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Resumo

As doenças cardiovasculares são a principal causa de morte a ńıvel mundial. Seja

por falta de cuidado e preocupação com o estilo de vida, ou por uma doença pré-

existente, o impacto das doenças card́ıacas na sociedade atual é deveras alarmante.

A prevenção, por sua vez, desempenha um papel crucial no que diz respeito à recu-

peração do estado de saúde da população. Esta pode passar por adotar uma forma

mais consciente de viver ou pela monitorização regular do sistema cardiovascular.

No entanto, os exames médicos rotineiros que permitem diagnosticar e controlar es-

tas condições, requerem uma suspeita prévia e uma prescrição direcionada por parte

da entidade médica responsável pelo paciente. Neste sentido, a abordagem atual

tem as suas limitações e pode impedir a deteção precoce de anomalias card́ıacas.

Este trabalho apresenta uma abordagem alternativa para diagnóstico de doenças

cardiovasculares, por meio de monitorização de auscultação e eletrocardiograma, in-

corporado num sistema único. Trata-se de um dispositivo inovador que permite a

aquisição de sinais de eletrocardiograma ao longo dos cinco pontos de auscultação

médica. Tem o intuito de ser incorporado num estetoscópio digital de uso corrente

e, assim, permitir adquirir e analisar sinais de fonocardiograma e eletrocardiograma

numa utilização única, seguindo as normas de uso de um estetoscópio regular. O

foco deste trabalho foi a conceção e validação de dois protótipos na aquisição de

sinais de eletrocardiograma nos pontos de auscultação médica, para posterior incor-

poração num estetoscópio digital, por meio do estudo de métricas adequadas que

permitam avaliar a semelhança entre as ondas de um dispositivo de referência e as

dos novos sistemas. Os resultados estão espelhados no protótipo SmartHeart; um

acessório inovador, prático e ergonómico, de baixo custo e escalável à prática médica

quotidiana.

Palavras-chave: Doenças cardiovasculares, Eletrocardiograma, Fonocardiograma,

Estetoscópio digital, Integração de sistemas
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Abstract

Cardiovascular diseases are the number one cause of death worldwide. Whether due

to a careless lifestyle or to a pre-existing health condition, the impact of heart dis-

eases in our society is undoubtedly alarming. Prevention, on the other hand, plays

a crucial part in reclaiming the population’s health back. Prevention goes from

adopting a more conscious way of living, to regular monitorization of the cardiovas-

cular system. However, routine exams that allow the diagnosis and control of such

conditions, require a medical suspicion beforehand, and a medical prescription on

behalf of the encharged healthcare professional. Therefore, this approach has sev-

eral limitations and can prevent early detection of cardiac pathologies. This work

presents a new approach to diagnose cardiovascular diseases, through auscultation

and electrocardiogram monitoring, integrated in a single device. It is an innova-

tive device that collects electrocardiogram signals throughout the five main medical

auscultation points. It intends to be incorporated in a commonly used digital stetho-

scope and, therefore, allow analysis and acquisition of both phonocardiogram and

electrocardiogram signals in a single pass, following the policy rules of a regular

stethoscope usage. The purpose of this project was the development and validation

of two prototypes in the acquisition of electrocardiogram signals on the medical aus-

cultation points, in order to hereafter integrate it into a digital stethoscope, through

adequate metrics that allow the evaluation of similarities between waveforms from a

gold standard device and the ones obtained with the new systems. The final results

can be seen in the SmartHeart prototype; an innovative, practical, and ergonomic

accessory, which is also low cost and scalable to the everyday medical practice.

Key words: Cardiovascular diseases, Electrocardiogram, Phonocardiogram, Digital

stethoscope, Systems integration
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1

Introduction

1.1 Cardiology and Medical Terms

1.1.1 Cardiovascular Diseases (CVD)

According to the World Health Organization (WHO), cardiovascular diseases (CVD)

are the leading cause of death in the world [7]. However, one interesting and unfortu-

nate fact is that the majority of deaths due to CVD occur in low and middle-income

countries. In these countries citizens usually have limited primary healthcare pro-

grammes [7], and therefore they do not have the same opportunities of early detec-

tion as high-income countries do. Consequently, healthcare costs per household are

higher than if there was more prevention investment and the countries themselves

have a heavy burden on their economy.

It is widely known that CVD have several risk factors and behaviours, such as smok-

ing tobacco, having an unhealthy diet, excessive weight, being physically inactive or

irresponsibly drinking alcohol. These, in turn, often lead to raised blood pressure,

raised glucose, raised blood lipids, or obesity. Prevention by making people more

aware of these is key, given that those who are already at risk, would benefit from

early detection of CVD. This approach is also financially advantageous, in the sense

that prevention is more cost-effective than treatment itself [7].

Besides general prevention measures that should be accounted for, regular heart

monitoring is crucial in risk patients. Therefore, auscultation plays a major role in

CVD’s monitoring. Being a routine exam, performed in any typical appointment

with a health professional, auscultation allows a quick preliminary evaluation of the

patient’s heart condition.

1



1. Introduction

1.1.2 Phonocardiogram (PCG)

First reported in 1970, by Keefer, J. M.[8], phonocardiography allows the repre-

sentation of the heart sounds obtained when performing auscultation. Its outcome

is a phonocardiogram (PCG) and it results from the mechanical response to the

electrical activity of the heart [1].

It is used as a complementary exam of auscultation, given that the latter relies

on the human ear, which may not be sufficient for an accurate evaluation of the

patient [9]. The main problem with this technique is that it is difficult to master

[1]. Therefore, specialized healthcare professionals are required, in order to perform

a standard medical evaluation, hence the importance of using digital stethoscopes,

which tipically combine auscultation and phonocardiography [10]. Also, the fact

that it does not allow the automated recording of any information, stands out as a

major fault in the auscultation process.

The PCG exam provides information about the heart activity through its sounds,

which are in the range [10, 750] Hz, therefore being low frequency. These sounds

can be heard over 5 auscultation points, which are depicted in Figure 1.1: second

intercostal space on the right parasternal line, second intercostal space in the left

parasternal line, third intercostal space in the left parasternal line, lower left border

of the sternum and fourth/fifth intercostal space in the left hemiclavicular line.

Figure 1.1: Main auscultation points. Image adapted from IS4Collection, IS4H -
Interactive Systems for Healthcare c©.

With PCG it is possible to determine the temporal localization of heart sounds, the

number of their internal components, their frequency content and the significance

of diastolic and systolic murmurs [9], with these being an extra or unusual sound

2



1. Introduction

heard during a heartbeat and broadly classified as systolic, diastolic or continuous

[10].

As set forth by [9] (see pg. 118 for additional information), ”One of the first and

most important phases in the analysis of heart sounds, is the segmentation of heart

sounds. Heart sound segmentation partitions the PCG signals into cardiac cycles and

further into S1 (first heart sound), systole, S2 (second heart sound) and diastole”.

In a complete heart cycle, four phases can be identified, from which two sounds can

be heard. Firstly there is the closure of the mitral and tricuspid valves (first sound

- S1), then the systolic period, following the closure of the aortic and pulmonary

valves (second sound - S2) and finally the diastolic period [9]. Also, S1’s frequency

is usally lower than S2’s, and its duration longer [10]. See Figure 1.2 for an example

of a typical PCG signal, annotated with the partitions of interest.

Figure 1.2: Example of a PCG exam and its segmentation. S11 corresponds to the
heart cycle period, S12 to the systolic one, and S21 to the diastolic period (image
from [1]).

If there is any abnormalty with the heart sounds, other sounds or murmurs can be

heard between S1 and S2, indicating heart problems or diseases. Some pathologies

that can be detected through PCG are hyperphonesis, murmurs, hypertension, mi-

tral regurgitation, ventricular septal defect, hypertrophic cardiomyopathy, among

several others [10].

The PCG exam has several advantages, such as being low cost, noninvasive and

accurate for diagnosing some heart diseases [9]. It is also the fastest way to monitor

patients, and of high importance outside of central hospitals, where not all medical

exams can be taken [1]. There are many other options for medical heart evaluation,

such as the electrocardiogram (ECG), echocardiogram, cardiac magnetic resonance

imaging (MRI) and computed tomography (CT). However, these are expensive, need

specialized personnel and are therefore not available everywhere [10].

3



1. Introduction

In order to allow a more complete medical evaluation and circumvent the lack of

diagnosis equipment, the PCG can be a compelling approach, especially considering

that it is an extension to the standard auscultation procedures used in general

medical practice. But then again, this exam also has its drawbacks. The heart

sound has both high and low frequency signals, as well as low amplitude, making it

necessary for the stethoscope to have a highly selective sensitivity. Also, the kind of

data acquisition made with a stethoscope is highly affected by external noise (e.g.

sounds produced in the surrounding environment to the subject), which can mostly

interfere with the final diagnosis. Finally, the interpretation itself is higly subjective,

depending on the healthcare professional and his/her experience, as well as hearing

ability [10].

In conclusion, not only the need to use digital stethoscopes and automated signal

processing techniques is evident, but also advances in this field are required in order

to improve heart disease diagnosis, where new and top of the range machinery is not

yet available [11]. Nevertheless, these needs have already motivated the development

of such devices, as well as the ability of automated signal analysis of cardiac sounds

[12], [13].
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1.1.3 Electrocardiogram (ECG)

An electrocardiogram is a medical examination that allows the evaluation of the

heart performance, through the study of its electrical activity. It is widely used

due to the high benefit/cost ratio, and also for being an easily deployable noninva-

sive test. It allows the evaluation of multiple heart diseases, like poor blood flow

(ischemia), heart attack or enlarged heart, just to name a few examples [14].

The heart is one of our most important organs and its walls are composed of cardiac

muscle, the myocardium, which allows the heart to contract. The output of the

ECG test consists of voltage variations as a function of time, in result of successive

myocardium depolarization and repolarization events. This process creates electric

fields, which reach the skin surface and, in turn, the electrodes placed on it. This

process of depolarization and repolarization of cardiac cells occurs in a very similar

way to that of other cells in the body. However, the duration of the cardiac muscle

impulse is two orders of magnitude longer than that in either nerve cell or skeletal

muscle [3]. Contraction of the heart occurs shortly after the action potential passes

through the cardiac cells, as shown in Figure 1.3.

While at rest, like all remaning cells in our body, the cells of the cardiac muscle

present a higher concentration of negative charges on the inside, and a majority of

positive charges on their outside. The cardiac muscle contraction is the result of

heart cells depolarization (inversion of the potential created by the charge concen-

tration difference earlier mentioned). This process initiates in the sinoatrial node

(SA node), that acts as a natural pacemaker, and continues throughout the other

nodes. After the SA node, the atrioventricular node (AV node) appears, connecting

the atria and the ventricles. Right after, the AV node gives rise to the Bundle of

His and, more distally, this one separates into two branches, ending in the Purkinje

fibers. Finally, the Purkinje fibers diverge and the impulse passes from the inner side

of the ventricle walls to the outer side, due to cell-to-cell activation [3]. This conduc-

tion system of the heart can be seen in Figure 1.4 and, in terms of net depolarization

vector, this sequence of events can be represented as depicted in Figure 1.5. The

voltage recorded along a particular lead axis, at a particular time, is obtained by

projecting the vector representing the magnitude and direction of depolarization.

Also, the mean electrical axis is the average of all the instantaneous mean electrical

vectors occurring sequentially during depolarization of the ventricles [4].

Therefore, depolarization is the trigger to the entire mechanism, which leads to an

electrical potential variation. However, after the impulse passes through (beginning
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Figure 1.3: Difference between electrical activation and contraction times (image
adapted from [2]).

Figure 1.4: Conduction system of the heart (image from [3]).

in the nervous system), the cellular membranes of individual cells will return to rest,

resulting in their repolarization (recovery).

As the heart is formed by thousands of cells, the depolarization process in each one

will occur at different times. Therefore, an ECG is a relative and cumulative magni-

tude of all cells in depolarization. On the other hand, the amplitude of the obtained

ECG signal is influenced by a number of factors: the myocardial mass (heart mus-

cle mass), the net depolarization vector, the thickness, conductivity and resistivity

of tissues around the heart (thorax region), and also by the distance between the

electrodes and the myocardium. An example of how the mass influences the ECG

acquisition is a patient with ventricular hypertrophy (relatively large myocardial

mass). As consequence, this person’s signal will probabily have a higher amplitude

than that of a healhty subject [15]. Regardless, an ECG can be obtained with dif-
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Figure 1.5: Mean electrical axis of depolarization within the ventricles. Example
of electrode placement, representing Lead II (image from [4]).

ferent configurations and electrode locations, being that these will provide different

perspectives of the electrical activity of the heart. For this reason, the signal that

a combination of electrodes captures, with respect to the heart, may vary, but it is

always an insight to the operation of the heart. The prototypical ECG heartbeat

waveform is shown in Figure 1.6 (considering a healthy medical case).

Figure 1.6: Different waveforms for different heart cells and their contribution to
the prototypical heartbeat waveform (image from [3]).

This curve is highly relevant because timing, amplitude, and morphological ECG

parameters can be derived from it, supporting diagnosis. From the ECG, the P

wave can be seen, which represents the atrial depolarization, important to study the

cardiac rhythm; the P-R interval follows, that measures the impulse conduction time

through the atria, atrioventricular node and other fibers of the conduction system;
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the QRS interval is next, which represents the beginning of ventricular contraction;

followed by the Q-T interval, which is the time interval from when the ventricles

begin their depolarization to the time when they have repolarized to their resting

potentials; and finally, there is the S-T segment, which corresponds to a resting

period, between depolarization and the beginning of repolarization.

It is also important to mention some basic interpretations that can be made from

simple ECG characteristics. An electrical current going into the positive electrode

will correspond to a positive deflexion on the ECG signal, while a depolarization

current going the opposite way will result in a negative deflexion. On the other hand,

a repolarization current that goes away from the electrode will result in a positive

deflexion. A fast depolarization (or repolarization) is represented by a narrow curve,

that becomes wider when the depolarization is slower. With this comes the need of

a standard ECG, in a way that it can be equally interpreted by any professional,

leaving no doubt or space for errors in the diagnosis.

Figure 1.7: Augmented leads and leads I, II and III in Figure (A). Hexaxial
reference limb system in Figure (B) (image from [5]).

With that purpose, Einthoven leads are used when dealing with ECG measurements.

Figure 1.7 presents the system proposed by Einthoven, who idealized the cardiac

electrical activity acquisition. That was achieved through three bipolar leads of the

frontal plane, originating the Einthoven triangle, in which the heart is located in

the centre. This triangle is formed by three main points, in which the electrodes are

located: right arm (R), left arm (L) and left leg (F), the connection to the earth. If

two of those points are chosen, we obtain three leads in result:

• Lead I - Measures the difference of potential between the positive electrode

placed on the left arm, and the negative one, on the right arm.

• Lead II - Measures the difference of potential between the right arm and left

leg (positive pole).

• Lead III - Measures the difference of potential between the left arm and left
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leg (positive pole).

If we move all three leads to the centre of the triangle, three intersection lines emerge,

corresponding to three additional leads: aVR, aVF and aVL.

• Lead aVR - Augmented vector Right: measures the absolute potential through

the positive electrode placed on the right arm (positive pole).

• Lead aVF - Augmented vector Foot: measures the absolute potential through

the positive electrode placed on the left leg (positive pole).

• Lead aVL - Augmented vector Left: measures the absolute potential through

the positive electrode placed on the left arm (positive pole).

With this setup, it is possible to create a division into four quadrants, knowing

that when the vector is projected onto two of them (two superior quadrants), it

leads to a negative deflexion on the ECG waveform, and when it is projected on

the bottom half (positive half - both bottom quadrants in Figure 1.7 B), it leads

to a positive deflexion. An ECG analysis typically uses more than one lead, since

it allows the differentiation of artifacts (that normally don’t appear in every lead),

and also increasing the probability of a good acquisition and a correct diagnosis.

One important aspect that should be taken into consideration is the patient’s still-

ness while doing an ECG exam. As this exam measures voltage potential differences

in the order of millivolts, any movement will affect this signal, as it involves the use

of skeletal muscles, which in turn introduces overlapping voltages that also reach

the body surface. In the case where there is no movement, the exam is referred

to as ”Resting ECG”. Also, deflexions in the ECG represent the change in elec-

trical activity caused by atrial or ventricular depolarization and repolarization, not

necessarily generalized cardiac contractions or relaxations [5].

As previously mentioned, an ECG can be obtained using different electrode locations

or configurations. These can be limb leads or precordial leads (regarding locations),

and unipolar, dipolar or modified bipolar (regarding configurations), respectively.

In sum, there are 12 lead recording possibilities.

Up to this point, only limb leads have been mentioned: bipolar limb leads (Leads

I, II and III) and unipolar limb leads (aVL, aVR and aVF). Thus, there are still 6

leads left out of the total 12. These are the precordial (or chest) ones, and measure

electrical activity in the traverse plane, instead of the frontal.

In this case, the reference is in the centre of the chest and the electrodes are placed

around it, as shown in Figure 1.8. The points V1 and V2 are located at the fourth
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intercostal space on the right and left side of the sternum; V4 is located in the fifth

intercostal space; V3 is located between the points V2 and V4; V5 is at the same

horizontal level as V4; and V6 is at the same horizontal level as V4 but at the

midline [3].

Figure 1.8: Electrode positioning for the recording of precordial leads (image
adapted from [5]).

Although there are 12 possible leads for an ECG, usually not all are displayed at

the same time when making a clinical evaluation. Precordial or limb leads are used

according to the patient’s condition and clinical interest [11]. On the other hand,

using all 12 leads significantly improves the identification of cardiopathies and allows

a more accurate diagnosis.
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1.2 Motivation

The combination of both phonocardiogram (PCG) and electrocardiogram (ECG)

exams aims to provide richer electromechanical understanding of the heart in any

type of scenario, also facilitating the detection of cardiac diseases. Several devices

that ally both exams have already emerged. However, the majority of them have

shown limitations, preventing their standardization in medical practice.

It is also important to acknowledge that this work is part of a more omnibus project,

UID/50008 SmartHeart - Smarter Cardiac Sensing via Integrated Signal Processing,

in which it is intended to develop a PCG and ECG measurement device and expand

it through a cloud-based machine learning toolkit, in order to extract CVD’s charac-

teristics and aid diagnosis [16], [17], [18], [19]. In the end, the idea is to create a way

to easily detect a heart pathology with the help of an online database, based on a

simple phonocardiogram (PCG) exam, performed in a general practice by a health-

care professional. Preliminary studies performed by the SmartHeart team have lead

to the choice of the 3M Littmann 3200 digital stethoscope [20] as a support tool for

PCG within the project, making it a core component to this work. In particular,

tests were taken in order to study performance of different stethoscopes in the detec-

tion of certain patologies. As conclusion, the Welch Allyn had the highest success,

although the Littmann was one of the stethoscopes presenting the higher percent-

age of overall agreement [21]. However, because the latter has a native Bluetooth

connectivity and does not need a wired connection to a computer, it was viewed as

the better choice.

More specifically, this work intends to study a solution for ECG integration in

Littmann stethoscopes, focusing also on ECG signals’ segments mapping. In this

way, it becomes possible to evaluate the electrical activity of the heart during a

standard auscultation (PCG) exam, bringing a novel approach to a regular doctor’s

appointment and assisting in the diagnosis process. The importance of such practice

relies on the fact that an electrocardiogram is only taken under medical prescription,

while the PCG is a standard medical exam in general medicine. The main purpose

of combining these two modalities is the improvement of heart disease diagnosis,

as mentioned in many scientific papers in this area [22], [23], [24], [25]. Although,

when used separately, the ECG and PCG may exhibit limitations in the detection of

certain cardiopathies. When combined, these medical exams allow early diagnosis of

heart disease. On the other hand, in countries where population has limited access

to medical care, this kind of technology allows braking some barriers and facilitating

11



1. Introduction

heart diseases’ monitorization.
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Background

2.1 State of the Art

The past decade has seen a great evolution in terms of devices for cardiac diagnostics.

In part because of the increasing burden they have in our society, and in part

because prevention is recognized as having a much bigger role than treatment itself,

depending on the case and medical area, of course. In terms of stethoscope and

ECG technologies, the same has happened, and devices such as the DUO from Eko

or the CardioSleeve from Rijuven are now commercially available [26], [27].

DUO is a device that combines an electronic stethoscope and an electrocardiograph

(1-lead ECG)[28]. It can be used with the Eko app, allowing the physician to see and

review the patient’s exam, as well as to share it, in a Health Insurance Portability

and Accountability Act (HIPAA) compliant format, with other professionals, for

a second opinion. This device provides real-time waveforms, saving and tracking

possibility, as well as live streaming for use in telemedicine. It can be used in clinic,

telemedicine, or at home, it is approved by the Food and Drug Administration

(FDA), and it’s light weight. In terms of specifications, DUO ’s digital stethoscope

has a 60x audio amplification, ambient noise reduction and 4 audio filters; the ECG

system uses 2 stainless steel electrodes, a 0.01Hz high-pass filter and 500Hz sampling

rate. Finally, it can be used wirelessly (Bluetooth is incorporated) to transmit data

to smartphones, tablets or desktops [26], [28].

CardioSleeve is another stethoscope that provides ECG, digital auscultation and

instant analysis [29]. It records four auscultation locations, using dry electrodes,

and records ECG leads 1-3, transmiting the data over Bluetooth to a tablet or

smartphone, and to HIPAA secure servers. In sum, CardioSleeve acquires ECG

signals for leads I, II, and III, analyzes it, detects heart murmurs, studies the cardiac

function and provides real-time tracing representation and analysis on a mobile

13



2. Background

device [27]. Some caveats of this device are its weight (too heavy), and the mobile

application used to see the medical acquisition (not fully optimized and functional).

More work has been done in this area, given rise to results such as those found in

[30] and [31], which focus on developing healthcare devices that record ECG and

PCG signals.

Some earlier work on PCG and ECG analysis was developed, being able to create

a digital phonocardiogram that allows simultaneous ECG acquisition, combining

both sound and image, visualizing auscultation and enabling the user to distinguish

the location of heart sounds by ear [22]. In a more theoretical way, some studies

have been more focused on the understanding of the cardiac cycle, by performing

simultaneous capture of signals from multi-site auscultation with the recording of

an ECG, and graphic display [23], [24].

Also, in 2014, new projects arised from the field of telemedicine [25], [32]. The

work in [32] did not pass the protoptype phase, but allowed the construction of a

4-lead ECG and PCG measurement, low cost, small and wireless device. On the

other hand, in [25] a new approach to pathology identification was developed, using

the physical relation between PCG, ECG and photoplethysmography (PPG, also

sometimes called carotid pulse). Only three volunteers were tested, two of them

being healthy and one having systolic murmur due to aortic stenosis. With this, it

was possible to, not only set limits to separate a normal from a pathological case in

terms of peaks in the signals, but also to establish a specific time delay in the case

of aortic stenosis. Thus, interconnection of all three physiological signals was also

proven and demonstrated, so that heart sounds can be properly identified through

ECG signals.

As frequently suggested, the accuracy of early cardiopathies detection is higher when

the two major diagnosis methods are associated. By doing so, a quick preliminary

diagnosis becomes possible, as well as the detection of different types of heart prob-

lems.

In conclusion, several studies have found and proved that the underpinnings of

this work, combining ECG and PCG measurements, provides a more reliable and

fast diagnosis [22], [23], [24], [25]. Nevertheless, existing devices are often quite

cumbersome and disruptive in what concerns their form factor when compared to

standard auscultation stethoscopes.
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2.2 Research Goals

With this study we aim to validate and characterize ECG data acquired by means

of a sensor and electrodes setup placed in the footprint of a standard diaphragm.

The work spans all the constituents of the required architecture, ranging from the

electrode configuration and volumetric study of the diaphragm, to the benchmarking

with a medical-grade equipment, spanning also sensor design and data acquisition

components. It must be confirmed that both devices acquire the same signal as the

one acquired by a gold standard medical equipment.

In order to do so, two prototypes were developed and tested in several healthy sub-

jects. Finally, similarity metrics were applied in order to determine which (if any)

of the standard lead(s) better correlate with the ECG acquired from the different

auscultation focuses. By doing so, it can be pinpointed which lead would a health-

care professional obtain when performing an auscultation and/or PCG exam using

our devised setup.

2.3 Theoretical Basis

2.3.1 Bipolar ECG Configuration

Throughout this project, all ECG acquisitions made with the developed prototypes

use a differential bipolar configuration, meaning that the electric potential is mea-

sured directly between two interest points [33]. This configuration differs from what

is usually done, which involves using a third point, the reference (ground electrode).

Some disadvantages may be drawn from the chosen setup, such as the short distance

required between electrodes, in order to obtain a good quality signal. However, with

a suitable circuit dimensioning, it still allows notorious potential difference, and

plays a major role in the construction of a small, practical device, with significant

impact on usability and user acceptance.

After an hefty study on the matter of electrode placement, electrode distance and

signal quality [34], [35], [36], some conclusions were drawn. Not only is the distance

used in this study’s prototype considered adequate for a small medical device, but

also there is no exact correct orientation for its placement on the chest (considering

that the device is placed on the correct auscultation point), regarding both ECG and

PCG acquisitions. Although the signal quality is better when putting the electrodes
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aligned with the heart axis [35], [36], in general practice such specific care is not

taken into account. This means that a versatile technique among professionals does

not whittle down a good performance of the device. Also regarding this subjectivity,

the placement of the device around the five main auscultation points, instead of the

actual medical ones, has the underlying hypothesis that the resulting signal will not

be significantly changed, which is one of the goals of this work.

Lastly, respecting the theoretical hurdling of the electrode placement during this

study, many factors may worsen the ECG. These involve the patients’ body type

(more or less adiposity), physical position of the torso (supinated or pronated),

psychological state (calm or nervous) and interface condition (body hair and the

absence of gel), which are some of the factors that reduce the signal quality.

2.3.2 Essentials of Data Acquisition

2.3.2.1 Quantization Process and Noise

Quantization is the conversion of a continuous variable into its discrete form, in an

ADC (analog-to-digital converter). For example, in a system where the signal is a

voltage that varies over time (the most common approach), the voltage would be

the continuous variable converted into discrete.

This process occurs in three main steps: analog input, followed by sampling, and,

finally, output of the digital signal. In this way, the digital output equals the continu-

ous input. However, at a hardware level, the process is not ideal, and, in most cases,

quantization outputs are affected by the addition of a specific amount of random

noise to the signal [37]. Moreover, the number of bits determines data resolution:

from 10 to 12 bits, it’s noticed an increase in the amplitude definition, as well as a

decrease in digital noise. On the other hand, the resulting noise from this process

will add to any noise already present in the original (analog) signal.

Generally, there are two limitations when digitizing a signal. First, the number of

bits per sample limits the resolution of the dependent variable, meaning that small

variations in the analog signal may go by unnoticed (certain different values of the

analog signal will have the same value assigned by the quantizer). Second, the

sampling frequency itself limits the resolution of the independent variable, meaning

that closely spaced events may also go by unnoticed.

In this study, when using a 10 bit sensor, to measure ECG signals, in the range ±
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1.5mV, both the gain, full scale voltage of the ADC, and the number of bits will

affect the resulting digital signal. Therefore, input values can assume 1024 (210)

different values, 0 corresponding to 0V, and 1023 (1024-1) corresponding to 3.3V,

according to the sensor specifications. On the other hand, the input range gives

place to the mentioned output range due to the gain factor and reference voltage of

1.65V .

2.3.2.2 Sampling Frequency and the Nyquist Theorem

Proper sampling happens when one can extract a minimal amount of descriptors

that enable the reconstruction of the analog signal from the samples, while these

provide an adequate representation of the analog signal itself [37]. On the other

hand, improper sampling means that the signal may have its frequency content

masqued; this is called aliasing. The samples would represent a wave different

from the one contained in the analog signal [37]. From this rises the Nyquist-

Shannon theorem, which establishes that: ”(...) a continuous signal can be properly

sampled, only if it does not contain frequency components above one-half of the

sampling rate.” (from [37], in ”The Sampling Theorem”), meaning that the relation

fs > 2 × fmax needs to be guaranteed by the whole sampling system. When this

inequality is not respected, the frequencies above the limit will be masked and

combine with the original information already there, resulting in a new, unreal,

signal, upon reconstruction. As an example, with a 4kHz signal, the sampling

frequency should be greater than 2 × 4kHz = 8000 samples/sec, in order to avoid

signal disruption.

2.3.3 From the Physical Process to a Digital Representation

From the physiological process itself to the digitized ECG signal, different steps are

involved. This process is schematically represented below (Figure 2.1) and it’s based

on [38].

• Electrodes - When placed over the skin, the electrode contacts with the elec-

trolyte (gel or paste to increase skin conduction), and ion-electron exchange

occurs, resulting in the the half-cell potential, i.e, a characteristic potential

difference established by the electrode and its surrounding electrolyte [33],

[39]. Also, due to the skin-electrode contact, there is always ion accumulation

between the two, making it more difficult to measure an ECG signal. This
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Figure 2.1: Schematic representation of digitization process.

way, it is important that the sensor can overcome this problem, by having a

good amplification component, for example. When talking about the type of

electrodes, these should be good conductors and provide limited offset and low

noise. One example of a good and commonly used option for ECG electrodes

is Ag/AgCl. Another detail to consider is the protection of the connecting

cable from possible electromagnetic noise sources.

• Instrumentation amplifier - This is the element responsible for making sure

that the physiological signal amplitude is scaled to reach the range of the

sampling circuitry, since an ECG usually is around a few millivolts, and the

ADC is prepared for signals around volts. Therefore, some sort of amplification

is needed.

• Analog to digital converter (ADC) - As previously described in Section 2.3.2.1,

is the component responsible for converting an analog signal into a compu-

tationally manageable digital representation; the higher the resolution, the

higher the amplitude definition of the signal in the digital domain.

• Filtering and second-stage amplification - Filtering wise, the process must be

very meticulous, given that ECG sensing can be affected by cross-talk from

other muscles, AC power, and radio-frequency interference, that can mask the

signal of interest.
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Support Tools

3.1 Starting Point

Throughout the entire project, the chosen platform for electrocardiogram signal

acquisition was BITalino [40], [41], motivated by the fact that schematics are freely

available, the platform has seen extensive validation in previous work, [40], [42], and

the modification of the circuitry specification to meet unknown aspects anticipated

within the work is fairly manageable without external dependencies. From there on,

numerous prototypes were developed, taking into account the findings resulting from

the multiple experimental stages of the work, in order to evolve up to a point where

a high performance, practical and ergonomic sensor configuration was devised.

BITalino is a hardware and software toolkit that has been specifically designed

to deal with the requirements of body signals. In this specific case, it was used

to measure ECG signals in a more practical and cable-free manner, since it can

communicate through Bluetooth.

The starting point was a BITalino version with a sampling frequency of 1000Hz and

an amplification gain of 1100. From that point forward, some modifications took

place, adjusting the analog frontend to a variant more suitable to the work at hands.

Specifications of the already modified ECG sensor are presented in Table 3.1, where

one can also find features regarding the original BITalino device. The modified

version developed in the scope of this work, includes a more extensive set of changes

(see Figure 4.1), for which a detailed description is provided in Section 4.1.

As described in Section 1.2, the goal of this work is to integrate ECG sensing in

a standard stethoscope form factor, in particular the diaphragm. This poses sev-

eral constraints such as the electrode geometry (to prevent masking the PCG sig-

nal), the inter-electrode spacing (due to the limited real estate in the diaphragm),

and others that affect, for example, the signal amplitude, in ways that were pre-
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Table 3.1: Specifications of the ECG sensor.

Specification Original Modified version

Measurement range ± 1.5mV ±.33mV

Bandpass Filtering 0.5-40Hz

Input Impedance > 1MOhm

CMRR 110dB

Gain 1100 5600

viously unknown. Preliminary tests have revealed that the standard configuration

of the BITalino hardware base did not suffice, in particular the signal amplitude

that was experimentally found to be almost one order of magnitude lower than that

for which BITalino has been designed (see Section 4.1.3), and several modifications

were needed.

The transfer function of this new ECG sensor is given by Equation 3.1. The ADC

value is the value sampled from the channel; 2n is 1024 for the BITalino channels

(given the 10-bit resolution); VCC (the operating voltage) is 3.3V and the denomi-

nator is the ECG gain (gain of the instrumentation amplifier multiplied by the gain

applied after filtering), in our case 1100 or 5600, depending on the device (more

details in section 4.1.3). The latter gain value allows the setup to measure ECG sig-

nals with a dynamic range of [−0.33mV, 0.33mV ], which was empirically determined

from preliminary tests performed with the standard setup.

VECG =
(ADC

2n
− 1

2
)× V CC

G
(3.1)

As mentioned, raw ECG signals were acquired with a customized version of BITalino,

used in a 10 bit resolution and 1kHz sampling frequency configuration. Table 3.2

describes the main specifications of the biosignal acquisition unit.

Considering the goal of this work, focused on integrating ECG sensing in the foot-

print of a standard stethoscope diaphragm, we developed a hardware simulator, con-

sidering such requirement, as a way of supporting the experimental part of the work.

Taking into account the standard auscultation process, a circular, stethoscope-like

diaphragm form factor was developed.
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Table 3.2: Specifications of the BITalino device.

Specification Value

Connectivity Class II Bluetooth Connectivity

Wireless Range up to 10m

Resolution up to 10-bit

Sampling Rate up to 1000Hz

Weight 74g

Size 84mm×53mm×18mm

Battery Li-Po; 7.4V; 500mAh

3.2 GE Healthcare MAC 800 Resting ECG

This electrocardiograph was used as gold standard, in order to validate the proto-

types’ performance and support the experimental part of the work. Some important

features are highlighted in Table 3.3.

The MAC 800 electrocardiograph is a portable and accurate system that allows

storing, archiving and editing of previously recorded ECG waveforms. It has multiple

communication options, such as LAN, modem, SD card and serial port, and has two

memory options, up to 100 ECG records stored internally, and SD card export for

analysis in external tools.

It is highly accurate and provides several ECG analysis programs that enhance

diagnostic confidence. It provides immediate visualization of the records, but also

their printing for further in-depth analysis [43].

3.3 3M Littmann 3200 Digital Stethoscope

As previously mentioned, the gold standard for heart sounds used in this project

was the 3M Littmann 3200 digital stethoscope. Its main specifications are presented

in Table 3.4. It has an amplification of 24x and a band-pass filter that can be setup

in three different modes, emphasizing specific frequencies (see Table 3.5).

The choice to use this specific digital stethoscope was made by the group working on

the SmartHeart project, after consideration of all digital devices available. Not only

the evaluation of sound quality was taken into account by a cardiopneumologist,

but also the type of connectivity was thought of as well. As the 3M Littmann
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Table 3.3: Specifications of the GE Healthcare MAC 800 electrocardiograph (used
as gold standard).

Specifications Description

Instrument Type

Microprocessor augmented automatic electrocardiograph

10-leadwire

12-lead simultaneous acquisition

with programmable lead configuration

Sampling Frequency 500Hz

Acquisition Mode
Provides 10 seconds ECG strip

(export to SD card in XML)

Dynamic Range AC differential ±10mV , DC offset ±300mV

CMRR >90dB

Input Impedance >10MΩ

Table 3.4: Specifications of the 3M Littmann 3200 digital stethoscope.

Specification Value

Diaphragm Diameter 5,08cm

Diaphragm Material Polyurethane-coated silicone

Length 68,58cm

Net Weight 185g

Table 3.5: Filter options available on the 3M Littmann 3200 digital stethoscope.

Mode Range of Amplification Emphasized Frequencies

Bellmode 20-1000Hz 20-200Hz

Diaphragm 20-20000Hz 100-500Hz

Extended Range 20-20000Hz 50-500Hz
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Figure 3.1: GE Healthcare MAC 800 Resting ECG acquisition setup.

3200 digital stethoscope has a native Bluetooth interface and does not need cabled

connection to a computer, this device was viewed as the better choice [21].

As such, the 3M Littmann stethoscope was then used as a guideline for the auscul-

tation sounds recorded.

3.4 BITalino R-IoT

BITalino R-IoT is an association of a BITalino sensor (with a lower sampling fre-

quency) and a router that manages the WiFi connection with a computer (Table

3.6).

This device was chosen due to the influence that spatial and planar rotation has in

ECG signals. When performing an auscultation, the healthcare professional does

not have a strict way of placing the stethoscope, as long as it is on the right focus,

since its rotation does not alter the PCG signal. However, when acquiring ECG, this

same placement freedom of the device will lead to different signals, with different

polarities, due to the position change relatively to the heart’s axis.

As such, by using the R-IoT sensor, one can study the rotation angle that the

stethoscope suffered, and thus, study how this specifically influences the ECG.
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Figure 3.2: 3M Littmann 3200 digital stethoscope (promotional image).

Table 3.6: Specifications of the R-IoT device.

Specification Value

Connectivity WiFi 2.4GHz

Sampling Rate 200Hz

ADC Voltage 1.8mV

Working Voltage 3.3V

Resolution 12-bit

Size 34mm×24mm×2.5mm

3.5 Python for Scientific Computing

In order to perform such previous signal analysis, Spyder (a Python Integrated

Development Environment) was used.

Anaconda 4.4 was the chosen Python (version 2.7) distribution to perform data

analysis. The main libraries used were Matplotlib, SciPy and NumPy.

Scipy is a Python-based ecosystem of open-source software for mathematics, sci-

ence, and engineering. It contains packages such as NumPy, IPython, SciPy library,

Sympy, Matplotlib and pandas. Throughout this project, NumPy and Matplotlib

were the core of our data processing.

NumPy is a package for scientific computing in Python, providing facilities such as
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efficient vector and matrix data representation and operations, including dimension-

ality manipulation, sorting, slicing, application of logical and mathematical opera-

tors, amongst many other convenient features.

Matplotlib is an advanced plotting library for Python, with a wide array of display

options and exporting capabilities. In the scope of this work it has been primarily

used for bidimensional data plotting, visualisation and automated exporting of the

figures in a suitable format.
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Implementation

4.1 Stethoscope Sensor Mounting Simulator

As it was required to register both ECG and PCG signals, a first prototype was

developed (see Figure 4.1).

Figure 4.1: SmartHeart prototype device. Figure 4.1(a) Top view of the hardware
simulator with the battery, acquisition and communication electronics inside; Figure
4.1(b) Side view of the device showing the grip used to apply the simulator to the
device; Figure 4.1(c) Bottom view of the device showing the electrodes configuration.

For that, a BITalino sensor was incorporated in a thermoplastic polyurethane (TPU)

diaphragm, printed in a desktop 3D printer. This TPU membrane intended to simu-

late the real membrane used in the 3M Littmann Digital Stethoscopes [44], our PCG

signal reference device (due to its native Bluetooth support for wireless connection to

a computer). This was a crucial step to study the mechanical integration of the ECG

sensor, given that the standard diaphragm covers do not have space to accommo-

date additional components. Inside the diaphragm were a 110mAh lithium-polymer

(LiPo) battery, an ECG sensor, the BITalino data acquisition hardware base and,

attached to the outside surface, was a pair of AuAgPl (80% gold and 20% silver and

platinum) alloy electrodes.
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4.1.1 Diaphragm Models

To support the validation work and prototype construction, a model was developed

with OpenSCAD, as seen in Figure 4.2.

Figure 4.2: Diaphragm model developed with OpenSCAD.

Since the standard structure of the stethoscope didn’t allow the incorporation of the

additional elements (see Figure 4.3, number 187), it was beneficial the development

of a new membrane design, and this way avoiding damaging the original piece.

By resorting to an unattached diaphragm, we were able to freely and agilely test

different geometries. Another aspect of this model was the study that a cavity in the

membrane would have in the stethoscope’s performance, and how one could develop

a shape that minimized its influence.

4.1.2 Electrode Dimensioning

For this type of setup, the typical Ag/AgCl electrodes were not used because their

physical charateristics and geometry do not allow proper moulding and adaptation

to the specific mechanical characteristics of the 3M Littmann stethoscope, without

interfering with the usability of the device and performance of the PCG signal

acquisition component [45].

Gold electrodes can be separated from Ag/AgCl ones due to their polarization prop-

erties. The firsts (gold) are polarizable electrodes (meaning that no charge crosses

the electrode when current is applied), are difficult to oxidize and dissolve, and be-

have like a capacitor. They can be used to record biopotentials, but in general are
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better suited for higher frequency biopotential measurements [33]. With this, gold

electrodes are not the first choice for measuring ECG signals, but rather Ag/AgCl.

On the other hand, the latter are non-polarizable. As so, they behave resistively,

are better suited for biopotential recordings that range from high frequency to very

low frequency, and, therefore, are usually the best choice for ECG exams [33].

Nevertheless, gold has been shown to have good performance when used for mea-

suring biopotentials, including electrocardiography signals ([46], [47]), and meet the

standards for our particular application: high conductivity, easy to mould into the

shapes found suitable for this study, and possible to obtain in a miniaturized size,

this being an important feature for the integration of this part of the setup on the

diaphragm. Not to mention that gold is considered a reference material for some

biosignals measurements.

Therefore, this kind of assembly favours the combined acquisition of both ECG and

PCG signals.

4.1.3 Sensor Dimensioning Targeting a New Prototype

Not only the diaphragm structure had to be studied, but also the performance

of BITalino sensor (with the standard specifications) needed to be tested when

incorporated in this type of assembly.

Regarding the membrane, three versions were considered. Between a deep hollow

version, a version with a TPU solid filled center (in the position where the acoustic

sensor is mounted on the stethoscope), and a version that exactly resembled the

original, the chosen was the second (model 191 in Figure 4.3). The design of the

three alternative diaphragms intended to assure different aspects of the setup. The

hollow model with a hard nucleus in the center (second and third from the left

in Figure 4.3) was meant to study how the sound was best heard, comparing to

the hollow center deep membrane (first from the left in Figure 4.3), which was an

attempt to allow all electronic elements to be inside it, making the stethoscope much

more practical. And, finally, the thin, completely hollow model (fourth from the left

in Figure 4.3), which most resembled the original one, was designed to assess if the

difference in materials with which the membrane is produced affects the performance

of the diaphragm.

More model variations were tested, with different heights of the central core. Figure

4.3 shows a photograph of all membranes designed for this project, along with the
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original 3M Littmann diaphragm cover (in black), as well as a 3D printed counter-

part using rigid material (in white). From right to left, we have the original 3M

Littmann cover (187), the rigid poly(lactic acid) (PLA) transparent cover (188) and

four flexible Thermoplastic Polyurethane (TPU) versions (depicted in blue): com-

pletely hollow model, replica of the original (189); hollow model with a 2mm hard

core in the center (190); hollow model with a 4mm hard core in the center, deeper

than the previous (191); and a filled model with an empty nucleus (192).

Figure 4.3: Line-up of all six tested diaphragm models.

The membranes were tested by three evaluators (two professionals and one non

professional) whom listened to several heart sounds using a randomly chosen di-

aphragm, out of the six already mentioned. This process was done without the

evaluators knowing what membrane they were using, and the fact that an amateur

was involved in the experiment intended to add a sensitivity variable to it (this eval-

uator is more sensible to noise). A total of 12 cases were studied, and each criteria

was scored by the evaluators on a five-point scale.

Regarding the first four parameters (ability to hear heart sounds S1/S2; breathing;

device noise; external noise), number 1 stands for ”Nothing heard”, number 2 means

”Heard sometimes”, 3 means ”Slightly heard”, 4 means ”Audible”, and 5 means

”Pretty well heard”.

On the other hand, the Noise vs. Heart Sounds criteria was evaluated from one to

five, having the following meaning: 1 - ”Only noise is heard”; 2 - ”Mostly noise”; 3

- ”A little bit of both is heard”; 4 - ”Mostly heart” and 5 - ”Only heart is heard”.

Finally, the General classification of a membrane can be 1 - ”Not good to identify

heart sounds”, 2 - ”Gives some information”, 3 - ”Allows identification after a while

(needs ear training)”, 4 - ”Allows identification by a professional”, and 5 - ”Allows

identification by a medical student”.

The results are presented in Table 4.1, according to the previous scales. It must be

taken into consideration that the evaluators used the same diaphragm twice, and,
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Table 4.1: Custom diaphragms evaluation summary.

Specification Model

187 188 189 190 191 192

S1/S2 3.83(3) 4.167 4 3 3.667 2.667

Breathing 1.83(3) 1.667 1.83(3) 1.167 1 1

Noise 3.33(3) 4 4 2.667 3 3

External noise 1.83(3) 1 1.83(3) 1.667 1.167 3.83(3)

Noise vs. heart sounds 3.50 3.33(3) 3.167 3 3.50 2.33(3)

General 3.83(3) 4 4 2.667 3.83(3) 2.167

for better understanding of the collected data, the table below presents the mean of

the score assigned to each model.

From the General evaluation values, it can be acknowledged that the best classified

diaphragms were the rigid PLA (transparent) model (188) and the flexible TPU

most similar to the original model (189). Heart sounds are best heard, but the

noise created by the device is amplified as well. When considering the Noise vs.

Heart Sounds criteria, model 191 performed better. For the rest of the diaphragms,

they not only reduce the noise, but also muffle the sound. Likewise, one can also

verify that the 191 model showed a similar over-all performance comparing to the

original version (187). Considering its classification and depth (which allowed the

integration of all electrical components), the 191 model was chosen.

This analysis is purely subjective and, after examining for a while, the evaluator

himself is more responsive and identifies more easily the sounds. In any case, this

part of the work follows the procedure previously set forth by the SmartHeart team

in [21].

Meanwhile, the total assembly of the sensor (SmartHeart prototype) was also tested.

When compared to a Lead-I BITalino typical device, SmartHeart revealed low signal

magnitude. This experimental test involved two different setups. The first one was

an ECG-first-Einthoven-lead acquisition, with the negative electrode on the right

clavicle, the positive one on the left clavicle, and the ground placed on the left lower

side of the trunk. The second setup involved acquiring ECGs in all five PCG focuses

with the membrane and SmartHeart prototype. In this last case, the auscultation

points were the second intercostal space on the right parasternal line, the second

intercostal space in the left parasternal line, the third intercostal space in the left

parasternal line, the lower left border of the sternum and the fourth/fifth intercostal

space in the left hemiclavicular line (see Figure 1.1).
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Table 4.2: Preliminary measurements obtained for an Einthoven triangle sensor
placement.

Metric Value

Mean of R-peaks 0.1065 mV±0.0421

Mean of minimum peaks -0.0747 mV±0.0382

Table 4.3: Preliminary measurements obtained with the hardware simulator.

Metrics Values

F1 F2 F3 F4 F5 Global

Mean of R-peaks 0.0339mV 0.0408mV 0.0427mV 0.0403mV 0.1539mV 0.0544mV

Standard deviation of R-peaks 0.0070 0.0075 0.0104 0.0386 0.2417 0.0973

Mean of min. peaks -0.0451mV -0.0414mV -0.0349mV -0.0575mV -0.1123mV -0.0535mV

Standard deviation of min. peaks 0.0077 0.0087 0.0051 0.0104 0.0863 0.0400

Results are presented in Table 4.2 & 4.3. Figures 4.4 & 4.5 show small segments of

the acquired signals, as well as the overlap of each auscultation focuses’ templates

(i.e heart beat waveform).

It can be observed from the acquired data that ECG values from the Einthoven

setup usually go up to approximately 0.11mV, while ECG values measured with the

diaphragm only reach about 0.04mV; as such, the gain of the sensor was found to

be extremely low when considering the dynamic range of the ADC, motivating the

need to modify the analog frontend of the sensor, and thus creating a new prototype,

so that its sensitivity can be more adapted to the chosen setup.

As described in Section 3.2, 5600 was the estimated gain value for the second proto-

type (more details ahead, in Section 4.2), based on empirical evidence, and further

confirmed by the experimental component of the work. This way, the electrocar-

diogram signal amplitude is around ±0.33mV. We believe that this is consequence

of the reduced inter-electrode distance imposed by the small footprint of the di-

aphragm, which results in a lower voltage potential difference between the IN+ and

IN- inputs of the amplifiers (see Section 5.2.5 for additional details).
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Figure 4.4: Short time segments of the acquired ECG on the auscultation points
with the diaphragm setup (focuses F1 to F5 represent the five main anatomical
auscultation points).

4.2 Accounting for Placement with Respect to

the Heart Electrical Axis

A different configuration of the system was taken into account, in order to evaluate

whether (and how) the positioning angle during the auscultation exam influenced

the resulting signal. For this purpose, a BITalino R-IoT device was used (herein

after designated as R-IoT), since this specific configuration has an onboard inertial

measurement unit (IMU), contrary to the remaining, allowing the measurement of

the diaphragm’s angle in space, with respect to the earth’s magnetic pole.

For this prototype, a similar approach was made. A diaphragm was printed and a R-

IoT board, as well as an ECG sensor and a lithium polymer battery, were assembled

inside. This version differs from the previous not only on the measured signals (this

one has the ability to measure the rotation angle of the stethoscope), but also in the

sensor features, given that the ADC has a lower input range (see Table 3.6), and

the chosen gain (5600) was already more suitable to the signals acquired. Figure 4.6

depicts the implemented prototype.

Also with a lower sampling frequency, the R-IoT device was a compromise between

angle measurement and ECG measurement. Furthermore, a switch was added to

enable the examiner to mark where a good signal begins to be acquired, and when the
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Figure 4.5: Representation of each acquired ECG templates for focuses F1 to F5,
with the diaphragm setup.

portion of quality acquisition ends. To assemble this switch, two resistors (valued

1kΩ and 1.2kΩ) had to be mounted on the BITalino R-IoT board to match the

output voltage on the switch to the input voltage of the ADC. The combination

of both adds an additional channel, indicating when the switch is turned on or off,

through a square wave, seen in an appropriate visualization platform.
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Figure 4.6: R-IoT prototype device. Figure 4.6(a) Top view of the hardware
simulator with the battery, acquisition and communication electronics inside; Figure
4.6(b) Side view of the device showing the grip used to apply the simulator to the
device; Figure 4.6(c) Bottom view of the device showing the electrodes configuration.
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Methods

5.1 Experimental Protocol

After the development of the two hardware simulators, namely the SmartHeart

device and the BITalino R-IoT, we focused on testing them against a medical-grade

gold standard, with the goal of evaluating their performances. Whilst the standard

12 leads and electrode placements used in regular practice are fully characterized

in literature, the setup devised in the scope of this work has several properties that

make it significantly different from both the standard 12 lead ECG (see Chapter 4)

and from other approaches found in the state of the art (see Section 2.1).

To do this, several acquisitions were intended to be performed at a medical facility.

However, due to the heavy workload and overall busyness of the institution, the

initial plan was rearranged. As such, for the experimental data acquisition, only

healthy subjects were evaluated, under the guidance of a cardiopneumologist, and

the used gold standard device was the MAC 800 [43], from GE.

This setup consisted of GE MAC 800, SmartHeart stethoscope simulator and R-

IoT device. Preliminary tests were initially performed on two subjects, so that

adjustments could be made in terms of data processing, electrodes positioning and

overall setup details.

With the gold standard all twelve leads were acquired, while with the SmartHeart

device ECG signals were collected in all five auscultation points, one at a time, with

random orientations of the diaphragm (positioning was done according to personal

preference). With the R-IoT all five auscultation points were evaluated, one at a

time, this time with ninety degree angle variations between each position, for each

focus.

All this information is further detailed in the appendices section (see section A.1).
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5.2 Experimental Analysis

5.2.1 Data Processing

Throughout this project, comparison of the signals acquired with the developed

prototypes and a gold standard device was a central point. From filtering, to the

R-peak detection within each ECG segment, to the segment selection itself, and to

the instant heart rate calculation, the BioSPPy toolbox1 [48] was used as a support

tool.

Within this toolbox, the module ecg.py contains a set of functions for feature extrac-

tion and segmentation, which were used to support the pre-processing component of

the work. In terms of filtering, it uses a bandpass finite impulse response (FIR) with

order corresponding to 30% of the sampling rate, this being identified as a suitable

approach in previous work by the group. For R-peak location and extraction, an

ECG R-peak segmentation algorithm is used, following the approach by [49].

For the heartbeat waveforms (herein also designated templates), which are a segment

of the signal in time, corresponding to a heart beat cycle, a criteria that selects 0.2s

before the R peak and 0.4s after is used, taking into account the known physiological

time intervals for a heart rate at rest. For heart rate calculation, the used module

extracts heartbeat templates from an ECG signal, given a list of R-peak locations.

The analysis algorithms were divided into three SmartHeart scripts, three R-IoT

scripts, and two for MAC 800 gold standard device. The main script would receive

inputs such as the name of the subject in study and the index values that limited

the segment of interest in each evaluated signal. The remaining files would be

responsible for getting the sensor’s channel with the ECG data from each device,

convert it to millivolt (its correct physical units) and extract the main portions of

signal that represent each quality segment, based solely on the visual inspection

and annotation (F1, F2, F3, F4 & F5 for the SmartHeart device; and positions

90, 0, -90, -180 for each focus, for the R-IoT device). Moreover, filtering, feature

extraction (such as the templates and R-peaks), mean waves calculation, MAC 800

signal interpolation, performance metrics calculation (Euclidean distance, coefficient

of determination and root mean square error) and compilation of the results to an

Excel spreadsheet were performed on the main script.

As stated above, when running this program, one has to identify which portion of

1https://github.com/PIA-Group/BioSPPy
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the already limited signal is of interest and presents the lowest noise amplitude. This

allows better control of what goes into the processing workflow, avoiding extremely

noisy signals to be processed.

5.2.2 Preliminary Studies

In order to study the first setup of electrodes (see Section 4.1.2), a preliminary char-

acterization was performed. This involved the determination of statistical parame-

ters such as interpolation, synchronization, root mean square error and coefficient

of determination.

This study was conducted in order to gain a better understanding of both the

SmartHeart and R-IoT prototypes, by using a gold standard device as reference.

Before the actual experimental study with ECG signals from a large number of

subjects, several preliminary studies of this type of data were taken into account,

in order to test the setup and identify potential improvement points. This has been

crucial for the development of the prototypes, and to reach the final integrated

version that resulted from this work.

As previously described, in the scope of our work we used as gold standard the

GE MAC 800 device [43]. However, this device introduced several constraints and

difficulties to the work. Not only the sampling frequency was significantly different

amongst devices (1000Hz for the SmartHeart, 200Hz for the R-IoT and 500 for the

MAC 800), but the recording conditions were also limited. In order to minimize

the effect of the different sampling rates, we interpolated the signals acquired with

lower sampling rate to match the highest sampling rate, so that all signals could

be more adequately compared. Moreover, when using this gold standard, only 10

seconds of data were possible to export in digital format (the maximum time span

allowed by the device for export), using a XML structure that is poorly described

and supported in common programming languages.

To make this part of the work clearer, some definitions are given below.

• Interpolation: As the acquired signals did not have the same sampling fre-

quency, there was the need to make them more comparable; in our case, instead

of sub-sampling the signal acquired with higher frequency (hence loosing time

resolution), we chose to perform linear interpolation of the signals acquired

using lower frequency, which consists of upsampling.
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• Synchronization: To analyse the morphological similarity of the signals, a

crucial aspect is the precise temporal alignment, and, due to the lack of suitable

input channels to do so on the GE MAC 800, synchronization of the recordings

was performed by cross-correlation of the time series; cross-correlation can

only be performed between signals that have the same sampling rate, further

reinforcing the importance of the previously described interpolation step.

• Root mean square error (RMSE): RMSE is the standard deviation of prediction

errors. It can show how concentrated the data is, around the line of best fit.

In this case, as the goal is to compare different sets of data (mostly from two

different devices: MAC 800 vs. SmartHeart and MAC 800 vs. R-IoT), the

RMSE is used as a dissimilarity metric, albeit possessing limitations to be used

by itself; in particular, scaling of the signals can be an issue, reason for which

we found a need to normalize it, in order to obtain relative values and be able

to compare signals.

• Coefficient of determination (R2): This value evaluates the quality of linear

regression applied to the data; the bigger the value, the better the fit between

two data series is.

Several tests were performed regarding the signal synchronization. Initially, an all

signal analysis was attempted, by considering all points of some ECG features, such

as QRS complexes and heart rate. However, this approach failed, as some of the

peaks weren’t exactly aligned, due to missing data and noisy portions of the signal

trace. With that, synchronization was then tried, by using the heart rate (bpm) from

each signal, i.e, by performing a wave morphology study. By using the BioSPPy

toolbox, it is possible to obtain the delay between two signals. The idea was to use

this delay to identify the portion of SmartHeart and R-IoT signal where the heart

rate correlation to MAC 800 was higher, and therefore, segmenting the window of

interest in the SmartHeart and R-IoT data.

In terms of statistical analysis, RMSE and coefficient of determination functions also

had to be tested. These tests were performed by initially using two square waves, one

much longer than the other, but with the same number of total samples. The point

was to create a sliding window and look for the shorter segment within the other.

When matching was obtained, R2 equalled its maximum value, 1. The Euclidean

distance was also measured. This specific experiment intended to replicate the

already seen delays when performing a synchronized ECG acquisition with MAC 800

and BITalino systems. These delays, however, are created by the natural operation

workflow, in the sense that in a single person acquisition scenario, it is difficult to
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start both devices at the exact same time.

5.2.3 Auscultation Learning and Littmann Synchronization

Considering the final goal of integrating ECG data acquisition in the device used

for PCG, the problem of data synchronization is once again evident. In particular,

we have two independent devices acquiring the data of interest (our prototypes and

the stethoscope), which, without a suitable common reference signal, constitutes

a problem in post-processing. To address this problem, a preliminary PCG-ECG

synchronization study was performed, with the SmartHeart project team from Porto.

A 3M Littmann 3200 stethoscope and a SmartHeart prototype variant were used,

with the latter including a user-controllable buzzer. This enables the injection of a

known acoustic signal in the PCG data, with the triggering event being marked in

the SmartHeart prototype. Being a common event to both systems, it can be used

in post-processing to automatically determine the point where it happened in each

time series, and align both by removing the temporal offset preceding the event.

While a cardiopneumologist acquired phonocardiogram signals from the five main

auscultation points on a person holding an earlier iteration of the SmartHeart pro-

totype (collecting data on a single focus), data was collected using the OpenSignals

(r)evolution software2, through which the buzzer was manually triggered whenever

the professional reported a good sound.

Also, during this session, we were taught how to perform an auscultation exam

according to a professional’s technique, in order to be able to accurately replicate

the process in the experimental part of this work.

5.2.4 Signal Amplitude Characterization

After testing the R-IoT configuration, saturation was quickly noticed in both aus-

cultation points four and five (F4 and F5, respectively).

With this, a possible solution approach was though of; for points F1, F2 & F3 (the

first three described in section 4.2) calculations were made in order to estimate how

higher the setup gain should be, since these focuses remark to the farthest points

from the heart and presented low amplitude signals with the initial system; while

for points F4 & F5, which were usually of much higher amplitude than the latter,

2http://bitalino.com/en/software
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Table 5.1: Estimated gains for focuses F1, F2 and F3.

F1 F2 F3

Max peak Ĝ Max peak Ĝ Max peak Ĝ

0.052mV 17307.69 0.0767mV 11743.03 0.1287mV 6993.00

given the heart proximity, calculations were made in the sense of ascertaining how

lower the gain could be. In sum, this aimed the study of the most suitable gain for

each set of focuses (F1, F2 & F3 and F4 & F5), in order to have a good quality

signal.

For the first set of focuses (F1, F2 & F3), this was done by assessing the higher signal

amplitude (corresponding to the R-peak), for the referred three focus. With that,

the sensor gain was estimated, based on the idea that the ECG signal is centred in
VCC

2
, and so, its amplitude must be multiplied by a certain gain, in order to achieve

the intended value (Equation 5.1). Results can be seen in Table 5.1.

Rmax ×G =
VCC

2
(5.1)

Ĝ =
V CC

2×Rmax

(5.2)

On the other hand, for points F4 & F5 (the remaining mentioned in section 4.2)

R-peaks amplitudes, as well as the lowest peaks, were interpolated to obtain an

estimation of the maximum amplitude values, since the saturation did not allow

empirical identification of the R-peak value. For this, segmentation of F4 and F5

acquisitions was necessary (see Table B.1 in appendix, xs being the beginning and

xe being the end of each segment). Similarly, after assessing the range of the ECG

signal, gain was estimated based on Equation 5.1.

In Tables 5.2 & 5.3 both saturated values before interpolation and estimated values

after interpolation, are presented, resulting in the corresponding gains in Table 5.4.

Based on the analysis of each data set, it was concluded that the most appropriate

gain for focuses F1, F2 & F3 was approximately 6500, and for F4 & F5, it would

be approximately 6000. Although the difference might not be outstanding, it is

enough to avoid saturation of signals acquired in focuses F4 and F5. Nevertheless,

the main conclusion is that the sensor needs to have an adjustable gain in order

to have the best performance, given the disparity of amplification gains required

in-between focuses.
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Table 5.2: Saturated values of R peaks for both focuses F4 and F5.

Position Values (mV)

F4 F5

90o max 0.1276 max 0.1265

0o max 0.1283 max 0.1269

-90o max 0.1282 inverted R-peak -0.0764

-180o max 0.0997 inverted R-peak -0.0821

Table 5.3: Interpolated values of R peaks for both focuses F4 and F5.

Position Values (mV)

F4 F5

90o max 0.1371 max 0.1322

0o max 0.1332 max 0.1393

-90o max 0.1485 inverted R-peak -0.0794

-180o max 0.1000 inverted R-peak -0.0822

Table 5.4: Estimated gains for focuses F4 and F5.

F4 F5

Max peak Ĝ Max peak Ĝ

0.1485mV 6060.6 0.1393mV 6460.9
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The ECG sensor used in our prototypes is based on the AD8232 chipset by Analog

Devices [6]. In this chipset the gain is controlled by the ratio between two resistors

(Equation 5.3). For both cases, resistance values were then estimated, based on

the relation between R3, R4, and sensor gain (see Section A.3). For focuses F4

and F5, resistance values could be 100Ω and 500Ω, for R3 and R4 respectively. For

focuses F1, F2 and F3, resistance values could be 3.2kΩ and 500Ω, for R3 and R4

respectively.

G = (1 +
R3

R4

) (5.3)

For this project, however, such improvements were not implemented due to lack of

time. As such, the SmartHeart configuration had an ECG sensor of gain 1100 (see

Table 3.1 for BITalino original specifications), and for the R-IoT device, the used

ECG sensor had a gain of 5600 (Table 3.1, modified version specifications).
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6.1 Validation Tests

Initial data acquisition sessions were performed in healthy subjects, in order to test

both the setup and the developed prototypes. For this phase of the work, acquisi-

tions were divided into three stages. Firstly, ECG recordings were collected with a

medical gold standard, MAC 800 [43]. The following acquisitions were made with

only one device at a time, namely the SmarHeart and R-IoT hardware simulators,

enabling the data to be sequenced in a short period of time, thus avoiding signifi-

cant alterations of heart beat waveform between acquisitions. This type of approach

prevents any kind of electrical interference between the MAC 800 and the remaining

devices. On the other hand, it still allows ECG data collection that is comparable

between devices.

In terms of data analysis, the average heartbeat waveform was obtained for each of

the twelve leads acquired with the gold standard, and for each of the five ausculta-

tions points of both the SmartHeart and R-IoT hardware simulators. The goal was

to determine which (if any), and how, leads of the standard ECG have greater mor-

phological resemblance with the data acquired with the non-standard procedures

and sensor placements followed in our work.

During these acquisitions, several improvement points were identified. Due to the

fragility of the electrodes, it was crucial to make sure their contact with the skin

was optimized. Accordingly, when examining male volunteers, androgenic hair made

it more difficult to get good electrical contact, which presented differences when

female volunteers were auscultated; as mentioned before, physiological factors such

as adiposity, body shape, and skin characteristics, may influence the results. Also,

as women have breasts, that becomes a situation prone to lower amplitude signals,

due to the increased adipose tissue in that area.

45



6. Results

Further into the acquisitions, some vulnerabilities were noticed with the R-IoT pro-

totype. Due to the small equipment used, in order to more easily acquire signals

on the chest area, contact between the evaluator and metallic parts of the device

was practically inevitable. Moreover, even if direct contact was avoided, the small

distance from the hand holding the prototype to the ECG sensor interfered with

the electrical signal. Distortion was therefore detected when the R-IoT device was

held. This was improved by attaching a 10cm PLA rigid 3D printed piece and, as

a result, the ECG signal quality was immediately improved. This suggests that the

evaluator was acting as a noise source that interacted with, and affected, the quality

of the acquired ECG signal. Meticulous isolation of all components of the device is

then required in order to obtain an adequate signal.

6.2 SmartHeart Device

After processing all data from the SmartHeart device, values of Euclidean distance,

coefficient of determination (R2) and root mean squared error (RMSE), for each one

of the 12 leads, and for each focus, were used to assess the morphological similarity

between the heartbeat waveforms. Multiple analysis were performed, in order to

better understand the behaviour and correlation between auscultation points and

gold standard leads’ signals. Throughout this chapter, the underlying processes are

further highlighted by plotting the raw data against the filtered ones; as described

in Section 5.2.1, R-peaks were detected, and the heartbeat waveforms isolated and

analysed, to get a representative description of the morphological pattern in each

focus. Figures 6.1, 6.2 & 6.3 illustrate this component.

We also present a plot with both MAC 800 and SmartHeart ECG signals. This was

done for each individual lead (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5 &

V6) and for each focus (F1, F2, F3, F4 & F5). Mean waves were calculated, as well

as the SmartHeart’s data standard deviation (depicted as the dotted line in Figure

6.4).

The purpose of evaluating statistical metrics was the identification of the gold stan-

dard lead that presents the highest morphological resemblance to each focus signal.

In Figure 6.4, for example, it is noticeable the resemblance between leads V1 and

V2 (MAC 800), and the SmartHeart signal.

Moreover, numerical analysis was also applied. From the adopted metrics, it is

possible to identify a corresponding lead according to the computed values. For
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Figure 6.1: Raw vs. filtered ECG signal for focus F3 in a case study.

example, for focus F3, in Table B.4, Section B.2, it can be seen that the lowest

Euclidean distance and the lowest RMSE points to lead aVL. Furthermore, in Table

6.1, the highest correlation (R2) is obtained for lead V1.

Considering the setup of the overall data acquisition, the coefficient of determination

is the most meaningful value to consider. This is justified by the fact that both the

Euclidean distance and RMSE acknowledge distance from point to point, which are

generally more sensitive to slight differences in the scaling of the data. As such, we

believe to be more adequate to take into consideration R2 values. Therefore, for this

set of results, it can be argued that focus F3 creates a wave similar to lead V1.

To proceed this study, both MAC 800 and SmartHeart heartbeat waveforms were

further observed, in search for morphological resemblances. This analysis was crossed

with the positioning of electrodes, for each lead and focus. Results can be observed

in Table 6.2, where for focuses F1 to F5 one or more lead show similarity, according

to the numerical results obtained. With this, the intent was to look for similarities

between empirical data and numerical data.

From the numerical results (Table B.4, Section B.4), one could say that F1 resembles

more to lead V2, F2 and F3 to lead V1, F4 to lead V4 and F5 to lead I, given the

highest R2 values for each focus.

Often seen throughout the project, focuses F1 to F3 were readily identified with leads

V1 or V2. This could be explained by the electrodes’ positioning factor involved.

The first three focuses are located above the heart, while focuses F4 and F5 are

47



6. Results

Table 6.1: SmartHeart device results. R2 values, for each lead and focus of a case
study.

Leads R2 metric values per focus

F1 F2 F3 F4 F5

Lead V5 0.6514 0.7765 0.8408 0.8188 0.6976

Lead V4 0.5945 0.7469 0.8031 0.8513 0.7152

Lead V6 0.6996 0.8002 0.8772 0.7561 0.6448

Lead V1 0.8948 0.8836 0.9221 0.5439 0.4868

Lead II 0.6426 0.7802 0.8459 0.7948 0.6659

Lead V3 0.2070 0.4447 0.4168 0.7916 0.5994

Lead V2 0.9280 0.8816 0.8992 0.4469 0.3819

Lead aVL 0.6466 0.5928 0.4726 0.4559 0.4970

Lead aVF 0.6477 0.7929 0.8557 0.7885 0.6524

Lead III 0.6322 0.7875 0.8421 0.8003 0.6533

Lead aVR 0.6401 0.7674 0.8328 0.8004 0.6833

Lead I 0.6044 0.7187 0.7789 0.8306 0.7325

Table 6.2: SmartHeart device results. Morphological and positioning analysis for
the same case study; ? stands for ”can’t tell”, which happens for bipolar leads;

√

stands for similarities found; and ”∼” stands for being fairly similar.

F1 F2 F3 F4 F5

Numerical results

Eucl. distance aVL aVL aVL aVL aVL

R2 V2 V1 V1 V4 I

RMSE aVL aVL aVL aVL aVL

Morphological similarities w/ each focus

aVL ∼ ∼ ∼ ∼
√

V2
√

- - - -

V1 - ∼
√

- -

V4 - - - X -

I - - - - X

Positioning similarities w/ each focus

aVL ? ? ? ? ?

V2
√

- - - -

V1 -
√ √

- -

V4 - - -
√

-

I - - - - ?
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Figure 6.2: R-peaks detection for the same case study, same focus.

below the heart, and more close to it. Similarly, leads V1, V2 and even V3 are

acquired at the middle of the chest, also above the heart.

A total of 10 ECG signals were acquired and studied, even though approximately

20 volunteers were considered for this project. This has much to do with setup

conditions and specific physiological and anatomical features that prevented some

subjects from having a good quality acquisition. Such observations are further

explained in Chapter 7.
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Figure 6.3: Overlapped heartbeat waveforms, for focus F3, same case study as in
Figure 6.1 & 6.2.

6.3 R-IoT device

In addition to the SmartHeart prototype, R-IoT data was also processed and anal-

ysed. The same set of metrics was adopted: Euclidean distance, R2 and RMSE, this

time for each of the 12 leads, 5 focuses and 4 positions (vertical: 90◦; horizontal after

90◦ rotation clockwise: 0◦; vertical after another 90◦ rotation: -90◦; horizontal after

a final 90◦ rotation: -180◦). Below are presented the results for another case study,

for focus F5. Afterwards, a morphological analysis is also carried, in order to predict

which lead resembles more to each position of this focus. This type of reasoning was

applied throughout all signals, and all focuses. In the end, this information can be

cross linked with SmartHeart results for the same volunteer, in order to verify if the

same correlation between focus and lead occurs for both devices.

As before, we also present a plot with both MAC 800 and R-IoT ECG signals. This

was achieved for each individual lead (I, II, III, aVR, aVL, aVF, V1, V2, V3, V4,

V5 & V6), for each focus (F1, F2, F3, F4 & F5), and each position (90◦, 0◦, -90◦ and

-180◦). Mean waves were calculated, as well as R-IoT’s standard deviation (depicted

as the dotted line in Figure 6.9).

Taking focus F5 as example, for this case study, numerical results point to leads

V1 and V2 as most similar (see R2 maximum values in Table 6.3, for each different

rotation angle). The lowest Euclidean distance values are 84.285, 84.171, 84.428 and
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Figure 6.4: Representation of MAC 800 mean waveforms and their templates;
SmartHeart heartbeat waveforms and their templates, as well as standard deviation
for focus F3.

84.426, for positions 90◦, 0◦, -90◦ and -180◦, respectively. R2 maximum values are

0.969, 0.829, 0.933 and 0.967, in the same order; and minimum RMSE values are

7.694, 7.684, 7.707 and 7.707. As mentioned before, R2 is the most reliable metric

for the used setup. Thus, one could come to a conclusion that in focus F5, ECG

signals are numerically more similar to lead V1 for a 90◦, 0◦ and -90◦ position, and

lead V2 for a -180◦ rotation angle, with these leads being the ones which had the

higher coefficients of correlation.

Furthermore, when looking to Figure 6.9, one could say that for 90◦ the most similar

waveforms are the ones of leads III and aVF, even though results point to lead V1.

Similarly, for 0◦, the lead pointed by the numerical analysis does not correspond

to the leads morphologically closer to waveforms of the gold standard. This dis-

parity is verified in each rotation angle, from 90◦ to -180◦, due to the coefficient of

determination mathematical calculation.

When the R2 is calculated, it takes into consideration the power of both x and y

values, instead of the absolute value. Thus, R2 values obtained in this context are

not invariant to the ECG signal polarity, and, therefore, although several waveforms

don’t seem morphologically similar to the gold standard leads, the correlation exists
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Figure 6.5: Same case study: Example of MAC 800 ECG signal’s interpolation for
Lead I.

for the symmetric waveform. In sum, the coefficient of correlation and the ECG

waveforms presented are, in fact, similar, and lead to the same conclusion regarding

what lead better correlates with the gold standard waves.

Another important aspect of this analysis is the influence that rotation angles have

in the polarity of the ECG signal. This was the main purpose of using the R-

IoT for different angle variations throughout the five medical auscultation points.

As expected, inversion of the signal was readily observed when the device changed

positions. Given the short time window for this project, further numerical analysis

will need to be carried in order to support this evidence in the scope of future work.

For this specific prototype, only few cases were able to be studied. One of the reasons

are the many different waveforms to be considered in each acquisition, as it can be

perceived by the detailed analysis of the previous R-IoT case study example.
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Figure 6.6: Raw vs. filtered ECG signal, for focus F5, in a case study.

Figure 6.7: R-peaks detection for the same case study, same focus.
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Figure 6.8: Overlapped heartbeat waveforms for focus F5, in the same case study
as in Figure 6.6 & 6.7.

Table 6.3: R-IoT device results. Euclidean distance, R2 and RMSE values for
focus F5 and each rotation angle.

Leads Focus F5

90◦ -90◦ -180◦ 0◦

Eucl. dist. R2 RMSE Eucl. dist. R2 RMSE Eucl. dist. R2 RMSE Eucl. dist. R2 RMSE

Lead V5 392.0817 0.9571 35.7920 392.2716 0.9188 35.8093 392.2890 0.8700 35.8109 391.9289 0.7798 35.7780

Lead V4 268.0300 0.8914 24.4677 268.2137 0.8621 24.4844 268.2264 0.7648 24.4856 267.8849 0.7105 24.4544

Lead V6 376.6808 0.9685 34.3861 376.8717 0.9291 34.4035 376.8901 0.8911 34.4052 376.5258 0.7976 34.3719

Lead V1 382.3215 0.9695 34.9010 382.1302 0.9327 34.8836 382.1076 0.9497 34.8815 382.4809 0.8294 34.9156

Lead II 384.9505 0.9531 35.1410 385.1393 0.9053 35.1582 385.1576 0.8694 35.1599 384.7994 0.7667 35.1272

Lead V3 331.7355 0.8667 30.2832 331.5546 0.8354 30.2667 331.5249 0.9591 30.2639 331.8945 0.7989 30.2977

Lead V2 447.7638 0.9046 40.8751 447.5792 0.8685 40.8582 447.5511 0.9673 40.8556 447.9232 0.8116 40.8896

Lead aVL 159.9806 0.8780 14.6042 159.8006 0.8149 14.5877 159.7702 0.9501 14.5850 160.1298 0.7340 14.6178

Lead aVF 362.3731 0.9618 33.0800 362.5625 0.9088 33.0973 362.5835 0.9078 33.0992 362.2209 0.7770 33.0661

Lead III 343.2459 0.9564 31.3339 343.4345 0.8988 31.3511 343.4587 0.9412 31.3533 343.0931 0.7800 31.3200

Lead aVR 219.6753 0.9094 20.0535 219.4904 0.8710 20.0366 219.4771 0.7797 20.0354 219.8219 0.7246 20.0669

Lead I 84.2850 0.5337 7.6941 84.4280 0.5265 7.7072 84.4255 0.3573 7.7070 84.1712 0.4343 7.6837
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Figure 6.9: Representation of MAC 800 mean waveforms and their templates, for
the same case study; R-IoT heartbeat waveforms and their templates, as well as the
standard deviation for focus F5. Each quadrant depicts the data for a rotation of
the R-IoT.
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Conclusions

7.1 Summary

In sum, our work has led us to two new prototypes for ECG data acquisition (Smart-

Heart and R-IoT), to be integrated in a digital stethoscope, which have been val-

idated with a GE MAC 800 gold standard device (see Section 7.2). With this

approach, synchronization between ECG and PCG signals, for segmentation and

identification of heart sounds, can be achieved, increasing both the accuracy and

reliability of the medical diagnosis (see Section 1.2).

Mainly focusing on R2 values (as explained in Chapter 6), results point to a high

correlation between SmartHeart and MAC 800 and, therefore, suggest that ECG

signals acquired along the five main auscultation points (focuses F1, F2, F3, F4

& F5) are reliable to support a preliminary diagnosis of heart diseases. From the

evaluated population of 10 people throughout this study, there is a pattern found for

different groups of focuses (F1, F2 & F3, and F4 & F5). Focuses more distant from

the heart, i.e F1, F2 & F3, tend to correlate more to leads V1 and V2, which are

also the most distant from the heart, considering the 12-Lead ECG. On the other

hand, focuses directly around the heart, i.e F4 & F5, are usually highly correlated

with leads V4, V5 and V6 (also the closest to the heart in a 12-Lead ECG) (see

Chapter 6). The waveforms obtained in these focuses are not the same as the ones

from a 12-Lead ECG, due to the difference in the electrode placement in each exam,

but, according to our results, can be considered similar enough to assist a healthcare

professional in assessing irregularities of the heart’s electrical activity (see Section

1.1.2).
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7.2 Contributions

With this work, several contributions were made, given rise to new devices and a

new approach for medical heart examination. Below are the main takeaways.

• SmartHeart device: A small, ergonomic and light weight device, that allows

the recording of ECG signals on the chest area, with the electronics incorpo-

rated in the footprint of a standard stethoscope; it was developed with the

intent of allowing ECG measurements even on auscultation points, having

electrophysiological characteristics different than the standard ECG exams.

• R-IoT device: Similarly to SmartHeart, this prototype acts as an ECG record-

ing device, used in auscultation points, differing form the latter in its capacity

of angle measurement; with the R-IoT it is possible to study how a simple ro-

tation, while acquiring a signal, can influence its polarity, and the motivation

for background of this prototype comes from the fact that more often than

not, healthcare professionals freely position the stethoscope on a patient, i.e,

there’s no specific orientation in which the auscultation is carried out, lead-

ing to multiple variations in the positioning of the device with respect to the

electrical axis of the heart, which introduces variability in the acquired ECG

signal waveform.

• ECG validation: This was achieved by comparing a medical gold standard,

GE MAC 800, to both the SmartHeart and R-IoT hardware simulators, allow-

ing these prototypes to be recognized as reliable ECG recording devices, and

characterizing the waveforms acquired with this unconventional setup.

• Diaphragm materials: As the SmartHeart and R-IoT devices should be able

to not only record ECG signals, but also allow auscultation, it was imperative

that the material used to integrate the sensors and remaining electronic com-

ponents, favoured the acoustic conduction; for that, two materials, as well as

different diaphragm configurations, were considered and studied, taking into

account the constrains of both the PCG and ECG data acquisition.

• Electrode materials: Given the inability to adapt standard Ag/AgCl elec-

trodes on the footprint of a standard stethoscope, alternative materials were

researched and used in the developed prototypes, from which a gold alloy was

selected.

• Ideation of an accessory for integration of ECG sensing in the 3M Littmann
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3200 stethoscope: Collaboration in the work developed by Prof. Ricardo Bap-

tista and Miguel Rocha, from the Polytechnic Institute of Setúbal, in the

scope of the BSc final course work of the latter, which resulted in an acces-

sory to integrate the SmartHeart electronics developed in this work on the

3M Littmann 3200 digital stethoscope as a functional and user-friendly form

factor (see Figure 7.1).

Figure 7.1: SmartHeart prototype model for ECG integration on a stethoscope.

7.3 Heart Disease Diagnosis

Given the data analysis results, several leads came up as the best representation of

each focus or position (here referring to both SmartHeart and R-IoT). Moreover,

studying each one of this leads can lead to a preliminary diagnosis, since changes in

the obtained waveforms establish some ground principles for heart disease diagnosis.

Wave amplitude, wave time, and morphology may vary when certain pathologies

manifest in a patient [50].

For example, when there is a left atrial abnormality, which includes atrial dilation,

atrial muscular hypertrophy and elevated inter-atrial pressures, changes in the P

wave of the ECG for leads II, V1 and V2 can occur. From an extension in time

(higher duration than normal), to a shift in its position on the heart axis, or a more

prominent notching, the P wave in these leads allows the detection of certain health

conditions worth studying more in depth. Likewise, leads aVR, aVL, V1, V2, V5

and V6 would allow the indentification of a right ventricular hypertrophy [51]. More

examples are listed in Table 7.1.
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Table 7.1: Examples of what pathologies to check for when evaluating each lead.

Heart Diseases Leads

Heart Arrhythmia II, III, V1, aVF

Right Bundle Branch Block V1, V2, V3, V6

Left Bundle Branch Block I, V6

An example of a lead that can be used to control several pathologies is Lead I. It

can tell if there is any unconventional behaviour of the waveform, leading to a first

suspicion of heart disease. These can be Sinus Tachycardia (sinus rhythm with a

rate greater than 120 bpm) and Sinus Bradycardia (sinus rhythm with a rate lower

than 60 bpm); Extrasystole (premature contraction of the heart, independent of its

normal rhythm); Left Branch Block (delay on the left ventricle activation, causing

it to contract later than the right ventricle); Atrioventricular block (total or partial

interruption of the electrical impulse from the atria to the ventricles); Tachycardia

(heart rate higher than 120 bpm); Escape Rhythms (ventricular rhythm with a rate

of 20 to 40 bpm); and pauses (absence of cardiac activity for more than 2 seconds).

In sum, with SmartHeart and R-IoT acquisitions, as one usually extracts informa-

tion about leads III, I, V1, V2, V5 and V6 (according to Chapter 6), it is possible

to identify suspicious behaviours about each wave, potentiating an early initial di-

agnosis.

7.4 Diaphragms

Regarding the auscultation tests performed, in order to choose the better model to

use, in which six different diaphragms were evaluated, results point to the possibility

of incorporating the membrane with a solid core (model 191) in this type of devices.

As this model presented one of the best evaluations, it shows that it is possible to

have adequate performance with a non-standard diaphragm geometry, which also

allows for better electronics accommodation inside it. Although the material of

all electronic components will certainly influence sound propagation, and therefore

the suitability of the model, this leads us to conclude that adequate results will be

obtained when all is assembled.
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7.5 Future Work

7.5.1 Further Acquisitions

In order to further validate and support the evidence found in this work, more

acquisitions should be performed. A wider population should be considered and, as

a next stage experiment, both ECG and PCG would be acquired at the same time,

with the developed integrated prototype (Figure 7.1). Thus, PCG segmentation,

using the corresponding ECG, would be tested and validated.

As future work, it is also proposed that ECG data acquisition with pathological pa-

tients are carried out as well. This can lead to a more accurate study of what signals

are obtained when the evaluated subject has a heart disease, and also acknowledge

if those alterations are significant and suffice for an accurate preliminary diagnosis.

7.5.2 Signal Processing and Analysis

As mentioned in Chapter 6, some of the chosen metrics applied to the acquired

signals fell short, regarding the identification of the gold standard lead which most

correlated to each focus and angle rotation. As such, for future work it is proposed

that additional metrics are studied, namely the cosine distance, in order not to

discard the polarity of the ECG waves.

7.5.3 Electrodes

Throughout this project it was seen that skin-electrode contact was not optimal with

the developed prototypes (SmartHeart and R-IoT), resulting in noisy signals and

increasing the number of case studies in which the ECG could not be used for signal

processing. As mentioned in The Handbook of Human Physiological Recording [33],

Chapter 4, when electrodes have a small footprint, the electronics must compensate

such downfall and amplification should be increased. However, when that happens,

noise is also amplified, either from ambient currents in the local environment, or

from poor contact.

Therefore, it is suggested that different electrodes are used on these two prototypes.

An option would be to use electrodes printed in a desktop 3D printer, and, thus,

create a bigger electrode sensing area. These electrodes can have small protrusions,
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as depicted in Figure 7.1 (right), to allow overcoming the presence of androgenic

hair.

7.5.4 Gain Augmentation Proposal

As shown by the results, when using the SmartHeart simulator around the five aus-

cultation points, the signal acquired was mostly good, showing little to no noise and

no saturation whatsoever. However, as previously proposed for R-IoT device, some

adjustments to the sensor’s gain would be of great use. This would involve increas-

ing the gain for the first three focuses (F1, F2 & F3), with the purpose of having a

more user-friendly (and overall data sensitivity) signal amplitude, while maintaining

the current gain for focuses F4 & F5. Thus, it is suggested the development of a

new version of the SmartHeart ECG sensor; one that enables the dynamic selection

of different gains, by means of a digital potentiometer.

Similarly, as signal saturation was detected for both auscultation points F4 and F5,

with the R-IoT device (as already discussed in Chapter 6), it is suggested, as proposal

for future work, that a digital potentiometer is also used with the R-IoT prototype.

Again, this enables the possibility of changing the sensor gain, and better adjust it

to different points of examination. Digital potentiometers would communicate with

the microcontroler and allow gain change digitally, instead of manually. This way,

saturation on F4 & F5 can be avoided and points F1, F2 & F3 can be amplified and

better evaluated.

7.5.5 Influence of the Stethoscope Rotation in the ECG Sig-

nals

In the scope of this work, only a preliminary study was performed in terms of the

influence of the stethoscope rotation. As such, more comprehensive tests should be

performed. For example, tests that include a wider range of different rotation angles

and a more detailed analysis of their influence on an ECG signal.
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Protocol proposal for physiological data
collection - SmartHeart Project

Mónica Martins, Hugo Silva and Ana Fred

In order to evaluate the performance of SmartHeart Project’s device, we
aim to acquire Electrocardiography (ECG) signals, in healthy subjects,
through an auscultation-like technique. In this document it is described
each biosensor’s position, acquisition times and all features involved.
The combination of both Phonocardiogram (PCG) and ECG exams has
multiple advantages. More specifically, this work focuses on mapping
PCG signals’ segments, as well as in eliminating possible outliers, due
to the facility of R peaks detection. This way, it becomes possible to
evaluate the cardiac dynamics during a standard auscultation (PCG)
exam, bringing a novel approach to a general practitioner doctor’s
appointment, and assisting in the complementary exam prescription
process. The importance of such practice relies on the fact that an
electrocardiogram is only taken under medical prescription and that
PCG is a standard medical exam in general medicine.

Acquisition device - BITalino and MAC 800: Our experimental device
is based on the BITalino platform, which allows the measurement of
one lead ECG data by means of a local differential bipolar approach.
Specifications of the ECG sensor are presented in Table 1.

Table 1: Specifications of the ECG sensor.
Specification Values
Measurement Range 0.33mV
Bandpass Filtering 1-30Hz
Input Impedance >1MOhm
CMRR 110dB
Gain 5600

The transfer function of the ECG sensor is given by Equation (1).
The ADC value is the value sampled from the channel; 2n is 1024 for
the BITalino channels (given the 10-bit resolution); VCC (the operating
voltage) is 3.3V and the denominator is the ECG gain, 5000. The ECG
value is in the range [−0.33mV, 0.33mV ].

VECG =
(ADC

2n
− 1

2
)× V CC

5000
(1)

As mentioned, raw ECG signals will be acquired with a customized
version of BITalino, used in a 10 bit resolution and 1KHz sampling
frequency configuration. Table 2 describes the main specifications of the
biosignal acquisition unit.

Table 2: Specifications of the BITalino device.
Specification Value
Wireless Range up to 10 m
Resolution up to 10-bit
Sampling Rate up to 1000Hz
Weight 74g
Size 84×53×18 mm
Battery Li-On; 7.4V; 500mAh

This new personalized BITalino was created taking into account the
auscultation process, hence the round and stethoscope-like shape, as seen
in Figure 1. Around the plastic cap, an Au-Ag alloy functions as the
electrode, and a knob was also added, in order to facilitate the handling.
Inside this structure is where the sensor itself is placed.

The goal of our study is to perform sequential data acquisition with
GE Healthcare MAC 800 Resting ECG (Figure 2) in a 12-lead (or more)
ECG configuration exam, so that this information can be used as a gold
standard ECG to benchmark our sensor set-up against.

Physiological signals:

(a) (b) (c)

Fig. 1. SmartHeart prototype device.

Fig. 2. Gold Standard - GE Healthcare MAC 800 Resting ECG

12-lead Electrocardiogram (ECG)

With this experiment we intend to measure a 12-lead ECG in healthy
controls, making acquisitions of all six precordial leads (depicted in
Figure 3 by points V1 to V6), and the remaining 6 leads: aVR, aVL,
aVF (augmented unipolar leads), DI, DII and DIII (bipolar leads).

Fig. 3. 12 leads ECG positions [1]

Digital record of the Electrocardiogram (ECG)

Although the measurement itself already gives important information,
it is also necessary to perform some data analysis over the acquired
signals. For this reason we will need the digital version of the recordings.
This allows us to use computation processes like filtering, correlation and
error calculus, among others, giving space for statistical studies and, most
importantly, to evaluate the performance of this new device.

Phonocardiogram auscultation points

Phonocardiogram (PCG) is used as a complementary exam of
auscultation, given that the latter relies on the human ear, which may not
be sufficient for an accurate evaluation of the patient. The main problem
with this technique is that it’s difficult to master, hence the importance of
using digital stethoscopes (auscultation and phonocardiography).

The PCG exam provides information about the heart activity, through
its sounds, which are in the range of 10 to 750 Hz, and therefore being low
frequency. With PCG it is possible to know the temporal localization of
the heart sounds, the number of their internal components, their frequency
content and the significance of diastolic and systolic murmurs, with these
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Fig. 4. PCG acquisition points [2]

being an extra or unusual sound heard during a heartbeat and broadly
classified as systolic, diastolic and continuous.

The points where the auscultation should be carried are marked in
Figure 4 and each point should take about one minute to be properly
analysed.

Conclusion: In conclusion, this protocol aims to present an overview
of the data acquisition protocol to be carried, in order to collect data
to benchmark an experimental device being developed in the scope of
the SmartHeart Project. The work attempts to develop a new biomedical
data acquisition device configuration that can evaluate a patient’s heart
condition both through ECG and PCG at the same time.

Acknowledgment: This work was partially supported by the IT -
Instituto de Telecomunicações under the grant UID/EEA/50008/2013
“SmartHeart”.
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Consentimento informado 

Autor:  Mónica Martins, aluna no Mestrado Integrado em Engenharia Biomédica da Faculdade de 

Ciências e Tecnologias, da Universidade de Coimbra 

 

O projeto de mestrado “Towards an Integrated Electrocardiography System for digital 

Stethoscopes”, insere-se num estudo que decorre no âmbito do Mestrado Integrado em 

Engenharia Biomédica, em articulação com o Instituto de Telecomunicações do Instituto Superior 

Técnico, e tem como principal objetivo desenvolver um dispositivo que permita a aquisição de 

sinais de eletrocardiograma (ECG) nos cinco focos principais de auscultação médica. 

 

Dado o conceito inovador de associação de ECG com auscultação, este projeto exige um processo 

inicial de validação do sinal, sendo, para isso, necessária a colaboração de voluntários saudáveis. 

É de salientar que com a sua colaboração estará, não só a contribuir para a realização deste projeto 

de investigação, mas também para um maior conhecimento na área científica, promovendo a 

elaboração e implementação de sistemas de comunicação alternativa e aumentativa na área da 

saúde, que poderão beneficiar pacientes no futuro. 

 

Este estudo encontra-se, por sua vez, integrado num trabalho de maior dimensão, envolvendo 

outros grupos de investigação, que pretende que este dispositivo venha a ser integrado num 

estetoscópio digital. Com isto, temos então um único aparelho médico que permite obter sinais 

de fonocardiograma (sons cardíacos) e de eletrocardiograma (sinal elétrico do coração) numa 

mesma aquisição, aumentando, assim, a qualidade do diagnóstico médico. 

 

Informa-se que a recolha de dados será feita no Instituto de Telecomunicações, recorrendo aos 

equipamentos: Eletrocardiógrafo MAC 800, BITalino e R-IoT. Todos os dados recolhidos serão 

anonimizados, e não serão publicadas quaisquer imagens adquiridas. No entanto, os registos 

poderão vir a ser partilhados com outros profissionais para efeitos de investigação. 

 

Em qualquer momento do estudo é livre de desistir, se assim o pretender. A sua participação é 

voluntária, sem qualquer contrapartida ou risco.  

 

Se existirem dúvidas, por favor contacte a investigadora Mónica Martins, através do e-mail: 

monica.cm-martins@gmail.com ou telemóvel: +351 919 610 960. 

 

“Declaro ter compreendido os objetivos que me foram propostos e explicados. Foi-me concedida 

a oportunidade de esclarecer as dúvidas sobre o assunto e garantido que não haverá prejuízo para 

os meus direitos assistenciais se eu recusar esta solicitação.  



 

 

Autorizo o ato indicado neste documento.” 

 

Data: ___/ ___ / ______ 

 

 

(Utente/ Responsável)  (Aluno) 
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A.3 ECG Sensor Chipset

Figure A.1: Electronic circuit diagram for the ECG sensor used in the SmartHeart
and R-IoT prototypes: R3 and R4 relation to sensor gain. Image from [6].
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B

Comprehensive Results Listing

B.1 Further Segmentation for Signal Amplitude

Characterization

Table B.1: Segmentation of all four different diaphragm positions, for both focus
F4 and F5.

Segmentation indexes

F4 F5

90o 0o -90o -180o 90o 0o -90o -180o

xs 1610.83 xs 6927.57 xs 12704.70 xs 17501.10 xs 836.14 xs 7625.72 xs 14615.30 xs 19708.60

xe 6165.70 xe 10976.60 xe 16655.70 xe 22332.00 xe 5967.80 xe 12974.50 xe 18520.60 xe 25231.30

B.2 Metrics Results for Each Focus

Below is depicted further information regarding the SmartHeart device metrics’

results.

Focus F1: The lowest value of Euclidean distance corresponds to lead aVL; the

maximum value for R2 corresponds to lead V2; and the lowest RMSE is the one of

lead aVL (Table B.2).

Focus F2: The lowest value of Euclidean distance corresponds to lead aVL; the

maximum value for R2 corresponds to lead V1; and the lowest RMSE is the one of

lead aVL (Table B.3).

Focus F3: The lowest value of Euclidean distance corresponds to lead aVL; the

maximum value for R2 corresponds to lead V1; and the lowest RMSE is the one of

lead aVL (Table B.4).
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Focus F4: The lowest value of Euclidean distance corresponds to lead aVL; the

maximum value for R2 corresponds to lead V4; and the lowest RMSE is the one of

lead aVL (Table B.5).

Focus F5: The lowest value of Euclidean distance corresponds to lead aVL; the

maximum value for R2 corresponds to lead I; and the lowest RMSE is the one of

lead aVL (Table B.6).

Table B.2: Euclidean distance, coefficient of correlation and RMSE metric values
for Focus F1.

Leads Focus F1

Eucl. Distance R2 RMSE

Lead V5 939.292 0.651 38.378

Lead V4 807.542 0.594 32.995

Lead V6 769.901 0.699 31.457

Lead V1 692.689 0.894 28.302

Lead II 922.298 0.642 37.684

Lead V3 587.403 0.207 24.000

Lead V2 658.761 0.928 26.916

Lead aVL 141.872 0.646 5.796

Lead aVF 699.848 0.647 28.595

Lead III 490.636 0.632 20.046

Lead aVR 690.308 0.640 28.205

Lead I 474.385 0.604 19.382
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Table B.3: Euclidean distance, coefficient of correlation and RMSE metric values
for Focus F2.

Leads Focus F2

Eucl. Distance R2 RMSE

Lead V5 939.427 0.776 38.384

Lead V4 807.681 0.747 33.001

Lead V6 770.032 0.800 31.463

Lead V1 692.577 0.884 28.298

Lead II 922.435 0.780 37.690

Lead V3 587.561 0.445 24.007

Lead V2 658.655 0.882 26.912

Lead aVL 141.791 0.593 5.793

Lead aVF 699.988 0.793 28.601

Lead III 490.778 0.787 20.053

Lead aVR 690.174 0.767 28.200

Lead I 474.514 0.719 19.388

Table B.4: Euclidean distance, coefficient of correlation and RMSE metric values
for Focus F3.

Leads Focus F3

Eucl. Distance R2 RMSE

Lead V5 939.697 0.841 38.395

Lead V4 807.944 0.803 33.012

Lead V6 770.310 0.877 31.474

Lead V1 692.303 0.922 28.287

Lead II 922.706 0.846 37.701

Lead V3 587.729 0.417 24.014

Lead V2 658.390 0.899 26.901

Lead aVL 141.642 0.473 5.787

Lead aVF 700.259 0.856 28.612

Lead III 491.045 0.842 20.064

Lead aVR 689.905 0.833 28.189

Lead I 474.774 0.779 19.399
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Table B.5: Euclidean distance, coefficient of correlation and RMSE metric values
for Focus F4.

Leads Focus F4

Eucl. Distance R2 RMSE

Lead V5 939.684 0.819 38.394

Lead V4 807.960 0.851 33.012

Lead V6 770.255 0.756 31.472

Lead V1 692.475 0.544 28.294

Lead II 922.681 0.795 37.700

Lead V3 587.910 0.792 24.021

Lead V2 658.605 0.447 26.910

Lead aVL 141.655 0.456 5.788

Lead aVF 700.227 0.789 28.611

Lead III 491.024 0.800 20.063

Lead aVR 689.923 0.800 28.189

Lead I 474.792 0.831 19.399

Table B.6: Euclidean distance, coefficient of correlation and RMSE metric values
for Focus F5.

Leads Focus F5

Eucl. Distance R2 RMSE

Lead V5 939.144 0.698 38.372

Lead V4 807.409 0.715 32.990

Lead V6 769.737 0.645 31.451

Lead V1 692.912 0.487 28.312

Lead II 922.148 0.666 37.678

Lead V3 587.371 0.599 23.999

Lead V2 659.003 0.382 26.926

Lead aVL 142.042 0.497 5.804

Lead aVF 699.696 0.652 28.589

Lead III 490.488 0.653 20.041

Lead aVR 690.456 0.683 28.211

Lead I 474.251 0.732 19.377
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Table B.7: Average metrics values per lead.

Leads Average per lead

Eucl. Distance Std R2 Std RMSE Std

Lead V5 939.4489 0.2164 0.7570 0.0720 38.3848 0.0088

Lead V4 807.7072 0.2175 0.7422 0.0874 33.0020 0.0089

Lead V6 770.0473 0.2145 0.7556 0.0802 31.4633 0.0088

Lead V1 692.5913 0.2046 0.7462 0.1898 28.2985 0.0084

Lead II 922.4537 0.2160 0.7459 0.0783 37.6904 0.0088

Lead V3 587.5949 0.2024 0.4919 0.1952 24.0085 0.0083

Lead V2 658.6828 0.2007 0.7075 0.2407 26.9131 0.0082

Lead aVL 141.8006 0.1483 0.5330 0.0740 5.7938 0.0061

Lead aVF 700.0037 0.2165 0.7474 0.0830 28.6014 0.0088

Lead III 490.7942 0.2168 0.7431 0.0842 20.0533 0.0089

Lead aVR 690.1531 0.2148 0.7448 0.0722 28.1989 0.0088

Lead I 474.5436 0.2127 0.7330 0.0753 19.3893 0.0087
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