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Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os

direitos de autor são pertença do autor da tese e que nenhuma citação ou informação

obtida a partir dela pode ser publicada sem a referência apropriada.

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognize that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without proper acknowledgement.

ii



Resumo

A Diabetes Tipo 2 é uma doença metabólica causada por resistência à insulina nos

órgãos, deficiência relativa de insulina, e ńıveis altos de açucar no sangue. Esta é

uma das doenças mais comuns no mundo, e é a quinta maior causa de morte global.

Os custos estimados globais de tratamento tanto directo como indirecto, chegam a

atingir os US$1.31 trillion (95% CI 1.28 - 1.36). Como tal, torna-se cada vez mais

important descobrir métodos que possam prever o risco da DT2 desde uma idade

jovem, e sem que até nenhuns padrões de risco fisiológicos se verifiquem. Com isto,

será posśıvel tanto para médicos como para pacientes estar mais conscientes do risco

da doença e poderem empregar medidas preventivas o mais cedo posśıvel.

Existem ind́ıcios claros que apontam a Diabetes Tipo 2 como uma patologia in-

fluenciada não só por factores ambientais, mas também genéticos. Por isso, este

estudo pretende desenvolver novas abordagens a Genome Wide Association Studies,

mais especificamente no que trata a análises Multi-Locus em doenças complexas,

que sejam não só computacionalmente praticáveis mas que estudem também a não-

linearidade nestes tipos de dados. Para o fazer, foi desenvolvida uma nova linha

inovadora de transformações que permite identificar regiões de interesse no genoma,

extrair novas caracteŕısticas sem perder o contexto biológico do problema, e utilizá-

las em modelos de Machine Learning que acontam com a epistasia.

Estes novos métodos são demonstrados numa análise de um dataset de Polimor-

fismos de Nucleótidos Únicos, onde novos posśıveis marcadores genéticos para a

Diabetes Tipo 2 são apontados. Para além disso, também é realizada uma classi-

ficação do risco de DT2, com F1-Scores a atingir os 0.97 com alta confiança. Este

projecto pretende sobretudo mostrar como podem ser minados os dados de datasets

de genótipos de uma maneira que permita o uso de modelos de Machine Learning

com a sua capacidade total.

Palavras-Chave: Aprendizagem Máquina, Diabetes Tipo 2, Estudos de Associação

Genética, Bioinformática, Análise de Dados, Genética.
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Abstract

Type 2 Diabetes is a metabolic disorder caused by insulin resistance in organs, rel-

ative insulin deficiency and high blood sugar levels. It is one of the most common

diseases in the world, and the fifth leading cause of death worldwide, with an esti-

mate global cost of indirect and direct treating reaching US$1.31 trillion (95% CI

1.28 - 1.36). As such, it becomes increasingly important to discover methods of

predicting T2D risk from a young age and before the onset of any physiological risk

patterns, so that both patients and doctors are aware of it, and can monitor the

disease and employ preventive measures.

There is clear evidence that supports Type 2 Diabetes risk as being influenced not

only by environmental factors, but also genetic ones. In light of this, the following

study aims to develop new ways to approach Multi-Locus Genome Wide Association

Studies in complex diseases, that are not only computationally feasible, but can also

study the non-linearity in a dataset. It aims to do so through the inclusion of an

innovative pipeline of transformations that can identify regions of interest in the

genome, extract new features without losing biological context of the problem and

use them in Machine Learning models that can account for epistasis.

This process is further demonstrated in an analysis of a Single Nucleotide Poly-

morphisms dataset, and provides several identifications of possible novel genetic

markers for Type 2 Diabetes. Furthermore, classification of T2D’s risk is also per-

formed, reaching F1-scores as high as 0.97 with high confidence. This project aims

mostly to exhibit how can a genotypes dataset be data mined in a way that can be

fully taken advantage of by Machine Learning models.

Keywords: Machine Learning, Type 2 Diabetes, Genome Wide Association Study,

Bioinformatics, Data Analysis, Genetics.
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1

Introduction

1.1 Context

1.1.1 Genetic Markers

The human genome is composed of around 3 billion nucleotides, them being A, C, T

and G, adenine, cytosine, thymine and guanine respectively, with 23 pairs of chro-

mosomes, 1 of them being the sexual chromosomes [9]. It is known that individuals

from the same population have similar DNA than to those of different ones [10].

The small differences between the genomes can be Single Nuclear Polymorphisms,

Mutations, Insertions, Deletions and Copy Number Variations, meaning that the

variants mentioned are known to be responsible for most of the different phenotypes

(observable characteristics) in humans [11]. Mutations are extremely rare alterations

on the DNA, Indels are, as the name indicates, insertions or deletions that may or

may not occur from individual to individual and CNVs are sections of the genome

that are repeated, and the number of repetitions varies between individuals [11].

SNPs are single nucleotide variations that occur in a specific position in the genome,

typically with two alleles, and they can either be rare or common. There are around

10 million SNPs in the human genome, meaning that on average a SNP occurs

every 300 base pairs [11]. Allele frequencies are given for the most common one, for

example, if a SNP can either be a T or a C, if T is the most common one with 0.7

allele frequency, 70% of the population will have a T, and the rest a C [7]. Common

variants are the ones with a minor allele frequency of 5% or more, and rare variants

are only present on less than 5% of the population. All of these genetic variants

can be used as markers to find associations between genotypes and phenotypes,

with the most commonly used for the effect being SNPs, due to their abundance.

This association can be fairly straightforward in case of single gene related traits or

diseases, but not so much for more complex traits, such as the case of T2D [9].
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1. Introduction

1.1.2 Type 2 Diabetes and Missing Heritability

Type 2 Diabetes is a metabolic disorder caused by insulin resistance in organs, rela-

tive insulin deficiency and high blood sugar levels [12]. There is evidence supporting

that T2D is strongly influenced by genetic and epigenetic factors, as well as environ-

mental ones. Throughout their lifetime, individuals with one parent who has T2D,

have a 40% risk of developing T2D. This risk increases to 70%, if both of the parents

have T2D [1, 13]. Studies performed with twin pairs show a lower discordance rate

(one of the twins has the disease, and the other doesn’t) for monozygotic twins than

for dizygotic, which supports the genetic and epigenetic influence on T2D even fur-

ther [14]. Furthermore, variants associated with T2D in the European population

might not be replicated in other non-European populations, and vice-versa. A higher

prevalence of the disease is also seen in some populations [15, 13, 16]. However, our

genetic code doesn’t undertake significant alterations in only one or two generations,

so this recent surge in predisposition for T2D is also due to the gene-environment

interactions. Increase of adipose tissues in human populations is the single most

significant factor in this epidemic, and to model the interaction between genes and

causes that lead to obesity is extremely complex. Who burns more calories at rest,

who has greater exercise levels when not doing it actively, who is more willing to

change a sedentary lifestyle are all examples of gene influencing behaviour, and that’s

what makes the gene-environment interaction so hard to include in Genome Wide

Association Studies [1]. It is also important to note that there is no formal definition

for T2D, since all the cases who do not fulfil the criteria for T1D, LADA and other

types, are considered T2D. It’s a disease more associated with age, although it also

has been reported in adolescents [17]. The question of how to clinically phenotype

T2D is very important, because it can influence its association with genotype, since

providing different patterns for the same phenotype will make it harder to perform

classification [15].

So far, for T2D, more than 80 robust markers were found, even though they only

account for 20% of the heritability for this disease. Even more so, these markers are

predominantly common, with additive effects [8]. The hypothesis that a common

disease can be caused by several common variants in the genome is not new, and

several studies have already identified common alleles who play a role in certain

traits or disease susceptibility [18, 8, 7, 19]. The remaining hypothesis are that

a few rare variants have big effects (common disease-rare variant), and that both

common and rare variants play a part in susceptibility [13, 15]. Despite the successes

of GWAS in identifying markers, much of the heritability in complex diseases still

2



1. Introduction

remains unexplained, which leads us to the missing heritability problem.

Heritability is defined as a ratio:

πexplained = h2known/h
2
all (1.1)

, where h2known is the proportion of the phenotype explained by known variants that

affect it, and h2all all the variants, including those who remain undiscovered. The

underlying problem is that the h2all might not be properly estimated, which leads

to an underestimation of πexplained. This model also fails to consider epistasis, that

can greatly inflate the apparent heritability, and it is not yet consistently detected

with the current standard methods available [20]. It is important to acknowledge

the missing heritability problem, because the reasons why it might be happening

are related to how GWAS are thought-out and performed. The first reason is that

common variants of low frequency (1-10%) might not be identified because of the

genotyping arrays themselves lacking useful proxies. Secondly, many common vari-

ants with very small effects can be extremely hard to identify with current sample

sizes [21, 22].

1.2 Motivation

Type 2 Diabetes is one of the most common diseases encountered in the world, and

the fifth leading cause of death worldwide. Data from the International Diabetes

Federation has shown that, in 2011 there were 366 million people in the world living

with diabetes, and that number is expected to rise to 552 million by 2030, 80% to

90% of the cases being of T2D [15, 13]. In 2015, diabetes caused 5 million deaths

worldwide, with an estimate global cost of indirect and direct treating of US$1.31

trillion (95% CI 1.28 - 1.36) [23]. In Portugal alone, the costs related to T2D

corresponds to 1% of the country’s GDP [24].

Type 2 Diabetes risk factors, regardless of ethnicity or genetic risk, are elevated

fasting insulin concentrations and low insulin secretion, obesity and fat distribution,

caused by poor diet, lack of physical exercise and smoking [25, 26]. It has also been

shown that changes on this behaviour at an individual level, for a more support-

ive environment and healthy lifestyle can greatly delay or prevent entirely Type 2

Diabetes [27, 28].

The first time a whole human genome was sequenced in 2001 it cost around US$300

million [29]. Since then, the aim has been to reduce it to US$1000 per genome, and

3



1. Introduction

so far, that goal is very close to being reached [30]. In a span of a few years, the

general cost of genome sequencing decreased immensely, which lead to an increase

in the number of Genome Wide Association Studies performed. As such, numerous

regions of Linkage Disequilibrium in the genome that are associated with certain

traits or diseases were discovered, which makes possible to identify an individual’s

elevated risk for certain genetic diseases [31].

Despite all the efforts, a convincing T2D risk predictor has not yet been attained

[16]. Such discovery would be a huge step in respect to personal healthcare, since

from birth, doctors and patients would be more aware of certain disorder risks. By

discovering more meaningful genetic markers for T2D, and by finding new ways

to analyse them in the genome, it should be possible do develop a risk predictor

that can be used to better inform both doctors and patients. This would hopefully

lead to a much earlier prevention and monitoring of the disease, even before any

physiological signs are present. [32]

1.3 Objectives

The main goal of this thesis is to develop a Type 2 Diabetes predictor from a Single

Nucleotide Polymorphisms dataset, that is able to return information of important

variants that are relevant to the problem. Since only data from the Iberian Peninsula

is being used, it is of extreme relevance to establish a method that can be replicated

on other ethnicities. To do so, there are five essential objectives to be fulfilled:

1. Prepare a complete dataset, with the most possible correct and corresponding

variants for cases and controls, that enables an accessible investigation of said

variants and makes possible the application of machine learning.

2. Develop a pipeline of feature engineering that can be replicated for any dataset

of SNPs, without losing their biological context.

3. Discover novel possible markers and verify the presence and impact of already

known genes that increase T2D’s susceptibility.

4. Through the use of Machine Learning models, implement a T2D risk predictor.

5. Build a model that can be further validated in future work when more data is

available.

4



1. Introduction

1.4 Structure

The chapter State of the Art, performs a quick showdown of the technologies used

since the translation of DNA to analysable files, and the most current practices

when doing such analysis. It also goes further into some Machine Learning and

Data Mining methods that are currently being used with great success in the most

diverse areas, and how some of them are applied to GWAS.

The third chapter, Data Preparation, describes the processes used to prepare and

clean all the raw data into formats that can be used to perform Machine Learn-

ing. Successively, the Feature Engineering chapter explains the methods that are

employed to find new variants, and reduce the number of available features into a

smaller and more relevant subset without losing information.

The fifth chapter characterizes how the Machine Learning techniques were used

in this context and shows the following results. Lastly, there are the Discussion

and Conclusion, where a description of the whole process is discussed, as well as

advantages and disadvantages of it. Future approaches and the overall place for

Machine Learning in GWAS are also addressed.
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2

State of the Art

2.1 Genome Sequencing

Over the last years of genome sequencing innovation, a shift has been seen from the

more traditional Automated Sanger sequencing to cheaper and faster Next Genera-

tion Sequencing techniques. For a quick overview, the Sanger method starts of with

either bacterial cloning or a Polymerase Chain Reaction to amplify the DNA strands.

It is followed by four reactions containing deoxynucleotides and DNA Polymerase

performed separately for each to include a different dideoxynucleotide (ddNTP).

When a ddNTP that binds to a specific deoxynucleotide is attached to an elongat-

ing DNA chain, the DNA polymerase stops it’s process on it, thus labelling every

nucleotide. The ddNTPs are radioactively or fluorescently marked so that the final

sequence can be visualized on the gel electrophoresis image, such as in the figure 2.1

[2].

The most recent implementations of this method can achieve extremely high geno-

typing accuracies, but are expensive, time consuming, and better suited for only

single gene sequencing. Since there was a need for cheaper processes with larger

throughput capabilities, Next Generation Sequencing emerged. The single major ad-

vantage provided by this new technology it’s is ability to output enormous amounts

of data in a single run, cheaply and fast. DNA methods start off by randomly frag-

menting the DNA, and coupling adapters to both ends of the fragments. These are

then attached to a flow cell and amplified in clusters that are recorded by various

pictures. This produces a great number of short reads that are then anchored to a

reference genome, where small differences can be determined. The number of base

pairs contained in every read, and the number of reads depend on the sequencer

itself [33]. Further description and visualization of this process can be found in the

figure 2.2.
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Figure 2.1: Picture of the acrylamide gel electrophoresis with the sequences read
annotated on the sides. From left to right, the inhibitors used are ddGTP, ddATP,
ddTTP, and araCTP. Adapted from ”DNA sequencing with chain-terminating in-
hibitors” [2].

Generally, genome studies only target the exome because it contains the protein

coding regions [34]. However, it has also been shown that many variants that are

associated with disease can be found on non coding regions of the genome [35]. For

this reason, it became increasingly important to integrate WGS techniques when

performing GWAS. Nonetheless, the cases data utilized in this study are only of the

exome.

From the data recovered, it is then possible by using reference panels of known

SNPs or other variants to produce VCF files, that record the genotype for each

variant [36, 37]. There are several programs available to perform variant calling

from the short reads aligned to a reference genome, such as SAMtools (http :

//samtools.sourceforge.net/). These can do this process in many different ways,

but the main goal is to identify where the reads differ from the reference genome

and to translate those to a VCF file.
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Figure 2.2: Work flow of the Next Generation Sequencing Techniques employed
by Illumina sequencers. Adapted from Illumina’s images for general use.
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2.2 Variant Call Format

Nowadays, as previously stated, information of the genotypes assembled from the

sequencers are represented in a Variant Call Format files, or VCF files. These

start with the meta information lines, which indicate the VCF version, followed

by the three possible parameters INFO, FILTER and FORMAT. INFO describes

any additional information of the metrics collected for every variant and FILTER

describes what kind of filters were applied to them. FORMAT indicates the type

of genotyping information that is present and it’s characteristics. Then, the header

line ensues which presents the following 8 fixed columns: #CHROM, POS, ID,

REF, ALT, QUAL, FILTER, INFO. These represent respectively the chromosome

of the variant, it’s position in it, a sample ID, the bases for the reference genome, the

bases for the possible alternative bases for the variant, the quality or certainty of the

genotype, any filters applied that were previously described and any additional info

for the variant. If there is genotype information present, then a FORMAT columns

ensues, which dictates how the genotypes are going to be presented, followed by

the actual genotypes for a set number of samples. All the following lines represent

existing variants that were genotyped. More information on this file type can be

found at https : //github.com/samtools/hts− specs .

2.3 Single Marker and Multi-locus Analysis and

Imputation

Since 2007, GWAS have been responsible for the discovery of genetic markers that

relate to complex human traits and disorders, the simplest approach being the Single

Marker Analysis, which is both capable of finding common variants with addictive

effects and rare ones with high phenotype impact [38].

This marker-by-marker analysis focus on the individual effect of each variant, to

detect associations between molecular markers and traits or disorders in a popu-

lation. These close groups of variants that are discovered to be correlated to a

certain phenotype are called Quantitative Trait Loci. In many complex diseases,

several QTLs are discovered because of Linkage Disequilibrium, that refers to the

non-random association of alleles at different loci in a population, and it’s visible

when their association frequency is higher or lower than what would be expected if

it was in fact random [39]. It is influenced by many factors, such as rate of muta-
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tion, population structure, genetic linkage, the rate of mutation, genetic drift and

the system of mating, and can signal segments in the chromosomes that trace back

to a common ancestor without intervening recombination. Essentially, the objective

is to determine if phenotype differences are due to a few loci with large effects or

many loci with small, but additive ones.

We can formalize a contingency table that contains the information of the genotype

for each SNP, and the corresponding phenotype for each sample, and use tests such

as Pearson’s χ2 Test, Fisher’s Test and G-Test to detect an association between

allele frequencies and phenotype [9]. Since the Pearson’s χ2 Test is going to be

used, a short description follows. Normally, this test is used to verify if there is a

deviance of the expect frequencies and the observed frequencies. It’s null hypothesis

is that the data are independent, and by rejecting this hypothesis, we can then find

associations between them. This test assumes the data follows a normal distribution,

and it’s given by [40]:

χ2 =
k∑

i=1

(xi −mi)
2

mi

(2.1)

To go even further and detect a QTL with this approach, the association between

a marker and a trait, or in this particular case, Type 2 Diabetes, can be modelled

by simple regression methods [41]. The null hypothesis for these tests is that the

marker has no association with the trait, and to test it, a t-test, F-test or Bayes

factor can be used. We assume that a marker will only affect the desired trait if it is

in LD with a QTL. To measure LD, considering A and B as two different markers,

A1, A2, and B1, B2 as their alleles respectively:

D = frequency(A1 B1)×frequency(A2 B2)−frequency(A1 B2)×frequency(A2 B1)

(2.2)

, frequency(A1 B1) being the frequency of the haplotype A1 B1, and likewise for

the remaining haplotypes. Since this is very dependant on allele frequencies, the r2

metric was proposed:

r2 =
D2

frequency(A1)× frequency(A2)× frequency(B1)× frequency(B2)
(2.3)

By combining r2, LD and the number of markers in the study we can infer the power

of the association test to detect QTLs [42, 43].

The following approach tried was the Multi-Locus analysis. It was the next logical
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step, because it tries to tackle issues that were not handled in the previous methods,

such as epistasis and big marker spacing (less genotyped variants) [44]. It is fairly

recent, and its objective is to consider various locus and their interactions when

performing the association studies. When building marker-to-marker association

models, if our set contains 1 million SNPs, it becomes both statistically and compu-

tationally hard to differentiate between significant markers and to understand their

biological context, as there will be 5×1011 interactions to examine [45]. Although a

Multi-Locus analysis adds several benefits to it’s previous iteration, it requires even

more processing power. At this point, feature selection comes into play, there being

several ways to approach it. The most common ones are the usage of SNPs that have

met certain criteria in broader previous tests or integrating biological knowledge in

the models. Of course, either one of these strategies imposes bias, such as eliminat-

ing potential markers that don’t prove to have a significant effect on their own, and

missing novel undocumented interactions [46]. By considering a smaller number of

SNPs in which the phenotype information might be contained, it becomes possible

to make such an analysis. One example of this approach is the Biofilter, that uses

previous Biological knowledge to construct several multi-SNP models, and only then

applies Logistic Regression and Multi-factor Dimensionality Reduction methods to

perform its analysis [7, 47].

To increase the number of SNPs available and generate a common set of genotyped

variants for each dataset, for Genome Wide Association Studies, Imputation sur-

faced as a viable candidate. By using known Linkage Disequilibrium patterns and

frequencies of haplotypes from the 1000 Genomes Project, it is possible to make a

correct estimate of missing genotypes. However, imputation leads to the underlying

assumption that the study population has the same patterns of LD and that the as-

sociation between haplotypes and causal loci is the same in the reference population,

which might not always be the case [48, 7].

2.4 Bayesian Methods

The usage of previously explained frequentist methods, although very widely used,

still pose some problems because of a limitation on the usage of p-values themselves.

From a p-value alone it is very hard to know how confident it is possible to be when

a SNP is associated with a phenotype [49]. Furthermore, the datasets used in these

studies are usually small, an it is necessary to account for their uncertainty [50].

By using Bayesian methods we can circumvent these issues, at the expense of addi-
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tional assumptions about the influence on phenotype for each SNP. Another great

advantage of these methods is that they allow for a common-ground when compar-

ing results between studies (meta-analysis), facilitating knowledge integration [51].

It turns the probability that a SNP affects a phenotype in a quantitative measure,

the Bayes Factor:

BF =
P (data|θhet = t1, θhom = t2)

P (data|θhet = 0, θhom = 0)
(2.4)

For these reasons, Bayesian methods have become more prevalent in recent years

in GWAS [52]. It is also readily usable in several packages, such as SNPTEST [53],

genMOSS [54] and BIMBAM [55].

2.5 Dimensionality Reduction

However, even with such techniques, the missing heritability is still yet uncovered

for complex diseases, which leads us to Epistasis or gene-gene interaction, and how

to integrate it in GWAS. These are some of the methods available that can enable

Multi Locus analysis. When accounting for gene-gene interactions, as stated be-

fore, the problem becomes statistically and computationally complex, since for the

three possible genotypes and k SNPs, there are 3k genotype classes possible [56]. To

attenuate these issues, and combine variants information considering gene-gene in-

teraction, Dimensionality Reduction can be used. Usually these problems entertain

very large numbers of SNPs so combining their information in a smaller number

of vectors while still retaining most of their variance information can make it ex-

tremely easier to analyse these kinds of datasets. There are several methods that

can perform this reduction, such as MDR, PCA and LDA.

At it’s core, MDR is an algorithm capable of constructing new features by pooling

genotypes from multiple SNPs [57]. Considering several multi locus genotype infor-

mation and given a threshold T, a certain group of SNPs is considered high risk if

their ratio of case study to control group is higher than T, or low risk if that same

ratio is lower [4]. By doing so, a new one dimension vector with two different groups

(High and Low risk) is constructed, which enables the usage of other techniques to

process it, and produce multi locus analysis results.

The PCA’s goals are to extract a set of new orthogonal variables of a dataset, called

the Principal Components, that are able to represent the important information in

a k number of vectors [58]. To do so, a p-dimensional vector of weights W(k) =
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(w1, w2, ..., wp)(k) that map to each row of our dataset matrix X will be worked out.

To calculate the first component we maximize the variance:

W(1) = arg max
{W TXTXW

W TW

}
(2.5)

, which is the largest eigenvalue of X when W is the corresponding eigenvector. The

first Principal Component will then be given by t1i = X(i) ·W(1) [59]. Considering

n observations and p features, this method can output several minn− 1, p vectors

containing the highest variance of the data possible. This method is usually used in

GWAS to detect population structure and outliers [60].

The last dimensionality reduction method covered is Linear Discriminant Analysis

and it makes use of the data labels to propose a linear combination of variables

that best maximize the classes separation. It is then, contrary to PCA, called a

supervised algorithm. Regarding a binary problem, which happens to be most of

phenotypic studies, for each class in y, mean and covariance are represented by µ0 /∑
0 and µ1 /

∑
1 respectively. A function of the linear combination of samples can

be obtained by:
−→w · −→x > c (2.6)

where,

−→w =
−1∑

(−→µ1 −−→µ0) (2.7)

c =
1

2
(T −−→µ0

T

−1∑
0

−→µ 0 +−→µ1
T

−1∑
1

−→µ1) (2.8)

and T is a threshold that verifies the following condition:

(−→x −−→µ0)
T

−1∑
0

(−→x −−→µ0) + ln|
∑
0

| − (−→x −−→µ1)
T

−1∑
1

(−→x −−→µ1)− ln|
∑
1

| > T (2.9)

The new hyperplane defined by c, is then the one that maximizes the separability

of classes. It can be used either for classification or to reduce dimensionality of a

dataset [61].

These approaches have been widely and successfully used in other GWAS studies,

and improved with entropy-based interpretation methods, the use of odds ratio,

imputation, parallel implementations and much more [57]. Furthermore, cases like

the susceptibility to bladder cancer were found in highly significant interactions

between SNPs using such methods that consider epistasis, with higher prediction
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power than smoking [62].

2.6 Quality Control and Validation

When performing a GWAS, the ultimate goal is for it to be able to predict, in any

new given dataset, the interaction of markers and phenotypes that were discovered.

To be able to validate this work, it is extremely important to test the results in data

sets that were not used during the study, since most significant effects uncovered

are likely to be overestimations [63]. In GWAS, there are far more SNPs than

number of samples, which can easily lead to a model that predicts all cases in

the discovery dataset and that cannot be replicated in others. This is called over-

fitting [64]. Furthermore, validation leads to a higher confidence level in the study

performed, and also allows to uncover the populations where it can be replicated, if

at all. Validation must be first thought out when designing the study, by assigning a

percentage of samples to perform testing and other for cross-validation (apart from

training).

As most of the studies samples are from a single population, the choice of control

group must also take that into consideration as a risk variant might not be relevant

across all different populations. Most control groups can be gathered from the study

itself, but to promote less bias, samples from the 1000 Genome Project can be used

[48]. This project gathered variants from populations across the world, that serve

not only as control, but as gold standards for imputation.

The verify the quality of the genotypes themselves, it is possible to use the Hardy-

Weinberg Equilibrium [65]. The HWE is a model that states genotype frequencies

follow certain rules, and remain constant at each generation [66]. Some factors that

can affect this equilibrium include migration, mutation, natural selection and assor-

tative mating (tendency for people to choose partners who are more phenotypically

similar or dissimilar to themselves). However, if these factors are negligible in the

target population, deviations from the HWE are most likely due to incorrect geno-

typing. Considering f(A) = p and f(a) = q, the expected genotypes frequencies are

then:

f(AA) = p2 (2.10)

f(aa) = q2 (2.11)
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f(Aa) = 2pq (2.12)

As such, the HWE should follow the curved line in the De Finetti diagram displayed

in figure 2.3.

Figure 2.3: De Finneti diagram of genotype frequencies. If a population follows
the Hardy-Weinberg Equilibrium, their genotype frequencies distribution will follow
the curved line on the plot. Free licensed image from Wikimedia Commons.

2.7 Data Mining and Machine Learning

In genomics, the vast quantities of data that must be scouted before any meaningful

results are achieved is daunting, and simple frequentist methods have not yet been

able to fully crack the problem of complex diseases heritability. As we inquire

further the study of gene-gene or gene-environment interactions and non-linearity

in the mapping of genotype to phenotype to understand genomic variation, disease

susceptibility and the role of environment in genomics, it is important to evaluate

how these situations are approached. There might be a combination of SNPs that,

if addressed with the proper non-linear function, can significantly translate into the

respective phenotypes, but each SNP individual contribution might not appear any

different than the millions of other SNPs. To this outcome, that can’t be predicted

by the sum of all markers, it is called non-linearity [4].

To produce non-linear models, it first must be discussed how to effectively reduce

the amount of SNPs that a model needs to look through, or in other words, how to
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data mine the genome. At this point, the scientific community is slowly transition-

ing to non-linear analysis of the genome, but there aren’t many methods developed

so far [67]. A model can also be built without any preprocessing, but besides the

great quantity of features for few samples, a great majority of the millions of SNPs

available are considered either noise or non-significant to the task at hands. There

are essentially 2 types of feature selection used, which are the filtering and the wrap-

per approaches [4]. The first one, refers to the preprocessing of data and assessment

of the quality and significance for each feature, to ultimately collect a significant

subset. The wrapper one utilizes a deterministic or stochastic algorithm that iter-

atively selects subsets of data to classify. Filtering is a faster approach, while the

wrapper can be more powerful, since it doesn’t discard variables with assumptions

of quality. Even if these two methods are widely used, there are multiple other ways

of discarding noisy SNPs, for example, the inclusion of biological knowledge [68].

After the preprocessing methods are carefully selected and implemented, and sub-

setting has been performed, machine learning can be used to classify between the

desired phenotypes. The purpose of machine learning is to make computers learn

how to perform certain tasks, by providing them with a set of examples, but with-

out explicitly programming them to do so. In our problem context, each variant

is considered a feature, which means that it is an attribute from where the model

can learn. The entirety of features and samples compose the training dataset. To

provide the machine with the context of what to learn, a target vector is given.

This vector contains information on the phenotype that requires classification [69].

The most popular machine learning methods are Support Vector Machines, Decision

Trees, Näıve Bayes classifiers, Neural Networks and Fuzzy Sets [70]. Since there is

a growing interest in non-linear models, SVMs, Decision and Neural Networks are

some of the most promising Machine Learning Methods [71]. On this project, SVMs

and Decision Trees were used, so a more complete description is provided for them.

For explanation purposes, let’s consider the binary classification problem, with lin-

early separable classes and only two features for the SVM. A Support Vector Machine

tries to ensure the largest possible boundary between both classes. To do this, it

produces two support vectors to the main decision boundary, that provide the largest

distance possible between the closest instances from each class [72]. This process

can be better understood through figure 2.4. When more features are added to the

problem, it stops being viewable in plots, since the dimensionality of the problem

grows, but the same principle is applied.

However, this mechanism assumes that there are no instances overlapping which
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Figure 2.4: Plot of two classes separated by the support vectors on the dashed
lines, and the decision boundary on the black line at the centre. Adapted from the
book ”Hands on Machine Learning with Scikit-Learn and TensorFlow” [3].

is something very likely to occur in a ”real-life” dataset. To then handle it, a

soft margin classification can be implemented. What it does, is allow for some

violations of the margins that support vectors provide, which makes for a wider

distance between them. By doing this, it is also much more likely that the classifier

will generalize better. The parameter that handles the number of violations allowed

is C [3]. The higher it is, the fewer the violations and consequent distance of support

vectors. An example of C = 1 can be seen in figure 2.5.

Figure 2.5: Plot of SVM adjusting to two features with C = 1. Adapted from the
book ”Hands on Machine Learning with Scikit-Learn and TensorFlow” [3].

Although this classifier is very powerful, a very large number of datasets cannot

be linearly separable. To solve this, extra features that are transformations of the
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original ones are added, that allows for a different arrangement of data. An example

of this process can be seen in figure 2.6. However, performing such great number

of transformations can turn extremely computationally heavy which lead to the

implementation of the Kernel Trick. This trick is intended to calculate the dot

product of the transformed vectors without having to transform them [3].

Figure 2.6: Demonstration of features transformation x2 = (x21) to find non-linear
relationships. Adapted from the book ”Hands on Machine Learning with Scikit-
Learn and TensorFlow” [3].

So in Machine Learning, a kernel is a function capable of calculating the dot product

of the transformed vectors based on the original ones. Some common kernels are

Linear, Gaussian Radial Basis Function, Polynomial and Sigmoid.

The following method described is Decision Trees. Decisions Trees, the unitary block

of Extra-Trees, are a group of sequential if-then-else rules (nodes) that break down

the dataset in ever so smaller subsets. These rules, are based of a single feature and

threshold, which try to look for the combination that splits the data into the purest

subsets. This keeps happening recursively, until it reaches the maximum depth of

the tree, or until it can no longer reduce impurity. There are several criterion used

to measure impurity, some of them being the Gini impurity or entropy [4, 73].

To improve on their classification power, methods which are ensembles of Decision

Trees were developed. These are entire ”forests” built using trees as unitary blocks,

the most used being Random Forests and Extremely Randomized Trees classifiers.

The Extra-Trees classifier, makes use of a set number of Decision Trees, where

at each node, only a subset of random features is considered. Also, rather than

searching for the best possible thresholds, it utilizes random ones too. Then, to

make predictions, all the votes from every single tree are counted to output a final

decision. Feature importances are calculated according to their depth in each tree.
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Features with high purity are usually the first ones being selected for a rule, which

makes their importance score higher [74]. This exact process can be seen on figure

2.7. Random Forests work in a very similar way, but the best possible thresholds

are calculated, which makes them more computationally heavier than the former,

although slightly more accurate [75]. Both methods are easily interpretable and

applicable in case-control studies, and are highly adaptive to data, which makes them

effective when dealing with ”large p, small n” problems. Besides these advantages,

they also account for interaction between variables, making them tailored to detect

epistasis [76]. These classifiers can be used to perform SNPs selection, genotype-

phenotype association, epistasis detection and risk assessment [77, 78].

Figure 2.7: Iteration process to develop an ensemble of Decision Trees such as
Random Forests or Extremely Randomized Trees classifiers. Image from ”Bioinfor-
matics challenges for genome-wide association studies” [4].

Neural Networks, more specifically, Deep Learning, is a technique based on the

architecture of the biological brain, that turned out to be very good at discovering

non-linear patterns in high-dimensional raw data, without much human supervision

[79]. The unit of a Neural Network is the neuron, which is inter-linked with other

neurons in multiple layers. There is always an input layer, which feeds the hidden

layers, and that ultimately leads to the output layer. Deep Learning is considered

to be a Neural Network with several hidden layers (more than 3). Each neuron’s

output is given by the weighted sum of outputs in the layers below, to which is

applied a non-linear activation function. For example, the output of the jth neuron
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is given by:

f(aj) = f(
∑
i

W ijX i + bi) (2.13)

, where W is the weight of the neuron X and b is bias [80]. To perform backward

propagation, the outputs are compared with the correct answer, and error deriva-

tives are obtained. These are used to adjust the weights and improve the outputs

of the network [80, 81]. Deep Neural Networks have produced extremely good re-

sults in the fields of image and language processing, and speech recognition. These

challenges are similar in their high dimensionality and noise rates when compared

to genotype-phenotype association problems. Some studies have used such methods

to detect SNP interactions and perform GWAS in T2D, but they are very recent,

albeit showing promising results [82, 83, 84].

DNN’s have many benefits, but they also come with some drawbacks. For now, they

lack an adequate formulation, and are considered black boxes, which makes it hard

to interpret them. When uncovering associations in GWAS it is important to not

lose track of the biological context of the problem, and that can be very hard when

dealing with DNN’s [79].

Overall, work flow of the processes used is roughly the same as shown in figure 2.8,

and this is one of the aspects that this work aspires to change.

2.8 Validation of Machine Learning Methods

Machine Learning methods bring many advantages to GWAS, but they require

proper validation so that we can be somewhat confident of their results. To perform

validation, usually the available dataset is divided into a training set for the classifier

to learn, and a test set, where it is analysed how it performs when introduced to

new cases.

One method that is widely used to investigate overfitting is cross-validation. What

this approach does is divide the dataset in k folds, and use them to train and test by

turns. By using it, it is possible to verify how the validation metrics come up with

different combinations of training and testing. If the classifier is indeed overfitting,

the metrics will fluctuate a lot more, and some runs will output very poor results

[5]. A visualization for better understanding of how this method operates can be

seen on figure 2.9.

There are many metrics used to draw conclusions from these tests. Intuitively, one of
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Figure 2.8: Regular work flow of projects that utilize computational methods in
GWAS. Image from ”Bioinformatics challenges for genome-wide association studies”
[4].

the first metrics to look at is the percentage of predictions that were correctly made,

designated accuracy. However, in some cases, it can be misleading and display values

considered good, and the classifier stills turns out to be a poor one. This can happen

for example, when the dataset is greatly unbalanced, and classifies only one of the

classes correctly. To avoid this, it is also important to look at sensitivity (also called

True Positive Rate or Recall) and specificity (or True Negative Rate). These metrics

allow to understand how well the predictions went on both classes. Another one of

these metrics used is the F1-Score (or F-measure), that combines both precision

and recall to output an overall goodness-of-classification metric, although it fails to

consider True Negatives [85]. All the previously described metrics calculations can

be observed in figure 2.10.

The last metric covered, that is also very widely used to analyse the best decision

thresholds are the Receiver Operating Characteristics. These are meant to evaluate

the discriminant power of binary classifiers at different decision thresholds. For each

threshold, the corresponding True Positive rate and False Positive Rate are plotted,

which serves to find the best possible trade-off between these two metrics. Lastly,

the Area Under Curve (AUC) is measured to get a picture of the global decision

power for the predictor [6].
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Figure 2.9: Demonstration of three-fold cross-validation. The same principle is
applied to any k-fold cross-validation. Adapted from ”Cross-Validation” [5].

Figure 2.10: Several Machine Learning validation metrics and how to perform
their calculations. Adapted from ”An Introduction to ROC analysis” [6].
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Data Preparation

3.1 Cases and Controls

To perform the association study, data from patients with T2D was collected. Both

this data and the controls data is represented by VCF files. The cases VCF file

contained 71 samples of the Portuguese patient’s exome. When all of them were

merged in a single file, there were 267 475 variants, either SNPs or INDELs. No

data of patient medical records was used, since it is already known that features

such as BMI and age can be great predictors of diabetes. Adding these to any

model severely improves its accuracy, but the point of this study is to only use

genomic data, more specifically SNPs, to both predict and find new markers for

T2D.

Since in the cases file there was no information about sex, it was decided that the

study would be conducted without this division. There are several diseases that

have different risk metrics depending on sex, but for T2D, these are mostly due

to environmental factors. As such, and also to not reduce further the number of

samples by dividing it, division by sex was not performed.

The control data was collected from the 1000 Genome Project. It’s goals involve

discovering the most possible structural variants in the human genome of most

ethnicities with frequencies of at least 1 %. This project was able to collect 2504

samples from 26 populations, with at least 4x genome coverage, genotyped with

high accuracy [48]. One of those populations is the IBS, which is short for Iberian

populations in Spain. Considering all the case samples are of Portuguese patients,

the closest ethnic group possible was selected, to avoid bias in data that would

eventually lead to differentiation of populations instead of T2D. The number of

samples gathered from this study were 107. The data is divided by chromosome,

with gzip compressed files ranging from 200 MB to 2 GB, totalling 17.4 GB of
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Figure 3.1: Visualization of possible genotypes for the structural variants. Adapted
from public domain images at https : //www.genome.gov .

compressed data. When uncompressed, these files reach at least 500 GB of storage,

containing over 80 million variants across the genome.

The cases VCF file offers numerous information of the variants, such as allele count

in genotypes, total number of alleles in called genotypes, allele frequencies and so

on. But the most important and the one that is going to be the most used is the GT

field, which indicates the genotypes themselves. When making a call, short reads

translate the information of two chromosomes. By using figure 3.1 as reference, and

considering B as the REF allele, if most of the reads show a ”B”, it is genotyped as

Homozygous by REF. If most show ”b”, it is considered homozygous by ALT. Since

in this case, the genotype is unphased, it is not possible to know which chromosome

the allele refers to, so both ”Bb” and ”bB” are classified as heterozygous. The REF

allele is the one with the highest allele frequency in the population.

In VCF files, genotypes are represented as 0/0 for homozygous by REF, 0/1 for

heterozygous, and 1/1 for homozygous by ALT. This needed to be translated in a

way Machine Learning algorithms could interpret. To do so, a final structure of

samples by variants is attained, where 0/0’s are represented by 0’s, 0/1’s by 1’s and

1/1’s by 2’s. The translation for SNPs with more than 1 ALT allele can be seen in

the table 3.1.

3.2 Cases Quality Control

The controls data from the 1000 Genome Project is already guaranteed to be of

very high quality. However, it is important to analyse the cases dataset quality to

ensure the confidence level that is put into it. If we’re not confident of the quality
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GT Translation
0/0 0
0/1 1
1/1 2
0/2 3
1/2 4
2/2 5
0/3 6
... ...

Table 3.1: Translation of the genotypes (GT) of the VCF file to standard samples
by variant dataset, for SNPs with several ALT alleles.

of the dataset, several measures have to be taken to ensure results are not biased by

wrong genotypes.

To analyse the quality of the cases dataset, a tool developed by Illumina called

hap.py (https : //github.com/Illumina/hap.py) was used. This tool produces solid

comparison metrics between two VCF files or one file and a reference genome. Since

different genotyping methods can produce different ways of representing the struc-

tural variants, this comparison is not as straight forward as one might think. Hap.py

besides solving these issues, counts SV types and produces quality metrics for them.

However, when comparing files, it was noted that the tool only compared the first

exome to the reference. This happens because it was built not considering multi-

sample VCF files. As such, genotype accuracy metrics are not complete, but others

such heterozygous to homozygous and transition to transversion ratios are still in-

formative. The het/hom ratio is usually 2:1 for WGS and lower for WES. In the

TsTv ratio, transitions are interchanges from purines or pyrimidines, and transver-

sions involve interchanges of purines to pyrimidines or vice-versa. The expected

proportion for this ratio is 2.1 for WGS and higher (up to over 3) for WES. The

metrics for the first exome can then be observed in table 3.2. These were performed

using the Platinum Genomes as the Gold Standard VCF file.

Type Total Count Truth het/hom het/hom Truth TsTv TsTv
INDEL 3449 - - 1.22 3.68

SNP 49073 1.51 1.68 2.09 2.44

Table 3.2: Total count of INDELs found on the Gold Standard Platinum Genomes,
and truth and cases dataset het/hom and TsTv ratios. The counts are much lower
than the total variants because these are the ones found in the truth set.
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The het/hom ratio is slightly lower than 2:1 and the TsTv ratio is higher than the

golden standard both because the dataset is of WES, which is the expected.

3.3 Dataset Construction

As of this point, there are two separate datasets with very distinctive number of

variants. As such, it is necessary to merge them in a single file, guaranteeing the

most possible number of variants in the final file.

This process is started by assembling the existing variants on the cases files and

looking them up on the enormous chromosome files of the controls data. After

all the possible variants are identified, their genotypes are extracted in the exact

same way it was performed for the cases data. When lining up variants from both

datasets, it was verified if their REF and ALT alleles matched. Those who did not

were discarded. After it, 181 691 common variants were found between the two sets,

which allowed to assemble them.

To finalize the data clean up, missing values needed to be handled. The cases file

had a rate of 22% missing genotypes. This was improved when cases and controls

were combined, but it was still a pressing issue. To solve it, every feature containing

more than 10% missing genotypes was removed. The remaining ones with only a few

data points missing were imputed utilizing the most frequent value in that column.

This leads to a final total of 168 432 variants. A final ”labels” column was added

with 0’s representing control samples and 1’s representing the cases.

It is important to note that, although ethnicities are the most similar possible, cases

and controls were most likely acquired by different sequencers which might introduce

bias differentiating them. The number of samples and variants can be seen in the

table 3.3.

Dataset Number of Variants Number of samples
cases 267 475 71

controls 81 271 745 107
total 181 691 178

imputed 168 432 178

Table 3.3: Number of samples and variants at each stage of the data processing.
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3.4 From Variants to Genes

Although the data quality holds up, it is also necessary to assume that the dataset

might contain some noise. This means that some variants can be extremely good

differentiating the classes we created, especially since there many more variants than

samples. These might not necessarily be noise or wrongfully genotyped variants, but

it is better to look at whole regions and combine them instead, since it reduces this

risk.

The reason why it is possible to infer information of variants from gene regions is

thanks to Linkage Disequilibrium. As it can be seen on figure 3.2, by identifying

regions of high LD it is possible to attain information of several disease related

SNPs, even if they are not directly contained in the dataset.

Figure 3.2: Visualization of high Linkage Disequilibrium regions which allow for
usage of genotyped SNPs to infer disease risk SNP [7].

As such, it is critical to be able to extract information relative to which gene a

variant belongs to, so it is possible to group them. This is one of the fastest and

most meaningful ways of grouping variants, since directly performing tests of LD

between each variant would be extremely computationally heavy.

To do so, a package for R called BiomaRt was used, that allows to query the Ensembl

database. It works essentially as a genome browser with information of genomics,

evolution, transcriptional regulation, sequence variation and annotations of genes,

alignments and disease data. By querying the respective genes for the available

variants, it is then possible to build a dictionary for an easy mapping of variants to

genes. However, sometimes this querying cannot retrieve gene information because
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the variant is still not mapped. When this happened, a note is attached to the

variant, but the analysis progresses with these marked as having no gene.
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Feature Engineering

4.1 Genes Pre-Selection

At this stage, there are 168 432 variants present in the dataset. One of the first

possible approaches can be to perform feature reduction and follow up with classifiers

training. However, with this extreme number of features and comparatively low

samples, the likelihood of finding dataset specific patterns that are not scalable to

alternative datasets is very high. As such, it is important to find a methodology that

is able to adapt to different genotyping data and learn from either more features or

samples.

As part of the methodology, and to standardize the approach, a translation of the

current datasets from variants to genes was performed. This essentially leaves the

data exactly as is, but provides extra information relative to the gene of each vari-

ant. This may come across as very little extra information added, but it allows to

gather variants in groups, and distinguish with any extracted metric which are the

meaningful variants, and the misfits in their group. Nonetheless, the main problem

still remains. It is necessary to select which are the important genes.

To do so, two distinctive methods of feature selection are employed. The first one,

makes use of prior knowledge of T2D genetics, and the second employs regular

GWAS metrics combined with group information to establish if the genes are relevant

or not.

A list of the most relevant genes discovered was obtained from ”Genetics of Type 2

Diabetes” [1]. This is not a comprehensive list nor it has all of the variants discovered

up to date, but it delivers important information such as the frequency of the risk

allele in a population and the Odds Ratio for T2D, where it can be seen on table

4.1.

By looking at the OR of the genes in the table, it is possible to identify, as previously

31



4. Feature Engineering

Locus Chr Risk allele frequency OR (95%CI)
NOTCH2 1 0.11 1.13 (1.08-1.17)
PROX1 1 0.5 1.07 (1.05-1.09)
IRS1 2 0.61 1.19 (1.13-1.25)
THADA 2 0.92 1.15 (1.10-1.20)
RBMS1/ITGB6 2 0.57 1.11 (1.08-1.16)
BCL11A 2 0.46 1.08 (1.06-1.10)
GCKR 2 0.62 1.06 (1.04-1.08)
IGF2BP2 3 0.29 1.17 (1.10-1.25)
PPARG 3 0.92 1.14 (1.08-1.20)
ADCY5 3 0.78 1.12 (1.09-1.15)
ADAMTS9 3 0.81 1.09 (1.06-1.12)
WFS1 4 0.27 1.13 (1.07-1.18)
ZBED3 5 0.26 1.08 (1.06-1.11)
CDKAL1 6 0.31 1.12 (1.08-1.16)
JAZF1 7 0.52 1.10 (1.07-1.13)
GCK 7 0.2 1.07 (1.05-1.10)
KLF14 7 0.55 1.07 (1.05-1.10)
DGKB/TMEM195 7 0.47 1.06 (1.04-1.08)
SLC30A8 8 0.75 1.12 (1.07-1.16)
TP53INP1 8 0.48 1.06 (1.04-1.09)
CDKN2A/B 9 0.79 1.20 (1.14-1.25)
TLE4 9 0.93 1.11 (1.07-1.15)
TCF7L2 10 0.25 1.37 (1.28-1.47)
HHEX 10 0.56 1.13 (1.08-1.17)
CDC123/CAMK1D 10 0.23 1.11 (1.07-1.14)
KCNQ1 11 0.61 1.40 (1.34-1.47)
KCNJ11/ABCC8 11 0.5 1.15 (1.09-1.21)
CENTD2 11 0.88 1.14 (1.11-1.17)
MTNR1B 11 0.3 1.09 (1.06-1.12)
HMGA2 12 0.1 1.10 (1.07-1.14)
TSPAN8/LGR5 12 0.23 1.09 (1.06-1.12)
OASL/HNF1A 12 0.85 1.07 (1.05-1.10)
PRC1 15 0.22 1.07 (1.05-1.09)
ZFAND6 15 0.56 1.06 (1.04-1.08)
FTO 16 0.45 1.15 (1.09-1.22)
HNF1B 17 0.43 1.12 (1.07-1.18)
DUSP9 X 0.12 1.27 (1.18-1.37)

Table 4.1: Collection of chromosome, risk allele frequency and OR of 37 risk genes
identified for T2D. This list was adapted from ”Genetics of Type 2 Diabetes” [1].
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stated, that all these genes have relatively small values. Besides, these can only

explain about 10% of the observed heritability of T2D [1]. The most prominent

genes are the KCNQ1 and TCF7L2, them being the only ones with OR higher than

1.3. The OR is a metric indicative of association between a variable and an outcome

of interest. Given the two-by-two frequency table 4.2 the OR is calculated through:

OR =
a× d
b× c

(4.1)

Diseased Healthy
exposed a b

not-exposed c d

Table 4.2: OR two-by-two frequency table.

The closer OR is to one, the more indicative it is that the exposure does not affect

the odds of the outcome. If it is higher, the exposure is associated with high odds

for the outcome, and vice-versa. As such, and as it can be seen by the known T2D

risk genes, these are not linked with moderate risks [86]. However, by using them

together in a classifier, some non-linear relationships might be picked up, that are

not clear with only OR.

Since the association between genes and variants was previously performed, the

process of identifying the risk ones is very straightforward. However, since there

was only data from WES, there are some risk genes that were not picked up in the

current dataset. Out of the 37 genes, 18 were present, including some with higher

OR such as KCNQ1 and DUSP9, but other also important ones like TCF7L2 and

CDKN2A/B weren’t. However, since one of the goals of this study is to also try

and find new markers, it is necessary to include other genes. To do so, the standard

association Pearson’s χ2 test is going to be used. It is then possible to group it’s

results to find more meaningful regions or genes. Even more so, since this data is

nominal, the Pearson’s χ2 test is one of the most adequate for this situation. The

Fisher test could also be applied, but as it can be seen further down, one metric is

sufficient.

Before testing the variables, it is first necessary to test if they follow a normal

distribution. Since Shapiro-Wilk normality test is not deemed accurate for over

50 samples, D’Agostino’s K-squared test was used to test it, since it is the one

performed by the ”normaltest” function of the statistics python module Scipy. The

test was applied to every variable, and the −log10(p − value) was calculated and
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Figure 4.1: List of risk genes which were attempted to be found in the dataset.
Genes present in the data are red coloured, and the remainders are silver. The
bigger the size of a word, the bigger it’s known OR to T2D according to ”The
genetic architecture of type 2 diabetes” [8].

plotted against each variant’s position in the genome, as it can be seen on figure 4.2.

Since the −log10(0.05) = 1.3, and most of the values hugely surpass it, we assume

all variants follow a normal distribution.

The next step, is to actually apply the Pearson’s χ2 test. This was performed in a

similar way to the normality test. After it, we can clearly see in the figure 4.3 that

some regions show higher correlation to the classes of T2D and healthy. However, by

only choosing variants directly applying this metric, noisy or incorrectly genotyped

are still going to be picked up.

Normally, to solve this issue, a Bonferroni correction is applied. If multiple tests are

performed, the probability of a rare occurrence increases, and with it the likelihood

of incorrectly rejecting a null hypothesis. As such, the α probability that a null

hypothesis is rejected changes according to:

pi ≤ α

m
(4.2)

, where m is the number of tests completed. Instead of using it, a more region

centred approach was used, that flags every gene where the average of every variant’s

p-value is less that 0.05. From it, 120 genes were selected, which greatly reduces

the previous gigantic amount of features. By adding up the 18 identified T2D risk

genes, the dataset ends up with 138 genes.

4.2 Feature Extraction

At this point, the dimension of the dataset has been greatly reduced, but it still

contains data of variants that can single-handedly over fit the Machine Learning
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Figure 4.2: −log10(p − value) of the D’Agostino’s K-squared test for normality
plotted against each variant’s position in the chromosome.

models, especially since they are very likely to be overly correlated to both classes.

So, rather than using them straight away, we can apply dimensionality reduction

techniques, and by doing so, combine all the information and genotypes of one gene

into a single dimension. Besides this, it is also possible to extract variance and mean

of genotypes for each sample, to extract even more information.

The first dimensionality reduction method applied is the Principal Component Anal-

ysis. Since in this case, the projection only needs to be performed to one dimension,

the only component that matters is the first one. For every single gene, this method

is applied, which returns a vector of the first Principal Component, thus combining

all the variants of each gene. The same strategy was applied with Linear Discrim-

inant Analysis. This method assumes that the features are normally distributed,

which was already tested beforehand. These two extracted features for each gene

already capture most of the information contained by them, but to improve it even

further, the mean and variance of genotypes by sample were also added.

Ultimately, the final dataset will be a combination of these 4 extracted features for
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Figure 4.3: −log10(p−value) of the Pearson’s χ2 test plotted against each variant’s
position in the chromosome.

each one of the originally selected 138 genes, which totals 552 features. These are

named as ”gene method”, so it is possible to identify the most relevant genes and

feature extraction methods for each classifier.

4.3 Feature Reduction

To perform feature selection, we make use of an Extremely Randomized Trees ensem-

ble (Extra-Trees for short), and it’s ability to output which are the most important

features. This classifier is an ensemble of Decision Trees, with the particularity of

being much faster to train than Random Forests. These are among the most power-

ful Machine Learning algorithms available. The actual results and other metrics are

not entirely relevant at this point, since only feature selection is being performed.

This method can be seen in figure 4.5, which reflects the nodes of a simple decision

tree applied to the final version of the dataset, with Gini impurity measure and the

classes labelled as control for the healthy group, and target for the T2D affected
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group.

To make use of this selection method, 1000 Extra-Trees classifiers were trained with

the 552 features. For every classifier, the top 100 most important features were

selected and counted. Using these counts, it is then possible to gather the frequency

of which features are the most important when building an Extra-Trees classifier.

Figure 4.4: Frequency of times a feature was on the top 100 important features
for each of the 1000 Extra-Trees classifiers trained. Top 50 features displayed.

From this test, features with over 50% frequency were selected, which amounts to a

total of 49 features displayed on figure 4.4. Furthermore, from the selected features,

we can verify that 25 genes are present, 6 of them already known for being linked to

higher risk of T2D. Those risk genes are GCK, WFS1, KCNQ1, GCKR, IGF2BP2

and ADAMTS9.

37



4. Feature Engineering

Gene Chromosome Most Related Disease
FAM71E2 19 No results shown
EVPLL 17 Prostate Cancer
GCK 7 Maturity-Onset Diabetes of the young, Type 2

Diabetes Mellitus
MAGEB3 X Melanoma
TAB3 X Different Types of Cancer
WFS1 Wolfram Syndrome-1

Diabetes Mellitus
FAM120C X Autism
GPC4 X Simpson-Golabi-Behmel Syndrome
SLC38A5 X Pancreatic Ductal Adenocarcinoma
FRMD7 X X-Linked Infantile Nystagmus
SMIM10L2A X No results shown
STEAP1B 7 Prostatitis
KRBOX4 X Wilms Tumor 1
KCNQ1 11 Long Qt Syndrome 1

Diabetes Mellitus
OR10H2 19 No results shown
NPPC 2 Congestive Heart Failure
PRR3 6 No results shown
VEGFD X Different Types of Cancer
GCKR 2 Maturity-Onset Diabetes of the Young

Diabetes Mellitus
PLS3 X Osteoporosis
SLC25A43 X Breast Cancer
IGF2BP2 3 Diabetes Mellitus, Noninsulin-Dependent
BTK 22 Agammaglobulinemia, X-Linked
ADAMTS9 3 Peters-plus syndrome

Different Types of Cancer
Body Mass Index Quantitative Trait Locus 11

PLCD1 3 Nail Disorder, Nonsyndromic Congenital, 3

Table 4.3: Ordered list of risk genes discovered and their most related diseases
according to www.malacards.org , a human disease database.
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Classification and Results

5.1 Problem Formulation

Now that the dataset is entirely prepared, it has to be decided which classifiers are

going to be used, what problem of classification are they actually tackling and how

can the results be interpreted.

Firstly, it is important to understand what is it that it’s going to be classified and

how and if it can be extrapolated to the actual problem we are trying to solve.

Our dataset is comprised of healthy people that make up the controls, and a group

of T2D affected people, amounting the cases. Furthermore, these two groups were

not necessarily genotyped by the same methods, or even sequenced by the same

machines. As expected, this may lead to bias between the groups, which makes

their classification easier but wrong. However, during the previous phases, certain

aspects and mechanisms were already employed to deal or verify this situation.

Foremost, by the analysis of the quality of the dataset, it is assumed that most of

the genotypes of cases are correctly made and accordant with the reference genome,

such as the controls groups knowingly is. Even if some variants are incorrectly

called in either group, ultimately these are aggregated with many other variants in

an attempt to represent a whole gene. This not only reduces the bias or noise the

final features will have by dissolving the variants, but also allows for a representation

that is understandable when those same features require further investigation.

One extra step employed to try and remove bias, was adding information of the

biological context to the dataset. This was performed using the risk genes. By

utilizing them, it is known beforehand that these do add up significant observable

differences that are less likely to come from bias. When these were forcefully included

in the dataset without any kind of filtering such as the one performed with χ2, they

only made up 18 out of 138 genes, or 13% of the genes. This number almost doubled
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when there was a search for the most important features, which found 24% of the

genes being already known as risk genes. This goes to show that the methods

employed are indeed in the right track, and have a fair amount of success finding

important and unbiased features.

Besides laying out the specific gene importance, that allows for follow up investiga-

tion on it, it is also possible to trace back the present variants on a single gene, and

proceed with a closer inspection on specific SNPs and their genotypes. This nonethe-

less, still leads to the question of which is the correct approach for the problem, and

what is it important to extract. Is it better to look at regions, or single variants

are enough to explain the problem? Being able to detect mutations is important

because it offers clear and concrete proof of what are the mechanisms behind the

disease, and give credibility to the solution for genomics experts. However, this is

not always possible, and if whole regions offer better results without specific alle-

les information, is it worthwhile to use them? For these questions, this approach

enables answers for both, which might be important to justify using whole genes

information not losing focus of smaller variants.

From the classification problem, it is expected to distinguish between groups of

people with higher risk of T2D and healthy, only making use of genotypes. However,

to specify the problem as such, there are a few assumptions that are required. First,

that the genetic code does not undergo many changes during a person’s lifetime

[1] and that a member of the cases group has higher risk of developing T2D. The

first assumption is acceptable to make, but there is no certainty on the second one.

Since there is no access to physiological data of each patient, there is no telling which

environmental conditions each is exposed to, therefore no specific information about

habits versus heritability. Two people exposed to the same environmental conditions

can have different outcomes regarding T2D because of genetics, but someone with

lower risk can be affected by T2D solely through very high sugar levels in the blood.

It is not known for sure if there are specific cases where genetics played a bigger role,

but it is assumed that overall, the cases group has a higher risk of being affected by

T2D. There is no specific interest in classifying T2D using more patient’s data, but

it would be helpful in such cases to perform a distinction between higher genetic

T2D risk, and therefore improving the problem’s approach.

Ultimately, the solution requires a classifier that is capable of looking for non-linear

relations on the data. There are several available classifiers, but for this particular

case Support Vector Machines and Decision Trees (more particularly Extra-Trees

classifiers) were deemed appropriate. Both are well suited to look for non-linear
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associations and handle medium-sized datasets. Deep Learning was also considered,

but it is a black box where little information can be extracted about the biological

context of the problem, and there are not enough samples to improve its performance

in a meaningful way.

5.2 Classifier Optimization

There are many kernels and parameters that are possible for the classifiers, making

it necessary to optimize them for the present dataset. For the optimization, a

set number of parameters is given, and the best classifier is chosen based on the

combinations of different parameters and a scoring function. Since this dataset is

not terribly unbalanced, the scores are based on prediction accuracy. If it were, it

would not be advisable to use accuracy as such, since it could be very high even if

it misclassified one entire class.

For the SVM, the parameters provided are displayed on table 5.1. For each dataset,

the optimized parameters will be different, which also happens when using only the

top 50 discovered features, the whole dataset, or only features related to known risk

genes. However, to standardize the process, only one final set of parameters that

were the best overall for each dataset were chosen.

The C parameter, as explained previously refers to the number of violations of

boundaries allowed, the tol is the tolerance for the stopping criterion, gamma is

the coefficient for the kernels ”poly”, and ”sigmoid and the degree refers to the

polynomial degrees for the ”poly” kernel. The final optimized SVM had a Gaussian

Radial Basis Function for its kernel, a C of 0.75, tol of 0.001 and gamma set to ”auto”

that uses for it’s value 1
Number of features

. The Gaussian RBF uses the following

equation to compute the kernel:

K(a, b) = exp(−γ‖a− b‖2) (5.1)

, where a and b are the original vectors. The number of parameters tested is not more

extensive since this would be extremely slow, even with the choice of combination

of parameters being randomized.

The Extra Trees classifier parameters are displayed on table 5.2, and are different

that the ones used before. The n estimators refer to the number of trees in the

forest and the criterion to the impurity evaluator. Other parameters refer to sin-

43



5. Classification and Results

Parameters Values
kernel [’linear’, ’poly’, ’rbf’, ’sigmoid’]
C [0.25, 0.4, 0.5, 0.55, 0.75, 1]
tol [1e-3, 1e-4, 1e-5]
gamma [25, 50, 75, 100, 150, ’auto’]
degree [1, 2, 3, 5, 10]

Table 5.1: Parameters for the SVM classifier that were tested to find the most
optimized one.

gle tree characteristics like min samples leaf to the minimum number of samples

needed to form a node, min samples split to the minimum number to split a node

and max leaf nodes to the maximum number of nodes on the tree (mostly to save

memory).

The optimized predictor used 50 trees with the ’gini’ criterion, at least one sample

per node, a minimum of four to split a node and twenty max nodes per tree.

Parameters Values
n estimators [25, 50, 75, 100]
criterion [’entropy’, ’gini’]
min samples leaf [1, 2, 3, 5, 10]
min samples split [2, 4, 5, 8, 10]
max leaf nodes [2, 20, 50, 75, 100]

Table 5.2: Parameters for the Extra Trees classifier that were tested to find the
most optimized one.

5.3 Metrics and Results

After optimization of classifiers, it is necessary to employ validation techniques and

extract meaningful metrics that allow for higher confidence in the results of the

classifiers. Nevertheless, these new cases are still from the same original dataset,

and likely will have the same bias and noise. Although the ultimate metric to

evaluate generalization is actual classification and validation in more datasets of the

same type, this is not always possible.

For this particular case, 5 fold cross-validation was used and since in this problem the

dataset is not terribly unbalanced, the tests were evaluated with the accuracy and

F1-Scores. Since the F1-Scores don’t account for True Negatives, the ROC curves
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were also observed to select the best model possible. The Machine Learning python

package Scikit-Learn combines unnecessary thresholds, which make some plots seem

like they have fewer thresholds computed. By combining all these metrics, it is

possible to get a good idea of how the classifiers are performing.

Since every metric, validation and classifier is decided, the plan for testing can now be

formulated. There are three different datasets whose characteristics were previously

detailed in the last chapter. These are the full dataset with all the features extracted

for the selected genes, the dataset that only contains features related to known risk

genes and the last one with the top 50 selected features. The original variants dataset

was not used since it overfits very badly. To verify the consistency of results, for

each dataset, a hundred classifiers were ran with five fold cross-validation (either

SVM or Extra Trees), and their average values were computed. Their confidence

intervals are not displayed since they are extremely small, because the predictors

were very consistent. The metrics can be observed on figure 5.1 and the ROC curves

on the following images.

Figure 5.1: Mean of F1-Scores and accuracies by classifier built with all the features
(blue), only features from known risk genes (red) and top features identified in the
previous analysis (silver). Results are the average of 100 trained classifiers for each
situation.
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Figure 5.2: ROC curve for the dataset with all features, with the Extra Trees
Classifier.

Figure 5.3: ROC curve for the dataset with the known risk genes features, with
the Extra Trees Classifier.
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5. Classification and Results

Figure 5.4: ROC curve for the dataset with the top fifty features, with the Extra
Trees Classifier.

Figure 5.5: ROC curve for the dataset with all features, with the SVM Classifier.
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5. Classification and Results

Figure 5.6: ROC curve for the dataset with the known risk genes features, with
the SVM Classifier.

Figure 5.7: ROC curve for the dataset with the top fifty features, with the Extra
Trees Classifier.
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Discussion

6.1 Machine Learning in GWAS

The starting global premise of this work was fairly straightforward. It was intended

from two discrepant datasets, to verify if it was possible to perform a T2D risk as-

sessment. Given this, the single most important point in this project is the capacity

to perform relevant feature extraction, and test non-linear relations between loci.

It is then very clear, that the main focus either from this or other GWAS is the

feature engineering step. However, state of the art methods have some trouble with

complex diseases such as T2D because and it is very easy to dismiss valid variants,

since their correlation to the cases and controls labels are not always evident and is

even non-linear [87]. As such, from the result of this work, it was possible to deliver

a new feature engineering pipeline, that utilizes both filter and wrapper methods.

This pipeline’s results were then tested with machine learning methods that yielded

extremely good results compared to any state of the art methods. The utility of this

work is doubled when it was possible to identify some novel and interesting genes.

From the moment the genotype’s dataset is prepared, the variants are combined

into genes. Instead of performing filtering on SNP’s, only the genes are used, which

grants us the ability to look into whole regions. Performing gene-gene interactions

for the whole dataset is not computationally feasible, but looking for regions with

higher average correlation becomes now possible. By looking for genes with an

average p-value of the standard χ2 test below 0.05, some noisy features are reduced

and it is ensured that whole regions are distinctive with high LD. After it, known

risk genes from the literature can be added, which not only gives reliability, but

also allows for easy modifications once the literature evolves. This sums up the first

step of the feature engineering, that employs filtering methods and is reasonably

standard, apart from looking at the problem from a region based perspective.
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The second step of the pipeline, involves extracting new features from the existing

selected genes. This allows for a targeted dimensionality reduction, providing only

the relevant information from already relevant genes, well adapted for machine learn-

ing use. In this part of the process, specific gene information is mashed together in

single highly detailed vectors, providing targeted depictions of the whole genes. At

this point we are clearly stating the intent of using regions over single variants, as it

enables to combine non-linear relations of the SNP’s themselves, and allows further

testing of non-linearity between genes and therefore, epistasis. This combination of

factors is a great step forward from literature, as it now becomes possible to study

relations that are very often overlooked since there are no good ways of measuring

them. As an extra bonus point, all of these selections are specifically made and

intended to be easily applied in Machine Learning models, that allow for straight

away testing and validation.

To complete the pipeline, we arrive at the third and final feature selection segment.

It’s main goals are to maximize the prediction accuracy and find a relevant feature

space that represents the problem with the least possible number of features. This

section applies wrapper methods and decision trees to select those features, which is

a process essentially based on Gini impurity and tree depth. From it, it is possible to

identify several genes that can be novel introductions to T2D risk literature. In this

step, it is also relevant to note that there was an increase of prevalence of known risk

genes from the selected genes dataset (12.9%) to the top 50 identified genes (24%).

We can then argue that the series of procedures utilized were indeed important to

uncover T2D related risk genes.

The depiction of this process can be seen on figure 6.1, for an easier understanding

of the work flow. From what it seems like a simple and straightforward pipeline,

many new relations can now be studied, as it allows for a maximum information

retention and selection without losing biological context.

After this process, the data was classified using SVMs and Extremely Randomized

Trees classifiers. It is clear that the SVMs with the Gaussian Radial Basis Function

kernel were the better performers in every dataset. Also, even though there was a

reduction of features to less than 10% of the original size of the full dataset, only

1% of accuracy and f1-score were lost. Five-fold cross-validation was then used as

a measure to avoid overfitting, and so that we can be more confident in the results.

However, the point that provides the most confidence and validity over the pipeline

is the 0.94 ± 0.03 AUC with a SVM and only known risk genes being used, that

shows it can produce accurate classification based on known genes that increase the
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Figure 6.1: Depiction of the pipeline developed to extract important features and
discover possible risk genes. On 1. the passage of variants/SNPs to finally relevant
genes is shown. On 2. it is demonstrated the passage of those genes to features
extracted and on 3. the ranking of variables with Decision Trees.

risk of T2D.

At the beginning, as stated before, with the variants and genotypes data, all the

classifiers would massively overfit and classify every class correctly, mostly based on

incorrect or noisy data. This pipeline, not only provides a way to employ Machine

Learning in GWAS, but also to correct these issues, be more confident on the data

used, and extract novel genes information.

The best SVM classifier can also act as risk predictor for this disease, and even

output probabilities for a new sample of T2D risk. For this purpose, we assume 100

% to be the highest risk possible, but this is only based on the current data of what

the model depicts as the higher risk possible. Nonetheless, these probabilities are

only model based, and to develop a truly accurate risk predictor, it is first necessary

to get a better understanding of the underlying genetics of T2D and make a more

truthful representation of the phenotype differences of each patient.
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6.2 Model Shortcomings

The results of the pipeline are fairly solid and after the dataset quality tests and

validation metrics applied, we can be somewhat confident in them. However, there

are a few points that the model fails to handle, and some pitfalls that can bias the

results.

The first such point is that the sequencing machines utilized are not the same for

the cases and controls groups. The same can be said about the genotyping methods

utilized. Nonetheless, it is expected a certain level of confidence and a standard-

ization of the procedures employed, so that the quality of the data is not affected,

and the machine from which the genome or exome was sequenced does not matter.

To even lessen the variability possibilities, samples from the same ethnicities were

used, all to ensure the complete dataset was as reliable as possible. However, the

use of samples from only the Iberian Peninsula can also be considered a drawback,

as it makes the study plenty restricted in terms of world population reachability.

Nevertheless, the pipeline still holds true for any other datasets it can be tested on.

The next shortcoming is relative to the ability of the pipeline to retrieve information

of the variants and respective alleles that are responsible for the risk alterations that

are seen. This retracing is not impossible, but it was discarded for the advantage

of using regions. Since the genes information could be collapsed in single vectors,

it was more useful for a machine learning model to access it rather than single

variants. The retracing can be performed by looking at the intended original gene

and performing association tests, but it is possible that some information is being

lost or several variants are needed because of their non-linear interactions. Not

providing risk allele information might very well be a pitfall, since many sources

expect this kind of information.

Lastly, it is important to discuss the novel risk genes that were identified, their

validity, and why are genes non-related to T2D considered by the top classifiers. On

the first place, since there is no access to the patients data besides their genome,

it is not possible to verify if there are any other conditions that might be affecting

the results, and if they justify the appearance of many other genes related to risk

of other conditions. Nonetheless, only the known risk genes and genes that have no

further data available related to disease, already make up for 40% of the top 25 genes

identified in the top 50 features. Even if for a moment we consider those non-related

extra genes as noise, it doesn’t take away from the fact that the classifiers fare up

decently well with only known risk genes. The classifiers look for the best possible
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data to classify the problem which may lead to usage of noise that fits the classes.

To ascertain the validity of some possible novel identified genes, further gene tests

would need to be performed.

So far, the results and validation metrics seem to weight up a positive outlook, but

further certainty of this pipeline will not be entirely known until further validation

can be performed with other SNPs or variants datasets.
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Conclusion

7.1 Analysis Pipeline

The first problem that was dealt with in this project was the sheer size of the

datasets, almost in the Terabyte order. This was a massive challenge, and required

great optimization on the part of any code that handled them. Not only this, but

they required very careful parsing as any bias introduced could ruin the results and

the validity of any methods tested. Nevertheless, this task was successful, as proven

by the quality control later performed on the dataset.

At the start of this work, it wasn’t decided that a pipeline was going to be developed.

The first main goal intended to establish a risk predictor for T2D and discover new

genetic markers for it. However, as the project went on, it was observed that finding

novel markers goes hand-in-hand with feature selection and that it really plays a

big part when it comes to GWAS. It was also noted that for many classifiers in the

literature, feature selection remained largely the same of any regular GWAS.

As such, I believe the pipeline of feature engineering that was developed to be of

great use when exploring any new genomics dataset, with all the advantages and

disadvantages discussed earlier. Besides, any new markers that are discovered with

it can then be put to a test by classifying T2D, which gives more confidence on

them.

The final risk predictor reached extremely good results, much better than expected

or found in the literature. This was a bit of a surprise, and caused for many points

of doubt or distrust in the process. However, at the end, most faults possible that

may have happened were thought of, tested, and taken into account through all the

steps, to finally achieve a healthy trust on the conclusions provided.

If this pipeline can be validated on other dataset, it will show that working with

gene regions is a very important approach that needs to be incorporated when
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performing complex diseases studies, and confirm that indeed epistasis might be the

phenomenon that was missing to be accounted for to explain the missing heritability

of complex diseases.

7.2 Future Work

The most important future work that can have the greatest impact, is the validation

of this pipeline on bigger and more diverse datasets, Whole Genome data or even

datasets of other diseases. Not only this, but also having more data of every patient

can help forming groups or identify other points that can skew the labels. If this

was possible, it could shift the way genetic datasets are interpreted, and accelerate

the introduction of Artificial Intelligence use in these kinds of problems. To make

this happen in the health field, the methods need to be transparent, understandable,

and very clearly transmitted.

The following approach that could be linked to this study, are gene expression

datasets. This would include perhaps a new whole analysis and data acquisition,

but could add extra validity to the results of this pipeline.

Ultimately, novel methods that insist on the same points of region analysis, non-

linearity and that consider epistasis can also be developed, because as it was shown

with this one, they can provide a great deal information and select a good feature

space to predict complex disease risk. These pipelines can then be integrated in

an ensemble, to perform risk assessment and advance the use of such algorithms in

personal health.

7.3 Personal Note

Since my first classes of programming in the first grade of Biomedical Engineering,

I thought that I might have made a wrong decision in what comes to degree choice.

However, since I was many times in contact with programming, and further along

with data analysis and Machine Learning, I’ve in this way, and I’m so very glad that

I did.

Currently, data scientists are in high demand, and very rightfully so, as their power

to extract value from datasets is incredible. The same can be applied to the Life

Sciences and Personal Healthcare areas, which to this day, are the ones that interest
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me the most. With further work for validation and trust for these methods from

the medical communities, there are many great areas where an impact can be made,

such as this one.

Through and through, I really enjoyed putting my sweat into this endeavour, and it

served to show the amazing things that are possible in the fields of Bioinformatics.

It makes me very happy that in this line of work I am not bound by anything, except

for a great deal of effort, and lots and lots of computing power.
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