512	494	512	512	494	521	521	512
331	628	331	430	529	529	727	331	628	727	529

Table D.239: Momentaneous_Past_Standard_LOO_PCA_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.50	0.47	0.45	0.47	0.44	0.47	0.50	0.50	0.53	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
35.29	32.35	32.35	29.41	35.29	32.35	32.35	29.41	32.35	38.24	44.12
60.38	67.92	62.26	60.38	58.49	54.72	62.26	69.81	67.92	67.92	67.92
59.26	61.02	58.93	57.14	58.49	55.77	58.93	60.66	61.02	63.16	65.45
36.36	39.29	35.48	32.26	35.29	31.43	35.48	38.46	39.29	43.33	46.88
50.57	54.02	50.57	48.28	49.43	45.98	50.57	54.02	54.02	56.32	58.62
Confusion Matrix										
3221	3617	3320	3221	3122	2924	3320	3716	3617	3617	3617
2212	2311	2311	2410	2212	2311	2311	2410	2311	2113	1915

Table D.240: Momentaneous_Past_Standard_LOO_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.54	0.50	0.53	0.53	0.51	0.52	0.51	0.54	0.45	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
41.18	38.24	41.18	41.18	41.18	38.24	35.29	41.18	38.24	26.47	35.29
64.15	69.81	58.49	64.15	64.15	64.15	67.92	60.38	69.81	64.15	64.15
62.96	63.79	60.78	62.96	62.96	61.82	62.07	61.54	63.79	57.63	60.71
42.42	44.83	38.89	42.42	42.42	40.63	41.38	40.00	44.83	32.14	38.71
55.17	57.47	51.72	55.17	55.17	54.02	55.17	52.87	57.47	49.43	52.87
Confusion Matrix										
3419	3716	3122	3419	3419	3419	3617	3221	3716	3419	3419
2014	2113	2014	2014	2014	2113	2212	2014	2113	259	2212

For label nextEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Final features: EDSS Medium Value/Year, EDSS first 2 years, EDSS std/year, Last EDSS.
D. Appendix IV - Machine learning results

Table D.241: Momentaneous_Past_Standard_Traditional_PCA_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.70	0.83	0.77	0.80	0.72	0.73	0.76	0.80	0.83	0.82	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
83.33	100.00	83.33	83.33	66.67	83.33	83.33	83.33	100.00	85.71	100.00
52.73	70.91	72.73	74.55	70.91	69.09	74.55	74.55	70.91	70.91	70.91
96.67	100.00	97.56	97.62	95.12	97.44	97.62	97.62	100.00	97.50	100.00
16.13	27.27	25.00	26.32	20.00	22.73	26.32	26.32	27.27	27.27	27.27
55.74	73.77	73.77	75.41	70.49	70.49	75.41	75.41	73.77	72.58	73.77
Confusion Matrix										
2926	3916	4015	4114	3916	3817	4114	4114	3916	3916	3916
15	06	15	15	24	15	15	15	06	16	06

Table D.242: Momentaneous_Past_Standard_Traditional_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.62	0.50	0.65	0.68	0.68	0.74	0.79	0.51	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	66.67	83.33	83.33	100.00	100.00	100.00	100.00
23.64	0.00	34.55	40.00	70.91	67.27	67.27	1.82	0.00	0.00	0.00
100.00	NaN	100.00	100.00	95.12	97.37	97.37	100.00	NaN	NaN	NaN
12.50	9.84	14.29	15.38	20.00	21.74	21.74	10.00	9.84	9.84	9.84
31.15	9.84	40.98	45.90	70.49	68.85	68.85	11.48	9.84	9.84	9.84
Confusion Matrix										
1342	055	1936	2233	3916	3718	3718	154	055	055	055
06	06	06	06	24	15	15	06	06	06	06

Table D.243: Momentaneous_Past_Standard_kFold_PCA_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.63	0.58	0.66	0.50	0.83	0.73	0.40	0.68	0.54	0.71	0.74
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
52.63	47.37	63.16	36.84	85.00	63.16	26.32	63.16	36.84	73.68	84.21
89.71	89.71	85.29	98.53	97.06	94.12	97.06	86.76	91.18	85.29	82.35
87.14	85.92	89.23	84.81	95.65	90.14	82.50	89.39	83.78	92.06	94.92
58.82	56.25	54.55	87.50	89.47	75.00	71.43	57.14	53.85	58.33	57.14
81.61	80.46	80.46	85.06	94.32	87.36	81.61	81.61	79.31	82.76	82.76
Confusion Matrix										
617	617	5810	671	662	644	662	599	626	5810	5612
910	109	712	127	317	712	145	712	127	514	316

Table D.244: Momentaneous_Past_Standard_kFold_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.81	0.80	0.79	0.79	0.78	0.79	0.79	0.79	0.81	0.81	0.79
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
84.21	84.21	84.21	78.95	78.95	78.95	78.95	89.47	84.21	89.47	84.21
97.06	97.06	94.12	98.53	97.06	98.53	98.53	89.71	97.06	92.65	94.12
95.65	95.65	95.52	94.37	94.29	94.37	94.37	96.83	95.65	96.92	95.52
88.89	88.89	80.00	93.75	88.24	93.75	93.75	70.83	88.89	77.27	80.00
94.25	94.25	91.95	94.25	93.10	94.25	94.25	89.66	94.25	91.95	91.95
Confusion Matrix										
662	662	644	671	662	671	671	617	662	635	644
316	316	316	415	415	415	415	217	316	217	316

Table D.245: Momentaneous_Past_Standard_LOO_PCA_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.48	0.50	0.38	0.53	0.47	0.47	0.54	0.46	0.49	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
26.32	15.79	26.32	0.00	26.32	15.79	5.26	31.58	10.53	26.32	26.32
82.35	80.88	73.53	88.24	79.41	77.94	92.65	77.94	83.82	70.59	66.18
80.00	77.46	78.13	75.95	79.41	76.81	77.78	80.30	77.03	77.42	76.27
29.41	18.75	21.74	0.00	26.32	16.67	16.67	28.57	15.38	20.00	17.86
70.11	66.67	63.22	68.97	67.82	64.37	73.56	67.82	67.82	60.92	57.47
Confusion Matrix										
5612	5513	5018	608	5414	5315	635	5315	5711	4820	4523
145	163	145	190	145	163	181	136	172	145	145

Table D.246: Momentaneous_Past_Standard_LOO_nextEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.47	0.46	0.48	0.51	0.48	0.48	0.46	0.47	0.45	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
21.05	15.79	15.79	15.79	21.05	15.79	15.79	21.05	15.79	15.79	15.79
79.41	77.94	75.00	80.88	80.88	80.88	80.88	70.59	77.94	72.06	77.94
78.26	76.81	76.12	77.46	78.57	77.46	77.46	76.19	76.81	75.38	76.81
22.22	16.67	15.00	18.75	23.53	18.75	18.75	16.67	16.67	13.64	16.67
66.67	64.37	62.07	66.67	67.82	66.67	66.67	59.77	64.37	59.77	64.37
Confusion Matrix										
5414	5315	5117	5513	5513	5513	5513	4820	5315	4919	5315
154	163	163	163	154	163	163	154	163	163	163

First feature selection process for highestEDSS:

Table D.247: Momentaneous_Past_Feature_Selection_Identification_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	0	0	0	0	1	1	1	0	0	0	3
Age of Onset	0	0	0	0	0	0	1	0	0	0	0	1
Optic Pathways	0	1	1	0	0	0	1	0	1	1	1	6
Brainstem-Cerebellum	0	0	0	0	0	1	1	1	0	0	0	3
Spinal Cord	0	1	1	1	0	1	1	0	1	0	1	7
Progression From Onset	0	0	0	0	0	0	0	1	1	0	0	2
Age of Diagnosis	0	0	0	0	0	0	1	1	0	1	0	3
Years from Onset to Diagnosis	0	0	1	1	1	0	1	0	0	1	1	6
MRI	0	0	0	0	0	0	1	0	0	0	0	1
Evoked Potentials	0	0	0	0	0	0	1	0	0	0	0	1
CSF	0	0	0	0	0	1	1	1	0	0	0	3
Age at SP Diagnosis	0	1	1	1	1	0	1	0	1	1	1	8
Years from Diagnosis to SP	0	1	1	1	1	0	1	0	1	1	1	8
Years from Diagnosis to Onset	0	1	1	1	1	0	1	0	1	1	1	8
MS Course	0	1	1	1	1	1	0	0	1	1	1	8
Family History	0	0	0	0	0	0	1	0	1	0	1	3
Active	0	0	0	0	0	0	0	1	0	0	0	1
Age Visit	0	1	1	1	1	0	1	0	0	1	1	7
Years since Onset	1	1	1	1	1	0	1	0	0	1	1	8

Selected features: Optic Pathways, Spinal Cord, Years from Onset to Diagnosis, Age at SP Diagnosis, Years from Diagnosis to SP, Years from Diagnosis to Onset, MS Course, Age Visit, Years since Onset.

Table D.248: Momentaneous_Past_Feature_Selection_Visits_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Nb of visits per Year	0	1	0	1	0	0	0	0	0	1	1	4
Nb of Visits 1st Year	0	0	0	0	0	0	0	0	0	0	1	1
Nb of visits first 2 years	0	0	0	0	0	0	1	0	0	0	1	2
Suspected Relapses Ratio per year	0	1	0	1	0	0	0	0	0	1	1	4
Suspected Relapses Ratio first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
EDSS Medium Value/year	1	1	1	1	1	0	1	1	0	1	1	9
EDSS 1st year	1	1	1	1	1	0	1	0	0	1	1	8
EDSS first 2 years	1	1	1	1	1	0	1	0	0	1	1	8
EDSS std/year	0	1	1	1	1	0	1	0	1	1	1	8
EDSS 1st year std	0	0	0	0	0	0	1	0	0	0	0	1
EDSS first 2 years std	0	0	0	0	0	0	1	0	1	1	0	3
EDSS medium variation/Year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS medium variation 1st year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS medium variation first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
EDSS std of variation/year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS std of variation 1st year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS std of variation first 2 years	0	0	0	0	0	0	1	0	1	1	0	3
EDSS Increase 1st Year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS Increase first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Ratio nb EDSS increase	0	1	1	1	1	0	1	0	0	1	1	7
Ratio nb EDSS decrease	0	0	0	0	0	0	1	0	1	0	0	2
Ratio nb EDSS decrease 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Ratio nb EDSS decrease first 2 years	0	0	0	0	0	0	1	0	1	0	0	2
Routine Visits Ratio 1st Year	0	1	1	1	0	1	1	0	0	0	1	6
Routine Visits first 2 years	0	0	0	0	0	1	1	0	0	0	0	2
No Years	0	0	1	0	0	0	0	0	0	0	0	1
Last Routine	0	0	0	0	0	1	0	1	0	0	0	2
Last EDSS	1	1	1	1	1	0	1	0	0	1	1	8
Last Weakness	0	0	0	0	0	0	1	0	0	0	0	1
Last Sympton	0	0	0	0	0	0	0	0	1	0	0	1

Selected features: Last EDSS.

Table D.249: Momentaneous_Past_Feature_Selection_Relapses_highestEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Relapses Per Year	0	0	0	0	0	0	1	0	0	0	0	1
Relapses 1st Year	0	0	0	0	0	0	1	0	0	0	0	1
Relapses first 2 years	0	0	0	0	0	0	1	1	0	0	0	2
Pyramidal ratio	0	1	1	1	1	0	1	0	0	1	1	7
Pyramidal 1st year	0	1	1	1	0	1	1	1	1	0	1	8
Pyramidal first 2 years	0	1	1	1	1	0	1	1	1	1	1	9
Brain Stem ratio	0	0	0	0	0	0	1	0	0	0	0	1
BrainStem 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Brain Stem first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Neuropsycho ratio	0	0	0	0	0	0	1	0	0	0	0	1
Neuropsycho 1st year	0	0	0	0	0	0	0	0	1	0	0	1
Neuropsycho first 2 years	0	0	0	1	0	0	1	0	0	0	0	2
Cerebellum ratio	0	1	1	0	0	0	1	1	1	0	1	6
Cerebellum 1st year	0	1	1	1	0	0	1	0	1	0	1	6
Cerebellum first 2 years	0	1	1	1	0	0	1	0	1	0	1	6
Visual ratio	0	1	1	1	0	0	0	0	1	1	1	6
Visual 1st year	0	1	1	1	0	0	0	0	1	1	1	6
Visual first 2 years	0	1	1	1	0	0	1	0	1	1	1	7
Sensory ratio	0	1	1	1	0	0	1	0	0	1	1	6
Sensory 1st year	0	0	0	0	0	1	1	0	0	0	0	2
Sensory first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Corticosteroids Ratio	0	1	1	1	0	0	0	0	0	1	1	5
Corticosteroids/year	0	1	1	1	0	0	0	0	0	1	1	5
Corticosteroids 1st year	0	1	1	1	0	1	1	0	1	1	1	8
Corticosteroids first 2 years	0	1	1	1	0	0	1	0	0	1	1	6
Average Treatment Intensity	0	1	1	1	0	0	0	0	0	1	1	5
Average Treatment 1st year	0	1	1	1	0	0	1	1	1	1	1	8
Average Treatment 2 first years	0	1	1	1	0	0	1	0	0	1	1	6
Average Duration	0	1	1	1	0	0	1	0	0	1	1	6
Average Duration 1st year	0	1	1	1	0	0	1	0	1	1	1	7
Average Duration first 2 years	0	1	1	1	0	0	1	0	0	1	1	6
Last Pyramidal	0	0	0	0	0	1	0	0	0	0	0	1
Last Bowel	0	0	0	0	0	0	0	0	1	0	0	1
Last Neuropsycho	0	0	0	0	0	0	1	0	0	0	0	1
Last Visual	0	0	0	0	0	0	0	1	0	0	0	1
Last Sensory	0	1	0	1	0	1	0	0	1	1	1	6
Last Hospital	0	0	0	0	0	1	0	0	0	0	0	1
Last ambulatory	0	0	0	0	0	1	0	0	0	0	0	1
Last Corticosteroid	0	0	0	0	0	1	0	0	0	0	0	1
Last Treatment	0	0	0	0	0	0	0	0	1	0	0	1

Selected features: Last Sensory.
For label highestEDSS >3 (0/1 - $(<3) /(\geq 3)$:
Final features: Age Visit, EDSS Medium Value/Year, Average Treatment 2 first years.

Table D.250: Momentaneous_Past_Standard_Traditional_PCA_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.77	0.85	0.83	0.85	0.85	0.80	0.80	0.83	0.85	0.86	0.85
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
71.43	85.71	78.57	78.57	78.57	78.57	78.57	85.71	85.71	85.71	85.71
81.82	81.82	81.82	90.91	90.91	81.82	81.82	81.82	81.82	81.82	81.82
69.23	81.82	75.00	76.92	76.92	75.00	75.00	81.82	81.82	81.82	81.82
83.33	85.71	84.62	91.67	91.67	84.62	84.62	85.71	85.71	85.71	85.71
76.00	84.00	80.00	84.00	84.00	80.00	80.00	84.00	84.00	84.00	84.00
Confusion Matrix										
92	92	92	101	101	92	92	92	92	92	92
410	212	311	311	311	311	311	212	212	212	212

D. Appendix IV - Machine learning results

Table D.251: Momentaneous_Past_Standard_Traditional_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.74	0.80	0.75	0.53	0.48	0.50	0.55	0.74	0.59	0.73
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	92.86	85.71	64.29	50.00	50.00	50.00	100.00	92.86	100.00	92.86
0.00	54.55	72.73	90.91	54.55	45.45	54.55	9.09	54.55	18.18	54.55
NaN	85.71	80.00	66.67	46.15	41.67	46.15	100.00	85.71	100.00	85.71
56.00	72.22	80.00	90.00	58.33	53.85	58.33	58.33	72.22	60.87	72.22
56.00	76.00	80.00	76.00	52.00	48.00	52.00	60.00	76.00	64.00	76.00
Confusion Matrix										
011	65	83	101	65	56	65	110	65	29	65
014	113	212	59	77	77	77	014	113	014	113

Table D.252: Momentaneous_Past_Standard_kFold_PCA_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.85	0.84	0.80	0.84	0.87	0.79	0.78	0.81	0.84	0.87	0.84
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
86.67	86.67	82.22	84.44	88.89	82.22	80.00	75.56	86.67	88.89	86.67
85.71	80.95	78.57	80.95	83.33	76.19	76.19	83.33	80.95	85.71	83.33
85.71	85.00	80.49	82.93	87.50	80.00	78.05	76.09	85.00	87.80	85.37
86.67	82.98	80.43	82.61	85.11	78.72	78.26	82.93	82.98	86.96	84.78
86.21	83.91	80.46	82.76	86.21	79.31	78.16	79.31	83.91	87.36	85.06
Confusion Matrix										
366	348	339	348	357	3210	3210	357	348	366	357
639	639	837	738	540	837	936	1134	639	540	639

Table D.253: Momentaneous_Past_Standard_kFold_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.90	0.92	0.95	0.97	0.97	0.93	0.94	0.93	0.92	0.69	0.92
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
93.33	93.33	95.56	97.78	97.78	93.33	95.56	91.11	93.33	73.33	91.11
85.71	90.48	95.24	97.62	97.62	92.86	92.86	95.24	90.48	64.29	92.86
92.31	92.68	95.24	97.62	97.62	92.86	95.12	90.91	92.68	69.23	90.70
87.50	91.30	95.56	97.78	97.78	93.33	93.48	95.35	91.30	68.75	93.18
89.66	91.95	95.40	97.70	97.70	93.10	94.25	93.10	91.95	68.97	91.95
Confusion Matrix										
366	384	402	411	411	393	393	402	384	2715	393
342	342	243	144	144	342	243	441	342	1233	441

Table D.254: Momentaneous_Past_Standard_LOO_PCA_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.41	0.45	0.45	0.52	0.48	0.52	0.49	0.44	0.45	0.52	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
44.44	48.89	46.67	55.56	51.11	55.56	53.33	40.00	48.89	55.56	55.56
38.10	40.48	42.86	47.62	45.24	47.62	45.24	47.62	40.48	47.62	47.62
39.02	42.50	42.86	50.00	46.34	50.00	47.50	42.55	42.50	50.00	50.00
43.48	46.81	46.67	53.19	50.00	53.19	51.06	45.00	46.81	53.19	53.19
41.38	44.83	44.83	51.72	48.28	51.72	49.43	43.68	44.83	51.72	51.72
Confusion Matrix										
1626	1725	1824	2022	1923	2022	1923	2022	1725	2022	2022
2520	2322	2421	2025	2223	2025	2124	2718	2322	2025	2025

Table D.255: Momentaneous_Past_Standard_LOO_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.40	0.42	0.40	0.40	0.42	0.42	0.41	0.41	0.42	0.55	0.59
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
46.67	46.67	42.22	42.22	44.44	44.44	44.44	42.22	46.67	60.00	60.00
33.33	38.10	38.10	38.10	40.48	40.48	38.10	40.48	38.10	50.00	57.14
36.84	40.00	38.10	38.10	40.48	40.48	39.02	39.53	40.00	53.85	57.14
42.86	44.68	42.22	42.22	44.44	44.44	43.48	43.18	44.68	56.25	60.00
40.23	42.53	40.23	40.23	42.53	42.53	41.38	41.38	42.53	55.17	58.62
Confusion Matrix										
1428	1626	1626	1626	1725	1725	1626	1725	1626	2121	2418
2421	2421	2619	2619	2520	2520	2520	2619	2421	1827	1827

For label highestEDSS $>5(\mathbf{0} / \mathbf{1}-(<5) /(\geq 5):$
Final features: Optic Pathways, EDSS Medium Value/Year, Pyramidal first 2 years, Cortiscosteroids 1st Year.

Table D.256: Momentaneous_Past_Standard_Traditional_PCA_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.73	0.88	0.86	0.84	0.82	0.79	0.80	0.82	0.88	0.87	0.87
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	85.71	85.71	85.71	85.71	85.71	100.00	100.00	100.00	100.00
52.17	78.26	84.78	78.26	78.26	71.74	69.57	67.39	78.26	78.26	76.09
100.00	100.00	97.50	97.30	97.30	97.06	96.97	100.00	100.00	100.00	100.00
24.14	41.18	46.15	37.50	37.50	31.58	30.00	31.82	41.18	41.18	38.89
58.49	81.13	84.91	79.25	79.25	73.58	71.70	71.70	81.13	81.13	79.25
Confusion Matrix										
2422	3610	397	3610	3610	3313	3214	3115	3610	3610	3511
07	07	16	16	16	16	16	07	07	07	07

D. Appendix IV - Machine learning results

Table D.257: Momentaneous_Past_Standard_Traditional_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	NA	NA	0.63	0.63	0.62	0.62	NA	NaN	0.67	0.66
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	NA	NA	85.71	85.71	85.71	100.00	NA	100.00	100.00	100.00
8.70	NA	NA	36.96	43.48	30.43	28.26	NA	35.56	34.78	36.96
100.00	NA	NA	94.44	95.24	93.33	100.00	NA	100.00	100.00	100.00
14.29	NA	NA	17.14	18.75	15.79	17.50	NA	19.44	18.92	19.44
20.75	NA	NA	43.40	49.06	37.74	37.74	NA	44.23	43.40	45.28
Confusion Matrix										
442	NA	NA	1729	2026	1432	1333	NA	1629	1630	1729
07	NA	NA	16	16	16	07	NA	07	07	07

Table D.258: Momentaneous_Past_Standard_kFold_PCA_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.78	0.80	0.84	0.81	0.90	0.82	0.80	0.77	0.80	0.80	0.81
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
79.17	75.00	83.33	75.00	95.83	83.33	75.00	70.83	75.00	79.17	84.00
88.89	92.06	93.65	95.24	95.24	88.89	92.06	92.06	92.06	90.48	88.89
91.80	90.63	93.65	90.91	98.36	93.33	90.63	89.23	90.63	91.94	93.33
73.08	78.26	83.33	85.71	88.46	74.07	78.26	77.27	78.26	76.00	75.00
86.21	87.36	90.80	89.66	95.40	87.36	87.36	86.21	87.36	87.36	87.50
Confusion Matrix										
567	585	594	603	603	567	585	585	585	576	567
519	618	420	618	123	420	618	717	618	519	421

Table D.259: Momentaneous_Past_Standard_kFold_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.85	NA	NA	0.89	0.84	0.83	0.82	NA	0.76	0.81	0.82
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
87.50	NA	NA	91.67	83.33	79.17	75.00	NA	100.00	66.67	87.50
93.65	NA	NA	95.24	92.06	93.65	93.65	NA	34.09	92.06	87.30
95.16	NA	NA	96.77	93.55	92.19	90.77	NA	100.00	87.88	94.83
84.00	NA	NA	88.00	80.00	82.61	81.82	NA	17.14	76.19	72.41
91.95	NA	NA	94.25	89.66	89.66	88.51	NA	42.00	85.06	87.36
Confusion Matrix										
594	NA	NA	603	585	594	594	NA	1529	585	558
321	NA	NA	222	420	519	618	NA	06	816	321

Table D.260: Momentaneous_Past_Standard_LOO_PCA_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.51	0.54	0.54	0.50	0.51	0.51	0.51	0.51	0.53	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
29.17	29.17	33.33	29.17	29.17	33.33	29.17	29.17	29.17	33.33	37.50
74.60	73.02	74.60	77.78	69.84	68.25	73.02	73.02	73.02	73.02	74.60
73.44	73.02	74.60	74.24	72.13	72.88	73.02	73.02	73.02	74.19	75.81
30.43	29.17	33.33	33.33	26.92	28.57	29.17	29.17	29.17	32.00	36.00
62.07	60.92	63.22	64.37	58.62	58.62	60.92	60.92	60.92	62.07	64.37
Confusion Matrix										
4716	4617	4716	4914	4419	4320	4617	4617	4617	4617	4716
177	177	168	177	177	168	177	177	177	168	159

Table D.261: Momentaneous_Past_Standard_LOO_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.50	NA	0.47	0.50	0.52	0.46	NA	0.50	0.47	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.00	25.00	NA	25.00	29.17	29.17	20.83	NA	25.00	25.00	41.67
69.84	74.60	NA	68.25	71.43	74.60	71.43	NA	74.60	69.84	69.84
70.97	72.31	NA	70.49	72.58	73.44	70.31	NA	72.31	70.97	75.86
24.00	27.27	NA	23.08	28.00	30.43	21.74	NA	27.27	24.00	34.48
57.47	60.92	NA	56.32	59.77	62.07	57.47	NA	60.92	57.47	62.07
Confusion Matrix										
4419	4716	NA	4320	4518	4716	4518	NA	4716	4419	4419
186	186	NA	186	177	177	195	NA	186	186	1410

For label first2EDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: EDSS Medium Value/Year, EDSS 1st year.

Table D.262: Momentaneous_Past_Standard_Traditional_PCA_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.75	0.80	0.73	0.78	0.68	0.69	0.64	0.71	0.80	0.78	0.80
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	85.71	71.43	85.71	85.71	85.71	85.71	100.00	85.71	85.71	85.71
64.00	72.00	72.00	66.00	50.00	50.00	38.00	44.00	72.00	72.00	70.59
96.97	97.30	94.74	97.06	96.15	96.15	95.00	100.00	97.30	97.30	97.30
25.00	30.00	26.32	26.09	19.35	19.35	16.22	20.00	30.00	30.00	28.57
66.67	73.68	71.93	68.42	54.39	54.39	43.86	50.88	73.68	73.68	72.41
Confusion Matrix										
3218	3614	3614	3317	2525	2525	1931	2228	3614	3614	3615
16	16	25	16	16	16	16	07	16	16	16

D. Appendix IV - Machine learning results

Table D.263: Momentaneous_Past_Standard_Traditional_first2EDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
100.00	NaN									
12.50	12.28	12.28	12.28	12.28	12.28	12.28	12.28	12.28	12.28	12.28
14.04	12.28	12.28	12.28	12.28	12.28	12.28	12.28	12.28	12.28	12.28
Confusion Matrix										
149	050	050	050	050	050	050	050	050	050	050
07	07	07	07	07	07	07	07	07	07	07

Table D.264: Momentaneous_Past_Standard_kFold_PCA_first2EDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.74	0.73	0.72	0.74	0.72	0.76	0.75	0.69	0.73	0.78	0.78
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
72.73	68.18	68.18	63.64	68.18	72.73	68.18	59.09	68.18	72.73	86.36
86.15	89.23	90.77	98.46	90.77	93.85	95.38	93.85	90.77	92.31	84.62
90.32	89.23	89.39	88.89	89.39	91.04	89.86	87.14	89.39	90.91	94.83
64.00	68.18	71.43	93.33	71.43	80.00	83.33	76.47	71.43	76.19	65.52
82.76	83.91	85.06	89.66	85.06	88.51	88.51	85.06	85.06	87.36	85.06
Confusion Matrix										
569	587	596	641	596	614	623	614	596	605	5510
616	715	715	814	715	616	715	913	715	616	319

Table D.265: Momentaneous_Past_Standard_kFold_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.91	0.88	0.91	0.91	0.93	0.93	0.92	0.88	NA	0.87	0.87
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
90.91	86.36	90.91	90.91	100.00	100.00	95.45	95.45	NA	95.45	95.45
100.00	100.00	100.00	100.00	100.00	100.00	100.00	93.85	NA	95.38	93.85
97.01	95.59	97.01	97.01	100.00	100.00	98.48	98.39	NA	98.41	98.39
100.00	100.00	100.00	100.00	100.00	100.00	100.00	84.00	NA	87.50	84.00
97.70	96.55	97.70	97.70	100.00	100.00	98.85	94.25	NA	95.40	94.25
Confusion Matrix										
650	650	650	650	650	650	650	614	NA	623	614
220	319	220	220	022	022	121	121	NA	121	121

Table D.266: Momentaneous_Past_Standard_LOO_PCA_first2EDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.48	0.49	0.54	0.52	0.53	0.54	0.53	0.48	0.47	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.82	22.73	22.73	22.73	27.27	27.27	27.27	22.73	22.73	18.18	27.27
69.23	73.85	75.38	83.08	76.92	78.46	80.00	81.54	73.85	75.38	66.15
75.00	73.85	74.24	76.06	75.76	76.12	76.47	75.71	73.85	73.13	72.88
25.93	22.73	23.81	31.25	28.57	30.00	31.58	29.41	22.73	20.00	21.43
59.77	60.92	62.07	67.82	64.37	65.52	66.67	66.67	60.92	60.92	56.32
Confusion Matrix										
4520	4817	4916	5411	5015	5114	5213	5312	4817	4916	4322
157	175	175	175	166	166	166	175	175	184	166

Table D.267: Momentaneous_Past_Standard_LOO_first2EDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.48	0.49	0.54	0.52	0.53	0.54	0.53	0.48	0.47	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.82	22.73	22.73	22.73	27.27	27.27	27.27	22.73	22.73	18.18	27.27
69.23	73.85	75.38	83.08	76.92	78.46	80.00	81.54	73.85	75.38	66.15
75.00	73.85	74.24	76.06	75.76	76.12	76.47	75.71	73.85	73.13	72.88
25.93	22.73	23.81	31.25	28.57	30.00	31.58	29.41	22.73	20.00	21.43
59.77	60.92	62.07	67.82	64.37	65.52	66.67	66.67	60.92	60.92	56.32
Confusion Matrix										
4520	4817	4916	5411	5015	5114	5213	5312	4817	4916	4322
157	175	175	175	166	166	166	175	175	184	166

For label first2EDSS $>5(0 / 1-(<5) /(\geq 5):$
Final features: The via pattern recognition study was not performed since the number of patients with first2EDSS ≥ 5 was minimal.

For label tendencyEDSS (0/1-(Down or Equal)/Up:
Final features: EDSS medium variation/Year, Corticosteroids Ratio, Average Treatment 2 first years, Last ambulatory.
D. Appendix IV - Machine learning results

Table D.268: Momentaneous_Past_Standard_Traditional_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.63	0.61	0.57	0.56	0.57	0.56	0.62	0.63	0.63	0.61
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
75.00	75.00	75.00	50.00	50.00	50.00	50.00	75.00	75.00	75.00	75.00
52.46	54.10	54.10	59.02	59.02	60.66	59.02	59.02	54.10	54.10	50.82
96.97	97.06	97.06	94.74	94.74	94.87	94.74	97.30	97.06	97.06	96.88
9.38	9.68	9.68	7.41	7.41	7.69	7.41	10.71	9.68	9.68	9.09
53.85	55.38	55.38	58.46	58.46	60.00	58.46	60.00	55.38	55.38	52.31
Confusion Matrix										
3229	3328	3328	3625	3625	3724	3625	3625	3328	3328	3130
13	13	13	22	22	22	22	13	13	13	13

Table D.269: Momentaneous_Past_Standard_Traditional_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.54	NA	0.56	0.58	0.59	0.56	NA	0.54	0.51	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.00	25.00	NA	25.00	50.00	50.00	50.00	NA	25.00	0.00	25.00
85.25	91.80	NA	83.61	70.49	60.66	57.38	NA	91.80	98.36	90.16
94.55	94.92	NA	94.44	95.56	94.87	94.59	NA	94.92	93.75	94.83
10.00	16.67	NA	9.09	10.00	7.69	7.14	NA	16.67	0.00	14.29
81.54	87.69	NA	80.00	69.23	60.00	56.92	NA	87.69	92.31	86.15
Confusion Matrix										
529	565	NA	5110	4318	3724	3526	NA	565	601	556
31	31	NA	31	22	22	22	NA	31	40	31

Table D.270: Momentaneous_Past_Standard_kFold_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.40	0.28	0.42	0.08	0.37	0.29	0.15	0.28	0.10	0.59	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	20.00	26.67	0.00	13.33	13.33	6.67	20.00	6.67	66.67	60.00
83.33	97.22	86.11	97.22	84.72	93.06	95.83	97.22	98.61	66.67	62.50
83.33	85.37	84.93	82.35	82.43	83.75	83.13	85.37	83.53	90.57	88.24
20.00	60.00	28.57	0.00	15.38	28.57	25.00	60.00	50.00	29.41	25.00
72.41	83.91	75.86	80.46	72.41	79.31	80.46	83.91	82.76	66.67	62.07
Confusion Matrix										
6012	702	6210	702	6111	675	693	702	711	4824	4527
123	123	114	150	132	132	141	123	141	510	69

Table D.271: Momentaneous_Past_Standard_kFold_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.19	0.52	0.38	0.49	0.47	0.45	0.55	0.03	0.62	0.59
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.00	6.67	40.00	26.67	33.33	33.33	33.33	46.67	0.00	73.33	60.00
91.67	93.06	90.28	97.22	84.72	93.06	93.06	83.33	98.61	66.67	69.44
88.00	82.72	87.84	86.42	85.92	87.01	87.01	88.24	82.56	92.31	89.29
50.00	16.67	46.15	66.67	31.25	50.00	50.00	36.84	0.00	31.43	29.03
82.76	78.16	81.61	85.06	75.86	82.76	82.76	77.01	81.61	67.82	67.82
Confusion Matrix										
666	675	657	702	6111	675	675	6012	711	4824	5022
96	141	96	114	105	105	105	87	150	411	69

Table D.272: Momentaneous_Past_Standard_LOO_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.44	0.41	0.45	0.41	0.44	0.41	0.41	0.41	0.41	0.45	0.48
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
6.67	0.00	6.67	0.00	6.67	0.00	0.00	0.00	0.00	26.67	33.33
80.56	93.06	84.72	98.61	83.33	90.28	95.83	93.06	97.22	56.94	58.33
80.56	81.71	81.33	82.56	81.08	81.25	82.14	81.71	82.35	78.85	80.77
6.67	0.00	8.33	0.00	7.69	0.00	0.00	0.00	0.00	11.43	14.29
67.82	77.01	71.26	81.61	70.11	74.71	79.31	77.01	80.46	51.72	54.02
Confusion Matrix										
5814	675	6111	711	6012	657	693	675	702	4131	4230
141	150	141	150	141	150	150	150	150	114	105

Table D.273: Momentaneous_Past_Standard_LOO_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.61	0.41	0.53	0.72	0.62	0.69	0.57	0.49	NA	0.55	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
26.67	0.00	20.00	26.67	40.00	33.33	20.00	20.00	NA	53.33	46.67
90.28	91.67	86.11	95.83	86.11	93.06	90.28	77.78	NA	62.50	68.06
85.53	81.48	83.78	86.25	87.32	87.01	84.42	82.35	NA	86.54	85.96
36.36	0.00	23.08	57.14	37.50	50.00	30.00	15.79	NA	22.85	23.33
79.31	75.86	74.71	83.91	78.16	82.76	78.16	67.82	NA	60.92	64.37
Confusion Matrix										
657	666	6210	693	6210	675	657	5616	NA	4527	4923
114	150	123	114	96	105	123	123	NA	78	87

First feature selection process for mediumEDSS:

Table D.274: Momentaneous_Past_Feature_Selection_Identification_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Gender	0	0	0	0	0	1	0	0	0	0	0	1
Age of Onset	0	0	0	0	0	0	1	0	0	0	0	1
Optic Pathways	0	1	1	0	0	0	0	0	1	0	1	4
Brainstem-Cerebellum	0	0	0	1	0	1	0	0	0	0	0	2
Spinal Cord	0	0	0	0	0	1	1	0	0	0	0	2
Progression From Onset	0	0	0	0	0	0	0	1	1	0	0	2
Age of Diagnosis	1	1	1	1	1	0	1	1	0	1	1	9
Years from Onset to Diagnosis	1	1	1	1	1	0	1	0	1	1	1	9
Evoked Potentials	0	0	0	0	0	1	0	0	0	0	0	1
CSF	0	0	0	0	0	1	1	0	0	0	0	2
Age at SP Diagnosis	0	1	1	1	1	0	1	0	1	1	1	8
Years from Diagnosis to SP	0	1	1	1	1	0	1	0	1	1	1	8
Years from Diagnosis to Onset	0	1	1	1	1	0	1	0	1	1	1	8
MS Course	0	1	1	1	1	1	1	0	1	1	1	9
Family History	0	0	0	0	0	0	1	0	0	0	0	1
Active	0	1	0	0	0	0	0	0	1	0	0	2
Age Visit	1	1	1	1	1	0	1	0	0	1	1	8
Years since Onset	1	1	1	1	1	0	1	1	0	1	1	9

Selected features: Optic Pathways, Brainstem-Cerebellum, Age of Diagnosis, Years from Onset to Diagnosis, Age at SP Diagnosis, Years from Diagnosis to SP, Years from Diagnosis to Onset, MS Course, Age Visit, Years since Onset.

Table D.275: Momentaneous_Past_Feature_Selection_Visits_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Nb of Visits 1st Year	0	0	0	0	0	0	1	0	0	0	0	1
Nb of visits first 2 years	0	0	0	1	0	0	1	0	0	0	0	2
Suspected Relapses Ratio 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Suspected Relapses Ratio first 2 years	0	0	0	1	0	0	1	0	0	0	0	2
EDSS 1st year	1	1	1	1	1	0	1	0	0	1	1	8
EDSS first 2 years	1	1	1	1	1	0	1	0	0	1	1	8
EDSS std/year	0	1	1	1	1	0	0	0	1	1	1	7
EDSS 1st year std	0	0	0	0	0	0	1	0	0	0	0	1
EDSS first 2 years std	0	0	0	0	0	0	1	0	0	0	0	1
EDSS medium variation/Year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS medium variation 1st year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS medium variation first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
EDSS std of variation 1st year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS std of variation first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
EDSS Increase 1st Year	0	0	0	0	0	0	1	0	0	0	0	1
EDSS Increase first 2 years	0	0	1	0	0	0	1	0	1	0	0	3
Ratio nb EDSS increase	0	1	1	1	1	0	0	0	1	1	1	7
Ratio nb EDSS decrease	0	0	0	0	0	0	1	0	0	0	0	1
Ratio nb EDSS decrease 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Ratio nb EDSS decrease first 2 years	0	1	0	0	0	0	1	0	0	1	1	4
Routine Visits Ratio	0	0	0	0	0	0	0	1	0	0	0	1
Routine Visits Ratio 1st Year	0	0	0	0	0	1	1	0	0	0	0	2
Routine Visits first 2 years	0	1	0	0	0	1	1	0	1	1	1	6
No Years	0	0	1	0	0	0	0	0	0	0	0	1
Last Routine	0	0	0	0	0	1	0	0	0	0	0	1
Last EDSS	1	1	1	1	1	0	1	1	0	1	1	9
Last Weakness	0	1	0	0	0	0	1	0	1	0	1	4
Last Sympton	0	0	0	0	0	0	0	0	1	0	0	1

Selected features: Last EDSS.

Table D.276: Momentaneous_Past_Feature_Selection_Relapses_mediumEDSS

Feature Name	Test A	Test B	Test C	Test D	Test E	Test F	Test G	Test H	Test I	Test J	Test L	Overall Performance
Relapses Per Year	0	1	1	1	0	0	1	0	1	1	1	7
Relapses 1st Year	0	0	0	0	0	0	1	0	0	0	0	1
Relapses first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Pyramidal ratio	1	1	1	1	1	0	1	0	0	1	1	8
Pyramidal 1st year	0	1	1	1	1	1	1	0	1	1	1	9
Pyramidal first 2 years	0	1	1	1	1	0	1	1	1	1	1	9
Brain Stem ratio	0	1	1	1	0	0	1	0	0	1	1	6
BrainStem 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Brain Stem first 2 years	0	1	0	0	0	0	1	1	0	0	1	4
Bowel ratio	0	1	0	0	0	0	0	0	1	0	1	3
Bowel 1st year	0	1	0	0	0	0	0	0	1	0	1	3
Bowel first 2 years	0	1	0	0	0	0	0	0	1	0	1	3
Neuropsycho ratio	0	0	0	0	0	0	1	0	0	0	0	1
Neuropsycho 1st year	0	0	0	0	0	0	0	0	1	0	0	1
Neuropsycho first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Cerebellum ratio	0	0	0	0	0	0	1	0	0	0	0	1
Cerebellum 1st year	0	0	0	0	0	0	1	0	0	0	0	1
Cerebellum first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Visual ratio	0	1	0	0	0	0	1	1	0	0	1	4
Visual 1st year	0	1	1	1	0	0	0	0	1	0	1	5
Visual first 2 years	0	1	1	1	0	0	1	0	0	0	1	5
Sensory ratio	0	1	1	1	0	0	1	1	1	1	1	8
Sensory 1st year	0	0	0	0	0	1	1	0	0	0	0	2
Sensory first 2 years	0	0	0	0	0	0	1	0	1	0	0	2
Corticosteroids Ratio	0	1	1	1	0	0	0	0	0	1	1	5
Corticosteroids/year	1	1	1	1	0	0	0	1	0	1	1	7
Corticosteroids 1st year	0	1	1	1	0	1	0	0	1	1	1	7
Corticosteroids first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Average Treatment Intensity	1	1	1	1	0	0	0	0	0	0	1	5
Average Treatment 1st year	0	1	1	1	0	0	0	0	1	0	1	5
Average Treatment 2 first years	0	1	0	1	0	0	1	0	0	0	1	4
Average Duration	1	1	0	0	0	0	1	1	0	0	1	5
Average Duration 1st year	0	1	0	1	0	0	0	0	0	1	1	4
Average Duration first 2 years	0	0	0	0	0	0	1	0	0	0	0	1
Last Pyramidal	0	1	1	1	0	1	0	0	1	0	1	6
Last BrainStem	0	1	0	1	0	0	1	0	1	0	1	5
Last Bowel	0	0	0	0	0	0	0	0	1	0	0	1
Last Neuropsycho	0	0	0	0	0	0	1	0	0	0	0	1
Last Sensory	0	1	0	1	0	1	0	0	1	1	1	6
Last Hospital	0	0	0	0	0	1	0	0	0	0	0	1
Last ambulatory	0	0	0	0	0	1	0	0	0	0	0	1
Last Corticosteroid	0	0	0	0	0	1	0	0	0	0	0	1
Last Treatment	0	0	0	0	0	0	0	0	1	0	0	1
Last Duration	0	0	0	0	0	0	0	0	1	0	0	1

Selected Features: Last Pyramidal, Last BrainStem, Last Sensory.
For label mediumEDSS $(0 / 1-(<3) /(\geq 3))$:
Final features: Ratio nb EDSS increase, Last EDSS.
D. Appendix IV - Machine learning results

Table D.277: Momentaneous_Standard_Traditional_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.74	0.81	0.81	0.78	0.75	0.76	0.76	0.80	0.81	0.81	0.81
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
77.78	88.89	88.89	88.89	88.89	88.89	88.89	77.78	88.89	77.78	88.89
67.65	79.41	76.47	67.65	64.71	64.71	64.71	82.35	79.41	79.41	79.41
92.00	96.43	96.30	95.83	95.65	95.65	95.65	93.33	96.43	93.10	96.43
38.89	53.33	50.00	42.11	40.00	40.00	40.00	53.85	53.33	50.00	53.33
69.77	81.40	79.07	72.09	69.77	69.77	69.77	81.40	81.40	79.07	81.40
Confusion Matrix										
2311	277	268	2311	2212	2212	2212	286	277	277	277
27	18	18	18	18	18	18	27	18	27	18

Table D.278: Momentaneous_Standard_Traditional_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	NA	NA	0.74	0.66	0.66	0.74	NA	NA	0.56	0.60
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	NA	NA	100.00	88.89	88.89	88.89	NA	NA	100.00	77.78
0.00	NA	NA	52.94	44.12	47.06	64.71	NA	NA	11.76	41.18
NaN	NA	NA	100.00	93.75	94.12	95.65	NA	NA	100.00	87.50
20.93	NA	NA	36.00	29.63	30.77	40.00	NA	NA	23.08	25.93
20.93	NA	NA	62.79	53.49	55.81	69.77	NA	NA	30.23	48.84
Confusion Matrix										
034	NA	NA	1816	1519	1618	2212	NA	NA	430	1420
09	NA	NA	09	18	18	18	NA	NA	09	27

Table D.279: Momentaneous_Standard_kFold_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.75	0.78	0.79	0.72	0.80	0.80	0.76	0.79	0.78	0.79	0.79
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
67.74	64.52	67.74	51.61	74.19	64.52	64.52	67.74	64.52	70.97	70.97
85.71	89.47	89.29	92.86	87.50	92.86	87.50	89.29	91.07	87.50	87.50
82.76	82.26	83.33	77.61	85.96	82.54	81.67	83.33	82.26	84.48	84.48
72.41	76.92	77.78	80.00	76.67	83.33	74.07	77.78	80.00	75.86	75.86
79.31	80.68	81.61	78.16	82.76	82.76	79.31	81.61	81.61	81.61	81.61
Confusion Matrix										
488	516	506	524	497	524	497	506	515	497	497
1021	1120	1021	1516	823	1120	1120	1021	1120	922	922

Table D.280: Momentaneous_Standard_kFold_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.87	0.89	NA	0.87	0.84	0.82	0.78	NA	NA	0.78	0.87
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
83.87	83.87	NA	77.42	77.42	67.74	61.29	NA	NA	70.97	83.87
92.86	94.64	NA	98.21	92.86	94.64	94.64	NA	NA	85.71	91.07
91.23	91.38	NA	88.71	88.14	84.13	81.54	NA	NA	84.21	91.07
86.67	89.66	NA	96.00	85.71	87.50	86.36	NA	NA	73.33	83.87
89.66	90.80	NA	90.80	87.36	85.06	82.76	NA	NA	80.46	88.51
Confusion Matrix										
524	533	NA	551	524	533	533	NA	NA	488	515
526	526	NA	724	724	1021	1219	NA	NA	922	526

Table D.281: Momentaneous_Standard_LOO_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.45	0.49	0.52	0.47	0.45	0.49	0.48	0.52	0.50	0.52	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
22.58	29.03	35.48	19.35	29.03	25.81	29.03	35.48	29.03	35.48	35.48
67.86	69.64	67.86	76.79	60.71	73.21	67.86	67.86	71.43	67.86	67.86
61.29	63.93	65.52	63.24	60.71	64.06	63.33	65.52	64.52	65.52	65.52
28.00	34.62	37.93	31.58	29.03	34.78	33.33	37.93	36.00	37.93	37.93
51.72	55.17	56.32	56.32	49.43	56.32	54.02	56.32	56.32	56.32	56.32
Confusion Matrix										
3818	3917	3818	4313	3422	4115	3818	3818	4016	3818	3818
247	229	2011	256	229	238	229	2011	229	2011	2011

Table D.282: Momentaneous_Standard_LOO_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.49	0.49	0.47	0.52	0.46	0.48	0.49	0.50	0.49	0.49
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
29.03	29.03	32.26	19.35	38.71	22.58	29.03	32.26	29.03	32.26	32.26
71.43	69.64	66.07	76.79	66.07	71.43	67.86	66.07	71.43	66.07	66.07
64.52	63.93	63.79	63.24	66.07	62.50	63.33	63.79	64.52	63.79	63.79
36.00	34.62	34.48	31.58	38.71	30.43	33.33	34.48	36.00	34.48	34.48
56.32	55.17	54.02	56.32	56.32	54.02	54.02	54.02	56.32	54.02	54.02
Confusion Matrix										
4016	3917	3719	4313	3719	4016	3818	3719	4016	3719	3719
229	229	2110	256	1912	247	229	2110	229	2110	2110

For label nextEDSS $(0 / 1-(<3) /(\geq 3))$:
The via pattern recognition study was not performed since the number of patients with currentEDSS ≥ 5 was minimal.

D.1.4.2 Investigation procedure

For label msCourse (0/1-RR/SP):

Features before selection: Optic Pathways, Brainstem-Cerebellum, Spinal Cord, Evoked Potentials, Age Visit, Years since Onset, Pyramidal 1 ratio, Pyramidal 1st year, Pyramidal first 2 years, Brain Stem 1 ratio, BrainStem 1st year, Brain Stem first 2 years, Visual 1 ratio, Visual first 2 years, Last Pyramidal, Last BrainStem.

Excluded features: EDSS Medium Value/year, EDSS 1st year, EDSS first 2 years, EDSS std/year, EDSS std of variation first 2 years, Last EDSS.

Final features: Spinal Cord, Age Visit, Years since Onset, Pyramidal 1 ratio, Visual 1 ratio.

Table D.283: Momentaneous_Past_Investigation_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.71	0.77	0.74	0.70	0.69	0.66	0.65	0.65	0.77	0.75	0.76
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	85.71	71.43	71.43	85.71	85.71	85.71	100.00	85.71	85.71	85.71
52.27	63.64	75.00	70.45	50.00	43.18	38.64	31.82	63.64	68.18	65.91
95.83	96.55	94.29	93.94	95.65	95.00	94.44	100.00	96.55	96.77	96.67
22.22	27.27	31.25	27.78	21.43	19.35	18.18	18.92	27.27	30.00	28.57
56.86	66.67	74.51	70.59	54.90	49.02	45.10	41.18	66.67	70.59	68.63
Confusion Matrix										
2321	2816	3311	3113	2222	1925	1727	1430	2816	3014	2915
16	16	25	25	16	16	16	07	16	16	16

Table D.284: Momentaneous_Past_Investigation_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.52	NA	0.57	0.58	0.56	0.57	NA	0.52	0.50	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	100.00	100.00	85.71	NA	100.00	100.00	100.00
15.91	4.55	NA	13.64	18.18	15.91	22.73	NA	4.55	0.00	4.55
100.00	100.00	NA	100.00	100.00	100.00	90.91	NA	100.00	NaN	100.00
15.91	14.29	NA	15.56	16.28	15.91	15.00	NA	14.29	13.73	14.29
27.45	17.65	NA	25.49	29.41	27.45	31.37	NA	17.65	13.73	17.65
Confusion Matrix										
737	242	NA	638	836	737	1034	NA	242	044	242
07	07	NA	07	07	07	16	NA	07	07	07

Table D.285: Momentaneous_Past_Investigation_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.62	0.67	0.74	0.55	0.67	0.69	0.69	0.69	0.67	0.67	0.73
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
48.00	52.00	80.00	36.00	56.00	60.00	60.00	72.00	52.00	60.00	84.00
80.65	88.71	79.03	91.94	83.87	85.48	80.65	74.19	90.32	80.65	69.35
79.37	82.09	90.74	78.08	82.54	84.13	83.33	86.79	82.35	83.33	91.49
50.00	65.00	60.61	64.29	58.33	62.50	55.56	52.94	68.42	55.56	52.50
71.26	78.16	79.31	75.86	75.86	78.16	74.71	73.56	79.31	74.71	73.56
Confusion Matrix										
5012	557	4913	575	5210	539	5012	4616	566	5012	4319
1312	1213	520	169	1114	1015	1015	718	1213	1015	421

Table D.286: Momentaneous_Past_Investigation_kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.72	0.76	NA	0.71	0.75	0.69	0.66	NA	0.76	0.69	0.76
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
60.00	64.00	NA	52.00	68.00	56.00	48.00	NA	60.00	68.00	76.00
90.32	96.77	NA	98.39	88.71	88.71	91.94	NA	96.77	77.42	85.48
84.85	86.96	NA	83.56	87.30	83.33	81.43	NA	85.71	85.71	89.83
71.43	88.89	NA	92.86	70.83	66.67	70.59	NA	88.24	54.84	67.86
81.61	87.36	NA	85.06	82.76	79.31	79.31	NA	86.21	74.71	82.76
Confusion Matrix										
566	602	NA	611	557	557	575	NA	602	4814	539
1015	916	NA	1213	817	1114	1312	NA	1015	817	619

Table D.287: Momentaneous_Past_Investigation_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.53	0.59	0.53	0.54	0.48	0.47	0.52	0.48	0.46	0.48
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
24.00	28.00	52.00	20.00	32.00	24.00	28.00	44.00	20.00	24.00	44.00
74.19	77.42	67.74	83.87	75.81	72.58	66.13	61.29	77.42	67.74	51.61
70.77	72.73	77.78	72.22	73.44	70.31	69.49	73.08	70.59	68.85	69.57
27.27	33.33	39.39	33.33	34.78	26.09	25.00	31.43	26.32	23.08	26.83
59.77	63.22	63.22	65.52	63.22	58.62	55.17	56.32	60.92	55.17	49.43
Confusion Matrix										
4616	4814	4220	5210	4715	4517	4121	3824	4814	4220	3230
196	187	1213	205	178	196	187	1411	205	196	1411

Table D.288: Momentaneous_Past_Investigation_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.50	0.54	0.49	0.47	0.52	0.54	0.53	0.50	0.47	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
24.00	20.00	36.00	16.00	24.00	28.00	24.00	36.00	20.00	32.00	32.00
72.58	80.65	72.58	82.26	70.97	75.81	82.26	69.35	80.65	61.29	67.74
70.31	71.43	73.77	70.83	69.84	72.31	72.86	72.88	71.43	69.09	71.19
26.09	29.41	34.62	26.67	25.00	31.82	35.29	32.14	29.41	25.00	28.57
58.62	63.22	62.07	63.22	57.47	62.07	65.52	59.77	63.22	52.87	57.47
Confusion Matrix										
4517	5012	4517	5111	4418	4715	5111	4319	5012	3824	4220
196	205	169	214	196	187	196	169	205	178	178

For label currentEDSS $>3(\mathbf{0} / \mathbf{1}-(<3) /(\geq 3)$:
Features before selection: Optic Pathways, Spinal Cord, Age at SP Diagnosis, Age Visit, Years since Onset, Number of years Years, Relapses Per Year, Pyramidal 1 ratio, Pyramidal 1st year, Pyramidal first 2 years, Brain Stem first 2 years, Visual 1 ratio, Visual 1st year, Visual first 2 years, Sensory 1 ratio, Corticosteroids 1st year, Last Pyramidal, Last Sensory.

Excluded features: EDSS Medium Value/year, EDSS 1st year, EDSS first 2 years, EDSS std/year, EDSS Increase first 2 years, Ratio nb EDSS increase.

Final features: Age at SP Diagnnosis, Number of years, Pyramidal ratio, Pyramidal first 2 years ratio.

Table D.289: Momentaneous_Past_Investigation_Tradition_PCA_currentEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.70	0.81	0.76	0.80	0.68	0.72	0.73	0.78	0.81	0.80	0.81
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
90.00	80.00	90.00	80.00	70.00	70.00	72.73	80.00	80.00	80.00	80.00
48.15	85.19	66.67	77.78	70.37	74.07	70.37	77.78	85.19	85.19	85.19
92.86	92.00	94.74	91.30	86.36	86.96	86.36	91.30	92.00	92.00	92.00
39.13	66.67	50.00	57.14	46.67	50.00	50.00	57.14	66.67	66.67	66.67
59.46	83.78	72.97	78.38	70.27	72.97	71.05	78.38	83.78	83.78	83.78
Confusion Matrix										
1314	234	189	216	198	207	198	216	234	234	234
19	28	19	28	37	37	38	28	28	28	28

D. Appendix IV - Machine learning results

Table D.290: Momentaneous_Past_Investigation_Tradition_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.52	NA	0.58	0.60	0.68	0.73	NA	0.52	0.50	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	100.00	90.00	90.00	NA	100.00	100.00	100.00
7.41	7.41	NA	18.52	25.93	44.44	59.26	NA	7.41	0.00	3.70
100.00	100.00	NA	100.00	100.00	92.31	94.12	NA	100.00	NaN	100.00
28.57	28.57	NA	31.25	33.33	37.50	45.00	NA	28.57	27.03	27.78
32.43	32.43	NA	40.54	45.95	56.76	67.57	NA	32.43	27.03	29.73
Confusion Matrix										
225	225	NA	522	720	1215	1611	NA	225	027	126
010	010	NA	010	010	19	19	NA	010	010	010

Table D.291: Momentaneous_Past_Investigation_kFold_PCA_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.75	0.80	0.75	0.77	0.81	0.80	0.81	0.75	0.80	0.78	0.80
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
65.71	65.71	71.43	65.71	71.43	65.71	68.57	60.00	65.71	65.71	71.43
82.69	92.31	78.85	88.46	88.46	90.38	90.38	90.38	92.31	90.38	88.46
78.18	80.00	80.39	79.31	82.14	79.66	81.03	77.05	80.00	79.66	82.14
71.88	85.19	69.44	79.31	80.65	82.14	82.76	80.77	85.19	82.14	80.65
75.86	81.61	75.86	79.31	81.61	80.46	81.61	78.16	81.61	80.46	81.61
Confusion Matrix										
439	484	4111	466	466	475	475	475	484	475	466
1223	1223	1025	1223	1025	1223	1124	1421	1223	1223	1025

Table D.292: Momentaneous_Past_Investigation_kFold_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.81	0.77	NA	0.84	0.73	0.79	0.79	NA	NA	0.80	0.80
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
74.29	57.14	NA	77.14	74.29	68.57	65.71	NA	NA	71.43	68.57
88.46	94.23	NA	90.38	71.15	86.54	88.46	NA	NA	90.38	92.31
83.64	76.56	NA	85.45	80.43	80.36	79.31	NA	NA	82.46	81.36
81.25	86.96	NA	84.38	63.41	77.42	79.31	NA	NA	83.33	85.71
82.76	79.31	NA	85.06	72.41	79.31	79.31	NA	NA	82.76	82.76
Confusion Matrix										
466	493	NA	475	3715	457	466	NA	NA	475	484
926	1520	NA	827	926	1124	1223	NA	NA	1025	1124

Table D.293: Momentaneous_Past_Investigation_LOO_PCA_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.53	0.51	0.46	0.47	0.52	0.51	0.57	0.53	0.43	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.00	34.29	42.86	31.43	31.43	34.29	34.29	37.14	34.29	22.86	34.29
71.15	71.15	59.62	61.54	63.46	69.23	67.31	75.00	71.15	65.38	65.38
63.79	61.67	60.78	57.14	57.89	61.02	60.34	63.93	61.67	55.74	59.65
48.28	44.44	41.67	35.48	36.67	42.86	41.38	50.00	44.44	30.77	40.00
58.62	56.32	52.87	49.43	50.57	55.17	54.02	59.77	56.32	48.28	52.87
Confusion Matrix										
3715	3715	3121	3220	3319	3616	3517	3913	3715	3418	3418
2114	2312	2015	2411	2411	2312	2312	2213	2312	278	2312

Table D.294: Momentaneous_Past_Investigation_LOO_currentEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.50	0.48	0.45	0.49	0.47	0.47	0.50	0.50	0.55	0.57
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
28.57	25.71	37.14	31.43	48.57	31.43	31.43	37.14	25.71	40.00	40.00
63.46	75.00	59.62	59.62	50.00	63.46	63.46	63.46	75.00	69.23	73.08
56.90	60.00	58.49	56.36	59.09	57.89	57.89	60.00	60.00	63.16	64.41
34.48	40.91	38.24	34.38	39.53	36.67	36.67	40.63	40.91	46.67	50.00
49.43	55.17	50.57	48.28	49.43	50.57	50.57	52.87	55.17	57.47	59.77
Confusion Matrix										
3319	3913	3121	3121	2626	3319	3319	3319	3913	3616	3814
2510	269	2213	2411	1817	2411	2411	2213	269	2114	2114

For label currentEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Features before selection: Optic Pathways, Spinal Cord, Age at SP Diagnosis, Age Visit, Years since Onset, Number of years Years, Relapses Per Year, Pyramidal 1 ratio, Pyramidal 1st year, Pyramidal first 2 years, Brain Stem first 2 years, Visual 1 ratio, Visual 1st year, Visual first 2 years, Sensory 1 ratio, Corticosteroids 1st year, Last Pyramidal, Last Sensory.

Excluded features: EDSS Medium Value/year, EDSS 1st year, EDSS first 2 years, EDSS std/year, EDSS Increase first 2 years, Ratio nb EDSS increase.

Final features: Age at SP Diagnnosis, Number of years, Relapses per Year, Pyramidal ratio.

Table D.295: Momentaneous_Past_Investigation_Traditional_PCA_currentEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.62	0.75	0.60	0.68	0.63	0.61	0.63	0.70	0.75	0.73	0.76
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	80.00	40.00	80.00	60.00	80.00	80.00	80.00	80.00	80.00	80.00
45.00	68.33	81.67	63.33	56.67	48.33	50.00	60.00	68.33	68.33	68.33
96.43	97.62	94.23	97.44	94.44	96.67	96.77	97.30	97.62	97.62	97.62
10.81	17.39	15.38	15.38	10.34	11.43	11.76	14.29	17.39	17.39	17.39
47.69	69.23	78.46	64.62	56.92	50.77	52.31	61.54	69.23	69.23	69.23
Confusion Matrix										
2733	4119	4911	3822	3426	2931	3030	3624	4119	4119	4119
14	14	32	14	23	14	14	14	14	14	14

Table D.296: Momentaneous_Past_Investigation_Traditional_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.50	NA	0.57	0.61	0.64	0.68	NA	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	60.00	80.00	80.00	NA	100.00	100.00	100.00
11.67	0.00	NA	18.33	58.33	50.00	55.00	NA	0.00	0.00	0.00
100.00	NaN	NA	100.00	94.59	96.77	97.06	NA	NaN	NaN	NaN
8.62	7.69	NA	9.26	10.71	11.76	12.90	NA	7.69	7.69	7.69
18.46	7.69	NA	24.62	58.46	52.31	56.92	NA	7.69	7.69	7.69
Confusion Matrix										
753	060	NA	1149	3525	3030	3327	NA	060	060	060
05	05	NA	05	23	14	14	NA	05	05	05

Table D.297: Momentaneous_Past_Investigation_kFold_PCA_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.45	0.55	0.30	0.65	0.42	0.41	0.51	0.34	0.63	0.68
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.25	31.25	43.75	18.75	56.25	25.00	25.00	37.50	18.75	68.75	81.25
87.32	88.73	80.28	95.77	92.96	87.32	91.55	91.55	91.55	83.10	77.46
84.93	85.14	86.36	83.95	90.41	83.78	84.42	86.67	83.33	92.19	94.83
35.71	38.46	33.33	50.00	64.29	30.77	40.00	50.00	33.33	47.83	44.83
77.01	78.16	73.56	81.61	86.21	75.86	79.31	81.61	78.16	80.46	78.16
Confusion Matrix										
629	638	5714	683	665	629	656	656	656	5912	5516
115	115	97	133	79	124	124	106	133	511	313

D. Appendix IV - Machine learning results

Table D.298: Momentaneous_Past_Investigation_kFold_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.67	0.63	0.60	0.47	0.64	0.41	0.32	0.67	0.63	0.63	0.72
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
68.75	56.25	56.25	31.25	56.25	25.00	12.50	62.50	56.25	68.75	81.25
90.14	91.55	88.73	95.77	91.55	95.77	92.96	87.50	91.55	80.28	85.92
92.75	90.28	90.00	86.08	90.28	85.00	82.50	91.30	90.28	91.94	95.31
61.11	60.00	52.94	62.50	60.00	57.14	28.57	52.63	60.00	44.00	56.52
86.21	85.06	82.76	83.91	85.06	82.76	78.16	82.95	85.06	78.16	85.06
Confusion Matrix										
647	656	638	683	656	683	665	639	656	5714	6110
511	79	79	115	79	124	142	610	79	511	313

Table D.299: Momentaneous_Past_Investigation_LOO_PCA_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.44	0.44	0.61	0.52	0.48	0.51	0.53	0.46	0.47	0.46
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
18.75	6.25	12.50	12.50	18.75	12.50	12.50	18.75	6.25	18.75	25.00
83.10	84.51	73.24	95.77	84.51	83.10	88.73	85.92	88.73	73.24	63.38
81.94	80.00	78.79	82.93	82.19	80.82	81.82	82.43	80.77	80.00	78.95
20.00	8.33	9.52	40.00	21.43	14.29	20.00	23.08	11.11	13.64	13.33
71.26	70.11	62.07	80.46	72.41	70.11	74.71	73.56	73.56	63.22	56.32
Confusion Matrix										
5912	6011	5219	683	6011	5912	638	6110	638	5219	4526
133	151	142	142	133	142	142	133	151	133	124

Table D.300: Momentaneous_Past_Investigation_LOO_currentEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.47	0.50	0.47	0.50	0.58	0.54	0.48	0.47	0.46	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
18.75	12.50	18.75	6.25	18.75	12.50	12.50	18.75	12.50	18.75	31.25
80.28	81.69	81.69	90.14	81.69	94.37	91.55	77.46	81.69	69.01	73.24
81.43	80.56	81.69	81.01	81.69	82.72	82.28	80.88	80.56	79.03	82.54
17.65	13.33	18.75	12.50	18.75	33.33	25.00	15.79	13.33	12.00	20.83
68.97	68.97	70.11	74.71	70.11	79.31	77.01	66.67	68.97	59.77	65.52
Confusion Matrix										
5714	5813	5813	647	5813	674	656	5516	5813	4922	5219
133	142	133	151	133	142	142	133	142	133	115

For label nextEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Features before selection: Optic Pathways, Spinal Cord, MS Course, Family History, Years since Onset, Number of Years, Relapses Per Year, Pyramidal 1 ratio, Pyramidal 1st year, Pyramidal first 2 years, Brain Stem first 2 years, Visual 1 ratio,

Visual 1st year, Visual first 2 years, Sensory 1 ratio, Corticosteroids/year, Corticosteroids 1st year, Average Treatment Intensity, Average Treatment 2 first years, Average Duration, Average Duration first 2 years, Last Pyramidal, Last Sensory.

Final features: MS Course, Number of Years, Pyramidal first 2 years, Visual 1 ratio, Average Duration.

Table D.301: Momentaneous_Past_Investigation_Traditional_PCA_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.76	0.87	0.84	0.85	0.74	0.74	0.75	0.84	0.87	0.87	0.87
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
90.00	90.00	90.00	90.00	80.00	80.00	80.00	80.00	90.00	80.00	90.00
65.52	86.21	75.86	79.31	68.97	68.97	68.97	82.76	86.21	89.66	86.21
95.00	96.15	95.65	95.83	90.91	90.91	90.91	92.31	96.15	92.86	96.15
47.37	69.23	56.25	60.00	47.06	47.06	47.06	61.54	69.23	72.73	69.23
71.79	87.18	79.49	82.05	71.79	71.79	71.79	82.05	87.18	87.18	87.18
Confusion Matrix										
1910	254	227	236	209	209	209	245	254	263	254
19	19	19	19	28	28	28	28	19	28	19

Table D.302: Momentaneous_Past_Investigation_Traditional_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.64	0.65	NA	0.84	0.81	0.84	0.84	NA	0.65	0.71	0.64
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	100.00	NA	80.00	80.00	80.00	70.00	NA	100.00	90.00	100.00
48.28	31.03	NA	82.76	79.31	93.10	93.10	NA	31.03	48.28	27.59
87.50	100.00	NA	92.31	92.00	93.10	90.00	NA	100.00	93.33	100.00
34.78	33.33	NA	61.54	57.14	80.00	77.78	NA	33.33	37.50	32.26
56.41	48.72	NA	82.05	79.49	89.74	87.18	NA	48.72	58.97	46.15
Confusion Matrix										
1415	920	NA	245	236	272	272	NA	920	1415	821
28	010	NA	28	28	28	37	NA	010	19	010

Table D.303: Momentaneous_Past_Investigation_kFold_PCA_nextEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.81	0.84	0.85	0.85	0.89	0.84	0.82	0.84	0.84	0.85	0.84
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
76.47	70.59	79.41	73.53	88.24	82.35	73.53	70.59	70.59	73.53	73.53
86.79	94.34	90.57	94.34	90.57	88.68	88.68	94.34	94.34	94.34	94.34
85.19	83.33	87.27	84.75	92.31	88.68	83.93	83.33	83.33	84.75	84.75
78.79	88.89	84.38	89.29	85.71	82.35	80.65	88.89	88.89	89.29	89.29
82.76	85.06	86.21	86.21	89.66	86.21	82.76	85.06	85.06	86.21	86.21
Confusion Matrix										
467	503	485	503	485	476	476	503	503	503	503
826	1024	727	925	430	628	925	1024	1024	925	925

D. Appendix IV - Machine learning results

Table D.304: Momentaneous_Past_Investigation_kFold_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.87	0.83	NA	0.92	0.92	0.92	0.86	NA	NA	0.86	0.82
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.29	64.71	NA	97.06	100.00	94.29	82.35	NA	NA	76.47	67.65
88.68	96.23	NA	88.68	88.68	90.57	92.45	NA	NA	94.34	96.23
90.38	80.95	NA	97.92	100.00	96.00	89.09	NA	NA	86.21	82.26
82.86	91.67	NA	84.62	85.00	86.84	87.50	NA	NA	89.66	92.00
87.36	83.91	NA	91.95	93.10	92.05	88.51	NA	NA	87.36	85.06
Confusion Matrix										
476	512	NA	476	476	485	494	NA	NA	503	512
529	1222	NA	133	034	233	628	NA	NA	826	1123

Table D.305: Momentaneous_Past_Investigation_LOO_PCA_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.49	0.47	0.49	0.50	0.40	0.44	0.49	0.49	0.42	0.48
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
35.29	29.41	32.35	32.35	41.18	26.47	29.41	29.41	29.41	23.53	29.41
64.15	67.92	62.26	66.04	58.49	52.83	58.49	67.92	67.92	62.26	66.04
60.71	60.00	58.93	60.34	60.78	52.83	56.36	60.00	60.00	55.93	59.32
38.71	37.04	35.48	37.93	38.89	26.47	31.25	37.04	37.04	28.57	35.71
52.87	52.87	50.57	52.87	51.72	42.53	47.13	52.87	52.87	47.13	51.72
Confusion Matrix										
3419	3617	3320	3518	3122	2825	3122	3617	3617	3320	3518
2212	2410	2311	2311	2014	259	2410	2410	2410	268	2410

Table D.306: Momentaneous_Past_Investigation_LOO_nextEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.41	0.42	0.50	0.49	0.49	0.49	0.54	0.50	0.42	0.44	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
29.41	17.65	38.24	44.12	44.12	44.12	41.18	38.24	17.65	26.47	23.53
52.83	69.81	62.26	52.83	52.83	54.72	66.04	62.26	69.81	62.26	67.92
53.85	56.92	61.11	59.57	59.57	60.42	63.64	61.11	56.92	56.90	58.06
28.57	27.27	39.39	37.50	37.50	38.46	43.75	39.39	27.27	31.03	32.00
43.68	49.43	52.87	49.43	49.43	50.57	56.32	52.87	49.43	48.28	50.57
Confusion Matrix										
2825	3716	3320	2825	2825	2924	3518	3320	3716	3320	3617
2410	286	2113	1915	1915	1915	2014	2113	286	259	268

For label nextEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Features before selection: Optic Pathways, Spinal Cord, MS Course, Family History, Years since Onset, Number of Years, Relapses Per Year, Pyramidal 1 ratio, Pyramidal 1st year, Pyramidal first 2 years, Brain Stem first 2 years, Visual 1 ratio,

Visual 1st year, Visual first 2 years, Sensory 1 ratio, Corticosteroids/year, Corticosteroids 1st year, Average Treatment Intensity, Average Treatment 2 first years, Average Duration, Average Duration first 2 years, Last Pyramidal, Last Sensory.

Excluded features: EDSS Medium Value/year, EDSS 1st year, EDSS first 2 years, EDSS std/year, EDSS first 2 years std, EDSS Increase first 2 years, Ratio nb EDSS increase, Last EDSS.

Final features: Optic Pathways, Number of Years, Pyramidal first 2 years, Sensory 1 ratio, Average Duration.

Table D.307: Momentaneous_Past_Investigation_Traditional_PCA_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.66	0.79	0.76	0.79	0.72	0.70	0.74	0.77	0.79	0.78	0.79
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
83.33	83.33	83.33	83.33	66.67	66.67	66.67	83.33	83.33	83.33	83.33
56.36	70.91	70.91	74.55	70.91	69.09	74.55	72.73	70.91	72.73	70.91
96.88	97.50	97.50	97.62	95.12	95.00	95.35	97.56	97.50	97.56	97.50
17.24	23.81	23.81	26.32	20.00	19.05	22.22	25.00	23.81	25.00	23.81
59.02	72.13	72.13	75.41	70.49	68.85	73.77	73.77	72.13	73.77	72.13
Confusion Matrix										
3124	3916	3916	4114	3916	3817	4114	4015	3916	4015	3916
15	15	15	15	24	24	24	15	15	15	15

Table D.308: Momentaneous_Past_Investigation_Traditional_nextEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	NA	NA	0.65	0.55	0.64	0.66	NA	NA	0.71	0.68
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	NA	NA	50.00	33.33	50.00	50.00	NA	NA	83.33	100.00
40.00	NA	NA	76.36	81.82	80.00	76.36	NA	NA	60.00	41.82
91.67	NA	NA	93.33	91.84	93.62	93.33	NA	NA	97.06	100.00
10.81	NA	NA	18.75	16.67	21.43	18.75	NA	NA	18.52	15.79
42.62	NA	NA	73.77	77.05	77.05	73.77	NA	NA	62.30	47.54
Confusion Matrix										
2233	NA	NA	4213	4510	4411	4213	NA	NA	3322	2332
24	NA	NA	33	42	33	33	NA	NA	15	06

D. Appendix IV - Machine learning results

Table D.309: Momentaneous_Past_Investigation_kFold_PCA_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.56	0.67	0.48	0.80	0.66	0.43	0.65	0.50	0.67	0.72
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
36.84	42.11	57.89	57.89	78.95	52.63	26.32	57.89	31.58	68.42	78.95
91.18	88.24	85.29	85.29	95.59	94.12	95.59	83.82	91.18	83.82	80.88
83.78	84.51	87.88	87.88	94.20	87.67	82.28	87.69	82.67	90.48	93.22
53.85	50.00	52.38	52.38	83.33	71.43	62.50	50.00	50.00	54.17	53.57
79.31	78.16	79.31	79.31	91.95	85.06	80.46	78.16	78.16	80.46	80.46
Confusion Matrix										
626	608	5810	671	653	644	653	5711	626	5711	5513
127	118	811	136	415	910	145	811	136	613	415

Table D.310: Momentaneous_Past_Investigation_kFold_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.64	NA	0.41	0.69	0.67	0.64	NA	0.57	0.74	0.73
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
47.37	52.63	NA	26.32	63.16	57.89	52.63	NA	42.11	78.95	75.00
89.71	89.71	NA	97.06	89.71	92.65	92.65	NA	91.18	82.35	83.82
85.92	87.14	NA	82.50	89.71	88.73	87.50	NA	84.93	93.33	91.94
56.25	58.82	NA	71.43	63.16	68.75	66.67	NA	57.14	55.56	57.69
80.46	81.61	NA	81.61	83.91	85.06	83.91	NA	80.46	81.61	81.82
Confusion Matrix										
617	617	NA	662	617	635	635	NA	626	5612	5711
109		NA	145	712	811	910	NA	118	415	515

Table D.311: Momentaneous_Past_Investigation_LOO_PCA_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.49	0.47	0.45	0.39	0.45	0.46	0.45	0.53	0.55	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
10.53	15.79	21.05	5.26	5.26	10.53	5.26	15.79	15.79	36.84	36.84
86.76	82.35	72.06	89.71	73.53	80.88	91.18	73.53	88.24	75.00	69.12
77.63	77.78	76.56	77.22	73.53	76.39	77.50	75.76	78.95	80.95	79.66
18.18	20.00	17.39	12.50	5.26	13.33	14.29	14.29	27.27	29.17	25.00
70.11	67.82	60.92	71.26	58.62	65.52	72.41	60.92	72.41	66.67	62.07
Confusion Matrix										
599	5612	4919	617	5018	5513	626	5018	608	5117	4721
172	163	154	181	181	172	181	163	163	127	127

Table D.312: Momentaneous_Past_Investigation_LOO_nextEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.50	Na	0.38	0.50	0.44	0.41	NA	0.46	0.44	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
15.79	21.05	NA	0.00	21.05	10.53	5.26	NA	10.53	21.05	15.79
80.88	77.94	NA	91.18	77.94	79.41	79.41	NA	83.82	64.71	69.12
77.46	77.94	NA	76.54	77.94	76.06	75.00	NA	77.03	74.58	74.60
18.75	21.05	NA	0.00	21.05	12.50	6.67	NA	15.38	14.29	12.50
66.67	65.52	NA	71.26	65.52	64.37	63.22	NA	67.82	55.17	57.47
Confusion Matrix										
5513	5315	NA	626	5315	5414	5414	NA	5711	4424	4721
163	154	NA	190	154	172	181	NA	172	154	163

For label highestEDSS $>3(\mathbf{0} / \mathbf{1}-(<3) /(\geq 3)$:
Features before selection: Optic Pathways, Spinal Cord, MS Course, Age Visit, Years since Onset, Nb of visits per Year, Suspected Relapses Ratio 1st year, Routine Visits Ratio 1st Year, Pyramidal 1 ratio, Pyramidal 1st year, Pyramidal first 2 years, Cerebellum 1 ratio, Cerebellum 1st year, Cerebellum first 2 years, Visual ratio, Visual 1st year, Visual first 2 years, Sensory 1 ratio, Corticosteroids Ratio, Corticosteroids 1st year, Corticosteroids first 2 years, Average Treatment Intensity, Average Treatment 2 first years, Average Duration, Average Duration first 2 years, Last Sensory.

Excluded features: EDSS Medium Value/year, EDSS 1st year, EDSS first 2 years, EDSS std/year, Ratio nb EDSS increase, Last EDSS.

Final features: Spinal Cord, Age Visit, Years since Onset, Nb of visits per Year, Sensory ratio, Corticosteroids Ratio.

Table D.313: Momentaneous_Past_Investigation_Traditional_PCA_highestEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.77	0.83	0.82	0.83	0.84	0.78	0.77	0.82	0.83	0.83	0.83
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
78.57	85.71	78.57	78.57	78.57	78.57	78.57	85.71	85.71	85.71	78.57
81.82	81.82	81.82	81.82	81.82	81.82	72.73	81.82	81.82	81.82	81.82
75.00	81.82	75.00	75.00	75.00	75.00	72.73	81.82	81.82	81.82	75.00
84.62	85.71	84.62	84.62	84.62	84.62	78.57	85.71	85.71	85.71	84.62
80.00	84.00	80.00	80.00	80.00	80.00	76.00	84.00	84.00	84.00	80.00
Confusion Matrix										
92	92	92	92	92	92	83	92	92	92	92
311	212	311	311	311	311	311	212	212	212	311

D. Appendix IV - Machine learning results

Table D.314: Momentaneous_Past_Investigation_Traditional_highestEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.70	0.61	0.65	0.73	0.64	0.63	0.63	0.75	0.61	0.77	0.63
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
57.14	28.57	42.86	64.29	42.86	35.71	35.71	64.29	28.57	71.43	35.71
81.82	90.91	90.91	81.82	81.82	90.91	90.91	81.82	90.91	81.82	90.91
60.00	50.00	55.56	64.29	52.94	52.63	52.63	64.29	50.00	69.23	52.63
80.00	80.00	85.71	81.82	75.00	83.33	83.33	81.82	80.00	83.33	83.33
68.00	56.00	64.00	72.00	60.00	60.00	60.00	72.00	56.00	76.00	60.00
Confusion Matrix										
92	101	101	92	92	101	101	92	101	92	101
68	104	86	59	86	95	95	59			95

Table D.315: Momentaneous_Past_Investigation_kFold_PCA_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.84	0.81	0.79	0.80	0.86	0.78	0.77	0.79	0.81	0.86	0.82
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
82.22	82.22	80.00	82.22	88.89	82.22	77.78	75.56	82.22	88.89	80.00
85.71	80.95	76.19	78.57	83.33	76.19	73.81	83.33	80.95	83.33	80.95
81.82	80.95	78.05	80.49	87.50	80.00	75.61	76.09	80.95	87.50	79.07
86.05	82.22	78.26	80.43	85.11	78.72	76.09	82.93	82.22	85.11	81.82
83.91	81.61	78.16	80.46	86.21	79.31	75.86	79.31	81.61	86.21	80.46
Confusion Matrix										
366	348	3210	339	357	3210	3111	357	348	357	348
837	837	936	837	540	837	1035	1134	837		936

Table D.316: Momentaneous_Past_Investigation_kFold_highestEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.87	0.80	0.78	0.87	0.86	0.78	0.77	0.80	0.80	0.77	0.81
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
84.44	84.44	82.22	88.89	88.89	80.00	82.22	84.44	84.44	77.78	84.44
88.10	76.19	76.19	83.33	83.33	73.81	69.05	76.19	76.19	76.19	76.19
84.09	82.05	80.00	87.50	87.50	77.50	78.38	82.05	82.05	76.19	82.05
88.37	79.17	78.72	85.11	85.11	76.60	74.00	79.17	79.17	77.78	79.17
86.21	80.46	79.31	86.21	86.21	77.01	75.86	80.46	80.46	77.01	80.46
Confusion Matrix										
375	3210	3210	357	357	3111	2913	3210	3210	3210	3210
738	738	837	540	540	936	837	738	738	1035	738

Table D.317: Momentaneous_Past_Investigation_LOO_PCA_highestEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.46	0.48	0.50	0.50	0.52	0.50	0.46	0.46	0.50	0.49
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
53.33	46.67	51.11	53.33	53.33	55.56	53.33	42.22	46.67	55.56	48.89
57.14	45.24	45.24	47.62	47.62	47.62	47.62	50.00	45.24	45.24	50.00
53.33	44.19	46.34	48.78	48.78	50.00	48.78	44.68	44.19	48.72	47.73
57.14	47.73	50.00	52.17	52.17	53.19	52.17	47.50	47.73	52.08	51.16
55.17	45.98	48.28	50.57	50.57	51.72	50.57	45.98	45.98	50.57	49.43
Confusion Matrix										
2418	1923	1923	2022	2022	2022	2022	2121	1923	1923	2121
2124	2421	2223	2124	2124	2025	2124	2619	2421	2025	2322

Table D.318: Momentaneous_Past_Investigation_LOO_highestEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.87	0.80	0.78	0.87	0.86	0.78	0.77	0.80	0.80	0.55	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
84.44	84.44	82.22	88.89	88.89	80.00	82.22	84.44	84.44	57.78	60.00
88.10	76.19	76.19	83.33	83.33	73.81	69.05	76.19	76.19	52.38	47.62
84.09	82.05	80.00	87.50	87.50	77.50	78.38	82.05	82.05	53.66	52.63
88.37	79.17	78.72	85.11	85.11	76.60	74.00	79.17	79.17	56.52	55.10
86.21	80.46	79.31	86.21	86.21	77.01	75.86	80.46	80.46	55.17	54.02
Confusion Matrix										
375	3210	3210	357	357	3111	2913	3210	3210	1626	1626
738	738	837	540	540	936	837	738	738	2520	2223

For label highestEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Features before selection: Optic Pathways, Spinal Cord, MS Course, Age Visit, Years since Onset, Nb of visits per Year, Suspected Relapses Ratio 1st year, Routine Visits Ratio 1st Year, Pyramidal 1 ratio, Pyramidal 1st year, Pyramidal first 2 years, Cerebellum 1 ratio, Cerebellum 1st year, Cerebellum first 2 years, Visual ratio, Visual 1st year, Visual first 2 years, Sensory 1 ratio, Corticosteroids Ratio, Corticosteroids 1st year, Corticosteroids first 2 years, Average Treatment Intensity, Average Treatment 2 first years, Average Duration, Average Duration first 2 years, Last Sensory.

Excluded features: EDSS Medium Value/year, EDSS 1st year, EDSS first 2 years, EDSS std/year, EDSS first 2 years std, EDSS Increase first 2 years, Ratio nb EDSS increase, Last EDSS.

Final features: Optic Pathways, Pyramidal first 2 years, Corticosteroids 1st year.
D. Appendix IV - Machine learning results

Table D.319: Momentaneous_Past_Investigation_Traditional_PCA_highestEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.72	0.84	0.85	0.83	0.85	0.79	0.79	0.80	0.84	0.84	0.84
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	87.50	85.71	85.71	85.71	85.71	85.71	100.00	100.00	85.71	85.71
47.83	76.09	82.61	78.26	80.43	69.57	67.39	63.04	76.09	76.09	76.09
100.00	97.22	97.44	97.30	97.37	96.97	96.88	100.00	100.00	97.22	97.22
22.58	38.89	42.86	37.50	40.00	30.00	28.57	29.17	38.89	35.29	35.29
54.72	77.78	83.02	79.25	81.13	71.70	69.81	67.92	79.25	77.36	77.36
Confusion Matrix										
2224	3511	388	3610	379	3214	3115	2917	3511	3511	3511
07	17	16	16	16	16	16	07	07	16	16

Table D.320: Momentaneous_Past_Investigation_Traditional_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	NA	NA	0.70	0.59	0.62	0.61	NA	NA	0.75	0.75
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	NA	NA	85.71	71.43	85.71	85.71	NA	NA	85.71	85.71
10.87	NA	NA	47.83	50.00	36.96	32.61	NA	NA	58.70	58.70
100.00	NA	NA	95.65	92.00	94.44	93.75	NA	NA	96.43	96.43
14.58	NA	NA	20.00	17.86	17.14	16.22	NA	NA	24.00	24.00
22.64	NA	NA	52.83	52.83	43.40	39.62	NA	NA	62.26	62.26
Confusion Matrix										
541	NA	NA	2224	2323	1729	1531	NA	NA	2719	2719
07	NA	NA	16	25	16	16	NA	NA	16	16

Table D.321: Momentaneous_Past_Investigation_kFold_PCA_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.78	0.78	0.82	0.81	0.90	0.80	0.75	0.80	0.78	0.81	0.78
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
79.17	70.83	79.17	75.00	95.83	83.33	66.67	75.00	70.83	79.17	79.17
85.71	92.06	93.65	96.83	95.24	87.30	88.89	93.65	92.06	92.06	87.30
91.53	89.23	92.19	91.04	98.36	93.22	87.50	90.77	89.23	92.06	91.67
67.86	77.27	82.61	90.00	88.46	71.43	69.57	81.82	77.27	79.17	70.37
83.91	86.21	89.66	90.80	95.40	86.21	82.76	88.51	86.21	88.51	85.06
Confusion Matrix										
549	585	594	612	603	558	567	594	585	585	558
519	717	519	618	123	420	816	618	717	519	519

Table D.322: Momentaneous_Past_Investigation_kFold_highestEDSS >5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.85	0.80	NA	0.79	0.87	0.82	0.79	NA	0.80	0.82	0.80
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
83.33	79.17	NA	75.00	87.50	87.50	75.00	NA	79.17	79.17	79.17
95.24	92.06	NA	93.65	95.24	88.89	93.65	NA	92.06	92.06	88.89
93.75	92.06	NA	90.77	95.24	94.92	90.77	NA	92.06	92.06	91.80
86.96	79.17	NA	81.82	87.50	75.00	81.82	NA	79.17	79.17	73.08
91.95	88.51	NA	88.51	93.10	88.51	88.51	NA	88.51	88.51	86.21
Confusion Matrix										
603	585	NA	594	603	567	594	NA	585	585	567
420	519	NA	618	321	321	618	NA	519	519	519

Table D.323: Momentaneous_Past_Investigation_LOO_PCA_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.56	0.58	0.52	0.52	0.53	0.51	0.58	0.56	0.48	0.46
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
45.83	33.33	37.50	25.00	33.33	37.50	29.17	37.50	33.33	25.00	25.00
71.43	77.78	77.78	77.78	71.43	68.25	73.02	77.78	77.78	71.43	66.67
77.59	75.38	76.56	73.13	73.77	74.14	73.02	76.56	75.38	71.43	70.00
37.93	36.36	39.13	30.00	30.77	31.03	29.17	39.13	36.36	25.00	22.22
64.37	65.52	66.67	63.22	60.92	59.77	60.92	66.67	65.52	58.62	55.17
Confusion Matrix										
4518	4914	4914	4914	4518	4320	4617	4914	4914	4518	4221
1311	168	159	186	168	159	177	159	168	186	186

Table D.324: Momentaneous_Past_Investigation_LOO_highestEDSS > 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.48	NA	0.50	0.51	0.51	0.49	NA	0.48	0.45	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.00	25.00	NA	25.00	29.17	33.33	25.00	NA	25.00	20.83	20.83
71.43	71.43	NA	74.60	73.02	69.84	73.02	NA	71.43	69.84	66.67
71.43	71.43	NA	72.31	73.02	73.33	71.88	NA	71.43	69.84	68.85
25.00	25.00	NA	27.27	29.17	29.63	26.09	NA	25.00	20.83	19.23
58.62	58.62	NA	60.92	60.92	59.77	59.77	NA	58.62	56.32	54.02
Confusion Matrix										
4518	4518	NA	4716	4617	4419	4617	NA	4518	4419	4221
186	186	NA	186	177	168	186	NA	186	195	195

For label first2EDSS $>3(0 / 1-(<3) /(\geq 3)$:
Features before selection: Gender, Age of Onset, Supratentorial, Optic Pathways, Spinal Cord, Age at SP Diagnosis, Relapses Per Year, Pyramidal ratio, Pyramidal 1st year, Pyramidal first 2 years, BrainStem 1st year, Brain Stem first 2 years,

Bowel 1 ratio, Bowel 1st year, Visual 1 ratio, Visual 1st year, Visual first 2 years, Corticosteroids 1st year, Average Duration, Last Sensory.

Excluded features: Years since Onset, EDSS Medium Value/year, EDSS 1st year, EDSS std/year, EDSS first 2 years std, EDSS std of variation first 2 years, EDSS Increase first 2 years, Ratio nb EDSS increase, Last EDSS.

Final features: Age of Onset, Supratentorial, Spinal Cord, Years since Onset, Pyramidal 1 ratio.

Table D.325: Momentaneous_Past_Investigation_Traditional_PCA_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.74	0.80	0.72	0.74	0.65	0.66	0.62	0.67	0.80	0.77	0.78
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	85.71	71.43	85.71	85.71	85.71	85.71	100.00	85.71	85.71	85.71
64.00	72.00	70.00	58.00	44.00	44.00	32.00	36.00	72.00	74.00	70.00
96.97	97.30	94.59	96.67	95.65	95.65	94.12	100.00	97.30	97.37	97.22
25.00	30.00	25.00	22.22	17.65	17.65	15.00	17.95	30.00	31.58	28.57
66.67	73.68	70.18	61.40	49.12	49.12	38.60	43.86	73.68	75.44	71.93
Confusion Matrix										
3218	3614	3515	2921	2228	2228	1634	1832	3614	3713	3515
16	16	25	16	16	16	16	07	16	16	16

Table D.326: Momentaneous_Past_Investigation_Traditional_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.72	NA	NA	0.71	0.69	0.72	0.68	NA	0.66	0.64	0.66
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	NA	NA	85.71	85.71	85.71	85.71	NA	100.00	100.00	100.00
66.00	NA	NA	50.00	58.00	54.00	44.00	NA	36.00	28.00	36.00
97.06	NA	NA	96.15	96.67	96.43	95.65	NA	100.00	100.00	100.00
26.09	NA	NA	19.35	22.22	20.69	17.65	NA	17.95	16.28	17.95
68.42	NA	NA	54.39	61.40	57.89	49.12	NA	43.86	36.84	43.86
Confusion Matrix										
3317	NA	NA	2525	2921	2723	2228	NA	1832	1436	1832
16	NA	NA	16	16	16	16	NA	07	07	07

Table D.327: Momentaneous_Past_Investigation_KFold_PCA_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.70	0.71	0.72	0.71	0.74	0.77	0.72	0.70	0.71	0.74	0.74
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
63.64	68.18	63.64	54.55	68.18	72.73	63.64	59.09	63.64	72.73	77.27
87.69	89.23	89.23	96.92	89.23	92.31	93.85	95.38	90.77	90.77	86.15
87.69	89.23	87.88	86.30	89.23	90.91	88.41	87.32	88.06	90.77	91.80
63.64	68.18	66.67	85.71	68.18	76.19	77.78	81.25	70.00	72.73	65.38
81.61	83.91	82.76	86.21	83.91	87.36	86.21	86.21	83.91	86.21	83.91
Confusion Matrix										
578	587	587	632	587	605	614	623	596	596	569
814	715	814	1012	715	616	814	913	814	616	517

Table D.328: Momentaneous_Past_Investigation_KFold_first2EDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.80	0.74	NA	0.71	0.72	0.68	0.68	NA	0.75	0.76	0.74
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
72.73	68.18	NA	54.55	68.18	54.55	54.55	NA	63.64	77.27	77.27
96.92	89.23	NA	98.46	84.62	93.85	98.46	NA	90.77	84.62	83.08
91.30	89.23	NA	86.49	88.71	85.92	86.49	NA	88.06	91.67	91.53
88.89	68.18	NA	92.31	60.00	75.00	92.31	NA	70.00	62.96	60.71
90.80	83.91	NA	87.36	80.46	83.91	87.36	NA	83.91	82.76	81.61
Confusion Matrix										
632	587	NA	641	5510	614	641	NA	596	5510	5411
616	715	NA	1012	715	1012	1012	NA	814	517	517

Table D.329: Momentaneous_Past_Investigation_LOO_PCA_first2EDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.48	0.51	0.59	0.51	0.52	0.52	0.50	0.47	0.45	0.46
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.82	22.73	27.27	27.27	27.27	27.27	22.73	18.18	18.18	18.18	22.73
78.46	72.31	73.85	86.15	75.38	76.92	80.00	81.54	76.92	70.77	67.69
77.27	73.44	75.00	77.78	75.38	75.76	75.36	74.65	73.53	71.88	72.13
33.33	21.74	26.09	40.00	27.27	28.57	27.78	25.00	21.05	17.39	19.23
66.67	59.77	62.07	71.26	63.22	64.37	65.52	65.52	62.07	57.47	56.32
Confusion Matrix										
5114	4718	4817	569	4916	5015	5213	5312	5015	4619	4421
157	175	166	166	166	166	175	184	184	184	175

Table D.330: Momentaneous_Past_Investigation_LOO_first2EDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.54	NA	0.56	0.49	0.50	0.53	NA	0.52	0.56	0.58
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
18.18	31.82	NA	22.73	27.27	18.18	18.18	NA	27.27	40.91	45.45
76.92	76.92	NA	86.15	70.77	81.54	86.15	NA	76.92	72.31	72.31
73.53	76.92	NA	76.71	74.19	74.65	75.68	NA	75.76	78.33	79.66
21.05	31.82	NA	35.71	24.00	25.00	30.77	NA	28.57	33.33	35.71
62.07	65.52	NA	70.11	59.77	65.52	68.97	NA	64.37	64.37	65.52
Confusion Matrix										
5015	5015	NA	569	4619	5312	569	NA	5015	4718	4718
184	157	NA	175	166	184	184	NA	166	139	1210

For label first2EDSS $(0 / 1-(<5) /(\geq 5))$:
The via pattern recognition study was not performed since the number of patients with first2EDSS ≥ 5 was minimal.

For label tendencyEDSS (0/1-(Down or Equal)/(Up)):
Features before selection: Nb of visits per Year, Cerebellum 1st year, Corticosteroids Ratio, Corticosteroids 1st year, Average Treatment Intensity, Average Treatment 2 first years, Average Duration, Last ambulatory, Last Treatment, Clinical Findings, MS Course, Years since Onset, Routine Visits Ratio, Average Duration first 2 years.

Excluded features: EDSS medium variation/Year, EDSS std of variation/year, EDSS medium variation first 2 years.

Selected features: Nb of visits per Year, Average Treatment Intensity, Years since Onset.

Table D.331: Momentaneous_Past_Investigation_Traditional_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.63	0.62	0.58	0.54	0.58	0.58	0.63	0.63	0.65	0.64
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
75.00	75.00	75.00	50.00	50.00	50.00	50.00	75.00	75.00	75.00	75.00
50.82	52.46	54.10	57.38	62.30	63.93	60.66	62.30	52.46	54.10	51.61
96.88	96.97	97.06	94.59	95.00	95.12	94.87	97.44	96.97	97.06	96.97
9.09	9.38	9.68	7.14	8.00	8.33	7.69	11.54	9.38	9.68	9.09
52.31	53.85	55.38	56.92	61.54	63.08	60.00	63.08	53.85	55.38	53.03
Confusion Matrix										
3130	3229	3328	3526	3823	3922	3724	3823	3229	3328	3230
13	13	13	22	22	22	22	13	13	13	13

Table D.332: Momentaneous_Past_Investigation_Traditional_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.51	0.55	0.54	0.56	0.53	0.53	0.55	0.51	0.51	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.00	0.00	25.00	25.00	50.00	50.00	25.00	0.00	0.00	0.00	0.00
83.61	98.36	91.80	75.41	63.93	67.21	73.77	96.72	98.36	100.00	98.36
94.44	93.75	94.92	93.88	95.12	95.35	93.75	93.65	93.75	93.85	93.75
9.09	0.00	16.67	6.25	8.33	9.09	5.88	0.00	0.00	NaN	0.00
80.00	92.31	87.69	72.31	63.08	66.15	70.77	90.77	92.31	93.85	92.31
Confusion Matrix										
5110	601	565	4615	3922	4120	4516	592	601	610	601
31	40	31	31	22	22	31	40	40	40	40

Table D.333: Momentaneous_Past_Investigation_kFold_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.40	0.29	0.43	0.08	0.36	0.27	0.17	0.28	0.08	0.60	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	13.33	26.67	0.00	13.33	13.33	6.67	18.75	0.00	66.67	60.00
84.72	95.83	86.11	97.22	84.72	94.44	94.44	97.22	98.61	66.67	62.50
83.56	84.15	84.93	82.35	82.43	83.95	82.93	84.34	82.56	90.57	88.24
21.43	40.00	28.57	0.00	15.38	33.33	20.00	60.00	0.00	29.41	25.00
73.56	81.61	75.86	80.46	72.41	80.46	79.31	82.95	81.61	66.67	62.07
Confusion Matrix										
6111	693	6210	702	6111	684	684	702	711	4824	4527
123	132	114	150	132	132	141	132	150	510	69

Table D.334: Momentaneous_Past_Investigation_kFold_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.34	0.40	0.08	0.50	0.36	0.20	0.34	0.03	0.61	0.60
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
26.67	20.00	26.67	0.00	40.00	20.00	6.67	20.00	0.00	73.33	66.67
84.72	94.44	91.67	97.22	84.72	90.28	93.06	94.44	98.61	68.06	69.44
84.72	85.00	85.71	82.35	87.14	84.42	82.72	85.00	82.56	92.45	90.91
26.67	42.86	40.00	0.00	35.29	30.00	16.67	42.86	0.00	32.35	31.25
74.71	81.61	80.46	80.46	77.01	78.16	78.16	81.61	81.61	68.97	68.97
Confusion Matrix										
6111	684	666	702	6111	657	675	684	711	4923	5022
114	123	114	150	96	123	141	123	150	411	510

D. Appendix IV - Machine learning results

Table D.335: Momentaneous_Past_Investigation_LOO_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.51	0.50	0.41	0.53	0.50	0.41	0.51	0.41	0.50	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
13.33	6.67	13.33	0.00	20.00	6.67	0.00	6.67	0.00	40.00	53.33
87.50	94.44	86.11	97.22	86.11	93.06	94.44	94.44	98.61	59.72	61.11
82.89	82.93	82.67	82.35	83.78	82.72	81.93	82.93	82.56	82.69	86.27
18.18	20.00	16.67	0.00	23.08	16.67	0.00	20.00	0.00	17.14	22.22
74.71	79.31	73.56	80.46	74.71	78.16	78.16	79.31	81.61	56.32	59.77
Confusion Matrix										
639	684	6210	702	6210	675	684	684	711	4329	4428
132	141	132	150	123	141	150	141	150	96	78

Table D.336: Momentaneous_Past_Investigation_LOO_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.51	0.41	0.47	0.47	0.50	0.54	0.00	0.55	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	6.67	13.33	0.00	13.33	6.67	6.67	13.33	0.00	53.33	40.00
81.94	93.06	87.50	97.22	79.17	88.89	93.06	91.67	100.00	63.89	65.28
83.10	82.72	82.89	82.35	81.43	82.05	82.72	83.54	82.76	86.79	83.93
18.75	16.67	18.18	0.00	11.76	11.11	16.67	25.00	NaN	23.53	19.35
71.26	78.16	74.71	80.46	67.82	74.71	78.16	78.16	82.76	62.07	60.92
Confusion Matrix										
5913	675	639	702	5715	648	675	666	720	4626	4725
123	141	132	150	132	141	141	132	150	78	96

For label mediumEDSS $(0 / 1-(<3) /(\geq 3))$:
Final features: Spinal Cord, MS Course, No Years, Pyramidal 1 ratio, Pyramidal first 2 years.

Table D.337: Momentaneous_Past_Investigation_Traditional_PCA_mediumEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.62	0.50	NA	0.64	0.54	0.57	0.60	NA	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
88.89	100.00	NA	88.89	66.67	77.78	77.78	NA	100.00	100.00	100.00
41.18	0.00	NA	41.18	44.12	38.24	38.24	NA	0.00	0.00	0.00
93.33	NaN	NA	93.33	83.33	86.67	86.67	NA	NaN	NaN	NaN
28.57	20.93	NA	28.57	24.00	25.00	25.00	NA	20.93	20.93	20.93
51.16	20.93	NA	51.16	48.84	46.51	46.51	NA	20.93	20.93	20.93
Confusion Matrix										
1420	034	NA	1420	1519	1321	1321	NA	034	034	034
18	09	NA	18	36	27	27	NA	09	09	09

Table D.338: Momentaneous_Past_Investigation_Traditional_mediumEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.66	0.50	0.00	0.76	0.59	0.69	0.76	0.00	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
77.78	100.00	88.89	77.78	77.78	77.78	77.78	88.89	100.00	100.00	100.00
52.94	2.94	76.47	79.41	41.18	61.76	79.41	70.59	2.94	0.00	2.94
90.00	100.00	96.30	93.10	87.50	91.30	93.10	96.00	100.00	NaN	100.00
30.43	21.43	50.00	50.00	25.93	35.00	50.00	44.44	21.43	20.93	21.43
58.14	23.26	79.07	79.07	48.84	65.12	79.07	74.42	23.26	20.93	23.26
Confusion Matrix										
1816	133	268	277	1420	2113	277	2410	133	034	133
27	09	18	27	27	27	27	18	09	09	09

Table D.339: Momentaneous_Past_Investigation_kFold_PCA_mediumEDSS > 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.75	0.79	0.84	0.83	0.86	0.76	0.73	0.82	0.79	0.77	0.77
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
64.52	61.29	80.65	70.97	80.65	67.74	54.84	77.42	61.29	67.74	64.52
83.93	94.64	87.50	94.64	91.07	85.71	92.86	89.29	94.64	87.50	89.29
81.03	81.54	89.09	85.48	89.47	82.76	78.79	87.72	81.54	83.05	81.97
68.97	86.36	78.13	88.00	83.33	72.41	80.95	80.00	86.36	75.00	76.92
77.01	82.76	85.06	86.21	87.36	79.31	79.31	85.06	82.76	80.46	80.46
Confusion Matrix										
479	533	497	533	515	488	524	506	533	497	506
1120	1219	625	922	625	1021	1417	724	1219	1021	1120

Table D.340: Momentaneous_Past_Investigation_kFold_mediumEDSS >3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.73	0.78	0.83	0.83	0.85	0.76	0.73	0.81	0.78	0.77	0.77
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
64.52	61.29	80.65	70.97	80.65	64.52	54.84	77.42	61.29	67.74	67.74
83.93	92.86	87.50	94.64	91.07	85.71	91.07	89.29	92.86	87.50	89.29
81.03	81.25	89.09	85.48	89.47	81.36	78.46	87.72	81.25	83.05	83.33
68.97	82.61	78.13	88.00	83.33	71.43	77.27	80.00	82.61	75.00	77.78
77.01	81.61	85.06	86.21	87.36	78.16	78.16	85.06	81.61	80.46	81.61
Confusion Matrix										
479	524	497	533	515	488	515	506	524	497	506
1120	1219	625	922	625	1120	1417	724	1219	1021	1021

Table D.341: Momentaneous_Past_Investigation_LOO_PCA_mediumEDSS > 3

Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.55	0.56	0.59	0.56	0.54	0.52	0.57	0.55	0.57	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
38.71	32.26	45.16	38.71	41.94	38.71	25.81	41.94	32.26	41.94	35.48
71.43	76.79	67.86	76.79	69.64	69.64	76.79	71.43	76.79	71.43	73.21
67.80	67.19	69.09	69.35	68.42	67.24	65.15	68.97	67.19	68.97	67.21
42.86	43.48	43.75	48.00	43.33	41.38	38.10	44.83	43.48	44.83	42.31
59.77	60.92	59.77	63.22	59.77	58.62	58.62	60.92	60.92	60.92	59.77
Confusion Matrix										
4016	4313	3818	4313	3917	3917	4313	4016	4313	4016	4115
1912	2110	1714	1912	1813	1912	238	1813	2110	1813	2011

Table D.342: Momentaneous_Past_Investigation_LOO_mediumEDSS >3

Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.42	0.52	0.54	0.56	0.48	0.49	0.61	0.54	0.52	0.59	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
22.58	29.03	41.94	35.48	32.26	32.26	35.48	38.71	29.03	45.16	35.48
62.50	75.00	66.07	75.00	64.29	66.07	82.14	69.64	75.00	73.21	73.21
59.32	65.63	67.27	67.74	63.16	63.79	69.70	67.24	65.63	70.69	67.21
25.00	39.13	40.63	44.00	33.33	34.48	52.38	41.38	39.13	48.28	42.31
48.28	58.62	57.47	60.92	52.87	54.02	65.52	58.62	58.62	63.22	59.77
Confusion Matrix										
3521	4214	3719	4214	3620	3719	4610	3917	4214	4115	4115
247	229	1813	2011	2110	2110	2011	1912	229	1714	2011

For label nextEDSS $(0 / 1-(<3) /(\geq 3))$:
The via pattern recognition study was not performed since the number of patients with currentEDSS ≥ 5 was minimal.

D. 2 MRI Set

For label msCourse (0/1-RR/SP):
Final features: 34_A1_NB_diff_FLAIR_bin_location_mean_std histogram, 29_A1_CSF_diff_DP_bin histogram, 87_A1_CSF_diff_DP_bin_location_median_std histogram, 92_A1_CSF_diff_DP_bin_location_ histogram.

Table D.343: MRI_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.72	0.69	0.58	0.61	0.59	0.63	0.69	0.72	0.69	0.69
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
33.33	66.67	66.67	83.33	66.67	66.67	66.67	66.67	66.67	60.00	60.00
75.38	83.08	72.31	38.46	52.31	49.23	61.54	70.77	83.08	82.81	82.81
92.45	96.43	95.92	96.15	94.44	94.12	95.24	95.83	96.43	96.36	96.36
11.11	26.67	18.18	11.11	11.43	10.81	13.79	17.39	26.67	21.43	21.43
71.83	81.69	71.83	42.25	53.52	50.70	61.97	70.42	81.69	81.16	81.16
Confusion Matrix										
4916	5411	4718	2540	3431	3233	4025	4619	5411	5311	5311
42	24	24	15	24	24	24	24	24	23	23

Table D.344: MRI_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.71	NA	0.59	0.61	0.59	0.64	0.69	0.71	0.73	0.70
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
50.00	66.67	NA	66.67	66.67	66.67	66.67	66.67	66.67	60.00	60.00
67.69	80.00	NA	47.69	60.00	52.31	61.54	67.69	81.54	82.81	81.25
93.62	96.30	NA	93.94	95.12	94.44	95.24	95.65	96.36	96.36	96.30
12.50	23.53	NA	10.53	13.33	11.43	13.79	16.00	25.00	21.43	20.00
66.20	78.87	NA	49.30	60.56	53.52	61.97	67.61	80.28	81.16	79.71
Confusion Matrix										
4421	5213	NA	3134	3926	3431	4025	4421	5312	5311	5212
33	24	NA	24	24	24	24	24	24	23	23

Table D.345: MRI_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.41	0.12	0.02	0.12	0.49	0.44	0.25	0.02	0.03	0.63	0.63
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
15.00	5.00	0.00	0.00	25.00	20.00	5.00	0.00	0.00	90.00	90.00
84.81	98.73	98.73	94.94	83.54	88.61	88.61	98.73	100.00	49.37	49.37
79.76	80.41	79.59	78.95	81.48	81.40	78.65	79.59	79.80	95.12	95.12
20.00	50.00	0.00	0.00	27.78	30.77	10.00	0.00	NaN	31.03	31.03
70.71	79.80	78.79	75.76	71.72	74.75	71.72	78.79	79.80	57.58	57.58
Confusion Matrix										
6712	781	781	754	6613	709	709	781	790	3940	3940
173	191	200	200	155	164	191	200	200	218	218

D. Appendix IV - Machine learning results

Table D.346: MRI_kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.49	0.50	0.07	0.52	0.43	0.34	0.64	0.38	0.65	0.63
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
30.00	30.00	28.57	0.00	30.00	20.00	15.00	60.00	15.00	80.00	65.00
87.34	89.87	86.08	97.47	82.28	89.87	94.94	78.48	92.41	65.82	73.42
83.13	83.53	81.93	79.38	82.28	81.61	81.52	88.57	81.11	92.86	89.23
37.50	42.86	35.29	0.00	30.00	33.33	42.86	41.38	33.33	37.21	38.24
75.76	77.78	74.00	77.78	71.72	75.76	78.79	74.75	76.77	68.69	71.72
Confusion Matrix										
6910	718	6811	772	6514	718	754	6217	736	5227	5821
146	146	156	200	146	164	173	812	173	416	713

Table D.347: MRI_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.40	0.00	0.74	0.55	0.56	0.61	0.43	0.51	0.55	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
30.00	0.00	0.00	10.00	25.00	20.00	20.00	0.00	0.00	70.00	70.00
86.08	97.47	100.00	98.73	83.54	88.61	92.41	100.00	100.00	44.30	44.30
82.93	79.38	79.80	81.25	81.48	81.40	82.02	79.80	79.80	85.37	85.37
35.29	0.00	NaN	66.67	27.78	30.77	40.00	NaN	NaN	24.14	24.14
74.75	77.78	79.80	80.81	71.72	74.75	77.78	79.80	79.80	49.49	49.49
Confusion Matrix										
6811	772	790	781	6613	709	736	790	790	3544	3544
146	200	200	182	155	164	164	200	200	614	614

Table D.348: MRI_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.47	0.55	0.40	0.46	0.44	0.48	0.43	0.51	0.49	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
5.00	10.00	20.00	0.00	15.00	5.00	5.00	15.00	10.00	40.00	35.00
86.08	84.81	87.34	98.73	77.22	87.34	93.67	67.09	91.14	55.70	68.35
78.16	78.82	81.18	79.59	78.21	78.41	79.57	75.71	80.00	78.57	80.60
8.33	14.29	28.57	0.00	14.29	9.09	16.67	10.34	22.22	18.60	21.88
69.70	69.70	73.74	78.79	64.65	70.71	75.76	56.57	74.75	52.53	61.62
Confusion Matrix										
6811	6712	6910	781	6118	6910	745	5326	727	4435	5425
191	182	164	200	173	191	191	173	182	128	137

For label currentEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: 164_A1_CSF_ratio_T2_max_entropy, 22_A1_WM_diff_FLAIR_max_entropy, 22_A1_WM_ratio_FLAIR_max_entropy.

Table D.349: MRI_Traditional_PCA_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.44	0.50	0.50	0.48	0.45	0.48	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
75.00	100.00	100.00	75.00	75.00	91.67	100.00	100.00	NA	100.00	100.00
16.13	0.00	0.00	19.35	12.90	3.23	0.00	0.00	NA	0.00	0.00
62.50	NaN	NaN	66.67	57.14	50.00	NaN	NaN	NA	NaN	NaN
25.71	27.91	27.91	26.47	25.00	26.83	27.91	27.91	NA	27.91	27.91
32.56	27.91	27.91	34.88	30.23	27.91	27.91	27.91	NA	27.91	27.91
Confusion Matrix										
526	031	031	625	427	130	031	031	NA	031	031
39	012	012	39	39	111	012	012	NA	012	012

Table D.350: MRI_Traditional_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	NA	100.00	100.00
0.00	0.00	0.00	3.03	0.00	0.00	0.00	0.00	NA	0.00	0.00
NaN	NaN	NaN	100.00	NaN	NaN	NaN	NaN	NA	NaN	NaN
26.67	26.67	26.67	27.27	26.67	26.67	26.67	26.67	NA	26.67	26.67
26.67	26.67	26.67	28.89	26.67	26.67	26.67	26.67	NA	26.67	26.67
Confusion Matrix										
231	033	033	132	033	033	033	033	NA	033	033
012	012	012	012	012	012	012	012	NA	012	012

Table D.351: MRI_kFold_PCA_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.63	0.63	0.41	0.58	0.56	0.56	0.63	NA	0.59	0.59
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
47.50	40.00	35.00	17.50	47.50	40.00	42.50	35.00	NA	57.50	57.50
64.41	84.75	89.83	76.27	66.10	71.19	67.80	89.83	NA	61.02	61.02
64.41	67.57	67.09	57.69	65.00	63.64	63.49	67.09	NA	67.92	67.92
47.50	64.00	70.00	33.33	48.72	48.48	47.22	70.00	NA	50.00	50.00
57.58	66.67	67.68	52.53	58.59	58.59	57.58	67.68	NA	59.60	59.60
Confusion Matrix										
3821	509	536	4514	3920	4217	4019	536	NA	3623	3623
2119	2416	2614	337	2119	2416	2317	2614	NA	1723	1723

D. Appendix IV - Machine learning results

Table D.352: MRI_kFold_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.63	0.67	0.66	0.63	0.58	0.69	0.70	0.72	NA	0.63	0.71
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
58.97	48.72	51.28	35.90	48.72	58.97	53.85	58.97	NA	56.41	69.23
66.67	83.33	85.00	85.00	66.67	80.00	83.33	81.97	NA	68.33	73.33
71.43	71.43	72.86	67.11	66.67	75.00	73.53	75.76	NA	70.69	78.57
53.49	65.52	68.97	60.87	48.72	65.71	67.74	67.65	NA	53.66	62.79
63.64	69.70	71.72	65.66	59.60	71.72	71.72	73.00	NA	63.64	71.72
Confusion Matrix										
4020	5010	519	519	4020	4812	5010	5011	NA	4119	4416
1623	2019	1920	2514	2019	1623	1821	1623	NA	1722	1227

Table D.353: MRI_LOO_PCA_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.52	0.50	0.56	0.56	0.59	0.52	0.50	NA	0.51	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
47.50	25.00	20.00	25.00	47.50	42.50	40.00	20.00	NA	47.50	47.50
57.63	77.97	79.66	83.05	64.41	74.58	64.41	79.66	NA	54.24	54.24
61.82	60.53	59.49	62.03	64.41	65.67	61.29	59.49	NA	60.38	60.38
43.18	43.48	40.00	50.00	47.50	53.13	43.24	40.00	NA	41.30	41.30
53.54	56.57	55.56	59.60	57.58	61.62	54.55	55.56	NA	51.52	51.52
Confusion Matrix										
3425	4613	4712	4910	3821	4415	3821	4712	NA	3227	3227
2119	3010	328	3010	2119	2317	2416	328	NA	2119	2119

Table D.354: MRI_LOO_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.41	0.38	0.48	0.45	0.39	0.42	0.38	NA	0.46	0.46
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
35.90	15.38	10.26	15.38	33.33	17.95	23.08	10.26	NA	41.03	41.03
56.67	71.67	73.33	81.67	56.67	63.33	61.67	73.33	NA	51.67	51.67
57.63	56.58	55.70	59.76	56.67	54.29	55.22	55.70	NA	57.41	57.41
35.00	26.09	20.00	35.29	33.33	24.14	28.13	20.00	NA	35.56	35.56
48.48	49.49	48.48	55.56	47.47	45.45	46.46	48.48	NA	47.47	47.47
Confusion Matrix										
3426	4317	4416	4911	3426	3822	3723	4416	NA	3129	3129
2514	336	354	336	2613	327	309	354	NA	2316	2316

For label currentEDSS $>5(\mathbf{0} / \mathbf{1}-(<5) /(\geq 5)$:
Final features: 102_A1_NB_ratio_T1_std_bin_location_mean histogram, 22_A1_WM_ratio_FLAIRhistogram.

Table D.355: MRI_Traditional_PCA_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	NA	100.00	100.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NA	1.61	1.61
NaN	NA	100.00	100.00							
10.14	10.14	10.14	10.14	10.14	10.14	10.14	10.14	NA	10.29	10.29
10.14	10.14	10.14	10.14	10.14	10.14	10.14	10.14	NA	11.59	11.59
Confusion Matrix										
062	062	062	062	062	062	062	062	NA	161	161
07	07	07	07	07	07	07	07	NA	07	07

Table D.356: MRI_Traditional_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.50	0.50	0.50	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	100.00	100.00	100.00	71.43	100.00	100.00	100.00	NA	100.00	100.00
17.74	0.00	6.45	1.61	24.19	0.00	1.61	0.00	NA	0.00	0.00
91.67	NaN	100.00	100.00	88.24	NaN	100.00	NaN	NA	NaN	NaN
10.53	10.14	10.77	10.29	9.62	10.14	10.29	10.14	NA	10.14	10.14
24.64	10.14	15.94	11.59	28.99	10.14	11.59	10.14	NA	10.14	10.14
Confusion Matrix										
1151	062	458	161	1547	062	161	062	NA	062	062
16	07	07	07	25	07	07	07	NA	07	07

Table D.357: MRI_kFold_PCA_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.46	0.49	0.11	0.53	0.54	0.59	0.49	0.45	0.64	0.64
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
36.36	27.27	27.27	0.00	36.36	31.82	36.36	27.27	22.73	54.55	54.55
80.52	94.81	94.81	96.10	76.62	87.01	92.21	94.81	94.81	84.42	84.42
81.58	82.02	82.02	77.08	80.82	81.71	83.53	82.02	81.11	86.67	86.67
34.78	60.00	60.00	0.00	30.77	41.18	57.14	60.00	55.56	50.00	50.00
70.71	79.80	79.80	74.75	67.68	74.75	79.80	79.80	78.79	77.78	77.78
Confusion Matrix										
6215	734	734	743	5918	6710	716	734	734	6512	6512
148	166	166	220	148	157	148	166	175	1012	1012

D. Appendix IV - Machine learning results

Table D.358: MRI_kFold_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.46	0.61	0.24	0.56	0.55	0.60	0.63	NA	0.63	0.59
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.82	27.27	40.91	9.09	36.36	36.36	40.91	40.91	NA	54.55	45.45
81.82	97.40	94.81	96.10	80.52	89.61	92.21	94.81	NA	84.42	87.01
80.77	82.42	84.88	78.72	81.58	83.13	84.52	84.88	NA	86.67	84.81
33.33	75.00	69.23	40.00	34.78	50.00	60.00	69.23	NA	50.00	50.00
70.71	81.82	82.83	76.77	70.71	77.78	80.81	82.83	NA	77.78	77.78
Confusion Matrix										
6314	752	734	743	6215	698	716	734	NA	6512	6710
157	166	139	202	148	148	139	139	NA	1012	1210

Table D.359: MRI_LOO_PCA_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.49	0.49	0.56	0.42	0.50	0.45	0.49	0.50	0.44	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
18.18	9.09	9.09	4.55	13.64	18.18	9.09	9.09	9.09	13.64	13.64
72.73	89.61	89.61	97.40	68.83	81.82	84.42	89.61	90.91	72.73	72.73
75.68	77.53	77.53	78.13	73.61	77.78	76.47	77.53	77.78	74.67	74.67
16.00	20.00	20.00	33.33	11.11	22.22	14.29	20.00	22.22	12.50	12.50
60.61	71.72	71.72	76.77	56.57	67.68	67.68	71.72	72.73	59.60	59.60
Confusion Matrix										
5621	698	698	752	5324	6314	6512	698	707	5621	5621
184	202	202	211	193	184	202	202	202	193	193

Table D.360: MRI_LOO_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.44	0.44	0.46	0.47	0.47	0.48	0.45	0.46	NA	0.47	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
13.64	4.55	9.09	4.55	18.18	13.64	9.09	9.09	NA	18.18	18.18
75.32	89.61	85.71	93.51	75.32	83.12	84.42	85.71	NA	74.03	80.52
75.32	76.67	76.74	77.42	76.32	77.11	76.47	76.74	NA	76.00	77.50
13.64	11.11	15.38	16.67	17.39	18.75	14.29	15.38	NA	16.67	21.05
61.62	70.71	68.69	73.74	62.63	67.68	67.68	68.69	NA	61.62	66.67
Confusion Matrix										
5819	698	6611	725	5819	6413	6512	6611	NA	5720	6215
193	211	202	211	184	193	202	202	NA	184	184

For label nextEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: 121_A1_BO_ratio_T2_raw_std_mean, 22_A1_WM_diff_FLAIR_max_entropy, 23_A1_WM_diff_FLAIR_max_entropy, 24_A1_WM_diff_FLAIR_max_entropy, 21_A1_WM_ratio_FLAIF

Table D.361: MRI_Traditional_PCA_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.49	0.51	0.51	0.48	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
83.33	100.00	91.67	75.00	83.33	100.00	100.00	100.00	NA	100.00	100.00
15.15	0.00	3.03	27.27	18.18	0.00	0.00	0.00	NA	0.00	0.00
71.43	NaN	50.00	75.00	75.00	NaN	NaN	NaN	NA	NaN	NaN
26.32	26.67	25.58	27.27	27.03	26.67	26.67	26.67	NA	26.67	26.67
33.33	26.67	26.67	40.00	35.56	26.67	26.67	26.67	NA	26.67	26.67
Confusion Matrix										
528	033	132	924	627	033	033	033	NA	033	033
210	012	111	39	210	012	012	012	NA	012	012

Table D.362: MRI_Traditional_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.50	0.48	0.52	0.52	0.51	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	83.33	100.00	100.00	100.00	100.00	NA	100.00	100.00
3.03	0.00	0.00	12.12	3.03	6.06	3.03	0.00	NA	0.00	0.00
100.00	NaN	NaN	66.67	100.00	100.00	100.00	NaN	NA	NaN	NaN
27.27	26.67	26.67	25.64	27.27	27.91	27.27	26.67	NA	26.67	26.67
28.89	26.67	26.67	31.11	28.89	31.11	28.89	26.67	NA	26.67	26.67
Confusion Matrix										
132	033	033	429	132	231	132	033	NA	033	033
012	012	012	210	012	012	012	012	NA	012	012

Table D.363: MRI_kFold_PCA_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.66	0.68	0.67	0.66	0.65	0.61	0.66	0.67	0.68	0.71	0.64
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
58.97	56.41	58.97	46.15	58.97	43.59	53.85	53.85	56.41	76.92	64.10
73.33	78.33	75.00	85.00	71.67	76.67	78.33	78.33	78.33	65.00	66.67
73.33	73.44	73.77	70.83	72.88	67.65	72.31	72.31	73.44	81.25	74.07
58.97	62.86	60.53	66.67	57.50	54.84	61.76	61.76	62.86	58.82	55.56
67.68	69.70	68.69	69.70	66.67	63.64	68.69	68.69	69.70	69.70	65.66
Confusion Matrix										
4416	4713	4515	519	4317	4614	4713	4713	4713	3921	4020
1623	1722	1623	2118	1623	2217	1821	1821	1722	930	1425

D. Appendix IV - Machine learning results

Table D.364: MRI_kFold_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.68	0.65	0.63	0.62	0.66	0.62	0.65	0.67	0.65	0.71	0.63
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
64.10	51.28	46.15	43.59	61.54	53.85	53.85	61.54	51.28	76.92	58.97
71.67	78.33	78.33	78.33	73.33	71.67	75.00	75.00	78.33	66.67	66.67
75.44	71.21	69.12	68.12	74.58	70.49	71.43	75.00	71.21	81.63	71.43
59.52	60.61	58.06	56.67	60.00	55.26	58.33	61.54	60.61	60.00	53.49
68.69	67.68	65.66	64.65	68.69	64.65	66.67	69.70	67.68	70.71	63.64
Confusion Matrix										
4317	4713	4713	4713	4416	4317	4515	4515	4713	4020	4020
1425	1920	2118	2217	1524	1821	1821	1524	1920	930	1623

Table D.365: MRI_LOO_PCA_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.49	0.55	0.51	0.48	0.53	0.54	0.47	0.49	0.55	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
48.72	30.77	38.46	33.33	38.46	41.03	41.03	35.90	30.77	56.41	46.15
60.00	66.67	70.00	68.33	58.33	65.00	66.67	58.33	66.67	53.33	60.00
64.29	59.70	63.64	61.19	59.32	62.90	63.49	58.33	59.70	65.31	63.16
44.19	37.50	45.45	40.63	37.50	43.24	44.44	35.90	37.50	44.00	42.86
55.56	52.53	57.58	54.55	50.51	55.56	56.57	49.49	52.53	54.55	54.55
Confusion Matrix										
3624	4020	4218	4119	3525	3921	4020	3525	4020	3228	3624
2019	2712	2415	2613	2415	2316	2316	2514	2712	1722	2118

Table D.366: MRI_LOO_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.45	0.41	0.40	0.45	0.39	0.45	0.42	0.40	0.41	0.45	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
33.33	25.64	25.64	23.08	28.21	25.64	25.64	23.08	25.64	43.59	38.46
56.67	56.67	55.00	68.33	50.00	65.00	60.00	58.33	56.67	45.00	50.00
56.67	53.97	53.23	57.75	51.72	57.35	55.38	53.85	53.97	55.10	55.56
33.33	27.78	27.03	32.14	26.83	32.26	29.41	26.47	27.78	34.00	33.33
47.47	44.44	43.43	50.51	41.41	49.49	46.46	44.44	44.44	44.44	45.45
Confusion Matrix										
3426	3426	3327	4119	4119	3921	3624	3525	3426	2733	3030
2613	2910	2910	309	309	2910	2910	309	2910	2217	2415

For label nextEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Final features: 81_A1_NB_diff_T1_std_bin_location_mean histogram, 34_A1_NB_ratio_T1_std_bin_ histogram.

Table D.367: MRI_Traditional_PCA_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.47	0.50	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	71.43	100.00	100.00	100.00	100.00	NA	100.00	100.00
0.00	0.00	0.00	17.74	0.00	0.00	0.00	0.00	NA	0.00	0.00
NaN	NaN	NaN	84.62	NaN	NaN	NaN	NaN	NA	NaN	NaN
10.14	10.14	10.14	8.93	10.14	10.14	10.14	10.14	NA	10.14	10.14
10.14	10.14	10.14	23.19	10.14	10.14	10.14	10.14	NA	10.14	10.14
Confusion Matrix										
062	062	062	1151	062	062	062	062	NA	062	062
07	07	07	25	07	07	07	07	NA	07	07

Table D.368: MRI_Traditional_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	NA	0.50	0.49
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
85.71	85.71	100.00	85.71	100.00	100.00	100.00	100.00	NA	100.00	100.00
17.74	8.06	1.61	11.29	0.00	0.00	0.00	0.00	NA	0.00	6.45
91.67	83.33	100.00	87.50	NaN	NaN	NaN	NaN	NA	NaN	100.00
10.53	9.52	10.29	9.84	10.14	10.14	10.14	10.14	NA	10.14	10.77
24.64	15.94	11.59	18.84	10.14	10.14	10.14	10.14	NA	10.14	15.94
Confusion Matrix										
1151	557	161	755	062	062	062	062	NA	062	458
16	16	07	16	07	07	07	07	NA	07	07

Table D.369: MRI_kFold_PCA_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.45	0.51	0.52	0.09	0.53	0.46	0.44	0.52	0.51	0.69	0.69
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
22.73	31.82	31.82	0.00	31.82	22.73	22.73	31.82	31.82	63.64	63.64
84.42	94.81	94.81	96.10	83.12	88.31	90.91	94.81	94.81	85.71	85.71
79.27	82.95	82.95	77.08	81.01	80.00	80.46	82.95	82.95	89.19	89.19
29.41	63.64	63.64	0.00	35.00	35.71	41.67	63.64	63.64	56.00	56.00
70.71	80.81	80.81	74.75	71.72	73.74	75.76	80.81	80.81	80.81	80.81
Confusion Matrix										
6512	734	734	743	6413	689	707	734	734	6611	6611
175	157	157	220	157	175	175	157	157	814	814

D. Appendix IV - Machine learning results

Table D.370: MRI_kFold_nextEDSS ≥ 5

Classifier								
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM
AUC								
0.55	0.51	0.53	0.10	0.52	0.46	0.44	0.59	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%								
36.36	31.82	31.82	0.00	31.82	22.73	22.73	40.91	31.82
90.91	94.81	94.81	96.10	80.52	88.31	90.91	92.21	96.10
83.33	82.95	82.95	77.08	80.52	80.00	80.46	84.52	83.15
53.33	63.64	63.64	0.00	31.82	35.71	41.67	60.00	70.00
78.79	80.81	80.81	74.75	69.70	73.74	75.76	80.81	81.82
Confusion Matrix								
707	734	734	743	6215	689	707	716	743
148	157	157	220	157	175	175	139	157

Table D.371: MRI_LOO_PCA_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.48	0.48	0.64	0.52	0.54	0.47	0.48	0.48	0.38	0.38
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
27.27	9.09	9.09	4.55	22.73	18.18	9.09	9.09	9.09	4.55	4.55
84.42	88.31	88.31	98.70	80.52	87.01	87.01	88.31	88.31	68.83	68.83
80.25	77.27	77.27	78.35	78.48	78.82	77.01	77.27	77.27	71.62	71.62
33.33	18.18	18.18	50.00	25.00	28.57	16.67	18.18	18.18	4.00	4.00
71.72	70.71	70.71	77.78	67.68	71.72	69.70	70.71	70.71	54.55	54.55
Confusion Matrix										
6512	689	689	761	6215	6710	6710	689	689	5324	5324
166	202	202	211	175	184	202	202	202	211	211

Table D.372: MRI_LOO_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.58	0.56	0.39	0.53	0.54	0.56	0.53	0.58	0.49	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
18.18	18.18	18.18	0.00	27.27	18.18	18.18	18.18	18.18	31.82	31.82
87.01	90.91	89.61	96.10	79.22	87.01	89.61	85.71	90.91	76.62	66.23
78.82	79.55	79.31	77.08	79.22	78.82	79.31	78.57	79.55	79.73	77.27
28.57	36.36	33.33	0.00	27.27	28.57	33.33	26.67	36.36	28.00	21.21
71.72	74.75	73.74	74.75	67.68	71.72	73.74	70.71	74.75	66.67	58.59
Confusion Matrix										
6710	707	698	743	6116	6710	698	6611	707	5918	5126
184	184	184	220	166	184	184	184	184	157	157

For label highestEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: 164_A1_CSF_ratio_T2_max_entropy, 22_A1_WM_diff_FLAIR_max_entropy.

Table D.373: MRI_Traditional_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.00	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	NaN	100.00	100.00
58.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NaN	0.00	0.00
43.75	NaN									
54.55	55.56	55.56	55.56	55.56	55.56	55.56	55.56	NaN	55.56	55.56
48.15	55.56	55.56	55.56	55.56	55.56	55.56	55.56	NaN	55.56	55.56
Confusion Matrix										
75	012	012	012	012	012	012	012	012	012	012
96	015	015	015	015	015	015	015	015	015	015

Table D.374: MRI_Traditional_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.50	0.50	0.50	0.50	0.50	0.50	0.50	NA	0.50	0.00
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
86.67	100.00	100.00	100.00	100.00	100.00	100.00	100.00	NA	100.00	100.00
16.67	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NA	0.00	0.00
50.00	NaN	NA	NaN	NaN						
56.52	55.56	55.56	55.56	55.56	55.56	55.56	55.56	NA	55.56	55.56
55.56	55.56	55.56	55.56	55.56	55.56	55.56	55.56	NA	55.56	55.56
Confusion Matrix										
210	012	012	012	012	012	012	012	NA	012	012
213	015	015	015	015	015	015	015	NA	015	015

Table D.375: MRI_kFold_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.67	0.71	0.75	0.67	0.69	0.68	0.70	0.73	0.71	0.65	0.71
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
72.55	72.55	72.55	74.51	70.59	70.59	76.47	68.63	70.59	60.78	70.59
62.50	69.39	77.08	56.25	66.67	64.58	64.58	77.08	70.83	68.75	72.92
68.18	70.83	72.55	67.50	68.09	67.39	72.09	69.81	69.39	62.26	70.00
67.27	71.15	77.08	64.41	69.23	67.92	69.64	76.09	72.00	67.39	73.47
67.68	71.00	74.75	65.66	68.69	67.68	70.71	72.73	70.71	64.65	71.72
Confusion Matrix										
3018	3415	3711	2721	3216	3117	3117	3711	3414	3315	3513
1437	1437	1437	1338	1536	1536	1239	1635	1536	2031	1536

D. Appendix IV - Machine learning results

Table D.376: MRI kFold_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.67	0.71	0.76	0.67	0.69	0.68	0.70	0.73	0.71	0.65	0.71
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
70.59	70.59	74.51	74.51	70.59	70.59	74.51	66.67	70.59	60.78	70.59
62.50	70.83	77.08	56.25	66.67	64.58	64.58	77.08	70.83	68.75	72.92
66.67	69.39	74.00	67.50	68.09	67.39	70.45	68.52	69.39	62.26	70.00
66.67	72.00	77.55	64.41	69.23	67.92	69.09	75.56	72.00	67.39	73.47
66.67	70.71	75.76	65.66	68.69	67.68	69.70	71.72	70.71	64.65	71.72
Confusion Matrix										
3018	3414	3711	2721	3216	3117	3117	3711	3414	3315	3513
1536	1536	1338	1338	1536	1536	1338	1734	1536	2031	1536

Table D.377: MRI_LOO_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.53	0.57	0.56	0.59	0.58	0.58	0.57	0.53	0.55	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
64.71	54.90	54.90	64.71	60.78	60.78	62.75	50.98	54.90	50.98	52.94
52.08	52.08	58.33	47.92	56.25	54.17	52.08	62.50	52.08	58.33	56.25
58.14	52.08	54.90	56.10	57.45	56.52	56.82	54.55	52.08	52.83	52.94
58.93	54.90	58.33	56.90	59.62	58.49	58.18	59.09	54.90	56.52	56.25
58.59	53.54	56.57	56.57	58.59	57.58	57.58	56.57	53.54	54.55	54.55
Confusion Matrix										
2523	2523	2820	2325	2721	2622	2523	3018	2523	2820	2721
1833	2328	2328	1833	2031	2031	1932	2526	2328	2526	2427

Table D.378: MRI_LOO_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.56	0.49	0.44	0.48	0.51	0.51	0.49	0.56	0.53	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
58.82	56.86	47.06	52.94	50.98	54.90	56.86	43.14	56.86	49.02	52.94
45.83	54.17	50.00	35.42	45.83	47.92	45.83	54.17	54.17	56.25	56.25
51.16	54.17	47.06	41.46	46.81	50.00	50.00	47.27	54.17	50.94	52.94
53.57	56.86	50.00	46.55	50.00	52.83	52.73	50.00	56.86	54.35	56.25
52.53	55.56	48.48	44.44	48.48	51.52	51.52	48.48	55.56	52.53	54.55
Confusion Matrix										
2226	2622	2424	1731	2226	2325	2226	2622	2622	2721	2721
2130	2229	2724	2427	2526	2328	2229	2922	2229	2625	2427

For label highestEDSS $>5(\mathbf{0} / \mathbf{1}-(<5) /(\geq 5):$
Final features: 22_A1_WM_ratio_FLAIR_bin_location_median_median histogram.

Table D.379: MRI_Traditional_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.50	0.53	0.52	0.53	0.53	0.50	0.53	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
71.43	100.00	85.71	71.43	42.86	42.86	42.86	85.71	100.00	100.00	100.00
29.69	1.56	17.19	34.38	56.25	62.50	59.38	17.19	1.56	0.00	0.00
90.48	100.00	91.67	91.67	90.00	90.91	90.48	91.67	100.00	NaN	NaN
10.00	10.00	10.17	10.64	9.68	11.11	10.34	10.17	10.00	8.70	8.70
33.80	11.27	23.94	38.03	54.93	60.56	57.75	23.94	11.27	8.70	8.70
Confusion Matrix										
1945	163	1153	2242	3628	4024	3826	1153	163	063	063
25	07	16	25	43	43	43	16	07	06	06

Table D.380: MRI_kFold_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.41	0.38	0.51	0.35	0.42	0.41	0.42	0.51	NA	0.51	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
23.81	23.81	33.33	19.05	23.81	23.81	23.81	33.33	NA	33.33	33.33
97.44	100.00	96.15	97.44	97.44	98.72	97.44	96.15	NA	96.15	96.15
82.61	82.98	84.27	81.72	82.61	82.80	82.61	84.27	NA	84.27	84.27
71.43	100.00	70.00	66.67	71.43	83.33	71.43	70.00	NA	70.00	70.00
81.82	83.84	82.83	80.81	81.82	82.83	81.82	82.83	NA	82.83	82.83
Confusion Matrix										
762	780	753	762	762	771	762	753	NA	753	753
165	165	147	174	165	165	165	147	NA	147	147

Table D.381: MRI_LOO_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.60	0.55	0.49	0.54	0.56	0.52	0.55	NA	0.60	0.60
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
9.52	9.52	14.29	4.76	9.52	9.52	9.52	14.29	NA	19.05	19.05
94.87	96.15	91.03	94.87	93.59	94.87	92.31	91.03	NA	92.31	92.31
79.57	79.79	79.78	78.72	79.35	79.57	79.12	79.78	NA	80.90	80.90
33.33	40.00	30.00	20.00	28.57	33.33	25.00	30.00	NA	40.00	40.00
76.77	77.78	74.75	75.76	75.76	76.77	74.75	74.75	NA	76.77	76.77
Confusion Matrix										
744	753	717	744	735	744	726	717	NA	726	726
192	192	183	201	192	192	192	183	NA	174	174

For label first2EDSS $>3(0 / 1-(<3) /(\geq 3):$
Final features: 24_A1_WB_ratio_T1_gde_bin_location_mean_std histogram, raw_WM_brain_diff_F
D. Appendix IV - Machine learning results

Table D.382: MRI_Traditional_PCA first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.48	0.50	0.51	0.50	0.49	0.48	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	100.00	66.67	77.78	66.67	77.78	77.78	66.67	NA	100.00	100.00
27.08	0.00	31.25	25.00	35.42	27.08	20.83	31.25	NA	0.00	0.00
81.25	NaN	83.33	85.71	85.00	86.67	83.33	83.33	NA	NaN	NaN
14.63	15.79	15.38	16.28	16.22	16.67	15.56	15.38	NA	15.79	15.79
33.33	15.79	36.84	33.33	40.35	35.09	29.82	36.84	NA	15.79	15.79
Confusion Matrix										
1335	048	1533	1236	1731	1335	1038	1533	NA	048	048
36	09	36	27	36	27	27	36	NA	09	09

Table D.383: MRI_Traditional_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.51	0.49	0.49	0.50	0.47	0.49	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	66.67	100.00	66.67	66.67	66.67	66.67	66.67	NA	100.00	50.00
27.91	23.26	17.44	22.09	23.26	22.09	25.58	15.12	NA	7.06	29.41
96.00	95.24	100.00	95.00	95.24	95.00	95.65	92.86	NA	100.00	96.15
3.13	2.94	4.05	2.90	2.94	2.90	3.03	2.67	NA	2.47	1.64
29.21	24.72	20.22	23.60	24.72	23.60	26.97	16.85	NA	9.20	29.89
Confusion Matrix										
2462	2066	1571	1967	2066	1967	2264	1373	NA	679	2560
12	12	03	12	12	12	12	12	NA	02	11

Table D.384: MRI_kFold_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.41	0.44	0.36	0.45	0.45	0.45	0.44	0.39	0.56	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
26.67	16.67	20.00	13.33	23.33	20.00	20.00	20.00	16.67	36.67	36.67
76.81	95.65	95.65	91.30	71.01	76.81	89.86	95.65	95.65	81.16	81.16
70.67	72.53	73.33	70.79	68.06	68.83	72.09	73.33	72.53	74.67	74.67
33.33	62.50	66.67	40.00	25.93	27.27	46.15	66.67	62.50	45.83	45.83
61.62	71.72	72.73	67.68	56.57	59.60	68.69	72.73	71.72	67.68	67.68
Confusion Matrix										
5316	663	663	636	636	5316	627	663	663	5613	5613
228	255	246	264	264	246	246	246	255	1911	1911

Table D.385: MRI_kFold_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.24	0.13	0.24	0.00	0.30	0.08	0.00	0.35	0.00	0.50	0.57
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.00	0.00	12.50	0.00	12.50	0.00	0.00	25.00	0.00	50.00	75.00
97.80	95.60	93.41	100.00	91.21	97.80	100.00	93.41	100.00	82.42	73.63
93.68	91.58	92.39	91.92	92.22	91.75	91.92	93.41	91.92	94.94	97.10
50.00	0.00	14.29	NaN	11.11	0.00	NaN	25.00	NaN	20.00	20.00
91.92	87.88	86.87	91.92	84.85	89.90	91.92	87.88	91.92	79.80	73.74
Confusion Matrix										
892	874	856	910	838	892	910	856	910	7516	6724
62	80	71	80	71	80	80	62	80	44	26

Table D.386: MRI_LOO_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.52	0.52	0.54	0.50	0.53	0.47	0.52	0.52	0.44	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	10.00	10.00	10.00	26.67	26.67	10.00	10.00	10.00	16.67	16.67
75.36	91.30	91.30	92.75	72.46	78.26	86.96	91.30	91.30	72.46	72.46
68.42	70.00	70.00	70.33	69.44	71.05	68.97	70.00	70.00	66.67	66.67
26.09	33.33	33.33	37.50	29.63	34.78	25.00	33.33	33.33	20.83	20.83
58.59	66.67	66.67	67.68	58.59	62.63	63.64	66.67	66.67	55.56	55.56
Confusion Matrix										
5217	636	636	645	5019	5415	609	636	636	5019	5019
246	273	273	273	228	228	273	273	273	255	255

Table D.387: MRI_LOO_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.46	0.46	0.00	0.46	0.46	0.00	0.46	0.00	0.48	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
12.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.50	37.50
96.70	96.70	92.31	100.00	90.11	97.80	100.00	91.21	100.00	79.12	70.33
92.63	91.67	91.30	91.92	91.11	91.75	91.92	91.21	91.92	91.14	92.75
25.00	0.00	0.00	NaN	0.00	0.00	NaN	0.00	NaN	5.00	10.00
89.90	88.89	84.85	91.92	82.83	89.90	91.92	83.84	91.92	73.74	67.68
Confusion Matrix										
883	883	847	910	829	892	910	838	910	7219	6427
71	80	80	80	80	80	80	80	80	71	53

For label first2EDSS $>5(0 / 1-(<5) /(\geq 5):$
Final features: 24_A1_WB_ratio_T1_gde_bin_location_mean_std histogram, raw_WM_brain_diff_F
D. Appendix IV - Machine learning results

Table D.388: MRI_Traditional_PCA_first2EDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.48	0.50	0.51	0.50	0.49	0.48	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	100.00	66.67	77.78	66.67	77.78	77.78	66.67	NA	100.00	100.00
27.08	0.00	31.25	25.00	35.42	27.08	20.83	31.25	NA	0.00	0.00
81.25	NaN	83.33	85.71	85.00	86.67	83.33	83.33	NA	NaN	NaN
14.63	15.79	15.38	16.28	16.22	16.67	15.56	15.38	NA	15.79	15.79
33.33	15.79	36.84	33.33	40.35	35.09	29.82	36.84	NA	15.79	15.79
Confusion Matrix										
1335	048	1533	1236	1731	1335	1038	1533	NA	048	048
36	09	36	27	36	27	27	36	NA	09	09

Table D.389: MRI_Traditional_first2EDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.51	0.49	0.49	0.50	0.47	0.49	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	66.67	100.00	66.67	66.67	66.67	66.67	66.67	NA	100.00	50.00
27.91	23.26	17.44	22.09	23.26	22.09	25.58	15.12	NA	7.06	29.41
96.00	95.24	100.00	95.00	95.24	95.00	95.65	92.86	NA	100.00	96.15
3.13	2.94	4.05	2.90	2.94	2.90	3.03	2.67	NA	2.47	1.64
29.21	24.72	20.22	23.60	24.72	23.60	26.97	16.85	NA	9.20	29.89
Confusion Matrix										
2462	2066	1571	1967	2066	1967	2264	1373	NA	679	2560
12	12	03	12	12	12	12	12	NA	02	11

Table D.390: MRI_kFold_PCA_first2EDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.41	0.44	0.36	0.45	0.45	0.45	0.44	0.39	0.56	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
26.67	16.67	20.00	13.33	23.33	20.00	20.00	20.00	16.67	36.67	36.67
76.81	95.65	95.65	91.30	71.01	76.81	89.86	95.65	95.65	81.16	81.16
70.67	72.53	73.33	70.79	68.06	68.83	72.09	73.33	72.53	74.67	74.67
33.33	62.50	66.67	40.00	25.93	27.27	46.15	66.67	62.50	45.83	45.83
61.62	71.72	72.73	67.68	56.57	59.60	68.69	72.73	71.72	67.68	67.68
Confusion Matrix										
5316	663	663	636	636	5316	627	663	663	5613	5613
228	255	246	264	264	246	246	246	255	1911	1911

Table D.391: MRI_kFold_first2EDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.24	0.13	0.24	0.00	0.30	0.08	0.00	0.35	0.00	0.50	0.57
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
25.00	0.00	12.50	0.00	12.50	0.00	0.00	25.00	0.00	50.00	75.00
97.80	95.60	93.41	100.00	91.21	97.80	100.00	93.41	100.00	82.42	73.63
93.68	91.58	92.39	91.92	92.22	91.75	91.92	93.41	91.92	94.94	97.10
50.00	0.00	14.29	NaN	11.11	0.00	NaN	25.00	NaN	20.00	20.00
91.92	87.88	86.87	91.92	84.85	89.90	91.92	87.88	91.92	79.80	73.74
Confusion Matrix										
892	874	856	910	838	892	910	856	910	7516	6724
62	80	71	80	71	80	80	62	80	44	26

Table D.392: MRI_LOO_PCA_first2EDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.52	0.52	0.54	0.50	0.53	0.47	0.52	0.52	0.44	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	10.00	10.00	10.00	26.67	26.67	10.00	10.00	10.00	16.67	16.67
75.36	91.30	91.30	92.75	72.46	78.26	86.96	91.30	91.30	72.46	72.46
68.42	70.00	70.00	70.33	69.44	71.05	68.97	70.00	70.00	66.67	66.67
26.09	33.33	33.33	37.50	29.63	34.78	25.00	33.33	33.33	20.83	20.83
58.59	66.67	66.67	67.68	58.59	62.63	63.64	66.67	66.67	55.56	55.56
Confusion Matrix										
5217	636	636	645	5019	5415	609	636	636	5019	5019
246	273	273	273	228	228	273	273	273	255	255

Table D.393: MRI_LOO_first2EDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.46	0.46	0.00	0.46	0.46	0.00	0.46	0.00	0.48	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
12.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.50	37.50
96.70	96.70	92.31	100.00	90.11	97.80	100.00	91.21	100.00	79.12	70.33
92.63	91.67	91.30	91.92	91.11	91.75	91.92	91.21	91.92	91.14	92.75
25.00	0.00	0.00	NaN	0.00	0.00	NaN	0.00	NaN	5.00	10.00
89.90	88.89	84.85	91.92	82.83	89.90	91.92	83.84	91.92	73.74	67.68
Confusion Matrix										
883	883	847	910	829	892	910	838	910	7219	6427
71	80	80	80	80	80	80	80	80	71	53

For label tendencyEDSS (0/1-(Down or Equal)/Up:

Final features: 88_A1_WB_ratio_T1_bin_location_median_std histogram, T1_gde_GM_median_std fft, T1_gde_WM_median_histogram_16, Anatomical_27_FLAIR_std_histogram_19, 24_A1_WM_ratio_F
D. Appendix IV - Machine learning results

Table D.394: MRI_Traditional_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.50	0.53	0.57	0.56	0.56	0.60	0.53	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
62.50	100.00	87.50	62.50	62.50	62.50	62.50	87.50	100.00	100.00	100.00
52.73	0.00	18.18	47.27	54.55	49.09	52.73	18.18	0.00	0.00	0.00
90.63	NaN	90.91	89.66	90.91	90.00	90.63	90.91	NaN	NaN	NaN
16.13	12.70	13.46	14.71	16.67	15.15	16.13	13.46	12.70	12.70	12.70
53.97	12.70	26.98	49.21	55.56	50.79	53.97	26.98	12.70	12.70	12.70
Confusion Matrix										
2926	055	1045	2629	3025	2728	2926	1045	055	055	055
35	08	17	35	35	35	35	17	08	08	08

Table D.395: MRI_Traditional_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.53	0.56	0.54	0.53	0.53	0.53	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
87.50	100.00	87.50	12.50	12.50	12.50	0.00	75.00	100.00	100.00	100.00
14.55	0.00	23.64	100.00	96.36	100.00	100.00	27.27	0.00	0.00	0.00
88.89	NaN	92.86	88.71	88.33	88.71	87.30	88.24	NaN	NaN	NaN
12.96	12.70	14.29	100.00	33.33	100.00	NaN	13.04	12.70	12.70	12.70
23.81	12.70	31.75	88.89	85.71	88.89	87.30	33.33	12.70	12.70	12.70
Confusion Matrix										
847	055	1342	550	532	550	550	1540	055	055	055
17	08	17	71	71	71	80	26	08	08	08

Table D.396: MRI_kFold_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.37	0.43	0.09	0.53	0.44	0.45	0.43	0.37	0.47	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
26.92	19.23	23.08	0.00	34.62	19.23	23.08	23.08	19.23	26.92	26.92
82.19	98.63	98.63	95.89	75.34	86.30	93.15	98.63	98.63	95.89	95.89
75.95	77.42	78.26	72.92	76.39	75.00	77.27	78.26	77.42	78.65	78.65
35.00	83.33	85.71	0.00	33.33	33.33	54.55	85.71	83.33	70.00	70.00
67.68	77.78	78.79	70.71	64.65	68.69	74.75	78.79	77.78	77.78	77.78
Confusion Matrix										
6013	721	721	703	5518	6310	685	721	721	703	703
197	215	206	260	179	215	206	206	215	197	197

Table D.397: MRI_kFold_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.77	0.78	0.79	0.53	0.58	0.50	0.77	NA	0.48	0.77
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
42.31	61.54	69.23	66.67	34.62	34.62	26.92	69.23	NA	26.92	73.08
83.56	95.89	91.78	93.15	76.71	91.78	93.15	91.78	NA	95.89	87.67
80.26	87.50	89.33	88.31	76.71	79.76	78.16	89.33	NA	78.65	90.14
47.83	84.21	75.00	78.26	34.62	60.00	58.33	75.00	NA	70.00	67.86
72.73	86.87	85.86	86.00	65.66	76.77	75.76	85.86	NA	77.78	83.84
Confusion Matrix										
6112	703	676	685	5617	676	685	676	NA	703	649
1511	1016	818	918	179	179	197	818	NA	197	719

Table D.398: MRI_LOO_PCA_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.54	0.59	0.36	0.47	0.46	0.45	0.59	0.54	0.45	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
15.38	7.69	11.54	0.00	23.08	11.54	7.69	11.54	7.69	7.69	7.69
78.08	94.52	94.52	95.89	71.23	83.56	87.67	94.52	94.52	87.67	87.67
72.15	74.19	75.00	72.92	72.22	72.62	72.73	75.00	74.19	72.73	72.73
20.00	33.33	42.86	0.00	22.22	20.00	18.18	42.86	33.33	18.18	18.18
61.62	71.72	72.73	70.71	58.59	64.65	66.67	72.73	71.72	66.67	66.67
Confusion Matrix										
5716	694	694	703	5221	6112	649	694	694	649	649
224		233	260	206	233	242	233	242	242	242

Table D.399: MRI_LOO_tendencyEDSS

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.46	0.44	0.44	0.53	0.38	0.45	0.44	NA	0.47	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
15.38	15.38	15.38	15.38	30.77	3.85	7.69	15.38	NA	7.69	23.08
78.08	78.08	72.60	73.97	75.34	80.82	86.30	73.97	NA	89.04	69.86
72.15	72.15	70.67	71.05	75.34	70.24	72.41	71.05	NA	73.03	71.83
20.00	20.00	16.67	17.39	30.77	6.67	16.67	17.39	NA	20.00	21.43
61.62	61.62	57.58	58.59	63.64	60.61	65.66	58.59	NA	67.68	57.58
Confusion Matrix										
5716	5716	5320	5419	5518	5914	6310	5419	NA	658	5122
224		224	224	188	251	242	224	NA	242	206

For label mediumEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: 66_A1_BO_ratio_T2_std_entropy, 121_A1_BO_ratio_T2_raw_std_mean, 48_A1_CSF_ratio_T2_std_energy_glcm, 92_A1_CSF_ratio_T2_mean_std histogram, 22_A1_WM_diff_FL. 22_A1_WM_ratio_FLAIR_max_entropy, 85_A1_WM_ratio_FLAIR_max_entropy.
D. Appendix IV - Machine learning results

Table D.400: MRI_Traditional_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.50	0.48	0.48	0.43	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	100.00	91.67	66.67	66.67	100.00	100.00	100.00	NA	100.00	100.00
27.59	0.00	3.45	24.14	24.14	0.00	0.00	0.00	NA	0.00	0.00
66.67	NaN	50.00	63.64	63.64	NaN	NaN	NaN	NA	NaN	NaN
27.59	29.27	28.21	26.67	26.67	29.27	29.27	29.27	NA	29.27	29.27
39.02	29.27	29.27	36.59	36.59	29.27	29.27	29.27	NA	29.27	29.27
Confusion Matrix										
821	029	128	722	722	029	029	029	NA	029	029
48	012	111	48	48	012	012	012	NA	012	012

Table D.401: MRI_Traditional_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.46	0.49	0.41	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
58.33	100.00	75.00	58.33	58.33	100.00	100.00	100.00	NA	100.00	100.00
41.38	0.00	13.79	37.93	24.14	0.00	0.00	0.00	NA	0.00	0.00
70.59	NaN	57.14	68.75	58.33	NaN	NaN	NaN	NA	NaN	NaN
29.17	29.27	26.47	28.00	24.14	29.27	29.27	29.27	NA	29.27	29.27
46.34	29.27	31.71	43.90	34.15	29.27	29.27	29.27	NA	29.27	29.27
Confusion Matrix										
1217	029	425	1118	722	029	029	029	NA	029	029
57	012	39	57	57	012	012	012	NA	012	012

Table D.402: MRI_kFold_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.65	0.66	0.69	0.60	0.63	0.66	0.70	0.69	0.66	0.71	0.67
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
58.54	51.22	58.54	43.90	56.10	60.98	65.85	53.66	51.22	75.61	63.41
68.97	79.31	77.59	74.14	67.24	70.69	74.14	81.03	79.31	68.97	72.41
70.18	69.70	72.58	65.15	68.42	71.93	75.44	71.21	69.70	80.00	73.68
57.14	63.64	64.86	54.55	54.76	59.52	64.29	66.67	63.64	63.27	61.90
64.65	67.68	69.70	61.62	62.63	66.67	70.71	69.70	67.68	71.72	68.69
Confusion Matrix										
4018	4612	4513	4315	3919	4117	4315	4711	4612	4018	4216
1724	2021	1724	2318	1823	1625	1427	1922	2021	1031	1526

Table D.403: MRI_kFold_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.70	0.69	0.68	0.72	0.71	0.70	0.72	0.71	0.69	0.72	0.70
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
63.41	63.41	58.54	56.10	60.98	68.29	68.29	68.29	63.41	75.61	73.17
74.58	74.14	74.58	82.76	79.31	72.41	75.86	74.14	74.14	68.97	67.24
74.58	74.14	72.13	72.73	74.19	76.36	77.19	76.79	74.14	80.00	78.00
63.41	63.41	61.54	69.70	67.57	63.64	66.67	65.12	63.41	63.27	61.22
70.00	69.70	68.00	71.72	71.72	70.71	72.73	71.72	69.70	71.72	69.70
Confusion Matrix										
4415	4315	4415	4810	4612	4216	4414	4315	4315	4018	3919
1526	1526	1724	1823	1625	1328	1328	1328	1526	1031	1130

Table D.404: MRI_LOO_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.43	0.48	0.52	0.50	0.40	0.40	0.42	0.43	0.39	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
39.02	26.83	36.59	34.15	41.46	29.27	31.71	24.39	26.83	36.59	34.15
60.34	60.34	60.34	68.97	58.62	50.00	48.28	62.07	60.34	41.38	53.45
58.33	53.85	57.38	59.70	58.62	50.00	50.00	53.73	53.85	48.00	53.45
41.03	32.35	39.47	43.75	41.46	29.27	30.23	31.25	32.35	30.61	34.15
51.52	46.46	50.51	54.55	51.52	41.41	41.41	46.46	46.46	39.39	45.45
Confusion Matrix										
3523	3523	3523	4018	3424	2929	2830	3622	3523	2434	3127
2516	3011	2615	2714	2417	2912	2813	3110	3011	2615	2714

Table D.405: MRI_LOO_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.57	0.51	0.51	0.48	0.53	0.48	0.57	0.57	0.47	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
46.34	51.22	39.02	34.15	34.15	48.78	41.46	53.66	51.22	46.34	53.66
60.34	63.79	62.07	67.24	62.07	56.90	55.17	60.34	63.79	48.28	51.72
61.40	64.91	59.02	59.09	57.14	61.11	57.14	64.81	64.91	56.00	61.22
45.24	50.00	42.11	42.42	38.89	44.44	39.53	48.89	50.00	38.78	44.00
54.55	58.59	52.53	53.54	50.51	53.54	49.49	57.58	58.59	47.47	52.53
Confusion Matrix										
3523	3721	3622	3919	3622	3325	3226	3523	3721	2830	3028
2219	2021	2516	2714	2714	2120	2417	1922	2021	2219	1922

For label mediumEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Final features: 48_A1_BO_diff_T2_raw_std_mean, 48_A1_BO_ratio_T2_raw_mean_mean, 48_A1_BO_ratio_T2_raw_std_mean, 61_A1_BO_ratio_T2_raw_std_mean, Anatomical_31_DP_mean_hist Anatomical_31_DP_std_histogram_18.
D. Appendix IV - Machine learning results

Table D.406: MRI_Traditional_PCA_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.49	0.48	0.49	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	75.00	100.00	100.00	100.00	NA	100.00	100.00
2.74	1.37	2.74	4.11	12.33	4.11	1.37	4.11	NA	1.37	1.37
100.00	100.00	100.00	100.00	90.00	100.00	100.00	100.00	NA	100.00	100.00
5.33	5.26	5.33	5.41	4.48	5.41	5.26	5.41	NA	5.26	5.26
7.79	6.49	7.79	9.09	15.58	9.09	6.49	9.09	NA	6.49	6.49
Confusion Matrix										
271	172	271	370	964	370	172	370	NA	172	172
04	04	04	04	13	04	04	04	NA	04	04

Table D.407: MRI_Traditional_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	NA	NA	0.49	0.45	0.50	0.50	NA	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	NA	NA	100.00	75.00	100.00	100.00	NA	NA	100.00	100.00
8.22	NA	NA	5.48	17.81	1.37	1.37	NA	NA	0.00	10.96
100.00	NA	NA	100.00	92.86	100.00	100.00	NA	NA	NaN	100.00
5.63	NA	NA	5.48	4.76	5.26	5.26	NA	NA	5.19	5.80
12.99	NA	NA	10.39	20.78	6.49	6.49	NA	NA	5.19	15.58
Confusion Matrix										
667	NA	NA	469	1360	172	172	NA	NA	073	865
04	NA	NA	04	13	04	04	NA	NA	04	04

Table D.408: MRI_kFold_PCA_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.41	0.35	0.18	0.45	0.42	0.45	0.40	0.24	0.66	0.63
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
26.67	26.67	20.00	13.33	26.67	26.67	33.33	26.67	13.33	73.33	73.33
90.48	95.24	94.05	100.00	89.29	91.67	95.24	95.24	97.62	82.14	82.14
87.36	87.91	86.81	86.60	87.21	87.50	88.89	87.91	86.32	94.52	94.52
33.33	50.00	37.50	100.00	30.77	36.36	55.56	50.00	50.00	42.31	42.31
80.81	84.85	82.83	86.87	79.80	81.82	85.86	84.85	84.85	80.81	80.81
Confusion Matrix										
768	804	795	840	759	777	804	804	822	6915	6915
114	114	123	132	114	114	105	114	132	411	411

Table D.409: MRI_kFold_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	NA	NA	0.23	0.45	0.44	0.45	NA	NA	0.65	0.66
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
53.33	NA	NA	13.33	26.67	26.67	33.33	NA	NA	73.33	66.67
91.67	NA	NA	97.62	88.10	91.67	95.24	NA	NA	82.14	88.10
91.67	NA	NA	86.32	87.06	87.50	88.89	NA	NA	94.52	93.67
53.33	NA	NA	50.00	28.57	36.36	55.56	NA	NA	42.31	50.00
85.86	NA	NA	84.85	78.79	81.82	85.86	NA	NA	80.81	84.85
Confusion Matrix										
777	NA	NA	822	7410	777	804	NA	NA	6915	7410
78	NA	NA	132	114	114	105	NA	NA	411	510

Table D.410: MRI_LOO_PCA_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.45	0.48	0.49	0.42	0.41	0.41	0.42	0.48	0.42	0.48	0.46
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
6.67	6.67	6.67	0.00	0.00	0.00	0.00	6.67	0.00	20.00	13.33
84.52	90.48	91.67	97.62	84.52	86.90	89.29	90.48	95.24	72.62	73.81
83.53	84.44	84.62	84.54	82.56	82.95	83.33	84.44	84.21	83.56	82.67
7.14	11.11	12.50	0.00	0.00	0.00	0.00	11.11	0.00	11.54	8.33
72.73	77.78	78.79	82.83	71.72	73.74	75.76	77.78	80.81	64.65	64.65
Confusion Matrix										
7113	768	777	822	7113	7311	759	768	804	6123	6222
141	141	141	150	150	150	150	141	150	123	132

Table D.411: MRI_LOO_PCA_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	NA	NA	0.23	0.45	0.44	0.45	NA	NA	0.65	0.66
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	NA	NA	6.67	26.67	13.33	6.67	NA	NA	20.00	20.00
84.52	NA	NA	96.43	88.10	89.29	90.48	NA	NA	72.62	82.14
85.54	NA	NA	85.26	87.06	85.23	84.44	NA	NA	83.56	85.19
18.75	NA	NA	25.00	28.57	18.18	11.11	NA	NA	11.54	16.67
74.75	NA	NA	82.83	78.79	77.78	77.78	NA	NA	64.65	72.73
Confusion Matrix										
7113	NA	NA	813	7410	759	768	NA	NA	6123	6915
123	NA	NA	141	114	132	141	NA	NA	123	123

D. 3 Lesion Set

D.3.1 One sample, one lesion Set

D.3.1.1 Standard procedure

For label msCourse (0/1-RR/SP):
Final features: Mean Pixel Intensity/slice_meanPixel, Max Pixel Intensity/slice_meanPixel, T2_Median Pixel Intensity/slice_meanPixel, T1_Mean Pixel Intensity/slice_meanPixel, T1_Max Pixel Intensity/slice_meanPixel, T1_Min Pixel Intensity/slice_meanPixel, T1_gdeMean Pixel Intensity/slice_meanPixel, T1_gdeMax Pixel Intensity/slice_meanPixel, T1_gdeMin Pixel Intensity/slice_meanPixel, DP_Mean Pixel Intensity/slice_meanPixel, DP_Max Pixel Intensity/slice_meanPixel, DP_Min Pixel Intensity/slice_meanPixel.

Table D.412: One_sample_One_Lesion_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.62	0.54	0.49	0.47	0.47	0.47	0.50	0.62	0.53	0.62
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
39.67	88.23	89.49	1.99	28.62	33.82	40.22	100.00	88.23	97.83	88.23
62.41	34.94	19.19	95.87	64.61	59.27	53.27	0.14	34.94	8.61	34.94
84.47	93.98	90.57	83.72	82.64	82.45	82.41	100.00	93.98	95.42	93.98
16.72	20.51	17.40	8.40	13.33	13.66	14.07	16.00	20.51	16.92	20.51
58.77	43.46	30.43	80.86	58.86	55.20	51.19	16.10	43.46	22.87	43.46
Confusion Matrix										
18111091	10141888	5572345	2782120	18751027	17201182	15461356	42898	10141888	2502652	10141888
333219	65487	58494	54111	394158	366187	330222	0552	65487	12540	65487

Table D.413: One_sample_One_Lesion_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.61	0.54	0.49	0.47	0.47	0.47	0.50	NA	0.53	0.61
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
39.31	87.50	90.04	1.45	27.17	30.80	38.04	99.82	NA	97.28	87.50
63.09	35.29	18.30	96.55	66.27	62.34	55.93	0.62	NA	9.20	35.29
84.53	93.69	90.61	83.74	82.71	82.57	82.60	94.74	NA	94.68	93.69
16.85	20.46	17.33	7.41	13.29	13.46	14.10	16.04	NA	16.93	20.46
59.29	43.63	29.76	81.36	60.02	57.30	53.07	16.47	NA	23.28	43.63
Confusion Matrix										
18311071	10241878	5312371	2802100	1923979	18091093	16231279	182884	NA	2672635	10241878
335217	69483	55497	5448	402150	382170	342210	1551	NA	15537	69483

For label currentEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: T1_Var Pixel Intensity/slice_meanPixel, Median Pixel Intensity/slice_meanPixel, T2_Var Pixel Intensity/slice_meanPixel, Max Pixel Intensity/slice_meanPixel, T1_gdeVar Pixel Intensity/slice_meanPixel, DP_Var Pixel Intensity/slice_meanPixel,

Var Pixel Intensity/slice_meanPixel, T2_Max Pixel Intensity/slice_meanPixel, Eccentricity.

Table D.414: One_sample_One_Lesion_Traditional_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.58	0.54	0.52	0.50	0.51	0.52	0.50	0.58	0.50	0.58
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
61.74	42.52	66.50	76.19	50.85	66.33	72.28	99.66	42.52	100.00	42.52
36.50	72.55	41.91	27.15	49.22	35.94	30.90	0.63	72.55	0.00	72.55
81.39	85.27	85.15	83.95	82.12	83.03	83.64	89.47	85.27	NaN	85.27
17.49	25.25	19.98	18.57	17.93	18.42	18.58	17.95	25.25	17.91	25.25
41.02	67.17	46.32	35.93	49.51	41.38	38.31	18.36	67.17	17.91	67.17
Confusion Matrix										
9841712	1956740	11301566	7321964	13271369	9691727	8331863	172679	1956740	02696	1956740
225363	338250	197391	140448	289299	198390	163425	2586	338250	0588	338250

Table D.415: One_sample_One_Lesion_Traditional_PCA_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.50	0.51	0.51	0.49	0.49	0.49	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
37.69	100.00	76.19	92.35	32.31	38.61	44.39	100.00	100.00	100.00	100.00
59.90	0.00	26.56	10.61	65.73	59.72	53.95	0.00	0.00	0.00	0.00
81.48	NaN	83.65	86.41	81.66	81.68	81.65	NaN	NaN	NaN	NaN
17.04	17.91	18.45	18.39	17.06	17.29	17.37	17.91	17.91	17.91	17.91
55.92	17.91	35.45	25.24	59.74	55.94	52.24	17.91	17.91	17.91	17.91
Confusion Matrix										
16151081	02696	7161980	2862410	1772924	16101086	14551242	02696	02696	02696	02696
367222	0588	140448	45543	398190	361227	327261	0588	0588	0588	0588

For label currentEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Final features: RefSpace, Mean Pixel Intensity/slice_meanPixel, T2_Min Pixel Intensity/slice_meanPixel, T1_Mean Pixel Intensity/slice_meanPixel, T1_Max Pixel Intensity/slice_meanPixel, T1_Min Pixel Intensity/slice_meanPixel, T1_gdeMean Pixel Intensity/slice_meanPixel, T1_gdeMax Pixel Intensity/slice_meanPixel, T1_gdeMin Pixel Intensity/slice_meanPixel, DP_Mean Pixel Intensity/slice_meanPixel, DP_Max Pixel Intensity/slice_meanPixel, DP_Min Pixel Intensity/slice_meanPixel.
D. Appendix IV - Machine learning results

Table D.416: One_sample_One_Lesion_Traditional_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.51	0.50	0.50	0.49	0.48	0.48	0.50	0.51	0.50	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
24.21	2.40	0.74	1.85	52.87	52.87	55.82	0.00	2.40	0.00	2.40
74.72	99.43	99.70	98.48	44.85	42.52	39.89	100.00	99.43	100.00	99.43
84.38	84.80	84.62	84.60	83.90	83.17	83.18	84.56	84.80	84.56	84.80
14.89	43.33	30.77	18.18	14.90	14.38	14.50	NaN	43.33	NaN	43.33
66.92	84.45	84.42	83.56	46.09	44.12	42.35	84.56	84.45	84.56	84.45
Confusion Matrix										
2214749	294617	29549	291845	13291634	12601703	11821781	29630	294617	29630	294617
410131	52813	5374	53110	255286	255286	239302	5410		5410	52813

Table D.417: One_sample_One_Lesion_Traditional_PCA_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.50	0.50	0.50	0.48	0.47	0.46	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.48	0.55	0.00	1.11	54.34	54.53	56.01	0.00	0.55	0.00	0.55
52.68	99.73	99.97	99.70	40.90	38.58	36.96	100.00	99.73	100.00	99.73
82.90	84.60	84.56	84.67	83.07	82.29	82.15	84.56	84.60	84.56	84.60
13.51	27.27	0.00	40.00	14.38	13.95	13.96	NaN	27.27	NaN	27.27
50.80	84.42	84.53	84.48	42.98	41.04	39.90	84.56	84.42	84.56	84.42
Confusion Matrix										
15611402	29558	29621	29549	12121751	11431820	10951868	29630	29558	29630	29558
322219	5383	5410	5356	247294	246295	238303	5410	5383	5410	5383

For label nextEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: T1_gdeVar Pixel Intensity/slice_meanPixel.
Table D.418: One_sample_One_Lesion_Traditional_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.50	0.50	0.51	0.52	0.52	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
55.72	99.89	12.10	78.51	51.62	55.40	57.13	12.10	99.89	100.00	100.00
47.07	0.00	88.01	21.94	50.77	47.96	46.05	88.01	0.00	0.00	0.00
47.37	0.00	45.88	46.36	47.05	47.66	47.63	45.88	0.00	NaN	NaN
55.42	54.13	54.37	54.29	55.32	55.70	55.57	54.37	54.13	54.15	54.15
51.75	54.09	46.90	52.57	51.23	51.99	52.05	46.90	54.09	54.15	54.15
Confusion Matrix										
369415	0784	69094	172612	398386	376408	361423	69094	0784	0784	0784
410516	1925	814112	199727	448478	413513	397529	814112	1925	0926	0926

For label nextEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Final features: RefSpace, Mean Pixel Intensity/slice_meanPixel, Max Pixel Intensity/slice_meanPixel, T2_Mean Pixel Intensity/slice_meanPixel, T2_Min Pixel

Intensity/slice_meanPixel, T1_Mean Pixel Intensity/slice_meanPixel, T1_Min Pixel Intensity/slice_meanPixel, T1_gdeMax Pixel Intensity/slice_meanPixel, T1_gdeMin Pixel Intensity/slice_meanPixel, T1_gdeMedian Pixel Intensity/slice_meanPixel, DP_Mean Pixel Intensity/slice_meanPixel, DP_Max Pixel Intensity/slice_meanPixel.

Table D.419: One_sample_One_Lesion_Traditional_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.59	0.55	0.50	0.50	0.51	0.51	0.52	0.59	0.60	0.59
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
42.01	24.83	82.14	4.25	26.53	29.42	35.03	94.39	24.83	37.25	24.83
59.57	92.88	28.00	96.37	72.74	71.66	67.17	9.05	92.88	82.42	92.88
82.49	85.00	87.79	82.19	81.95	82.32	82.58	88.09	85.00	85.76	85.00
18.47	43.20	19.93	20.33	17.51	18.46	18.88	18.46	43.20	31.60	43.20
56.43	80.69	37.70	79.87	64.46	64.10	61.42	24.33	80.69	74.33	80.69
Confusion Matrix										
16061090	2504192	7551941	259898	1961735	1932764	1811885	2442452	2504192	2222474	2504192
341247	442146	105483	56325	432156	415173	382206	33555	442146	369219	442146

Table D.420: One_sample_One_Lesion_Traditional_PCA_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.63	0.52	0.51	0.50	0.51	0.51	0.51	0.63	0.60	0.63
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
59.18	68.54	94.56	5.61	29.25	35.03	40.99	98.81	68.54	39.97	68.54
43.58	58.23	10.09	96.29	71.07	66.28	60.83	2.45	58.23	79.94	58.23
83.04	89.46	89.47	82.39	82.16	82.39	82.54	90.41	89.46	85.93	89.46
18.62	26.36	18.66	24.81	18.07	18.48	18.58	18.09	26.36	30.28	26.36
46.38	60.08	25.21	80.06	63.58	60.69	57.28	19.70	60.08	72.79	60.08
Confusion Matrix										
11751521	15701126	2722424	2596100	1916780	1787909	16401056	662630	15701126	2156541	15701126
240348	185403	32556	55533	416172	382206	347241	7581	185403	353235	185403

For label medium $\boldsymbol{E D S S}>3(0 / 1-(<3) /(\geq 3)$:
Final features: T2_Mean Pixel Intensity/slice_meanPixel, T2_Min Pixel Intensity/slice_meanPixel, T1_Mean Pixel Intensity/slice_meanPixel, T1_Min Pixel Intensity/slice_meanPixel, T1_gdeMean Pixel Intensity/slice_meanPixel, T1_gdeMin Pixel Intensity/slice_meanPixel, DP_Mean Pixel Intensity/slice_meanPixel.
D. Appendix IV - Machine learning results

Table D.421: One_sample_One_Lesion_Traditional_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.61	0.57	0.50	0.52	0.52	0.52	0.50	0.61	0.55	0.61
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
44.35	58.32	83.82	97.44	49.94	50.52	52.04	99.77	58.32	14.44	58.32
62.27	63.57	29.37	3.19	53.66	53.66	51.59	0.09	63.57	95.35	63.57
60.20	67.34	71.04	62.71	59.16	59.45	59.25	33.33	67.34	60.10	67.34
46.52	54.22	46.75	42.68	44.36	44.65	44.30	42.49	54.22	69.66	54.22
54.65	61.34	52.53	43.27	52.08	52.33	51.78	42.48	61.34	60.94	61.34
Confusion Matrix										
723438	738423	341820	371124	623538	623538	599562	11160	738423	110754	738423
478381	358501	139720	22837	430429	425434	412447	2857	358501	735124	358501

Table D.422: One_sample_One_Lesion_Traditional_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.61	0.55	0.50	0.52	0.52	0.52	0.59	0.61	0.55	0.61
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.40	55.06	87.08	95.11	37.37	35.74	36.21	67.52	55.06	13.39	55.06
61.67	66.15	23.08	4.31	67.27	68.05	67.53	49.70	66.15	95.87	66.15
58.31	66.55	70.71	54.35	59.21	58.87	58.86	67.41	66.55	59.94	66.55
43.81	54.62	45.58	42.38	45.79	45.28	45.20	49.83	54.62	70.55	54.62
52.62	61.44	50.30	42.92	54.55	54.31	54.21	57.28	61.44	60.79	61.44
Confusion Matrix										
716445	768393	268893	501111	781380	790371	784377	577584	768393	111348	768393
512347	386473	111748	42817	538321	552307	548311	279580	386473	744115	386473

For label mediumEDSS $>5(\mathbf{0} / \mathbf{1}-(<5) /(\geq 5)$:
Final features: Solidity, WM_mean tissue prob, T2_Mean Pixel Intensity/slice_meanPixel, T2_Min Pixel Intensity/slice_meanPixel, T1_Mean Pixel Intensity/slice_meanPixel, T1_Max Pixel Intensity/slice_meanPixel, T1_Min Pixel Intensity/slice_meanPixel, T1_Median Pixel Intensity/slice_meanPixel, T1_gdeMax Pixel Intensity/slice_meanPixel, T1_gdeMedian Pixel Intensity/slice_meanPixel, DP_Median Pixel Intensity/slice_meanPixel.

Table D.423: One_sample_One_Lesion_Traditional_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.54	0.53	0.53	0.51	0.50	0.49	0.50	NA	0.50	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
30.63	16.24	31.37	14.76	76.38	80.07	81.18	0.37	NA	0.00	16.24
67.29	91.55	75.30	90.44	26.48	19.04	16.41	99.49	NA	100.00	91.55
94.15	94.77	94.79	94.63	94.90	94.07	93.54	94.31	NA	94.32	94.77
5.34	10.38	7.11	8.51	5.89	5.62	5.53	4.17	NA	NaN	10.38
65.21	87.27	72.80	86.14	29.32	22.50	20.09	93.86	NA	94.32	87.27
Confusion Matrix										
30261471	4117380	33861111	4067430	11913306	8563641	7383759	447423	NA	44970	4117380
18883	22744	18685	23140	64207	54217	51220	2701	NA	2710	22744

D. Appendix IV - Machine learning results

Table D.424: One_sample_One_Lesion_Traditional_PCA_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.52	0.51	0.49	0.48	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
44.28	0.37	3.32	7.75	70.11	71.96	73.06	5.90	0.37	0.00	0.37
56.44	99.69	96.13	95.89	32.58	26.60	23.68	93.66	99.69	100.00	99.69
94.39	94.32	94.29	94.52	94.76	94.03	93.59	94.29	94.32	94.32	94.32
5.77	6.67	4.92	10.19	5.90	5.58	5.45	5.32	6.67	NaN	6.67
55.75	94.04	90.86	90.88	34.71	29.17	26.49	88.67	94.04	94.32	94.04
Confusion Matrix										
25381959	448314	4323174	4312185	14653032	11963301	10653432	4212285	448314	44970	448314
151120	2701	2629	25021	81190	76195	73198	25516	2701	2710	2701

For label highestEDSS $>3(0 / 1-(<3) /(\geq 3):$
Final features: Orientation Var Pixel, Intensity/slice_meanPixel, WM_squares numbers lesion region 90\%/total region with 90, T1_Var Pixel Intensity/slice_meanPixel, T1_gdeVar Pixel Intensity/slice_meanPixel.

Table D.425: One_sample_One_Lesion_Traditional_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.50	0.52	0.51	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
47.71	100.00	0.00	99.71	82.73	69.94	63.65	0.00	100.00	100.00	100.00
52.13	0.00	100.00	0.00	17.02	32.98	37.23	100.00	0.00	0.00	0.00
8.21	NaN	8.23	0.00	8.12	8.96	8.41	8.23	NaN	NaN	NaN
91.74	91.77	NaN	91.75	91.75	92.09	91.87	NaN	91.77	91.77	91.77
48.07	91.77	8.23	91.51	77.32	66.90	61.47	8.23	91.77	91.77	91.77
Confusion Matrix										
4945	094	940	094	1678	3163	3559	940	094	094	094
548500	01048	10480	31045	181867	315733	381667	10480	01048	01048	01048

Table D.426: One_sample_One_Lesion_Traditional_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
53.72	100.00	0.00	72.81	59.54	62.60	63.84	0.00	100.00	100.00	100.00
46.81	0.00	100.00	26.60	40.43	38.30	36.17	100.00	0.00	0.00	0.00
8.32	NaN	8.23	8.06	8.23	8.41	8.23	8.23	NaN	NaN	NaN
91.84	91.77	NaN	91.71	91.77	91.88	91.77	NaN	91.77	91.77	91.77
53.15	91.77	8.23	69.00	57.97	60.60	61.56	8.23	91.77	91.77	91.77
Confusion Matrix										
4450	094	940	2569	3856	3658	3460	940	094	094	094
485563	01048	10480	285763	424624	392656	379669	10480	01048	01048	01048

For label highestEDSS $>5(0 / 1-(<5) /(\geq 5):$

Final features: Solidity, Max Pixel Intensity/slice_meanPixel, T2_Mean Pixel Intensity/slice_meanPixel, T2_Min Pixel Intensity/slice_meanPixel, T1_gdeMean Pixel Intensity/slice_meanPixel, T1_gdeMax Pixel Intensity/slice_meanPixel, DP_Mean Pixel Intensity/slice_meanPixel, DP_Max Pixel Intensity/slice_meanPixel, DP_Min Pixel Intensity/slice_meanPixel.

Table D.427: One_sample_One_Lesion_Traditional_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.50	0.50	0.53	0.52	0.51	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
6.67	0.00	0.22	0.00	20.67	14.22	7.11	0.00	0.00	0.00	0.00
95.23	100.00	99.94	100.00	85.37	90.34	94.71	100.00	100.00	100.00	100.00
88.75	88.54	88.56	88.54	89.27	89.06	88.74	88.54	88.54	88.54	88.54
15.31	NaN	33.33	NaN	15.45	16.00	14.82	NaN	NaN	NaN	NaN
85.08	88.54	88.52	88.54	77.95	81.62	84.67	88.54	88.54	88.54	88.54
Confusion Matrix										
3312166	34780	34762	34780	2969509	3142336	3294184	34780	34780	34780	34780
42030	4500	4491	4500	35793	38664	41832	4500	4500	4500	4500

Table D.428: One_sample_One_Lesion_Traditional_PCA_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.50	0.50	0.51	0.51	0.50	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
15.78	0.00	0.00	0.00	17.56	7.11	1.56	0.00	0.00	0.00	0.00
87.06	100.00	100.00	99.94	85.02	94.51	98.94	100.00	100.00	100.00	100.00
88.88	88.54	88.54	88.54	88.85	88.72	88.59	88.54	88.54	88.54	88.54
13.63	NaN	NaN	0.00	13.17	14.35	15.91	NaN	NaN	NaN	NaN
78.90	88.54	88.54	88.49	77.29	84.50	87.78	88.54	88.54	88.54	88.54
Confusion Matrix										
$\begin{gathered} 3028450 \\ 37971 \end{gathered}$	$\begin{gathered} 34780 \\ 4500 \end{gathered}$	$\begin{gathered} 34780 \\ 4500 \end{gathered}$	34762 4500	$\begin{gathered} 2957521 \\ 37179 \end{gathered}$	$\begin{gathered} 3287191 \\ 41832 \end{gathered}$	$\begin{gathered} 344137 \\ 4437 \end{gathered}$	$\begin{gathered} 34780 \\ 4500 \end{gathered}$	34780 4500	$\begin{gathered} 34780 \\ 4500 \end{gathered}$	$\begin{gathered} 34780 \\ 4500 \end{gathered}$

For label first2EDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: RefSpace, Mean Pixel Intensity/slice_meanPixel, Max Pixel Intensity/slice_meanPixel, T2_Min Pixel Intensity/slice_meanPixel, T2_Median Pixel Intensity/slice_meanPixel, T1_gdeMin Pixel Intensity/slice_meanPixel, T1_gdeMedian Pixel Intensity/slice_meanPixel, DP_Mean Pixel, Intensity/slice_meanPixel, DP_Max Pixel Intensity/slice_meanPixel.

Table D.429: One_sample_One_Lesion_Traditional_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.55	0.54	0.49	0.48	0.51	0.52	0.50	0.55	0.50	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
42.59	83.80	83.02	26.54	47.22	57.87	64.66	100.00	83.80	100.00	83.80
57.08	26.38	24.13	72.26	49.53	43.30	38.42	0.04	26.38	0.00	26.38
78.35	85.56	83.80	78.17	77.35	78.90	79.82	100.00	85.56	NaN	85.56
21.43	23.83	23.12	20.82	20.45	21.90	22.39	21.56	23.83	21.56	23.83
53.96	38.76	36.83	62.41	49.04	46.44	44.08	21.59	38.76	21.56	38.76
Confusion Matrix										
13461012	6221736	5691789	1704654	11681190	10211337	9061452	12357	6221736	02358	6221736
372276	105543	110538	476172	342306	273375	229419	0648	105543	0648	105543

Table D.430: One_sample_One_Lesion_Traditional_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.53	0.52	0.50	0.50	0.49	0.51	0.50	0.53	0.50	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
35.96	91.98	86.88	55.56	32.72	35.80	45.83	100.00	91.98	100.00	91.98
64.84	13.53	17.94	44.49	67.01	62.77	55.22	0.04	13.53	0.00	13.53
78.65	85.98	83.27	78.46	78.37	78.06	78.77	100.00	85.98	NaN	85.98
21.94	22.62	22.54	21.57	21.41	20.90	21.95	21.56	22.62	21.56	22.62
58.62	30.44	32.80	46.87	59.61	56.95	53.19	21.59	30.44	21.56	30.44
Confusion Matrix										
1529829	3192039	4231935	10491309	1580778	1480878	13021056	12357	3192039	02358	3192039
415233	52596	85563	288360	436212	416232	351297	0648	52596	0648	52596

For label first2EDSS $>5(0 / 1-(<5) /(\geq 5):$
Final features: WM_mean tissue prob, WM_min tissue prob, T2_Min Pixel Intensity/slice_meanPixel, T1_Mean Pixel Intensity/slice_meanPixel, T1_Min Pixel Intensity/slice_meanPixel, T1_gdeMean Pixel Intensity/slice_meanPixel, T1_gdeMax Pixel Intensity/slice_meanPixel, T1_gdeMin Pixel Intensity/slice_meanPixel.

Table D.431: One_sample_One_Lesion_Traditional_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.50	0.51	0.50	0.49	0.50	0.50	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
5.77	0.00	3.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
86.23	100.00	96.57	100.00	98.50	99.90	100.00	99.97	100.00	100.00	100.00
99.02	99.10	99.11	99.10	99.09	99.10	99.10	99.10	99.10	99.10	99.10
0.38	NaN	1.01	NaN	0.00	0.00	NaN	0.00	NaN	NaN	NaN
85.51	99.10	95.73	99.10	97.62	99.00	99.10	99.07	99.10	99.10	99.10
Confusion Matrix										
$\begin{gathered} 4948790 \\ 493 \end{gathered}$	$\begin{array}{\|c\|} \hline 57380 \\ 520 \end{array}$	$\begin{array}{c\|} \hline 5541197 \\ 502 \end{array}$	$\begin{gathered} 57380 \\ 520 \end{gathered}$	$\begin{gathered} 565286 \\ 520 \end{gathered}$	$\begin{gathered} 57326 \\ 520 \end{gathered}$	$\begin{gathered} 57380 \\ 520 \end{gathered}$	$\begin{gathered} 57362 \\ 520 \end{gathered}$	$\begin{gathered} 57380 \\ 520 \end{gathered}$	$\begin{gathered} 57380 \\ 520 \end{gathered}$	$\begin{gathered} 57380 \\ 520 \end{gathered}$

D. Appendix IV - Machine learning results

Table D.432: One_sample_One_Lesion_Traditional_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
1.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
94.32	100.00	99.55	99.76	98.87	99.93	100.00	99.86	100.00	100.00	100.00
99.07	99.10	99.10	99.10	99.09	99.10	99.10	99.10	99.10	99.10	99.10
0.31	NaN	0.00	0.00	0.00	0.00	NaN	0.00	NaN	NaN	NaN
93.49	99.10	98.65	98.86	97.98	99.03	99.10	98.96	99.10	99.10	99.10
Confusion Matrix										
5412326	57380	571226	572414	567365	57344	57380	57308	57380	57380	57380
511	520	520	520	520		520	520			520

D.3.1.2 Lesion result ensemble procedure

The features used are the ones selected in the standard procedure.
For label msCourse (0/1-RR/SP):
Table D.433: One_sample_One_Lesion_Ensemble_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.62	0.52	0.50	0.45	0.44	0.44	0.50	NA	0.51	0.62
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
27.36	96.74	96.74	0.00	13.04	19.20	27.72	100.00	NA	99.64	96.74
74.40	26.67	7.34	99.24	77.53	69.43	60.13	0.03	NA	2.83	26.67
84.34	97.73	92.21	83.92	82.42	81.88	81.39	100.00	NA	97.62	97.73
16.89	20.06	16.57	0.00	9.94	10.67	11.68	15.99	NA	16.32	20.06
66.88	37.87	21.63	83.38	67.23	61.41	54.95	16.01	NA	18.30	37.87
Confusion Matrix										
2159743	7742128	2132689	288022	2250652	2015887	17451157	12901	NA	822820	7742128
401151	18534	18534	5520	48072	446106	399153	0552	NA	2550	18534

Table D.434: One_sample_One_Lesion_Ensemble_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.51	0.55	0.50	0.46	0.44	0.43	0.50	NA	0.52	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
27.36	96.74	96.74	0.00	13.04	19.20	27.72	100.00	NA	99.64	96.74
74.40	26.67	7.34	99.24	77.53	69.43	60.13	0.03	NA	2.83	26.67
84.34	97.73	92.21	83.92	82.42	81.88	81.39	100.00	NA	97.62	97.73
16.89	20.06	16.57	0.00	9.94	10.67	11.68	15.99	NA	16.32	20.06
66.88	37.87	21.63	83.38	67.23	61.41	54.95	16.01	NA	18.30	37.87
Confusion Matrix										
$\begin{gathered} 16551247 \\ 345207 \end{gathered}$	$\begin{gathered} 1002802 \\ 5547 \end{gathered}$	$\begin{gathered} 4472455 \\ 27525 \end{gathered}$	$\begin{gathered} 2605297 \\ 49953 \end{gathered}$	$\begin{gathered} 2420482 \\ 49953 \end{gathered}$	$\begin{array}{\|c\|} \hline 2092810 \\ 46983 \end{array}$	$\begin{gathered} 18021100 \\ 424128 \end{gathered}$	$\begin{gathered} 182884 \\ 0552 \end{gathered}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{gathered} 1242778 \\ 4548 \end{gathered}$	$\begin{gathered} 1002802 \\ 5547 \end{gathered}$

For label mediumEDSS $>3(0 / 1-(<3) /(\geq 3):$

Table D.435: One_sample_One_Lesion_Ensemble_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.60	0.53	0.50	0.53	0.54	0.53	0.54	NA	0.50	0.60
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
42.28	75.00	92.44	97.38	54.32	69.44	74.38	42.13	NA	1.08	75.00
62.64	45.34	14.42	2.12	52.67	38.51	32.27	65.39	NA	99.75	45.34
79.79	86.84	87.40	74.63	80.75	82.10	82.09	80.44	NA	78.58	86.84
23.72	27.38	22.89	21.46	23.98	23.68	23.18	25.07	NA	53.85	27.38
58.25	51.73	31.24	22.65	53.03	45.18	41.35	60.38	NA	78.48	51.73
Confusion Matrix										
1477881	10691289	3402018	502309	12421116	9081450	7611597	1542816	NA	23526	10691289
374274	162486	49599	17631	296352	198450	166482	375273	NA	6417	162486

Table D.436: One_sample_One_Lesion_Ensemble_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.52	0.53	0.50	0.53	0.52	0.53	0.53	NA	0.50	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
68.36	5.71	17.59	53.40	64.97	52.93	54.78	24.23	NA	0.46	5.71
33.50	98.69	88.21	46.40	41.82	50.85	50.42	81.89	NA	99.75	98.69
79.40	79.20	79.57	78.37	81.29	79.72	80.23	79.73	NA	78.48	79.20
22.03	54.41	29.08	21.49	23.48	22.84	23.29	26.88	NA	33.33	54.41
41.02	78.64	72.99	47.90	46.81	51.30	51.36	69.46	NA	78.34	78.64
Confusion Matrix										
7901568	232731	2080278	10941264	9861372	11991159	11891169	1931427	NA	23526	232731
205443	61137	534114	302346	227421	305343	293355	491157	NA	6453	61137

For label mediumEDSS $>5(0 / 1-(<5) /(\geq 5):$

Table D.437: One_sample_One_Lesion_Ensemble_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.50	0.52	0.50	0.50	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
9.43	0.00	3.85	0.00	0.00	0.00	0.00	0.00	NA	0.00	0.00
87.75	100.00	99.60	99.46	99.48	100.00	100.00	100.00	NA	100.00	100.00
99.06	99.10	99.13	99.10	99.10	99.10	99.10	99.10	NA	99.10	99.10
0.71	NaN	8.00	0.00	0.00	NaN	NaN	NaN	NA	NaN	NaN
87.03	99.10	98.74	98.57	98.58	99.10	99.10	99.10	NA	99.10	99.10
Confusion Matrix										
34321065	445839	3932565	4392105	8353662	6173880	5883909	446136	NA	44970	445839
21160	25615	21655	25615	40231	40231	50221	2701	NA	2710	25615

D. Appendix IV - Machine learning results

Table D.438: One_sample_One_Lesion_Ensemble_PCA_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.49	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
5.77	0.00	0.00	0.00	0	0.00	0.00	0.00	NA	0.00	0.00
96.83	100.00	100.00	100.00	97.21	100.00	100.00	100.00	NA	100.00	100.00
99.13	99.10	99.10	99.10	99.08	99.10	99.10	99.10	NA	99.10	99.10
1.62	NaN	NaN	NaN	0.00	NaN	NaN	NaN	NA	NaN	NaN
96.01	99.10	99.10	99.10	96.34	99.10	99.10	99.10	NA	99.10	99.10
Confusion Matrix										
5556182	57380	57380	568256	57380	57380	57380	57380	NA	57380	57380
493	520	520	520	520	520	520	520	NA	520	520

For label highestEDSS $>3(0 / 1-(<3) /(\geq 3):$

Table D.439: One_sample_One_Lesion_Ensemble_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.53	0.48	0.47	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.51	100.00	0.00	91.82	35.80	40.90	50.15	0.00	NA	100.00	100.00
35.28	0.00	100.00	7.51	69.97	55.73	44.74	100.00	NA	0.00	0.00
79.31	NaN	78.44	76.96	79.86	77.43	76.56	78.44	NA	NaN	NaN
22.02	21.56	NaN	21.43	24.68	20.24	19.96	NaN	NA	21.56	21.56
42.02	21.56	78.44	25.68	62.61	52.53	45.91	78.44	NA	21.56	21.56
Confusion Matrix										
8321526	02358	02358	1772181	1650708	13141044	10551303	02358	NA	02358	02358
217431	0648	0648	53595	416232	383265	323325	0648	NA	0648	0648

Table D.440: One_sample_One_Lesion_Ensemble_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.58	0.57	0.57	0.57	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
61.93	100.00	0.00	91.51	70.80	79.01	81.39	0.00	NA	100.00	100.00
46.81	0.00	100.00	25.53	42.55	36.17	32.98	100.00	NA	0.00	0.00
9.93	NaN	8.23	21.24	11.56	13.39	13.72	8.23	NA	NaN	NaN
92.85	91.77	NaN	93.20	93.22	93.24	93.12	NaN	NA	91.77	91.77
60.68	91.77	8.23	86.08	68.48	75.48	77.41	8.23	NA	91.77	91.77
Confusion Matrix										
4450	940	940	2470	4054	3460	3163	940	NA	940	940
399649	10480	10480	89959	306742	220828	195853	10480	NA	10480	10480

For label highestEDSS $>5(0 / 1-(<5) /(\geq 5):$

Table D.441: One_sample_One_Lesion_Ensemble_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.50	0.50	0.50	0.48	0.51	0.51	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
3.85	0.00	0.00	0.00	1.92	3.85	3.85	0.00	NA	0.00	0.00
92.07	100.00	100.00	100.00	92.92	98.19	99.58	100.00	NA	100.00	100.00
99.06	99.10	99.10	99.10	99.05	99.12	99.13	99.10	NA	99.10	99.10
0.44	NaN	NaN	NaN	0.25	1.89	7.69	NaN	NA	NaN	NaN
91.28	99.10	99.10	99.10	92.11	97.34	98.72	99.10	NA	99.10	99.10
Confusion Matrix										
52834555	57380	57380	57380	5332406	5634104	571424	57380	NA	57380	57380
502	520	520	520	511	502	502	520	NA	520	520

Table D.442: One_sample_One_Lesion_Ensemble_PCA_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.50	0.50	0.50	0.49	0.51	0.50	0.51	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
1.92	0.00	0.00	0.00	7.69	7.69	1.92	1.92	NA	0.00	0.00
94.53	100.00	100.00	99.01	90.36	95.29	98.92	99.91	NA	100.00	100.00
99.07	99.10	99.10	99.09	99.08	99.13	99.11	99.12	NA	99.10	99.10
0.32	NaN	NaN	0.00	0.72	1.46	1.59	16.67	NA	NaN	NaN
93.70	99.10	99.10	98.12	89.62	94.51	98.05	99.03	NA	99.10	99.10
Confusion Matrix										
5424314	57380	57380	568157	5185553	5468270	567662	57335	NA	57380	57380
511	520	520	520	484	484	511	511	NA		

For label first2EDSS $>3(0 / 1-(<3) /(\geq 3):$

Table D.443: One_sample_One_Lesion_Ensemble_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.57	0.54	0.50	0.46	0.50	0.51	0.50	NA	0.50	0.57
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
33.33	90.90	92.75	26.39	46.60	57.72	65.74	100.00	NA	100.00	90.90
66.84	22.35	14.93	73.20	45.59	41.98	36.56	0.00	NA	0.00	22.35
78.49	89.93	88.22	78.35	75.65	78.32	79.52	NaN	NA	NaN	89.93
21.64	24.34	23.05	21.30	19.05	21.47	22.16	21.56	NA	21.56	24.34
59.61	37.13	31.70	63.11	45.81	45.38	42.85	21.56	NA	21.56	37.13
Confusion Matrix										
1576782	5271831	3522006	1726632	10751283	9901368	8621496	02358	NA	02358	5271831
432216	59589	47601	477171	346302	274374	222426	0648	NA	0648	59589

D. Appendix IV - Machine learning results

Table D.444: One_sample_One_Lesion_Ensemble_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.52	0.52	0.50	0.49	0.48	0.50	0.50	NA	0.50	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
36.42	97.99	91.98	58.02	25.00	30.86	48.92	100.00	NA	100.00	97.99
64.55	5.26	11.96	41.94	73.41	64.97	50.47	0.08	NA	0.00	5.26
78.70	90.51	84.43	78.43	78.08	77.37	78.24	100.00	NA	NaN	90.51
22.01	22.13	22.31	21.55	20.53	19.49	21.35	21.57	NA	21.56	22.13
58.48	25.25	29.21	45.41	62.97	57.62	50.13	21.62	NA	21.56	25.25
Confusion Matrix										
1522836	1242234	2822076	9891369	1731627	1532826	11901168	22356	NA	02358	1242234
412236	13635	52596	272376	486162	448200	331317	0648	NA	0648	13635

For label first2EDSS $>5(\mathbf{0} / \mathbf{1}-(<5) /(\geq 5):$

Table D.445: One_sample_One_Lesion_Ensemble_first2EDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.50	0.50	0.50	0.50	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
3.85	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NA	0.00	0.00
85.52	100.00	99.98	100.00	100.00	100.00	100.00	100.00	NA	100.00	100.00
98.99	99.10	99.10	99.10	99.10	99.10	99.10	99.10	NA	99.10	99.10
0.24	NaN	0.00	NaN	NaN	NaN	NaN	NaN	NA	NaN	NaN
84.78	99.10	99.08	99.10	99.10	99.10	99.10	99.10	NA	99.10	99.10
Confusion Matrix										
$\begin{gathered} 4907831 \\ 502 \end{gathered}$	$\begin{gathered} 57380 \\ 520 \end{gathered}$	57371 520	$\begin{gathered} 57380 \\ 520 \end{gathered}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{gathered} 57380 \\ 520 \end{gathered}$	$\begin{gathered} 57380 \\ 520 \end{gathered}$				

Table D.446: One_sample_One_Lesion_Ensemble_PCA_first2EDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.50	0.50	0.50	0.50	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	NA	0.00	0.00
99.01	100.00	100.00	100.00	100.00	100.00	100.00	100.00	NA	100.00	100.00
99.09	99.10	99.10	99.10	99.10	99.10	99.10	99.10	NA	99.10	99.10
0.00	NaN	NA	NaN	NaN						
98.12	99.10	99.10	99.10	99.10	99.10	99.10	99.10	NA	99.10	99.10
Confusion Matrix										
$\begin{gathered} 568157 \\ 520 \end{gathered}$	$\begin{aligned} & \mathrm{NA} \\ & \mathrm{NA} \end{aligned}$	$\begin{gathered} 568157 \\ 520 \end{gathered}$	$\begin{gathered} 568157 \\ 520 \end{gathered}$							

For label currentEDSS $>3(0 / 1-(<3) /(\geq 3):$

Table D.447: One_sample_One_Lesion_Ensemble_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.50	0.54	0.50	0.47	0.46	0.44	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
52.12	0.33	17.71	99.78	21.05	36.19	39.76	100.00	NA	100.00	0.33
40.47	100.00	90.78	0.21	73.83	56.46	47.46	0.00	NA	0.00	100.00
47.04	51.33	53.70	50.00	49.57	48.19	45.30	NaN	NA	NaN	51.33
45.44	100.00	64.63	48.75	43.35	44.16	41.85	48.75	NA	48.75	100.00
46.15	51.41	55.16	48.75	48.10	46.58	43.70	48.75	NA	48.75	51.41
Confusion Matrix										
382562	9440	85787	2942	697247	533411	448496	0944	NA	0944	9440
430468	8953	739159	2896	709189	573325	541357	0898	NA	0898	8953

Table D.448: One_sample_One_Lesion_Ensemble_PCA_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.50	0.50	0.50	0.44	0.41	0.41	0.50		0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
57.68	100.00	100.00	99.89	31.74	34.86	38.64	100.00	NA	100.00	100.00
34.11	0.00	0.00	0.00	55.51	47.35	42.90	0.00	NA	0.00	0.00
45.87	NaN	NaN	0.00	46.09	43.31	42.36	NaN	NA	NaN	NaN
45.44	48.75	48.75	48.72	40.43	38.64	39.16	48.75	NA	48.75	48.75
45.60	48.75	48.75	48.70	43.92	41.26	40.83	48.75	NA	48.75	48.75
Confusion Matrix										
322622	0944	0944	0944	524420	447497	405539	0944	NA	0944	0944
380518	0898	0898	1897	613285	585313	551347	0898	NA	0898	0898

For label currentEDSS $>5(0 / 1-(<5) /(\geq 5):$

Table D.449: One_sample_One_Lesion_Ensemble_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.45	0.44	0.46	0.50	0.00	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
13.68	0.00	0.00	0.18	52.50	57.67	62.85	0.00	NA	0.00	0.00
85.66	100.00	100.00	99.93	37.46	31.05	28.96	100.00	NA	100.00	100.00
84.46	84.56	84.56	84.58	81.20	80.07	81.02	84.56	NA	84.56	84.56
14.83	NaN	NaN	33.33	13.29	13.25	13.91	NaN	NA	NaN	NaN
74.54	84.56	84.56	84.53	39.78	35.16	34.19	84.56	NA	84.56	84.56
Confusion Matrix										
2538425	29630	29630	29612	11101853	9202043	8582105	29630	NA	29630	29630
46774	5410	5410	5401	257284	229312	201340	5410	NA	5410	5410

D. Appendix IV - Machine learning results

Table D.450: One_sample_One_Lesion_Ensemble_PCA_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.50	0.50	0.50	0.46	0.43	0.43	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
34.01	0.00	0.00	0.37	56.93	54.34	57.67	0.00	NA	0.00	0.00
57.24	100.00	100.00	99.97	34.69	32.20	27.61	100.00	NA	100.00	100.00
82.61	84.56	84.56	84.60	81.52	79.43	78.13	84.56	NA	84.56	84.56
12.68	NaN	NaN	66.67	13.73	12.77	12.70	NaN	NA	NaN	NaN
53.65	84.56	84.56	84.59	38.13	35.62	32.25	84.56	NA	84.56	84.56
Confusion Matrix										
16961267	29630	29630	29621	10281935	9542009	8182145	29630	NA	29630	29630
357184	5410	5410	5392	233308	247294	229312	5410	NA	5410	5410

For label nextEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Table D.451: One_sample_One_Lesion_Ensemble_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	0.50	0.53	0.54	0.56	0.55	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
54.54	100.00	14.90	93.74	54.54	60.69	61.88	14.90	NA	100.00	100.00
52.68	0.00	85.46	11.35	53.19	51.53	47.58	85.46	NA	0.00	0.00
49.52	NaN	45.95	60.54	49.76	52.60	51.38	45.95	NA	NaN	NaN
57.65	54.15	54.76	55.53	57.91	59.66	58.23	54.76	NA	54.15	54.15
53.68	54.15	47.25	55.96	53.92	56.49	55.32	47.25	NA	54.15	54.15
Confusion Matrix										
413371	0784	0784	89695	417367	404380	373411	670114	NA	0784	0784
421505	0926	0926	58868	421505	364562	353573	788138	NA	0926	0926

For label nextEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Table D.452: One_sample_One_Lesion_Ensemble_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.52	0.50	0.50	0.50	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
55.10	100.00	19.05	91.34	56.63	60.88	56.97	19.05	NA	100.00	100.00
45.07	0.00	81.01	9.38	46.36	39.50	43.32	81.01	NA	0.00	0.00
82.15	NaN	82.11	83.22	83.06	82.24	82.20	82.11	NA	NaN	NaN
17.95	17.90	17.95	18.05	18.72	18.00	17.98	17.95	NA	17.90	17.90
46.86	17.90	69.91	24.08	48.20	43.33	45.77	69.91	NA	17.90	17.90
Confusion Matrix										
12151481	02696	2184512	2532443	12501446	10651631	11681528	2184512	NA	02696	02696
264324	0588	476112	51538	255333	230358	253335	476112	NA	0588	0588

D.3.2 One sample, one study Set

For label msCourse (0/1-RR/SP):

Final features: Mean_Anatomical_I_42_var pixel intensity, Var_Anatomical_I_42_lesion in the region, Mean_Anatomical_I_42_ratio on region affected by lesion, Mean_Anatomical_I_42_max pixel intensity, Max_Anatomical_I_21_ratio on region affected by lesion, Mean_T2_Var Pixel Intensity/slice_meanPixel, Var_Anatomical_I_42_max pixel intensity, Mean_Anatomical_I_42_me pixel intensity, Var_Var Pixel Intensity/slice_meanPixel.

Table D.453: One_sample_One_Study_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.50	0.58	0.51	0.51	0.52	0.51	0.58	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
83.33	100.00	50.00	100.00	83.33	100.00	100.00	50.00	100.00	100.00	100.00
12.31	0.00	66.15	10.77	26.15	9.23	4.62	66.15	0.00	0.00	0.00
88.89	NaN	93.48	100.00	94.44	100.00	100.00	93.48	NaN	NaN	NaN
8.06	8.45	12.00	9.38	9.43	9.23	8.82	12.00	8.45	8.45	8.45
18.31	8.45	64.79	18.31	30.99	16.90	12.68	64.79	8.45	8.45	8.45
Confusion Matrix										
857	065	4322	758	1748	659	362	4322	065	065	065
15	06	33	06	15	06	06	33	06	06	06

Table D.454: One_sample_One_Study_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	NA	0.54	0.55	0.55	0.55	NA	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	100.00	83.33	66.67	66.67	NA	100.00	100.00	100.00
6.15	4.62	NA	13.85	33.85	50.77	44.62	NA	4.62	0.00	4.62
100.00	100.00	NA	100.00	95.65	94.29	93.55	NA	100.00	NaN	100.00
8.96	8.82	NA	9.68	10.42	11.11	10.00	NA	8.82	8.45	8.82
14.09	12.68	NA	21.13	38.03	52.11	46.48	NA	12.68	8.45	12.68
Confusion Matrix										
461	362	NA	956	2243	3332	2936	NA	362	065	362
06	06	NA	06	15	24	24	NA	06	06	06

Table D.455: One_sample_One_Study_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.55	0.54	0.08	0.54	0.50	0.46	0.54	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
30.00	35.00	35.00	0.00	35.00	30.00	25.00	35.00	NA	65.00	65.00
84.81	94.94	94.94	97.47	83.54	92.41	92.41	94.94	NA	78.48	78.48
82.72	85.23	85.23	79.38	83.54	83.91	82.96	85.23	NA	89.86	89.86
33.33	63.64	63.64	0.00	35.00	50.00	45.46	63.64	NA	43.33	43.33
73.74	82.83	82.83	77.78	73.74	79.80	78.79	82.83	NA	75.76	75.76
Confusion Matrix										
6712	754	754	772	6613	736	736	754	NA	6217	6217
146	137	137	200	137	146	155	137	NA	713	713

D. Appendix IV - Machine learning results

Table D.456: One_sample_One_Study kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.54	0.40	0.19	0.55	0.50	0.50	0.62	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
35.00	35.00	20.00	10.00	35.00	30.00	30.00	50.00	NA	65.00	60.00
84.81	88.61	88.61	97.47	89.87	91.14	89.87	84.81	NA	78.48	82.28
83.75	84.34	81.40	81.05	84.52	83.72	83.53	87.01	NA	89.86	89.04
36.84	43.75	30.77	50.00	46.67	46.15	42.86	45.46	NA	43.33	46.15
74.75	77.78	74.75	79.80	78.79	78.79	77.78	77.78	NA	75.76	77.78
Confusion Matrix										
6712	709	709	772	718	727	718	6712	NA	6217	6514
137	137	164	182	137	146	146	1010	NA	713	812

Table D.457: One_sample_One_Study_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.49	0.49	0.40	0.50	0.57	0.49	0.49	0.55	0.47	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
15.00	10.00	10.00	0.00	20.00	20.00	10.00	10.00	10.00	25.00	25.00
79.75	88.61	88.61	97.47	79.75	89.87	88.61	88.61	93.67	68.35	68.35
78.75	79.55	79.55	79.38	79.75	81.61	79.55	79.55	80.44	78.26	78.26
15.79	18.18	18.18	0.00	20.00	33.33	18.18	18.18	28.57	16.67	16.67
66.67	72.73	72.73	77.78	67.68	75.76	72.73	72.73	76.77	59.60	59.60
Confusion Matrix										
6316	709	709	772	772	718	709	709	745	5425	5425
173	182	182	200	200	164	182	182	182	155	155

Table D.458: One_sample_One_Study_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.49	0.55	0.40	0.50	0.47	0.47	0.40	0.47	0.43	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
15.00	15.00	25.00	0.00	15.00	10.00	10.00	5.00	10.00	15.00	25.00
77.22	83.54	83.54	97.47	84.81	86.08	84.81	73.42	86.08	65.82	74.68
78.21	79.52	81.48	79.38	79.76	79.07	78.82	75.33	79.07	75.36	79.73
14.29	18.75	27.78	0.00	20.00	15.39	14.29	4.55	15.39	10.00	20.00
64.65	69.70	71.72	77.78	70.71	70.71	69.70	59.60	70.71	55.56	64.65
Confusion Matrix										
$\begin{gathered} 6118 \\ 173 \end{gathered}$	$\begin{gathered} 6613 \\ 173 \end{gathered}$	$\begin{gathered} 6613 \\ 155 \end{gathered}$	$\begin{aligned} & 772 \\ & 200 \end{aligned}$	$\begin{gathered} 6712 \\ 173 \end{gathered}$	$\begin{gathered} 6811 \\ 182 \end{gathered}$	$\begin{gathered} 6712 \\ 182 \end{gathered}$	$\begin{gathered} 5821 \\ 191 \end{gathered}$	$\begin{gathered} 6811 \\ 182 \end{gathered}$	$\begin{gathered} 5227 \\ 173 \end{gathered}$	$\begin{gathered} 5920 \\ 155 \end{gathered}$

For label currentEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: Mean_Anatomical_II_408_ratio on region affected by lesion, Var_Anatomical_II_40 pixel intensity, Var_Anatomical_II_408_min pixel intensity, Max_Anatomical_II_408_mean pixel intensity

Table D.459: One_sample_One_Study_Traditional_PCA_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.63	0.50	0.50	0.53	0.55	0.55	0.50	0.65	0.58	0.58
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
50.00	41.67	50.00	100.00	50.00	66.67	41.67	50.00	33.33	66.67	66.67
58.06	83.87	48.39	0.00	58.06	41.94	70.97	48.39	96.77	48.39	48.39
75.00	78.79	71.43	NaN	75.00	76.47	75.86	71.43	78.95	78.95	78.95
31.58	50.00	27.27	27.91	31.58	30.77	35.71	27.27	80.00	33.33	33.33
55.81	72.09	48.84	27.91	55.81	48.84	62.79	48.84	79.07	53.49	53.49
Confusion Matrix										
$\begin{gathered} 1813 \\ 66 \end{gathered}$	265 75	$\begin{gathered} 1516 \\ 66 \end{gathered}$	$\begin{aligned} & 031 \\ & 012 \end{aligned}$	$\begin{gathered} 1813 \\ 66 \end{gathered}$	$\begin{gathered} 1318 \\ 48 \end{gathered}$	$\begin{gathered} 229 \\ 75 \end{gathered}$	$\begin{gathered} 1516 \\ 66 \end{gathered}$	$\begin{gathered} 301 \\ 84 \end{gathered}$	$\begin{gathered} 1516 \\ 48 \end{gathered}$	$\begin{gathered} 1516 \\ 48 \end{gathered}$

Table D.460: One_sample_One_Study_Traditional_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.60	NA	0.53	0.54	0.53	0.51	NA	0.63	0.56	0.58
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
50.00	58.33	NA	8.33	8.33	8.33	0.00	NA	41.67	66.67	66.67
51.61	64.52	NA	100.00	100.00	100.00	100.00	NA	83.87	41.94	51.61
72.73	80.00	NA	73.81	73.81	73.81	72.09	NA	78.79	76.47	80.00
28.57	38.89	NA	100.00	100.00	100.00	NaN	NA	50.00	30.77	34.78
51.16	62.79	NA	74.42	74.42	74.42	72.09	NA	72.09	48.84	55.81
Confusion Matrix										
$\begin{gathered} 1615 \\ 66 \end{gathered}$	$\begin{gathered} 2011 \\ 57 \end{gathered}$	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & 310 \\ & 111 \end{aligned}$	$\begin{aligned} & 310 \\ & 111 \end{aligned}$	$\begin{aligned} & 310 \\ & 111 \end{aligned}$	$\begin{aligned} & 310 \\ & 120 \end{aligned}$	$\begin{aligned} & \mathrm{NA} \\ & \mathrm{NA} \end{aligned}$	$\begin{gathered} 265 \\ 75 \end{gathered}$	$\begin{gathered} 138 \\ 48 \end{gathered}$	$\begin{gathered} 1615 \\ 48 \end{gathered}$

Table D.461: One_sample_One_Study_kFold_PCA_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.61	0.61	NA	0.64	0.59	0.64	0.64	NA	NA	0.64	0.62
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
30.00	30.00	NA	32.50	27.50	32.50	32.50	NA	NA	32.50	30.00
96.61	96.61	NA	96.61	96.61	96.61	96.61	NA	NA	96.61	96.61
67.06	67.06	NA	67.86	66.28	67.86	67.86	NA	NA	67.86	67.06
85.71	85.71	NA	86.67	84.62	86.67	86.67	NA	NA	86.67	85.71
69.70	69.70	NA	70.71	68.69	70.71	70.71	NA	NA	70.71	69.70
Confusion Matrix										
572	572	NA	572	572	572	572	NA	NA	572	572
2812	2812	NA	2713	2911	2713	2713	NA	NA	2713	2812

D. Appendix IV - Machine learning results

Table D.462: One_sample_One_Study_kFold_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.60	0.60	NA	0.65	0.57	0.64	0.64	NA	NA	0.64	0.60
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
30.00	30.00	NA	32.50	27.50	32.50	32.50	NA	NA	32.50	30.00
96.61	96.61	NA	96.61	96.61	96.61	96.61	NA	NA	96.61	96.61
67.06	67.06	NA	67.86	66.28	67.86	67.86	NA	NA	67.86	67.06
85.71	85.71	NA	86.67	84.62	86.67	86.67	NA	NA	86.67	85.71
69.70	69.70	NA	70.71	68.69	70.71	70.71	NA	NA	70.71	69.70
Confusion Matrix										
572	572	NA	572	572	572	572	NA	NA	572	572
2812	2812	NA	2713	2911	2713	2713	NA	NA	2713	2812

Table D.463: One_sample_One_Study_LOO_PCA_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.47	NA	0.46	0.49	0.46	0.46	NA	NA	0.46	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
12.50	12.50	NA	12.50	12.50	12.50	12.50	NA	NA	12.50	12.50
84.75	84.75	NA	83.05	86.44	83.05	83.05	NA	NA	83.05	84.75
58.82	58.82	NA	58.33	59.30	58.33	58.33	NA	NA	58.33	58.82
35.71	35.71	NA	33.33	38.46	33.33	33.33	NA	NA	33.33	35.71
55.56	55.56	NA	54.55	56.57	54.55	54.55	NA	NA	54.55	55.56
Confusion Matrix										
509	509	NA	4910	518	4910	4910	NA	NA	4910	509
355	355	NA	355	355	355	355	NA	NA	355	355

Table D.464: One_sample_One_Study_LOO_currentEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.47	NA	0.46	0.40	0.46	0.46	NA	NA	0.46	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
10.00	12.50	NA	12.50	7.50	12.50	12.50	NA	NA	12.50	12.50
83.05	84.75	NA	83.05	83.05	83.05	83.05	NA	NA	83.05	84.75
57.65	58.82	NA	58.33	56.98	58.33	58.33	NA	NA	58.33	58.82
28.57	35.71	NA	33.33	23.08	33.33	33.33	NA	NA	33.33	35.71
53.54	55.56	NA	54.55	52.53	54.55	54.55	NA	NA	54.55	55.56
Confusion Matrix										
4910	509	NA	4910	4910	4910	4910	NA	NA	4910	4910
364	355	NA	355	373	355	355	NA	NA	355	355

For label currentEDSS $>5(\mathbf{0} / \mathbf{1}-(<5) /(\geq 5):$
Final features: Var_Anatomical_I_122_median pixel intensity, Var_Solidity, Max_Anatomical_I_12 pixel intensity, Mean_Anatomical_I_122_lesion in the region, Mean_Anatomical_II_34_var
pixel intensity, Var_Anatomical_II_34_var pixel intensity, Var_Anatomical_I_122_ratio on region affected by lesion.

Table D.465: One_sample_One_Study_Traditional_PCA_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.54	0.53	0.50	0.51	0.51	0.50	0.53	0.54	0.54	0.54
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
57.14	100.00	28.57	71.43	57.14	57.14	57.14	28.57	100.00	100.00	100.00
46.77	11.29	72.58	29.03	41.94	43.55	45.16	72.58	11.29	11.29	11.29
90.63	100.00	90.00	90.00	89.66	90.00	90.32	90.00	100.00	100.00	100.00
10.81	11.29	10.53	10.20	10.00	10.26	10.53	10.53	11.29	11.29	11.29
47.83	20.29	68.12	33.33	43.48	44.93	46.38	68.12	20.29	20.29	20.29
Confusion Matrix										
2933	755	4517	1844	2636	2725	2824	4517	755	755	755
34	07	52	25	34	34	34	52	07	07	07

Table D.466: One_sample_One_Study_Traditional_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.44	NA	0.51	0.49	0.51	0.51	NA	0.44	0.50	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
57.14	71.43	NA	42.86	42.86	42.86	42.86	NA	71.43	100.00	71.43
48.39	12.90	NA	58.06	50.00	59.68	58.06	NA	12.90	0.00	12.90
90.91	80.00	NA	90.00	88.57	90.24	90.00	NA	80.00	NaN	80.00
11.11	8.47	NA	10.34	8.82	10.71	10.34	NA	8.47	10.14	8.47
49.28	18.84	NA	56.52	49.28	57.97	56.52	NA	18.84	10.14	18.84
Confusion Matrix										
3032	854	NA	3626	3131	3725	3626	NA	854	062	854
34	25	NA	43	43	43	43	NA	25	07	25

Table D.467: One_sample_One_Study_kFold_PCA_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.47	0.14	0.10	0.17	0.47	0.37	0.35	0.10	0.04	0.62	0.62
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
22.73	4.55	4.55	0.00	22.73	13.64	13.64	4.55	0.00	77.27	77.27
80.52	97.40	97.40	92.21	75.32	87.01	90.91	97.40	98.70	59.74	59.74
78.48	78.13	78.13	76.34	77.33	77.91	78.65	78.13	77.55	90.20	90.20
25.00	33.33	33.33	0.00	20.83	23.08	30.00	33.33	0.00	35.42	35.42
67.68	76.77	76.77	71.72	63.64	70.71	73.74	76.77	76.77	63.64	63.64
Confusion Matrix										
6215	752	752	716	5819	6710	707	752	761	4631	4631
175	211	211	220	175	193	193	211	220	517	517

D. Appendix IV - Machine learning results

Table D.468: One_sample_One_Study_kFold_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.46	NA	0.16	0.50	0.47	0.26	NA	NA	0.63	0.62
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
45.45	27.27	NA	4.55	31.82	22.73	9.09	NA	NA	77.27	63.64
84.42	94.81	NA	97.40	74.03	89.61	93.51	NA	NA	59.74	70.13
84.42	82.02	NA	78.13	79.17	80.23	78.26	NA	NA	90.20	87.10
45.45	60.00	NA	33.33	25.93	38.46	28.57	NA	NA	35.42	37.84
75.76	79.80	NA	76.77	64.65	74.75	74.75	NA	NA	63.64	68.69
Confusion Matrix										
6512	734	NA	752	5720	698	725	NA	NA	4631	5423
1210	166	NA	211	157	175	202	NA	NA	517	814

Table D.469: One_sample_One_Study_LOO_PCA_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.42	0.39	0.39	0.38	0.41	0.37	0.38	0.39	NA	0.41	0.41
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
9.09	0.00	0.00	0.00	9.09	0.00	0.00	0.00	NA	27.27	27.27
75.32	96.10	97.40	92.21	71.43	84.42	87.01	97.40	NA	45.45	45.45
74.36	77.08	77.32	76.34	73.33	74.71	75.28	77.32	NA	68.63	68.63
9.52	0.00	0.00	0.00	8.33	0.00	0.00	0.00	NA	12.50	12.50
60.61	74.75	75.76	71.72	57.58	65.66	67.68	75.76	NA	41.41	41.41
Confusion Matrix										
5819	743	752	716	5522	6512	6710	752	NA	3542	3542
202	220	220	220	202	220	220	220	NA	166	166

Table D.470: One_sample_One_Study_LOO_currentEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.45	0.47	0.56	0.49	0.58	0.61	0.48	NA	0.47	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
31.82	4.55	9.09	4.55	27.27	22.73	13.64	9.09	NA	40.91	31.82
76.62	90.91	87.01	97.40	71.43	88.31	94.81	88.31	NA	49.35	59.74
79.73	76.92	77.01	78.13	77.46	80.00	79.35	77.27	NA	74.51	75.41
28.00	12.50	16.67	33.33	21.43	35.71	42.86	18.18	NA	18.75	18.42
66.67	71.72	69.70	76.77	61.62	73.74	76.77	70.71	NA	47.47	53.54
Confusion Matrix										
5918	707	6710	752	5522	689	734	689	NA	3839	4631
157	211	202	211	166	175	193	202	NA	139	157

For label nextEDSS $>3(0 / 1-(<3) /(\geq 3)$:
Final features: Var_GM_min tissue prob, Max_GM_min tissue prob, Var_Anatomical_I_21_var pixel intensity, Mean_Anatomical_I_21_var pixel intensity, Max_Anatomical_I_29_ratio on region affected by lesion, Mean_Anatomical_I_29_var pixel intensity, Max_Anatomical_I_29_var
pixel intensity, Var_Anatomical_I_42_var pixel intensity, Var_Anatomical_I_21_ratio on region affected by lesion, Var_Var Pixel Intensity/slice_meanPixel.

Table D.471: One_sample_One_Study_Traditional_PCA_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.51	0.51	0.52	0.59	0.55	0.51	0.50	0.51	0.50	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
76.92	30.77	38.46	23.08	61.54	61.54	38.46	7.69	30.77	100.00	30.77
25.00	67.86	64.29	82.14	60.71	50.00	60.71	92.86	67.86	0.00	67.86
70.00	67.86	69.23	69.70	77.27	73.68	68.00	68.42	67.86	NaN	67.86
32.26	30.77	33.33	37.50	42.11	36.36	31.25	33.33	30.77	31.71	30.77
41.46	56.10	56.10	63.41	60.98	53.66	53.66	65.85	56.10	31.71	56.10
Confusion Matrix										
721	199	1810	235	1711	1414	1711	262	199	028	199
310	94	85	103	58	58	85	12.00	94	013	94

Table D.472: One_sample_One_Study_Traditional_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.53	0.59	0.56	0.51	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
69.23	38.46	46.15	23.08	69.23	61.54	46.15	7.69	38.46	100.00	38.46
28.57	64.29	53.57	85.71	53.57	50.00	57.14	89.29	64.29	0.00	64.29
66.67	69.23	68.18	70.59	78.95	73.68	69.57	67.57	69.23	NaN	69.23
31.03	33.33	31.58	42.86	40.91	36.36	33.33	25.00	33.33	31.71	33.33
41.46	56.10	51.22	65.85	58.54	53.66	53.66	63.42	56.10	31.71	56.10
Confusion Matrix										
820	1810	1513	244	1513	1414	1612	253	1810	028	1810
49	85	76	103	49	58	76	121	85	013	85

Table D.473: One_sample_One_Study_KFold_PCA_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.67	0.66	0.71	0.55	0.61	0.58	0.66	NA	0.64	0.67
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
45.24	42.86	47.62	54.76	50.00	47.62	45.24	45.24	NA	47.62	52.38
61.40	87.72	82.46	84.21	59.65	73.68	71.93	85.96	NA	78.95	78.95
60.34	67.57	68.12	71.64	61.82	65.63	64.06	68.06	NA	67.16	69.23
46.34	72.00	66.67	71.88	47.73	57.14	54.29	70.37	NA	62.50	64.71
54.55	68.69	67.68	71.72	55.56	62.63	60.61	68.69	NA	65.66	67.68
Confusion Matrix										
3522	507	4710	489	3423	4215	4116	498	NA	4512	4512
2319	2418	2220	1923	2121	2220	2319	2319	NA	2220	2022

D. Appendix IV - Machine learning results

Table D.474: One_sample_One_Study_KFold_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.66	0.66	0.71	0.54	0.60	0.60	0.66	NA	0.64	0.66
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
47.62	42.86	47.62	54.76	50.00	45.24	45.24	45.24	NA	50.00	51.16
61.40	87.72	82.46	84.21	57.90	71.93	71.93	85.97	NA	78.95	78.95
61.40	67.57	68.12	71.64	61.11	64.06	64.06	68.06	NA	68.18	68.18
47.62	72.00	66.67	71.88	46.67	54.29	54.29	70.37	NA	63.64	64.71
55.56	68.69	67.68	71.72	54.55	60.61	60.61	68.69	NA	66.67	67.00
Confusion Matrix										
3522	507	4710	489	3324	4116	4116	498	NA	4512	4512
2220	2418	2220	1923	2121	2319	2319	2319	NA	2121	2122

Table D.475: One_sample_One_Study_LOO_PCA_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.42	0.42	0.43	0.46	0.41	0.39	0.39	0.50	0.37	0.39
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
38.10	16.67	21.43	23.81	40.48	26.19	23.81	16.67	0.00	19.05	23.81
57.89	71.93	64.91	63.16	50.88	57.89	56.14	66.67	100.00	57.89	56.14
55.93	53.95	52.86	52.94	53.70	51.56	50.00	52.05	57.58	49.25	50.00
40.00	30.43	31.03	32.26	37.78	31.43	28.57	26.92	NaN	25.00	28.57
49.49	48.48	46.46	46.46	46.46	44.44	42.42	45.45	57.58	41.41	42.42
Confusion Matrix										
3324	4116	3720	3621	2928	3324	3225	3819	570	3324	3225
2616	357	339	3210	2517	3111	3210	357	420	348	3210

Table D.476: One_sample_One_Study_LOO_nextEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.51	0.52	0.52	0.46	0.46	0.46	0.50	NA	0.58	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
45.24	23.81	30.95	33.33	40.48	30.95	30.95	26.19	NA	40.48	35.71
63.16	77.19	71.93	70.18	50.88	61.40	61.40	73.68	NA	73.68	64.91
61.02	57.89	58.57	58.82	53.70	54.69	54.69	57.53	NA	62.69	57.81
47.50	43.48	44.83	45.16	37.78	37.14	37.14	42.31	NA	53.13	42.86
55.56	54.55	54.55	54.55	46.46	48.48	48.48	53.54	NA	59.60	52.53
Confusion Matrix										
3621	4413	4116	4017	2928	3522	3522	4215	NA	4215	3720
2319	3210	2913	2814	2517	2913	2913	3111	NA	2517	2715

For label nextEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Final features: Median_T1_Var Pixel Intensity/slice_meanPixel, Var_GM_min tissue prob, Max_GM_min tissue prob, Max_Anatomical_I_21_var pixel intensity, Max_GM_mean tissue prob, Var_Anatomical_I_21_var pixel intensity, Var_Anatomical_I_29_ratio
on region affected by lesion, Mean_Anatomical_I_21_var pixel intensity, Var_Anatomical_I_29_var pixel intensity, Max_Anatomical_I_29_ratio on region affected by lesion, Mean_Anatomical_I_29_var pixel intensity, Mean_Anatomical_I_42_var pixel intensity, Mean_Anatomical_I_29_ratio on region affected by lesion, Var_Var Pixel Intensity/slice_meanPixel.

Table D.477: One_sample_One_Study_Traditional_PCA_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.50	0.58	0.50	0.51	0.50	0.49	0.58	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
61.54	100.00	46.15	69.23	61.54	69.23	69.23	46.15	100.00	100.00	100.00
35.71	0.00	71.43	32.14	39.29	32.14	28.57	71.43	0.00	0.00	0.00
66.67	NaN	74.07	69.23	68.75	69.23	66.67	74.07	NaN	NaN	NaN
30.77	31.71	42.86	32.14	32.00	32.14	31.03	42.86	31.71	31.71	31.71
43.90	31.71	63.41	43.90	46.34	43.90	41.46	63.41	31.71	31.71	31.71
Confusion Matrix										
1018	028	208	919	1117	919	820	208	028	028	028
58	013	76	48	58	48	48	76	013	013	013

Table D.478: One_sample_One_Study_Traditional_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.45	0.49	0.53	0.53	0.52	0.52	0.50	0.45	0.50	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
69.23	38.46	92.31	38.46	84.62	84.62	69.23	7.69	38.46	100.00	38.46
32.14	53.57	3.57	67.86	21.43	21.43	35.71	96.43	53.57	0.00	53.57
69.23	65.22	50.00	70.37	75.00	75.00	71.43	69.23	65.22	NaN	65.22
32.14	27.78	30.77	35.71	33.33	33.33	33.33	50.00	27.78	31.71	27.78
43.90	48.78	31.71	58.54	41.46	41.46	46.34	68.29	48.78	31.71	48.78
Confusion Matrix										
919	1513	127	199	622	622	1018	271	1513	028	1513
49	85	112	85	211	211	49	121	85	013	85

Table D.479: One_sample_One_Study_kFold_PCA_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.65	0.67	0.68	0.60	0.56	0.62	0.69	NA	0.65	0.66
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
47.62	42.86	50.00	54.76	45.24	40.48	45.24	50.00	NA	52.38	47.62
61.40	85.96	82.46	77.19	75.44	70.18	77.19	85.96	NA	77.19	84.21
61.40	67.12	69.12	69.84	65.15	61.54	65.67	70.00	NA	68.75	68.57
47.62	69.23	67.74	63.89	57.58	50.00	59.38	72.41	NA	62.86	68.97
55.56	67.68	68.69	67.68	62.63	57.58	63.64	70.71	NA	66.67	68.69
Confusion Matrix										
3522	498	4710	4413	4314	4017	4413	498	NA	4413	489
2220	2418	2121	1923	2319	2517	2319	2121	NA	2022	2220

D. Appendix IV - Machine learning results

Table D.480: One_sample_One_Study_kFold_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.66	0.68	0.69	0.61	0.56	0.62	0.70	NA	0.66	0.66
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
50.00	42.86	50.00	57.14	45.24	40.48	45.24	50.00	NA	52.38	47.62
61.40	87.72	82.46	78.95	73.68	70.18	77.19	85.96	NA	77.19	84.21
62.50	67.57	69.12	71.43	64.62	61.54	65.67	70.00	NA	68.75	68.57
48.84	72.00	67.74	66.67	55.88	50.00	59.38	72.41	NA	62.86	68.97
56.57	68.69	68.69	69.70	61.62	57.58	63.64	70.71	NA	66.67	68.69
Confusion Matrix										
3522	507	4710	4512	4215	4017	4413	498	NA	4413	489
2121	2418	2121	1824	2319	2517	2319	2121	NA	2022	2220

Table D.481: One_sample_One_Study_LOO_PCA_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.50	0.47	0.48	0.52	0.59	0.56	0.44	NA	0.54	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
59.52	23.81	26.19	33.33	35.71	45.24	38.10	23.81	NA	40.48	23.81
56.14	75.44	68.42	63.16	68.42	71.93	71.93	66.67	NA	66.67	68.42
65.31	57.33	55.71	56.25	59.09	64.06	61.19	54.29	NA	60.32	54.93
50.00	41.67	37.93	40.00	45.45	54.29	50.00	34.48	NA	47.22	35.71
57.58	53.54	50.51	50.51	54.55	60.61	57.58	48.48	NA	55.56	49.49
Confusion Matrix										
3225	4314	3918	3621	3918	4116	4116	3819	NA	3819	3918
1725	3210	3111	2814	2715	2319	2616	3210	NA	2517	3210

Table D.482: One_sample_One_Study_LOO_nextEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.50	0.49	0.48	0.45	0.46	0.44	0.49	NA	0.47	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
45.24	23.81	28.57	33.33	28.57	30.95	26.19	28.57	NA	33.33	30.95
45.61	75.44	70.18	63.16	63.16	61.40	63.16	70.18	NA	61.40	73.68
53.06	57.33	57.14	56.25	54.55	54.69	53.73	57.14	NA	55.56	59.15
38.00	41.67	41.38	40.00	36.36	37.14	34.38	41.38	NA	38.89	46.43
45.45	53.54	52.53	50.51	48.48	48.48	47.47	52.53	NA	49.49	55.56
Confusion Matrix										
2631	4314	4017	3621	3621	3522	3621	4017	NA	3522	4215
2319	3210	3012	2814	3012	2913	3111	3012	NA	2814	2913

For label mediumEDSS $>3(\mathbf{0} / \mathbf{1}-(<3) /(\geq 3)$:
Final features: Var_Solidity, Mean_Anatomical_II_408_mean pixel intensity, Mean_Anatomical_II_ pixel intensity, Mean_Anatomical_II_408_min pixel intensity, Var_Anatomical_II_408_min
pixel intensity, Max_Anatomical_II_408_mean pixel intensity, Max_Anatomical_II_408_median pixel intensity, Mean_Anatomical_II_408_lesion in the region.

Table D.483: One_sample_One_Study_Traditional_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.61	0.61	0.50	0.54	0.57	0.54	0.61	0.64	0.56	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
8.33	50.00	50.00	91.67	8.33	16.67	8.33	50.00	41.67	75.00	75.00
100.00	72.41	72.41	3.45	100.00	100.00	100.00	72.41	89.66	41.38	41.38
72.50	77.78	77.78	50.00	72.50	74.36	72.50	77.78	78.79	80.00	80.00
100.00	42.86	42.86	28.21	100.00	100.00	100.00	42.86	62.50	34.62	34.62
73.17	65.85	65.85	29.27	73.17	75.61	73.17	65.85	75.61	51.22	51.22
Confusion Matrix										
290	218	218	128	290	290	290	218	263	1217	1217
111	66	66	111	111	102	111	66	75	39	39

Table D.484: One_sample_One_Study_Traditional_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.56	NA	0.57	0.56	0.56	0.54		0.62	0.56	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
58.33	58.33	NA	16.67	16.67	16.67	8.33	NA	33.33	66.67	66.67
41.38	51.72	NA	96.55	96.55	100.00	100.00	NA	89.66	44.83	44.83
70.59	75.00	NA	73.68	73.68	74.36	72.50	NA	76.47	76.47	76.47
29.17	33.33	NA	66.67	66.67	100.00	100.00	NA	57.14	33.33	33.33
46.34	53.66	NA	73.17	73.17	75.61	73.17	NA	73.17	51.22	51.22
Confusion Matrix										
1217	1514	NA	281	281	290	290	NA	263	1316	1316
57	57	NA	102	102	102	111	NA	84	48	48

Table D.485: One_sample_One_Study kFold_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.69	0.62	0.62	0.58	0.68	0.65	0.61	0.62	0.62	0.62	0.62
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
60.98	31.71	31.71	43.90	63.42	56.10	48.78	31.71	31.71	31.71	31.71
75.86	96.55	96.55	72.41	72.41	72.41	70.69	96.55	96.55	96.55	96.55
73.33	66.67	66.67	64.62	73.68	70.00	66.13	66.67	66.67	66.67	66.67
64.10	86.67	86.67	52.94	61.91	58.97	54.05	86.67	86.67	86.67	86.67
69.70	69.70	69.70	60.61	68.69	65.66	61.62	69.70	69.70	69.70	69.70
Confusion Matrix										
4414	562	562	4216	4216	4216	4117	562	562	562	562
1625	2813	2813	2318	1526	1823	2120	2813	2813	2813	2813

D. Appendix IV - Machine learning results

Table D.486: One_sample_One_Study_kFold_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.61	0.64	NA	0.64	0.58	0.64	0.64	NA	NA	0.61	0.61
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
29.27	31.71	NA	31.71	26.83	31.71	31.71	NA	NA	31.71	31.71
96.55	96.55	NA	96.55	96.55	96.55	96.55	NA	NA	96.55	96.55
65.88	66.67	NA	66.67	65.12	66.67	66.67	NA	NA	66.67	66.67
85.71	86.67	NA	86.67	84.62	86.67	86.67	NA	NA	86.67	86.67
68.69	69.70	NA	69.70	67.68	69.70	69.70	NA	NA	69.70	69.70
Confusion Matrix										
562	562	NA	562	562	562	562	NA	NA	562	562
2912	2813	NA	2813	3011	2813	2813	NA	NA	2813	2813

Table D.487: One_sample_One_Study_LOO_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.45	0.45	0.45	0.46	0.50	0.43	0.44	0.45	0.45	0.45	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
34.15	12.20	12.20	26.83	43.90	31.71	17.07	12.20	12.20	12.20	12.20
55.17	82.76	82.76	65.52	56.90	55.17	31.71	82.76	82.76	82.76	82.76
54.24	57.14	57.14	55.88	58.93	53.33	56.90	57.14	57.14	57.14	57.14
35.00	33.33	33.33	35.48	41.86	33.33	54.10	33.33	33.33	33.33	33.33
46.47	53.54	53.54	49.50	51.52	45.46	34.21	53.54	53.54	53.54	53.54
Confusion Matrix										
3226	4810	4810	3820	3325	3226	3325	4810	4810	4810	4810
2714	365	365	3011	2318	2813	2813	365	365	365	365

Table D.488: One_sample_One_Study_LOO_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.43	0.45	NA	0.45	0.44	0.45	0.45	NA	0.45	0.45	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
9.76	12.20	NA	12.20	9.76	12.20	12.20	NA	12.20	12.20	12.20
82.76	82.76	NA	82.76	84.48	82.76	82.76	NA	82.76	82.76	82.76
56.47	57.14	NA	57.14	56.98	57.14	57.14	NA	57.14	57.14	57.14
28.57	33.33	NA	33.33	30.77	33.33	33.33	NA	33.33	33.33	33.33
52.53	53.54	NA	53.54	53.54	53.54	53.54	NA	53.54	53.54	53.54
Confusion Matrix										
4810	4810	NA	4810	499	4810	4810	NA	4810	4810	4810
374	365	NA	365	374	365	365	NA	365	365	365

For label mediumEDSS $>5(0 / 1-(<5) /(\geq 5)$:
The via pattern recognition study was not performed since the number of patients with medium $E D S S \geq 5$ was minimal.

For label highestEDSS $>3(0 / 1-(<3) /(\geq 3):$

Final features: Var_Solidity, Mean_GM_min tissue prob, Var_GM_min tissue prob, Mean_Anatomical_I_162_lesion in the region, Max_Anatomical_I_162_ratio on region affected by lesion, Var_Anatomical_I_162_ratio on region affected by lesion, Mean_Anatomical_I_162_ratio on region affected by lesion, Var_Anatomical_I_162_median pixel intensity, Max_Anatomical_I_162_lesion in the region, Max_Anatomical_I_162_max pixel intensity.

Table D.489: One_sample_One_Study_Traditional_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.50	0.53	0.47	0.49	0.51	0.49	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
46.67	100.00	13.33	60.00	40.00	46.67	40.00	0.00	100.00	100.00	100.00
66.67	0.00	91.67	33.33	58.33	58.33	58.33	100.00	0.00	0.00	0.00
50.00	NaN	45.83	40.00	43.75	46.67	43.75	44.44	NaN	NaN	NaN
63.64	55.56	66.67	52.94	54.55	58.33	54.55	NaN	55.56	55.56	55.56
55.56	55.56	48.15	48.15	48.15	51.85	48.15	44.44	55.56	55.56	55.56
Confusion Matrix										
84	012	111	48	75	75	75	120	012	012	012
87	015	132	69	96	87	96	150	015	015	015

Table D.490: One_sample_One_Study_Traditional_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.49	NA	0.48	0.44	0.48	0.52	NA	0.49	0.50	0.49
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
46.67	100.00	NA	93.33	53.33	53.33	33.33	NA	100.00	100.00	100.00
58.33	0.00	NA	0.00	33.33	41.67	75.00	NA	0.00	0.00	0.00
46.67	NaN	NA	0.00	36.36	41.67	47.37	NA	NaN	NaN	NaN
58.33	55.56	NA	53.85	50.00	53.33	62.50	NA	55.56	55.56	55.56
51.85	55.56	NA	51.85	44.44	48.15	51.85	NA	55.56	55.56	55.56
Confusion Matrix										
75	012	NA	012	48	57	93	NA	012	012	012
87	015	NA	114	78	78	105	NA	015	015	015

D. Appendix IV - Machine learning results

Table D.491: One_sample_One_Study_kFold_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.64	0.66	0.70	0.64	0.58	0.56	0.57	0.68	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
64.71	60.78	60.78	62.75	58.82	49.02	56.86	56.86	NA	52.94	58.82
62.50	70.83	79.17	64.58	56.25	62.50	56.25	77.08	NA	75.00	72.92
62.50	62.96	65.52	62.00	56.25	53.57	55.10	62.71	NA	60.00	62.50
64.71	68.89	75.61	65.31	58.82	58.14	58.00	72.50	NA	69.23	69.77
63.64	65.66	69.70	63.64	57.58	55.56	56.57	66.67	NA	63.64	65.66
Confusion Matrix										
3018	3414	3810	3117	2721	3018	2721	3711	NA	3612	3513
1833	2031	2031	1932	2130	2625	2229	2229	NA	2427	2130

Table D.492: One_sample_One_Study_kFold_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.65	0.66	0.70	0.64	0.58	0.56	0.57	0.68	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
64.71	60.78	60.78	62.75	58.82	49.02	56.86	56.86	NA	52.94	58.82
64.58	68.75	79.17	62.50	56.25	62.50	56.25	77.08	NA	75.00	72.92
63.27	62.26	65.52	61.22	56.25	53.57	55.10	62.71	NA	60.00	62.50
66.00	67.39	75.61	64.00	58.82	58.14	58.00	72.50	NA	69.23	69.77
64.65	64.65	69.70	62.63	57.58	55.56	56.57	66.67	NA	63.64	65.66
Confusion Matrix										
3117	3315	3810	3018	2721	3018	2721	3711	NA	3612	3513
1833	2031	2031	1932	2130	2625	2229	2229	NA	2427	2130

Table D.493: One_sample_One_Study_LOO_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.45	0.50	0.47	0.55	0.50	0.47	0.49	NA	0.50	0.41
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
56.86	41.18	39.22	47.06	58.82	41.18	49.02	37.26	NA	39.22	35.29
45.83	47.92	60.42	47.92	52.08	58.33	45.83	60.42	NA	60.42	47.92
50.00	43.40	48.33	46.00	54.35	48.28	45.83	47.54	NA	48.33	41.07
52.73	45.65	51.28	48.98	56.60	51.22	49.02	50.00	NA	51.28	41.86
51.52	44.44	49.50	47.48	55.56	49.50	47.48	48.49	NA	49.50	41.41
Confusion Matrix										
2226	2325	2919	2325	2523	2820	2226	2919	NA	2919	2325
2229	3021	3120	2724	2130	3021	2625	3219	NA	3120	3318

Table D.494: One_sample_One_Study_LOO_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.53	0.50	0.56	0.45	0.50	0.51	0.47	NA	0.50	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
54.90	49.02	39.22	54.90	49.02	41.18	52.94	35.29	NA	39.22	45.10
43.75	56.25	60.42	56.25	41.67	58.33	50.00	58.33	NA	60.42	58.33
47.73	50.94	48.33	54.00	43.48	48.28	50.00	45.90	NA	48.33	50.00
50.91	54.35	51.28	57.14	47.17	51.22	52.94	47.37	NA	51.28	53.49
49.50	52.53	49.50	55.56	45.46	49.50	51.52	46.47	NA	49.50	51.52
Confusion Matrix										
2127	2721	2919	2721	2028	2820	2424	2820	NA	2919	2820
2328	2625	3120	2328	2625	3021	2427	3318	NA	3120	2823

For label highestEDSS $>5(\mathbf{0} / \mathbf{1}-(<5) /(\geq 5):$
Final features: Var_Anatomical_II_39_mean pixel intensity, Var_Anatomical_I_122_median pixel intensity, Mean_Anatomical_II_39_lesion in the region.

Table D.495: One_sample_One_Study_Traditional_PCA_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.59	0.51	0.52	0.51	0.52	0.51	0.51	0.63	0.55	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
50.00	100.00	16.67	66.67	50.00	50.00	50.00	16.67	100.00	100.00	100.00
52.38	19.05	88.89	41.27	55.56	50.79	47.62	88.89	26.98	11.11	11.11
91.67	100.00	91.80	92.86	92.11	91.43	90.91	91.80	100.00	100.00	100.00
9.09	10.53	12.50	9.76	9.68	8.82	8.33	12.50	11.54	9.68	9.68
52.17	26.09	82.61	43.48	55.07	50.73	47.83	82.61	33.33	18.84	18.84
Confusion Matrix										
3330	1251	567	2637	3528	3231	3033	567	1746	756	756
33	06	51	24	33	33	33	51	06	06	06

Table D.496: One_sample_One_Study_Traditional_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.52	0.51	0.50	0.51	0.50	0.50	0.51	0.60	0.53	0.51
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
71.43	83.33	33.33	83.33	66.67	66.67	83.33	16.67	83.33	100.00	83.33
25.40	23.81	74.60	19.05	31.75	39.68	22.22	76.19	39.68	6.35	22.22
88.89	93.75	92.16	92.31	90.91	92.59	93.33	90.57	96.15	100.00	93.33
9.62	9.43	11.11	8.93	8.51	9.52	9.26	6.25	11.63	9.23	9.26
30.00	28.99	71.01	24.64	34.78	42.03	27.54	71.01	43.48	14.49	27.54
Confusion Matrix										
1647	1548	4716	1251	2043	2538	1449	4815	2538	459	1449
25	15	42	15	24	24	15	51	15	06	15

D. Appendix IV - Machine learning results

Table D.497: One_sample_One_Study_kFold_PCA_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.61	0.45	0.40	0.06	0.48	0.37	0.23	0.52	NA	0.67	0.67
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
42.86	23.81	19.05	4.76	23.81	18.18	4.76	33.33	NA	52.38	57.14
85.90	93.59	88.46	100.00	83.33	93.59	94.87	87.18	NA	75.64	74.36
84.81	82.02	80.23	79.59	80.25	80.22	78.72	82.93	NA	85.51	86.57
45.00	50.00	30.77	100.00	27.78	44.44	20.00	41.18	NA	36.67	37.50
76.77	78.79	73.74	79.80	70.71	77.00	75.76	75.76	NA	70.71	70.71
Confusion Matrix										
6711	735	699	780	6513	735	744	6810	NA	5919	5820
129	165	174	201	165	184	201	147	NA	1011	912

Table D.498: One_sample_One_Study_kFold_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.44	0.39	0.07	0.47	0.38	0.22	0.53	NA	0.63	0.73
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
42.86	23.81	19.05	0.00	23.81	19.05	4.76	33.33	NA	57.14	57.14
87.18	93.59	88.46	98.72	83.33	93.59	94.87	87.18	NA	75.64	74.36
85.00	82.02	80.23	78.57	80.25	81.11	78.72	82.93	NA	86.77	86.57
47.37	50.00	30.77	0.00	27.78	44.44	20.00	41.18	NA	38.71	37.50
77.78	78.79	73.74	77.78	70.71	77.78	75.76	75.76	NA	71.72	70.71
Confusion Matrix										
6810	735	699	771	6513	735	744	6810	NA	5919	5820
129	165	174	210	165	174	201	147	NA	912	912

Table D.499: One_sample_One_Study_LOO_PCA_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.58	0.49	0.64	0.06	0.51	0.44	0.39	0.51	NA	0.49	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
33.33	9.52	23.81	0.00	19.05	4.76	0.00	19.05	NA	28.57	33.33
82.05	89.74	92.31	100.00	83.33	89.74	93.59	82.05	NA	69.23	67.95
82.05	78.65	81.82	78.79	79.27	77.78	77.66	79.01	NA	78.26	79.10
33.33	20.00	45.46	NaN	23.53	11.11	0.00	22.22	NA	20.00	21.88
71.72	72.73	77.78	78.79	69.70	71.72	73.74	68.69	NA	60.61	60.61
Confusion Matrix										
6414	708	726	780	6513	708	735	6414	NA	5424	5325
147	192	165	210	174	201	210	174	NA	156	147

Table D.500: One_sample_One_Study_LOO_highestEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.38	0.43	0.07	0.62	0.44	0.49	0.40	NA	0.40	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
14.29	0.00	4.76	0.00	33.33	4.76	4.76	4.76	NA	9.52	19.05
76.92	87.18	87.18	100.00	87.18	89.74	94.87	78.21	NA	64.10	64.10
76.92	76.40	77.27	78.79	82.93	77.78	78.72	75.31	NA	72.46	74.63
14.29	0.00	9.09	NaN	41.18	11.11	20.00	5.56	NA	6.67	12.50
63.64	68.69	69.70	78.79	75.76	71.72	75.76	62.63	NA	52.53	54.55
Confusion Matrix										
6018	6810	6810	780	6810	708	744	6117	NA	5028	5028
183	210	201	210	147	201	201	201	NA	192	174

For label first2EDSS $>3(0 / 1-(<3) /(\geq 3):$
Final features: Mean_Anatomical_II_38_mean pixel intensity, Mean_Anatomical_II_39_median pixel intensity, Var_Anatomical_II_70_lesion in the region, Mean_Anatomical_I_162_ratio on region affected by lesion, Max_Anatomical_I_162_ratio on region affected by lesion.

Table D.501: One_sample_One_Study_Traditional_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.53	0.53	0.52	0.53	0.49	0.53	0.55	0.50	0.53	0.53	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
55.56	88.89	40.00	66.67	66.67	66.67	55.56	33.33	77.78	88.89	88.89
47.92	20.83	64.58	35.42	31.25	41.67	52.08	68.75	24.49	12.50	12.50
85.19	90.91	83.78	85.00	83.33	86.96	86.21	84.62	85.71	85.71	85.71
16.67	17.39	19.05	16.22	15.39	17.65	17.86	16.67	15.91	16.00	16.00
49.12	31.58	60.35	40.35	36.84	45.61	52.63	63.16	32.76	24.56	24.56
Confusion Matrix										
2325	1038	3117	1731	1533	2028	2523	3315	1237	642	642
45	18	64	36	36	36	45	63	27	18	18

Table D.502: One_sample_One_Study_Traditional_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.53	NA	0.55	0.51	0.53	0.52	NA	0.54	0.52	0.53
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
55.56	88.89	NA	33.33	22.22	33.33	22.22	NA	77.78	88.89	88.89
39.58	18.75	NA	79.17	79.17	72.92	81.25	NA	25.00	14.58	16.67
82.61	90.00	NA	86.36	84.44	85.37	84.78	NA	85.71	87.50	88.89
14.71	17.02	NA	23.08	16.67	18.75	18.18	NA	16.28	16.33	16.67
42.11	29.83	NA	71.93	70.18	66.67	71.93	NA	33.33	26.32	28.07
Confusion Matrix										
1929	939	NA	3810	3810	3513	399	NA	1236	741	840
45	18	NA	63	72	63	72	NA	27	18	18

D. Appendix IV - Machine learning results

Table D.503: One_sample_One_Study_KFold_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.58	0.63	0.58	0.56	0.64	0.63	0.69	0.57	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
36.67	33.33	43.33	30.00	36.67	46.67	40.00	50.00	30.00	50.00	56.67
81.16	89.86	89.86	89.86	78.57	88.41	88.41	88.41	91.30	86.96	75.36
74.67	75.61	78.48	74.70	74.32	79.22	77.22	80.26	75.00	80.00	80.00
45.83	58.82	65.00	56.25	42.31	63.64	60.00	65.22	60.00	62.50	50.00
67.68	72.73	75.76	71.72	66.00	75.76	73.74	76.77	72.73	75.76	69.70
Confusion Matrix										
5613	627	627	627	5515	618	618	618	636	609	5217
1911	2010	1713	219	1911	1614	1812	1515	219	1515	1317

Table D.504: One_sample_One_Study_KFold_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.59	0.66	0.59	0.57	0.67	0.64	0.69	0.58	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
36.67	33.33	43.33	30.00	36.67	46.67	40.00	50.00	33.33	50.00	60.00
82.61	89.86	91.30	89.86	78.26	88.41	88.41	88.41	91.30	86.96	75.36
75.00	75.61	78.75	74.70	73.97	79.22	77.22	80.26	75.90	80.00	81.25
47.83	58.82	68.42	56.25	42.31	63.64	60.00	65.22	62.50	62.50	51.43
68.69	72.73	76.77	71.72	65.66	75.76	73.74	76.77	73.74	75.76	70.71
Confusion Matrix										
5712	627	636	627	5415	618	618	618	636	609	5217
1911	2010	1713	219	1911	1614	1812	1812	2010	1515	1218

Table D.505: One_sample_One_Study_LOO_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.45	0.49	0.48	0.48	0.53	0.46	0.46	0.47	0.49	0.44	0.45
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	16.67	16.67	16.67	30.00	16.67	16.67	20.00	16.67	16.67	26.67
71.01	82.61	79.71	79.71	75.36	76.81	76.81	75.36	82.61	72.46	62.32
67.12	69.51	68.75	68.75	71.23	67.95	67.95	68.42	69.51	66.67	66.15
23.08	29.41	26.32	26.32	34.62	23.81	23.81	26.09	29.41	20.83	23.53
55.56	62.63	60.61	60.61	61.62	58.59	58.59	58.59	62.63	55.56	51.52
Confusion Matrix										
4920	5712	5514	5514	5217	5316	5316	5217	5712	5019	4326
246	255	255	255	219	255	255	246	255	255	228

Table D.506: One_sample_One_Study_LOO_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.49	0.51	0.54	0.61	0.58	0.58	0.56	0.49	0.58	0.52
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
33.33	16.67	20.00	23.33	40.00	30.00	30.00	30.00	16.67	33.33	36.67
76.81	82.61	81.16	82.61	79.71	82.61	82.61	79.71	82.61	79.71	66.67
72.60	69.51	70.00	71.25	75.34	73.08	73.08	72.37	69.51	73.33	70.77
38.46	29.41	31.58	36.84	46.15	42.86	42.86	39.13	29.41	41.67	32.35
63.64	62.63	62.63	64.65	67.68	66.67	66.67	64.65	62.63	65.66	57.58
Confusion Matrix										
5316	5712	5613	5712	5514	5712	5712	5514	5712	5514	4623
2010	255	246	237	1812	219	219	219	255	2010	1911

For label first2EDSS $>5(0 / 1-(<5) /(\geq 5):$
Final features:
The via pattern recognition study was not performed since the number of patients with first2EDSS ≥ 5 was minimal.

D.3.3 One sample, one patient Set

For label msCourse (0/1-RR/SP:

Final features: Max_Max_Anatomical_II_52_ratio on region affected by lesion, Mean_Mean_Anatomical_I_25_ratio on region affected by lesion, Min_Var_Anatomical_I_42_var pixel intensity, Min_Max_Anatomical_I_42_var pixel intensity, Mean_Var_Anatomical_II_52_ratio on region affected by lesion, Mean_Var_Anatomical_I_42_lesion in the region, Min_Mean_Anatomical_I pixel intensity, Min_Median_Eccentricity, Mean_Var_Anatomical_I_25_ratio on region affected by lesion.

Table D.507: One_sample_One_Patient_Traditional_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.51	0.50	0.50	0.50	0.52	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	5.26	0.00	0.00	0.00
NaN	100.00	NaN	NaN	NaN						
13.64	13.64	13.64	13.64	13.64	13.64	13.64	14.29	13.64	13.64	13.64
13.64	13.64	13.64	13.64	13.64	13.64	13.64	18.18	13.64	13.64	13.64
Confusion Matrix										
019	019	019	019	019	019	019	118	019	019	019
03	03	03	03	03	03	03	03	03	03	03

D. Appendix IV - Machine learning results

Table D.508: One_sample_One_Patient_Traditional_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.51	0.50	0.50	0.50	0.50	0.51	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	5.26	5.26	0.00	0.00	0.00	5.26	0.00	0.00	0.00
NaN	NaN	100.00	100.00	NaN	NaN	NaN	100.00	NaN	NaN	NaN
13.64	13.64	14.29	14.29	13.64	13.64	13.64	14.29	13.64	13.64	13.64
13.64	13.64	18.18	18.18	13.64	13.64	13.64	18.18	13.64	13.64	13.64
Confusion Matrix										
019	019	118	118	019	019	019	118	019	019	019
03	03	03	03	03	03	03	03	03	03	03

Table D.509: One_sample_One_Patient_kFold_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.59	0.42	0.37	0.35	0.53	0.59	0.60	0.28	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
80.00	50.00	40.00	40.00	70.00	80.00	80.00	30.00	NA	80.00	80.00
84.62	84.62	88.46	92.31	96.15	84.62	80.77	92.31	NA	84.62	84.62
91.67	81.48	79.31	80.00	89.29	91.67	91.30	77.42	NA	91.67	91.67
66.67	55.56	57.14	66.67	87.50	66.67	61.54	60.00	NA	66.67	66.67
83.33	75.00	75.00	77.78	88.89	83.33	80.56	75.00	NA	83.33	83.33
Confusion Matrix										
224	224	233	242	251	224	215	242	NA	224	224
28	55	64	64	37	28	28	73	NA	28	28

Table D.510: One_sample_One_Patient_kFold_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.49	0.44	NA	0.39	0.55	0.61	0.62	NA	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
60.00	50.00	NA	40.00	70.00	80.00	80.00	NA	NA	80.00	60.00
88.46	84.62	NA	80.77	96.15	84.62	84.62	NA	NA	84.62	80.77
85.19	81.48	NA	77.78	89.29	91.67	91.67	NA	NA	91.67	84.00
66.67	55.56	NA	44.44	87.50	66.67	66.67	NA	NA	66.67	54.55
80.56	75.00	NA	69.44	88.89	83.33	83.33	NA	NA	83.33	75.00
Confusion Matrix										
233	224	NA	215	251	224	224	NA	NA	224	215
46	55	NA	64	37	28	28	NA	NA	28	46

Table D.511: One_sample_One_Patient_LOO_PCA_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.54	0.48	0.50	0.43	0.48	0.48	0.46	0.48	0.48	0.48	0.48
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.00	20.00	20.00	10.00	20.00	30.00	30.00	10.00	20.00	30.00	30.00
69.23	76.92	80.77	80.77	76.92	65.38	61.54	88.46	76.92	65.38	65.38
75.00	71.43	72.41	70.00	71.43	70.83	69.57	71.88	71.43	70.83	70.83
33.33	25.00	28.57	16.67	25.00	25.00	23.08	25.00	25.00	25.00	25.00
61.11	61.11	63.89	61.11	61.11	55.56	52.78	66.67	61.11	55.56	55.56
Confusion Matrix										
188	206	215	215	206	179	1610	233	206	179	179
64	82	82	91	82	73	73	91	82	73	73

Table D.512: One_sample_One_Patient_LOO_msCourse

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.40	0.39	NA	0.39	0.40	0.48	0.46	NA	NA	0.42	0.43
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
10.00	10.00	NA	10.00	10.00	30.00	30.00	NA	NA	20.00	20.00
73.08	69.23	NA	69.23	73.08	65.38	61.54	NA	NA	61.54	65.38
67.86	66.67	NA	66.67	67.86	70.83	69.57	NA	NA	66.67	68.00
12.50	11.11	NA	11.11	12.50	25.00	23.08	NA	NA	16.67	18.18
55.56	52.78	NA	52.78	55.56	55.56	52.78	NA	NA	50.00	52.78
Confusion Matrix										
197	188	NA	188	197	179	1610	NA	NA	1610	179
91	91	NA	91	91	73	73	NA	NA	82	82

For label mediumEDSS $>3(\mathbf{0} / \mathbf{1}-(<3) /(\geq 3)$:
Final features: Max_Mean_RefSpace Max_Median_RefSpace, Var_Var_Anatomical_I_31_var pixel intensity, Max_Mean_Anatomical_I_25_ratio on region affected by lesion, Mean_Var_Anatomical_ on region affected by lesion, Mean_Var_Anatomical_I_29_ratio on region affected by lesion, Max_Var_Anatomical_I_31_mean pixel intensity, Mean_Max_Anatomical_I_31_var pixel intensity.
D. Appendix IV - Machine learning results

Table D.513: One_sample_One_Patient_Traditional_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	0.00	8.33	0.00	0.00	0.00	0.00	0.00	0.00	0.00
NaN	NaN	NaN	100.00	NaN						
25.00	25.00	25.00	26.67	25.00	25.00	25.00	25.00	25.00	25.00	25.00
25.00	25.00	25.00	31.25	25.00	25.00	25.00	25.00	25.00	25.00	25.00
Confusion Matrix										
012	012	012	111	012	012	012	012	012	012	012
04	04	04	04	04	04	04	04	04	04	04

Table D.514: One_sample_One_Patient_Traditional_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.50	0.50	0.50	0.50	0.51	0.50	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
0.00	0.00	0.00	0.00	0.00	0.00	8.33	0.00	0.00	0.00	0.00
NaN	NaN	NaN	NaN	NaN	NaN	100.00	NaN	NaN	NaN	NaN
25.00	25.00	25.00	25.00	25.00	25.00	26.67	25.00	25.00	25.00	25.00
25.00	25.00	25.00	25.00	25.00	25.00	31.25	25.00	25.00	25.00	25.00
Confusion Matrix										
012	012	012	012	012	012	111	012	012	012	012
04	04	04	04	04	04	04	04	04	04	04

Table D.515: One_sample_One_Patient_kFold_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.51	0.58	0.53	0.62	0.55	0.58	0.58	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
57.14	50.00	57.14	57.14	71.43	64.29	64.29	57.14	NA	71.43	71.43
86.36	90.91	86.96	86.36	90.91	72.73	81.82	86.96	NA	86.36	86.36
76.00	74.07	76.92	76.00	83.33	76.19	78.26	76.92	NA	82.61	82.61
72.73	77.78	72.73	72.73	83.33	60.00	69.23	72.73	NA	76.92	76.92
75.00	75.00	75.68	75.00	83.33	69.44	75.00	75.68	NA	80.56	80.56
Confusion Matrix										
193	202	203	193	202	166	184	203	NA	193	193
68	77	68	68	410	59	59	68	NA	410	410

Table D.516: One_sample_One_Patient_kFold_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.51	0.58	0.53	0.62	0.55	0.58	0.58	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
57.14	50.00	57.14	57.14	71.43	64.29	64.29	57.14	NA	71.43	71.43
86.36	90.91	86.96	86.36	90.91	72.73	81.82	86.96	NA	86.36	86.36
76.00	74.07	76.92	76.00	83.33	76.19	78.26	76.92	NA	82.61	82.61
72.73	77.78	72.73	72.73	83.33	60.00	69.23	72.73	NA	76.92	76.92
75.00	75.00	75.68	75.00	83.33	69.44	75.00	75.68	NA	80.56	80.56
Confusion Matrix										
193	202	203	193	202	166	184	203	NA	193	193
68	77	68	68	410	59	59	68	NA	410	410

Table D.517: One_sample_One_Patient_LOO_PCA_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.31	0.42	0.55	0.58	0.45	0.47	0.42	0.31	0.44	0.44
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
35.71	7.14	21.43	35.71	42.86	35.71	35.71	21.43	7.14	28.57	28.57
72.73	63.64	63.64	72.73	72.73	54.55	59.09	63.64	63.64	59.09	59.09
64.00	51.85	56.00	64.00	66.67	57.14	59.09	56.00	51.85	56.52	56.52
45.46	11.11	27.27	45.46	50.00	33.33	35.71	27.27	11.11	30.77	30.77
58.33	41.67	47.22	58.33	61.11	47.22	50.00	47.22	41.67	47.22	47.22
Confusion Matrix										
166	148	148	166	166	1210	139	148	148	139	139
95	131	113	95	86	95	95	113	131	104	104

Table D.518: One_sample_One_Patient_LOO_mediumEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.40	0.44	0.45	0.42	0.42	0.47	0.48	NA	0.56	0.40
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
42.86	21.43	28.57	35.71	21.43	28.57	35.71	28.57	NA	42.86	21.43
59.09	59.09	59.09	54.55	63.64	54.55	59.09	68.18	NA	68.18	59.09
61.91	54.17	56.52	57.14	56.00	54.55	59.09	60.00	NA	65.22	54.17
40.00	25.00	30.77	33.33	27.27	28.57	35.71	36.36	NA	46.15	25.00
52.78	44.44	47.22	47.22	47.22	44.44	50.00	52.78	NA	58.33	44.44
Confusion Matrix										
139	139	139	1210	148	1210	139	157	NA	157	139
86	113	104	95	113	104	95	104	NA	86	113

For label mediumEDSS $>5(0 / 1-(<5) /(\geq 5)$:
Final features: Max_Max_Anatomical_II_14_ratio on region affected by lesion, Max_Mean_Anatomical_I_43_lesion in the region, Max_Mean_Anatomical_I_43_max pixel intensity, Max_Var_Anatomical_I_43_mean pixel intensity, Max_Var_Anatomical_I_31_mean
D. Appendix IV - Machine learning results
pixel intensity, Max_Var_Anatomical_I_31_min pixel intensity, Max_Max_Anatomical_II_54_ratio on region affected by lesion, Max_Mean_Anatomical_I_43_mean pixel intensity.

Table D.519: One_sample_One_Patient_Traditional_PCA_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.50	0.53	0.53	0.52	0.56	0.56	0.56	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
0.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
100.00	0.00	37.04	44.44	22.22	51.85	37.04	51.85	0.00	0.00	0.00
96.43	NaN	100.00	100.00	100.00	100.00	100.00	100.00	NaN	NaN	NaN
NaN	3.57	5.56	6.25	4.55	7.14	5.56	7.14	3.57	3.57	3.57
96.43	3.57	39.29	46.43	25.00	53.57	39.29	53.57	3.57	3.57	3.57
Confusion Matrix										
270	027	1017	1215	621	1413	1017	1413	027	027	027
10	01	01	01	01	01	01	01	01	01	01

Table D.520: One_sample_One_Patient_Traditional_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.49	NA	0.60	0.55	0.56	0.56	NA	0.49	0.50	0.49
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
0.00	100.00	NA	100.00	100.00	100.00	100.00	NA	100.00	100.00	100.00
100.00	25.93	NA	37.04	33.33	62.96	40.74	NA	25.93	0.00	25.93
96.43	100.00	NA	100.00	100.00	100.00	100.00	NA	100.00	NaN	100.00
NaN	4.76	NA	5.56	5.26	9.09	5.88	NA	4.76	3.57	4.76
96.43	28.57	NA	39.29	35.71	64.29	42.86	NA	28.57	3.57	28.57
Confusion Matrix										
270	720	NA	1017	918	1710	1116	NA	720	027	720
10	01	NA	01	01	01	01	NA	01	01	01

Table D.521: One_sample_One_Patient_KFold_PCA_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.31	0.27	NA	0.06	0.27	0.21	0.24	NA	0.09	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.00	60.00	NA	0.00	40.00	40.00	40.00	NA	20.00	100.00	100.00
90.32	96.77	NA	96.77	90.32	96.77	96.77	NA	100.00	87.10	83.87
90.32	93.75	NA	85.71	90.32	90.91	90.91	NA	88.57	100.00	100.00
40.00	75.00	NA	0.00	40.00	66.67	66.67	NA	100.00	55.56	50.00
83.33	91.67	NA	83.33	83.33	88.89	88.89	NA	88.89	88.89	86.11
Confusion Matrix										
283	301	NA	301	283	301	301	NA	310	274	265
32	23	NA	50	32	32	32	NA	41	05	05

Table D.522: One_sample_One_Patient_KFold_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.33	0.23	NA	0.16	0.27	0.21	0.27	NA	0.12	0.50	0.59
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	40.00	NA	40.00	40.00	40.00	40.00	NA	20.00	100.00	80.00
74.19	93.55	NA	100.00	90.32	96.77	96.77	NA	96.77	87.10	80.65
85.19	90.63	NA	91.18	90.32	90.91	90.91	NA	88.24	100.00	96.15
11.11	50.00	NA	100.00	40.00	66.67	66.67	NA	50.00	55.56	40.00
66.67	86.11	NA	91.67	83.33	88.89	88.89	NA	86.11	88.89	80.56
Confusion Matrix										
238	292	NA	310	283	301	301	NA	301	274	256
41	32	NA	32	32	32	32	NA	41	05	14

Table D.523: One_sample_One_Patient_LOO_PCA_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.41	0.42	0.42	0.43	0.54	0.42	0.42	0.42	0.43	0.48	0.47
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
0.00	0.00	0.00	0.00	20.00	0.00	0.00	0.00	0.00	20.00	20.00
77.42	90.32	87.10	96.77	87.10	90.32	87.10	90.32	96.77	74.19	70.97
82.76	84.85	84.38	85.71	87.10	84.85	84.38	84.85	85.71	85.19	84.62
0.00	0.00	0.00	0.00	20.00	0.00	0.00	0.00	0.00	11.11	10.00
66.67	77.78	75.00	83.33	77.78	77.78	75.00	77.78	83.33	66.67	63.89
Confusion Matrix										
247	283	274	301	274	283	274	283	301	238	229
50	50	50	50	41	50	50	50	50	41	41

Table D.524: One_sample_One_Patient_LOO_mediumEDSS ≥ 5

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.65	0.42	0.50	0.43	0.54	0.42	0.42	0.50	0.43	0.48	0.40
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
60.00	0.00	0.00	0.00	20.00	0.00	0.00	0.00	0.00	20.00	0.00
83.87	90.32	100.00	93.55	87.10	90.32	87.10	100.00	93.55	74.19	64.52
92.86	84.85	86.11	85.29	87.10	84.85	84.38	86.11	85.29	85.19	80.00
37.50	0.00	NaN	0.00	20.00	0.00	0.00	NaN	0.00	11.11	0.00
80.56	77.78	86.11	80.56	77.78	77.78	75.00	86.11	80.56	66.67	55.56
Confusion Matrix										
265	283	310	292	274	283	274	310	292	238	2011
23	50	50	50	41	50	50	50	50	41	50

For label highestEDSS $>3(\mathbf{0} / \mathbf{1}-(<3) /(\geq 3)$:
Final features: Max_Max_Anatomical_I_29_ratio on region affected by lesion, Mean_Var_Anatomical_II_40_var pixel intensity, Var_Max_Anatomical_II_40_var pixel
D. Appendix IV - Machine learning results
intensity, Mean_Mean_Anatomical_II_40_var pixel intensity, Var_Var_Anatomical_II_40_var pixel intensity.

Table D.525: One_sample_One_Patient_Traditional_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.58	0.51	0.50	0.51	0.51	0.51	0.51	0.60	0.55	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	100.00	100.00	80.00	100.00	100.00	100.00	100.00	100.00	100.00
11.11	11.11	11.11	0.00	11.11	0.00	0.00	11.11	22.22	11.11	11.11
100.00	100.00	100.00	NaN	50.00	NaN	NaN	100.00	100.00	100.00	100.00
38.46	38.46	38.46	35.71	33.33	35.71	35.71	38.46	41.67	38.46	38.46
42.86	42.86	42.86	35.71	35.71	35.71	35.71	42.86	50.00	42.86	42.86
Confusion Matrix										
18	18	18	09	18	09	09	18	27	18	18
05	05	05	05	14	05	05	05	05	05	05

Table D.526: One_sample_One_Patient_Traditional_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.50	0.56	NA	0.54	0.54	0.56	0.54	NA	0.59	0.57	0.56
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	80.00	80.00	80.00	60.00	NA	100.00	100.00	100.00
0.00	11.11	NA	22.22	22.22	33.33	55.56	NA	22.22	11.11	11.11
NaN	100.00	NA	66.67	66.67	75.00	71.43	NA	100.00	100.00	100.00
35.71	38.46	NA	36.36	36.36	40.00	42.86	NA	41.67	38.46	38.46
35.71	42.86	NA	42.86	42.86	50.00	57.14	NA	50.00	42.86	42.86
Confusion Matrix										
09	18	NA	27	27	36	54	NA	27	18	18
05	05	NA	14	14	14	23	NA	05	05	05

Table D.527: One_sample_One_Patient_kFold_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.57	0.58	0.58	0.38	0.46	0.52	0.54	0.58	NA	0.61	0.61
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
68.75	62.50	62.50	37.50	43.75	62.50	62.50	62.50	NA	68.75	68.75
70.00	85.00	85.00	60.00	70.00	60.00	70.00	85.00	NA	80.00	80.00
73.68	73.91	73.91	54.55	60.87	66.67	70.00	73.91	NA	76.19	76.19
64.71	76.92	76.92	42.86	53.85	55.56	62.50	76.92	NA	73.33	73.33
69.44	75.00	75.00	50.00	58.33	61.11	66.67	75.00	NA	75.00	75.00
Confusion Matrix										
146	173	173	128	146	128	146	173	NA	164	164
511	610	610	106	97	610	610	610	NA	511	511

Table D.528: One_sample_One_Patient_kFold_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.55	0.60	0.43	0.52	0.47	0.53	0.55	0.49	NA	0.49	0.67
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
62.50	56.25	37.50	50.00	43.75	62.50	62.50	43.75	NA	68.75	62.50
75.00	85.00	95.00	70.00	75.00	61.91	70.00	90.00	NA	80.00	80.00
71.43	70.83	65.52	63.64	62.50	68.42	70.00	66.67	NA	76.19	72.73
66.67	75.00	85.71	57.14	58.33	55.56	62.50	77.78	NA	73.33	71.43
69.44	72.22	69.44	61.11	61.11	62.16	66.67	69.44	NA	75.00	72.22
Confusion Matrix										
155	173	191	146	155	138	146	182	NA	164	164
610	79	106	88	97	610	610	97	NA	511	610

Table D.529: One_sample_One_Patient_LOO_PCA_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.64	0.72	0.75	0.51	0.63	0.61	0.66	0.75	0.72	0.69	0.69
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
62.50	62.50	62.50	37.50	50.00	62.50	62.50	62.50	62.50	62.50	62.50
65.00	80.00	85.00	65.00	75.00	60.00	70.00	85.00	80.00	75.00	75.00
68.42	72.73	73.91	56.52	65.22	66.67	70.00	73.91	72.73	71.43	71.43
58.82	71.43	76.92	46.15	61.54	55.56	62.50	76.92	71.43	66.67	66.67
63.89	72.22	75.00	52.78	63.89	61.11	66.67	75.00	72.22	69.44	69.44
Confusion Matrix										
137	164	173	137	155	128	146	173	164	155	155
610	610	610	106	88	610	610	610	610	610	610

Table D.530: One_sample_One_Patient_LOO_highestEDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.54	0.49	0.52	0.48	0.56	0.55	0.57	0.57	0.52	0.55
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
37.50	37.50	18.75	43.75	31.25	56.25	50.00	31.25	43.75	43.75	43.75
55.00	70.00	80.00	60.00	65.00	55.00	60.00	80.00	70.00	60.00	65.00
52.38	58.33	55.17	57.14	54.17	61.11	60.00	59.26	60.87	57.14	59.09
40.00	50.00	42.86	46.67	41.67	50.00	50.00	55.56	53.85	46.67	50.00
47.22	55.56	52.78	52.78	50.00	55.56	55.56	58.33	58.33	52.78	55.56
Confusion Matrix										
119	146	164	128	137	119	128	164	146	128	137
106	106	133	97	115	79	88	115	97	97	97

For label highestEDSS $>5(\mathbf{0} / \mathbf{1}-(<5) /(\geq 5)$:
The via pattern recognition study was not performed since the number of patients with highestEDSS ≥ 5 was minimal.

For label first2EDSS $>3(0 / 1-(<3) /(\geq 3):$
D. Appendix IV - Machine learning results

Final features: Max_Max_GM_squares numbers lesion region 90\%/total region with 90, Max_Mean_Anatomical_II_58_lesion in the region, Max_Mean_WM_var tissue prob, Max_Var_Anatomical_II_39_var pixel intensity, Var_Mean_Anatomical_II_40_var pixel intensity, Max_Mean_T2_Var Pixel Intensity/slice_meanPixel, Var_Max_Anatomical_II_40_var pixel intensity, Max_Mean_Anatomical_II_45_max pixel intensity.

Table D.531: One_sample_One_Patient_Traditional_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.52	0.50	0.51	0.52	0.52	0.53	0.53	0.51	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
66.67	100.00	33.33	66.67	66.67	66.67	66.67	25.00	100.00	100.00	100.00
26.32	0.00	73.68	21.05	21.05	26.32	25.00	84.21	0.00	0.00	0.00
83.33	NaN	87.50	80.00	80.00	83.33	83.33	84.21	NaN	NaN	NaN
12.50	13.64	16.67	11.76	11.76	12.50	11.76	25.00	13.64	13.64	13.64
31.82	13.64	68.18	27.27	27.27	31.82	30.43	73.91	13.64	13.64	13.64
Confusion Matrix										
514	019	145	415	415	514	515	163	019	019	019
12	03	21	12	12	12	12	31	03	03	03

Table D.532: One_sample_One_Patient_Traditional_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.50	NA	0.54	0.51	0.51	0.51	NA	0.50	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
100.00	100.00	NA	66.67	33.33	33.33	33.33	NA	100.00	100.00	100.00
10.53	0.00	NA	42.11	57.89	84.21	73.68	NA	0.00	0.00	0.00
100.00	NaN	NA	88.89	84.62	88.89	87.50	NA	NaN	NaN	NaN
15.00	13.64	NA	15.38	11.11	25.00	16.67	NA	13.64	13.64	13.64
22.73	13.64	NA	45.45	54.55	77.27	68.18	NA	13.64	13.64	13.64
Confusion Matrix										
217	019	NA	811	118	163	145	NA	019	019	019
03	03	NA	12	21	21	21	NA	03	03	03

Table D.533: One_sample_One_Patient_kFold_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.51	0.38	0.37	0.15	0.34	0.46	0.48	0.40	0.36	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
70.00	40.00	40.00	0.00	30.00	50.00	50.00	40.00	40.00	90.00	81.82
92.31	92.31	88.46	84.62	80.77	84.62	84.62	88.46	92.31	84.62	84.62
88.89	80.00	79.31	68.75	75.00	81.48	81.48	79.31	80.00	95.65	91.67
77.78	66.67	57.14	0.00	37.50	55.56	55.56	57.14	66.67	69.23	69.23
86.11	77.78	75.00	61.11	66.67	75.00	75.00	75.00	77.78	86.11	83.78
Confusion Matrix										
242	242	233	224	215	224	224	233	242	224	224
37	64	64	100	73	55	55	64	64	19	29

Table D.534: One_sample_One_Patient_kFold_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.46	0.45	NA	0.48	0.48	0.43	0.50	NA	NA	0.50	0.50
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
50.00	50.00	NA	50.00	60.00	50.00	60.00	NA	NA	90.00	80.00
80.77	84.62	NA	88.46	88.46	88.46	80.77	NA	N	84.62	84.62
80.77	81.48	NA	82.14	85.19	82.14	84.00	NA	NA	95.65	91.67
50.00	55.56	NA	62.50	66.67	62.50	54.55	NA	NA	69.23	66.67
72.22	75.00	NA	77.78	80.56	77.78	75.00	NA	NA	86.11	83.33
Confusion Matrix										
215	224	NA	233	233	233	215	NA	NA	224	224
55	55	NA	55	46	55	46	NA	NA	19	28

Table D.535: One_sample_One_Patient_LOO_PCA_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.48	0.53	0.42	0.45	0.56	0.46	0.46	0.42	0.53	0.46	0.46
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
20.00	20.00	10.00	10.00	30.00	20.00	20.00	10.00	20.00	30.00	30.00
76.92	84.62	76.92	84.62	80.77	73.08	73.08	76.92	84.62	61.54	61.54
71.43	73.33	68.97	70.97	75.00	70.37	70.37	68.97	73.33	69.57	69.57
25.00	33.33	14.29	20.00	37.50	22.22	22.22	14.29	33.33	23.08	23.08
61.11	66.67	58.33	63.89	66.67	58.33	58.33	58.33	66.67	52.78	52.78
Confusion Matrix										
206	224	206	224	215	197	197	206	224	1610	1610
82	82	91	91	73	82	82	91	82	73	73

Table D.536: One_sample_One_Patient_LOO_first2EDSS ≥ 3

Classifier										
Decision Tree	LDA	QDA	SVM	KNN-1	KNN-3	KNN-5	Naive Bayes	GLM	Euclidean	Mahalanobis
AUC										
0.56	0.46	0.43	0.52	0.39	0.32	0.30	0.46	NA	0.34	0.42
Stats (Sensibility, Specificity, PPV, NPV, Accuracy) \%										
40.00	20.00	10.00	30.00	10.00	0.00	0.00	20.00	NA	10.00	20.00
73.08	73.08	80.77	73.08	69.23	69.23	57.69	73.08	NA	53.85	61.54
76.00	70.37	70.00	73.08	66.67	64.29	60.00	70.37	NA	60.87	66.67
36.36	22.22	16.67	30.00	11.11	0.00	0.00	22.22	NA	7.69	16.67
63.89	58.33	61.11	61.11	52.78	50.00	41.67	58.33	NA	41.67	50.00
Confusion Matrix										
197	197	215	197	188	188	1511	197	NA	1412	1610
64	82	91	73	91	100	100	82	NA	91	82

For label first2EDSS $>5(0 / 1-(<5) /(\geq 5):$
The via pattern recognition study was not performed since the number of patients with mediumEDSS ≥ 5 was minimal.

Chapter E

Appendix V - Results interpretation

Table E.1: The AUC performance method, regarding the attributed points according to the value of the lowest stat value.

Condition	Attributed points
AUC <0.70	0
AUC >0.69	1
AUC >0.79	2
AUC >0.89	3

Table E.2: The classification performance measures method, regarding the atributed points according to the value of the lowest stat value.

Condition	Attributed points
Lowest stat $[0,0.49]$	0
Lowest stat $[50,0.59]$	1
Lowest stat $[60,0.69]$	2
Lowest stat $[70,0.79]$	3
Lowest stat $[80,0.89]$	4
Lowest stat $[90,100]$	5

Table E.3: The partition method multiplication factor, used in the stats performance method and in the AUC performance method.

Partition Method	Multiplication factor
$70-30$ (Traditional)	1
k-Fold	2
LOO	3

E. 1 Performance method results

E.1.1 AUC method

E.1.1.1 Image databases

Table E.4: Results for the MRI Total Head database using the AUC performance method.

Label	Score
msCourse	$\mathbf{1 2}$
currentEDSS >3	6
currentEDSS >5	0
nextEDSS >3	4
nextEDSS >5	0
highestEDSS >3	$\mathbf{2 4}$
highestEDSS >5	0
first2EDSS >3	0
first2EDSS >5	0
tendency $>$ EDSS	10
mediumEDSS_ >3	$\mathbf{2 0}$
mediumEDSS_ >5	0

Table E.5: Results for the One sample one lesion database using the AUC performance method.

Label	Score
msCourse	0
currentEDSS >3	0
currentEDSS >5	0
first2EDSS >3	0
first2EDSS >5	0
highestEDSS >3	0
highestEDSS >5	0
mediumEDSS >3	0
mediumEDSS >5	0
nextEDSS >3	0
nextEDSS >5	0

Table E.6: Results for the One sample one lesion database with lesion ensembling using the AUC performance method.

Label	Score
msCourse	0
currentEDSS >3	0
currentEDSS >5	0
first2EDSS >3	0
first2EDSS >5	0
highestEDSS >3	0
highestEDSS >5	0
mediumEDSS >3	0
mediumEDSS >5	0
nextEDSS >3	0
nextEDSS >5	0

Table E.7: Results for the One sample one study database using the AUC performance method.

Label	Score
msCourse	0
currentEDSS >3	0
currentEDSS >5	0
first2EDSS >3	0
first2EDSS >5	not performed
highestEDSS >3	$\mathbf{4}$
highestEDSS $>\mathbf{5}$	$\mathbf{2}$
mediumEDSS >3	0
mediumEDSS >5	not performed
nextEDSS $>\mathbf{3}$	$\mathbf{4}$
nextEDSS $>\mathbf{5}$	$\mathbf{2}$

Table E.8: Results for the One sample one patient database using the AUC performance method.

Label	Score
msCourse	0
first2EDSS >3	0
first2EDSS >5	not performed
highestEDSS >3	0
highestEDSS >5	not performed
mediumEDSS >3	0
mediumEDSS >5	0

E.1.1.2 Clinical databases

Table E.9: Results for the Static database with the standard procedure using the AUC performance method.

Label	Score
msCourse	$\mathbf{2 6}$
mediumEDSS $>\mathbf{3}$	$\mathbf{2 0}$
mediumEDSS >5	not performed
highestEDSS $>\mathbf{3}$	$\mathbf{4 5}$
highestEDSS >5	not performed
first2EDSS >3	4
first2EDSS >5	not performed

Table E.10: Results for the Static database with the investigation procedure using the AUC performance method.

Label	Score
msCourse	0
mediumEDSS $>\mathbf{3}$	$\mathbf{5}$
mediumEDSS >5	not performed
highestEDSS $>\mathbf{3}$	$\mathbf{1 4}$
highestEDSS >5	not performed
first2EDSS $>\mathbf{3}$	$\mathbf{9}$
first2EDSS >5	not performed

Table E.11: Results for the Groundzero database with the standard procedure using the AUC performance method.

Label	Score
msCourse	$\mathbf{6}$
highestEDSS $>\mathbf{3}$	$\mathbf{1 1}$
highestEDSS >5	not performed
first2EDSS >3	6
first2EDSS >5	not performed
mediumEDSS $>\mathbf{3}$	$\mathbf{2 0}$
mediumEDSS >5	not performed

Table E.12: Results for the Groundzero database with the investigation procedure using the AUC performance method.

Label	Score
msCourse	0
highestEDSS >3	0
highestEDSS >5	not performed
first2EDSS >3	0
first2EDSS >5	not performed
mediumEDSS >3	0
mediumEDSS >5	not performed

Table E.13: Results for the Momentaneous database with the standard procedure using the AUC performance method.

Label	Score
msCourse	33
currentEDSS >3	65
currentEDSS >5	5
nextEDSS $>\mathbf{3}$	$\mathbf{1 2 2}$
nextEDSS >5	50
highestEDSS >3	$\mathbf{8 2}$
highestEDSS >5	80
first2EDSS >3	76
first2EDSS >5	not performed
tendencyEDSS	0
mediumEDSS $>\mathbf{3}$	$\mathbf{1 1 5}$
mediumEDSS >5	not performed

Table E.14: Results for the Momentaneous database with the investigation procedure using the AUC performance method.

Label	Score
msCourse	not performed
currentEDSS >3	not performed
currentEDSS >5	not performed
nextEDSS $>\mathbf{3}$	$\mathbf{9 4}$
nextEDSS >5	6
highestEDSS >3	61
highestEDSS >5	63
first2EDSS $>\mathbf{3}$	$\mathbf{6 4}$
first2EDSS >5	not performed
tendencyEDSS	21
mediumEDSS $>\mathbf{3}$	$\mathbf{8 3}$
mediumEDSS >5	not performed

Table E.15: Results for the Momentaneous with past database with the standard procedure using the AUC performance method.

Label	Score
msCourse	53
currentEDSS >3	$\mathbf{1 1 0}$
currentEDSS >5	26
nextEDSS $>\mathbf{3}$	$\mathbf{1 2 3}$
nextEDSS >5	59
highestEDSS >3	$\mathbf{1 2 4}$
highestEDSS >5	92
first2EDSS >3	80
first2EDSS >5	not performed
tendencyEDSS	3
mediumEDSS >3	73
mediumEDSS >5	not performed

Table E.16: Results for the Momentaneous with past database with the investigation procedure using the AUC performance method.

Label	Score
msCourse	23
currentEDSS >3	74
currentEDSS >5	7
nextEDSS >3	$\mathbf{1 0 9}$
nextEDSS >5	21
highestEDSS >3	$\mathbf{1 4 2}$
highestEDSS >5	$\mathbf{9 0}$
first2EDSS >3	50
first2EDSS >5	not performed
tendencyEDSS	0
mediumEDSS >3	62
mediumEDSS >5	not performed

E.1.2 Classification performances measure method

E.1.2.1 Image databases

Table E.17: Results for the MRI Total Head database using the stats performance method.

Label	Score
msCourse	0
currentEDSS >3	18
currentEDSS >5	6
nextEDSS >3	$\mathbf{4 2}$
nextEDSS >5	6
highestEDSS >3	$\mathbf{1 3 1}$
highestEDSS >5	0
first2EDSS >3	0
first2EDSS >5	0
tendency $>$ EDSS	20
mediumEDSS_ >3	$\mathbf{4 8}$
mediumEDSS_ >5	0

Table E.18: Results for the One sample one lesion database using the stats performance method.

Label	Score
msCourse	0
currentEDSS >3	0
currentEDSS >5	0
first2EDSS >3	0
first2EDSS >5	0
highestEDSS >3	0
highestEDSS >5	0
mediumEDSS $>\mathbf{3}$	$\mathbf{6}$
mediumEDSS >5	0
nextEDSS >3	0
nextEDSS >5	0

Table E.19: Results for the One sample one lesion database with lesion ensembling using the stats performance method.

Label	Score
msCourse	0
currentEDSS >3	0
currentEDSS >5	0
first2EDSS >3	0
first2EDSS >5	0
highestEDSS >3	0
highestEDSS >5	0
mediumEDSS >3	0
mediumEDSS >5	0
nextEDSS $>\mathbf{3}$	$\mathbf{1}$
nextEDSS >5	0

Table E.20: Results for the One sample one study database using the stats performance method.

Label	Score
msCourse	0
currentEDSS >3	0
currentEDSS >5	0
first2EDSS >3	$\mathbf{1 2}$
first2EDSS >5	not performed
highestEDSS >3	$\mathbf{6 1}$
highestEDSS >5	0
mediumEDSS >3	10
mediumEDSS >5	not performed
nextEDSS >3	10
nextEDSS $>\mathbf{5}$	$\mathbf{1 9}$

Table E.21: Results for the One sample one patient database using the stats performance method.

Label	Score
msCourse	$\mathbf{5 4}$
first2EDSS >3	40
first2EDSS >5	not performed
highestEDSS $>\mathbf{3}$	$\mathbf{1 0 9}$
highestEDSS >5	not performed
mediumEDSS $>\mathbf{3}$	$\mathbf{7 6}$
mediumEDSS >5	10

E.1.2.2 Clinical databases

Table E.22: Results for the Static database with the standard procedure using the stats performance method.

Label	Score
msCourse	$\mathbf{1 3 9}$
mediumEDSS >3	$\mathbf{1 0 0}$
mediumEDSS >5	not performed
highestEDSS >3	$\mathbf{2 3 1}$
highestEDSS >5	not performed
first2EDSS >3	72
first2EDSS >5	not performed

Table E.23: Results for the Static database with the investigation procedure using the stats performance method.

Label	Score
msCourse	$\mathbf{7}$
mediumEDSS $>\mathbf{3}$	$\mathbf{6 6}$
mediumEDSS >5	not performed
highestEDSS >3	$\mathbf{1 1 0}$
highestEDSS >5	not performed
first2EDSS >3	4
first2EDSS >5	not performed

Table E.24: Results for the Groundzero database with the standard procedure using the stats performance method.

Label	Score
msCourse	26
highestEDSS >3	$\mathbf{1 4 5}$
highestEDSS >5	not performed
first2EDSS >3	$\mathbf{1 2 4}$
first2EDSS >5	not performed
mediumEDSS >3	$\mathbf{3 8}$
mediumEDSS >5	not performed

Table E.25: Results for the Groundzero database with the investigation procedure using the stats performance method.

Label	Score
msCourse	$\mathbf{1 0}$
highestEDSS $>\mathbf{3}$	$\mathbf{7 1}$
highestEDSS >5	not performed
first2EDSS >3	8
first2EDSS >5	not performed
mediumEDSS $>\mathbf{3}$	$\mathbf{1 8}$
mediumEDSS >5	not performed

Table E.26: Results for the Momentaneous database with the standard procedure using the stats performance method.

Label	Score
msCourse	62
currentEDSS >3	109
currentEDSS >5	4
nextEDSS $>\mathbf{3}$	$\mathbf{1 4 6}$
nextEDSS >5	92
highestEDSS >3	$\mathbf{1 7 6}$
highestEDSS >5	136
first2EDSS >3	106
first2EDSS >5	not performed
tendencyEDSS	0
mediumEDSS $>\mathbf{3}$	$\mathbf{1 8 9}$
mediumEDSS >5	not performed

Table E.27: Results for the Momentaneous database with the investigation procedure using the stats performance method.

Label	Score
msCourse	not performed
currentEDSS >3	not performed
currentEDSS >5	not performed
nextEDSS $>\mathbf{3}$	$\mathbf{1 3 6}$
nextEDSS >5	6
highestEDSS $>\mathbf{3}$	$\mathbf{1 4 6}$
highestEDSS >5	110
first2EDSS >3	92
first2EDSS >5	not performed
tendencyEDSS	0
mediumEDSS $>\mathbf{3}$	$\mathbf{1 3 2}$
mediumEDSS >5	not performed

Table E.28: Results for the Momentaneous with past database with the standard procedure using the stats performance method.

Label	Score
msCourse	86
currentEDSS >3	104
currentEDSS >5	60
nextEDSS >3	$\mathbf{1 7 9}$
nextEDSS >5	98
highestEDSS >3	$\mathbf{2 3 3}$
highestEDSS >5	118
first2EDSS $>\mathbf{3}$	$\mathbf{1 4 0}$
first2EDSS >5	not performed
tendencyEDSS	0
mediumEDSS >3	104
mediumEDSS >5	not performed

Table E.29: Results for the Momentaneous with past database with the investigation procedure using the stats performance method.

Label	Score
msCourse	48
currentEDSS >3	97
currentEDSS >5	18
nextEDSS >3	$\mathbf{1 4 8}$
nextEDSS >5	32
highestEDSS >3	$\mathbf{2 8 3}$
highestEDSS >5	$\mathbf{1 2 6}$
first2EDSS >3	80
first2EDSS >5	not performed
tendencyEDSS	0
mediumEDSS >3	104
mediumEDSS >5	not performed

