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Abstract 
The growing complexity of the sheet metal formed products and the shortening of the 

development cycles has placed new challenges to this forming industry. In this context, it is 

well-known that the numerical simulation of the forming processes assumed a vital role to 

face up these challenges. In particular, the introduction of new materials with higher 

strength-to-weight ratio, and consequently reduced ductility, have sparked a growing interest 

on the development of reliable computational tools, able to accurately predict the onset of 

failure of ductile materials. 

The main objective of this work is to evaluate the ability of a coupled micromechanical 

damage model – the so-called CPB06 porous model, to describe the damage accumulation 

and, ultimately, the onset of failure of ductile materials exhibiting tension-compression 

asymmetry (SD effects). The main features of the CPB06 porous model are investigated and 

the importance of the yield loci shape, through the role played by all stress invariants, on the 

damage evolution are highlighted. 

Within this framework, a detail sensitivity analysis of the damage model is firstly 

performed based on the yield loci change of shape and size, when varying material and/or 

damage parameters. Both two-dimensional and three-dimensional representations of the 

yield surfaces are analysed. The influence of the stress state through the stress triaxiality, 

hydrostatic stress and the sign of the third invariant of the deviatoric stress tensor, 

particularly for axisymmetric loadings, is also studied. Next, a numerical analysis is carried 

out, based on single-element computations under axisymmetric and hydrostatic stress states, 

obeying the isotropic form of the CPB06 porous model. The applicability and reliability of 

the damage model is assessed by comparing the obtained results with the ones predicted by 

documented and well-accepted micromechanical finite element computations on three-

dimensional unit cells. Additionally, the numerical tests are complemented with a brief 

sensitivity analysis regarding the matrix isotropic hardening law parameters. All numerical 

simulations are performed with the in-house finite element solver DD3IMP. 

It is shown that, under tensile axisymmetric loadings, the damage model predicts two 

very distinct behaviours for the ductile damage evolution, whit regard to the sign of the third 
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deviatoric stress invariant. For positive values of this invariant, the model is sensitive to the 

SD effects, in agreement with the behaviour predicted by the unit cell studies. Nonetheless, 

for negative values of this invariant the damage model is shown to be insensitive to the SD 

effects, which contrasts with the behaviour predicted by the same studies. It is concluded 

that the insensitivity to the SD effects for this particular stress state is due the homogeneous 

characteristics of the yield function, implying that the direction of the plastic strain 

increment, and eventually the damage accumulation, are independent of the tension-

compression asymmetry displayed by the materials. 

 

 

 

 

 

Keywords: Ductile Damage, Porous Materials, Micromechanical Damage Model, 
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Resumo 
A crescente complexidade dos componentes obtidos pelo processo de estampagem de 

chapas metálicas e a redução dos ciclos de desenvolvimento de novos produtos colocaram 

novos desafios a esta tecnologia de conformação. Neste contexto, a simulação numérica do 

processo de estampagem de chapas metálicas assumiu um papel notório para enfrentar estes 

desafios. Em particular, a introdução de materiais com maior relação resistência-peso e, 

consequentemente, menor ductilidade, despertou um interesse acrescido no desenvolvimento 

de ferramentas computacionais fiáveis e robustas, com capacidade para prever com precisão 

a ocorrência da rotura de materiais dúcteis. 

O principal objetivo deste trabalho é avaliar a capacidade de um modelo de dano 

micromecânico acoplado – o modelo poroso CPB06, para descrever a acumulação de dano 

e, eventualmente, o instante em que ocorre a falha mecânica de materiais dúcteis que exibem 

assimetria tração-compressão (efeitos SD). As principais características do modelo poroso 

CPB06 são investigadas e é destacada a importância da forma da superfície de elasticidade, 

através do papel desempenhado por todos os invariantes do tensor das tensões, na evolução 

do dano dúctil. 

Neste contexto, inicialmente é realizada uma análise de sensibilidade ao modelo, com 

base na alteração da forma e dimensão da superfície limite de elasticidade com a variação 

dos parâmetros materiais e/ou de dano. São analisadas representações tridimensionais e 

bidimensionais destas superfícies. A influência do estado de tensão caracterizado através da 

triaxialidade, da pressão hidrostática e do sinal do terceiro invariante do tensor desviador das 

tensões, particularmente para carregamentos axissimétricos, é igualmente estudada. De 

seguida, é realizada uma análise com base em simulações numéricas com um único elemento 

finito submetido a estados de tensão axissimétricos e hidrostáticos, obedecendo à forma 

isotrópica do modelo poroso CPB06. A aplicabilidade e fiabilidade do modelo de dano são 

avaliadas comparando os resultados obtidos com os previstos por estudos numéricos em 

células unitárias tridimensionais documentados na literatura. Os testes numéricos são 

complementados por uma análise de sensibilidade em relação aos parâmetros da lei de 
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encruamento isotrópico da matriz. Todas as simulações numéricas são realizadas com o 

código de elementos finitos académico DD3IMP. 

A análise numérica mostra que, em carregamentos axissimétricos de tração, o modelo 

de dano prevê dois comportamentos bastante distintos para a evolução do dano dúctil, em 

função do sinal do terceiro invariante do tensor desviador das tensões. Para valores positivos 

deste invariante, o modelo é sensível aos efeitos SD, o que está de acordo com o 

comportamento previsto pelos estudos numéricos realizados com células unitárias. No 

entanto, para valores negativos deste invariante, o modelo de dano mostra-se insensível aos 

efeitos SD, o que contrasta com o comportamento previsto pelos mesmos estudos. Conclui-

se que a insensibilidade aos efeitos SD para este estado de tensão é devida à homogeneidade 

da função que define a superfície limite de elasticidade do critério. Esta característica 

matemática da função implica que a direção do incremento de deformação plástica e, em 

última análise, a acumulação de dano, sejam independentes da assimetria tração-compressão 

exibida pela matriz dos materiais porosos.  
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1. Introduction 

This chapter presents the motivation and a brief background on the framework of 

ductile fracture prediction using the finite element method, highlighting the growing 

industrial interest on damage modelling and its current challenges. The key objectives of the 

thesis and the outline of the text are also presented.  

1.1. Motivation 
Sheet metal forming is a process in which an initially planar geometry of a sheet metal, 

the blank, is deformed to a desired shape applying external forces that cause plastic 

deformation of the material. Being a near net-shape technology, this process is distinguished 

from other industrial manufacturing processes due to its high production rate, cost 

effectiveness, flexibility and enhanced mechanical properties of the final product. This 

technology is widely used in industries such as automotive, aeronautics, naval as well as in 

domestic and decorative applications. 

Driven by the increasing complexity of the sheet metal forming processes and products 

as well as the global competition and the need for flexibility, due to the demands imposed 

by the market, the industry has demonstrated for the past decades a special interest in the 

potential of computational mechanics to solve its challenges (Yang, Ahn, Lee, Park, & Kim, 

2002). One of the most popular numerical tools currently used is the Finite Element Analysis 

(FEA), which requires solving a set of algebraic equations that govern the mechanical 

behaviour of a material for a discrete number of domains (Pack, 2017). 

Indeed, currently, the numerical simulation of sheet metal forming processes using the 

FEA assumes a vital role in the design stages of new products and tools. The ability to 

virtually predict, at a preliminary project stage, possible forming defects in a product (e.g. 

surface and dimensional, unsatisfactory final mechanical properties, rupture/fracture) allows 

the minimization of the experimental based, and consequent costly and time-consuming, 

trial-and-error steps. Therefore, in addition to the main role of validation and optimization 

of the forming process, the FEA leads to more flexible manufacturing processes, combining 

reduced time-to market for new products and lower costs involved in its development – an 
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essential characteristic in competitive industries such as the automotive, aeronautical, 

military, among others (Badreddine, Labergère, & Saanouni, 2016). 

The study of ductile fracture in the sheet forming process has gain increased 

importance in recent years. This trend, especially noticeable in the automotive industry, is 

closely related to the increasing usage of new materials with higher strength-to-weight ratio 

such as advanced high strength steels (AHSS). This family of steels, which includes dual 

phase steels (DP), transformation induced plasticity steels (TRIP) and martensitic steels 

(MS) (Keeler et al., 2014) have enhanced mechanical properties, namely yield stress and 

tensile strength, when compared to deep-drawing quality mild steels and conventional high-

strength steels (HSS). This newly introduced materials allow to produce lighter structures 

and components from thinner sections and/or thicknesses, while maintaining satisfactory 

strength and stiffness, which ultimately results in a reduction of the overall structure mass, 

a crucial step to meet the ever-stringent standards on passenger safety and gas emissions 

(Badreddine et al., 2016; Pack, 2017). However, as is well-known, the increased mechanical 

strength of steels is usually accompanied by a reduction of their ductility. This phenomenon, 

complemented by the higher work hardening of AHSS, reduces the formability and 

crashworthiness of the components, since necking and fracture occurs for plastic strains 

smaller than the ones required by conventional steels. In fact, it has been experimentally 

verified that fracture can occur in AHSS without any evident sign of necking, which makes 

the common usage of the well-known Forming Limit Diagrams (FLDs) unfeasible 

(Badreddine et al., 2016). Thus, it is of the utmost interest the development of reliable 

numerical tools that accurately describe internal damaging and failure of ductile materials, 

either by necking onset or premature ductile fracture. As an example, Figure 1.1 shows the 

application of a damage model within a FEA of an engineering component. 

 

 
(a) (b) 

Figure 1.1. FEA of a cross-shape component with damage prediction (a) Equivalent plastic strain and 
internal damage contours; (b) Stress triaxiality distribution before failure (Amaral et al., 2016). 
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To achieve this, the damage models must be able to capture the characteristic load-

path dependent failure behaviour of ductile materials and provide reliable prediction of the 

stress and strain histories – crucial for predicting the onset of fracture (Roll, 2008). 

Simultaneously, such models should not present an overly complex formulation, which 

would lead to increased difficulties in their numerical implementation stage and in the 

calibration of the model parameters through experimental tests. In short, such tools must 

obtain accurate results in a reasonable computational time and be practical enough to be 

applicable to a fast-moving industry environment (Pack, 2017). 

Finally, it should be mentioned that damage models can play a very important role in 

other technological areas. The widely used sheet metal blanking process, a manufacturing 

technology in which material separation is due to ductile fracture, can greatly benefit from 

improved damage criteria. Studies shown that sheet metal blanking simulations using 

damage models result in an improved prediction of the punch force and quality of the final 

product (Yoon, Stewart, & Cazacu, 2011). Moreover, the damage modelling and fracture 

prediction allows the design of lighter and safer structures through accurate crash 

simulations, which can also take into account the parts manufacturing process, and 

ultimately contribute to improve the crashworthiness of vehicles and aircrafts (Dunand, 

2013). 

1.2. A brief background on damage modelling for ductile 
fracture prediction 

Before briefly discuss the existing alternatives for damage modelling, it is of all 

interest to clarify the meaning of the commonly mentioned terms damage and ductile 

fracture. The term ductile fracture is used to describe the rupture of a material that 

experiences large plastic deformation, exhibiting high ductility in the region where structural 

failure occurs. Ductile fracture is a physical process that results from the accumulation of 

plastic damage and leads to the formation and propagation of cracks in metals (Marcadet, 

2015; Xue, 2007). In its turn, damage can be understood as the physical process of 

progressive deterioration of the material. At the microscopic level, damage is related to the 

mechanism of nucleation, growth and coalescence of micro-cracks and micro-cavities, 

evidenced by experimental observations. Macroscopically, damage translates into a decrease 

of the material stiffness, strength and a reduction of the remaining ductility. Damage is an 
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internal variable that usually cannot be measured directly or easily quantified, unlike the 

material’s ductility or its fracture strain. Therefore, damage models are proposed to link field 

variables (e.g. strain tensor, stress tensor, stress triaxiality) to the progressive deterioration 

towards fracture, i.e. the damage evolution (Xue, 2007). This connection can be numerically 

simulated using either the so-called uncoupled or coupled damage models. 

The uncoupled models assume the damage process as being independent of the 

material plastic behaviour, i.e. the plastic properties of the material do not change with the 

damage accumulation. This approach consists in carrying out a conventional FEA simulation 

and evaluate damage exclusively as a post-processing step of the finite element solution 

(Badreddine et al., 2016; Kiran & Khandelwal, 2014). Within this framework, damage 

accumulation is formulated empirically or semi-empirically through a separate scalar 

variable D, with the general criterion: 

 
p
f p p

c0
( , ) ,D f d D

ε
ε= ≥∫ σ ε  (1.1) 

where Pε  is the equivalent plastic strain, P
fε  is the critical value of equivalent plastic strain 

at fracture for a given loading path, σ  is the Cauchy stress tensor and pε  is the plastic strain 

tensor. The integrand p( , ),f σ ε  is the so-called weighting function of damage and represents 

a general function of the field variables, e.g. stress and strain tensors, stress triaxiality, etc. 

The weighting function is either chosen empirically or inspired by micromechanical results 

and can also account for thermal and strain rate effects. According to these models, fracture 

is considered to occur when  the damage variable D, exceeds the critical damage value, cD  

(Li, Fu, Lu, & Yang, 2011; Xue, 2007). Several uncoupled criteria, i.e. weighting functions 

have been develop. The reader is referred to the work of Ayada (1987); Cockcroft & Latham 

(1968); McClintock (1968); Rice & Tracey (1969); Wierzbicki, Bao, Lee, & Bai, (2005), 

among many others. 

Uncoupled models often fail to predict the ductile fracture due to the over 

simplification of the mechanical behaviour of the material. Nevertheless, this approach can 

be used as a fast procedure for early development stages due to its simpler formulation, 

numeric implementation and parameters calibration (Teixeira, 2010; Xue, Pontin, Zok, & 

Hutchinson, 2010). 
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The coupled models approach incorporate damage accumulation in the constitutive 

equations. In other words, the plastic properties of the material are in fact considered as a 

function of the accumulated damage. Generally, coupled models can be classified in two 

main categories: micromechanical-based (or physical-based) and damage-based (or 

phenomenological) models (Kiran & Khandelwal, 2014). 

The micro-mechanical damage models treat the materials as a cluster of 

inhomogeneous cells. It is well-known that microstructure of metals is characterized by the 

presence of multiphase materials, such as precipitates, second phase particles, impurities and 

voids. The void distribution is a function of pre-existing voids (e.g. manufacturing defects) 

and of the nucleation by decohesion of second-phase particles and/or by particle fracture. 

The void grow results from the plastic deformation of the surrounding matrix material. 

Micromechanical-based damage models take advantage of the intimate relationship between 

material porosity and ductile failure: the ability to accurately describe the evolution of the 

void distribution in a ductile metal allows to accurately predict the failure of the material 

(Stewart, 2009). Due to computational constraints, the approach of modelling each of the 

micro-voids in the material is not practical at this time. Thus, instead of explicitly tracking 

the microscopic evolution of each void, the mechanical behaviour of the micro-voids is 

incorporated into macroscopic, or average, properties (such as macroscopic stress, strain, 

yielding, etc.) (Stewart, 2009). In this analysis, a void is modelled surrounded by undamaged 

material (the matrix material, which obeys conventional continuum mechanics) in a 

representative volume element (RVE) also known as unit cell (Xue, 2007). The macroscopic 

behaviour of the macroscopic material is then obtained through a homogenization procedure, 

where an analytic expression is derived for the plastic potential (and, thus, for the yield 

criterion, when assuming associated plasticity) (Stewart, 2009). Due to the enormous 

combination of the possible size, shape, orientation and spacing of the voids and of the RVE 

geometry, simplifications and assumptions have to be made to make the mathematical 

problem of void evolution tractable (Xue, 2007). The most widely used plastic potential for 

porous solids is related with the original work developed by Gurson (1977). In Gurson-like 

micromechanics-based criteria, the behaviour of a void-containing solid is described by the 

pressure-sensitive plastic flow, and the internal damage variable is employed in the 

constitutive equations, interacting with the other state variables. In these criteria, the internal 

damage variable is the void volume fraction, defined as the ratio between the accumulated 
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volume of individual voids and the total volume of the RVE (Li & Karr, 2009). The fracture 

is considered to occur then the void volume fraction reaches a critical value. The Gurson 

model and its extensions will be further explored and discussed in more detail in following 

chapters. 

The damage-based models framework, or phenomenological approach, is based on the 

classical Continuum Damage Mechanics (CDM) theory proposed by Lemaitre (1984). In 

this framework, the material degradation resulting from the mechanism of nucleation, 

growth and coalescence of micro-voids is described using a purely phenomenological model 

derived from the first and second principles of thermodynamics for continuous media 

(Badreddine et al., 2016; Dunand, 2013). CDM-based criteria introduce a macroscopic 

damage indicator in the constitutive relationships as an internal variable to describe the 

damage evolution and progressive degradation of the material (Li et al., 2011). The internal 

damage state variable affects both the elastic behaviour and the plastic flow, through the so-

called effective stress, based either on the strain equivalence principle or the energy 

equivalence principle (Chaboche, Boudifa, & Saanouni, 2006). In opposition to micro-

mechanical models, the constitutive and damage models of the material is based on the 

externally observed behaviour of the material, as the growth of individual void and their 

interactions are depicted in a phenomenologically aggregative way (Xue, 2007). Compared 

to Gurson-like micromechanical models, CDM models are relatively simpler to apply since, 

due to its phenomenological nature, the identification of the material parameters is more 

intuitive and typically fewer measurements are involved (Li et al., 2011). 

When compared to uncoupled damage models, coupled models represent a sounder 

physical background of the micromechanical fracture and, therefore, typically allow to 

obtain more reliable results in the ductile fracture prediction. However, the coupled models 

are more difficult to implement in an FEA code and usually require a greater computational 

effort.  

The selection of the damage model to apply in a numerical simulation is a non-trivial 

issue. The applicability and reliability of a model must be confronted with its computational 

cost and calibration difficulty (Wierzbicki et al., 2005). The inappropriate application of 

damage models may result in misleading ductile fracture predictions, which has been a 

problematic issue in industrial applications of both the coupled and uncoupled alternatives 

(Li et al., 2011). 
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1.3. Objectives of the work 

The aim of this study is to evaluate the ability of a coupled micromechanical damage 

model – the so-called CPB06 porous model, to describe the damage accumulation and, 

ultimately, final failure of ductile materials exhibiting tension-compression asymmetry. The 

predictive ability of the isotropic form of the abovementioned constitutive damage model is 

assessed through elementary numerical simulations, under axisymmetric and hydrostatic 

stress states. A qualitative comparison between the numerical predictions obtained by the 

damage model and by micromechanical finite element computations on three-dimensional 

unit cells, documented in the literature, is performed. In order to support and substantiate the 

numerical results, a sensitivity analysis of the damage model yield criterion parameters is 

firstly carried out based on the yield loci change of shape and size, when varying material 

and/or damage parameters. Both two-dimensional and three-dimensional representations of 

the yield surfaces are analysed. These are used to analyse the influence of the stress state 

through the stress triaxiality, hydrostatic stress and the sign of third invariant of the 

deviatoric stress tensor, particularly for axisymmetric loadings. The damage model response 

through elementary numerical tests is complemented with a brief sensitivity analysis 

regarding the matrix isotropic hardening law parameters. All numerical simulations were 

performed with the in-house finite element solver DD3IMP, specifically developed for 

simulating sheet metal forming processes (Menezes & Teodosiu, 2000). 

In summary, the present work intends to provide a contribution to the evaluation of the 

applicability and reliability of the CPB06 coupled damage model on the ductile fracture 

prediction, investigating its main features and highlighting the importance of the yield loci 

shape, through the role played by all stress invariants, on the damage evolution and 

ultimately, on the onset of failure. 

1.4. Layout of the thesis 

This section presents a summary of the contents covered in this work. The thesis 

comprises of two main parts, organized into six chapters. The former corresponds to the 

literature review and contains Chapter 2 and Chapter 3; the latter covers the investigations 

conducted within the framework of this study, corresponding to Chapter 4, Chapter 5 and 

Chapter 6. Following the general introduction and motivation presented in this first chapter, 

the layout of the thesis is as follows. 
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Chapter 2 sets out the basic concepts describing the physical mechanisms of the ductile 

crack formation. Some well-known coupled micromechanical damage models and relevant 

extensions are briefly presented, discussion their advantages and possible drawbacks. The 

description of the stress state in the fracture mechanics framework is also presented. 

Chapter 3 presents the anisotropic and isotropic version of the Cazacu, Plunkett & 

Barlat (2006) yield criterion, used to describe the tension-compression asymmetry displayed 

by the matrix material. Next, the Stewart & Cazacu's (2011) plastic potential for random 

distributed spherical voids is introduced. Both anisotropic and isotropic versions of this 

coupled damage model are analysed. The expressions of the damage model resulting for the 

particular case of axisymmetric stress states are briefly discussed. 

Chapter 4 is devoted to the sensitivity analysis of the Cazacu & Stewart's (2009) 

isotropic damage model parameters, based on three-dimensional representations of the yield 

surfaces and corresponding two-dimensional projections on the deviatoric plane and on the 

axisymmetric plane. 

Chapter 5 describes the numerical analyses conducted in order to assess the ability of 

the damage model to describe the plastic flow of the matrix and the accumulated damage in 

porous solids exhibiting tension–compression asymmetry. The numerical model and the 

methodology adopted in the analysis are briefly discussed. A detailed analysis of the results 

is performed and the main findings of this study are presented. Lastly, a sensitivity analysis 

is performed regarding the matrix isotropic hardening law parameters. 

Chapter 6 presents a short summary of the issues addressed in the study and the main 

conclusions withdrawn from it, along with suggestions for future research. 

For the sake of improving the main topics presentation, while allowing the reader to 

access all the important details, the work also includes the following supplements: 

Annex A provides the method proposed by Barlat et al. (2005) for the determination 

of the ordered principal values of the CPB06 transformed stress tensor. 

Annex B describes the method proposed by Revil-Baudard et al. (2016) to compute 

the components of the forth-order anisotropic inverse of the CPB06 linear-transformed 

tensor, required to determine the hydrostatic factor of the CPB06 porous model. 

Appendix A contains several expressions and relationships for the damage model 

parameters, derived for the particular case of axisymmetric stress states. 
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2. Coupled Micromechanical-Based Damage Models 

This chapter provides an overview of the general concepts governing the physical 

mechanism of the ductile crack formation, emphasizing the complexity and the consequent 

difficulties associated with the description of the ductile fracture process. Following this 

literature review, the description of the stress state in the fracture mechanics framework is 

presented. Finally, the original Gurson (1977) micromechanical damage model and some of 

its extensions are presented, discussing the main features and drawbacks of this approach. 

2.1. Physical mechanisms of the ductile crack formation 

As outlined in the introductory chapter, ductile fracture can be described as a three 

stage process: nucleation, growth and coalescence of micro-voids (see e.g. McClintock 

(1968) and Rousselier (1987)). In this section each stage of this physical mechanism will be 

reviewed in detail. 

The void distribution in a material originates from pre-existing voids or from 

nucleation at second-phase particles, either by matrix-particle decohesion or by particle 

cracking (e.g. inclusions, impurities). It is generally observed that voids nucleate preferably 

in larger second-phase particles due to higher local stress fields generated by the presence of 

larger rigid inclusions, when the matrix undergoes plastic deformation, and due to the 

increased number and size of geometrical defects at this larger particles, leading to easier 

micro-crack formation in the particles. Void nucleation could also occur in shear bands (Bao, 

2003). Following nucleation, voids will grow and eventually link. 

It is well-known that the stress triaxiality – defined by the ratio between the mean 

stress and the equivalent stress – is the most important parameter governing ductile crack 

formation (Bao, 2003). The mean stress (or hydrostatic stress), which has little or no 

influence on the overall plastic deformation in the absence of damage, i.e. in fully dense 

materials, exhibits a dramatic effect on the ductile fracture mechanism of porous materials, 

particularly on the void growth and coalescence stages (Nahshon & Hutchinson, 2008). 

According to McClintock (1968) the size, shape and spacing of the voids depends on the 
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entire stress and strain history. Indeed, the physical mechanism of void growth and final 

linkage is governed by the microstructure of the material and loading conditions. Under 

shear dominated loads, i.e. low stress triaxiality, the voids undergo a rotation and a change 

of shape, which makes them lose their initially spherical shape. Since rotation of voids does 

not change the void volume fraction, the macroscopic dilation of the voids is minimal. In 

this case, there is a relatively small dilatational growth (or change of volume) and the ductile 

fracture is mainly due to large “deviatoric” or shape changing void growth (Bao, 2003). On 

the other hand, under high stress triaxiality, the change of volume dominates the contribution 

to void growth over the shape changing effect and, therefore, voids retain their initial shape 

(Besson, 2010; Rice & Tracey, 1969). 

In addition to the different processes of void nucleation and void growth previously 

mentioned, different processes of void linkage, also known as void coalescence, have been 

experimentally observed. When the voids grow so large that they begin to interact with each 

other, the deformation becomes highly localized (Xue, 2007). Void linkage can occur 

through three phenomena: internal necking of the matrix between voids, simple touching of 

two voids (void impingement) and due to the so-called void sheet mechanism (Bao, 2003). 

These ductile failure micro-mechanisms lead to the formation of macroscopic cracks and, 

ultimately, the macroscopic failure of the material. Figure 2.1 highlights the internal necking 

and the void sheet mechanisms – the more commonly observed coalescence modes. Failure 

by internal necking of the matrix occurs mainly at high stress triaxiality and is due to inter-

void ligament necks of large primary voids. 

 
        (a)   (b) 

Figure 2.1. Two ductile failure micro-mechanisms (after Weck et al., 2006): (a) inter-void ligament necking; 
(b) void sheeting mechanism.  
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When a material contains several populations of inclusions corresponding to different 

length scales, failure by void sheeting can also occur. In this void coalescence mode, also 

known as shear coalescence, shear banding occurs at the scale of the voids. In this 

mechanism, active at low stress triaxiality, the linkage between primary voids and micro-

crack propagation is accelerated due to the nucleation of secondary voids at highly 

concentrated shear bands induced by the stress concentration effect at the ends of the micro-

crack and by shear dominated loadings (Besson, 2010). This plastic shear localization 

weakens the total aggregate of material and promotes inter-void ligaments of smaller, 

elongated and rotated voids. It should be noted that "shear coalescence" is just the name for 

this type of mechanism and it does not mean that this type of micro-mechanical failure is 

exclusively due to shear loadings. 

At intermediate stress triaxialities there is a combined effect of volumetric and shape 

changes of the voids as both internal necking and void sheet mechanisms are active. In other 

words, the intermediate stress triaxiality range is a transition range (Bao, 2003). 

Experimental observations on steels and aluminium alloys shown that the void sheet 

mechanism can cause inter-void ligament failure before void touching takes place, (which 

would require a distribution of larger voids) (Hammi & Horstemeyer, 2007). Void 

coalescence modelling has received less attention in the literature than void nucleation and 

void growth mainly because of the lack of definition and difficulty in quantifying this 

behaviour. In fact, although there are well-established micromechanical-based damage 

models that consider void coalescence due to the internal necking of the matrix (e.g. 

McClintock (1968) and Rice & Tracey (1969)) and due to simple void contact (e.g. Gurson 

(1977)), no good void sheet mechanism modelling has been developed (Bao, 2003). So far, 

void shearing damage criteria have been mostly modelled through heuristic approaches, 

based on the know-how rather than deep scientific analysis (Li et al., 2011). 

Despite the great relevance of the stress triaxiality on ductile fracture mechanics, FEA 

on unit cells (e.g. Cazacu & Stewart (2009) and Alves, Revil-Baudard & Cazacu (2014)) as 

well as Fast Fourier Transform (FFT)-based approaches (e.g. Lebensohn & Cazacu (2012)) 

have shown that the stress triaxiality by itself can be insufficient to characterize the yielding 

of porous materials. In these studies was shown that, for the same triaxiality, the yielding 

and the rate of void growth depend not only on the first and second invariants of the stress 

and deviatoric stress tensors, respectively, but also on the sign of the third invariant of the 
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stress deviator – a relationship often referred in the literature as “Lode angle dependence” 

(Xue, 2007). In the past decade, experimental data has supported this evidence, recognizing 

and highlighting the role played by all stress invariants in the yielding of porous materials 

and, consequently, in the ductile fracture prediction (Alves et al., 2014; Malcher, 2012). 

The ductile fracture phenomena briefly reviewed in this section show that appropriate 

modelling of these physical mechanisms is by no means trivial, especially when volumetric 

and shear effects are combined through complex strain paths (Malcher, 2012). Observations 

of the physical process of ductile fracture have allowed the development of damage models 

and procedures for fitting the models parameters, in order to perform numerical simulations. 

Nowadays, recent developments of X-ray tomography allows to gather real-time 3D data of 

the evolution of damage (e.g. void shape, rotation, growth, linkage, etc.). Using this method, 

error on damage quantification induced by conventional surface preparation techniques can 

be avoided (Babout, Maire, Buffière, & Fougeres, 2001), leading to a better understanding 

of the process and enhanced damage criteria developments (Besson, 2010). 

2.2. Description of the stress state 

A stress state is fully defined by the six independent components of the Cauchy stress 

tensor. Regarding the study of ductile fracture mechanics, the stress state is usually described 

by two dimensionless parameters: the stress triaxiality, TΣ  and the normalized Lode angle, 

.θΣ  Letting Σ  be the macroscopic principal stress tensor with the diagonal components 1 ,Σ

2Σ  and 3Σ  ordered such that 1 2 3Σ ≥ Σ ≥ Σ , the mean stress, mΣ  can be defined as: 

 ( ) ( )m 1 1 2 3
1 1 1tr ,
3 3 3

I ΣΣ = = = Σ + Σ + ΣΣ
 

(2.1) 

where tr( ⋅ ) denotes the trace of a tensor and 1I
Σ  is the first invariant of the stress tensor. The 

macroscopic deviatoric stress tensor, 'Σ  is given by: 

 
1 m

m 2 m

3 m

0 0
0 0 ,
0 0

Σ −Σ 
 = −Σ = Σ −Σ 
 Σ −Σ  

'Σ Σ Ι
 

(2.2) 

with I being the second-order identity tensor. Therefore, the second and third deviatoric 

stress invariants, respectively 2J Σ  and 3J Σ  can be written as: 

 ( )' 2 ' 2 ' 2
2 1 2 3

1 ,
2

J Σ = Σ + Σ + Σ
 (2.3) 
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 ' ' '
3 1 2 3.J Σ = Σ Σ Σ  (2.4) 

The von Mises equivalent stress, eΣ  can be represented as a function of the second deviatoric 

stress invariant, 2J Σ  as: 

 e 23 ,J ΣΣ =  (2.5) 

Thus, the stress triaxiality, TΣ  is defined as the ratio of the mean stress and equivalent von 

Mises stress, i.e.:  

 m

e

,TΣ

Σ
=
Σ

 
(2.6) 

with .TΣ−∞ ≤ ≤ ∞  Note that for purely deviatoric loadings 1( 0),I Σ =  results  while for purely 

hydrostatic loadings at tension or compression 2( 0),J Σ =  results that TΣ →∞  or ,TΣ → −∞  

respectively. 

The so-called normalized third invariant of the deviatoric stress tensor, ξΣ  lies in the 

range 1 1ξΣ− ≤ ≤  and characterizes the position of the second principal macroscopic stress, 

2Σ  with respect to the maximum and minimum principal stresses, 1Σ  and 3Σ  (Dunand, 

2013), such that: 

 ( )
3

3/2

2

3 3 .
2

J

J
ξ

Σ

Σ
Σ

=
 

(2.7) 

Another way to establish this relationship is through a parameter known as Lode angle, θΣ  

that can be defined as: 

 
' '
2 3
' '
1 3

1arctan 2 1 ,
3

θΣ

   Σ −Σ = − −   Σ −Σ    

 
(2.8) 

which, by its turn, can also be written as a function of the normalized third invariant of the 

deviatoric stress tensor, ξΣ  as: 

 ( ) ( )1 1arccos arcsin .
6 3 3
πθ ξ ξΣ Σ Σ
 = − = 
 

 
(2.9) 

when defined in this way, the Lode angle ranges between 6 6,π θ πΣ− ≤ ≤  such that 

6θ πΣ =  ( 1)ξΣ =  corresponds to a uniaxial tension loading and 6θ πΣ = −  ( 1)ξΣ = −  to a 

uniaxial compression loading. In the same spirit as 3J Σ , this parameter can be normalized, 

resulting in the so-called normalized Lode angle or Lode angle parameter, θΣ  given in this 

case by: 
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6 ,θ

θ
π
Σ

Σ =
 

(2.10) 

or, alternatively, as a function of the normalized third invariant of the stress deviator, ξΣ  as: 

 ( ) ( )2 21 arccos arcsin .θ ξ ξ
π πΣ Σ Σ

 = − = 
 

 
(2.11) 

Similarly to the parameter ξΣ , the Lode angle parameter also varies in the range 1 1.θΣ− ≤ ≤   

A stress state represented in a three-dimensional Cartesian system 1 2 3( , , )Σ Σ Σ  can be 

translated in to an equivalent cylindrical coordinate system, with coordinates e m( , , ).θΣΣ Σ  

This transformation is exemplified in Figure 2.2 (a), underlining the hydrostatic axis 

direction and the definition of the π-plane1. This cylindrical coordinate system is also 

referred as the Haigh–Westergaard coordinates. In the π-plane, the Lode angle is defined as 

the smallest angle formed between the pure shear line segment and the projection of the 

actual stress tensor on the deviatoric plane, as shown in Figure 2.2 (b) (Malcher, 2012). 

Therefore, the Lode angle can be understood as a quantification of the proximity (or 

remoteness) of the current stress state relative to the pure-shear stress state, i.e. the position 

of the second principal macroscopic stress in the interval defined by the maximum and 

minimum principal stresses: 1 2 3.Σ ≥ Σ ≥ Σ  

 

  
(a) (b) 

Figure 2.2. Geometrical definition of the Lode angle parameter: (a) Three-dimensional Cartesian system and 
the corresponding cylindrical coordinate system; (b) π-plane representation. 

 

                                                 
1 As known as deviatoric plane or octahedral plane; plane normal to the hydrostatic axis, defined by the normal 

1 2 3(1 / 3) (1 / 3) (1 / 3)= + +n e e e , where 1 2 3( , , )e e e  is the Cartesian coordinate system associated with the 
principal directions of the stress tensor. 



 

 

  Coupled Micromechanical-Based Damage Models 

 

 

João Paulo Martins Brito  15 

 

One can conclude that a stress state can be partially defined by a combination of the 

above parameters: ( , ).T θΣ Σ  Indeed, the direction of the vector defined by the principal stress 

tensor can be unequivocally expressed by these pair of parameters. Hence, throughout the 

thesis, the term “stress state” will refer to these widely used adimensional parameters in the 

fracture mechanics framework. Some of the stress states with great importance for the sheet 

metal forming process are mentioned bellow: 

 Pure-shear ( 0,  0T θΣ Σ= = );   

 Uniaxial tension ( 1 / 3,  1T θΣ Σ= = ); 

 Uniaxial compression ( 1 / 3,  1T θΣ Σ= − = − ); 

 Plane strain tension ( 1 / 3,  0T θΣ Σ= = ); 

 Equibiaxial tension ( 2 / 3,  1T θΣ Σ= = − ); 

 Equibiaxial compression ( 2 / 3,  1T θΣ Σ= − = ). 

2.3. Gurson-like micromechanical damage models 

The first micromechanical ductile damage models where developed by McClintock 

(1968) and Rice & Tracey (1969) to describe the growth of isolated cylindrical or spherical 

voids in a rigid perfectly plastic matrix. These pioneer uncoupled criteria outlined the 

combined role of the stress triaxiality and the plastic strain on the void growth. Being 

uncoupled models, these prior studies did not consider the effects of the void growth on the 

material behaviour, i.e. neglected the softening effects (Besson, 2010). This problem was 

firstly addressed by Gurson (1977), which developed a coupled micromechanical-based 

model by introducing a new yield function which strongly links the plastic behaviour with 

the damage accumulation (Chaboche et al., 2006). Gurson developed analytic yield criteria 

for ductile materials containing either spherical or cylindrical voids. To obtain the plastic 

potentials, and thus, the yield criteria, Gurson performed an upper bound limit load analysis 

on the RVEs (spherical void within a spherical shell RVE or a cylindrical void within a 

cylindrical tube RVE), assuming a rigid perfectly plastic matrix material (undamaged/void 

free material) obeying the classic pressure-insensitive von Mises criterion (Besson, 2010). 

Gurson’s criteria are an upper bound of the exact plastic potential, since the minimization of 

the plastic energy was done for a specific velocity field compatible with uniform strain rate 

boundary conditions, rather than for the complete set of kinematically admissible velocity 
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fields (Stewart, 2009). The mathematical details of the analysis are rather complex 

(Chaboche et al., 2006). When assuming an associated flow rule, the result is a plastic 

pressure-sensitive yield surface which takes into account the damage accumulation, given 

for spherical voids as: 

 
2

S 2e m
G

Y Y

32 cosh 1 0,
2

f fϕ
σ σ
   Σ Σ

= + − − =   
   

 
(2.12) 

and for cylindrical voids as: 

 
2

γγC 2e
G eqv

Y Y

3
2 cosh 1 0,

2
C f fϕ

σ σ

 Σ Σ
= + − − =       

 
(2.13) 

where 

 ( )26

eqv
1 3 24  for plane strain,

1                           for axisymmetry.

f fC
 + += 


 
(2.14) 

In the previous expressions, eΣ  is the macroscopic von Mises equivalent stress, mΣ  is the 

macroscopic mean stress or hydrostatic stress, Yσ  is the yield stress of the undamaged 

material, γγΣ  is the sum of the in-plane stresses (e.g. γγ 11 22Σ = Σ + Σ  if the 3-direction is the 

out-of-plane direction) and  f  is the void volume fraction (or porosity), which quantifies the 

current damage and is defined by the ratio of the void volume to the total volume of the 

RVE. Note that, unlike von Mises yield criterion, Gurson's criteria depend not only on the 

second invariant of the stress deviator, but also on the pressure (or the mean stress), i.e. on 

the first invariant of the stress tensor. However, in the absence of voids ( 0f = ), these criteria 

reduce to that of the matrix, i.e. the von Mises yield surface. Gurson’s spherical void criterion 

is considered more often in the literature than the cylindrical void criterion. Even so, the 

latter can be applied to certain problems, for example plane stress analysis of sheet metal 

(Stewart, 2009). 

The matrix material is described by a convex yield function in the stress space. The 

macroscopic plastic strain rate tensor, pD  is determined through the normality rule, assuming 

an associated flow rule, as: 

 p ,ϕλ ∂=
∂

D
Σ



 
(2.15) 

where Σ  is the macroscopic Cauchy stress tensor and 0λ ≥  the rate of the plastic multiplier. 

Assuming the equivalence of microscopic and macroscopic inelastic work (i.e. equivalence 



 

 

  Coupled Micromechanical-Based Damage Models 

 

 

João Paulo Martins Brito  17 

 

of the rate of plastic work), the rate of the microscopic/local effective plastic strain, p
Mε  is 

obtained as: 

 ( )p p
M M : 1 ,f σ ε= −Σ D 

 (2.16) 

where Mσ  is the flow stress of the matrix, following a given hardening law. Combining the 

above expressions results: 

 
( )

p
M

M

:
.

1 f

ϕ

ε λ
σ

∂
∂=

−

Σ
Σ



 (2.17) 

The void volume fraction rate, f  evolves both from the nucleation and the growth of 

existing voids such that: 

 growth nucleation ,f f f= +    (2.18) 

where the rate of change due to the growth of existing voids, growthf  is obtained from the 

plastic incompressibility of the matrix material, i.e. mass conservation principle as: 

 ( ) ( )p p
growth 0 01 : 1 ,   with  ( ) ,kkf f f D f t f= − = − =D I  (2.19) 

where “:” denotes the tensor double contraction. Thus, P
kkD  is the trace of the macroscopic 

plastic strain rate tensor, pD  which represents the macroscopic plastic strain rate. In the 

previous expression, 0f  corresponds to the initial void volume fraction at the time instant 

0 .t  Note that the evolution law for the damage variable f, is entirely determined by the 

definition of the yield surface (Besson, 2010). Indeed, in Gurson-like criteria, the physical 

mechanisms of ductile fracture (void nucleation, growth and coalescence) is modelled by 

explicitly monitoring the void volume fraction, which accounts for the reduction of the load-

bearing area and subsequent softening effect. 

The void volume fraction rate of change due to nucleation, nucleationf  was one of the first 

extensions proposed to the original Gurson model. Void nucleation can be modelled as 

stress-controlled, as discussed in Argon, Im & Safoglu (1975) or strain-controlled as 

suggested by Gurson (1975) and is generally written as: 

 p
nucleation N M N mf A Bε= + Σ

 
 (2.20) 

Both plastic strain controlled nucleation and mean stress controlled nucleation are frequently 

considered in a statistical way, following a normal distribution as suggested by Chu & 

Needleman (1980). The proportionally constants NA  and NB  are given by: 
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2p
N M N

m
N NN

m

1exp   if 0,
22

0                                                if 0;

f
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ε ε
π

   −  − Σ ≥  =     
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(2.21) 
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σ

π

   Σ −  − Σ ≥   =     
Σ <





 

(2.22) 

where Nε  and pσ  are the mean values of the Gaussian distribution, Ns  and Ps  are the standard 

deviations and Nf  and pf  represent the total void volume fraction that can be nucleated by 

the plastic strain rate and by the mean stress rate, respectively. 

Based on finite element unit cell computations, a widely used modification of the 

Gurson's spherical yield criterion was suggested by Tvergaard (1981) and Tvergaard (1982): 

 
2

2e m
1 2 3

M M

32 cosh 1 0.
2

q f q q fϕ
σ σ
   Σ Σ

= + − − =   
   

 
(2.23) 

The adjustments to the original Gurson's model proposed by Tvergaard were established 

through the introduction of new parameters – the fitting parameters iq  (all equal to one in 

Gurson's original expression). These parameters can be thought of as an adjustment of the 

yield surface to account for the influence of neighbouring voids, hence designated as void 

interaction parameters (Kiran & Khandelwal, 2014; Stewart, 2009). Based on finite element 

unit cell simulations, Tvergaard recommended values of 1 1.5,q =  2 1q =  and 2
3 1 .q q=  

Perrin & Leblond (1990) have determined a correlation between the fitting parameters iq  

and the porosity f and showed that when the porosity tends to zero, 1q  value tends to 

4/ 1.47,e ≅  with  2 1q =  and 2
3 1 ,q q=  i.e. the results are very similar to the ones originally 

suggested by Tvergaard (Benseddiq & Imad, 2008; Stewart, 2009). Faleskog, Gao & Shih 

(1998) have shown that the fitting parameters also depend on the matrix flow properties, 

namely the plastic hardening exponent, n and the ratio of the yield stress over the Young’s 

modulus, Y /Eσ . These authors showed that, regardless of  the flow properties of the matrix, 

the product 1 2q q q=  for the optimal values of the fitting parameters is approximately 

constant and equal to 1.5, which again agrees with the values proposed by Tvergaard 

(Benseddiq & Imad, 2008). 
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According to the modified Gurson yield criterion presented above (see Equation 

(2.23)), the complete loss of load carrying capacity occurs at 11/f q=  which is unrealistically 

larger than experimental observations (Xue, 2007). In order to model the complete loss of 

load carrying capacity at a realistic level of the void volume fraction, Tvergaard & 

Needleman (1984) further modified Gurson's spherical yield criterion to account for the 

onset of void coalescence leading to final material fracture. This model is often referred to 

as the Gurson–Tvergaard–Needleman (GTN) model. The GTN criterion is given by: 

 ( )
2

2* *e m
1 2 3

M M

32 cosh 1 0,
2

q f q q fϕ
σ σ
   Σ Σ

= + − − =   
   

 
(2.24) 

where *f  is the so-called effective void volume fraction. The newly introduced internal 

damage variable is a function of the actual void volume fraction,  f  and is given as: 

 ( ) ( )
c*

cc δ c

   if    ,
   if    .

f f f
f f

f ff q f f
 <

=  ≥+ −

 
(2.25) 

In the expression above, cf  is the critical void volume fraction of a material at which the 

material stress carrying capacity starts to decay rapidly, i.e. the trigger for the void 

coalescence, and δq  is the accelerating factor, introduced in order to describe the final stage 

of ductile failure, defined by: 

 
*

U c
δ

F c

,
f f

q
f f
−

=
−

 
(2.26) 

where Ff  is the void volume fraction at final failure and *
Uf  is the ultimate value of the 

effective void volume fraction, i.e. the effective void volume fraction at which occurs the 

complete loss of macroscopic stress carrying capacity, such that *
U 11/f q=  if 2

3 1 ,q q=  as 

suggested by Tvergaard. The damage evolution predicted by the GTN model (see Equation 

(2.25)) is illustrated graphically in Figure 2.3, where it is clearly shown that as the actual 

void volume fraction tends to the value at final failure, F( ),f f→  the effective void volume 

fraction tends to its ultimate value, * *
U( ).f f→  

 In summary, the GTN model has a total of nine parameters: (i) the void interaction 

parameters: 1 ,q  2q  and 3 ;q  (ii) the material parameters which can be classified in: (a) the 

initial void volume fraction, 0f  and the void nucleation parameters ( Nf , Nε , Ns ) for strain-

controlled nucleation or ( pf , pε , ps ) for stress-controlled nucleation; and (b) ductile fracture 

parameters: the critical and final failure parameters, cf  and Ff , respectively. 
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Figure 2.3. Effective void volume fraction concept introduced by Tvergaard and Needleman (1984);  

GTN model damage evolution.  

As discussed in the previous section, the coalescence phenomenon is a highly complex 

physical mechanism, that even today lacks theoretical definition and is challenging to 

quantify. The effective void volume fraction concept introduced by Tvergaard & Needleman 

(1984) to formulate the GTN model accounts for coalescence in a rather basic but efficient 

way (Besson, 2010). When properly calibrated for a specific material, Gurson-like models 

have shown considerable potential for characterizing damage evolution and fracture 

prediction (Xue et al., 2010). Despite the success of Gurson-type criteria on many 

applications, there are some drawbacks associated with these models: 

i. No void shearing mechanism is considered: the presented Gurson models are unable 

to predict fracture under shear-dominated loading conditions (low stress triaxiality), 

where the void growth mechanism is inactive and void sheeting dominates. Indeed, 

under pure shear loadings, the GTN model will fail to predict any void growth and 

thus, predict the ductile failure, if N Ff f<  (the nucleation potential does not exceed 

the void volume fraction at failure). Gurson-like models were conceived to be 

applied at high stress triaxiality loadings, where pressure sensitivity (the mean 

stress) dominates the fracture phenomenon. The application of these models at low 

stress triaxialities should be used with caution; 

ii. The damage accumulation in ductile materials is a more complex phenomenon than 

solely track the evolution of the void volume fraction, e.g. the presence of a volume-

less micro crack inherently creates damage to the material by introducing loss of 
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load carrying area (Xue, 2007). Furthermore, the actual distribution of void 

nucleation, void size, shape, orientation and spacing have to be treated in a 

stochastic way since the distribution of such parameters are often unknown; 

iii. Due to the large number of material parameters, the calibration of the GTN model 

is a challenging procedure that still remains open (Bao, 2003). Moreover, those 

parameters are strongly coupled and it was proven that a non-unique solution can 

exist if no physical significance is added to these parameters (e.g. ductile fracture 

initiation can either be simulated as early nucleation of a small volume of voids or 

delayed nucleation of a large volume of voids (Kiran & Khandelwal, 2014)); 

iv. The matrix material obeys the classical isotropic von Mises yield criterion and the 

voids retain their spherical shape. However, in some applications such as in cold 

rolled metal sheets, the micro-voids that form within a loaded material are 

ellipsoidal rather than spherical, due to the influence of the asymmetrical loadings 

and/or an anisotropic microstructure (Stewart, 2009). In coupled damage criteria, 

poor plasticity modelling leads to poor damage modelling. By neglecting the 

anisotropic behaviour of the material matrix, original Gurson-like criteria are 

unable to reliably predict the fracture on strongly anisotropic ductile materials; 

v. In Gurson's (1977) limit-analysis for the hollow sphere the matrix plastic dissipation 

was approximated with a function that depended only on the radial coordinate, r,  

i.e. the polar coordinate, θ was neglected. This approximation amounts to 

discarding any combined effects of shear and mean stress on the yielding of the 

porous solid. As a consequence, the original Gurson-type criteria are insensitive to 

the third-stress invariant, 3J Σ  and depend only on the stress triaxiality, TΣ  which, as 

discussed previously, can be insufficient to correctly characterize yielding, even for 

high triaxiality loadings, see e.g. Alves, Revil-Baudard & Cazacu (2014). 

2.3.1. Calibration of the model parameters 

The material parameters identification can be performed through: (i) microscopic 

measurements; (ii) macroscopic measurements; and (iii) a hybrid experimental-numerical 

approach. The microscopic approach allows the direct evaluation of the initial void volume 

fraction, 0f  and of the volume fraction of void nucleating particles, Nf  through image 

analysis of the undamaged material with 3D X-ray micro-tomography or in-situ neutron 
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diffraction. Additionally, it can be used to quantify the ductile fracture parameters, cf  and 

F .f  This approach also allows the qualitative measurement of other variables such as, void 

spacing, size and distribution as well as fracture propagation and final crack aspect. The 

macroscopic approach uses experimental tests (e.g. tensile tests on various notched 

specimens to obtain different stress triaxialities, punch tests, butterfly tests, etc.) and Digital 

Image Correlation (DIC) measurements to determine the load-displacement curves, 

displacement or strain at the onset of coalescence and at fracture, and the crack appearance 

on the specimen thought image analysis. The hybrid experimental-numerical approach 

combines finite element simulations with experimental data to determine the value of the 

material parameters that lead to the best fittings between the numerical and experimental 

load-displacement curves. In most investigations, the calibration procedure starts by fixing 

the void interaction parameters to  1 1.5,q =  2 1q =  and 2
3 1q q= , as recommended by 

Tvergaard (1982), as well as fixing the standard deviation of the void nucleation strain to 

N 0.1s =  – a common value in several studies, regardless of the material considered (see 

Benseddiq & Imad (2008)). The remaining parameters, void nucleation parameters, 

N N( , ),f ε  for strain-controlled nucleation and the ductile fracture parameters, c F( , )f f  are 

calibrated following a mono-parametric analysis, in order to determine the numerical values 

that yields an overall good agreement with experimental results. Due to the strong coupling 

between the material parameters, different experiments should be performed to calibrate 

each set of parameters. It should be noted that each calibration step is not independent from 

all subsequent steps and therefore a calibration procedure must be repeated iteratively until 

satisfactory results are achieved (Dunand, 2013). 

Besides the GTN model specific parameters, the hardening law of the matrix material 

has also to be defined for the complete description of the coupled damage model. The 

hardening law parameters are chosen to fit the stress-strain curve of the actual porous 

material obtained from quasi-static uniaxial tensile tests of un-notched specimens up to 

necking. When the initial porosity, 0f  is very small when compared with the nucleated void 

volume fraction, Nf  the tensile behaviour of the porous material remains almost unaffected 

by the growth of pre-existing voids for strains lower than the nucleation strain, Nε  thus the 

matrix degradation can be neglected. 
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One can conclude that the GTN’s parameter identification is a challenging issue that 

has strongly limited the model application in the industry environment. Although there have 

been a large amount of work aimed at the development of calibration procedures, to the 

author knowledge there is still no well-stablished method or standard calibration procedure. 

For more information concerning the GTN model parameters calibration, the reader is 

referred to the work of Benseddiq & Imad (2008), Xue et al. (2010), Dunand & Mohr (2011), 

Li et al. (2011) and Kiran & Khandelwal (2014). 

2.3.2. Modifications and extensions of Gurson’s analysis 

In addition to the extensions to the original Gurson (1977) model proposed by Chu & 

Needleman (1980) to account for void nucleation, and by Tvergaard & Needleman (1984) 

to account for the loss of load-carrying capacity associated with void coalescence, many 

other works have modified and extended Gurson’s analysis to more complex materials, as 

well as to more complex void shapes and distributions. The reader is referred to the work of: 

Gologanu, Leblond & Devaux (1993) to account for ellipsoidal voids (prolate and oblate) 

rather than spherical voids; the works of Liao, Pan & Tang (1997) and Benzerga & Besson 

(2001) which address anisotropy using Hill's 1948 yield criterion for transversely isotropic 

metal sheets under plane stress conditions and for orthotropic porous metals, respectively; 

and the extended GTN model proposed by Besson & Guillemer-Neel (2003) to include 

mixed isotropic and kinematic hardening within a thermodynamic framework. Other very 

relevant extensions were proposed by Xue (2008) and Nahshon & Hutchinson (2008) to 

introduce a dependency of the damage evolution on the third-stress invariant (i.e. Lode angle 

dependence), and thus deal with the material deterioration under shear-dominated loads due 

to void distortion and void sheet coalescence in an heuristic way. Moreover, Cazacu et al. 

(2013) developed an analytic criterion to include the effect of the third invariant of the 

deviatoric stress tensor on the yielding of the porous material governed by a von Mises yield 

criterion. This thesis will particularly study the modifications proposed by Stewart (2009) to 

account for materials that have different yield strengths in tension versus compression, the 

so-called tension-compression asymmetry. 
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3. Analytic Yield Criteria for Porous Solids Exhibiting 
Tension–Compression Asymmetry 

It is well established that metallic sheets usually exhibit plastic anisotropy as a result 

of the forming processes. The importance of the plastic anisotropy has been recognized and 

there has been a global effort to model its effects on the mechanical behaviour of the 

materials, through the development of macroscopic plasticity models. However, until recent 

years the strength differential (SD) effects have been neglected (Barros, Alves, Oliveira, & 

Menezes, 2016). The SD effects, or tension-compression asymmetry is a shear related 

phenomenon that results from single crystal plastic deformation, either due to the activation 

of mechanical twinning or due to slip that does not obey the well-known Schmid law, i.e. 

non-Schmid type slip (Hosford & Allen, 1973). Unlike the conventional (Schmid type) slip 

deformation which is a reversible shear mechanism, twinning is an irreversible and 

directional shear mechanism, i.e. shear can promote twinning in one direction but not in the 

opposite direction. The twinning effect becomes more prominent when increasing the strain 

rate (Barros et al., 2016; Stewart, 2009). 

The SD effects are more pronounced in metals with hexagonal closed packed (HCP) 

structure (e.g. α-titanium, magnesium, zirconium, etc.). However, materials with cubic 

crystal structure such as high strength steels (HSS), molybdenum and aluminium alloys can 

also exhibit some tension–compression asymmetry in yielding, although in the absence of 

voids they are pressure-insensitive (Benzerga, Besson, & Pineau, 2004b; Stewart, 2009). 

A fundamental issue that arises is how the SD effects of the matrix material impacts 

the damage accumulation, i.e. the void growth stage of the ductile failure mechanism; and, 

as a consequence, the overall ductility of the voided metallic polycrystals. To account for 

the SD effects in a incompressible matrix, Stewart & Cazacu (2011) recently developed a 

macroscopic anisotropic yield criterion for porous aggregates that is sensitive to all stress 

invariants. For this purpose, in their analysis, the matrix plastic behaviour was described by 

the Cazacu, Plunkett & Barlat (2006) orthotropic yield criterion – often referred as the 

CPB06 yield criterion, which will be preliminary presented in the next subsection. Following 

it, the Stewart & Cazacu's (2011) analytic plastic potential for random distribution of 

spherical voids is presented and its main features and properties are briefly discussed. 
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3.1. Cazacu, Plunkett and Barlat yield criterion 

In order to account for both the anisotropy and the SD effects in pressure insensitive 

materials, Cazacu, Plunkett & Barlat (2006) proposed the following macroscopic 

elastoplastic yield criterion, ϕ : 

 ( )T T
1 e 1

ˆ , , , 0,k aϕ σ σ= Σ − =Σ 

 (3.1) 

where eΣ  denotes the CPB06 macroscopic equivalent stress, such that: 

 ( )
1

3

e
1

ˆ ˆˆ ,
a a

i i
i

m k
=

 
Σ = Σ − Σ  

∑

 (3.2) 

and T
1σ  is the uniaxial tensile yield stress along an axis of orthotropy of the matrix material, 

say the rolling direction, which is denoted by the 1-direction. In the previous expression, k 

is a material parameter that captures the SD effects and the parameter a is the degree of 

homogeneity, a positive integer usually taken as 2.a =  The orthotropy is introduced through 

a linear transformation on the deviatoric component of the Cauchy stress tensor, 'Σ  i.e.: 

 ˆ : ,= 'Σ C Σ  (3.3) 

where C is a fourth-order symmetric tensor describing the anisotropy of the matrix. Note 

that the hat accent is used to denote all quantities defined in the equivalent isotropic stress 

space. In the previous expression, ˆ
iΣ  are the principal values of the transformed stress tensor, 

Σ̂  (see Annex A for details regarding the calculation of ˆ
iΣ ). Let 1 2 3( , , )e e e  be the reference 

frame associated with the orthotropy axes, such that 1 ,e  2e  and 3e  are the rolling, transverse 

and through-thickness directions, respectively. In that case, the fourth-order tensor C 

involves 9 independent anisotropy coefficients and can be represented at the orthotropy axes, 

using the Voigt notation, by: 

 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0
0 0 0
0 0 0

,
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C C C
C C C
C C C

C
C

C

 
 
 
 

=  
 
 
 
 

C

 

(3.4) 

Finally, the effective stress constant, m̂  is defined such that eΣ  reduces to the tensile yield 

stress along an axis of orthotropy by: 
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where 
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(3.6) 

The anisotropic material parameters identification can be performed based on results of 

tensile and compressive tests, (e.g. uniaxial tension tests on flat specimens and uniaxial 

compression tests on cylindrical specimens). For more information on the identification 

procedure the reader is referred to methods presented by Cazacu, Plunkett & Barlat (2006), 

Barros et al. (2016) and Revil-Baudard et al. (2016). 

For an isotropic material, the tensor C reduces to the fourth-order identity tensor, I and 

the CPB06 yield criterion reduces to its isotropic form, such that: 

 ( )T e T, , , 0,k aϕ σ σ= Σ − ='Σ 

 (3.7) 

with Tσ  defined as the matrix uniaxial yield stress in tension (equal in all directions). The 

isotropic form of the macroscopic equivalent stress, eΣ  is given by: 

 ( )
1

3
' '

e
1

,
aa

i i
i

m k
=

 
Σ = Σ − Σ  

∑

 
(3.8) 

where '
iΣ  are the principal values of the Cauchy stress deviatoric component and m, is the 

isotropic version of the effective stress constant given, for 2,a =  by: 

 ( )2

9 .
2 3 2 3

m
k k

=
− +

 
(3.9) 

In these conditions, it can be easily shown that, for the isotropic case, the material constant 

k alone allows for the description of the SD effect and can be expressed in terms of the ratio 

between the uniaxial yield in tension, Tσ  and the uniaxial yield in compression, Cσ  as: 

 
( )
( )

T C

T C

1 ,
,

1 ,
r

k
r
σ σ
σ σ

−
=

+

 
(3.10) 

where the function r is given by: 

 ( )
2 2

T T
T C

C C

, 2 2 1 .r σ σσ σ
σ σ

      
   = − −            

 
(3.11) 
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Notice that if there is no difference between the response in tension and compression, 

i.e. no tension-compression asymmetry T C( ),σ σ=  then 0,k =  3 / 2m =  and eΣ  simply 

becomes the von Mises equivalent stress, e 23 .J ΣΣ =  For anisotropic materials exhibiting 

SD effects it is not possible to define a single T C/σ σ  ratio and, as a consequence, the physical 

meaning of the parameter k is lost (Barros et al., 2016). Moreover, the convexity of the 

isotropic form of the yield criterion is guaranteed for any integer 2a ≥  and for [ 1,  1]k ∈ −

(Cazacu et al., 2006). 

The main characteristics of the CPB06 yield criterion that justify its selection for 

representing the plastic behaviour of the matrix material of the porous aggregate are the 

following (Alves, Oliveira, Menezes, & Cazacu, 2017): 

i. Although it is pressure-insensitive, i.e. neglects the effects of the first stress 

invariant, 1I
Σ , it accounts for the SD effects, a phenomenon that occurs in HSS (and 

AHSS), the same family of materials that sparked growing interest in developing 

reliable damage models; 

ii. If a material displays SD effects ( 0),k ≠  the plastic flow depends on the sign and 

ordering of all principal values of the macroscopic stress deviator, 'Σ  hence it 

depends on the third-invariant of the deviatoric stress tensor, 3J Σ , which, as 

discussed, can have a great impact on damage accumulation and ductile fracture; 

iii. In the isotropic case all the yield criterion parameters, T( , , , ) 0k aϕ σ ='Σ  have a 

clear physical meaning, namely the uniaxial yield stress in tension, Tσ  and the 

material parameter k, which is intimately related to specific single-crystal plastic 

deformation mechanisms; 

iv. The ability of the CPB06 criterion to easily reduce to other yield criteria when no 

SD effects are considered ( 0),k ≠  e.g. the Hill’48 criterion if 2a =  and C is 

constrained to be deviatoric; and the von Mises criterion if 2a =  and C=I. 

To further emphasise the dependency on the third-invariant of deviatoric stress tensor, 

3J Σ  of the CPB06 yield criterion (i.e. the Lode angle dependence), Figure 3.1 (a) illustrates 

the deviatoric π-plane representations of some isotropic yield surfaces, corresponding to 

materials displaying different tension–compression asymmetries: 
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 0k =  T C( / 1),σ σ =  which corresponds to a von Mises material;  

 0.3098k =  T C( / 1.21),σ σ =  corresponding to a fully-dense isotropic BCC material; 

 0.3098k = − T C( / 0.83),σ σ =  corresponding to a fully-dense isotropic FCC material.  

Both cubic structures are considered to deform at single-crystal level only by deformation 

twinning, in agreement with Hosford & Allen (1973). Figure 3.1 (a) displays the drastic 

departure of the yield locus from the von Mises circle to triangular shaped surfaces with 

rounded corners, when 0.k ≠  The dependence of the yield loci on 3J Σ  is evidenced by this 

change of shape. In fact, in the π-plane representations the radial coordinate is related to the 

second invariant of the stress deviator, 2J Σ  while the angular coordinate is related to the third 

invariant, 3J Σ  (see Figure 2.2). In other words, a yield criterion is 3J Σ   dependent if there is 

a change of the radial coordinate with the angular coordinate, i.e. the yield locus is not a 

circle (e.g. the Tresca criterion). Figure 3.1 (b) presents the same surfaces but assuming plane 

stress conditions, highlighting the departure of the yield locus from the von Mises ellipse to 

triangular shaped surfaces with rounded corners. 

  
(a) (b) 

Figure 3.1. Dependency on the third-invariant of the stress deviator due to SD effects: (a) π-plane 
representation; (b) plane stress representation. 
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3.2. An yield criterion for anisotropic porous aggregates 
containing spherical voids and exhibiting SD effects 

As mentioned in the previous chapters, much work has been done to extend the original 

Gurson (1977) damage model to include the anisotropy effects of the matrix. It is worth 

noting the contribution of: Liao, Pan & Tang (1997) that modified Gurson's (1977) 

cylindrical void criterion to account for transverse isotropy using the Hill'48 yield criterion; 

the contribution of Benzerga & Besson (2001), which extended Gurson's (1977) spherical 

criterion for orthotropic materials also using the Hill’48 criterion; and the work of Gologanu, 

Leblond & Devaux (1993) that developed an macroscopic yield criterion for prolate 

ellipsoidal voids to account for void shape effects, which later was further extended by 

Benzerga, Jacques Besson & Pineau (2004) to merge Gologanu et al. (1993) elliptical void 

shape model with the orthotropy modelling earlier proposed in Benzerga & Besson (2001). 

Although these studies account for the anisotropy effect, they all neglect (or fail to recognize) 

the tension-compression asymmetry behaviour in yielding that some materials can display. 

In order to account for the SD effects on yielding of porous media, Stewart & Cazacu 

(2011) recently performed a rigorous mathematical upscaling analysis, based on the 

kinematic non-linear homogenization approach of Hill (1967) and Mandel (1972), to derive 

a closed-form macroscopic yield criterion for anisotropic porous aggregates containing 

randomly distributed spherical voids (Lebensohn & Cazacu, 2012; Revil-Baudard et al., 

2016). The tension–compression asymmetry associated with directional shear mechanisms 

at the single crystal level are accounted by the CPB06 anisotropic yield criterion. The plastic 

potential derived by Stewart & Cazacu (2011), including Tvergaard (1981) additional fitting 

parameters, iq  (see Equation (2.23)), has the following expression: 

 ( )
2

T 2e 2 m
1 1 3T T

1 1

3ˆ , , , 2 cosh 1 0,qk f q f q f
h

ϕ σ
σ σ
   Σ Σ

= + − − =   
  

Σ


 
(3.12) 

where eΣ  is the macroscopic equivalent stress associated with the CPB06 anisotropic 

criterion with 2,a =  k is the CPB06’s material parameter describing the SD effects, T
1σ  is 

the uniaxial yield strength along an axis of orthotropy of the matrix material (e.g. rolling 

direction), and f  is the void volume fraction (or effective void volume fraction, *f  if 

assuming Tvergaard & Needleman's (1984) extension (see Equation (2.25)). In the previous 

expression, h is the so-called anisotropy hydrostatic factor, which controls the damage 
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evolution and is applied to the hydrostatic part of the macroscopic yield criterion. This factor 

depends on the sign of the macroscopic mean stress, mΣ  and on the anisotropy coefficients 

of the fourth-order tensor C (see Equation (3.4)) and can be expressed, following Lebensohn 

& Cazacu (2012), as: 

 ( )1 2
ˆ

4 6 ,
5
nh t t= +

 
(3.13) 

where the constant n̂  accounts for the matrix SD effects and is expressed as: 

 
m2 2

m2 2

1 3     if 0,
ˆ 3 2 3ˆ
1 3     if 0,
ˆ 3 2 3

m k k
n

m k k

   Σ <  − +  = 
  Σ ≥  + + 

 

(3.14) 

for 2,a =  with m̂  being the effective stress constant given by Equation (3.5). The scalars 1t  

and 2t  of Equation (3.13) account for the matrix anisotropy and are defined as: 

 ( )2 2 2
1 13 23 12 23 12 13 12 13 233 2 2 2 ;t B B B B B B B B B= + + + + +  (3.15) 

 2 2 2
2 44 55 66 ,t B B B= + +  (3.16) 

where ijB , with , 1,...,6i j = , are the components of tensor B, defined as the inverse of L, 

such that ( ) 11 : −−= =B L C T , where T denotes the fourth-order deviatoric unit tensor, i.e.: 

 

2 / 3 1/ 3 1/ 3 0 0 0
1/ 3 2 / 3 1/ 3 0 0 0
1/ 3 1/ 3 2 / 3 0 0 0

.
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− − 
 − − 
− − 

=  
 
 
 
 

T

 

(3.17) 

Note that the Voigt notation is adopted in all these definitions. The expressions of the 

components of B in terms of the linear transformed anisotropy coefficients ijL , with

, 1,...,6i j = , are resumed in Annex B.  

Since the yield surface proposed by Stewart & Cazacu (2011) depends on all stress 

invariants, the criterion accounts for the influence of both the direction and the sense of 

loading on the dilatational plastic response of the material (Lebensohn & Cazacu, 2012). In 

addition to yielding of the porous aggregate, the combined effects of matrix anisotropy and 

tension–compression asymmetry are also accounted on the porosity evolution. In fact, as 

stated in Equation (2.19), the porosity evolution due to void growth, growthf  is obtained from 

the mass conservation principle. Taking into account the definition of the plastic strain rate 
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tensor (see Equation (2.15)) and the yield function (see Equation (3.12)), the void growth is 

defined as: 

 ( ) ( ) ( )p 1 2 2 m
growth T T

1 1

6 31 1 1 sinh ,kk
kk

q q f qf f D f f
h h

ϕλ λ
σ σ

   Σ∂
= − = − = −    ∂Σ    

  

 
(3.18) 

where p
kkD  is the trace of the macroscopic plastic strain rate tensor, pD , and 0λ ≥  is the rate 

of the plastic multiplier. In the previous expression it is clearly seen that the porosity 

evolution depends on the parameter h which, by its turn, depends on the strength–differential 

parameter k and on the anisotropy coefficients.  

Contrary to the original Gurson-type criteria, the yield function is no longer symmetric 

with respect to the transformations ' '
m m( , ) ( , )Σ → Σ −Σ Σ  and ' '

m m( , ) ( , ).Σ → −ΣΣ Σ  Indeed, 

due to the dependence of the parameter h with the sign of the applied mean stress, mΣ , the 

yield locus given by Equation (3.12) no longer display the centro-symmetry properties 

previously seen in the Gurson (1977) criteria and on the one presented by Benzerga & 

Besson (2001). In other words, if the matrix exhibits SD effects the yield surface is not 

symmetric with respect to the plane m 0.Σ =  According to Stewart & Cazacu's (2011) 

criterion, for tensile hydrostatic loading, yielding of the porous material occurs when 

m Yp̂+Σ =  with: 

 
2

T 1 3
Y 1

2 1

11ˆ cosh ,
3 2

q f
p h

q q f
σ+ + −  +

=  
 

 
(3.19) 

whereas, for compressive hydrostatic loading, yielding occurs when m Yp̂−Σ =  with: 

 
2

T 1 3
Y 1

2 1

11ˆ cosh .
3 2

q f
p h

q q f
σ− − −  +

= −  
 

 
(3.20) 

Note that, as shown in Equations (3.13) and (3.14), h can be defined by branches, such as: 

 m

m

    if 0,
    if 0.

h
h

h

−

+

 Σ <= 
Σ ≥

 
(3.21) 

If 2
3 1 ,q q=  as Tvergaard (1981) recommended, the previous expressions resume to: 

 ( )T
Y 1 1

2

1ˆ ln ,
3

p h q f
q
σ+ += −

 
(3.22) 

 ( )T
Y 1 1

2

1ˆ ln .
3

p h q f
q
σ− −= +

 
(3.23) 
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As discussed previously, if the matrix is isotropic but displays SD effects ( 0),k ≠  the 

anisotropy tensor C reduces to the fourth-order identity tensor, I and the CPB06 yield 

criterion takes its isotropic form, i.e. the matrix uniaxial yield stress in tension, Tσ  is equal 

in all directions and there is a single T C/σ σ  ratio. Thus, Stewart & Cazacu's (2011) 

anisotropic yield criterion (Equation (3.12)) reduces to its isotropic form – the Cazacu & 

Stewart's (2009) criterion, given as: 

 ( )
2

' 2e 2 m
T 1 s 3

T T

3, , , 2 cosh 1 0,
2
qk f q f z q fϕ σ

σ σ
   Σ Σ

= + − − =   
  

Σ


 
(3.24) 

where eΣ  is the CPB06 isotropic form of the macroscopic equivalent stress. The parameter 

sz  controls the damage evolution, in the same spirit as the anisotropic parameter h in 

Equation (3.12), but it depends only on the strength-differential parameter k, such that: 

 
m

2
s T

m2isot
C

 1                                     if 0;  
2

3 2 3     if 0,
3 2 3

z k kh
k k

σ
σ

Σ <


= =   + +
= Σ ≥  − + 

 

(3.25) 

where 
isot

h  is the isotropic form of h. Again, because Cazacu & Stewart's (2009) yield 

criterion depends on all principal values of the deviatoric stress tensor and on the sign of the 

applied mean stress through the parameter sz , it does not have the symmetry properties of 

the Gurson's (1977) criterion. In the isotropic case yielding occurs at purely hydrostatic 

tensile loading when m Yp̂+Σ =  for: 

 ( ) ( )Y T 1 C 1
2 2

1 2ln ln ,
3 3

p h q f q f
q q
σ σ+ += − = −

 
(3.26) 

whereas, for compressive hydrostatic loading, the model predicts that yielding occurs when 

m Yp̂−Σ =  for: 

 ( ) ( )Y T 1 T 1
2 2

1 2ln ln .
3 3

p h q f q f
q q
σ σ− −= =

 
(3.27) 

Note that, according to the two previous expressions, yielding at tensile hydrostatic loading 

is exclusively a function of the yield strength in compression, Cσ  and, in opposition, yielding 

at compressive hydrostatic loading is a function of the yield strength in tension, Tσ . This 

counter-intuitive result is related to the exact (analytical) solution for a hollow sphere loaded 

hydrostatically and obeying the CPB06 isotropic yield criterion (e.g. see Cazacu & Stewart 

(2009)) and it was further validated by unit cell calculations (Yoon, et al., 2011). 
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If the matrix material presents no tension–compression asymmetry, i.e. T C( ),σ σ=  

then 0,k =  thus s 1,z =  3 / 2m =  and the Cazacu & Stewart's (2009) criterion (Equation 

(3.24)) reduces to the GTN yield criterion. Furthermore, when the material is void-free  

( 0)f =  Stewart & Cazacu (2011) criterion T
1

ˆ( , , , )k fϕ σΣ  given by Equation (3.12), reduces 

to that of the matrix, i.e. the quadratic form of the CPB06 orthotropic criterion: T
e 1σΣ =  if 

there is tension-compression asymmetry in the matrix and to Hill’48 yield criterion when no 

strength differential is exhibited. 

The validity of the presented anisotropic and isotropic criteria were assessed through 

comparisons with finite element unit cell calculations. It was concluded that the theoretical 

yield loci predictions provided by both the isotropic and anisotropic criteria for the void-

matrix aggregate shown an overall good agreement with the numerical results. For more 

details on micromechanical finite-element analyses of unit cells and on the validation of the 

Stewart & Cazacu (2011) yield surfaces the reader is referred to the work of  Stewart (2009) 

and Lebensohn & Cazacu (2012). 

3.3. CPB06 porous model under macroscopic axisymmetric 
stress states 

In order to further investigate the effects of the third-invariant, 3 ,J Σ  and of the stress 

triaxiality, TΣ  on yielding of the porous aggregate and, ultimately, on the damage 

accumulation, this thesis will focus particularly on the study of macroscopic axisymmetric 

loadings. Thus, in an introductory way, this section briefly presents the expressions that 

characterize this type of stress state. Letting 1 2 3( , , )e e e  be the reference frame associated 

with the axes of orthotropy, an axisymmetric loading about the 3e  axis is characterized such 

that 11 22 ,Σ = Σ  i.e. only two principal macroscopic stresses are independent: 

 ( ) ( )11 1 1 2 2 33 3 3 ,= Σ ⊗ + ⊗ +Σ ⊗Σ e e e e e e  (3.28) 

with Σ  denoting the macroscopic stress tensor, 11Σ  the imposed macroscopic lateral stress 

and 33Σ  the macroscopic axial stress. For such loadings the mean stress, mΣ  becomes: 

 11 33
m

2
,

3
Σ + Σ

Σ =
 

(3.29) 
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the von Mises equivalent stress, eΣ  is given by: 

 e 2 11 333 ,J ΣΣ = = Σ −Σ  (3.30) 

and the third deviatoric stress invariant, 3J Σ  is written as: 

 ( )3' ' '
3 1 2 3 11 33

2 .
27

J Σ = Σ Σ Σ = − Σ −Σ
 (3.31) 

In this conditions, the macroscopic stress triaxiality, TΣ  is defined by: 

 11 33m

e 11 33

2
.

3
TΣ

Σ + ΣΣ
= =
Σ Σ −Σ

 
(3.32) 

Due to the presence of an absolute value in the denominator, one can conclude that for the 

same stress triaxiality, TΣ  there are two possible orderings of the lateral and axial stress 

components, i.e. there are two possible axisymmetric stress states that yield the same stress 

triaxiality. These stress states can be distinguish by the sign of 3J Σ  (see Equation (3.31)), or 

analogously, by the two possible values of the Lode angle parameter, 1.θΣ = ±  Defining ρ  

as a prescribed constant to ensure a specified value for the stress triaxiality ratio, such that: 

 33

11

,ρ
Σ

=
Σ

 
(3.33) 

the two possible axisymmetric stress states can be distinguished as: 

i. 33 11 1,ρΣ > Σ ⇔ >  which corresponds to 3 0J Σ >  and 1;θΣ =  

ii. 33 11 1,ρΣ < Σ ⇔ <  which corresponds to 3 0J Σ <  and 1.θΣ =  

It can be shown that for loadings characterized by 33 11 ,Σ > Σ  two principal values of the 

deviator stress tensor 'Σ  are compressive (negative) but the maximum principal value is 

tensile (positive). In opposition, if 33 11Σ < Σ  then two principal values of the deviator stress 

tensor 'Σ  are tensile (positive) but the minor principal value is compressive (negative) and 

has the largest absolute value (Alves et al., 2014). The two ρ  values that originate the same 

specified stress triaxiality, TΣ  are given by: 

 
3

3

3 2    if  0,  
3 1
3 2    if  0.
3 1

T J
T
T J
T

ρ

ΣΣ

Σ

ΣΣ

Σ

+ > −=  − <
 +

 

(3.34) 

The proof of this result, as well as other details regarding the study of axisymmetric stress 

states (e.g. determination of the Lode angle parameters) can be found in Appendix A.  
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It is possible to prove that, under axisymmetric loadings, the equivalent stress 

according to the CPB06 anisotropic criterion, eΣ  given in Equation (3.2), can be related to 

the von Mises equivalent stress given previously in Equation (3.30) by the relation: 

 e e 11 33
1 1 ,
ˆ ˆg g

Σ = Σ = Σ −Σ

 
(3.35) 

with ĝ  being a constant that depends on the sign of 3J Σ  given by: 

 
( )

( )

3
2

3

3
2

3

1    if  0;
ˆ 2 3 2 3

ˆ
1    if  0,

ˆ 2 3 2 3
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m k k
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J

m k k

φ

φ

Σ

Σ

 >
− +

= 
 <
 + +

 

(3.36) 

where m̂  is the anisotropic form of the effective stress constant, given in Equation (3.5), and 

3φ  is the absolute value of the third component of the anisotropic constants vector, given 

in Equation (3.6). Knowing the relationship between the von Mises and the CPB06 

equivalent stresses, it is possible to quantify the effect of the sign of 3J Σ  for purely deviatoric 

loadings m( 0)Σ = . Indeed, substituting Equation (3.35) in the Stewart & Cazacu (2011) 

criterion (Equation (3.12)), the porous anisotropic material is predicted to yield at purely 

deviatoric loading when: 
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1 1
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   if  0;
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Σ

 −
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− +Σ = 
− < + +

 

(3.37) 

if 2
3 1 ,q q= as recommended in Tvergaard (1981). In order to better understand this result, 

the same expressions are now expressed under isotropic conditions. In the isotropic case, the 

effective stress constant m̂  takes its isotropic form, m (Equation (3.9)) and the anisotropy 

tensor C reduces to the fourth-order identity tensor, I. Therefore, 3 isot
= 1/3φ  and the 

constant ĝ  resumes to its isotropic version, g such that: 

 
3

2
C

32
T

 1                                    if  0;

3 2 3    if  0,
3 2 3

J
g k k J

k k
σ
σ

Σ

Σ

 >


=   − +
= <  + + 

 

(3.38) 

where Tσ  is the uniaxial yield in tension and Cσ  the uniaxial yield in compression. Hence, 

Equation (3.35) can be rewritten as: 
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            if  0;

   if  0. 

J

Jσ
σ

Σ

Σ

Σ >
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(3.39) 

Substituting the previous expression in the Cazacu and Stewart's (2009) criterion (Equation 

(3.24)), the porous material yield at purely deviatoric loading m( 0)Σ =  when: 

 
( )

( )

1 3
e

C
T 1 3

T

1              if  0;

1    if  0,

q f J

q f J
σσ
σ

Σ

Σ

 − >
Σ

=  
− < 

 

 

(3.40) 

where, again, it is assumed that 2
3 1 .q q=  Note the clear effect of the tension-compression 

asymmetry on yielding of the porous material and its dependence on the sign of the third 

invariant of the deviatoric stress tensor, 3J Σ  (or the Lode parameter). In order to better 

understand the impact of the SD effect on both purely deviatoric loadings m( 0)Σ =  and 

purely hydrostatic loadings e( 0)Σ = , Figure 3.2 presents a projection of the Cazacu & 

Stewart's (2009) analytical yield locus in the plane m e( , ),Σ Σ  for an isotropic material with 

yield strength in tension less than in compression ( 0.3098)k = −  under axisymmetric loading 

conditions. It can be verified that the SD effects, (in the form of C T/σ σ ), are manifested only 

for deviatoric loadings with 3 0J Σ <  and for tensile hydrostatic loadings. 

 
Figure 3.2. Projection of the Cazacu and Stewart's (2009) isotropic yield loci for a matrix material exhibiting 

SD effects (k = –0.3098) under an axisymmetric stress state. 
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According to the previous relationships, Cazacu & Stewart's (2009) single expression 

given in Equation (3.24) can be defined by branches, distinguished by the sign of 3J Σ  and 

the sign of m .Σ  Thus, under axisymmetric stress states, for 3 0J Σ <  (i.e. 33 11Σ < Σ ) results: 
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(3.41) 

whereas for 3 0J Σ >  (i.e. 33 11Σ > Σ ) results: 
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(3.42) 

The previous expressions define the yield loci of each of the four curves in the m e( , )Σ Σ stress 

space, illustrated in Figure 3.2. In the next chapter a sensibility analysis will be performed 

to the axisymmetric yield loci and a sounder discussion on the effect of the model parameters 

will be conducted. 
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4. Sensitivity Analysis of the CPB06 Porous Model 
Yield Surfaces 

In this chapter a sensitivity analysis of the Cazacu & Stewart's (2009) isotropic model 

parameters, from now on referred as the CPB06 porous model, is performed. To this end, 

the yield loci change of shape and size with the variation of the material and damage 

parameters is assessed. The analysis is performed both on three-dimensional (3D) yield 

surfaces and the corresponding two-dimensional (2D) projections on the deviatoric plane 

and/or on the axisymmetric plane, i.e. the plane defined by the condition 1 2 .Σ = Σ  Moreover, 

the influence of the stress state through the stress triaxiality, hydrostatic stress and the sign 

of 3J Σ , particularly for axisymmetric loadings, is further analysed and discussed. 

Regarding the strategy adopted for the determination of the yield loci, a Fortran.90 

program was developed, based on several subroutines of DD3MAT in-house code – 

(developed to perform the identification of the yield criteria parameters). The developed 

program allows to numerically determine a set of data points in the three-dimensional space, 

i.e. a point cloud, which satisfy the Stewart & Cazacu (2011) orthotropic yield criterion (see 

Equation (3.12)). In order to convert the point cloud into 3D surfaces, a MATLAB® program 

was implemented. Within this code, the surfaces are constructed based on a triangulation 

method. The scatter points of the 2D projections are obtained from subset solutions of the 

original numerical point cloud. All the figures presented in this chapter were constructed 

using MATLAB® programs. 

4.1. Influence of the void volume fraction 

As stated in previous chapters, micromechanical damage models, such as the CPB06 

porous model, are established through the intimate relationship between material porosity 

and the ductile failure mechanism, relying on the ability to describe the evolution of voids 

to accurately predict the failure of the material. Being the single internal damage variable, it 

is of the utmost interest to evaluate the influence of the void volume fraction, f  on the yield 

surface locus, and thus quantify the softening effect of the material. In order to accomplish 
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this, several yield surfaces where generated for three virtual materials displaying different 

tension–compression asymmetries (as in Subsection 3.1), rewritten here for the reader’s 

convenience: 

 0k =  T C( / 1),σ σ =  which corresponds to a von Mises material;  

 0.3098k =  T C( / 1.21),σ σ =  corresponding to a fully-dense isotropic BCC material; 

 0.3098k = − T C( / 0.83),σ σ =  corresponding to a fully-dense isotropic FCC material.  

Thus, throughout the chapter, in addition to the main objective of the sensitivity analysis, a 

parallel study will be carried out regarding the influence of the SD effects on the yield loci. 

The influence of the void volume fraction, f  on the yield surface is evaluated through 

several three-dimensional (3D) and two-dimensional (2D) yield surface representations – 

namely π-plane representations and axisymmetric plane projections of the 3D yield locus. 

4.1.1. Three-dimensional yield surface representations 

In order to facilitate the analysis of the yield surfaces, the usual three-dimensional 

Cartesian system 1 2 3( , , )Σ Σ Σ  is transformed into a cylindrical coordinate system normal to 

the π-plane, i.e. referred to the hydrostatic axis. As an example, the mentioned coordinate 

system transformation is illustrated in Figure 4.1. The closed-form surface of Figure 4.1 (a) 

corresponds to the solution of the yield criterion, '
T( , , , ) 0k fϕ σ =Σ  (Equation (3.24)) in the 

1 2 3( , , )Σ Σ Σ  space). The surface represented in Figure 4.1 (b) is obtained by multiplying each 

point by the appropriate orthogonal rotation matrix, R, namely:  

 

1/ 2 1/ 2 0

1/ 6 1/ 6 2/ 6 .

1/ 3 1/ 3 1/ 3

 −
 

= − − 
 
  

R

 

(4.1) 

Note that the cylindrical coordinate system adopted in Figure 4.1 (b) allows a more compact 

solution and an improved perception of the surface contours and dimension thorough the 

hydrostatic axis, m T( / ).σΣ  Moreover, as a result of the coordinate system transformation, it 

is not possible to associate a clear physical meaning to the perpendicular axes defined on the 

bottom plane of Figure 4.1 (b), which contains some π-plane projections. 

Figure 4.2 to Figure 4.4 show three-dimensional representations of the CPB06 porous 

model for different values of the void volume fraction, considering the three values of the 

material parameter k, which describes the SD effects. All representations were obtained 
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fixing the void interaction parameters of Equation (3.24) to 1 1.5,q =  2 1q =  and 2
3 1q q= , 

as suggested by Tvergaard (1982). 

 

 
 

(a) (b) 
Figure 4.1. Coordinate system transformation performed to represent the 3D yield surfaces: (a) three-

dimensional Cartesian system 1 2 3( , , )Σ Σ Σ ; (b) three-dimensional cylindrical coordinate system. 

As discussed in Chapter 3, when the homogenized material is void-free, 0,f =  the 

yield criterion '
T( , , , )k fϕ σΣ  given in Equation (3.24) reduces to that of the matrix material, 

i.e. the isotropic and quadratic form of the CPB06 yield criterion (see Equation (3.7)). This 

limit solution of the porous model is illustrated in Figure 4.2. It can be verified that, being 

pressure-insensitive, that is, by neglecting the effects of the first invariant of the stress tensor, 

1 ,I Σ  the radial and angular coordinates of the yield surfaces are independent of the height 

coordinate – the mean stress, m .Σ  Indeed, the surfaces will not converge at any point, being 

infinite along the hydrostatic axis. This behaviour demonstrates the incompressible nature 

of the matrix material. Additionally, note that when the matrix material presents no tension–

compression asymmetry (see Figure 4.2 (a)), the CPB06 porous model further reduces to the 

von Mises yield criterion, which is 3J Σ - independent, i.e. the yield locus in the π-plane is a 

circle. 
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(a) (b) (c) 

Figure 4.2. 3D representation of the CPB06 porous model for a void-free material (f = 0): (a) no tension-
compression asymmetry (k = 0); (b) yield strength in tension greater than in compression (k = 0.3098);  

(c) yield strength in tension lower than in compression (k = –0.3098). 

   
(a) (b) (c) 

Figure 4.3. 3D representation of the CPB06 porous model for a material with f = 0.010: (a) no tension-
compression asymmetry (k = 0); (b) yield strength in tension greater than in compression (k = 0.3098);  

(c) yield strength in tension lower than in compression (k = –0.3098). 
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(a) (b) (c) 

Figure 4.4. 3D representation of the CPB06 porous model for a material with f = 0.100: (a) no tension-
compression asymmetry (k = 0); (b) yield strength in tension greater than in compression (k = 0.3098);  

(c) yield strength in tension lower than in compression (k = –0.3098).  

 Figure 4.3 shows the effect of the presence of voids in the homogenized material 

( 0.01).f =  As soon as porosity arises, the yield surfaces become finite along the hydrostatic 

axis, i.e. the porous aggregate is considered to be compressible, recovering its sensitivity to 

1 .I Σ  Moreover, if SD effects are present, the yield loci is no longer symmetric with respect 

to the middle plane, defined by m 0.Σ =  Since the three materials are assumed to have the 

same yield strength in tension, Tσ , yielding at compressive hydrostatic loading occurs in all 

cases at the same distance from the m 0Σ =  plane, as stated in Equation (3.27). This 

reinforces the idea that the SD effects are irrelevant in the definition of the lower vertex of 

the yield surfaces. However, since the materials have different yield strengths in 

compression, Cσ , yielding at tensile hydrostatic loading occurs for three different values of 

mean stress, Yp̂+  (see Equation (3.26)). Note the curious result that higher values of the yield 

strength in compression lead to higher values for the yield hydrostatic stress in tension, i.e. 

the tensile hydrostatic limit occurs for an higher value of m T/ .σΣ  Further analysing the plots, 

it can be concluded that the yield surfaces present their maximum dimension along the 

deviatoric plane at m 0.Σ =  By moving away from this plane, i.e. as the mean stress increases 
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towards either tensile or compressive hydrostatic limits (the surface vertices), the surfaces 

shrink in the deviatoric plane. Note that, despite changing its size, the shape of the yield 

locus in the deviatoric plane is governed by the tension-compression asymmetry of the 

matrix, through the sign and magnitude of the material parameter k. Furthermore, the 

variation of the size of the surface in the π-plane with the distance to the plane m 0Σ =  does 

not appear to be linear. This subject will be recovered in a following subsection where a 

sensitivity analysis will be carried out by varying the mean stress, m .Σ  Lastly, it should be 

mentioned that, when no tension-compression asymmetry is displayed, the matrix obeys the 

classical von Mises yield criterion, hence the surface plotted in Figure 4.3 (a) matches to the 

well-known GTN model, given by Equation (2.24). 

Figure 4.4 shows the yield surfaces of the same porous aggregates as in Figure 4.3, but 

with a ten times higher porosity, 0.10.f =  The reduction of the size of the surfaces is 

evident, especially the distance between the vertices along the hydrostatic axis. It seems that 

the increase of the void volume fraction changes the proportions of the yield locus to account 

for the reduction of the load-bearing area and the subsequent softening effect. 

4.1.2. Two-dimensional yield surface representations 

The surfaces represented in the three-dimensional space allowed to study the global 

behaviour of the porous aggregates when varying the porosity. A complementary analysis is 

now carried out through two-dimensional projections to further understand the influence of 

the void volume fraction,  f  on the definition of the yield locus. In particular, some deviatoric 

π-plane projections are presented in order to evaluate the reduction of size of the yield locus 

on this plane. Additionally, axisymmetric projections are carry out to compare the reduction 

of the yield surface dimensions along the hydrostatic axis versus along the deviatoric plane, 

i.e. to evaluate the yield surface proportions during the damage accumulation.  

Figure 4.5 illustrates π-plane representations for the CPB06 porous model ductile 

criterion '
T( , , , ) 0k fϕ σ =Σ  (see Equation (3.24)) for the three materials considered in this 

study, for a fixed hydrostatic stress, m 0.Σ =  Regardless of the shape of the yield loci, which 

is ruled by the SD effects, it is shown that the surfaces shrink in the deviatoric plane as the 

porosity increases. Note that, if the material exhibits tension-compression asymmetry, the 

reduction of the radial coordinate is not equal in all directions, i.e. the softening depends on 
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the angular coordinate – otherwise the surfaces would change their original shape. However, 

the successive decrements of the radial coordinate, resulting from the increase of porosity, 

have the same value along the principal axes for all three materials. Furthermore, along the 

principal axes, the reduction of the radial coordinate seems to vary linearly with the porosity. 

In order to confirm this observation, Equation (3.40), derived for axisymmetric loadings in 

the previous chapter, is recovered. Trivially, the derivative of e T/σΣ  in order to the void 

volume fraction is constant. On other hand, note that for purely deviatoric loadings m( 0)Σ =  

with 3 0J Σ >  the principal axis 3 T/σΣ  of Figure 4.5 is collinear with e T/ ,σΣ  given in 

Equation (3.40). Moreover, due to the isotropy assumption, the distance relative to the 

hydrostatic axis (i.e. the radius) of the yield surface points contained in the deviatoric plane 

at m 0Σ =  and intercepted by the principal axes T/i σΣ  with 1,2,3i =  is the same in the three 

directions. Therefore, in analogy with the analysis performed with Equation (3.40): 

 ( )1 1
T

1      with 1, 2,3.i q f q i
f fσ
 Σ∂ ∂

= − = − = ∂ ∂ 

 
(4.2) 

This means that the yield locus sensitivity to porosity in the π-plane is constant and 

quantified by the fitting parameter 1q . The radial coordinate of the yield locus intercepted 

by the principal axes is a linear function of the void volume fraction,  f  and it is independent 

of the SD effects. Although not represented in Figure 4.5, as a limit case, the surfaces would 

converge into a single point when the void volume fraction reached its ultimate value, i.e. 

11/f q→  or  * *
U 11/f f q→ =  if the effective void volume fraction concept proposed by 

Tvergaard & Needleman (1984) is considered. 

The previous analysis was performed for a single mean stress value, m 0.Σ =  A 

fundamental question that arises is how the increasing porosity of the aggregate effects the 

entire range of the yield surface along the hydrostatic axis. For this purpose, the projection 

of the yield locus '
T( , , , ) 0k fϕ σ =Σ , given in Equation (3.24), on the axisymmetric plane  

11 22( )Σ = Σ  is also constructed. This projection is obtained through the intersection of the 

three-dimensional yield surface with the axisymmetric plane, as shown in Figure 4.6. The 

resulting bi-dimensional contour can be transformed into a coordinate system defined in the 

stress space m 11 33( , )Σ Σ − Σ  where the mean stress, mΣ  is given by Equation (3.29) and the 

other axis, 11 33( )Σ − Σ  is defined according with the von Mises equivalent stress, eΣ  given in 

Equation (3.30).  
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(a) (b) 

 
(c) 

Figure 4.5. Deviatoric plane representation of the CPB06 porous model varying the void volume fraction:  
(a) no tension-compression asymmetry (k = 0); (b) yield strength in tension greater than in compression  

(k = 0.3098); (c) yield strength in tension lower than in compression (k = –0.3098).  
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Figure 4.6. Intersection of an isotropic CPB06 porous yield surface with the axisymmetric plane 11 22(Σ Σ ).=  

Figure 4.7 shows the projections on the axisymmetric plane of each of the three 

materials, for the same values of porosity as in the previous analysis. As seen in the 3D 

representations, a clear reduction of the size of the yield loci along the hydrostatic axis is 

evidenced when increasing the void volume fraction. Furthermore, a change of the 

proportions of the yield locus is also observed. The change of shape shown in the 

axisymmetric plane is due to the distinct response of the yield surface along the hydrostatic 

axis and on the π-plane. For the porosity values tested, regardless of the SD effects, the yield 

locus sensitivity to porosity in the hydrostatic axis is much higher than in the π-plane, as 

small variations of the porosity value tend to greatly reduce the size of the yield projection 

on the former. However, unlike the π-plane case, the sensitivity of the yield locus to the 

porosity along the hydrostatic axis is not constant. This statement can be confirmed through 

the analysis of the derivative of the compressive hydrostatic limit, Yp̂−  (given in Equation 

(3.27)) with respect to f , such that: 

 ( )Y
1

T 2 2

2 2 1ln .
3 3

p q f
f f q q fσ

−     ∂ ∂
= =     ∂ ∂     

 
(4.3) 

It is concluded that the sensitivity of the yield surface size along the hydrostatic axis is 

inversely proportional to the porosity value and to the fitting parameter 2 .q  Thus, although 

for relatively low values of porosity the sensitivity on the hydrostatic axis is dominant, one 

can expect that there is an instant (i.e. a void volume fraction value, f.) at which the 

sensitivity to the porosity in the π-plane will prevail. This implies that the projections of the 
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yield loci, initially comparable to an oblate ellipse, will eventually become prolate. In other 

words, the capacity of the porous solid to withstand purely deviatoric loadings will become 

greater than purely hydrostatic ones. As in the projections on the deviatoric plane, the yield 

loci of Figure 4.7 will converge into a single point when the void volume fraction reaches 

its ultimate value, i.e. 11/ .f q→  

  
(a) 

 
(b) 

 
(c) 

Figure 4.7. Axisymmetric plane projections of the CPB06 porous model varying the void volume fraction: 
(a) no tension-compression asymmetry (k = 0); (b) yield strength in tension greater than in compression 

 (k = 0.3098); (c) yield strength in tension lower than in compression (k = –0.3098).  
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4.2. Influence of the stress state 

As outlined in the previous chapters, the stress state plays a key role in the description 

of the ductile fracture. Recall that, concerning the study of ductile fracture mechanics, the 

stress state is often described by two dimensionless parameters: the stress triaxiality, TΣ  and 

the Lode angle parameter, θΣ  (quantifying 3J Σ ). In fact, as discussed previously, the stress 

state, particularly the stress triaxiality, is responsible for determining the active void growth 

micro-mechanism: shape changing versus volumetric changing void growth. Consequently, 

it is important to understand how a stress state affects the yield criterion and how can it be 

visualized both on a three-dimensional and on a two-dimensional space.  

This section discusses the influence of the stress state on the CPB06 porous yield loci 

for three virtual materials displaying different tension–compression asymmetries (as in 

Subsection 4.1). Firstly, the sensitivity of the deviatoric plane projections to the mean stress, 

mΣ  is analysed. Following it, 3D representations are shown, illustrating the intersection of 

the yield loci with a surface of constant stress triaxiality. This analysis is complemented with 

a 2D projection on the axisymmetric plane, illustrating graphically the stress triaxiality and 

its influence on the yielding of the three materials displaying different SD effects. 

4.2.1. Effect of the mean stress on the deviatoric plane projections 

Figure 4.8 shows π-plane representations of the CPB06 porous yield criterion
'

T( , , , ) 0,k fϕ σ =Σ  given in Equation (3.24), for the three materials considered in this study, 

and for a fixed void volume fraction value, 0.01.f =  As observed in the 3D representations 

of Subsection 4.1.1, it is confirmed that the yield surfaces shrink in the deviatoric plane as 

the mean stress, mΣ  tends to it ultimate value, Yp̂+  – the tensile hydrostatic yield stress (see 

Equation (3.26)). This behaviour is similar for all materials. Such as in the study of the 

influence of the porosity in the π-plane for a fixed value of the mean stress (see Figure 4.5), 

the yield surfaces of Figure 4.8 decrease in size but retain their original shape. This enforces 

that the shape of the yield locus on the deviatoric plane is solely governed by the tension–

compression asymmetry, through the sign and magnitude of the material parameter k. 
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(a) (b) 

 
(c) 

Figure 4.8. Deviatoric plane representation of the CPB06 porous model varying the mean stress: (a) no 
tension-compression asymmetry (k = 0); (b) yield strength in tension greater than in compression 

 (k = 0.3098); (c) yield strength in tension lower than in compression (k = –0.3098).  

According to Figure 4.8, the yield surfaces present their maximum radii along the 

deviatoric plane for m 0.Σ =  As the mean stress increases towards its tensile hydrostatic limit, 

m Y ,p+Σ →  the radial coordinate decreases but, in this case, not linearly. In fact, the yield 

surface sensitivity to the mean stress increases continuously with its absolute value. This 

remark can be verified by analysing any quadrant of the axisymmetric plane projections plots 

represented in Figure 4.7. One can observe that, regardless of the porosity value, the slope 

of the yield surfaces varies between zero (in the deviatoric plane at m 0Σ = ) to infinity when 
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the mean stress reaches its limit value, m Yp+Σ =  or m Y .p−Σ =  A mathematical proof of these 

remarks can be obtain by evaluating the slope of the yield locus at any quadrant, i.e. the 

partial derivative m/e∂Σ ∂Σ  of any branch of Equation (3.41) or Equation (3.42). For instance, 

taking the first quadrant of the yield loci of Figure 4.7, i.e. m 3( 0,  0)J ΣΣ > >  it is possible to 

prove that: 
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(4.4) 

which is a  monotonically increasing function where: 

 
m m Y

e e

0
m m

lim 0   and   lim   
p+Σ → Σ →

   ∂Σ ∂Σ
= = ∞   ∂Σ ∂Σ   

 
(4.5) 

The conclusion holds true for the other quadrants. The plots of Figure 4.8 only show curves 

for a single void volume fraction ( f = 0.01); however the porosity value also affects the yield 

loci sensitivity to the mean stress, i.e. the rate at which the projected area in the π-plane 

decreases whit increasing hydrostatic stress (tensile or compressive). By analysing Figure 

4.7 and/or Equation (4.4) it is possible to verify that the sensitivity to the mean stress 

increases with the increase of the porosity. In other words, there is a sooner and shaper 

reduction of the dimension along the deviatoric plane with respect to the mean stress 

normalized by its ultimate value, Yp̂+  or Yp̂− . 

4.2.2. Effect of the stress triaxiality 

It is well-known that the stress triaxiality, TΣ  is defined by the ratio between the mean 

stress and the equivalent von Mises stress (see Equation (2.6)). However, the visualization 

of this parameter in the three-dimensional space or even in the two-dimensional space may 

not be evident. This subsection intends to address this subject.  

By itself, the stress triaxiality is incapable of fully defining a stress state. In the fracture 

mechanics framework, the pair (TΣ ,θΣ ) is often used to define the direction of the principal 

stress vector, 1 2 3( , , )Σ Σ Σ  and, complementary, the mean stress or the equivalent stress is 

used to set its magnitude. Indeed, three independent parameters are required to fully 

characterize a stress state. With that said, the stress triaxiality alone defines an infinite 
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surface that contains all the points that verify a specific ratio m e/ .Σ Σ  In the three-dimensional 

space, this corresponds to the definition of a circular cone, whose vertex coincides with the 

origin of the coordinate system (both Cartesian and cylindrical), collinear with the 

hydrostatic axis with an opening angle quantified by the stress triaxiality value. Figure 4.9 

shows the intersection of several stress triaxiality cones with the yield loci of the isotropic 

CPB06 porous model, for three materials displaying different tension-compression 

asymmetry. The yield surfaces were sectioned to facilitate the visualization of the stress 

triaxiality cones and the curves resulting from the intersections. 

 

   
(a) (b) (c) 

Figure 4.9. 3D section view of the intersection between the CPB06 porous model and several stress triaxialities 
for a material with f = 0.010 and: (a) no tension-compression asymmetry (k = 0); (b) yield strength in tension 
greater than in compression (k = 0.3098); (c) yield strength in tension lower than in compression (k = –0.3098).  

As shown in Figure 4.9 (a) – material with no tension-compression asymmetry – the 

intersection resultant from any stress triaxiality cone with the yield surface occurs at a fixed 

mean stress, i.e. results in circles at a constant height with respect to the middle plane, 

m 0.Σ =  However, the same does not occurs for the materials exhibiting SD effects, either 

for 0k >  or 0.k <  In this case, the intersection results in closed curves in which both the 

radius and the height vary with the angular coordinate. This is due to the fact that the yield 

loci does not have a circular shape in the π-plane (as in Figure 4.9 (a)). The SD effects, 
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introduced by the sensitivity to 3J Σ , originate the triangular shape of the yield surfaces. Thus, 

the von Mises equivalent stress – proportional to the radial coordinate – varies with the 

angular coordinate and, consequently, the mean stress will also have to vary in order to 

maintain a constant m e/Σ Σ  ratio, i.e. a constant stress triaxiality. 

The influence of the tension-compression asymmetry on the definition of the 

intersection point between the yield surface and a specified stress triaxiality value can also 

be analysed in two-dimensional representations. Figure 4.10 illustrates the axisymmetric 

plane projections of the CPB06 porous yield criterion, for the three materials considered in 

this study, and the same stress triaxiality values as in Figure 4.9. Note that in the two-

dimensional axisymmetric space – m 11 33( , ),Σ Σ − Σ  the cone-shaped geometric surfaces of the 

previous analysis give rise to simple straight lines through the origin, with a slope quantified 

by the stress triaxiality value. As stated in Subsection 3.3, under axisymmetric stress states 

two cases can be distinguished: 

i. 33 11 ,Σ > Σ  which corresponds to 3 0J Σ >  and 1;θΣ =  

ii. 33 11 ,Σ < Σ  which corresponds to 3 0J Σ <  and 1.θΣ =  

According to Figure 4.10 it is verified that, if SD effects are displayed, the intersection of 

the constant triaxiality lines with the yield locus does not occur at the same abscissa, mΣ  for 

3 0J Σ >  and 3 0.J Σ <  

Moreover, note that, with the exception of the second quadrant m 3( 0 0),J ΣΣ < ∧ >  for 

which SD effects do not manifest in the yield surface shape – see Equation (3.42)), the 

contours characterized by 0k >  are contained within the von Mises yield locus and the 

contours with 0k <  are the outermost. For the other quadrants, this means that, regardless 

of the imposed stress triaxiality, in axisymmetric loadings the plastic flow will occur first in 

the material with yield strength in tension greater than in compression ( 0).k >  Although it 

may seem a counter-intuitive result for loadings with m 0,Σ >  this behaviour is supported 

by numerical simulations on unit cells/RVEs (Cazacu & Stewart, 2009; Lebensohn & 

Cazacu, 2012; Stewart & Cazacu, 2011). In the next chapter, elementary numerical 

simulations will be performed in order to study of the response of the porous model to 

axisymmetric loadings and Figure 4.10 will be revised to understand and justify the results 

obtained. 



 

 

Ductile fracture prediction using a coupled damage model   

 

 

54  2018 

 

 
Figure 4.10. Axisymmetric plane projections of the CPB06 porous model for a material with f = 0.010 and: 

(a) no tension-compression asymmetry (k = 0); (b) yield strength in tension greater than in compression  
(k = 0.3098); (c) yield strength in tension lower than in compression (k = –0.3098). 
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5. Assessment of the Damage Model Response 
through Elementary Numerical Tests 

Although several micromechanical FEA on three-dimensional unit cells2 have been 

conducted showing the importance of SD effects on the dilatational response of porous 

solids, to the author's knowledge, an assessment of the capability of the CPB06 porous model 

to replicate the mechanical behaviour predicted in the unit cell simulations is still lacking.  

In order to fill this gap, in this chapter a numeric analysis is conducted in order to 

evaluate the ability of the damage model to effectively describe the plastic flow of the matrix 

and the accumulated damage in porous solids exhibiting tension–compression asymmetry. 

For this purpose, single-element tests are carried out for macroscopic axisymmetric stress 

states, corresponding to a fixed stress triaxiality value and the two corresponding possible 

values of the Lode parameter (or sign of 3J Σ ); as well as for hydrostatic loadings, both tensile 

and compressive. A brief sensitivity analysis will also be carried out regarding the matrix 

isotropic hardening law parameters.  

5.1. Numerical model 
The computations were conducted on a single initially cubic 8-node hexahedral finite 

element (FE) with a side length 0 .C  Let 1 2 3( , , )e e e  be the reference frame representing the 

lateral and axial directions, respectively; u the incremental displacement between the current 

and the reference configuration and t the prescribed Cauchy stress vector (defined on the 

current configuration). The boundary conditions are imposed to the element as in Alves et 

al., (2014), i.e. symmetry at 1 0,=e 2 0=e  and 3 0 :=e  

 
1 2 3 2 2 3 3 2 3

2 1 3 1 1 3 3 1 3

3 1 2 1 1 2 2 1 2

(0, , ) 0, (0, , ) 0, (0, , ) 0;
( ,0, ) 0, ( ,0, ) 0, ( ,0, ) 0;
( , ,0) 0, ( , ,0) 0, ( , ,0) 0,

u e e t e e t e e
u e e t e e t e e
u e e t e e t e e

= = =
= = =
= = =

 
(5.1) 

and to the opposite FE surfaces as: 

                                                 
2 Assuming that the porous solid contains a regular array of initially spherical voids, the unit cell is modelled 
as a cubic cell containing a single initially spherical cavity and the matrix obeys to the classic CPB06 yield 
criterion. 
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*
1 0 2 3 1 2 0 2 3 3 0 2 3

*
2 1 0 3 2 1 1 0 3 3 1 0 3

*
3 1 2 0 3 1 1 2 0 2 1 2 0

( , , ) ( ), ( , , ) 0, ( , , ) 0;
( , , ) ( ), ( , , ) 0, ( , , ) 0;
( , , ) ( ), ( , , ) 0, ( , , ) 0.

u C e e u t t C e e t C e e
u e C e u t t e C e t e C e
u e e C u t t e e C t e e C

= = =
= = =
= = =

 
(5.2) 

By forcing the Cauchy stress components coplanar to each plane to be zero, initially parallel 

faces will remain parallel after deformation and are shear-free. Figure 5.1 (a) depicts the 

modelled FE and the imposed boundary conditions. In the previous equation *
1 ( ),u t  *

2 ( )u t  

and *
3 ( )u t  are the time histories of the incremental displacements, determined such that the 

macroscopic true stresses 11 22 33( , , )Σ Σ Σ  follow a proportional loading history given, for 

axisymmetric stress states 11 22( ),Σ = Σ  by the constant ρ  defined in Section 3.3 as: 

 33

11

,ρ
Σ

=
Σ

 
(3.33) 

The current FE side dimensions, iC  with 1,2,3i =  are computed by: 

 *
0 ( ).i iC C u t= +  (5.3) 

Hence, the macroscopic true stresses 11 22,  Σ Σ  and 33Σ  are defined as (see Figure 5.1 (b)): 

 

2 3 1 3

2 1

11 1 3 2 22 1 3 10 0 0 0
2 3 1 3

33 3 1 20 0
1 2

1 1 ,     ,    

1  .

C C C C

C C

t de de t de de
C C C C

t de de
C C

Σ = Σ =

Σ =

∫ ∫ ∫ ∫

∫ ∫

 

(5.4) 

For each time increment, the three imposed macroscopic true stresses on each planar surface 

of the FE model are continuously updated in order to ensure that the condition of constant 

proportionality (given in Equation (3.33)) on the final equilibrated configuration is verified. 

In other words, it is ensured that the macroscopic stress triaxiality, TΣ  remains constant 

throughout the entire deformation history. Knowing the current FE dimensions, iC  with 

1,2,3i =  the macroscopic principal strains 1 2 3( , , )E E E  are calculated as follows: 

 31 2
1 2 3

0 0 0

ln ,    ln ,    ln ,
CC CE E E

C C C
     

= = =     
     

 
(5.5) 

hence the second-invariant of the macroscopic principal strain tensor E
2J  is given by: 

 ( )E 2 2 2
2 1 2 3

1 ,
2

J E E E= + +
 

(5.6) 

and the macroscopic von Mises equivalent strain, eE  as: 

 E
e 2

2 3 .
3

E J=
 (5.7) 
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(a) (b) 

Figure 5.1. Modelled finite-element: (a) imposed boundary conditions; (b) imposed macroscopic loading and 
initial dimensions. 

All the FE numerical simulations were carried out with the in-house quasi-static 

elastoplastic implicit finite element solver DD3IMP (Menezes & Teodosiu, 2000; Oliveira, 

Alves, & Menezes, 2008). A single tri-linear solid element was considered associated with 

a selective reduced integration (SRI) technique. For more details regarding the 

implementation of the present boundary value problem the reader is referred to the work of 

Alves et al. (2014). 

The response of three porous materials displaying different tension–compression 

asymmetries is analysed for the SD ratios T C( / )σ σ   reported by Hosford & Allen (1973), as 

in Chapter 4. The materials are considered to be isotropic elastic-plastic obeying to the 

CPB06 porous yield criterion, '
T( , , , ) 0,k fϕ σ =Σ  given in Equation (3.24). The elastic 

behaviour is described by Hooke’s law and the matrix tensile hardening behaviour is 

considered to follow Swift’s isotropic hardening power-law, given by: 

 ( )
1/T

p 0
T 0 M 0,   with  ,

n
n

K
K
σ

σ ε ε ε
 

= + =  
 

 
(5.8) 

where Tσ  is the matrix flow stress, T
0σ  is the initial yield strength in tension, p

Mε  is the local 

equivalent plastic strain of the matrix and K, n and 0ε  are material parameters. The values 

for the matrix elastic and hardening parameters were taken to be the same as those considered 

by Alves & Cazacu (2015) and are resumed in Table 5.1. Additionally, the damage model 

parameters, namely the void interaction parameters, ,iq  the initial void volume fraction, 0 ,f

and the onset of void coalescence, cf  are indicated in Table 5.2. The void interaction 
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parameters are fixed to the numeric values suggested by Tvergaard (1982); the initial void 

volume fraction is chosen in agreement with unit cell studies such as in Cazacu & Stewart 

(2009) and Alves & Cazacu (2015a); and the onset of void coalescence is taken such that 

c 0/ 10,f f =  so that the critical porosity corresponds to a plausible value for metallic 

materials. In order to facilitate the analysis, the plastic strain controlled nucleation 

mechanism is neglected, so that the void volume fraction rate of change, f  is exclusively 

due to the growth of pre-existing voids. Moreover, as mentioned in Chapter 2, the load-

bearing capacity of the material is abruptly reduced when the onset of coalescence is reach. 

Therefore, by establishing a critical value for the void volume fraction (in the form of cf ), 

it will be possible to distinguish the onsets of failure for the three materials, allowing to 

quantify the ductility of the porous solids for a given stress state. Note that, since the 

parameter k is the only parameter that varies between the three solids, any difference 

resulting from the simulations for a given stress triaxiality will be due solely to SD effects. 

The computations are stopped when either one of the two conditions occur: (i) the void 

volume fraction reaches its arbitrated critical value c( );f f≥  (ii) the macroscopic effective 

strain reaches unity e( 1).E ≥  

Table 5.1. Elastic properties and hardening law parameters for the three studied materials. 

Property Symbol Value 
Young’s modulus E [GPa] 200 
Poisson’s coefficient ν 0.33 
Hardening coefficient T

0/K σ  2.2 
Hardening exponent  n 0.1 

Table 5.2. Damage model parameters for the ductile failure prediction of the three studied materials. 

Property Symbol Value 

Void interaction parameters 
1q  1.5 

2q  1.0 

3q  2.25 
Initial void volume fraction 0f  0.01 
Onset of void coalescence cf  0.1 
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5.2. Numerical results 

5.2.1. Axisymmetric tensile loadings 

Using the FE model, the mechanical response of the porous materials given by the 

CPB06 damage model will be analysed and discussed for axisymmetric tensile loadings. The 

study will be performed for the following values of the stress triaxiality: 2/3,TΣ =  1TΣ =  

and 2.TΣ =  Recall that for each stress triaxiality two possible axisymmetric stress states can 

be distinguished by the magnitude of the constant 33 11/ ,ρ = Σ Σ  responsible for adjusting the 

ratio between the macroscopic axial and lateral stresses: 

i. 33 11 ,Σ > Σ  which corresponds to 3 0J Σ >  and 1;θΣ =  

ii. 33 11 ,Σ < Σ  which corresponds to 3 0J Σ <  and 1.θΣ =  

The two ρ  values that originate the same specified stress triaxiality, TΣ  were determined by 

Equation (3.34) and are represented in Table 5.3. 

 Figure 5.2 shows a comparison between the normalized macroscopic von Mises 

effective stress, eΣ  versus the macroscopic effective strain, eE  for the three porous solids 

corresponding to the FE computations at 2/3,TΣ =  for both 3 0J Σ >  and 3 0.J Σ <  The 

corresponding void volume fraction evolution, f  is shown in Figure 5.3. The void volume 

fraction rate of grow, f , is evaluated in function of the macroscopic equivalent strain, 

e/ ,f E∂ ∂  and is depicted in Figure 5.4. In each figure and for each material, the onset of 

failure, (i.e. when the void volume fraction reaches its critical value, cf f= ) is marked by a 

cross symbol, if predicted. Similarly, Figure 5.5 to Figure 5.7 present the same plots and 

comparisons between the behaviour of the three porous solids for a stress triaxiality of 1TΣ =  

and Figure 5.8 to Figure 5.10 for a stress triaxiality of 2.TΣ =  

Table 5.3. Prescribed ratio between the macroscopic axial and lateral stresses for the  
studied axisymmetric stress triaxiality values. 

 33 11/ρ = Σ Σ  

Stress Triaxiality 3 0J Σ >  3 0J Σ <  
2/3TΣ =  4.0 0 
1TΣ =  2.5 0.25 
2TΣ =  1.6 4/7 
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(a) (b) 

Figure 5.2. Macroscopic stress–strain response for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 2/3TΣ =  and: (a) 3 0;J Σ >  (b) 3 0.J Σ <  

  
(a) (b) 

Figure 5.3. Void volume fraction evolution for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 2/3TΣ =  and: (a) 3 0;J Σ >  (b) 3 0.J Σ <  

  
(a) (b) 

Figure 5.4. Void growth rate evolution for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 2/3TΣ =  and: (a) 3 0;J Σ >  (b) 3 0.J Σ <  
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(a) (b) 

Figure 5.5. Macroscopic stress–strain response for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 1TΣ =  and: (a) 3 0;J Σ >  (b) 3 0.J Σ <  

  
(a) (b) 

Figure 5.6. Void volume fraction evolution for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 1TΣ =  and: (a) 3 0;J Σ >  (b) 3 0.J Σ <  

  
(a) (b) 

Figure 5.7. Void growth rate evolution for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 1TΣ =  and: (a) 3 0;J Σ >  (b) 3 0.J Σ <  
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(a) (b) 

Figure 5.8. Macroscopic stress–strain response for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 2TΣ =  and: (a) 3 0;J Σ >  (b) 3 0.J Σ <  

  
(a) (b) 

Figure 5.9. Void volume fraction evolution for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 2TΣ =  and: (a) 3 0;J Σ >  (b) 3 0.J Σ <  

  
(a) (b) 

Figure 5.10. Void growth rate evolution for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 2TΣ =  and: (a) 3 0;J Σ >  (b) 3 0.J Σ <  
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5.2.2. Tensile and compressive hydrostatic loadings 

The response of the CPB06 porous model for purely tensile and compressive 

hydrostatic loadings is also assessed. In this case, the prescribed constant 33 11/ρ = Σ Σ  

becomes unitary and the hydrostatic stress states are solely distinguished by the sign of the 

imposed macroscopic stresses 11 22 33( ).Σ = Σ = Σ  Note that for hydrostatic loadings the stress 

triaxiality tends to infinity: TΣ →∞  for the tensile loadings and TΣ → −∞  for the 

compressive loadings. Moreover, for theses loadings the third invariant of the stress deviator 

tensor is null, 3 0J Σ = , hence the Lode angle, θΣ , (and Lode parameter, θΣ ) are undefined. 

Figure 5.11 shows the comparison between the normalized macroscopic von Mises 

effective stress, eΣ  versus the macroscopic effective strain, eE  for the three porous solids, 

corresponding to the FE computations for the tensile and compressive hydrostatic loadings. 

For both cases, the void volume fraction evolution, f  is illustrated in Figure 5.12 – void 

growth with hydrostatic tension and void collapse in the hydrostatic compression case. It 

should be noted that, given the characteristics of the hydrostatic loading responses, the above 

plots are represented only up to a macroscopic strain of e 0.05,E =  i.e. 5% of the limit value 

considered in the axisymmetric tensile loadings. 

  
(a) (b) 

Figure 5.11. Macroscopic stress–strain response for porous materials displaying distinct SD effects under: 
(a) tensile hydrostatic loading, ;TΣ → ∞  (b) compressive hydrostatic loading, .TΣ → −∞  
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(a) (b) 

Figure 5.12. Void volume fraction evolution for porous materials displaying distinct SD effects under: 
 (a) tensile hydrostatic loading, ;TΣ → ∞  (b) compressive hydrostatic loading, .TΣ → −∞  

5.3. Discussion of the results 

The numerical results obtained in the previous section are now discussed. A detailed 

analysis for the particular case of a stress triaxiality of 2/3TΣ =  will be carried out. This 

stress triaxiality results from the well-known equibiaxial tension (EBT) stress state, which 

is of great practical importance in sheet metal forming, and is characterized by 11 22Σ = Σ  

with 33 0Σ =  for which 3 0.J Σ <  As for the remaining axisymmetric loadings, the conclusions 

drawn from this case are equally applicable and therefore a brief discussion will be made 

solely on the effect of increasing the stress triaxiality, specifically on the damage 

accumulation, material ductility and on the impact of the SD effects of the matrix in the 

mechanical response of the porous solid. 

Analysing Figure 5.2 it is clear that the SD effects (described by the parameter k), 

affect the mechanical response of the porous solids, namely the maximum von Mises 

effective stress, eΣ  and the softening behaviour of the porous solids. In the case 3 0,J Σ >  the 

different porosity evolutions clearly differentiate the onset of failure and, consequently, the 

maximum macroscopic strain, eE  that is reached – a good indicator of the materials ductility 

(or its formability). In addition to having the highest macroscopic effective stress throughout 

the entire deformation history, the material characterized by k = –0.3098 also exhibits the 

highest ductility for the evolution characterized by 3 0.J Σ >  In fact, although there is some 

softening effect on this material, the simulation ended without reaching the onset of the 
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coalescence. The same conclusion could be drawn from Figure 5.3. Indeed, the damage 

model predicts that, for axisymmetric loadings with 3 0,J Σ >  the higher the SD ratio, (i.e. the 

higher the parameter k), the earlier the failure onset occurs. In other words, due to the slower 

void growth rate, f  for 3 0J Σ >  (see Figure 5.4) there is an enhanced ductility for porous 

solids with yield strength in tension lower than in compression, 0.k <  However, the damage 

model does not predict the same behaviour for the loading characterized by 3 0.J Σ <  In this 

case, the void growth rate, represented in Figure 5.4 (b) is insensitive to SD effects of the 

matrix and, consequently, all three materials present the same evolution of the void volume 

fraction, equal to the one of the matrix, characterized by k = 0 (von Mises material). This 

means that, for evolutions with 3 0,J Σ <  the onset of failure will always occur for the same 

macroscopic von Mises equivalent strain, eE  and, therefore, the tension-compression 

asymmetry will not affect the ductility of the porous material. Moreover, by presenting the 

same porosity evolution, the materials exhibit very similar softening behaviours (see Figure 

5.2 (b)), contrasting with the numerical results obtained for the axisymmetric stress state 

with 3 0J Σ >  (Figure 5.2 (a)).  

Although for loadings with 3 0J Σ <  the porosity evolution is insensitive to the tension-

compression asymmetry of the matrix, the CPB06 damage model is able to account of the 

SD effects in the yielding of the porous solids. Indeed, the numerical results of the 

macroscopic von Mises equivalent stress evolution are in agreement with the specificities of 

the yield surface for axisymmetric states, represented in Figure 4.10. This figure shows that, 

for a given stress triaxiality, a distinct behaviour on yielding occurs for 3 0J Σ >  and for 

3 0,J Σ <  as the SD effects are manifested very differently. In the particular case of 2/3TΣ =

and for 3 0,J Σ >  the curves denoting the yielding of each material for a particular void volume 

fraction value, f  are practically coincident, whereas for 3 0J Σ <  a clear differentiation in the 

yield locus of the materials is shown. Note also that, as the stress triaxiality increases, i.e. as 

the lines approach the hydrostatic axis, the differences in the yielding loci for 3 0J Σ >  and 

3 0J Σ <  are reduced. This behaviour is well captured in the numerical simulations for 3 0,J Σ >

in which a departure of the macroscopic equivalent stress curves from the one obtained with 
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the von Mises material (k = 0) is observed with the increase of the stress triaxiality value 

(see Figure 5.2 (a), Figure 5.5 (a) and Figure 5.8 (a)). 

The behaviour predicted by the CPB06 porous model for axisymmetric loadings 

characterized by 3 0J Σ >  seems to be in overall good agreement with FEA results obtained 

in detailed three-dimensional micromechanical studies through unit cells (e.g. the work of 

Alves & Cazacu (2015a); Alves et al. (2017)). However, the same studies reveal completely 

different findings for axisymmetric stress states characterized by 3 0,J Σ <  when compared 

with the numerical results obtained in the present analysis. In the micromechanical unit cell 

simulations was concluded that, in the same way as in the 3 0J Σ >  case, the damage 

accumulation (i.e. the void growth) for 3 0J Σ <  is strongly influenced by the SD effects of the 

matrix. In this case, the material with the lowest SD ratio (i.e., lowest parameter k) will 

continue to present the highest macroscopic von Mises equivalent stress, e .Σ  However, and 

opposing to the 3 0J Σ >  stress state, there will be an enhanced ductility for the porous solids 

with yield strength in tension greater than in compression, 0.k >   

According to the cited micromechanical studies, the differences in the porosity 

evolution (and ultimately on the ductility of the porous materials) with the sign of 3J Σ  can 

be explained by the distribution and heterogeneity of the local plastic strains and local 

stresses that arise around the micro-voids then SD effects are displayed, which are markedly 

different than in a von Mises material. In these studies is also shown that, even if at the 

macroscopic level, i.e. 11 22 33( , , ),Σ Σ Σ  there is a very small difference in the macroscopic 

stress–strain response of the materials, the differences in the local state fields, 11 22 33( , , ),σ σ σ  

are very strong. It should be also noted that in the present study it is considered that the onset 

of failure occurs in all materials for the same critical porosity value, i.e. it is independent of 

the SD effects displayed by the matrix. However, this assumption may not be accurate. In 

fact, unit cell computations show (through the inter-void spacing or the cell's cross section 

monitoring) that the onset of coalescence occurs for slightly different void volume fraction 

values in the porous solids exhibiting different SD effects (Alves & Cazacu, 2015b). 

Being incapable of accounting for SD effects on the porosity evolution for loadings 

with 3 0,J Σ <  the CPB06 damage model will also be unable to reproduce distinct softening 

behaviours, and ultimately fail to reliably predict the ductile fracture of the porous solids 
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displaying tension-compression asymmetry. Thus, the question arises as to why the damage 

model is insensitive to the SD effects in the void growth rate, f  for, and only for, 3 0.J Σ <  

Note that this particular stress state corresponds to the fourth quadrant of the axisymmetric 

projection in the space m 11 33( , ),Σ Σ − Σ  represented in Figure 4.10. Analysing this quadrant 

it seems that the yielding curves are obtained through a homothetic transformation. Since 

the homothetic centre coincides with the origin of the coordinate system, the homothety is 

said to be a uniform scaling. Let O denote the origin of the m 11 33( , )Σ Σ − Σ  stress space and 

P an arbitrary point on the von Mises curve. The yield surfaces displaying SD effects can be 

obtained based on the von Mises curve ( 0),k =  by the linear transformation:  

 , OP t OP
 


 (5.9) 

where t is a scale factor, equal in all directions which, as will be shown below, is given by 

the ratio C T/ .σ σ  Being similar curves (in the geometric sense), the tangent to the points 

resulting from the intersection between the yield loci and the stress triaxiality lines are equal 

in all three materials. A more reasoned mathematical analysis is now presented in order to 

support these observations. In mathematics, a real valued function, :s →   is said to be 

homogeneous of degree α if: 

 ( ) ( ),   0.s tx t s x tα ∀= >  (5.10) 
These functions are characterized by their multiplicative scaling behaviour – the level sets 

of a homogenous function are radial expansions and contractions of each other. Moreover, 

the tangent lines to the level sets of a homogeneous function, ( )s x  along each ray extending 

from the origin have constant slopes. One can prove that the axisymmetric yield loci for 

m 30 0J ΣΣ > ∧ >  is a homogenous function. Rearranging Equation (3.41), defined for 

m 0,Σ >  results: 

 ( ) 2C T
e m e 3 1 2 m

T C

31 2 cosh ,
2

f q f q f q
σ σ
σ σ

   
Σ = Σ ⇔ Σ = − + − Σ         

 
(5.11) 

where e 11 33 T( )/σΣ = Σ − Σ  is the normalized macroscopic von Mises equivalent stress and 

m m T/σΣ = Σ  is the normalized macroscopic mean stress. For a von Mises material ( 0),k =  

i.e. for a unitary SD ratio, the previous expression resumes to the reference yield locus: 

 2
e 3 1 2 m0

31 2 cosh .
2k

q f q f q
=

 Σ = − + − Σ 
 

 
(5.12) 
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By multiplying the argument of eΣ  in Equation (5.11) by the factor C T( / )σ σ  results: 

 e m e e 0
.C C

k
T T

f
σ σ
σ σ =

    
Σ = Σ ⇔ Σ = Σ    

    

 
(5.13) 

It follows that the yield loci in the fourth quadrant of Figure 4.10 is a homogenous function 

with a degree of homogeneity α = 1, i.e. both the hydrostatic axis and the deviatoric axis are 

scaled linearly by the factor C T/ .σ σ  It is thus confirmed that for a given stress triaxiality, TΣ  

the normal to the surfaces at the point of intersection is independent of the material parameter 

k. As a consequence, according to the normality principle, the direction of the plastic strain 

increment is insensitive to SD effects.  

In order to comprehend the insensitivity of the void growth rate, f  to the SD effects 

for tensile stress states with 3 0,J Σ <  the damage evolution law for the opposite stress state, 

i.e. 3 0,J Σ >  is firstly analysed. Recovering Equation (3.18), obtained from the mass 

conservation principle, and combining this expression with Equations (3.25), (3.32) and 

(3.39) results: 

 ( ) ( )
3 m

p eT 1 2 T
growth 20, 0

C T C T

3 31 1 sinh ,
2kkJ

q q ff f D f q Tσ σ
λ

σ σ σ σΣ Σ> Σ >

   Σ
= − = −   

   



 

 
(5.14) 

where eΣ  is the macroscopic equivalent stress according to the CPB06 isotropic yield 

criterion. Figure 5.13 (a) represents with dash-dot lines the evolution of the local equivalent 

plastic strain of the matrix material, p
Mε  for a tensile axisymmetric loading with 3 0.J Σ >  In 

this case, it is shown that the magnitude of the plastic strain increment, quantified by the 

plastic multiplier, λ  in Equation (5.14), is independent of SD effects. Furthermore, note the 

presence of the T / Cσ σ  ratio both on the argument of the hyperbolic sine and on its 

multiplying factors. This corroborates the distinct porosity evolutions obtained in the 

numerical tests (e.g. Figure 5.3 (a)), according to the k value. The evolution of the normalized 

CPB06 equivalent stress, e T/ ,σΣ  a parameter also present in the hyperbolic sine argument 

of Equation (5.14), is presented in Figure 5.13 (b). It is shown that, although for low values 

of the macroscopic strain, eE  the e T/σΣ  curves are coincident, they diverge from the 

reference von Mises curve ( 0),k =  due to the distinct damage evolutions (see Figure 5.3 

(a)) and resultant softening behaviours. 
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Once recognized the source of the void growth rate sensitivity to the SD effects for 

tensile loadings with 3 0,J Σ >  the damage evolution law for 3 0J Σ <  is now analysed. 

Rearranging Equation (3.18) and, as in the previous case, combining it with Equations 

(3.25), (3.32) and (3.39), yields: 

 ( ) ( )
3 m

p eT 1 2
growth 20, 0

C T T

3 31 1 sinh ,
2kkJ

q q ff f D f q Tσ
λ

σ σ σΣ Σ< Σ >

   Σ
= − = −   

   



 

 
(5.15) 

Note that, due to the axisymmetric stress state relationships (see Equation (3.39)), the T C/σ σ  

ratio is no longer present in the argument of the hyperbolic sine. Furthermore, recall that due 

to the yield function homogeneity, the plastic strain increment has the same direction, as 

oppose to the 3 0J Σ >  case. Nonetheless it is possible to show that the magnitude of this 

increment, quantified by the plastic multiplier, λ  depends on the SD effects. This remark 

can be confirmed by the dash-dot lines represented in Figure 5.14 (a), showing the evolution 

of the local equivalent plastic strain, p
Mε  for a tensile axisymmetric loading with 3 0.J Σ <  It 

is confirmed that the evolutions corresponding to the solids exhibiting SD effects do not 

match with the von Mises curve, ( 0).k =  Indeed, it can be shown that the former curves can 

be obtained based the von Mises reference curve by multiplying each point by the scaling 

factor C T/ .σ σ  As a result, it is concluded that the plastic multiplier, λ  is responsible for 

implicitly eliminating the single scaling effect of the T / Cσ σ  ratio present in the previous 

expression. This ultimately makes the void growth rate insensitive to the SD effects. 

Figure 5.14 (a) shows the CPB06 equivalent stress evolutions for the studied porous 

materials. Note that, even displaying the same porosity evolution (see Figure 5.3 (b)), the 

distinct local equivalent plastic strain distribution that arise in the materials displaying SD 

effects for tensile loadings with 3 0J Σ <  imply that the flow stress, Tσ  and, as a result, the 

CPB06 equivalent stress, eΣ  present different evolutions for the three solids. Even so, it 

should be noted that, if normalized by its current flow stress in tension, i.e. the ratio e T/σΣ  

(see Equation (5.15)), the normalized CPB06 equivalent stress presents the same evolution, 

regardless of the SD effects (see Figure 5.14 (b)). 
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(a) (b) 

Figure 5.13. Macroscopic stress–strain responses for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 2/3TΣ = and 3 0 :J Σ >  (a) CPB06  

equivalent stress and local equivalent plastic strain; (b) Normalized CPB06 equivalent stress.  

  
(a) (b) 

Figure 5.14. Macroscopic stress–strain responses for porous materials displaying distinct SD effects under 
axisymmetric tensile loadings corresponding to a stress triaxiality 2/3TΣ = and 3 0 :J Σ <  (a) CPB06  

equivalent stress and local equivalent plastic strain; (b) Normalized CPB06 equivalent stress.  

So far, a detailed analysis of the tensile axisymmetric loading response at 2/3TΣ =  

was presented, which showed the strong coupling between the sign of the parameter k and 

the loading path, namely by the sign of 3J Σ  (or the Lode parameter value, 1θΣ = ± ) on the 

void growth rate, and ultimately on the porous solid ductility. The same conclusions hold 

true for the remaining stress triaxialities studied, viz. 1TΣ =  and 2.TΣ =  In these cases, 

analysing Figure 5.5 and Figure 5.8, one can verify that with the increase of the stress 

triaxiality there is a decrease in the ductility of the porous solids. This behaviour is closely 

related to the higher void growth rate (see Figure 5.4, Figure 5.7 and Figure 5.10). This 

would be expected since the stress triaxiality value arises in the argument of the hyperbolic 

sine, as shown in Equation (5.14) (recall that the hyperbolic sine is a monotonic increasing 
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function). Furthermore, the increase of the stress triaxiality also causes an earlier triggering 

of the materials softening and, consequently, the macroscopic von Mises equivalent stresses 

reach their maximum values for smaller macroscopic equivalent strains. Note that the plastic 

deformation process of a porous solid involves two concurrent behaviours: the matrix 

hardening with the local equivalent plastic strain; and the porosity evolution with the 

macroscopic/volumetric dilatation of the aggregate. Regardless of the SD effects, since high 

levels of porosity are achieved faster at high stress triaxialities, the softening of the solid due 

to the increased porosity rapidly overcomes the hardening of the matrix, thereby reducing 

its ductility, i.e. the ability to undergo plastic deformation before final failure. 

Concerning the influence of the SD effects on the response of the material, Figure 5.3 

(a), Figure 5.6 (a) and Figure 5.9 (a) show that, with the increase of the stress triaxiality, the 

absolute difference between the evolutions of the void volume fraction for the studied values 

of the material parameter k decreases, i.e. the evolutions approximate the one of the von 

Mises material (k = 0). In fact, as a limit case, the SD effects do not manifest on the porosity 

evolution at TΣ →∞  (tensile hydrostatic loading), represented in Figure 5.12 (a). In this 

case, the small differences in the porosity evolution are simply due to the distinct instants 

for which the materials enter the plastic regime (see Figure 4.10). This means that, as in 

numerical simulations for tensile axisymmetric loadings with 3 0,J Σ <  the damage model 

predicts that the ductility of the three materials exhibiting different SD effects will be 

identical. Numerical observations through unit cell simulations need to be conducted in order 

to validate the predicted trends. Regarding the macroscopic stress-strain response of the 

tensile hydrostatic loading simulation (see Figure 5.11 (a)) once again it is noted the atypical 

result that the plastic flow occurs first in the material with yield strength in tension greater 

than in compression. Such behaviour contrasts with the response obtained for the 

compressive hydrostatic loading simulations, shown in Figure 5.11 (b). In this case, as 

expected (e.g. see Figure 4.10), the plastic flow is independent of the SD effects – yielding 

for compressive hydrostatic loading depends uniquely on the yield strength in tension, which 

is assumed to be equal in all three materials. Note also that the macroscopic stress-strain 

evolution for the compressive hydrostatic loading, ,TΣ → −∞  exhibits a completely different 

behaviour than the other curves analysed so far. Indeed, since the porous materials are 

subjected to a negative stress triaxiality loading the voids tend to collapse. This way, as 

shown in Figure 5.12 (b), as the porosity tends to zero, 0,f →  the damage model loses its 
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sensitivity to the first invariant of the macroscopic stress tensor, 1 .I Σ  In other words, the 

porous solids becomes incompressible and their yield surfaces become infinite along the 

hydrostatic axis. As a result, once the porosity vanishes, the plastic deformation halts and 

the stress-strain response becomes linear, respecting Hooke's law for continuous media. 

5.4. Sensitivity analysis of the hardening law parameters 

In this section a brief sensitivity analysis on the damage evolution and on the 

mechanical properties degradation of porous solids exhibiting SD effects is performed, 

taking into account the variation of the isotropic hardening law parameters, namely the 

Swift’s law normalized hardening coefficient, T
0/K σ  and the hardening exponent, n (see 

Equation (5.8)). 

The sensitivity analysis performed is mono-parametric, meaning that the variation of 

one parameter is achieved by fixing the other hardening parameter. Figure 5.15 shows the 

stress-strain curves obtained through Equation (5.8) for the porous solid matrix, representing 

the effect of the variation of each of the hardening parameters in the normalized matrix 

tensile flow stress, T
T 0/ .σ σ  

  
(a) (b) 

Figure 5.15. Flow stress versus local equivalent plastic strain curves for the matrix material varying:  
(a) the hardening coefficient, T

0/ ;K σ  (b) the hardening exponent, n. 

It can be verified that the nature of the evolution of the tensile flow stress, that is, the 

rate of hardening, is governed by the parameter n and the hardening coefficient, T
0/ ,K σ  

which also acts as a scale factor. Note that for a fixed value of the hardening coefficient, (see 
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Figure 5.15 (b)), the material with the highest hardening exponent, n, presents the lowest 

matrix flow stress for a local equivalent plastic strain smaller than unity. Once this value is 

exceeded, this trend is inverted and the material with the highest hardening exponent takes 

the highest flow stress value. The opposite holds true for the material with the lowest 

hardening exponent. This behaviour indicates that the lower the hardening exponent, the 

earlier the hardening starts to occur, but, correspondingly, the earlier the hardening saturation 

will take place. 

Figure 5.16 show a comparison of the normalized macroscopic von Mises effective 

stress, T
e 0/σΣ  and the corresponding void volume fraction evolution, f  evolutions for the 

three porous solids under an axisymmetric loading with 1TΣ =  and 3 0,J Σ >  when varying 

the hardening coefficient, T
0/ .K σ  Figure 5.17 shows the same type of results obtained when 

varying the hardening exponent, n. In order to simplify the graphical analysis only two 

hardening parameter values are represented. The analysis is performed only for 3 0J Σ >  

since, as previously observed, there is a insensitivity to parameter k for 3 0.J Σ <   

The macroscopic stress-strain response of the materials when varying the parameter 
T
0/K σ  is very similar to the result observed in Figure 5.15 (a). It is shown that the variation 

of this parameter does not influences the ductility of the materials nor its softening 

behaviour. In summary, the hardening parameter T
0/K σ  acts simply as a scale factor, that is, 

the strength of the materials is changed but not its deformation history. Moreover, one can 

verify that neither the hardening coefficient, T
0/K σ  nor the hardening exponent, n influence 

the void volume fraction evolution, which are exactly coincident (see Figure 5.16 (b) and 

Figure 5.17 (b)). Note that the hardening law only dictates the way the yield locus expands, 

that is, the parameters defining the hardening law impact the size of the yield surface but not 

its shape. As seen in the previous chapter, for isotropic porous solids the shape of the yield 

surface is governed exclusively by the tension-compression asymmetry of the matrix. This 

implies that for a given stress state (TΣ ,θΣ ) the normal to the yield locus and, consequently, 

the differences in the void grow rate are independent of the isotropic hardening law 

specificities. 

Although no changes in ductility are observed, contrasting to the hardening coefficient, 
T
0/ ,K σ  the hardening exponent, n, of the Swift’s law strongly effects the softening behaviour 
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of the materials. In this case, as shown in Figure 5.17 (a), a clear competition between the 

matrix hardening behaviour and the softening effects due to the increase of the porosity is 

observed. The combination of both phenomena describe the final response of the porous 

materials. For the materials with the lower hardening exponent, (n = 0.05), hardening starts 

to occur earlier. Thus, the corresponding stress-strain evolutions clearly present higher yield 

stress values than the curves referring to the higher hardening exponent, (n = 0.2), for low 

macroscopic equivalent strain values. However, hardening saturation will also occur firstly 

on the materials with the lowest hardening exponent n. Therefore, the softening caused by 

the increase of the porosity will cancel (and exceed) the hardening effects at lower values of 

the macroscopic equivalent strain. This means that the hardening exponent, n affects not 

only the maximum macroscopic von Mises yield stress in the stress-strain plots (quantifying 

the material’s strength), but also the position, i.e. the value of the macroscopic equivalent 

strain, for which the maximum yield stress occurs. In short, for a fixed hardening coefficient, 
T
0/ ,K σ  the higher the hardening exponent, n, the later the maximum macroscopic yield stress 

will occur. Note that, it is expected that materials with a lower hardening exponent present 

the maximum equivalent yield stress. However, the ultimate yield strength – corresponding 

to the onset of failure (moment at which the critical void volume fraction is reached), of the 

materials with higher hardening exponents may surpass the ultimate yield strength of the 

ones with a lower hardening exponent. For instance, a similar ultimate yield strength can be 

observed in Figure 5.17 (a) for the materials with yield strength in tension lower than in 

compression (k = –0.3098). 

  
(a) (b) 

Figure 5.16. Influence of the hardening coefficient, T
0/K σ  and the SD effects of the matrix, k on: (a) the 

macroscopic von Mises stress-strain evolutions; (b) the void volume fraction evolution, f. 
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(a) (b) 

Figure 5.17. Influence of the hardening exponent, n  and the SD effects of the matrix, k on: (a) the 
macroscopic von Mises stress-strain evolutions; (b) the void volume fraction evolution, f. 
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6. Conclusions 

In this work, the capability of the so-called isotropic CPB06 porous model – a coupled 

micromechanical-based damage model – to reliably describe the damage evolution and 

predict the ductile fracture of porous solids exhibiting tension-compression asymmetry was 

investigated. For this purpose, in an introductory way, a detailed sensitivity analysis of the 

damage model parameters was carried out, based on the yield loci change of shape and size 

with material, damage and stress state related parameters. An attempt was made to emphasise 

the importance of the role played by all stress invariants commonly used in the fracture 

mechanics framework, namely the 3J Σ  invariant for describing the SD effects and the 1I
Σ  

invariant to describe the effect of the mean stress. Next, a numerical analysis was conducted 

based on single-element tests, under macroscopic tensile axisymmetric loadings. The goal 

was to evaluate the predictive ability of the isotropic damage model by comparing the results 

with the behaviours predicted by documented and well-accepted micromechanical finite 

element computations on three-dimensional unit cells. The main conclusions of the 

investigations conducted within the context of this thesis are described below. 

The sensitivity analysis to the yield surfaces of the CPB06 porous model performed in 

Chapter 4 led to the following key observations: 

i. If SD effects are displayed, the yield locus is no longer symmetric with respect to 

the middle plane, m 0.Σ =  Moreover, it is shown that the SD effects only manifest 

in the definition of the upper vertex of the yield locus, i.e. the tensile hydrostatic 

yield strength and that, remarkably, the higher the yield strength in compression, 

the higher is this hydrostatic limit; 

ii. The shape of the yield locus in the deviatoric plane of an isotropic porous solid is 

solely governed by the tension–compression asymmetry displayed by the matrix 

material, through the sign and magnitude of the material parameter k, since both the 

void volume fraction and the mean stress only influence the size of the yield 

contours in the π-plane projections; 

iii. In the deviatoric projections at m 0,Σ =  the radial coordinate of the yield locus 

decreases linearly with increasing porosity, i.e. the yield locus sensitivity to the 
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porosity is constant. Contrasting, the sensitivity of the yield surface size along the 

hydrostatic axis is inversely proportional to the porosity value; 

iv. The yield surfaces present their maximum radii along the deviatoric plane at m 0Σ =

and the sensitivity of the yield loci to the mean stress increases monotonically 

towards either the tensile or compressive hydrostatic limits. Furthermore, the 

sensitivity to the mean stress increases with the increase of the porosity, i.e. the rate 

at which the projected area in the π-plane decreases with the absolute value of the 

mean stress; 

Regarding the contents of Chapter 5, the single-element numerical tests under tensile 

axisymmetric loadings shown that: 

i. For 3 0J Σ >  the model clearly distinguish the influence of the tension-compression 

asymmetry on the porosity evolution and an enhanced ductility for porous solids 

with yield strength in tension lower than in compression, 0,k <  is observed; 

ii. For 3 0J Σ <  the model is unable to distinguish the influence of the tension-

compression asymmetry on the porosity evolution, and thus, the predicted ductility 

of the porous solid is independent of the SD effects. 

The predicted behaviour for loadings characterized by 3 0J Σ >  is in overall good 

agreement with FEA three-dimensional micromechanical studies through unit cells, 

documented in the literature. However, the same studies reveal that, as for the 3 0J Σ >  case, 

for loadings with 3 0J Σ <  the porosity evolution should equally be influenced by the SD 

effects displayed by the matrix. Moreover, it would be expected that the porous solids with 

yield strength in tension greater than in compression, 0,k >  would display an enhanced 

ductility. Being incapable of accounting for SD effects on the porosity evolution for tensile 

loadings with 3 0,J Σ <  the damage model is consequently unable to reproduce distinct 

softening behaviours and, ultimately, fails to reliably predict the ductile fracture onset of the 

porous solids displaying tension-compression asymmetry. 

In order to understand the reason for the insensitivity of the damage model to SD 

effects for loadings with positive stress triaxialities and 3 0,J Σ <  the yield loci projections on 

the axisymmetric plane were analysed. It was shown that in the quadrant of the stress space 

m 11 33( , )Σ Σ − Σ  correspondent to this loading type, the curves referring to several materials 
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exhibiting different SD effects are homothetic transformations of each other. Hence, the 

normal vector to the yield locus at the point resulting from the intersection with a given stress 

triaxiality is independent of the SD effects displayed by the matrix. Following the normality 

principle, it was proven that the direction of the plastic strain increment in this quadrant 

would be insensitive to SD effects. However, its magnitude is responsible for implicitly 

eliminating the single scaling effect of the T / Cσ σ  ratio present in the void growth rate 

function. Note that the damage evolution insensitivity to the SD effects occurs only for 

axisymmetric loadings with 3 0J Σ <  and m 0;Σ >  indeed, although no compressive 

axisymmetric stress states have been studied, for negative triaxiality with 3 0J Σ <  the damage 

model recovers its sensitivity to SD effects in the porosity evolution. 

Concerning the effect of the stress triaxiality in the response of the porous aggregates, 

it was confirmed that, regardless of the SD effects, with the increase of the stress triaxiality 

the damage model predicts a decrease in the ductility of the solids – consequence of the 

higher void growth rate. Furthermore, it was shown that as the stress triaxiality tends to 

infinity the influence of the SD effects on the damage evolution (noticeable for 3 0J Σ > ) 

decreases, i.e. the porosity evolutions approximate to the curve referring to the von Mises 

material, ( 0).k =  

Finally, the sensitivity analysis regarding the Swift’s hardening law parameters on the 

damage evolution and plastic flow of the porous solids exhibiting SD effects shown that, as 

expected, neither the hardening coefficient, K, nor the hardening exponent, n influence the 

void volume fraction evolution, and, in the end, the ductility of the materials. This is related 

to the fact that the hardening of the matrix impacts the size of the yield surface but not its 

shape and, consequently, the plastic flow direction. Furthermore, only the hardening 

exponent, n appears to impact the softening behaviour of the materials, as both the maximum 

macroscopic equivalent stress and the macroscopic equivalent strain at which it occurs are 

shifted. In fact, it was concluded that for a fixed hardening coefficient, K, the higher the 

hardening exponent, n, the later the maximum macroscopic yield stress occurs. 

The preliminary study on the shape and size of the yield loci relative to the void volume 

fraction and the stress state revelled to be essential to understand the results obtained in the 

elementary tests analysis. This study highlighted the importance of the yield loci shape, 

through the role played by all stress invariants, on the direction of the plastic strain 
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increments, and consequently on the void growth rate, i.e. damage evolution. It was 

concluded that the application of the CPB06 porous model for tensile loadings with 3 0J Σ <  

should be used with caution, since, in its current form, this coupled damage criterion is 

incapable of accurately describe the softening effects and, therefore, the fracture initiation 

of ductile materials displaying SD effects.  

Note that, as in Gurson-like criteria, the present model is not suitable for the fracture 

prediction under shear-dominated loadings, as the 3J Σ - dependency of the model was 

introduced to model the SD effects of the matrix and not to model the void distortion and 

void sheet coalescence mechanisms, active at low stress triaxiality. In future research, it 

would be interesting to extend the CPB06 damage model to incorporate the void shearing 

damage effects. This could be performed in a similar manner to how Gurson's (1977) criteria 

has been extended, meaning that the same approach can be used to include also strain-rate 

dependency and temperature sensitivity. Another interesting topic for future work would be 

to perform a sensitivity analysis including the matrix anisotropic behaviour. The numerical 

tools developed within this work are equally prepared to study this sounder case. Such 

analysis involves a higher number of interdepend coefficients, hence the knowledge acquired 

for the isotropic case, i.e. the developed know-how, will prove to be an excellent basis for 

the study of this more complex case. 
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Annex A – Determination of the Principal Values of the 
Transformed Stress Tensor 

 

Let Σ̂  be the transformed stress tensor such that: 

 
11 12 13

12 22 23

13 23 33

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ,
ˆ ˆ ˆ

 Σ Σ Σ
 

= Σ Σ Σ 
 Σ Σ Σ  

Σ

 

(A.1) 

with 1 2 3( , , )e e e  denoting an orthogonal frame attached to the material (i.e. sheet rolling, 

transverse and normal directions, respectively). The principal values of the transformed 

stress tensor, Σ̂  are the roots of the characteristic equation: 

 ( )ˆ ˆdet 0,−Σ =Σ I  (A.2) 

whit I being the second-order identity tensor, which yields: 

 3 2
1 2 3

ˆ ˆ ˆ3 2 0,H H HΣ − Σ − Σ − =  (A.3) 

where 1H , 2H  and 3H are the first, second and third invariants of Σ̂ , which are given as: 

 ( )1 1 11 22 33
1 1ˆ ˆ ˆ ˆ ,
3 3

H I= = Σ + Σ + Σ
 

(A.4) 

 ( )2 2 2
2 2 23 13 12 22 33 33 11 11 22

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,
3 3

H I= = Σ + Σ + Σ −Σ Σ −Σ Σ −Σ Σ
 

(A.5) 

 ( )2 2 2
3 3 23 13 12 11 22 33 11 23 22 13 33 12

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 .
2 2

H I= = Σ Σ Σ + Σ Σ Σ −Σ Σ −Σ Σ −Σ Σ
 

(A.6) 

Following the change of variables proposed by Barlat et al. (2005): 

 1
ˆ .HΣ = Σ +  (A.7) 

The characteristic equation becomes: 

 3
p q3 2 0,H HΣ − Σ − =  (A.8) 

where 

 ( )2
p 1 2 0,H H H= + ≥  (A.9) 

 ( )3
q 1 1 2 3

1 2 3 2 .
2

H H H H H= + +
 

(A.10) 
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Cardan’s solution to the modified characteristic Equation (A.8) is: 

 1/3 1/3
1 ,z zΣ = +  (A.11) 

 1/3 1/3
2 ,z zω ωΣ = +  (A.12) 

 1/3 1/3
3 ,z zω ωΣ = +  (A.13) 

where z in a complex number (a+ib), ω  is a complex constant ( 2 /3ie π− ), and z  and ω  are 

their conjugate quantities, with: 

 3 2
q p qi .z H H H= + −  (A.14) 

Hence, the principal values of Σ̂  are: 

 ( )2
1 1 1 2

ˆ 2 cos / 3 ,H H H θΣ = + +  (A.15) 

 2
2 1 1 2

4ˆ 2 cos ,
3

H H H θ π+ Σ = + +  
 

 
(A.16) 

 2
3 1 1 2

2ˆ 2 cos ,
3

H H H θ π+ Σ = + +  
 

 
(A.17) 

with 

q
3/2

p

arccos .
H

H
θ

 
=   

 

 
(A.18) 

According to Barlat et al. (2005) these values are ordered as: 

 1 2 3 1 3
ˆ ˆ ˆ ˆ ˆ,    .Σ ≥ Σ ≥ Σ Σ > Σ  (A.19) 
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Annex B - Components of the Fourth-Order Anisotropic 
Tensor B 

Tensor B denotes the inverse of the linear transformed anisotropy fourth-order tensor 

( ):=L C T  where T is the fourth-order deviatoric unit tensor given by 

 

2 / 3 1/ 3 1/ 3 0 0 0
1/ 3 2 / 3 1/ 3 0 0 0
1/ 3 1/ 3 2 / 3 0 0 0

,
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

− − 
 − − 
− − 

=  
 
 
 
 

T

 

(B.1) 

and C is the original CPB06’s fourth-order symmetric tensor describing the anisotropy of 

the matrix (see Equation (3.4)). In order to determine the hydrostatic anisotropy factor, h the 

components of the tensor B, must be known (as shown in Equations (3.15)-(3.16)). 

According to Revil-Baudard et al. (2016),  the components of ijB , with , 1,...,6i j = , are given 

in Voigt notation in terms of ijL , with , 1,...,6i j = , by: 

 
( ) ( )

( )( ) ( )( )
32 12 31 11

12
21 11 32 12 22 12 31 11

21 ,
3

L L L L
B

L L L L L L L L
− + −

=
− − − − −

 
(B.2) 

 
( ) ( )

( )( ) ( )( )
11 21 12 22

13
21 11 32 12 22 12 31 11

21 ,
3

L L L L
B

L L L L L L L L
− + −

=
− − − − −

 
(B.3) 

 ( )11 12 13 ,B B B= − +  (B.4) 

 21 12 ,B B=  (B.5) 

 
( ) ( )

( )( ) ( )( )
11 21 12 22

23
11 21 32 22 12 22 31 21

21 ,
3

L L L L
B

L L L L L L L L
− + −

=
− − − − −

 
(B.6) 

 ( )22 21 23 ,B B B= − +  (B.7) 

 31 13 ,B B=  (B.8) 

 32 23 ,B B=  (B.9) 

 ( )33 31 23 ,B B B= − +  (B.10) 

 44
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(B.11) 
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Appendix A - Axisymmetric Stress State Particularities 
and Relationships 

Assuming an axisymmetric loading, the macroscopic stress tensor, Σ  is given by: 

 
11

11 11

33

0 0 1 0 0
0 0 0 1 0 ,
0 0 0 0 ρ

Σ   
   = Σ = Σ   
 Σ     

Σ
 

(A.1) 

where the constant ρ  is the ratio between the lateral and the axial macroscopic imposed 

stresses, i.e.: 

 33

11

,ρ
Σ

=
Σ

 
(A.2) 

prescribed in order to originate a specified stress triaxiality value. Hence, the macroscopic 

mean stress, mΣ  becomes: 

 11 33
m 11

2 2 ,
3 3

ρΣ + Σ + Σ = = Σ  
 

 
(A.3) 

which results in a macroscopic deviatoric stress tensor, 'Σ  given by: 

 m 11

1 0 0
3

10 0 .
3

2( 1)0 0
3

ρ

ρ

ρ

− 
 
 

− = −Σ = Σ
 
 − 
  

'Σ Σ Ι

 

(A.4) 

Therefore, the second and third deviatoric stress invariants, respectively 2J Σ  and 3J Σ  can be 

written as: 

 ( ) ( )2' 2 ' 2 ' 2 2
2 1 2 3 11

1 1 1 ,
2 3

J ρΣ = Σ + Σ + Σ = Σ −
 

(A.5) 

 ( )3' ' ' 3
3 1 2 3 11

2 1 .
27

J ρΣ = Σ Σ Σ = Σ −
 

(A.6) 

The von Mises equivalent stress, eΣ  is determined by the second deviatoric stress invariant, 

2J Σ  as: 

 ( )e 2 113 1 .J ρΣΣ = = Σ −  (A.7) 

Thus, the stress triaxiality, TΣ  results: 
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( )
( )

( )

( )

11m
11

e 11

2    if 1,
3 12

  for 0. 
23 1    if 1,

3 1

T

ρ ρ
ρρ
ρρ ρ
ρ

Σ

+ > −Σ +Σ = = = Σ > +Σ Σ −  <
 −

 

(A.8) 

Rearranging the previous expression results: 

 
3

3

3 2    if  0;  
3 1
3 2    if  0,
3 1

T J
T
T J
T

ρ

ΣΣ

Σ

ΣΣ

Σ

+ > −=  − <
 +

 

(A.9) 

which represent both ρ  values that yield a certain stress triaxiality. 

The normalized third-invariant of the deviatoric stress tensor, ξΣ  (see Equation (2.7)) 

resumes to: 

 
( )

( ) ( )
3

3
3/2 3

2

1 1    if  1;3 3 sgn 1
1    if  1,2 1

J

J

ρ ρ
ξ ρ

ρρ

Σ

Σ
Σ

− + >
= = = − = − <− 

 
(A.10) 

which corresponds to a Lode angle parameter, θΣ  given by: 

 ( )
1    if  1;21 arccos
1    if  1.

ρ
θ ξ

ρπΣ Σ

+ >
= − = − <

 
(A.11) 

Thus, it is concluded that, regardless of the value 33 11/ρ = Σ Σ  (i.e. the stress triaxiality), 

under axisymmetric loadings, the Lode angle parameter takes only two possible values: 

1.θΣ = ±  
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