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Abstract

In this thesis we investigate new and efficient algorithms for image and video compres-
sion, based on a recently proposed generic lossy data compression method that uses the
approximate pattern matching paradigm, called multidimensional multidimensional parser
(MMP). MMP presents an excellent performance level when compared with traditional
pattern matching algorithms for lossy image compression applications. When compared
with the state-of-the-art transform-based methods, MMP is able to achieve significant
gains for the compression of non-smooth images, like text and compound images, but has
a compromising performance deficit for the compression of smooth, natural images.

The techniques developed in this thesis overcome this limitation, improving the perfor-
mance of MMP-based smooth image coding up to a state-of-the-art level, while maintaining
its relevant performance gains for non-smooth image compression. The performance gains
resulted from the use of adaptive predictive schemes, together with new dictionary design
strategies. Experimental results show consistent PSNR performance gains over the original
MMP algorithm, for all image types and compression ratios. When compared with the
state-of-the-art, transform-based encoders, the proposed methods achieve relevant gains
(up to 6 dB) for non-smooth images and a comparable performance for smooth images.

A new MMP-based video compression algorithms was also investigated. The proposed
method, referred to as MMP-Video, combines the hybrid video coding model with opti-
mised multiscale adaptive pattern matching algorithms, in order to exploit the particular
features of video signals. Experimental results show a general performance above the levels
achieved by the current state-of-the-art H.264/AVC standard.

These results show that, in spite of its higher computational complexity, the MMP
paradigm can be regarded as a viable alternative to the traditional transform-quantisation-

entropy coding-based methods.
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Resumo

O tema principal desta tese é o estudo de algoritmos eficientes de compressao de imagens
e video digitais baseados no paradigma da correspondéncia aproximada de padroes. Os
métodos desenvolvidos sao baseados num esquema de compressao recentemente proposto,
denominado MMP (do original multidimensional multidimensional parser). Quando apli-
cado & compressao com perdas de imagens, o algoritmo MMP tem um desempenho acima
do dos melhores codificadores baseados em aproximacao de padrées. Quando comparado
com os esquemas baseados em transformadas, o MMP consegue ganhos consideraveis para
a compressao de imagens ndo suaves, mas apresenta perdas relevantes na compressao de

imagens naturais.

As técnicas propostas eliminam estas perdas, elevando o desempenho do algoritmo
MMP para a compressao de imagens suaves para um nivel semelhante ao dos melhores
codificadores baseados em transformadas, a0 mesmo tempo que mantém, ou melhoram,
os ganhos observados para as imagens nao suaves. Este ganhos resultam da utilizacao de
métodos de codificacdo preditiva, utilizados em conjuncdo com novos esquemas associados
ao processo de actualizacao do dicionario. Testes experimentais demonstram ganhos con-
sideraveis na qualidade objectiva das imagens, quando comparamos as técnicas propostas

com o algoritmo MMP original.

Esquemas eficientes de compressao de sinais video baseados no algoritmo MMP foram
também investigados. O método proposto, denominado MMP-Video, combina a arquitec-
tura hibrida de codificagdo de video com um codificador baseado em MMP, optimizado
de modo a explorar de uma forma eficiente as caracteristicas dos sinais de video digital.
Testes experimentais revelam valores de desempenho, em termos de medidas de qualidade
vs. taxa de compressao, acima dos atingidos pela mais eficiente norma de compressao de

video, a norma H.264/AVC.
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Os resultados apresentados demonstram a viabilidade do paradigma proposto, como
alternativa aos esquemas tradicionais de compressao de imagens e video, apesar do aumento

da complexidade computacional verificado.
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Chapter 1

Introduction

In this chapter we present an introduction to this thesis and the associated research work.
After a brief overview of the open research topics that served as motivation for this work,
the main objectives of this thesis are presented. The major contributions of this research

are then listed and an outline of this document is provided.

1.1 Motivation

In spite of the ever growing available bandwidth and network speeds, the need for efficient
image and video compression algorithms is as important now as it has ever been. Recent
advances in consumer electronics, associated with digital cameras as well as scanning and
display devices, have caused a rapid proliferation in the use of digital image and video
signals. Obvious examples can be found in the generalised replacement of the traditional
film and analog video cameras by digital devices, as well as on the current migration to
digital video broadcasting (DVB), that is expected to replace the existing analog services
within a few years time. The availability of these systems to the average consumer boomed
the amount of digital visual information that needs to be handled. The massive storage
requirements, together with the recent focus on transmission, for instant sharing of visual
contents, justifies the constant pursuit of ever more efficient compression schemes.

In spite of the well known intrinsic limitations of the transform-quantisation-based
encoding methods, this class of algorithms has been dominant for the last few decades
both in image and video compression. The efficiency of these methods results from the

energy compaction properties of the used transforms, either the traditional discrete cosine
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transform (DCT) and discrete wavelet transform (DWT), or the new integer transform (IT)
proposed by recent encoding standards for video compression. Prediction schemes may
also be used, in order to reduce the spatial (and temporal) correlation of the input signal.
The resulting transform coefficients are then compressed by using a quantisation process,
followed by some type of lossless entropy coding. The use of convenient quantisation
procedures minimises the perceptual impact on the compressed signal, while entropy coding

reduces the statistical correlation and improves the overall compression efficiency.

The transform-quantisation-entropy encoding paradigm is particularly efficient for
smooth, low-pass images, where most of the transform coefficients representing the highest
frequencies tend to be negligible or of little importance. This allows the use of a coarse
quantisation, achieving a high compression of these components, without compromising
the quality of the reconstructed images. Nevertheless, this suitability for low-pass images
cannot be generalised to other image types. In fact, for images of a different nature, like
text, computer generated, compound (text and graphics) and texture, among others, the
use of transform-based compression schemes often results in a poor rate-distortion (RD)
performance and highly disturbing visual artifacts, like ringing and blocking. Unfortu-
nately, encoding methods that are adequate to handle these types of images tend to have

serious limitations when used to encode smooth images.

This fact justifies the on-going research on alternative compression paradigms for image
and video signals. The investigation work described in this thesis explores such a paradigm.
It is built upon a generic lossy data compression algorithm, called multidimensional multi-
scale parser (MMP) [1, 2]. Unlike the major image and video compression standards, MMP
in based on the approximate pattern matching coding paradigm, but includes several im-
portant new features. MMP uses an adaptive dictionary of vectors, formed by recursively
parsing an original block of data, in order to recurrently approximate variable-length blocks
of the input image. Additionally, geometric transformations are used to scale each element

of the dictionary into the dimensions of the block segment that is being considered.

The adaptive dictionary update procedure uses blocks obtained by concatenations and
scale transformations (expansions and contractions) of previously occurred patterns in the
original image, which are utilised to approximate future image blocks. Although MMP
incorporates encoding strategies from the traditional pattern matching strategies, namely

from the work of Lempel and Ziv [3, 4| and from standard vector quantisation (VQ) [5],
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it introduces a new and important principle: approximate pattern matching with scales.
MMP thus uses a multiscale recurrent pattern encoding paradigm, that, unlike the case of
traditional transform-based schemes, makes no assumption about the nature of the input

signal.

MMP was initially proposed as a generic data compression algorithm, but was im-
mediately used in image coding applications [1, 2]. Experimental tests showed that the
performance of the original MMP algorithm tops the one of other approximate pattern
matching-based image compression schemes, such as lossy extensions of the Lempel-Ziv
algorithm [6, 7] and adaptive VQ [8, 9]. When compared with the state-of-the-art image
compression methods, the relative performance of MMP depends on the input image type.
For non-smooth images, like text, compound (text and graphics) and texture images, MMP
performs well, outperforming the transform-quantisation-based image coders like SPTHT
[10], JPEG [11] and JPEG2000 [12]. Nevertheless, for smooth grayscale images, although
performing better than JPEG, MMP presents a performance deficit, when compared to
the DWT-based methods like SPTHT and JPEG2000 and the H.264/AVC intra frame en-
coding algorithm [13, 14|. This disadvantage compromises the applicability of MMP image
compression.

Besides the tests on image compression, MMP has demonstrated its suitability for
coding a large set of very different data sources. In fact, MMP has been successfully
applied to the compression of various signal types, like electrocardiograms [15, 16, 17] and
stereoscopic images [18]. These observations encouraged the investigation of MMP for the

compression of other signals, namely digital video.

1.2 Main objectives

The discussion presented in the previous section identified some open research issues, re-
garding the problems of image and video compression using pattern matching-based com-
pression schemes in general, and the MMP algorithm in particular. Among the pattern
matching-based algorithms used for image compression, MMP is able to achieve an excel-
lent performance level, due to its particular features. Nevertheless, in spite of its excellent
results for some image classes, the MMP performance issues for smooth image coding still

compromise its applicability as a general image compression scheme, especially when one
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compares it with the current state-of-the-art, transform-based image encoders.
Additionally, the investigation of a related problem, namely the MMP efficiency for the
compression of video sequences, has not been addressed in previous works.

The main research topics of this thesis were thus focused on two major goals:

e Improving the efficiency of MMP for image coding. The focus will be on de-
signing new and efficient algorithms that improve the MMP efficiency for image com-
pression. A special attention will be given to methods that improve the performance
of MMP specifically for the compression of smooth, natural like images. However,
the proposed techniques should maintain, or even improve, the good results of the

original algorithm for non-smooth images, like text and compound images.

In order to access their efficiency, the results of the proposed schemes should be
compared with the compression performance of the original MMP algorithm, and also
with the top state-of-the-art encoders. The objective is to develop the performance
of MMP-based image encoding up to a point were it becomes a viable alternative to

the transform-based image compression schemes.

e Investigating the efficiency of the MMP paradigm for video coding ap-
plications. Based on the good results achieved by MMP for other signal types,
and on the knowledge gathered from all the tests in MMP image coding, the use of
the MMP paradigm for video compression will be investigated. Adequate encoding
architectures should be studied, as well as some specific optimisations of the MMP
encoder, that allow the exploitation of the particular features of video signals. The
experimental results will be assessed by comparison with the current state-of-the-art

video compression algorithm: the H.264/AVC high profile video encoder.

1.3 Summary of original contributions

In this section we present a summary of the most relevant original contributions that
resulted from the research work developed during this thesis. Most of these contributions
are related specifically with the MMP algorithm, both for image and video compression,
since these are the main topics of this thesis. Nevertheless, many of the proposed methods
are associated with some general aspects of pattern matching-based compression, and may

be used by other algorithms.
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As the investigation progressed, spacial care was given to the validation of the work
within the scientific community. As a result, most of the contributions have either been
published in international journals or in the proceedings of international conferences.

The most relevant contributions of this thesis are related with the objectives described

in the previous sections, namely:

e The MMP-I algorithm: improving MMP performance with predictive

techniques

An investigation on the performance of MMP for the compression of signals with
different probability distributions showed that the efficiency of the dictionary adap-
tation increases for sources with narrower probability distributions. This observation
motivated the development of a new compression scheme that combines the use of
MMP with predictive coding techniques, referred to as MMP-I. The use of adap-
tive image prediction methods transforms the input images into predicted residue
signals with highly concentrated probability distributions, that were modelled using
generalised Gaussian functions. By using adaptive prediction techniques, MMP-I is
able to generate a prediction residue signal with a probability distribution that is
exploited by the dictionary adaptation process in a much more efficient way, when
compared with the original image’s patterns. Experimental results show a significant
improvement on the compression performance of MMP-I, when compared with MMP,
especially for smooth images. For non-smooth images, MMP-I is able to maintain
the same levels of performance of MMP. Papers J1, C9 and C11 (see Appendix D)

resulted from this investigation.

e The MMP-II algorithm: efficient dictionary adaptation for multiscale re-

current pattern algorithms

Several new dictionary adaptation techniques for multiscale recurrent pattern match-
ing image coding were proposed. The use of these methods in MMP-I resulted in
an enhanced coding scheme that we refer to as MMP-II. The developed methods ex-
plore several features of MMP-based encoding, in order to improve its efficiency. The
proposed methods were related with: redundancy reduction techniques, to avoid the
insertion of disadvantageous code-vectors; context conditioning methods, that in-

crease the performance of the adaptive arithmetic encoder for MMP symbols; an
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L'-norm equalisation procedure, that adapts the new dictionary patterns according
to a probability distribution criterion; enhanced dictionary updating strategies, that
create additional code-vectors in order to increase the dictionary’s approximation
power; scale-adaptive methods, to eliminate unnecessary dictionary vectors, allowing
a significant reduction in processing time with negligible performance losses. In spite
of their MMP-related genesis, most of the proposed dictionary adaptation schemes

are generic enough to be easily used with other adaptive pattern matching algorithms.

The proposed schemes allow MMP-II to achieve quality gains over both MMP and
MMP-I for every tested image and all compression ratios. For non-smooth images,
these gains further increase the advantage of MMP-based algorithms over the state-
of-the-art, transform-based encoders. For smooth images, MMP-II reaches a perfor-
mance level that is similar to that of the JPEG2000 algorithm and very close to that
of H.264/AVC high profile intra frame encoder. Papers J1, C4 and C8 (see Appendix

D) resulted from this investigation.

Study of multiscale recurrent pattern using a signal decomposition analogy

An analysis of the MMP coding process revealed some interesting analogies with a
decomposition of the original signal into a set of orthogonal, non overlapping, bases
functions. In the original method, the initial dictionary uses a set of pulses with
different amplitudes and scales, that can be related with the scaling function of the
Haar’s wavelet. The approximation of the input signal can be regarded has a com-
bination of these pulses, using appropriate amplitudes, shifts and scales, that are
determined by the MMP’s rate-distortion controlled coding (or analysis) algorithm.
The decoding (or synthesis) process uses the same functions to reconstruct the ap-

proximated signal. Paper C5 (see Appendix D) resulted from this investigation.

Study of new prediction prediction methods for multiscale recurrent pat-

tern encoders

The original MMP-I prediction process uses eight directional prediction modes plus a
new mode, based on the most frequent value of the prediction pixels. An investigation
was conducted in order to improve the performance of the original prediction process.
This study revealed that the use of intra-frame prediction for blocks down to 2 x 2

pixels allows a better performance than the use of the original 4 x 4 block size limit,
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inherited from the H.264/AVC encoder. Also, the use of a new prediction mode,
that is not based on directional prediction but on template matching, proved to have
favourable results, while the elimination of some of the original prediction modes has
no impact on the final encoding performance. Paper C2 (see Appendix D) resulted

from this investigation.

e Improving multiscale recurrent pattern image coding with post-processing

deblocking filtering

The investigation of a deblocking method for MMP-II was motivated by the obser-
vation of some blocking artifacts, especially for high compression ratios. The use of
two deblocking methods originally proposed for MMP was studied for the MMP-II
case, revealing several compromising inefficiencies. A new deblocking method was
then investigated. The MMP-II deblocking algorithm uses an adaptive FIR filter to
process each image block. The filter’s shape is adapted according to the image region
that is being processed. Two filtering parameters are determined by the encoder, in
order to maximise the deblocking performance for smooth images and eliminate the
severe PSNR losses for non-smooth ones. The parameters are transmitted to the
decoder using a negligible overhead. Experimental results show that, for smooth
images, the new deblocking method improves both objective and subjective quality
levels. Furthermore, the proposed scheme does not affect the quality of non-smooth
images, making it suitable for any image type. Papers B1 and C7 (see Appendix D)

resulted from this investigation.

e Developing efficient recurrent pattern matching-based video encoding

schemes

One of the main objectives of this thesis is the investigation of MMP-based video
compression algorithms. As a result of this research work, a new method, referred
to as MMP-Video, was proposed. This algorithm uses MMP in a hybrid video coder
framework, as the compression scheme for the motion-compensated prediction residue
signal. The use of the multiscale recurrent pattern paradigm for video compression
was optimised, by taking into consideration some of the techniques that resulted
from the investigation on MMP as a digital image encoder, but also by developing

new methods, especially designed to exploit the particular features of digital video
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encoding.

As part of the study on the current video compression algorithms, an H.264/AVC-
based video compression scheme that does not use the transmission of the motion-
compensated residue, was also investigated. An analysis of this method reveals
similarities with pattern matching-based video compression, namely using Lempel-
Ziv and vector-quantisation algorithms. Experimental tests show that the pro-
posed encoder achieves a performance advantage over H.264/AVC, when the motion-

compensated error is not encoded for B slices, for low to medium rates.

Experimental results with the MMP-Video encoder demonstrate advantageous results
over H.264/AVC high profile, especially for medium to high bit-rates and for B-slice
data, where the coding gains range up to 2dB. These results validate the use of the

multiscale recurrent pattern matching paradigm also for video compression.

Papers B2, C1, C3, C6 and C10 (see Appendix D) resulted from this investigation.

At this stage of our research work, a secondary role as been given to the computa-
tional complexity issues associated with the MMP-based algorithms. This thesis will focus
mainly on developing the most efficient methods in terms of encoding performance, in
order to prove that the MMP paradigm may be regarded as a viable alternative to the cur-
rent algorithms. Nevertheless, some computationally efficient implementation techniques
were also investigated, that achieve a better compromise between coding efficiency and

computational complexity.

1.4 Outline of the thesis

This thesis is organised into nine chapters and four appendices. The current chapter
introduces the research work described in this document.

Chapter 2 presents a brief description of the most important pattern matching com-
pression algorithms, as well as a state-of-the-art of pattern matching-based methods for
image and video compression.

Chapter 3 is entirely dedicated to the multidimensional multiscale parser algorithm. A
detailed description of MMP for image coding is given, together with an evaluation of the
corresponding experimental results. These results are compared with the ones of the state-

of-the-art transform-based image encoders. An experimental evaluation of some functional
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aspects of MMP is also presented: the MMP bit stream as well as the MMP’s dictionary
updating process are investigated. A discussion on these topics reveals some interesting

research lines that will be further exploited in other sections of this work.

Chapter 4 analyses the MMP paradigm, providing new insights into the studied algo-
rithm. A comparison of MMP with the traditional pattern matching coding methods, like
vector quantisation and Lempel-Ziv, is presented. Furthermore, other less likely analogies
are described, namely by relating MMP with a signal decomposition algorithm and with
a non-uniform sampling scheme. A discussion on possible ways to exploit these relations

is also presented in this chapter.

Chapter 5 investigates the joint use of MMP with predictive schemes, and describes a
new coding algorithm, referred to as MMP-I. The proposal of this method was motivated
by a study on the efficiency of MMP on sources with different probability distributions,
described by generalised Gaussian functions. Experimental results demonstrate that MMP-
I allows for a consistent improvement on the performance of MMP for smooth images,
while maintaining its excellent performance for other image types. An analysis of the
probability distribution of the MMP-I prediction residue signal demonstrates the accuracy

of the considered model.

Chapter 6 describes several dictionary adaptation techniques, that increase the effi-
ciency of the MMP-I encoder by improving the code-vectors’ use and dictionary updating.
The combination of MMP-I with the new techniques defines a new encoding method,
referred to as MMP-II (MMP-I with Improved dictionary adaptation). The results for

MMP-IT are presented and compared with those of the benchmark methods.

Chapter 7 presents a study on other aspects of MMP-II, that are not directly related
with dictionary adaptation. The prediction process originally used by MMP-I and MMP-
IT is revisited: an evaluation of the performance and usefulness of the original prediction
modes is presented and new prediction modes, based on different paradigms, are tested.
A post-processing deblocking method for MMP-II, that increases both the perceptual and

the objective quality for smooth images, is also presented in this chapter.

Chapter 8 investigates the use of the pattern matching and MMP paradigms for video
compression. Following the good performance of MMP for image coding, namely in the
compression of the intra-predicted error signal, observed in the previous chapters of this

thesis, two pattern matching-based approaches to video compression are proposed in this
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chapter. First, we investigate a version of the H.264/AVC video compression standard
for which the prediction residue error compression stage is disabled. A formal analysis of
this process relates it pattern matching paradigms, not usually associated with efficient
video compression schemes. Nevertheless, experimental results demonstrate performance
improvements over the original H.264/AVC, for Bi-predictive (B) slices, especially at low
to medium bit rates. An MMP-based video encoding algorithm, named MMP-Video, is
also presented. It uses MMP to encode the motion compensated residue, in a hybrid
video coding scheme. The adaptation of the MMP-based algorithms for video compression
is described, together with an investigation on new procedures developed specifically for
MMP-video. Experimental results show that the proposed methods are often advantageous
over the H.264/AVC standard, validating the proposed paradigm.

Appendix A presents an overview of the test images used throughout this work. Several
test images of different types were considered. A summary of the video sequences used
in the experimental tests is also presented. As for the images, several sequences with
particular features were used, varying from slow motion, head-and-shoulder sequences to
video signals with high, complex motion.

Appendix B presents an algorithmic description of some of the most relevant methods
proposed in the previous chapters of this document. In order to provide a clearer presenta-
tion of the proposed techniques, some specific details, that are important mainly from an
implementation point of view, are described only in this appendix. The main text includes
references to the location of the relevant sections of this appendix.

Appendix C has a set of additional experimental results, that complement the ones
presented in the previous chapters of the thesis. As for the previous appendix, this was
done in order to improve the clarity of the document. The data presented in this appendix
is meant as a complement of the results presented in the main text.

Appendix D has a summary of the published papers, describing contributions of the

research work of this thesis.



Chapter 2

Pattern matching image coding

The methods investigated in this thesis belong to a general family of algorithms that
are usually referred to as pattern matching compression schemes, but are also know as
dictionary-based or string matching algorithms. This chapter presents a discussion on
pattern matching coding. Section 2.1 has a general description of some of the features of
these methods. Section 2.2 briefly describes some of the most popular and well known
pattern matching algorithms, namely the Lempel-Ziv (LZ) based encoders (also called
string matching algorithms) and vector quantisation (VQ) methods. Besides these well
known algorithms, other methods have been proposed, that also use this coding paradigm.
Some of these algorithms are discussed in Section 2.3.

The pattern matching image coding algorithm that we investigate in this thesis, named
Multiscale Recurrent Pattern (MMP) [1, 2], is an extension of traditional approximate
pattern matching schemes, that uses an adaptive dictionary with variable block size vectors
to approximate the original image. A detailed presentation of MMP will be done in the

following chapter.

2.1 The pattern matching image coding paradigm

The general class of pattern matching algorithms can be regarded as a unifying umbrella,
under which a large set of image coding techniques may be classified. In this section we
present a brief discussion on the pattern matching coding paradigm and describe some
common features of these methods.

Pattern matching methods usually partition the input message into segments or blocks
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of samples. Each block is approximated by one pattern, that is chosen among a set of avail-
able vectors. Some pattern matching schemes are also called dictionary-based algorithms,
because they store the available approximation patterns (code-vectors) in an indexed list,
called a dictionary or codebook, that is kept by both the encoder and decoder applications.
For these algorithms, the vector that is chosen to encode each of the input signal’s segments
is identified by its index. The indexes values are then sequentially encoded and transmit-
ted, thus allowing for the reconstruction of the signal by the decoder. This is the coding
paradigm used by the LZ78-based (see Section 2.2.1) and vector quantisation (see Section
2.2.2) algorithms. One other approach uses previously encoded patterns of the original
signal to approximate the message elements that have not yet been encoded. In these
cases the use of an explicit dictionary is avoided, since the relevant patterns are identified
by their length and relative position to the message segment that is being encoded. This

is the case of LZ77-based algorithms, also described in Section 2.2.1.

Pattern matching algorithms, as other image coding methods, may be classified as lossy
or lossless. Lossless pattern matching algorithms avoid a mismatch that would introduce
an error in the encoded signal by using code-vectors that are exact matches of the original
message blocks. For dictionary-based methods, this is possible only if the dictionary con-
tains a set of patterns that allows the reconstruction of all possible input signal segments.
If this is not the case, a higher rate encoding mechanism is used to compress the signal
patterns that do not exactly correspond to an existing code-vector. This is the case of
the original Lempel-Ziv family of string matching methods (see Section 2.2.1). In these
methods the new patterns that are transmitted are also inserted in the dictionary. The
methods that have the ability to update the pattern database during the encoding process
as also known as adaptive pattern matching schemes. The methods that do not possess

this ability are usually called non-adaptive or fized codebook methods.

In lossy encoding schemes one accepts some degree of distortion in the reconstructed
signal, as a trade-off for a more efficient compression. Such methods are commonly used
in image and audio compression systems, because it is possible to greatly increase the
compression ratio of the encoded signal by introducing a distortion level that is negligible
for the human perceptual system. Lossy pattern matching methods chose a codeword that
provides an accurate (but not necessarily exact) representation of the original message.

This is generally the case of vector quantisation based methods (see Section 2.2.2). As will
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be discussed later, the use of LZ-based lossy encoding algorithms has not yet been able to

achieve a good efficiency.

2.2 Recurrent pattern matching algorithms

Compression methods that are based on the Lempel-Ziv string-matching encoders have
become ubiquitous in computational applications for lossless compression of generic data
files. FExamples of compression tools based on these schemes, that are familiar to all
personal computer (PC) users, are the Zip, Unix Compress, Gzip and Arj applications.
Among the LZ-based image compression schemes which have achieved a great popularity
are the GIF and PNG image formats. LZ methods are usually divided into two types: LZ77
and LZ78, that are described in Section 2.2.1. Vector quantisation compression schemes
have also become popular among pattern matching methods for signal compression. The

most relevant aspects of VQ methods are briefly described in Section 2.2.2.

2.2.1 The Lempel-Ziv string matching methods

One important family of recurrent pattern matching algorithms emerged from the work of
Abraham Lempel and Jacob Ziv [3, 4]. Lempel-Ziv encoders parse the input sequence into
non-overlapping blocks of different lengths, that are encoded by using previously transmit-

ted segments of the message. LZ methods use two main paradigms for data compression:

e In a paper from 1977 [3], Lempel and Ziv describe a method that uses pointers to
identify the longest match for the current block within a search buffer, composed by
the most recently encoded data elements. This algorithm is the reference for a family

of encoding methods, usually referred to as LZ77.

e Another paradigm developed by Lempel and Ziv was presented in a paper from 1978
and is thus referred to as LZ78. Unlike LZ77, the LZ78 methods use an explicit

dictionary, composed by an indexed list of previously used portions of the message.

Both LZ77 and LZ78 families of methods became very successful in several data com-
pression applications. A brief description of these algorithms and of some of their most

important variations is presented in the following sections.
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Figure 2.1: An example of block matching for LZ77 algorithms.

The LZ77 algorithms

LZ77 algorithms may be regarded as dictionary-based methods, where the dictionary cor-
responds to the most recently encoded portion of the message, called search buffer. A
second buffer, called look-ahead buffer, corresponds to the message segment that is going
to be encoded next. Figure 2.1 represents these buffers for the compression of a string of
characters. The sequence in the look-ahead buffer is encoded by searching the search-buffer
until a match is found for the first symbol to be transmitted. When this happens, a length
and an offset parameters are determined. These values signal that the next length symbols
of the message should be copied from the search-buffer, starting at position offset. The
matching stage always returns the longest match among the data that is present in the
sliding window corresponding to the search-buffer. For each match, a set of three symbols
are encoded using a fixed-length code: the offset, the length and the first symbol that
occurs in the look-ahead buffer, that was not represented by the match. This allows the
representation of a symbol of the look-ahead buffer that does not exist in the search buffer.
In this case, both the offset and the length values are set to zero and the new symbol value
is transmitted.

One way to improve the performance of LZ77-based algorithms is to avoid the trans-
mission of the first character that does not belong to the match. In order to do this, the
LZSS [19] algorithm uses a one bit flag to signal whether a (offset, length) pair is being
transmitted or the code for a new character is being inserted in the bit-stream. Other pro-
posals describe the use of more efficient strategies for LZ data compression. One of these
schemes, that is used in the PNG digital image file format, is called the Deflate algorithm
[20]. It allies LZ77 with Huffman coding |21]. Other methods that combine LZ77 with
variable-length encoders are the well known file compression schemes Zip, Gzip and Arj.

The combination of LZSS with variable-length encoders was also proposed: LZB [22] is a
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combination of LZSS with variable sized pointers, while LZH [23] combines LZSS with a
Huffman encoder. Some methods that use variable-sized look-ahead and search windows,
instead of the fixed buffers defined by the original method, were also proposed. One ex-
ample is the LZR [24] algorithm, that uses LZ77 with variable-size pointers that can index

a sub-string anywhere in the previously encoded data.

The LZ78 algorithms

All LZ77 algorithms assume a locality property for the matching patterns, i.e. the repeating
segments of the message are located within the length of the search window. LZ78-based
algorithms do not make this assumption. LZ78 uses an adaptive dictionary to store the
patterns for the match, instead of using the elements of a sliding window of the compressed
data. Moreover, the same block substitution paradigm is used, but the match is made using
one element of the adaptive dictionary. The adaptive dictionary is updated by the LZT78
encoder and decoder using the same procedure, meaning that the same code-vectors are
available at each moment. Similarly to LZ77, the algorithm searches for the longest match
between the input string and any dictionary vector. If a match exists, the encoder outputs
the index of the dictionary element that corresponds to the longest match, followed by the
first symbol of the input block that was not encoded in this step. The string composed by
the concatenation of the dictionary word and the first unmatched character is then inserted
in the adaptive dictionary and the search procedure is repeated. If the search for a match
fails, index 0 is transmitted, followed by the symbol that was not found in the dictionary.

The LZW algorithm [25] is an improved version of LZ78, that eliminates the transmis-
sion of the first unmatched symbol in the look-ahead buffer. In order to do this, LZW
initialises the LZ78 dictionary with all possible source blocks of length one. LZW is used
in Unix Compress and in the GIF digital image file format. Both these methods use a
variable dictionary size: the initial codebook uses 2" words (n bit indexes); when the full
capacity is reached, the dictionary size is doubled and n + 1 bit indexes are used; whenever
the number of elements reaches the maximum size, the dictionary length is updated, as
well as the number of bits used by the indexes. Other LZ78-based methods introduce some
adaptations to the original method: LZJ [26] is similar to LZW, but restricts the dictionary
to the N least recently used codewords. LZT [27] is similar to LZJ, but rearranges the

dictionary entries according to their recent use. Other methods combine the ideas of both
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LZ77 and LZ78, like LZFG (28], which uses a dictionary to store particular codewords (like

LZ78) to complement the blocks encoded using a sliding window, like the one of LZ77.

String matching algorithms for image coding

In spite of the great success achieved by LZ-based encoders in the lossless compression
of one-dimensional data, there have been rare proposals to adapt these methods to lossy
two-dimensional data (images) and video coding. The lossless nature of the original LZ
methods is often maintained in the LZ image compression algorithms, as most of the
proposals refer to lossless coding methods. One example is proposed in [29], where a
lossless two-dimensional pattern-matching image compression scheme is presented. Each
image block is encoded using a previously transmitted pattern, searched in a window of
previously encoded pixels. The dimensions of the blocks used in the matching stage are
adaptive, as in the original LZ methods. Whenever the pattern matching fails, the block
is encoded using a prediction scheme plus a lossless variable-length coding of the residue.
The authors of this scheme claim a compression efficiency superior to all other dictionary-
based methods and comparable to that of traditional state-of-the-art lossless methods, like
JPEG2000 and JPEG-LS.

Despite the good compression performance described for some lossless algorithms,
lossy LZ compression methods have generally failed to achieve competitive results with
transform-based image encoders. In [6, 7, 30, 31] several methods that use the LZ paradigm
in lossy compression algorithms, with applications in image coding are described. In [31],
a simple LZ77 compression scheme that allows for approximate pattern matching is used,
resulting in a lossy image encoder. An error threshold is used to control the rate-distortion
point for the encoded image. In [6] the image pixels are approximated by vectors, meaning
that this scheme can be considered an extension of the 1D LZ encoder to the compression
of 2D image data. It uses the LZ77 paradigm, as it searches for the longest match of the
uncompressed segment of the image, that approximately occurs in a previously encoded
part of the image. The method also introduces some extensions to the basic LZ approach,
namely related with the adaptation of the patterns of the search window prior to the
matching stage. In [30] a two-dimensional extension of the previous method is presented.
The authors apply this algorithm to both image and video coding. An LZ78-like dictionary

stores a set of patterns that may be used to approximate each image block. Alternatively,
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the image patterns may be approximated by a planar surface, whose parameters are de-
termined using a least-square optimisation. The coordinates of an anchor point of the
encoded block, the block dimensions and the used approximation method are transmitted
for all image blocks, using a variable-length encoder.

Other schemes propose the use of LZ-based encoders to compress the transform coef-
ficients in transform-based image encoding. One example is [7], that applies LZ schemes
in sub-band coding, namely by compressing the image components at the output of a
quadrature mirror filter (QMF) [32].

In spite of the interesting approaches described in these papers, they report compression
efficiencies for the described methods that are more or less equivalent to the one of the
JPEG algorithm. This places lossy LZ image compression algorithms well below the current

state-of-the-art transform-based encoders, like JPEG2000, in terms of coding performance.

2.2.2 Vector quantisation

Vector quantisation [5] is another well known paradigm for dictionary-based algorithms.
In these algorithms, the input signal is partitioned into blocks or vectors. For a one-
dimensional signal, blocks of N consecutive samples are used. For the case of image
compression, the input image is divided into blocks of pixels (usually rectangular M x N
blocks), where each pixel may be regarded as a component of an (M.N)-dimensional vector.
Each block of the input message is approximated by one of the vectors of the dictionary
or codebook, D. The dictionary holds a set of code-vectors, s;, that are representative of
the message patterns. Each dictionary vector is identified by a unique indez. Synchronised
copies of the dictionary are maintained by both the VQ encoder and decoder. For each
input block, the VQ encoder searches the dictionary for the code-vector that minimises
the distortion for a given input block. The index of the chosen block, ¢, is then stored
or transmitted to the decoder. The decoder determines the index value and then fetches
block ¢ from its local copy of the dictionary. It then uses the code-vector s; to approximate
the original block, as can be seen in Figure 2.2.

For lossy methods, the set of blocks that compose the dictionary are a quantised repre-
sentation of the input signal space. The use of VQ may be regarded as a joint quantisation
of all samples of each input vector, instead of independently using a scalar quantiser on

each of them. Because VQ jointly considers several input samples, it is able to better ex-
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Figure 2.2: A vector quantisation compression architecture.

ploit any structure (e.g. correlation between the vector elements) that exists in the input
signal. It is also possible to incorporate the knowledge about the input signal features into
the VQ design, improving the efficiency of the coding process when compared with scalar
quantisation. Nevertheless, this efficiency also depends on several other factors. One of
them is the size of the codebook, i.e. the number of code-vectors: larger codebooks gener-
ally achieve a more accurate approximation of the input signal, but at the cost of a higher
average bit count for each index representation. Another important factor is the dictionary
design, i.e. the process of choosing the code-vectors. A commonly used method for VQ
dictionary design is the LBG (Linde-Buzo-Gray) [33] algorithm, that iteratively refines a
set of initial points until a minimum distortion is achieved for the vectors of a training
set. The vectors chosen to initialise the algorithm and compose the training set are very

important for the efficiency of LBG dictionary.

As for other dictionary-based methods, several strategies may be used regarding VQ
codebook usage. An adaptive scheme may be used for the VQ dictionary, instead of the
fixed dictionary model. As for the previously presented string-matching algorithms, this
adaptation is usually performed when the VQ encoder is not able to find a satisfactory
match for a given input block. In this case, a new pattern is transmitted to the decoder, by
using an alternative (higher rate) encoding scheme. This pattern is then used to approxi-
mate the original block and is also inserted in the dictionary. If a fixed sized dictionary is
used, the insertion of a new code-vector is done by replacing one of the existing elements.
Several strategies may be used to determine the element that should be replaced. For both

adaptive and non-adaptive VQ methods, the definition of the initial codebook may be im-
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plicit or information about the used dictionary may be transmitted prior to the encoding
process. If a fixed, predefined dictionary is used, then both the encoder and the decoder
know all the code-vectors a priori. If this is not the case, namely for those methods that
use explicit dictionary design for each input signal, then the initial dictionary patterns
must be encoded and transmitted to the decoder. This causes an additional overhead,
that may be favourably compensated by the added efficiency of the encoding process using
the adaptive dictionary. For a more complete discussion on these and other aspects of VQ,

that are out of the scope of this overview, refer to [5].

Several VQQ methods have been proposed for image and video coding applications. In
[34] a survey of some of these methods is presented. An adaptive VQ scheme that uses
approximate string matching with a rate-distortion criterion, called RDLZ, is presented in
[35]. An a priori constructed codebook is used (it may be known by the decoder or trans-
mitted before the encoding). During the image coding process, indexes of the codebook
are transmitted in the bit-stream for the cases where a successful match is achieved. When
the best match is unfavourable, based on a RD evaluation, the encoder transmits a new
pattern, that is used to update the dictionary. RDLZ performs comparably, sometimes
favourably, to static codebook VQ trained on the same sources or images. In [36] an adap-
tive VQ method is proposed, that uses information about the previous use of code-vectors
to adaptively maintain two codebooks. Results presented in the paper show an advan-
tageous performance over several other VQ image coding methods. Several adaptive VQ
schemes have also been proposed for video coding applications. Generally, these methods
report a better performance than that of non-adaptive VQ [37] but worse than that of

traditional transform-quantisation-based encoders [38].

2.3 Other pattern matching methods

In this section we briefly describe the JBIG and matching pursuits algorithms. In spite
not being as popular as the LZ and VQ algorithms, these methods introduce interesting

new approaches to the pattern matching coding paradigm.
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2.3.1 JBIG image coding

JBIG2 [39] is the successor of the JBIG (ITU-T Recommendation T.82) compression stan-
dard [40], for the compression of bi-level images, like facsimile and digital documents. Both
standards were developed by the Joint Bi-level Image Experts Group. Unlike JBIG, JBIG2
supports not only lossless and progressive lossy-to-lossless but also lossy compression. For
lossless compression it is able to achieve gains of up to 4 times, when compared with the
previous standards. The lossy mode enables higher compression ratios with a “perceptually
lossless” quality, i.e. with almost unnoticeable image degradation [41]. In spite of their
specific field of application, the JBIG family of algorithms has the merit of being one of the
rare cases of pattern matching-based algorithms that effectively “made it” to the standards.

Both JBIG standards combine the use of two main techniques in the compression
of binary images: a lossless arithmetic coding algorithm is used to transmit the image
patterns, while a progressive transmission algorithm is used for the generation of lower
resolution images. These lower resolution representations of the image may be sufficient
for some applications. JBIG specifies an algorithm for resolution reduction, that considers
a pixel neighbourhood in order to determine the value of the low resolution sample [40].
If the user requests a more detailed version of the image, the low resolution image may be
used as reference for the high resolution representation.

JBIG uses a context adaptive variation of an arithmetic encoder, known as Q-coder [42].
In a typical text image there are regions where white pixels occur with a probability close to
one, while in other image areas black pixels occur with a high probability. JBIG’s context
adaptive arithmetic coding explores this fact. It uses the previously encoded neighbouring
pixels to determine the probability context for a given pixel of the image. Neighbourhood
regions with 10 pixels are used. The pixels values are grouped into a binary word that
serves as an index to the probability context.

In lower resolution representations of the images, the position of the neighbourhood
template is chosen in order to maximise the performance of the encoder. This ability to
move the reference neighbourhood is useful to capture particular image structures, that
occur frequently in text and halftone images. For higher resolution representations, JBIG
uses the pixels of the low resolution image as a part of the context that is used by the
arithmetic encoder.

Like its predecessor, JBIG2 is optimised for bi-level image coding, namely text or
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halftone images, but it also supports regions that are not classified into any of the previous
two categories, and thus are of a “generic” type. The encoder partitions the input page
according to data type (text, halftone and generic regions) and encodes each segment
using the compression technique with the best performance. The partitioning information

is transmitted to the decoder and each type of data is grouped into a specific data segment.

Image areas that are not classified as text or halftone regions are compressed by using
either the same context adaptive arithmetic encoding scheme used on JBIG or the Mod-
ified READ (MMR) technique used for fax standards groups 3 and 4 [43]. The text and
halftone regions of the image are compressed using dictionary-based encoding procedures.
For text regions, the original image is first scanned and a set of symbols is constructed
and used to build a dictionary that is then transmitted to the decoder. The dictionary
elements are encoded using the techniques defined for the generic image areas. For each
character instance, the dictionary symbol and the position of the character (usually relative
to another previously encoded symbol) are encoded, using either Huffman or arithmetic
coding. For lossless or lossy-to-lossless (progressive) compression, a refinement pattern is
transmitted for each symbol, after the first approximation with a dictionary element. The
higher efficiency of lossy compression is achieved by neglecting the very small differences,
that may occur among several instanced of similar characters, which do not affect the
perceptual experience of the human observer. The halftone regions may be compressed by
using a dictionary-based encoder, similar to the one described for the text regions. The
halftone dictionary patterns are transmitted in a halftone dictionary segment, that is inde-
pendent from the one used to transmit the text dictionary. Additionally, halftone regions
may be encoded by converting them into grayscale levels, that are then compressed and
transmitted to the decoder, where they are converted back into the corresponding halftone

patterns.

JBIG2 uses a codebook determined a priori by the encoder, that is transmitted to the
decoder. This codebook is then updated as the encoding progresses, by using new patterns
that are compressed using one of the previously described methods. The new patterns
are generated whenever a satisfactory match between the current image symbol and a
dictionary element is not achieved. For some encoding modes, a different dictionary can
be used in conjunction with the original codebook, in order to store refinement patterns

that minimise the final distortion for each match. Dictionary design for JBIG2 is somewhat
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different from the process used in generic grayscale images, due to the bi-level features of
the input signal and the coding methods used by the standard. [44] presents a discussion
of some of the used dictionary design methods. The JBIG2 compression algorithm has also
been adopted by third party encoders, like the DjVu algorithm! [45, 46], as the algorithm

for compression of the text regions of compound documents.

2.3.2 Matching pursuit

Matching pursuit (MP) is a coding paradigm that combines the concepts of transform-
based and pattern matching compression. It has been proposed in [47] as an efficient way
to encode the expansion of a signal using an overcomplete set of functions, stored as the
code-vectors of a dictionary. In a traditional transform-based encoder, a signal x(t) is
decomposed into a linear combination of atom functions f;(¢), weighted by the coefficients

Q5

(t) = Zaifi(t)- (2.1)

The atom functions depend on the used transform and span the signal space [32]. If
fi(t) are not linearly independent (but span the signal space) we have a redundant or
over-complete representation. Traditional transform-based encoders determine the set of
transform coefficients for all atom functions and encode them, namely by using a quanti-
sation procedure followed by a variable length encoding step. In MP, the redundant atom
functions are stored in a dictionary and each input block, z(t), is represented by a lin-
ear combination of dictionary elements, g;(t) (traditionally a family of 2D Gabor oriented
wavelets). This means that each successive MP approximation step encodes both a dic-
tionary index, representing one of the dictionary’s atom functions, and the corresponding

quantised coefficient.

Matching pursuits have been the focus of several research works for the last two decades.
Several schemes have been proposed for both image [48, 49] and video coding [50], as
well as for optimising the MP encoding algorithms, namely aspects like dictionary design,

quantisation and rate-distortion optimisation [51, 52, 53].

'The DjVu (pronounced déji vu) file format is a commercial image encoder used mainly for digital

(scanned) document compression.
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2.4 Conclusions

In this chapter we have presented a brief summary on some of the most important pat-
tern matching data compression algorithms. The Lempel-Ziv and the vector quantisation
families of methods were given greater relevance in this presentation. Two reasons account
for their importance for our work: first, these methods are the most commonly associated
with the pattern matching coding paradigm; and second, they are the genesis of a recently
proposed algorithm that will be studied throughout this thesis.

The Multidimensional Multiscale Parser (MMP) algorithm was initially proposed as a
generic lossy data compression method, but was promptly applied to image coding [1, 2].
MMP can be regarded as an extension of traditional VQ methods, that approximates data
segments (in this case image blocks), using words from a multiscale adaptive dictionary D'.
Also, it can be related with LZ methods, because it uses segments of the encoded signal
as a source for new code-vectors. Nevertheless, the dictionary adaptation process and the
scale adaptability of the pattern matching step are two unique features of this method,
that account for its performance gains, when compared with traditional pattern matching
algorithms.

A detailed explanation of the MMP algorithm is presented in the following two chapters.
Chapter 3 presents a description of the algorithm, followed by an experimental evaluation of
several aspects of MMP. The results of these tests revealed some weaknesses of the original
method. The discussion of these results proved to be very influential in the work presented
in this thesis. Chapter 4 presents a formal analysis of the MMP algorithm, that relates it
to the traditional pattern matching algorithms. Also, unexpected affinities between MMP
and transform-based decomposition schemes are revealed, that also motivated some of the

work presented in this document.
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Chapter 3

Multiscale recurrent patterns: the

MMP algorithm

In the previous chapter we have described some of the most important pattern matching
data compression algorithms. This chapter is dedicated to yet another pattern matching
coding method: the multidimensional multiscale parser, or MMP, algorithm. After a de-
tailed presentation of MMP for image coding, in Section 3.1, the remaining sections of
this chapter present an experimental study of this method. In Section 3.2 we evaluate
the experimental results of MMP for image coding and compare them with the perfor-
mance of current state-of-the-art image encoders. These results establish some benchmark
performances for our work: first, the performance of the initial MMP will serve as a
comparison for all the new techniques that will be proposed in this text; second, the per-
formance of the state-of-the-art encoders will serve as a reference for the results of the
transform-quantisation-entropy encoding methods, that are currently accepted as being

the state-of-the-art methods for image compression.

In the remaining sections of this chapter we present an experimental evaluation of
some functional aspects of MMP. In Section 3.3 we analyse the bit stream generated by
the MMP encoding process. In Section 3.4, MMP’s dictionary updating is investigated.
The importance of this procedure as well as some possible ways to improve its efficiency
are revealed by this analysis. A discussion of these experimental studies is presented in

Section 3.5.
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node 0

Figure 3.1: Binary segmentation tree of an MMP encoded block.

3.1 The MMP algorithm

This section describes the original Multidimensional Multiscale Parser (MMP) algorithm
and its use for the compression of digital images. A discussion of its most important
features is presented, as well as a brief summary of some successful applications of MMP

for the compression of other signals.

MMP is a block-based coding algorithm, that divides the original image into adjacent
blocks of uniform dimensions, that are compressed independently, using a standard raster
scan order. Each image block is partitioned into variable size texture regions, using dyadic
segmentations. These regions are encoded using vectors from a multi-scale adaptive dictio-
nary, D. The segmentation structure of each original block, X, is represented by a binary
segmentation tree, 7, as shown in Figure 3.1. Figure 3.2 represents the block segmentation
resulting from the example of Figure 3.1.

Each sub-block (segmentation tree leaf) is represented by a dictionary vector, Sﬁ, iden-
tified by its index i and its scale I. Alternatively, the approximation of X! may be obtained
by using the concatenation of smaller words of the dictionary. In this case, a node is in-
serted in the segmentation tree. The decision to perform the bisection of a sub-block X!
is based on a rate-distortion criteria. The choice of partitioning each block is repeated
recursively (see Section 3.1.1). Figure 3.2 shows an example where the used indexes for
each of the sub-blocks are represented by the dictionary indexes iy to 74. These indexes are
associated with the corresponding leafs of the binary tree, 7, represented in Figure 3.1.
The binary tree may thus be regarded as the MMP representation of the encoded block,

because it holds all the information generated during the encoding process.

The root-node of 7 corresponds to the input image block. Each node represents the
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Figure 3.2: Example of the MMP segmentation decisions for a 4 x 4 input block
(level 4).

decision to divide the corresponding block, while each tree leaf represents an non-segmented
rectangular sub-block. There is a direct correspondence between the dimension of each sub-
block and the level of its representation in 7. This is expressed by the use of superscript [,
that identifies both the scale of X! and the level of the segmentation tree that it belongs to.
The segmentation of a block of scale [ creates two blocks of scale [ — 1 with half the pixels
of X!. Level 0 is the deepest level and corresponds to blocks of dimension 1 x 1. Square
blocks, corresponding to even levels, are segmented into two vertical rectangles, meaning

that a block of level [ has dimensions

+1

2l x olal, (3.1)

1. As an example, a block

where | | represents rounding towards the smallest integer
size of 16 x 16 corresponds to blocks of scale 8, which means that the root of 7 is at level
8. The example of Figures 3.1 and 3.2 represents the segmentation of a block of scale 4
(4 x 4 pixels). During the coding process, the maximum considered scale corresponds to

dimensions of the macroblocks processed by MMP, typically 16x16 (scale 8).

! Alternatively, the algorithm may partition the square blocks into two horizontal rectangles (see Section

B.1).
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3.1.1 Optimisation of the segmentation tree

An important process in MMP is the choice of the best segmentation tree for a given
image block. Initial versions of MMP used the sum of squared differences (SSD) (see
equation (B.4)) as the distortion measure, D(X',S!), and a fixed threshold, d*, to make
these decisions: if d* < D(X!,S!) then the block should be segmented, otherwise it should
be approximated as a whole. This has the disadvantage of being a local decision, unable
to globally optimise the segmentation process. An RD optimisation scheme based on a
Lagrangian multiplier, X [54, 55|, was then developed. This allows the algorithm to weight
both the minimum distortion achieved by the block approximation and the rate required
to encode it.

The problem of minimising the rate R(7) for a given maximum distortion D (or alter-
natively, determining the segmentation tree that allows a minimum distortion for a given

maximum rate), is solved by minimising the value of a cost function J(7'), given by:
J(T)=D(T)+ \R(T), (3.2)

where D(7) is the distortion of the approximation represented by 7 and R(7) is the rate
associated with it. Further details on the computation of this cost function are presented

in Section B.1 of Appendix B.

The value of the Lagrangian multiplier, A, is an input parameter of the encoder and
is kept unchanged during the coding process. By setting the value of A, it is possible to
vary the compression ratio and the final distortion of the compressed image. Fach A value
results in one (R, D) point for the compressed signal. High values of A\ correspond to high
compression ratios, due to an increased relevance of the rate factor in equation (3.2). On
the other hand, low values of A correspond to lower distortion and lower compression ratios.

Figure 3.3 shows the decision process for each node of the segmentation tree. For each
block, the cost of encoding it as a leaf, J(7), is compared wit the cost of segmenting its
approximation into two blocks of level [ — 1. The option with the smaller Lagrangian cost
is chosen. This procedure is recursively repeated for each node, starting at the bottom
levels of 7 and progressing upwards, while testing all possible segmentation options. This
results in an optimum segmentation tree, in an RD sense, for each block approximation.

A more detailed description of the MMP algorithm is presented in Appendix B.
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Do not partition X'
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Figure 3.3: Flowchart for the MMP algorithm.

3.1.2 Encoding the MMP data

In order to transmit the MMP data, the binary tree representation is converted into an

ordered string of symbols, where:
e a binary segmentation flag ’0’ is used to represent a block segmentation;

e 3 binary segmentation flag 1’ indicates that the current sub-block should not be

segmented;

e each flag ’1’ is always followed by one index symbol, used to encode the corresponding

sub-block.

Since the blocks of level 0 cannot be further divided, no segmentation flag is used at this
level, and only the dictionary index is encoded.

The conversion of the binary segmentation tree into a string of symbols is performed
using a standard top-down order approach. For each node, the sub-tree that corresponds
to the left branch is first encoded, followed by the right branch sub-tree. In the final bit-

stream, each leaf flag is followed by an index, that identifies the word of the dictionary that
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should be used to approximate the corresponding sub-block. In the example of Figures 3.1
and 3.2, ig...14 are the indexes that were chosen to encode each of the sub-blocks, and so

this block would be encoded using the following string of symbols:
01 4% 0 1 ¢ 0 0 4 i3 1 iy

In order to increase the compression efficiency of the encoding process, the symbols of the
segmentation tree are encoded using an adaptive arithmetic encoder [56], with probability
distributions that depend on the level and symbol type (flags or indexes).

Unlike conventional vector quantisation algorithms, MMP uses approzimate block match-
ing with scales and an adaptive dictionary. These particular features of MMP are respon-

sible for its good relative performance and will be discussed in the following sections.

3.1.3 Scale adaptive pattern matching

Block matching with scales is an extension of ordinary approximate pattern matching,
in the sense that it allows the matching of vectors with different dimensions. In order
to approximate an original vector X!, using one code-vector S¥, MMP uses a 2D scale
transformation, T,i, to convert block S*, of dimensions 9l55+] & 2L§J, into a scaled version,
S!. of dimensions 9l x alsl,

The scale transformation, 7', is implemented using traditional sampling rate change
methods [32], that are easily extendable to blocks of any dimension, when separable trans-
formations are used [57]. Detailed information about the transformations used in the
original implementation of the MMP algorithm can be found in [2].

In [1, 2] a comparative study on the performance of standard VQ methods with that
of VQ methods whose dictionary is built using scaled versions of input blocks is presented,
for the case of Gaussian sources. The shown results demonstrate the advantage of the use

of dictionaries with scales for these sources.

3.1.4 Adaptive dictionary

MMP uses an adaptive dictionary that is updated while data is encoded, with blocks that
were created to approximate the original image data. When a block, X!, is segmented,
instead of using a single word of the dictionary this block is approximated by the concate-

nation of the dictionary words used to approximate each of its halves (Sil:;t and Sé;;ht,



3.1 THE MMP ALGORITHM 31

> D\D D s
s L]~ L

Figure 3.4: Dictionary update for the MMP algorithm.

o

respectively). In this case, the approximation of X' is a new block Xl, that is defined by:
X! = (sﬁ;}t : sﬁ;;h) , (3.3)
where (:) represents block concatenation. X! is thus generated adaptively by the encoding
process, in order to approximate an image area that is different from the code-vectors
available at the time. This new pattern uses a combination of existing blocks and is not
only used to encode X!, but also to update the dictionary. The new block, X! , thus becomes
available to approximate future image areas. The scale adaptation procedure assures that
this new pattern may be used to encode all future blocks of the image, irrespective of their
size.
The dictionary update procedure for the example of Figures 3.1 and 3.2 is represented

in Figure 3.4. In this example, the concatenation of two blocks of level 0, Sg and S?,

1

new:*

was used in order to create a new pattern of scale 1, S This new vector is used to

update the dictionary at all scales. In this example, vectors S2_, S3_. and S} are also

new? new

created from the concatenation of previously encoded patterns and thus cause new updates
of the dictionary. Note that the dictionary updating procedure is performed as soon as the

corresponding node of the segmentation tree is processed. This means that, in the blocks

represented in Figure 3.4, pattern S}, is inserted first, while the top block (S%

new

) is the

last one to be inserted in the dictionary.
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The MMP encoder performs the dictionary updating during the transmission of the
binary tree data. In the decoder, the dictionary updating procedure uses only informa-
tion that can be exclusively inferred from the encoded segmentation flags and dictionary
indexes. This means that the decoder is able to keep an exact copy of the dictionary used
by the encoder, using no side information.

Instead of using a single dictionary D, that holds a unique version of each new block
at its original scale, independent copies of the dictionary D' are kept for each scale [. In
order to do this, whenever a new pattern, lei’éfé’ , of a given scale, l,4, is created, the scale
transformation and dictionary updating procedures are performed for all scales, i.e. for
every available scale [, D' is updated with:

lom’
XL o =T (X, (3.4)

new lorig

This is done in order to improve the performance of the block matching search. The use
of D would force the search step to repeatedly perform scale transformations in order to
adapt the dimensions of each code-vector to the size of the input block. With the use of
several dictionary copies D!, the scale transformation is performed only once, during the
insertion of the new vector. While searching for the best match, only the dictionary of the
corresponding scale is used, avoiding the repetition of the scale transformation procedure.
In the updating process, a test condition is used to avoid inserting blocks that are
already present in each dictionary D!. This has the advantage of allowing the dictionaries
in different scales to grow independently. In general, although the initial dictionary has the
same number of blocks for every scale, during the coding process the dictionaries for smaller
scales tend to have less elements than those of larger scales. This happens because the
scale transform, especially the down sampling case, is a many-to-one operation. Therefore,
at smaller scales it is more likely that a vector X! will match an already existing vector.
MMP uses a very simple initial dictionary. In our implementations, it is composed by
uniform blocks with 64 different intensity values, evenly distributed in the range [0, 255], at
all available scales. This initial dictionary, common for all images, has small approximation
power, but the use of the dictionary updating procedure allows the algorithm to “learn”
the patterns present in a particular image. This process not only enriches the dictionary,
but it does so by adapting its patterns to the data that is being processed, enabling a good

coding performance for a wide range of input data.
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Due to the dictionary adaptation process and the use of adaptive arithmetic encoding,
the node costs that are used in the encoding optimisation (see Sections 3.1.1 and B.1) are
not completely independent. However, an optimum approach, that exhaustively considers
all possible dictionary updates has a prohibitive computational cost. A search method that
uses an intermediate dictionary to track the changes caused by each decision in the original
dictionary during the approximation of each image block was proposed in [58]. This method
is called MMP-RDI and produces very similar results to the full search RD optimisation,
using a much simpler algorithm. Nevertheless, experimental tests demonstrated that the
dependency effects introduced by dictionary updating during block optimisation are often
negligible, especially when smaller macroblock sizes are used (8x8, or smaller). In spite of

this, the RDI procedure will be used in this work.

3.2 Experimental results for MMP

In the previous section we have described the use of MMP for image coding. In this section
we present an evaluation of its coding performance. The MMP results are compared with
the ones of two well known state-of-the-art image encoders, namely JPEG2000 [12] and

H.264/AVC high profile intra frame encoder [13, 59|, for several image types.

3.2.1 Introduction and experimental setup

Several evaluations of the performance of the proposed algorithms for image coding will be
presented throughout this text. For this purpose we use a set of test images comprised not
only of natural smooth images, but also text and compound (text and grayscale) images.
Six images were chosen because they are good representatives of these image types, allowing
for a fair assessment of the proposed encoder for different image models. A small version
of these images is displayed in Figure 3.5, while a larger resolution version is presented in
Appendix A. Experimental results for some or all of these images will be presented along
the main sections of this thesis. Occasionally, some results will not be included, in order
to avoid a tedious repetition of similar relative performances. In some cases, additional
results are presented in an appendix’s section. In these cases a reference to their location
is inserted in the text.

Four well known grayscale natural images were chosen: Lena, Goldhill, Peppers and
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Figure 3.5: Some of the used test images. From left to right, top to bottom: Lena,
Goldhill, PP1205, PP1209, Cameraman and Peppers.

Cameraman. The first three images have 512x512 pixels, while image Cameraman has
dimensions 256 x256. These images were chosen because of their extensive use in the image
processing/compression literature. Besides these smooth, natural images, the performance
of the tested algorithms will also be evaluated for other image types, namely text and
compound (text and graphics) images. Two images were mainly used for this purpose: text
image, PP1205, and compound image, PP1209, of dimension 512x 512 pixels, were scanned,
respectively, from pages 1205 and 1209 of the IEEE Transactions on Image Processing,
volume 9, number 7, July 2000. These images were used because they are representative
of the image types they belong to and also because of their use in previous MMP-related
publications. All plots shown for these two images are limited to compression ratio intervals
for which the visual distortion of the compressed images do not make them unusable, i.e.

do not severely compromise the clarity of the text regions.

The current state-of-the-art image encoding methods that were chosen as a reference
for this thesis are the JPEG2000 [12] and the H.264/AVC high profile Intra frame encoder
[59]. These algorithms were chosen as performance benchmarks for all encoding meth-
ods described throughout this document. JPEG2000 has a representative performance for
wavelet-based image encoders, that makes it a commonly used reference in image compres-

sion literature. In spite of having been developed for digital video compression applications,
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the efficiency of the H.264/AVC’s Intra frame encoding methods for image coding appli-
cations is well documented [60]. The performance of this method is generally accepted as
being superior to that of wavelet-based schemes, namely JPEG2000. These observations
were confirmed in this work, hence justifying the use of H.264/AVC in the comparisons.
The FREzt high profile coding configuration was chosen because it achieves the best coding

performance for the H.264/AVC encoder [60, 61].

3.2.2 Performance evaluation

In this thesis we adopted the ubiquitous convention for measuring the rate-distortion per-
formance that represents the peak signal-to-noise ratio (PSNR) as a function of the com-
pression ratio, measured in bits-per-pixel (bpp). The PSNR is the most commonly used
measure of distortion in image compression systems. It is usually measured in decibels

(dB) and defined as

2552 2552
PSNR = 10l0910 M—_1N_1 = 10l0g107 (3.5)

1 ) 2 MSE(I, 1)
VN Z Z (I(m,n) —I(m,n))

where M and N are the dimensions (in pixels) of the original image, I, and of its noisy

approximation, I. MSE is the mean squared error between the two signals. Bits-per-
pixel is a measure of the average number of bits that are used to represent each pixel of
the encoded image. An uncompressed grayscale image with 256 levels uses eight bits to
represent each pixel. This means that a value of 1 bpp is equivalent to a compression ratio
of 8:1.

Figure 3.6 shows the rate-distortion performance of the MMP algorithm for smooth

images Lena, Goldhill and Cameraman?

. For image Cameraman, the MMP results are
very close to the ones of JPEG2000, especially for high to medium compression ratios.
Nevertheless, for the other smooth images, the PSNR performance of the MMP encoder
is about 2 dB inferior to that of the transform-quantisation-based encoders. Figure 3.7
shows the RD performance charts for text image PP1205 and compound image PP1209.
In these cases one may notice an inversion of the previously observed comparative results.

For text image PP1205, the MMP encoder presents a PSNR advantage of about 3 dB over
H.264/AVC and of about 4 dB over JEPG2000. For compound image PP1209, the MMP

2The results for test images Goldhill and Peppers are presented in Figures C.1 and C.2 of Appendix C.
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Figure 3.6: Experimental results of MMP for smooth test images Lena and Camera-

man (256 x 256).

results are equivalent to those of the best state-of-the-art encoder (H.264/AVC) and about
1 dB better than those of JPEG2000.

From these results we notice a consistent performance advantage of the H.264/AVC
encoder when compared with the JPEG2000 standard. This advantage is observed for all
image types at all compression ratios. Concerning the MMP algorithm, we observe a good
relative performance for non-smooth images, when compared with transform-quantisation-

based algorithms. Nevertheless, for smooth images, the state-of-the-art methods have an
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Figure 3.7: Experimental results of MMP for test images PP1205 and PP1209.

advantage over MMP. These observations justify one of the major objectives of this thesis,
namely the investigation of new techniques that allow for the improvement of the MMP
algorithm, especially for smooth images. The remaining sections of this chapter present
experimental studies of some important aspects of the MMP algorithm. These new insights
on MMP compression will be useful in the definition of new encoding techniques, that are

presented along the following chapters of this thesis.
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Figure 3.8: Bit rate usage for the indexes and segmentation flags, for MMP.

3.3 Analysis of the MMP bit stream

MMP encodes the input data by generating a string composed of dictionary indexes (i')
and binary segmentation flags (f!). Each symbol is encoded using an adaptive arithmetic
encoder, that keeps independent probability contexts for each data type (index or seg-
mentation flag) and block scale, I. Therefore, each symbol uses an adaptive probability
model: P(i!|D!), for the indexes, or P(f'|l), for the flags, allowing for the exploitation of
different per scale distributions of each symbol. This is important because the probability
distributions of the symbols across different scales present different behaviours, as will be
shown shortly.

Figure 3.8 shows the percentage of MMP’s bit rate used by the indexes and segmenta-
tion flags symbols, for a wide range of compression ratios and different test images. This
figure allows the observation of an important feature of MMP’s bit stream: the indexes’
symbols consistently use between 85 and 90% of the total bit rate, independently of the
input image and the final compression ratio.

The higher rate associated with the dictionary’s indexes’ symbols is an expected conse-
quence of the greater entropy of these symbols. This results from the very large cardinality
of the adaptive dictionaries, when compared with only two possible segmentation flags,
which have a maximum entropy of one bit. Considering the RD optimisation algorithm
used by MMP, one would expect a larger number of block segmentations at higher bit

rates, corresponding to lower values of the Lagrangian parameter \. For decreasing values
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of A, the relative importance of the distortion factor in the final Lagrangian cost becomes
progressively higher (see equation (3.2)). In this case the optimisation process will pursuit
lower approximation errors at the cost of higher rates, resulting in the use of smaller blocks
in the encoding process. This also means that for smaller compression ratios, the cardi-
nality of the adaptive dictionary should increase (as will be observed in the next section).
In terms of the effects on the bit stream, on one hand, the higher cardinality increases the
entropy of the indexes’ symbols, but on the other hand, the use of smaller blocks increases
the number of segmentation flags and the importance of the bit rate associated with these
symbols. Figure 3.8 shows that both bit rate components increase proportionally, when
the compression ratio decreases.

The large amount of data associated with the MMP indexes means that the study
of more efficient ways to encode these symbols has good potential to increase the overall

performance of the method.

3.4 Analysis of the dictionary usage and adaptation process

In this section we analyse the adaptive updating of the MMP dictionary and the index usage
in the encoding process. The adaptive dictionary is responsible for the good versatility of
the algorithm, allowing it to learn a set of pixel patterns that efficiently represent the image
blocks. The growth process of the MMP dictionary has a twofold influence in the method’s
performance: on one hand, large dictionaries tend to decrease the block distortion; on the
other hand, the larger number of elements tends to increase the entropy of the index
symbols. MMP benefits from the better approximation power, but suffers from higher
average rates associated with a larger number of dictionary elements. In this section we
evaluate the effects of these phenomena and present a set of experimental observations
related with the updating process of the dictionary.

Figure 3.9 shows the evolution of the final cardinality for the MMP dictionary of largest
scale (D®) for several test images. An approximately linear increase of the final dictionary
size with the bit rate may be observed, for all input images. Also, the growth rate is
similar for all tested images with dimensions 512x512. For image Cameraman (256 x256)
the growth rate is also constant, at about one quarter of that of other images; note that,

since it has smaller dimensions, this is the same proportion for the number of image blocks.
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Figure 3.9: Final number of elements in the dictionary of scale 8 (16 x16 blocks) for

MMP.

This means that for a given target bit rate, the number of new dictionary elements that
is created for each encoded pixel of the input image is approximately the same for every
tested image and only depends on the final compression ratio, which can be directly related
to the Lagrangian parameter A used in MMP encoding.

In order to analyse this dependency, Figure 3.10 shows the final number of elements
for every scale of the MMP dictionary, for images Lena and PP1205, using different com-
pression ratios3. In these figures we observe the effect of the test condition mentioned in
Section 3.1.4, that avoids the inclusion of similar blocks in a given scale of the dictionary,
causing the dictionaries for each scale to grow independently. Because of the property
of many-to-one mapping of the scale reduction process, we observe that dictionaries for
smaller scales tend to have less elements than for larger scales. The results presented for
image Lena are representative of what generally happens for smooth images. In this case
we observe a significant reduction in the dictionary size only for D° and D!. For non-
smooth images (like PP1205) we also notice some reduction on the size of D?, due to the
particular features of these images, namely the preponderance of a small number of grey
levels.

Figure 3.11 presents the increase in the cardinality of D® as the coding progresses

3The corresponding results for other test images are presented in Figure C.3 of Appendix C.
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Figure 3.10: Final number of elements for all scales of the dictionary for MMP, for

images Lena and PP1205.

(represented in terms of the number of processed macroblocks, scanned using a standard
raster order) for images Lena and PP1205 at various compression ratios. We observe that
the growth rate of the dictionary is approximately constant for these images, but depends,
to a small extent, on the area of the image that is being encoded. Smoother areas of
the image tend to be approximated by larger blocks, which slows the growth rate of the
dictionary (as can be seen for the initial blocks of image PP1205, that correspond to a

smooth area). Areas of the image with more detail tend to cause more block segmentations,
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Figure 3.11: Evolution of the number of elements for scale 8 of the dictionary for

MMP, for images Lena and PP1205.

increasing the number of dictionary updates. Similar observations were made for other test
images. Figure 3.11 shows that the growth rate of the dictionary tends to slow down as
the encoding progresses. This is a result of the learning process of new image blocks, that
allows the method to use already existing vectors of the dictionary, instead of having to
segment the input blocks, originating new indexes. Figure 3.12 shows the growth rate for
dictionaries of all scales, for image Lena encoded using approximately 1 bpp. In this figure

we clearly notice the learning effect for the dictionaries of scales 0 and 1. Nevertheless, for
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the dictionaries of higher scales the learning process has a very small effect in slowing the
growth rate of the indexes.

Figure 3.13 shows the final number of elements for each scale of the dictionary and
compares these values with the number of blocks that were encoded by MMP at each scale,
for image Lena. It clearly demonstrates that, as the target compression ratio decreases,
MMP tends to progressively use smaller vectors of the dictionary (i.e. a larger number of
segmentations) to encode the input blocks. We may observe that for 0.11 bpp, the input
blocks are approximated using mostly large blocks, i.e. vectors from the higher scales of
the dictionary. For larger bit rates we notice a tendency to use smaller blocks in the MMP
approximations. This has the effect of increasing the final number of dictionary elements
for all scales, due to the MMP updating scheme.

Another relevant phenomenon observed in these plots is the fact that the final number
of elements for each scale [ of the dictionary is much larger than the actual number of blocks
that were approximated at that scale, for all target compression ratios. This means that
there are a lot of dictionary elements that are never actually used in the approximation of
the original image patterns. This effect, shown here for image Lena, was also observed for
all other tested images. The unused blocks have the unfavourable effect of increasing the

entropy of the dictionary’s indexes, without effectively improving the dictionary approxi-
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of blocks used by MMP at each scale, for image Lena..

mation power, i.e. the ability to achieve a low distortion when using a dictionary vector to
approximate an image block. This suggests that further developments in MMP dictionary

adaptation process may be worth investigating.

3.4.1 First tests on dictionary adaptation

In order to investigate the dictionary adaptation process, we have implemented some tech-
niques that aim to increase the efficiency of dictionary usage by eliminating some of the
unused blocks. An obvious technique for controlling the growth of the MMP dictionary
is to impose a limit to the number of elements that are inserted in each D!. All previous
versions of MMP, from its initial proposal to the several implementations that have been
developed, do not use such a limit. The reason for this is that, historically, informal tests

revealed that these type of techniques consistently lead to performance losses. Neverthe-
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Figure 3.14: Results for MMP when dictionary updating is interrupted at a percent-

age of the total number of encoded blocks, for image Lena.

less, a thorough study of the effects of limiting the dictionary growth was performed, in
order to clarify this issue.
Setting a maximum size for the dictionary may be performed by using one of two basic

schemes:

e The dictionary is allowed to grow freely up to the maximum size, where the updating

process is terminated;

e Alternatively, once the maximum size has been reached, the inclusion of a new ele-

ment in the dictionary is done by replacing an existing vector.

These two methods were studied and their experimental results are presented and analysed
in what follows. Interrupting dictionary adaptation was tested using several thresholds
corresponding to the point at which the learning process was suspended. Figures 3.14
and 3.15 present the results of these tests for images Lena, PP1205 and PP1209%. The
plot key shows the point at which the updating process was terminated, in terms of the
percentage of the total number of blocks (these test images have 1024 16x16 blocks). All
of the tests led to a decrease in the RD performance of the algorithm. An equivalent

performance to that of the original method was only reached for some cases, when almost

4The corresponding results for other test images are presented in Figure C.4 of Appendix C.
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Figure 3.15: Results for MMP when dictionary updating is interrupted at a percent-
age of the total number of encoded blocks, for images PP1205 and PP1209.

every block of the image (more than 75%) was used in the learning process. It is also
possible to observe that the quality losses depend on the input image: for text image
PP1205 we observe a small decrease in the performance, while for smooth images the
effects of interrupting the updating process are more noticeable. Two factors explain this:
first, the text image patterns consist of combinations of black and white pixels, that can
be more easily approximated when only a small number of blocks was used for dictionary

adaptation. This is not the case for the smooth images, whose patterns’ characteristics vary
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considerably with the position of the block in the image. The second factor that explains
the reduced effect of these techniques for text images is that, once the dictionary updating
process is concluded, the MMP encoder compensates for the poorer set of dictionary vectors
by using smaller blocks in the approximations. This causes an increase in the bit rate,
that explains the reduction in the performance. Because MMP originally uses much more
segmentations for text and compound images than for the smoother ones, this effect has a

much greater impact for natural images.

The second option to limit the dictionary growth is to set a maximum size for the dic-
tionary. Once the dictionary reaches a threshold size, each new insertion is only performed
once an existing vector is removed. In our tests we have also investigated which dictionary
vector should be eliminated. Two criteria were used: a frequency criterion, where the least
used block is chosen and an age criterion, that eliminates the block which has not been
used for a longer time. If there are blocks with a similar age, one should choose the one
that has been used less times. Similarly, the frequency criterion uses an age measure to
choose among vectors that were used the same number of times. We can see the results
for these tests in Figures 3.16 and 3.17, for images Lena and PP1205, respectively®. From
these figures we observe that the frequency criterion is consistently better than the age test.
However, even this criterion most often results in performance losses, when compared with
the case where the dictionary is allowed to grow freely. An exception to this observation
is the text image, for which the restriction of dictionary size combined with the frequency
criterion introduces small gains for higher rates. Again, the gains for this particular case

may be explained by the arguments presented earlier.

In our tests the maximum dictionary size was fixed for all scales and rates. One would
intuitively accept that the optimum value for this threshold would depend on the input
image and on the target rate for the encoding process: larger compression ratios should
allow for smaller dictionaries, while higher rates should impose larger dictionary sizes.
Experimental observations led to the conclusion that the optimum maximum size was
consistently very close to the number of elements that the original dictionary would have
if no restriction was used. In another test we have used a scale adaptive threshold, that
sets the maximum values for the dictionary size depending on the current scale. This test

was justified by the observation that the number of blocks for each scale that were actually

5The corresponding results for other test images are presented in Figure C.5 and C.6, of Appendix C.
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Figure 3.16: Results for MMP using a maximum dictionary size and the two tested

elimination criteria, for image Lena.

used in the encoding process varied significantly. Several tests were performed using this
framework: more elements were allowed for the most used scales, the maximum number of
elements was set to grow with the current scale (larger scales use larger dictionaries), etc.
A related test established the maximum size of the dictionary of each scale to the actual
number of elements that would be used if no restriction was imposed. The results for this

test revealed severe losses in the encoding performance.
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Figure 3.17: Results for MMP using a maximum dictionary size and the two tested

elimination criteria, for image PP1205.

One concludes that these attempts to restrict the dictionary size generally compromise
the coding performance. This is because the used criteria to eliminate blocks from the
dictionary do not take into consideration the future impact of that elimination: one block
may have been useless up to the present moment, but one has no way of knowing if this
will be the case for future image blocks. Also, optimising the maximum dictionary size

threshold would be a hard task, since this would depend on the input image and encoding
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parameters. Nevertheless, these techniques may be useful in a future framework, were one
would be willing to accept a trade-off between image quality and encoding complexity.
That is not, however, the main focus of this work, that concentrates on developing new
techniques that enable rate-distortion performance gains of the MMP methods, mainly for

smooth images.

3.5 Concluding remarks

In this chapter we have presented the multidimensional multiscale parser algorithm, or
MMP. This method is the main focus of the investigation described in this thesis, which
accounts for the detailed explanation of this algorithm, that was presented in Section
3.1. Section 3.2 showed an experimental evaluation of the image coding performance of
MMP. The results presented in this section revealed the adaptability of MMP. A wide
range of images types are efficiently encoded by using an initial dictionary built from a
very sparse set of uniform blocks and adapting it to the patterns that are being encoded.
A comparative analysis of the coding performance was also done, using two state-of-the-
art transform-based image encoders, JPEG2000 and H.264/AVC high profile Intra-frame
encoder. This comparison revealed excellent results for non-smooth images, for which
MMP is able to achieve a better performance than JPEG2000 and H.264/AVC. However,
this is not the case for smooth images, where MMP shows an inferior performance.

In order to pursue one of the major goals of this thesis, i.e. to develop new coding
schemes that improve the performance of MMP, especially for smooth images, an exper-
imental analysis of some of its most important aspects was carried out in the remaining
sections of this chapter. The discussion of the presented results clearly demonstrate the
usefulness of more efficient ways of improving the learning process of the MMP dictionary.
This study raised some interesting questions that motivated many investigation lines, that
are described in the next chapters.

Section 3.3 demonstrated that the indexes encoding account for the majority of the
generated bits of the MMP file. New ways to increase the efficiency of the indexes’ entropy
encoder, that use context adaptive arithmetic encoding, are investigated in Chapter 6.

Section 3.4 revealed some inefficiency issues related with the MMP dictionary updating

process. Also, preliminary tests, presented in Section 3.4.1, showed that the use of trivial
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solutions to limit the dictionary growth has a negative effect on the overall rate-distortion
performance of the method.

This motivated the investigation of other efficient dictionary adaptation methods, that
are presented later, in Chapters 5 and 6. In the following chapter we present some new
insights on MMP. Using different points-of-view, we are able to relate MMP not only
to traditional pattern matching algorithms, as LZ and VQ-based methods, but also to

transform-based encoders and non-uniform sampling schemes.
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Chapter 4

New insights into MMP

In spite of its unique features, the Multidimensional Multiscale Parser algorithm has a
lot in common with other pattern matching algorithms, like string matching (Lempel-Ziv)
[3, 4] and vector quantisation [5], previously described in Section 2.2. The first two sections
of this chapter present an analysis of the MMP algorithm considering both the LZ and VQ
viewpoints. The main similarities and differences between MMP and these methods are
highlighted.

Other perspectives on MMP are also presented in this chapter. Section 4.3 investigates
some interesting relations between MMP and a signal decomposition technique. Section
4.4 develops another somewhat unexpected insight into MMP, by presenting it as a non-
uniform sampling scheme. This is followed by a study on possible interpolation schemes,
that reconstruct the input signal from the MMP-generated samples, as an alternative to

the standard MMP decoding process.

4.1 A string matching point of view

Being a dictionary-based method, MMP shares some common features with the LZ family
of string matching encoders. The explicit use of a dictionary relates MMP with an LZW-
based method (see Section 2.2.1), since no individual symbol is transmitted with each
code-vector. As in the LZ78 and LZW cases, the initial dictionary stores only a small
set of basic symbols. Because MMP does not have the ability to transmit new patterns
without the use of code-vectors, one condition for MMP lossless coding is the insertion

of all possible symbols in the initial dictionary. As in LZ encoders, the definition of new
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code-vectors is based on the concatenation of previously encoded parts of the message with
recently encoded patterns. In LZ, this concatenation uses the last encoded element of the
message, that is transmitted independently. MMP uses a much more flexible dictionary
updating process, in the sense that it may use the concatenation of any two existing code-
vectors. Also, it does not have to explicitly transmit any message block nor any other
side information for the dictionary adaptation process. As in LZ-based methods, both the
encoder and decoder use similar dictionary updating procedures, that guarantee the use of

synchronised copies of the dictionary at all times.

One important feature of MMP is the implicit use of blocks of different scales. LZ77
methods use adaptive block sizes in the matching process by explicitly transmitting the
length of the used pattern. In LZ78 and LZW this is avoided by performing the match
with a code-vector which has implicit dimensions. Nevertheless, LZ-based methods use
each dictionary pattern in its original dimensions while MMP has the ability of using the
patterns in the dictionary at different scales. This means that MMP is able to approximate
the new image segments not only by using previously transmitted image patterns, but also
by using one of the patterns created by the scale transforms. This increases the flexibility
of the MMP dictionary updating procedure, that is able to adapt to the image patterns
much faster. This is important for the coding efficiency of the method, because as for the
case of LZ-based algorithms, the initial dictionary usually contains only a reduced set of

simple patterns.

4.2 A vector quantisation point of view

The main affinities between MMP and VQ-based algorithms lie on the use of a pattern
dictionary. In fact, if we disregard the scale adaptive encoding procedure on MMP we
would get a compression algorithm that could be classified as an adaptive VQ method.
Nevertheless, even this fixed scale version of MMP would have innovative features for a
VQ method, like the dictionary updating procedure (note that this procedure would have
to use a scale transformation on the concatenation of two blocks of a fixed scale, [, in order
to produce a pattern of scale [). Thus, the MMP dictionary updating procedure, that was
shown to be one of the key factors for its coding performance, is also one of the major

distinctions between MMP and the traditional VQ methods.
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The second major difference is the use of adaptive block sizes for the matching proce-
dure. By adaptively choosing blocks of different dimensions, MMP is able to achieve an
arbitrary rate-distortion trade-off for the signal representation. From a VQ point of view,
the MMP scale transformation procedure may be regarded as an implicit adaptation of
the quantisation vectors that are available to approximate the signal. For a given scale [,
the quantisation vectors of a standard VQ method would correspond to the blocks stored
in level [ of the MMP dictionary, D'. In traditional adaptive VQ schemes, if the matching
step fails with the vectors of D!, one must encode the new pattern Sé as side information
[5]. This pattern is then inserted in the codebook and a new quantisation vector becomes
available to the encoder. In MMP, the available quantisation vectors correspond not only
to the blocks of D!, but also to all possible concatenations of blocks from the smaller scales
dictionaries, D*, with k = 0,..,1 — 1. If D° stores blocks of 1 x 1 pixels with all values
within the dynamic range of the image, it is possible to cover all signal space with the
combination of these patterns, resulting in a lossless encoder. This capability of arbitrar-
ily concatenating the blocks of smaller scales provides a large number of approximation
choices (quantisation vectors); this lends MMP a good deal of versatility. Also, due to
the scale transformations, each concatenation of two blocks of smaller scales results in
new code-vectors for all scales. This increases the available quantisation vectors exponen-
tially, without requiring the transmission of additional data for the dictionary updating

procedure.

4.3 A signal decomposition point of view

Transform-based coding is probably the most popular paradigm for image compression.
Most of the state-of-the-art methods use this paradigm, combining it with quantisation
and entropy coding, in order to efficiently compress the images’ spectral data [62]. The
transform step compacts the input signal’s information into a sparse set of transform coeffi-
cients, that are encoded according to their individual features. The remaining values, that
hold a negligible amount of information, are then either discarded or coarsely quantised,

achieving high compression levels with low distortion values.

Transforms are a special case of signal decomposition. In this section we present an

analogy between MMP and a signal decomposition algorithm, that uses redundant atom
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functions. The initial MMP dictionary uses a set of discrete rectangular pulses with dif-
ferent amplitudes and scales. The approximation of the input signal can be regarded has
a combination of these pulses, using appropriate amplitudes, shifts and scales, that are
determined by the MMP’s rate-distortion optimised coding algorithm. In our analogy we
thus relate MMP coding to a signal analysis algorithm. The decoding (or synthesis) process

uses the same basis functions to reconstruct the approximated signal.

4.3.1 Signal decompositions

We start by reviewing some basic notions about signal decompositions using the simpler
1-D case. A transform decomposes the input signal, x(t), into a linear combination of

functions, f;(t), weighted by the coefficients, ¢;:

2(t) =Y cifilt). (4.1)

)

Functions f;(t) are called synthesis functions, as they correspond to the “building blocks”
of the reconstructed signal. The transform coefficients, ¢;, can be determined by evaluating
the projection of an input signal into a set of analysis functions, g;(t). This is done by

determining the inner product between z(t) and g;(¢):
ci =< g;(t),z(t) > . (4.2)

Some commonly used transforms are the Fourier transform (FT) and the cosine transform
(CT) as well as their discrete counterparts, DFT and DCT. The use of the discrete cosine
transform for digital image compression is very common, due to the popular JPEG image
coding standard [11].

For the discrete case, if any input signal, z(n), of length N, can decomposed into a set
of N linearly independent sequences f;(n), then f;, i = 1,...N, define a basis of the signal

space [63]. In this case we have

N
x(n) = chfl(n) (4.3)
i=1

Any signal may thus be represented by the set of coefficients {c1,ca,...,cn}, which

implicitly corresponds to a linear combination the basis sequences

ZE(TL) = lel(n) + CQfg(TL) + ...+ CNfN(TL). (4.4)
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Another important case is the use of redundant (i.e. linearly dependent) functions for
signal decomposition. In this case, a signal z(n) is decomposed into the sum of a set of M

atoms, fm(n):

‘T(n) = Z Cmfm(n)a (4.5)

melp
with m € Ips and Iy C {1,...,k}. The k atom sequences, {fi,..., fx}, define a frame
for the N-dimensional signal space and one typically has that & > M [63]. The previous
discussions can be expanded to the two dimensional case, either by using original 2-D
functions or by computing them with a separable combination of the 1-D functions (in

which case we have a so-called separable transform) [64].

4.3.2 MMP signal decomposition

In this section we describe some aspects of MMP compression that can be related to a signal
decomposition process. The intention is not to formally perform a theoretical analysis
of MMP as a signal decomposition, but to point out some analogies between these two
different paradigms. In the following analysis we consider the particular case of an initial
dictionary composed only by impulses and rectangular pulses; the scale transformations
consist of zero order interpolators (for the expansions) and simple decimators (for the
contractions). This ensures that the concatenation of any number of blocks composed by
rectangular pulses is still a concatenation of rectangular pulses at any scale. Figure 4.1
has a representation of this case!. Note that this is not the case for the original MMP,
since its scale transforms use an interpolation (low pass) filtering. Some comments on the
implications of using scale transformations with a filtering effect are presented later in this
section.

In MMP encoding, the approximation of each input block, X!, can be regarded as a

combination of several dictionary vectors, Séi, at different scales I, € [0, prq2]:

Xl—gho sl gl gl (4.6)

70 i1 i2 ik

where lp74; is the largest scale used by MMP.

'We consider again the case of an one-dimensional (and continuous) time signal, for the sake of clear
graphical representation. The conversion for the discrete case would be performed using a simple uniform

sampling procedure at t =n, n € N.
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Each segment, S:*, may be one of the vectors that were used to build the initial dic-
tionary, or a more elaborate pattern that was created by the dictionary update procedure.
In the first case, Si’; is a pulse (or a 2D pixel block) of constant amplitude, «;, , and width

l l
2!k (or dimensions 2l%57] % 2L for the 2D case).

MMP may thus be regarded as a signal decomposition using a frame [63], that cor-
responds to the redundant functions S! (of all available scales) that are stored in the
dictionary at a given time. The MMP coding algorithm chooses a set of atoms and com-
bines them, in order to approximate the input image, according to equation (4.6). One
interesting feature about MMP is that the used frame is both adaptive and dependent
on the input image. It is adaptive because new atoms are created by the dictionary up-
dating procedure. On the other hand, for each input image (and coding parameters), the

algorithm uses a different set of code-vectors.

Since the dictionary update procedure builds new patterns using the concatenation of

scaled versions of code-vectors, each MMP atom function can ultimately be represented
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Figure 4.2: Decomposition of a signal into a set of pulses with amplitude ay, scale

0B and position .

by a combination of basic pulses, ¢(t), defined by:

1 0<t<l1
o(t) = . (4.7)

0 otherwise

Each code-vector used in the initial dictionary corresponds to a single pulse. As the
updating procedure progresses, new blocks are created by the concatenation of a set of
pulses characterised by their amplitude, width and position, i.e.:

K'—1
S = 3 axo (t;lj’“) . (4.8)

k=0

The parameter «j corresponds to the amplitude of each pulse; §; is the support of each
rectangular pulse, 3, € {2%,1; € [0, 1rraz]}; Y& Tepresents each pulse’s position, in our case,
a positive integer.

The code-vectors defined by equations 4.6 and 4.8 correspond to the atoms of the
MMP frame. Since the decoded signal, Z(t), is built from concatenated atoms, it can also

be represented in terms of a combination of these modulated, scaled and shifted pulses:

K-—1
o N L=k
0= 3 m( -~ ) (49)

A graphical representation of this pulse combination is given in Figure 4.2.

From Figure 4.2 we observe that each [y, relating to the MMP scale of each pulse, may

be represented as a function of the positions of two adjacent pulses:

Bk = Vk+1 — V- (4.10)

The reconstructed signal may therefore be represented by an ordered set of pairs

§k = (o, Vi), (4.11)
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that characterise each atom function that was used to compose #(t). Therefore, every
encoded block, dictionary vector and ultimately the whole input signal, can be represented
by

z=A{&, &, ..., Ex-1}, (4.12)

that correspond to

#(t) = KE_:loszS <t_7'y’f> . (4.13)

=0 Ve+1 — Tk

From the previous discussion we can establish an analogy between the MMP encoding
procedure and a signal “analysis” algorithm, that determines the best representation of the
input signal z(t) according to the signal decomposition described by equation (4.13). This
analysis determines the best atoms (code-vectors) for the signal decomposition.

Furthermore, the code-vectors that result from the dictionary adaptation process cor-
respond themselves to a set of simpler atoms, that were concatenated and scaled. Each
MMP dictionary index can therefore be regarded as an efficient joint encoding of a set
of pairs that describe the dictionary pattern (see equation (4.12)), and become available
for future approximations. Another interesting observation is that, while the dictionary is
composed by just rectangular pulses, the MMP compression scheme implicitly encodes the
0O and the 7, parameters with the segmentation tree, while the corresponding «y values
are encoded with the dictionary index. Nevertheless, as more complex code-vectors are
created, all parameters of each & are jointly encoded by MMP’s dictionary indexes and
segmentation flags.

In the previous analysis of MMP, one notices two important features of the MMP
signal decomposition process: first, the atoms used by MMP to approximate the image are
orthogonal, since they have non-intersecting supports; and second, the chosen code-vectors
can be expressed by a concatenation of other atoms, represented at a finer scale. This
reveals an interesting relation between MMP and a multiresolution analysis of the input
signal, that can be expressed as follows. Be V] the set of functions that can be generated

by MMP at a given scale, . Then one has that:
Vicvii - C V. (4.14)

For scale 0 (blocks with 1 x 1 pixels), MMP is able to achieve lossless compression of the

input image if all possible pixel values are included in DP. In practice, this is not the case,
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Figure 4.3: Function spaces generated by MMP at each approximation scale, where

VicVi_1CVi_oC---CVW.

due to the quantisation used in the definition of the initial blocks’ amplitudes. This may be
regarded as a quantisation of the coefficients ¢, used in the signal decomposition, described
in equation (4.5). Nevertheless, any atom function from V3, ..., Vs, can be represented as a
composition of functions from V4. Since the MMP encoder is able to simultaneously use all
subspaces V;,, MMP compression may be regarded as the optimal choice of some orthogonal
signals, from a larger set of redundant atoms, that span the generated approximation of
the input image. A representation of this process may be found in Figure 4.3.

In spite of the this multiresolution feature, the previous interpretation of MMP has
important differences when compared with the theory of multiresolution analysis [63]. In
this case, a function in Vji; can be decomposed into a function in V; (generated by a
linear combination of scaling functions ¢;(t), at scale j), plus a detail signal, composed by
a linear combination of translates of a corresponding wavelet function, 1 (t), at the same

scale:

Foen® = cindin () + > dixtbin (t). (4.15)
k !

If W; is the set of functions generated by v;(t), then we obtain:
Vili=V; e W;. (4.16)

From equations (4.15) and (4.16) one has that V; = V@ W, @Wy11®---@W;_q, for k < j.

Thus, any function in V11 can be decomposed into a sum of functions that start with a low
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Figure 4.4: Relation between the function spaces generated by the several scales of

a multiresolution decomposition.

resolution scaling function representation, combined with a set of wavelet representations
of the residue details. This may be represented by the function spaces of Figure 4.4. Note
that the residues (detail spaces) are not used by MMP.

One important feature of MMP as a signal decomposition scheme is its adaptability. In
general it is not feasible to construct a transform for a specific signal, since nonstationary
signals often demand computations of the used transform and the overhead required to
transmit the transform update may compromise compression gains. To a certain degree,
MMP encoding solves this problem by means of its highly adaptive multiscale representa-
tion. By using several redundant approximation subspaces, MMP optimises signal decom-
position by using larger blocks in the more regular regions (lower rate) and smaller blocks
in detailed areas (lower distortion). This process, implemented by the RD optimisation
scheme, assures that, for each image segment, it is possible to choose the best representa-
tion for the original pattern in an RD sense, given an initial dictionary and its updating

rules.

The use of orthogonal, non-overlapping functions has an important role in MMP cod-
ing. It permits an independent optimisation of the approximation of each block, i.e. the
approximation of a particular block will not be influenced by the functions used to approx-
imate its neighbours (either past or future). This allows for a computationally efficient

optimisation of the MMP approximation. If this was not the case, the Lagrangian cost
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of the approximation of a given block would have to consider not only the distortion that
results from the use of a given dictionary pattern for the current block, but also the effects
of the approximation of all neighbouring blocks. Nevertheless, it is important to keep in
mind that maintaining this useful feature of the method restricts the atom functions ¢(n)
that may be used in the MMP analysis process.

Another feature of MMP is that the atoms used for the analysis and synthesis (see
equations (4.7) and (4.13)) are the same. The MMP decoder uses the same shifted pulses to
reconstruct the signal, that were used at the encoder to optimise the signal decomposition.
The use of rectangular pulses has the disadvantage of originating some blocking artifacts
on the decoded MMP image, which arise from the independent optimisation of each image
block. This may cause the appearance of some discontinuities in the neighbouring pixels
of the blocks. One should notice that the restriction of the atom functions to be non-
overlapping does not apply to the functions used by the decoder. In fact, the decoder simply
has to combine the vectors defined in the bit stream, in order to compose the approximated
image. In [1, 2, 65] some tests were performed using the usual encoder but with a decoder
that performs a post-filtering operation on the reconstructed blocks. This procedure,
discussed in the following section, may be related with replacing the rectangular synthesis
pulses by different signals, namely triangular and Gaussian functions, with overlapping

supports.

4.3.3 MMP synthesis with deblocking filtering

In [1, 2, 65|, a method related with MMP synthesis using overlapping functions was im-
plemented as a way to control the blocking artifacts in the reconstructed image. For this
purpose, a running two-dimensional FIR filter is applied to the reconstructed image. The
filter’s kernel dimensions are successively adapted to the scale of the code-vector that was
used to approximate the corresponding image area. MMP tends to use, in smooth im-
age areas, blocks Sé of large scales, which have larger support regions. In image areas
with higher activity it tends to use blocks with small values of [. This can be exploited
by adapting the support of the smoothing FIR filter according to the dimensions of each
image segment X! that is being considered.

Figure 4.5 depicts an one-dimensional representation of a reconstructed portion of a

ho .
X\ xi2> , with

lo

signal, that was approximated by the concatenation of three blocks, (xio
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Figure 4.5: Use of FIR filters with adaptive support according to the MMP block

scale.

different scales: [y, I; and ls. At each filtered pixel, represented in the figure by a red
arrow, the kernel support of the deblocking filter has been set according to the scale l;, of

the block xi’; that it belongs to.

In [1], two models were used for the FIR filter h: a running average (rectangular) filter
and a Gaussian filter. For both cases, a support of 2% + 1 samples was used. The two-
dimensional filtering is separable. It is performed first in one direction and then on the
other [64]. The rectangular filter has a highly smoothing effect, which could compromise
the quality of the reconstructed image, but the support adaptation process controls its
deblocking strength according to the detail level of the region that is being processed. This
reduces the blurring artifacts that are usually caused by the use of exaggerated smoothing.
Nevertheless, the original filtering process still results in a reduction in objective quality
for smooth images. On the other hand, the use of a Gaussian kernel with support 2% + 1
samples, resulted in PSNR gains for smooth images [1, 2]. Figure 4.6 shows the results for
the MMP post-processing deblocking filter for a detail of Lena image coded at 0.29 bpp?.
It is possible to see that both filtering kernels are able to reduce the blocking artifacts
and increase the perceptual quality of the decoded image. It can also be noticed that
the rectangular kernel has a higher smoothing effect than the Gaussian, introducing some
blurring artifacts in the decoded image. In terms of the RD results one has that the use
of the rectangular kernel consistently decreases the objective quality of the reconstructed
image. Note, however, that its use increases the subjective quality, when compared with

the original decoded image. For the shown compression ratio, this technique causes a

*Refer to Figures C.8 and C.9 of Appendix C for a representation of the entire images.
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(a) Original (32.55 dB) (b) Rectangular (32.05 dB) (c) Gaussian (32.91 dB)

Figure 4.6: Detail of the MMP post-processing deblocking filters for image Lena
coded at 0.29 bpp: a) MMP decoded image b) deblocking with rectangular kernel and

c¢) deblocking with a Gaussian kernel.

PSNR loss of about 0.5 dB. On the other hand, the Gaussian deblocking kernel, besides
increasing the perceptual quality, also achieves gains of more than 0.3 dB in PSNR for this
compression ratio. Generally, the use of a Gaussian kernel achieves PSNR gains across all

compression ratios, while the use of a rectangular kernel decreases the PSNR for all rates®.

The adaptive post-filtering of the original pulses may be regarded as a modification
of the shape of the vectors used in MMP reconstruction. The use of rectangular filters
can be roughly regarded as the replacement of the original MMP synthesis functions by
approximations of triangular pulses, that correspond to the use of two rectangular blocks,
for the MMP reconstruction and the filtering kernel*. This shows that the use of over-
lapping functions in MMP synthesis is possible and even advantageous in some cases.
Nevertheless, the previous process is not as much of a signal reconstruction method as
it is a post-processing one. The careful control of the filtering kernel allows the decoder
to reduce the destructive effects caused by the tails of the overlapping atom functions.
For smooth images this results in an efficient deblocking scheme, but this is not the case
for highly detailed images, like text and compound images. Due to the smoothing effect

introduced by the low-pass filtering, the deblocking process disrupts the highly detailed

3Figure C.7 of Appendix C presents a plot of the RD performance for image Lena.
“Note that, in spite of its similitude, the used process is not a normal convolution: only a part of the

convolution is performed and the impulse response of the filter changes according to the location and the

MMP scale of blocks.
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text regions, resulting in a severe decrease in the final values of PSNR®. This fact limits
the applicability of the deblocking schemes of [1, 2, 65], because there is no practical way
of avoiding the blurring of images that do not need deblocking. In Section 7.2 we further
develop this deblocking scheme, in order to solve these problems and improve its efficiency

also for low pass images.

4.4 A non-uniform sampling point of view

In the previous section we have related MMP with a signal decomposition method that uses
the Haar scaling function as a building block for the signal reconstruction. Each block from
the reconstructed signal may be regarded as the concatenation of several rectangular pulses,
corresponding to the synthesis functions (see Figure 4.2). This means that the decoded
signal may be represented by a set of non-uniformly spaced samples, with amplitude ay,
located at the points 7%, that are independently convolved with a rectangular pulse with
support Gi. This is the equivalent to the use of a traditional zero order hold interpolation
filter, with time varying supports due to the use of non-uniformly spaced samples.

This description of the MMP synthesis relates MMP encoding with a non-uniform
sampling process. The signal samples are represented by the pairs & = (ag, k), since the
value of 3 is implicitly stored in the MMP segmentation tree. MMP decoding can thus
be interpreted as the interpolation of a set of samples, determined by the encoder, using a
space variant interpolation filter, consisting of a rectangular pulse with adaptive support.
From this point of view one may also interpret the tests described in the previous sections
as an interpolation process, that uses interpolation functions with overlapping supports.

In this section we use a modification of the MMP decoder in order to explicitly recover
the encoded signal from the sample points defined by the MMP encoder. Using this sparse
array on non-uniformly spaced samples, we evaluate the use of interpolation techniques
for MMP synthesis. Once more we started by studying a version of MMP that does not
use any filtering in the scale transforms. This is done in order to maintain the direct
correspondence between the rectangular pulses that exist in the reconstructed image and
the basic dictionary atoms. A discussion on the effects of using the low pass scale transforms

will be presented later in this section.

®The results of the deblocking process for these images are presented in Figures C.10 and C.11 (PP1205)
and C.12 and C.13 (PP1209).
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Figure 4.7: Detail of the sampling points defined by MMP for a 32 x 32 pixel area

of image Lena.

Figure 4.7 shows two representations of the set of 2D sampling points determined by the
MMP encoding process for a 2D example, in this case a region of 32x 32 pixes of image Lena.
These samples are extracted by identifying the rectangular pulses of the reconstructed
image. A discrete impulse is placed in the centre of the region that corresponds to each
rectangular area, using the corresponding amplitude. From these representations we may
see the different amplitudes and the non-uniform distribution of the sampling points that

will be passed to the interpolation process.

Interpolating with thin-plate splines

As a way to demonstrate the previous idea we implemented a simple test were we tried to
reconstruct the decoded image using the MMP sampling points and an interpolation pro-
cedure. Polynomial interpolation methods (e.g. Lagrange interpolation) were considered
as interpolation techniques for this study. Nevertheless, these methods suffer from severe
oscillation artifacts (Runge’s phenomenon), introduced by the high order polynomials used
in the interpolation of a large number of points (n sample points use interpolating poly-
nomials of order n + 1). Because of this, polynomial interpolation is generally not suited
to be used with a large number of sampling points. One common alternative has been
the use of piecewise polynomials as interpolating functions. Among these methods, spline
interpolation [66] has gained great relevance. Splines are piecewise polynomial functions
with segments that are smoothly connected together. A spline with degree n connects

each point (or knot) by using a polynomial of degree n, subjected to continuity constraints
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Figure 4.8: Examples of two non-uniform sampling grids: a) allows for a separable

processing of the samples; b) only allows for non-separable processing of the samples.

of the spline and its derivatives of order below n. The main advantage of this method
is that, because interpolation is optimised for each interval, the error is kept small, even
for low degree spline polynomials. This results in a reduction of Runge’s phenomenon
compared with higher degree polynomials. One interesting result characterises splines as
an expansion of B-spline functions of a given order. A B-spline of order 0 corresponds to
the familiar Haar scaling function:
Py = T (4.17)
0, otherwise
A B-spline of order n is constructed by using a (n + 1)-fold convolution of the rectangular
(% pulse. This means that the original MMP synthesis process may also be related with a
signal reconstruction using zero order B-splines.
Traditional spline interpolation of two-dimensional signals uses B-spline functions in
a separable way, meaning we first interpolate the sample rows (columns) and then the
columns (rows) of the intermediate signal. Our problem is one of non-separable, non-
uniform sampling. This means that the sample points are not distributed according to
a “complete” pattern, in which there is a constant number of points per row (column),
uniformly aligned across columns (rows). Figure 4.8 shows two examples of non-uniformly
spaced sample points: in the first case (a), a distribution that allows for a separable
processing is shown; Figure 4.8 b) shows a non-separable distribution. The non-separable
distribution implies the use of a two-dimensional interpolation process that is able to

process samples in arbitrary positions. This problem is solved by using the so called thin-
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plate splines (TPS) [67].

The name thin-plate comes from the physical equivalent to the mathematical process,
that tries to simulate how a thin metal plate would behave if it was forced to pass through
the control points, that correspond to the signal samples. In some cases, for instance when
the control point coordinates are noisy, the interpolation requirements are relaxed so that
the resulting surface does not have to go exactly through the control points. In this case
we have a smoothing TPS. A smoothing TPS determines the interpolating function f that

minimises the weighted sum

E(f) + AR(f), (4.18)

where E(f) is the squared error between the interpolated signal f and the samples at their

original points:
k
B(f) = llyi = f(a)ll, (4.19)
i=1

and R(f) is a roughness measure, based on the space integral of the square of the second

order derivatives of the mapping function, given by:

R(f) = / / (f2. +2f2, + fy,) dudy. (4.20)

By varying the value of parameter A it is possible to chose between a higher interpolation
accuracy and a smoother interpolation function.

Unlike B-splines, the matrices used for least square minimisation in TPS problems are
non-sparse. Moreover, the TPS matrices grow very fast with the number of sampling points,
which limits the number of points that may be processed in one single iteration of the
method. This means that the used processing with TPSS is not able to handle the sampling
of an entire image. Because of this we processed the image blocks independently and
concatenated the result of the interpolation. A trivial solution for this problem originates
severe blocking artifacts, since the optimisation of each region is made independently, with
no control of the function value at the borders of the blocks (see Figures 4.9 a) and b) for
a representation of these effects for a detail of image Lena, encoded at 0.12 bpp?).

In order to solve this issue we performed the TPS optimisation of each block considering
both the sampling points of the current block and its neighbouring blocks. After the

optimisation, the area of the interpolated signal that corresponds to the original block is

5The spline toolbox of Matlab® [68] was used for this purpose.
"Refer to Figure C.14 of Appendix C for a representation of the entire images.
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(b) Independent 64 x 64 (c) Independent 32 x 32

-

(d) Overlapping 64 x 64 (e) Overlapping 32 x 32

Figure 4.9: Results of MMP reconstruction (a) compared with thin-plate spline inter-
polation, using independent optimisation of image blocks (64 x 64 (b) and 32 x 32 (c))
and optimisation of overlapping image blocks (64 x 64 (d) and 32 x 32 (e)).



4.4 A NON-UNIFORM SAMPLING POINT OF VIEW 71
MMP p=0.1 p=0.15 | p=0.25 | p=0.35 p=0.5 p—1
28.787 dB | 27.874 dB | 27.960 dB | 27.974 dB | 27.928 dB | 27.840 dB | 27.564 dB

Table 4.1: PSNR values for image Lena, for the original MMP image and for the

interpolated versions with TPS, using different values of parameter p.

isolated and concatenated in order to reconstruct the decoded image. The points of the
neighbouring blocks serve as border conditions to the optimisation, allowing a considerable
reduction of the blocking artifacts in the interpolated image, as can be observed in Figures
4.9 c) and d)®. In these figures we can also observe that the interpolation of large image
regions (64 x 64 and 32 x 32) results in a noticeable smoothing effect in the reconstructed
signal. Because of this we have used 16 x 16 pixel blocks in the interpolation step (this
is the minimum block size that guarantees a minimum of 4 control points required by
the Matlab©’s implementation of TPS), which produced noticeable improvements in the
interpolation result. In our case the smoothing TPS is determined by minimising the
function

pE(f) + (1 = p)R(f), (4.21)

where parameter p € [0,1] replaces parameter A of equation (4.18), as a compromise
measure between interpolation accuracy and smoothness. Several values were tested in
order to determine the best working point for the interpolation. Figure 4.10 compares the
result of the interpolation process with the original MMP decoded image, for a detail of
image Lena encoded at 0.12 bpp®. Parameter p was set to 0.25, because this value returned
the highest value of PSNR for the interpolated signal. Table 4.1 compares the values of
PSNR for the original MMP image and for the interpolated versions, using the represented
values of p.

In Figure 4.10 we can observe the blocking effect introduced by MMP for a high com-
pression ratios. Regarding the interpolated signal one may observe a clear reduction of the
blocking artifacts, but also some smoothing and ringing artifacts introduced by the TPS
interpolation. This was also the case for lower compression ratios, where a drop in PSNR

performance was also observed. Figure 4.11 presents the results of the original MMP syn-

8Refer to Figure C.15 of Appendix C for a representation of the entire images.
9Refer to Figure C.16 of Appendix C for a representation of the entire images.
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(a) MMP (28.787 dB) (b) TPS (27.974 dB)

Figure 4.10: Image Lena compressed at 0.12 bpp: a) original MMP synthesis;
b) Thin-plate spline interpolation using 16 x 16 overlapping blocks.

(a) MMP (33.855 dB) (b) TPS (31.496 dB)

Figure 4.11: Detail of image Lena compressed at 0.45 bpp: a) original MMP synthe-
sis; b) Thin-plate spline interpolation using 16 x 16 overlapping blocks.

thesis and of TPS interpolation for a detail of image Lena encoded at 0.45 bpp'®. Once
more we may observe the smoothing effect of the interpolation and its negative effect on
the perceptual quality of the reconstructed image. In this case, the TPS interpolation
dropped the original PSNR value of 33.855 dB, achieved by the MMP decoding process,
to 31.496 dB.

ORefer to Figure C.17 of Appendix C for a representation of the entire images.
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Compression ratio | MMP synthesis | TPS interpolation (p=0.25)

0.11 bpp 29.057 dB 27.957 dB

0.4 bpp 34.077 dB 31.383 dB

Table 4.2: Results for the TPS interpolation in MMP with low-pass filtering in the

scale transforms, for image Lena.

When the original scale transforms are used, incorporating a smoothing filtering, the
synthesis atoms for the reconstructed image no longer have a direct correspondence with
rectangular functions. These rectangular pulses, that exist in the initial dictionary, are
changed into smooth functions by the successive scale transformations used in the dic-
tionary updating process. This makes it difficult to determine the sampling point that
corresponds to each block used by MMP, since a direct relation no longer exists between
the patterns used in the reconstruction and the basic synthesis functions. Nevertheless,
even in this case one may consider that, ultimately, any discrete signal may be charac-
terised by the concatenation of a number of rectangular pulses, that may have unitary
supports (i.e. they become discrete impulses). In this case we may maintain the previous
discussion and relate the constant regions in the image with the basic blocks & used in
the synthesis, instead of using the information about the scale of the used blocks. Thus, a
greater difficulty in the determination of the interpolating function may be expected, since
the sampling points would be in a larger number and located very close to each other. Ex-
perimental tests confirmed this. The results for MMP using the original scale transforms,
with low-pass filtering, as well as the results for the TPS interpolation are summarised
in table 4.2, for two tests performed using image Lena. This table, as well as the visual
inspection of the resulting images (not shown here), show results that are very similar to

those presented for MMP with no low pass filtering.

Some comments on MMP as a non-uniform sampling process

The previous discussion and experimental results relate MMP with a non-uniform sampling-
based image compression scheme. From this point of view, a thin-plate spine interpolation
algorithm was implemented as a way to reconstruct the signal from the samples that were

determined based on MMP encoding. It is clear from the previous sections that the interpo-
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lation process is not advantageous over the original MMP synthesis. This may be explained
by the fact that the encoding procedure does not optimise the signal representation for the
TPS interpolation process. Such an algorithm would be computationally infeasible, since
it would imply a joint optimisation of all the sampling points. On the other hand, the TPS
interpolation process itself has some limitations: the least square optimisation of the inter-
polation generally results in severe smoothing effects for the reconstructed signal. When
we try to compensate for these effects by privileging interpolation accuracy over function
smoothness, ringing artifacts appear. Both options result in a noticeable loss of objective
quality. TPS interpolation may also be regarded as a simple post processing deblocking
algorithm for MMP. In this case, for large compression ratios, an effective reduction of the
blocking artifacts is in fact achieved. However, the efficiency of TPS interpolation as a
deblocking algorithm is inferior to that of the method discussed in Section 4.3.3.

The presented results validate the formal relation between MMP and a non-uniform
sampling scheme. From this point of view, other non-uniform two-dimensional interpo-
lation schemes could be investigated, in order to improve performance of MMP signal
reconstruction; this may be an interesting future research subject.

The next chapters describe some alternative optimisation schemes that relate also with

the encoding process, instead of tackling only the problem of signal reconstruction.



Chapter 5

MMP with predictive coding: the
MMP-1 Algorithm

Following the discussion presented in Chapter 3, we investigate new ways to improve the
efficiency of the dictionary adaptation process used by MMP. This chapter presents the
joint use of MMP with predictive schemes, as a way to modify the probability distribution
of the source, adapting it to a new model that can be better exploited by MMP dictionary
adaptation. In Section 5.1 we discuss the efficiency of MMP on sources with different
probability distributions and demonstrate the advantage of using input signals with narrow
probability distributions, that we represent by generalised Gaussian functions. This study
motivated the development of an image encoding method, that is proposed in Section 5.2.
We refer to the proposed algorithm as MMP-I (MMP with Intra predictive coding), as
it uses a pool of predictive methods in order to generate a residue signal that is then
encoded with MMP. The experimental results, presented in Section 5.3, demonstrate the
efficiency of the described techniques. An evaluation of the predicted residues, performed in
Section 5.4, confirms the expected effects of the prediction step in adapting the probability

distribution of the encoded signal.
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5.1 Improving dictionary adaptation with modified signal dis-

tributions

The dictionary updating strategies of MMP exploit the spacial redundancies of the image,
by inserting new vectors in the dictionary and using these patterns to approximate blocks
of the input signal. The gains achieved by the use of the new code-vectors depend on the
existence of image areas that can be efficiently approximated by these patterns. Therefore,
the efficiency of the dictionary updating, and ultimately of the entire encoding process,
depends on the similarity between image blocks, and thus on the statistical properties of the
encoded data. Intuitively, one has that smoother images, with higher spatial redundancies,
tend to favour the efficiency of the dictionary adaptation process. Ultimately, a uniform
image could be approximated by MMP using one single block of the initial dictionary,
maximising the coding efficiency of the process. On the other hand, high activity images
(like text and compound images) have blocks that tend to generate a less regular set of
patterns, that are harder to be learnt by the MMP updating processes. In fact, even
natural smooth images have a large variety of patterns that have to be approximated by

the MMP encoder.

The previous discussion, as well as the results presented in Chapter 3, suggest that
the use of a more “well behaved” signal, i.e. a signal composed by a more regular set of
patterns, could improve the efficiency of the MMP dictionary adaptation process. The use
of predictive coding techniques has the well know property of altering the signal’s distri-
bution, generating a set of residues with a few higher valued samples located near image
edges, and reducing the variance of the prediction error when compared with that of the
input source. In fact, predictive coding generates residue samples that have highly peaked
probability distributions, centred around zero. The concentration of these distributions
may vary according to the input image and the used prediction techniques, so they are
best represented by generalised Gaussian (GG) distributions (also called exponential power
distributions) [69]. Initial work on MMP [1, 2| includes a theoretical study that demon-
strates the advantage of using vector matching with scales over standard VQ methods, for
Gaussian sources. This result suggests that when signals with narrower distributions are
employed, MMP is expected to top the performance of VQ methods, that are also known

to benefit from the use of prediction [5|. Nevertheless, this study is not conclusive about
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the relative efficiency of MMP when used to compress signals with different probability
distributions.

In this section we first characterise the predicted error signal probability distribution.
We then compare the performance of MMP for signals with highly peaked distributions
to the performance achieved for signals with wider, more uniform distributions. The goal
of this analysis is to evaluate possible compression gains of using MMP to encode the

predicted residue, instead of the input image data.

5.1.1 The generalised Gaussian model

Image predicted residues are usually modelled as having Laplacian distributions, but a
more general representation of this signal can be achieved by using a generalised Gaussian

distribution [69, 70]. This class of distributions is described according to:

p(z) = [%} o~ e dlel)e (5.1)
where
o) 11/2
n(a, ) = 67" Eg’;a;] (5.2)

and I'(.) is the gamma function. The generalised Gaussian distribution has two positive
parameters: « is a shape parameter, that describes the exponential rate of decay and (3
is the standard deviation of the distribution, meaning that the variance of the random

variable z is given by 0?=32. For a = 2 we have the Gaussian distribution

p(x) = 6_2L¢722_, (5.3)

V2ro?

while for & = 1 we have the Laplacian distribution

2 = L valz]

The uniform distribution can also be represented as a special case of a generalised Gaussian
distribution, when a — oc.

The behaviour of the generalised Gaussian functions of unit variance is illustrated
in Figure 5.1, for several values of the shape parameter a. The generalised Gaussian

distribution has been used for modelling the probability density function of transform and
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Figure 5.1: Generalised Gaussian distributions for selected values of the shape pa-

rameter «.

subband coefficients in image coding [71, 72|, as well as for image’s prediction error. The
shape adaptive features of the generalised Gaussian also make this a versatile model for

sources with unstable probability distributions [73].

5.1.2 Coding of generalised Gaussian sources with MMP

Several random grayscale images were generated using different probability distributions.
A generalised Gaussian model with varying shape parameter was used to generate the test
images. The MMP performance for these signals was assessed.

In order to make a fair evaluation of the relative performance for the different signals,
we generated six sets of four grayscale test images, using GG probability distributions.
Four images of each type were used in order validate the results. Six different probability
models were used in order to generate different types of test signals, according to the
parameters defined in Table 5.1. Every image using a generalised Gaussian distribution,

with dimensions of 256 X256 pixels, was generated using the following procedure:

1. generate a set of 66198 samples using the chosen probability distribution;

2. discard a values that are further from the signal average (in our case 1% of the
samples) in order to eliminate samples with very high values (and small probability),

that would compromise the normalisation;
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Test Set Distribution @p value | Entropy range
1 Gen. Gaussian, a = 0.5 1 [6.28 : 6.35]
2 Gen. Gaussian, a = 0.6 1.2 [6.31 : 6.35]
3 Gen. Gaussian, a = 0.75 1.45 [6.31 : 6.35]
4 Laplacian (Gen. Gaussian o = 1) 1.75 [6.33 : 6.35]
5 Normal (Gen. Gaussian, a = 2) 2.45 [6.31 : 6.32]
6 Uniform 3.2 [6.32 : 6.33]

Table 5.1: Parameter values for the probability distributions of the test signals.

3. normalise the resulting 2562 samples to the interval [0:255] by:

(1)

My

z(i) = 127.5——= + 127.5,

where m, is the sample with the highest absolute value;

4. quantise z(7) using an appropriate quantisation step Q)p (see Table 5.1), in order to

adjust the entropy of the resulting signal:

zq(1) = {%J Qp.

The quantisation procedure was used to guarantee that all used test images have the
same entropy values. The used value of the quantisation parameter Q) p for each distribu-
tion, as well as the minimum and maximum entropy values for each test set, are shown in
Table 5.1. Figure 5.2 shows the first image of each probability distribution group. We may
observe the different pixel activities for the images with varying probability distributions.
Figure 5.3 shows the histograms for these images. From these plots one may observe the
expected differences in the probability distributions of the test signals.

Figure 5.4 shows the RD plots (PSNR ws. compression ratio) of MMP coding for the
described test images. Results are shown for all images of the same group using a single line
type. We may observe that the RD efficiency increases as the probability distribution of
the input signal becomes narrower, i.e. the value of the GG distribution’s shape parameter
becomes smaller.

Another interesting property of these signals is the fact that for high rate and dimension,

the GG vectors will tend to cluster on a “shell” of constant L™ — norm [74]. In spite of
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Figure 5.2: Test images with known probability distributions (256 x256 pixels).
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Figure 5.3: Histograms of test images for each probability distribution.

being an asymptotic result, the effects of this property are valid for large vector sizes,
depending on the value of the shape parameter of the GG distribution. This means that

both the image vectors and the dictionary blocks will be concentrated around a given area
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Figure 5.4: RD performance of MMP for the compression of test images with known

probability distributions.

of the image space, instead of being widely scattered. This fact increases the efficiency of
the dictionary adaptation for signals with narrow GG distributions.

Figure 5.5 analyses the dictionary adaptation efficiency for each test. Figure 5.5 a)
shows the final number of elements in the largest scale of the dictionary (16x16) for each
image, while 5.5 b) plots the final PSNR value as a function of the final size of D®. From
the first plot we observe that the growth rate of the MMP dictionary is very similar for
all test signals, while in Figure 5.5 b) we observe that, for the same number of dictionary
elements, MMP is able to achieve a much better approximation quality for the signals with
narrower distributions. This demonstrates that the efficiency of the dictionary usage in
MMP is greater for input signals with concentrated luminance values. Also, the smaller
size of the MMP dictionary relates to a higher concentration of the vectors in the image

space, that results from the already mentioned property of the GG sources.

5.2 The MMP-I algorithm

The previous section showed the advantage of adapting the input signal distribution before
compressing it with MMP. Following these results, a new image encoding method, that

combines the use of predictive coding with multiscale multidimensional parsing was devel-
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Figure 5.5: MMP coding of test images with known probability distributions: a) final
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oped. This new algorithm, that we refer to as MMP-I (MMP with Intra-frame predictive
coding), uses predictive methods in order to generate a residue signal that is then encoded
with MMP. This signal improves the efficiency of the MMP’s dictionary adaptation pro-
cess, resulting in increased performance, evidenced by the experimental results presented

in Section 5.3. In Section 5.4 we show an analysis of the transformation of the input sig-
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nals’s probability distribution, caused by the prediction process. We also show that the
new probability distribution is a highly-peaked function, that is conveniently represented

by a generalised Gaussian model.

5.2.1 Overview

MMP-I uses the neighbouring samples of previously coded blocks, which are to the left

and/or above the current block, to determine the prediction error signal, Rﬂwz
RY, = X! - P}, (5.5)

where M refers to the used intra prediction mode, X! is the input image block and PS\/] is
the prediction block associated with mode M.

When encoding an image block, MMP-I chooses among a set of available prediction
modes, the one that minimises a rate-distortion Lagrangian cost. The information about
the chosen prediction mode for each image block, M, is included in the bitstream. Because
the prediction procedure is defined based only on previously encoded image blocks, once
the MMP-I decoder retrieves the prediction mode information, it is able to determine the
corresponding prediction block, PIM, based on the same neighbouring pixel blocks. After
this, it decodes the approximation of the residue block, R, and determines the decoded

image block by adding the decoded residue block with the prediction pixels, i.e.
X! =Py, + R, (5.6)

Because both the encoder and the decoder use the same scanning order for the image blocks
and generate the same MMP trees (see Section 3.1), they keep a similar reconstructed
version of the neighbour output blocks, allowing for the determination of the prediction
block PlM.

Predictive coding in MMP-I initially used a simple fixed-size block prediction method,
in which the prediction step is always performed for the blocks of the highest level of the
segmentation tree. This method is referred to as MMP-I FBS (Fixed Block Size). In this
case, for each block of level l;,, of the image, MMP-I FBS first determines what prediction
modes may be used, based on the available prediction pixels. Each available prediction
mode is then tested in order to determine the best mode for the current block, M. MMP-I

FBS then encodes and transmits the prediction mode flag associated with mode M, followed
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Figure 5.6: Segmentation of the prediction step and MMP coding step for a) MMP-I
FBS and b) MMP-I using adaptive block size.

by the MMP information used to encode the residue block (see Chapter 2). As for MMP,
experimental tests demonstrated that the use of 16x16 blocks is the best compromise
between coding performance and computational complexity: smaller blocks generally lead
to performance losses, while larger blocks increase the computational complexity of the
process, with no gains in coding efficiency.

Nevertheless, it has been verified that it is advantageous to use more elaborated schemes
of predictive coding for MMP-I, in which prediction does not use a fixed block size but is
applied adaptively, by using variable-block sizes. In this case the prediction step may be
used several times for each block of level /;,,, meaning that different areas of Xltop may use
different prediction modes. Prediction using larger blocks (corresponding to higher levels of
the binary segmentation tree) is tested first; then smaller blocks are hierarchically tested,
in order to decide which is the most efficient way to perform the block prediction. This
creates a new segmentation pattern that is associated only with the prediction process.
Thus, the segmentation tree used for prediction can be either identical to the one used

when a block is encoded by MMP or can be a pruned version of it.

In the example of Figure 5.6, the prediction of an input block, XlPM, is performed in
both halves, RiD_Mll and RE;Q, using independent prediction modes M7 and Ms. In this
case, the left residue block is determined using prediction mode M; and the corresponding
residue block, le\}fa is approximated using a single code-vector, with index ig. The decoded

version of the first half of this block, given by:

I—1 -1 -1
Xleft = PM1 + RM1 ’ (57)
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is used to determine the prediction block for the right half of the block, Plj\gll The right
half uses only one prediction step (mode M), but the corresponding residue block, Rl]\};,

is encoded by MMP using the concatenation of three dictionary vectors:
R = (8072 857 819). (55)
The second half of the original block can be reconstructed by using:

11 -1 | fl-1
Xoight = P, TRy (5.9)

and finally, the approximation of the original block may be determined by the concatenation
of these two blocks, i.e.:
X! (XL s X, (.10
The use of adaptive block sizes for prediction purposes means that information about
the dimensions of the prediction blocks must also be encoded, along with the prediction
mode, so that the decoder is able to replicate the prediction procedure. Instead of inde-
pendently encoding the binary segmentation trees, that represent the sub-blocks used for
prediction and the MMP coding data, this information is jointly encoded, using a single
segmentation tree. For this purpose, three segmentation flags are used, instead of the two
original flags described in Chapter 2. Considering the example in Figure 5.6, the string of
symbols generated by the MMP-I encoder for this block is:

0 1 My ip 2 My 1 4 0 1 49 1 is,

where M; and M, are the prediction mode flags and 4o, ...,i3 are the indexes used by

MMP-I to approximate each of the sub-blocks. The new segmentation flags are:

e flag ’0’ indicates a tree node (block segmentation) for which no prediction is necessary.
This flag is used when no prediction mode has been set and both the prediction
block and MMP block must be segmented (like in the first flag used for the previous
example) or when the prediction step has already been performed, but the MMP
block should be segmented (as in the case of the second 0’ flag of the example);

Y

e flag ’1’ indicates a tree leaf. If no prediction mode has been previously set for the
pixels of this block, this flag is followed by a prediction mode flag, that describes

the prediction process which should be used at this scale (used in the first half of
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the block represented in the example of Figure 5.6, followed by the prediction mode
flag Mj). If prediction data has already been defined for this block, flag "1’ signals
a simple tree leaf and is followed by the dictionary index of the vector used for the
approximation (as in the case of the sub-blocks that use indexes i and i3 in the

example);

e flag ’2’ also corresponds to a tree node (MMP segmentation), but at a scale where
prediction should be performed. It is always followed by the corresponding prediction
mode flag (like for the second half of the block represented in the example of Figure
5.6). From this point on no further prediction should be used and all flags represent

coding decisions related to the MMP process.

As in MMP, all symbols are encoded using an adaptive arithmetic encoder. The pre-
viously presented joint encoding procedure was chosen because it is more efficient than
transmitting two independent segmentation trees, one for block prediction and another for
MMP data. In the above example, 13 symbols are encoded by using a single segmentation
tree. An obvious alternative would be to encode and transmit an independent tree with
the block prediction data, plus a separate tree with the MMP approximation. For the
presented example this would be more ineflicient than the used approach, because it would
require a total of 16 symbols: 5 symbols for the prediction tree plus 11 symbols for the
MMP data.

5.2.2 Rate-distortion optimisation

Unlike the algorithm described in Section 3.1.1, that only considers two cases for each tree
node (each block can either be segmented or approximated by using a single dictionary
vector), the MMP-I encoder must also optimise the block prediction. In order to do
this, MMP-I uses an adapted version of the original RD optimisation algorithm. The
distortion and rate values associated with the residue block at each binary tree node are
estimated, and the values for the corresponding cost functions are determined. During
optimisation, the Lagrangian costs for the prediction/coding options are compared, and
the most favourable solution is chosen.

MMP-I with a fixed prediction block size (MMP-I FBS) uses a straightforward predic-

tion optimisation (see Figure 5.7): for each available prediction mode, M, it first determines



5.2 THE MMP-I ALGORITHM 87

1

Determine available modes

'
)

Y
M =get nezt mode()

v

Rl = Prediction(X', M)

v

Ty = MMP_optimise(RY,, \)

Jmin = J(Tar); Myest = M

Yes

encode(Mpest)

v

MMP _encode_block(Tyy,,,,)

v

Figure 5.7: Flowchart for the MMP-I FBS algorithm.

the prediction error block of the original scale, RZM, and then uses the MMP optimisation
algorithm to determine the MMP approximation of this block, given by RS\/] The MMP
optimisation routine also returns the value of the cost function associated with prediction
mode M: J(7as). After repeating this procedure for every available prediction mode, the
process simply chooses the option that minimises the value of the RD optimisation cost
function and uses it to encode the input block. A formal description of the MMP-I FBS
algorithm is presented in Section B.3 of Appendix B.

MMP-I with adaptive block size prediction tests all possible combinations of prediction
block size and prediction mode, in order to determine the most efficient option. In order
to do this, the MMP-I FBS procedure is used recursively, performing the optimisation
decisions for a given image block X!, of fixed size. Besides the optimisation of the MMP
compression of the current node, this function also has to decide if the current block

should use a single prediction mode, or be predicted in two or more separate steps. For
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Figure 5.8: Flowchart for the MMP-I algorithm.

this purpose, the algorithm partitions the image block into two separate sub-blocks and
recursively optimises the MMP-I compression for each half. After evaluating the RD
optimisation cost function associated with these two coding options, the method determines
the best prediction pattern for the current block and the corresponding MMP encoding
data. A simple flowchart for this process is presented in Figure 5.8. An algorithmic
description of MMP-I is presented in Section B.4.

The MMP-I optimisation process reflects a compromise between two factors: first, the
use of small prediction block sizes favours prediction accuracy, but has the disadvantage
of increasing the overhead associated with the prediction mode flags; second, the use of
larger prediction blocks saves prediction bits, but tends to generate predicted residue blocks
with more activity, that usually require more bits to be compressed. Thus, the use of a
hierarchical prediction scheme, combined with the described RD optimisation techniques,

allows the encoder to determine the best trade-off between the prediction performance and
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Figure 5.9: Three of the directional prediction modes and the eight prediction direc-

tions used in MMP-I.

the allocated rate.

5.2.3 The prediction process

In order to enhance the performance of the prediction process, which aims to produce a
low energy residue pattern for every processed block, several prediction models were incor-
porated into MMP-I. These modes were inspired by those used by H.264/AVC [13], plus
a set of other modes, that determine the prediction block based on non-directional pre-
diction schemes. Moreover, some adaptations were also made on the original H.264/AVC
prediction process. The DC mode, that is also used by H.264/AVC, was initially consid-
ered, but was replaced by a new prediction mode that uses the most frequent value (MFV)
among the neighbouring pixels, instead of their average. This change, allowed MMP-I to
achieve good performances even for non-smooth images. The MFV prediction mode will be
explained later in this section, after a brief discussion of the directional prediction modes

used by MMP-I.

Directional prediction modes

Directional prediction modes are efficient at predicting areas of the image with structured
texture. Several directions are used in order to cover texture orientations ranging from
vertical and horizontal patterns to a set of diagonal modes, that correspond to the possible
prediction directions that use causal reference blocks. The image areas used as reference
for prediction correspond to the neighbouring pixels to the left and above the current block,

as represented in Figure 5.9. Depending on the location of the image block that is being
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predicted, not all prediction modes may be available. For example, if the left reference
pixels are not available (like in the case of image blocks located at the left border of the
picture), only vertical (0) and “left” (3 and 7) modes may be used. In this case, all other

modes are marked as unavailable and are not considered in the encoding process.

The implementation of the directional modes used an adaptation of the process de-
scribed in the H.264/AVC standard [13]. Because MMP-I uses prediction blocks with
adaptive dimensions, unlike H.264/AVC that only defines the prediction blocks for the
16 x 16, 8 x 8 and 4 x 4 cases, the original prediction process was adapted to the new
prediction block sizes, using a straightforward expansion of the H.264/AVC prediction
process. A detailed description of the original prediction process can be found in [13],

while references [75, 76] present a very useful overview of these methods.

The directional prediction modes introduce visible artifacts in the prediction signal,
that are unfavourable to an efficient compression, especially for block sizes larger than
4 x 4 [77]. To reduce the artifacts, the pixels used for prediction are filtered using a

low-pass filter with impulse response:

As in H.264/AVC, this filtering step increases the efficiency of the prediction process.

The efficiency of the directional prediction modes is greater for smaller block sizes,
that have more regular texture orientations. Larger block sizes often show no uniform
texture or several areas with distinct textures and different orientations. Therefore, for
larger block sizes some prediction modes are deactivated, as the prediction process tends
to be assured by other prediction schemes. This is also the case of H.264/AVC encoder
(where only vertical and horizontal direction are used for 16 x 16 blocks). MMP-I uses
only the vertical and horizontal directions for blocks with scales greater than 6 (8 x 8
blocks). In these cases, another prediction scheme is used, called Plane prediction, that
uses an interpolation method to determine a plane function that best fits the upper and
left reference prediction samples. This method is more efficient for larger blocks, due to
the higher number of available reference pixels, and has a good performance in image areas

with smooth variations of luminance.
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Figure 5.10: Effects of DC and MFV prediction modes on two text image blocks.

The MFYV prediction mode

In MMP-I, the DC prediction mode, traditionally used in several well known predictive
coding methods (and in H.264/AVC), was replaced by a new prediction mode that uses

the most frequent values (MFV) among the reference samples of the neighbouring blocks.

The DC prediction mode creates a uniform prediction pattern. The value of each pixel
of this uniform block is the average of all considered reference samples. Unlike H.264/AVC,
that uses transform coding to compress the prediction error block, MMP-I encodes this
signal using blocks from a dictionary. Experiments showed that, for some image areas with
high activity, the use of DC value for prediction is not as beneficial for MMP-I as for the

case of transform coding. This is the case for text and compound images.

Figure 5.10 represents an example of the prediction of two text regions. These regions
are characterised by a near white background with a few very dark pixels as foreground.
In this case, DC prediction tends to generate error blocks with a uniform grey value, that
can have severe variations, depending on the number of white and black pixels of the
reference areas. This causes the DC values of the several predicted residue blocks to also

have very different amplitudes, as can be seen in the examples of Figures 5.10 b) and e).
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When using a transform-quantisation-based method this fact only corresponds to a shift
in the DC coefficient of the transformed prediction residue block and poses no problem.
Nevertheless, MMP has to use two code-vectors with the same shape (AC component), but
with different average values. In this case, the use of DC prediction introduces more vectors
in the dictionary, compromising the efficiency of the learning process of the dictionary and
impairing the encoding performance. In these cases, the use of the most frequent value
for the prediction has the advantage of creating prediction error blocks with samples that
are more consistently clustered around zero (see Figures 5.10 c¢) and f)). This leads to
a dictionary with fewer words, thus enhancing the overall coding efficiency. In addition,
experimental tests have shown that, in the case of smooth images, the use of the MFV

instead of DC prediction has no effect on the coding performance.

5.2.4 The MMP-I dictionary

MMP-I shares the adaptive pattern matching paradigm with the original MMP algorithm.
It also uses the same dictionary updating strategies and scale transformations, that provide
good adaptability for a wide range of input signals. Nevertheless, MMP-I encodes predic-
tion residues instead of the image patterns processed by MMP, meaning that the range of
sample values of the dictionary’s vectors is now [—255,255]. The dictionary initialisation
was thus modified, to take into consideration the characteristics of the predicted residue

signal.

Like in MMP, a set of uniform blocks is used for the initial MMP-I dictionary, but the
DC values of these blocks are not uniformly spaced along the dynamic range of the vector
samples. As prediction error samples tend to be clustered around zero, blocks with small
values tend to be more frequent than those with larger sample values. Due to this fact, an
initial dictionary with intensity values with higher density near zero is used. Experimental
tests confirmed the advantage of this initialisation procedure, when compared with the
use of uniformly spaced samples. Considering the initial dictionary vectors, Soﬁ, sorted

in increasing amplitude order, the difference ¢ between the amplitudes of two consecutive
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vectors is set to:
q=2, if |I(So})| < 10;
g=4, if 10 <|I(So})| < 22;
' (5.11)
q=8, if 22 <|I(Sel)| < 86;

q=13, if |I(Sol)| > 86

Despite the coding inefficiency caused by the use of this highly sparse initial dictionary,
the MMP’s dictionary updating procedure quickly adapts the dictionary to the typical
patterns that are being encoded. In order to favour this adaptation process, dictionary
DO, containing blocks with dimension 1 x 1, is an exception to the presented rule and is
initialised with all the integers in the range [—255,255]. This ensures that the algorithm
is able to accurately approximate any input block at the highest precision (blocks being
partitioned to 1x 1), allowing every pixel to be independently approximated by any possible
value, in spite of the fact that some amplitude values are not present in the upper scales of
the dictionary. It also allows for lossless coding when A\ = 0 in equations (3.2) and (3.3),
that leads to a null distortion for every approximated block.

The gains introduced by the use of equation 5.11 in the creation of the initial dictionary
are only marginal. In fact, experimental tests demonstrated the high adaptation capability
of the MMP-I process, independently of the method used to create the initial dictionary.

In order to avoid the insertion of repeated blocks in the dictionary, a test condition is
used in the updating stage. Like in MMP, independent copies of the dictionary are kept
for each scale. As a result, the smaller scales of the dictionary tend to have less elements
than the ones for the larger scales, because at smaller scales it is more likely that a new

vector X! will match an existing dictionary block.

5.3 Algorithm’s evaluation and experimental results

In this section we evaluate the experimental results for MMP-I. Section 5.3.1 compares
the RD performance of MMP-I with that of MMP, in order to assess the quality gains
introduced by the use of predictive coding. We also present some considerations about the
MMP-I coding process, as well as an evaluation of the effects of using FBS for prediction
and of using the MFV prediction mode, instead of the original DC mode. In Section 5.3.2

we compare the performance of MMP-I against that of the current state-of-the-art image



94 5. MMP WITH PREDICTIVE CODING: THE MMP-I ALGORITHM

Image Lena
42
/ o
40 / )
/ .,,,....,,,.,.._.,
/(/ ,0
c 36 A g
=z -
. /‘
32 /.
i
/ MMP-| —+—
0y MMP-1 FBS (DC) —e—
5 MMP-1 FBS (MFV)
MME e
28 ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

bpp

Figure 5.11: Experimental results for MMP-I for smooth image Lena.

compression schemes, namely JPEG2000 [12] and H.264/AVC’s FREzt high profile Intra
encoder [13].

5.3.1 First measurements and comparison with MMP

Figures 5.11 and 5.12 compare the rate-distortion performance of MMP-I against that of
the original MMP algorithm, for natural image Lena, text image PP1205 and compound
image PP1209'. The final results of MMP-I with fixed prediction block size (FBS) may be
observed, for the cases where the H.264/AVC’s DC prediction mode is used (“MMP-I1 FBS
(DC)”) and when DC is replaced by the MFV prediction mode (“MMP-I FBS (MFV)”).
The results for MMP-I with ABS (MMP-I) are also presented. From Figure 5.11 one may
observe the performance gains introduced by all versions of MMP-I when compared with
the original MMP algorithm, for smooth images (namely image Lena). These consistent
gains, that go up to more than 2 dB, demonstrate the usefulness of the signal distribution
adaptation paradigm, implemented by the predictive step of the MMP-I algorithm. In fact,
for smooth images, even the FBS version of MMP-I is able to increase the performance
of the MMP algorithm by almost 1 dB. Additionally, the advantage of using the more

efficient adaptive block size prediction algorithm is clear from this plot. Another interesting

'Results for other test images are presented in Figure C.18 of Appendix C.
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Figure 5.12: Experimental results for MMP-I for text image PP1205 and compound
image PP1209.

observation can be made regarding the use of the MFV prediction scheme in replacement
of the original DC mode: for smooth images, this change has no noticeable effects in the
performance of the algorithm, as was previously discussed in Section 5.2.3.

Figure 5.12 presents the same comparisons, for text image PP1205. For this image, as
for other text, compound or non-smooth images in general, the efficiency of the prediction
process is limited, due to the high spatial activity of the images’ patterns. Because of

this, the prediction residue does not have the same regular features as the ones observed
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(2) (b)

Figure 5.13: Predicted image (a) and prediction error image (b) for image Lena

encoded with MMP-I at approximately 0.35 bpp.

for the case of smooth images. This is also reflected in the probability distribution of
the prediction residue, that is not altered in a way that favours the dictionary adaptation
process. Because of this, the use of predictive techniques by MMP-I is not able to introduce
any RD performance gains in relation with the original MMP method. Notice, however,
that the prediction data generates an additional overhead, that is compensated by a higher
efficiency in the residue encoding stage of MMP-I. Finally, one has that the use of the
original DC prediction mode severely compromises the performance of the MMP-I method
for text images. In this case there is a performance loss of almost 2 dB, due to the dictionary
scattering effects of the use of DC predicted blocks, that was previously discussed in Section

5.2.3.

Figure 5.12 also shows the RD plots for the compound image PP1209. Like for smooth
images, MMP-I is able to achieve a consistent gain over the original MMP algorithm. Even
though the quality gains are not as large as for the case of smooth images, MMP-I is able
to achieve quality improvements in the range of 1 dB. From the conclusions drawn from the
previously analysed images, it is possible to infer that such gains over MMP come mainly
from coding the smooth areas of the image. For the text regions, MMP-I maintains the

coding performance of MMP.
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(2) (b)

Figure 5.14: Predicted image (a) and prediction error image (b) for image PP1205
encoded with MMP-I at approximately 0.8 bpp.

Figures 5.13 and 5.14 show the prediction signals and the prediction error images
generated by MMP-I for images Lena and PP1205, respectively. In the prediction error
images the neutral tones of grey are used to represent the zero, while progressively darker
and brighter regions represent prediction error pixels with larger absolute values. For the
smooth image Lena (Figure 5.13) it is possible to observe the accuracy of the prediction
process, that is able to conveniently estimate the original image patterns. This results in
a very regular prediction error image, that allows for a more efficient adaptation of the

MMP dictionary, resulting in a much more efficient compression.

Figure 5.14 presents the prediction and residue signals for text image PP1205. From
these images it is clear that the prediction process is most often unable to conveniently
estimate the highly detailed patterns of the input image. Because of this, the original
image patterns are mostly repeated in the prediction error image. As a result, the use
of MMP-I ends up having approximately the same compression efficiency as the original

MMP algorithm, for this type of patterns.

Figure 5.15 shows the number of MMP-I blocks that used each of the available predic-
tion modes, at each of the block scales used for prediction. The plots compare these results

for images Lena and PP1205. For the smooth image case (Figure 5.15 a)) one may observe
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Figure 5.15: Number of blocks that used each of the prediction modes, for each scale,

for images a) Lena and b) PP1205.

a distribution of all prediction modes across all prediction block sizes. Smaller prediction
blocks result in a more efficient estimation of the image patterns and allow MMP-I to save
bits used by the MMP compression of the prediction error. Nevertheless, this increases
the overhead associated with the prediction data. Each pair of prediction mode and pre-
diction block size is chosen by the MMP-I RD optimisation algorithm. For text image
PP1205 (Figure 5.15 b)), one may notice the predominant use of very large block sizes
for the prediction step. Also, the frequency of the MFV prediction mode is clearly higher
than that of the other modes, for all prediction block sizes. This happens because of the
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i

e

Figure 5.16: MMP-I segmentation for image Lena coded at 0.5 bpp. The prediction
blocks are represented by the black lines and the MMP segmentation is represented
by the white lines.

difficulty in performing an efficient prediction of the text patterns, that generally do not
fit into any particular directional texture. Also, because the prediction process tends not
to be advantageous, the RD optimisation chooses to use mostly large prediction blocks, in

order to save bits associated with the image prediction process.

Figure 5.16 represents the block segmentation used by MMP-I when it is applied to
image Lena encoded at 0.5 bpp. One may observe the adaptiveness of the MMP-I encoder
both regarding the prediction block size (represented by the black lines) and the MMP
partition of the prediction residues (shown in white). The image regions with higher detail
levels generally correspond to the use of smaller blocks, both for the prediction and the
MMP encoding steps. Nevertheless, for some image areas one may notice the use of large
prediction blocks associated with the segmentation of the predicted error patterns. Figure
5.17 compares the block segmentation for the MMP and the MMP-I encoders, for a detail
of image Lena encoded at 0.5 bpp. In this case both segmentations used by the MMP-I
encoder are combined, in order to show the real size of the used block segments. It is

possible to observe that, generally, the prediction techniques allow the MMP-I encoder to
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Figure 5.17: Final segmentation for image Lena coded at 0.5 bpp, for a) MMP and
b) MMP-I.

use much larger partitions when compressing the input image. This is particularly evident
in the more detailed regions of the image, like the nose and lips of Lena, as well as along
the image edges. From the analysis of the performance of MMP for GG signals, shown
in the early sections of this chapter, one would expect the more regular prediction error
patterns, that are mostly concentrated around a specific shell of the image space, to favour
the dictionary adaptation. This result shows that, besides this, the prediction process also
favours the use of blocks of larger scales in the approximation process, which are more

efficient than the smaller blocks.

5.3.2 Comparison with state-of-the-art methods

In this section we evaluate the relative RD performance of the MMP-I algorithm against
that of the current state-of-the-art image encoding methods JPEG2000 [12] and H.264/AVC
high profile intra frame encoder [59]. Note that the H.264/AVC’s high profile also uses
8% 8 blocks for intra prediction and transform coding, in addition to the 16x16 and 4x4
blocks defined in the baseline and main profiles. This yields a good approximation to the
hierarchical prediction performed by MMP-I, in a DCT coding framework.

Experimental tests were performed using several types of images (see Section 3.2.1).
Figures 5.18 and 5.19 show the RD performance for natural (smooth-like) images Lena

and Peppers and Cameraman. These figures show once again the significant improvement
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Figure 5.18: Experimental results of MMP-I for grayscale smooth test images Lena

and Peppers.

in objective quality introduced by MMP-I for the compression of smooth grayscale images

(up to almost 2 dB, when compared with MMP). The gains in RD performance of the

transform-based methods over MMP-I are now small, compared with the performance gap

over MMP. These gains strongly depend on the test image, but one may observe small

PSNR differences when MMP-I is compared with JPEG2000. For image Cameraman,

MMP-I is even better than the DWT-based encoder (see Figure 5.19), while for images

Lena and Peppers, the differences in objective quality are inferior to 0.7 dB and 0.5 dB,
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Figure 5.19: Experimental results of MMP-I for grayscale smooth test image Cam-
eraman (256 x256).

respectively (see Figure 5.18). In spite of this, the traditional transform-quantisation-based
methods, that are highly optimised for low-pass images, are still more efficient than MMP-
I for this type of images. One may also observe the relative performance of H.264/AVC
encoder and JPEG2000, for the tested images. For images Lena and Peppers these encoders
present approximately the same RD performance. Image Cameraman is an exception to
this rule, since H.264/AVC is able to achieve quality gains of more that 1.5 dB over
JPEG2000 and 1 dB above that of MMP-I.

Figure 5.20 shows a detail for image Lena compressed at approximately 0.5 bpp using
MMP, MMP-I, JPEG2000 and H.264/AVC?. From these images one may notice the im-
provement in perceptual quality that is introduced by MMP-I when compared with MMP
for this image. Analysing the perceptual results of transform-based image encoders, we
notice a smoother representation of the image when compared with MMP-I, that presents
some blocking artifacts. This partially explains the PSNR gains achieved by these algo-
rithms.

Figure 5.21 compares the performance of MMP-I for text (PP1205) and compound
(PP1209) images, with that of MMP, JPEG2000 and H.264/AVC. These plots show the

advantage of using the multiscale recurrent pattern-based encoders for these types of im-

*Refer to Figures C.29 to C.31 of Appendix C for a representation of the entire images.
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(c) JPEG2000 (37.15 dB) (d) H.264/AVC (37.24 dB)

Figure 5.20: Detail for image Lena compressed at approximately 0.5 bpp using
a) MMP; b) MMP-I; ¢) JPEG2000; and d) H.264/AVC.

ages. It is also possible to observe a consistent performance advantage of H.264/AVC over
JPEG2000, that amounts to quality gains of about 1 dB for all tested rates. In these cases,
the highly adaptive compression scheme used by H.264/AVC, with its various prediction
modes and variable block size blocks for transform coding and block prediction, allows for
a greater efficiency than that of the DWT-based encoder. Nevertheless, neither of these
transform-based methods is able to efficiently cope with the high activity patterns that are
typical of text images. This happens because these patterns violate the low-pass assump-
tion for the frequency spectrum of the input image. Both H.264/AVC and JPEG2000, as

generally all other transform-based image compression algorithms, are highly optimised in
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Figure 5.21: Experimental results of MMP-I for text image PP1205 and compound
image PP1209.

exploiting this feature of most natural images. Nevertheless, their performance degrades
severely when this is not the case. Because the MMP-based algorithms do use any a priori
assumption about the input signal, this quality degradation is not observed for the cases of
MMP and MMP-I. As a result, for text image PP1205, where MMP and MMP-I have sim-
ilar performances, the PSNR gains of these algorithms are about 4 dB, when H.264/AVC
is considered, and about 5 dB in comparison with JPEG2000. The perceptual results for
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Figure 5.22: Detail for image PP1205 compressed at approximately 0.65 bpp using
a) JPEG2000 and b) H.264/AVC.

this image, encoded approximately at 0.65 bpp, may be observed in Figure 5.223. From
these images one may clearly notice the quality advantage of both MMP-based encoders,
when compared with JPEG2000 and H.264/AVC.

For compound image PP1209 (see Figure 5.21 b)), MMP-I outperforms all other tested
methods. When compared to JPEG2000, MMP-I is able to improve the objective quality
by about 1 dB. The H.264/AVC consistently achieves better results than JPEG2000 also
for this type of images. Its RD performance is equivalent to that of MMP but inferior to
that of MMP-I, by about 0.5 dB.

3Refer to Figures C.32 to C.34 of Appendix C for a representation of the entire images.
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These experimental results show that MMP-1 is able to significantly improve the quality
of MMP for smooth images, while maintaining, or improving, the excellent results for
text and compound images, when compared with state-of-the-art encoders. Unlike the
traditional transform-quantisation-entropy coding-based methods, that have poor coding
efficiency for non-smooth images, and original MMP, that has a large performance deficit
for smooth images, MMP-I has a good performance for all image types. This good all-
round performance of MMP-I results from its ability to efficiently exploit the features of
the prediction error signal, that allow for a more efficient MMP dictionary adaptation.
The result is a highly adaptive encoding method with a useful universal feature.

The presented results motivated the investigation of improved dictionary adaptation
techniques for MMP-I. One important goal of this investigation is to further increase the
performance of this method for smooth images. The aim to achieve an equivalent per-
formance to the state-of-the-art transform-based methods for smooth images should not,
however, compromise the excellent performance of MMP-I for the text and compound im-
ages. The results of this investigation are presented in the following chapters. Prior to
this discussion, the next section presents an analysis of the prediction error probability
distribution, in order to determine the accuracy of the assumed GG model and determine

new, useful insights on the features of the prediction error signal.

5.4 On the probability distribution of the MMP-I prediction

error

The effects of using intra prediction in MMP were first observed in Section 5.3.1, where
Figures 5.13 and 5.14 allowed for a visual analysis of both the prediction and the prediction
error images. In this section we further investigate the MMP-I prediction error signal. We
show that this signal consistently presents highly peaked probability distributions, that we
can accurately model using generalised Gaussian functions. We also estimate the values for
the shape parameter and standard deviation of these models. These experimental results
show that the prediction error signal has probability distributions that are consistently
narrower than the Laplacian one.

Figure 5.23 shows the histogram for the original image Lena and the histogram of the

prediction error signal generated by MMP-I, for the represented compression ratios. We
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Figure 5.23: Histograms for a) original image Lena and MMP-I prediction residues

at compression ratios: b) 0.1 bpp; ¢) 0.5 bpp and d) 1.25 bpp.
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Figure 5.24: Histograms for a) original text image PP1205 and MMP-I prediction
residues at compression ratios: b) 0.37 bpp; ¢) 0.5 bpp and d) 1.25 bpp.

observe the transformation of the probability distribution function, that is now concen-
trated around a reduced set of low luminance values. This corresponds to the probabilistic
counterpart of the regularity features, that were inferred by the visual inspection of the
prediction error signal, performed in Figure 5.13. Figure 5.23 shows that, as the com-
pression ratio decreases, the distribution becomes narrower, meaning that the prediction
process for these higher rates is more accurate. Two factors explain this fact: first, for
higher rates MMP-I is able to use smaller prediction block sizes, increasing the prediction
accuracy; and second, for smaller compression ratios the distortion of the encoded pixels

that are used in the prediction step decreases, which also improves prediction efficiency.

The prediction process for all other smooth test images has the same features as the
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ones described for image Lena. Nevertheless, non-smooth images, like text and compound
images, present very different features, that also affect the prediction process. Figure 5.24
represents the original histogram of text image PP1205 and the histograms of the predicted
residues for some selected compression ratios. We observe the existence of a few luminance
values with extremely high probability in the input image histogram, that correspond to
the near white values of the background pixels. Also, the probability distribution of the
predicted residues has two very important differences when compared with that of smooth
images: first, it is asymmetrical; and second, there are many prediction samples with a
high absolute value, which have a significant probability. These facts are caused by the
prediction process itself: because most of the prediction is made using the MFV mode,
the prediction pixels tend to be centred around 255. As a result, the predicted residues
are mainly negative and their probability depends on the original histogram. These facts
demonstrate the conclusions that were taken in Section 5.3.1 from the visual inspection of

the prediction error images (see Figure 5.14).

5.4.1 Estimation of the probability model of MMP-I predicted residues

From Figures 5.23 and 5.24 one may observe the highly-peaked shape of the the MMP-I’s
predicted residues’ probability distribution, especially for smooth images. In this section
we further analyse this probability distribution function and relate it to a generalised
Gaussian distribution. In order to do this, the values for the shape parameter, «, and of
the standard deviation, 3, were estimated [69, 70]. The actual samples of the prediction
error were used, for each test image and for different target compression ratios. Table 5.2
shows a summary of the estimated values for parameters « and (3, for the mentioned test
images and compression ratios.

The analysis of Table 5.2 allows for some interesting conclusions. For natural grayscale
images we observe probability density functions consistently narrower than the Laplacian
one. Also, both the value for the shape parameter and for the standard deviation decrease
with the decreasing compression ratio. This means a growing concentration of the pre-
dicted error distribution with the decreasing average distortion of the encoded image. For
all observed images, the estimated value for the shape parameter is mostly concentrated
between 0.5 and 0.75, except for image Cameraman, that tends to have a narrower distri-

bution, and image Goldhill, for which the estimated value of « goes up to 0.95 at higher
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Lena Cameraman Goldhill PP1205 PP1209

bpp a B bpp a B bpp a B bpp a B bpp a B

0.11 | 0.74 | 13.8 0.20 | 0.36 | 29.0 0.11 | 0.95 | 15.4 0.37 | 0.64 | 35.2 0.26 | 0.51 | 26.0

0.34 | 0.61 | 11.1 0.34 | 0.34 | 29.1 0.32 | 0.86 | 12.5 0.52 | 0.60 | 34.3 0.35 | 0.50 | 28.1

0.50 | 0.59 | 10.3 0.51 | 0.34 | 29.2 0.50 | 0.81 | 11.8 0.75 | 0.63 | 35.0 0.56 | 0.49 | 28.0

0.67 | 0.57 | 10.2 0.72 | 0.33 | 27.8 0.79 | 0.77 | 11.3 0.90 | 0.64 | 35.3 0.75 | 0.46 | 29.4

0.83 | 0.56 | 10.0 0.98 | 0.31 | 28.2 1.08 | 0.75 | 11.0 1.25 | 0.65 | 35.4 1.00 | 0.49 | 28.2

1.25 | 0.54 9.6 1.36 | 0.31 | 24.4 1.36 | 0.73 | 10.8 1.41 | 0.63 | 35.2 1.64 | 0.50 | 26.7

Table 5.2: Estimated values of the generalised Gaussian parameters for some test

images.

compression ratios.

Figure 5.25 compares the actual distribution of the prediction error samples with the
generalised Gaussian distribution, having the « and ( parameters equal to the estimated
parameters. The accuracy of the predicted model depends on the features of the test image,
but generally we may observe a good match between the original signal distributions and
the estimated generalised Gaussian. This demonstrates the adequacy of this model for

representing the prediction error.

5.5 Conclusions

In this chapter we have presented MMP-I, a new compression scheme that combines the
use of MMP with predictive coding techniques. This investigation was motivated by a
study on the performance of MMP for the compression of signals characterised by different
probability distributions. In Section 5.1 we have shown that the efficiency of the dictionary
adaptation increases for input signals with narrower probability distributions, which results
in a better encoding performance for MMP. By using adaptive image prediction processes,
like those of H.264/AVC [13|, we are able to produce predicted residue signals with highly
concentrated probability distributions, that correspond to a generalised Gaussian model.
MMP-I achieves a greater efficiency of the dictionary adaptation process, by compressing
the predicted error signal instead of the input image data (see Section 5.2).

Experimental results, shown in Section 5.3, demonstrate a significant improvement on

the compression performance of MMP-I, when compared with MMP, especially for smooth
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Figure 5.25: Original distribution of the predicted errors compared with a generalised

Gaussian distribution with the estimated parameters.

images.

In Section 5.4 we were also able to demonstrate the suitability of the used GG model
for representing the prediction error signal, especially for the case of natural images. This
result validates one of the initial assumptions that were considered for the development
of the MMP-I algorithms. Additionally, a GG probability distribution framework for the
encoded signal allows for a better understanding of the distribution of the code-vectors
throughout the dictionary space. Previous works demonstrated the tendency for these
vectors to cluster around a thin shell of constant L* norm [74]. This brings an intuitive
understanding of why the MMP dictionary adaptation process is more successful at “learn-

ing” these clustered patterns, than the scattered blocks that exist in the original image.
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Also, this points to some interesting future research, based on previous studies related
to computationally efficient ways to encode such signals [78]. Finally, new, more efficient
ways to explore the dictionary adaptation may be found by using the results of this study.

The development of such techniques is the main subject of the next chapter.
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Chapter 6

Efficient dictionary adaptation

The performance gains of MMP-I result from the transformation of the input image samples
into a prediction error signal. The probability distribution of this signal was shown to
favour the performance of the MMP algorithm, because it leads to a more efficient use
of the dictionary patterns. In this sense, the use of predictive coding in MMP-I may be
looked upon as a dictionary adaptation process.

Nevertheless, the use of the predicted error does not correct the vulnerabilities of the
dictionary updating process. Because MMP-I inherits the same procedures used by MMP,
it suffers from the same inefficiency problems that were previously described in Chapter
3: on one hand, experimental observations revealed an over populated dictionary, with
a lot of unnecessary blocks that increase the entropy of the index symbols; on the other
hand, the introduction of new symbols in the dictionary provides a richer set of patterns and
increases the probability of successful block matches, that enhance the coding performance.
In this chapter we tackle these important issues, in order to explore new ways to improve
the efficiency of the MMP-I encoder. Our investigation resulted in new techniques that

improve several aspects of MMP-I dictionary adaptation and usage, namely:

e Section 6.1 describes the use of context conditioning to improve the efficiency of

arithmetic encoding of the dictionaries’ indexes;
e Section 6.2 presents a discussion on redundancy control for the dictionary’s elements;

e Section 6.3 studies ways to increase the approximation power of the dictionary, by

using additional patterns;
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e Section 6.4 presents two further methods that limit the inclusion of unnecessary

elements in the dictionary;

e Section 6.5 presents the use of norm equalisation to adjust the scaled patterns to the

signals’ distribution;

We generally refer to the combination of MMP-I with the new dictionary adaptation tech-
niques as MMP-II, from MMP-I with Improved dictionary adaptation.

After discussing each of the previous techniques, Section 6.6 presents a brief discussion
on the computational complexity of MMP-based methods. While experimental results are
presented individually for each of the proposed techniques in the corresponding sections,
Section 6.7 presents the results of their combined use. These results reveal consistent

improvements in the encoder’s performance.

6.1 Dictionary partitioning

As for MMP, the analysis of the MMP-I bit stream revealed that the rate used to compress
the segmentation flags is generally close to 15% of the total bit rate. For MMP-I, one has
also to consider the additional use of prediction mode flags. Figure 6.1 shows the relative
percentage of the total bit rate that is used by each component of the MMP-I bit stream.
Figure 6.1 a) compares the percentage of bit rate used by segmentation flags with that
used for the remaining data, composed by the dictionary indexes plus the prediction mode
flags. Comparing these data with Figure 3.8 it is possible to observe the similarities with
the MMP case. Figure 6.1 b) independently represents the percentage of bit rate allocated
to the dictionary indexes and compares it to the rate used by the prediction mode flags.

Two interesting observations result from these plots:

e The relative importance of the joint bit rates for the indexes and prediction mode

flags is approximately constant for all tested images at all target compression ratios;

e The percentage of bit rate used for the prediction data is larger for very high com-
pression ratios, meaning that for these cases the MMP-I encoder tends to rely more
on the prediction process to approximate the input image. However, as the compres-
sion ratio decreases, MMP-I progressively uses more dictionary blocks, in order to

achieve a smaller distortion in the representation of the encoded image.



6.1 DICTIONARY PARTITIONING 115

100
80
% Indexes + prediction mode flags
E
s 60 <+ Indexes + Mode Lena
] ~-x-- |Indexes + Mode Goldhill
5 -~ Indexes + Mode PP1205
[ : - Indexes + Mode PP1209
& 40 - Indexes + Mode Peppers
< - Indexes + Mode Cameraman
] -+ Flags Lena
o} ; -« Flags Goldhill
a8 2 Segmentation flags - Flags PP1205
R e N v Flags PP1209
R o R o R ek % . - Flags Peppers
- Flags Cameraman
0
0 02 04 06 038 1 12 14 16 138 2
bpp
(a)
100
80
[
s
ol :;i“" Indexes
] 60 ~-+- Indexes Lena
° -~ Indexes Goldhill
5 ~*- Indexes PP1205
o ~a-- Indexes PP1209
g 40 - Indexes Peppers
= ~o-- Indexes Cameraman
8 -e--- Mode flags Lena
] - -&-- Mode flags Goldhill
o 20 Y Prediction mode flags ~ Mode flags PP1205
eFaga v~ Mode flags PP1209
Coon o S N -~ Mode flags Peppers
N RO N G e Wy i Dt B T | e Mode flags Cameraman
0 02 04 06 08 1 12 14 16 18 2

Figure 6.1: Bit rate usage for MMP-I: a) percentage of bit rate used by the indexes
combined with prediction mode flags vs segmentation flags; b) percentage of bit rate

used by the indexes vs prediction mode flags.

Figure 6.1 reveals that a significant part of the total bit rate is allocated to the trans-
mission of the dictionary indexes, that use up to 80% of the total rate. This observation
led to the study of more efficient ways to encode these indexes. Originally, a context
adaptive arithmetic encoder was employed, that used the symbol’s scale as a context, to
losslessly compress the code-vectors’ indexes, as well as the segmentation and prediction
mode symbols. This context definition is implicit for the decoder, so no side information
is required.

The use of a context conditioning scheme for the arithmetic encoder of the dictionary

indexes was first proposed for MMP in [79]. This concept explores the statistical distribu-
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Figure 6.2: Division of dictionary D! into L; + 1 partitions.

tion of the indexes’ symbols for each dictionary D', by assigning each pattern to a given
partition, according to the original scale of the block. Independent probability contexts
for arithmetic encoding are associated to each dictionary partition. This means that, in-
stead of assigning sequential indexes to all available patterns of D!, each block is classified
according to the dictionary partition it belongs to, ¢;, and an identifier that points to the
relevant element inside the partition, zj’ This process, represented in Figure 6.2, requires
the transmission of two symbols per block, instead of just one. Although this may at first
seem to introduce an additional overhead, it may lead to gains through the exploitation
of the statistical distributions of these symbols. This is because, depending on the criteria
used to partition the dictionaries, the entropy of the symbol used to identify the context
may be much lower than [log,(Np)]| (where Np is the number of partitions). Thus, by us-
ing an adaptive arithmetic coder to encode the symbols ¢; and z';l, a decrease in the overall
rate can be achieved. One may argue that the entropy of a dictionary word is the same
irrespective of the number of steps in which it is encoded. However, if the criteria used to
partition the dictionaries are conveniently chosen, then an adaptive arithmetic coder could

reach the entropy of the sources at a much faster rate.

When testing this method with MMP-II, two context criteria were investigated, namely:
the prediction mode that is being used for the current block and the scale at which the
block was created. In the first case, each dictionary partition contains the vectors that
were added to D' when a specific prediction mode was used. In the second case, each
dictionary partition contains the vectors that were originally created at a given scale [,
(by the concatenation of two blocks of scale I, — 1). Both criteria favour the frequent use
of a given set of blocks, when a particular coding condition is verified (either a particular

prediction mode or current block scale). The knowledge of a particular state (encoding
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Figure 6.3: Results for the use of context conditioning with MMP-I, for image Lena.

context) is then used by the arithmetic encoder, that adapts the probability histograms to
take into account this information and generate a more efficient code for the symbol that
is currently being encoded.

Figures 6.3 and 6.4 compare the results of the original MMP-I with those attained
when context adaptive dictionary partitioning is used with both discussed criteria'. We
may observe that both schemes achieve a consistent improvement in RD performance over
the original algorithm. Nevertheless, the use of the block’s original scale as the coding

context produces better overall results than the use of the prediction mode.

6.2 Dictionary redundancy control

The discussion presented in Chapter 3 shows that the existence of a large number of blocks
in each dictionary D' has the unfavourable effect of increasing the average entropy of
the index symbols. A similar experimental study, performed for MMP-I, led to identical
conclusions, despite a marginal reduction of this effect. Figure 6.5 shows the same linear
relation between the cardinality of the MMP-I dictionaries and the target compression
ratio that was observed for MMP (see Figure 3.9).

Figure 6.6 compares the final number of elements for D8 for MMP-I and MMP. A

!The results for other test images are presented in Figure C.19 of Appendix C.
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Figure 6.4: Results for the use of context conditioning with MMP-I, for images
PP1205 and PP1209.

smaller growth of the MMP-I dictionaries is notorious. This observation validates once
again the conclusion that the predictive techniques employed by MMP-I increase the ef-
ficiency of the dictionary usage process. We can also observe that the most significant
differences exist in the plots of the smoother images, for which the prediction process has
a greater efficiency. In fact, for text image PP1205 the dictionary sizes are approximately
identical, as are the final performances for MMP-I and MMP, due to the low efficiency of

the prediction process. In spite of the gains observed in these figures, the final cardinality
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Figure 6.5: Final number of elements in dictionary D® (16 x 16 blocks) for MMP-1.

of the MMP-I dictionaries is still much larger than the actual number of elements that is
used in the encoding process. As for MMP, the existence of dictionary vectors that end
up being useless for the approximation of image patterns compromises the performance of
the encoder and should be avoided. This section deals with enhancing the performance of
the MMP-I encoder by selectively eliminating blocks from the dictionaries.

Section 6.2.1 investigates the use of independent dictionaries, while Section 6.2.2 presents
an efficient redundancy control strategy for the insertion of new vectors, based on a distance

measure relative to the existing dictionary blocks.

6.2.1 Multiple dictionaries

The MMP-I dictionary may be regarded as a melting pot where all blocks are included,
so that they can be used in a future approximation. In Section 3.4.1 we observed that
reducing the number of dictionary elements (i.e. the size of the pot) compromises the
efficiency of the method, because one ends up excluding patterns that would be favourable
in future matches. In this section we propose the use of several independent dictionaries
(the pots in our metaphor) that store unassociated sets of words. At each given moment,
only one of the smaller dictionaries is used, both as a source for approximating patterns
and as a destination where new blocks are stored.

This test was inspired by the observation of the used prediction modes, most of which

use directional prediction. We hypothesised that the predicted residue blocks used by each
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mode should have particular features, associated to the direction used in the prediction
process, e.g., the residue blocks generated using horizontal prediction should be highly
related, and different from the ones used by vertical prediction. The original MMP-I
dictionary mixes all these patterns, meaning that, at all times, all of the patterns contribute
to increasing the symbols’ entropy. In this test we have created an independent dictionary
for each prediction mode. At each moment, a residue block that has been determined
using a predictive mode M may only be approximated by vectors from codebook Dﬁw,
that is composed only by those blocks that have been previously created while encoding
residues determined with prediction mode M. As an advantage, each dictionary D!, will
be composed by a set of patterns which would be more correlated than the ones of the
original dictionary D', because they would have all been determined by using the same
prediction mode. These vectors would also be correlated with all future blocks that use the
same prediction mode, meaning that the approximation power would not be compromised.
Besides this, each Dfn would have a smaller size, which would favour the performance of
the adaptive arithmetic encoder. A potential drawback would be that the restriction of the
available patterns might cause a reduction on the coding efficiency. In fact, a given residue
could be better approximated by a pattern generated by a different prediction mode. The
algorithm’s adaptability assures that, in the worst case scenario, the required pattern can
also become available at the dictionary for the current prediction mode, but this is achieved
by using the concatenation of smaller blocks from the current dictionary, at the cost of
having to re-transmit all the segmentation and coding data that was previously used to

generate the pattern at the other dictionary.



122 6. EFFICIENT DICTIONARY ADAPTATION

Image Lena
42
e
40
38
2 36
o
%
o 34
32
/ MMP-| ——
30 ¢ MMP-I MD A —e— 7
MMP-1 MD B
MMP-IMD C -
28 Il Il
0 0.2 0.4 0.6 0.8 1 1.2 1.4

bpp

Figure 6.8: Results for original MMP-I and new techniques that use several inde-

pendent dictionaries (MMP-I MD), for image Lena.

We conducted a set of experimental tests in order to investigate this technique. Some
interesting issues were brought forth by this work, namely concerning the configuration of
the several independent dictionaries. When an image block is predicted using two different
modes, for instance modes M; and My represented in Figure 6.7 a), some factors must
be considered related with the dictionary updating process. When using independent
dictionaries for each prediction mode, each block is approximated using only patterns from
the corresponding dictionary. In the example, index 7y belongs to dictionary Dj;, and
indexes 7; to i3 are chosen among the elements of dictionary Djs,. The updating process
related with the coding of each block half poses no problem: all new patterns created for
each half have a single dictionary associated with them. Nevertheless one must tackle the
issue of dictionary updating for the concatenation of the two segments that used different

prediction modes. Several options were tested:

e When we discarded the new patterns that did not correspond to a specific prediction
mode, we observed severe quality losses, because the dictionary updating process is

compromised;

o We then used the new pattern to update both Dy, and Dy, in a test that will be
referred to in this section as MMP-I MD A;
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Figure 6.9: Results for original MMP-I and new techniques that use several inde-

pendent dictionaries (MMP-I MD), for images PP1205 and PP1209.

e Because more than two prediction modes may be used within a single block, a new
method was implemented, where not only Dy, and D)y, are updated but also the
dictionaries related with all the prediction modes that have been previously used in

the current block (MMP-I MD B);

e In all these tests a dictionary is used for each prediction mode. In a final test (MMP-I

MD C) we associated several prediction modes (related by their similar orientations)
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to one single dictionary: independent dictionaries were used for the Vertical mode
(mode 0 in Figure 6.7 b)), the Horizontal mode (mode 1), the MFV mode and the
Plane 16 x16 mode; a fifth dictionary was used for modes 3, 7 and 8 while a sixth

dictionary was assigned to modes 4 to 6.

The experimental results for these techniques, presented in Figures 6.8 and 6.9, demon-
strate that they do not achieve the best overall performance for all image types. Some con-
figurations are favourable for text image PP1205 and also, for some cases, for compound
image PP1209, when compared with the original MMP-I. Nevertheless, these results show
that this technique is disadvantageous for smooth images. This may be explained by the
fact that the prediction process for these cases tends to generate similar patterns, even
when different prediction modes are used. The highly structured patterns of the text and
compound images tend to either consistently use a reduced set of prediction modes or
generate different residues for different prediction modes. Both these factors allow the use
of independent dictionaries to cause an increase in the algorithm’s performance in these
cases. In spite of the interesting gains observed for the non-smooth images, the losses
observed for smooth images, that are prioritised in this work due to the comparatively
worse performance of MMP-I, compromise the use of independent dictionaries with MMP-
I. Nevertheless, future developments of this topic may be worth investigating, namely in

text or compound image coding oriented applications.

6.2.2 Avoiding the inclusion of redundant elements

All dictionary limiting techniques that were previously investigated led to some inefficien-
cies in the dictionary adaptation process. When a restriction on the maximum dictionary
size is imposed, one is unable to conveniently define a rule to eliminate appropriate blocks
in the dictionary (see Section 3.4.1). The use of independent dictionaries, described in the
previous section, restricts the blocks that are available for future approximations and intro-
duces some losses for the compression of smooth images. Because of this, a new technique
was investigated that uses a different paradigm: avoid the inclusion of redundant vectors,
that do not introduce a significant gain in the approximation power of the dictionary, i.e.
the ability to represent the image patterns with a low distortion. In general terms, this is

achieved by avoiding the inclusion of a new element that is too close to a vector already

2The results for other test images are presented in Figure C.20 of Appendix C.
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Figure 6.10: Use of a minimum distance condition in the dictionary update proce-

dure. In this example, block A is not inserted in the dictionary.

present in the dictionary. This is done by testing each new block before inserting it in
the corresponding dictionary. Each new block Xl, of scale [, is only used to update the
dictionary D' if the distortion between X! and any block of D! is not inferior to a given
threshold d?. In other words, a new block is only inserted in the dictionary if, for every
element S! of dictionary D!,
Z <Xl(m,n) — Sé(m,n))2 > d?. (6.1)
m,n

This introduces a minimum distortion condition between any two vectors of each scale
of the dictionary. In fact, this guarantees that, for each scale [, the distance between two
or more blocks is at least d, or equivalently, that there is never more than one block inside
any hypersphere of radius d in the [-dimensional space. This process is represented in
Figure 6.10 for the two-dimensional case.

The threshold value, d, controls the redundancy among the elements of the dictionary
and must be carefully determined. If the hyperspheres’ radius is too small, the dictionary
vectors will be too close to each other, and the aim of reducing redundancy will not be
achieved. On the other hand, if d it is too large, the dictionary space will have large
void areas, corresponding to patterns that will not be accurately represented, leading to a
decrease in the algorithm’s performance.

In the case of MMP-I, we can intuitively understand that the optimum value for d is
a function of the target bit rate: for lower bits rates the distortion level will be higher,
which corresponds to larger distances between the elements of the dictionary, that will

have fewer elements. For higher rates, the code-vectors should be closer, providing a more
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accurate representation of the image patterns. The optimum value of d will then depend
on the target bit rate for the image. The final compression ratio is not available at the
beginning of the encoding process, but it is related to the parameter A, used in the RD
control algorithm. Because of this, an heuristic relating d to A was determined. In order to
achieve this relation, we have encoded a set of test images using different pairs (d,\). We
then plotted the corresponding values of rate and distortion on an RD chart and determined
its convex hull, that is composed by the points that minimise the value of the function
D(R). When we considered these points for a representative set of images, we were able

to determine a simple model for the function d(\):

5 if A <15
d(A) =410, if 15< X< 50; (6.2)

20, otherwise.

Using equation (6.2), the encoder is able to determine the value of d, given the input
parameter A. Because ) is not available at the decoder, the value of d must be transmitted,
by using a (negligible) two bits overhead. The decoder is thus able to replicate the dictio-
nary updating procedure used by the encoder. Equation (6.2) is the result of a compromise
among all used test images, and it almost achieves the best result for all images. From this
one can conclude that the optimum relation d(\) does not strongly depend on the type of
input image.

As was previously mentioned, the distortion control is made using a fixed squared
distortion for the blocks at all levels of the dictionary (see equation (6.1)). The radius of
the hypersphere does not vary with the block size, meaning that the maximum allowed
distortion per pixel for the dictionary blocks decreases exponentially with the increase in
dictionary scale. As a consequence, the effects of this process will be much more noticeable
for the smaller scales of the dictionary, because they are less likely to be updated. Also, the
cardinality of larger scale dictionaries will tend to increase faster than the ones of smaller
scales. This effect may be observed in Figure 6.11, where the final number of elements
for all scales of the dictionary for image Lena is presented, both for the original MMP-I
encoder and MMP-I combined with the redundancy control algorithm. In this figure it is
possible to observe a large reduction on the final number of elements of the dictionaries

for smaller scales (4 x 4 and below). Nevertheless, there is no reduction in the number of
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Figure 6.11: Final number of elements for the dictionaries of each scale wvs. the

compression ratio, for image Lena: a) MMP-I; b) MMP-I with Redundancy Control.

elements for the higher scales. In fact, there is a slight increase in the number of elements

for these scales.

Alternative ways of controlling the minimum distance between blocks were considered
and experimental tests were conducted in order to investigate both the comparative per-
formances and the effects of each method is the dictionary growth. The tests included,
among others, the cases for which the average distortion per pixel was fixed or for which

the sphere radius increases linearly or exponentially with the value of [. However, the best
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Figure 6.12: 2D plot of the 2 x 1 code-vectors of dictionary D*, for the original MMP-
I (2045 elements) and MMP-I with redundancy control (147 elements), for image Lena

encoded at approximately 0.5 bpp.

results were achieved when equation (6.1) was used, because, from a RD point of view,
it is advantageous to have greatly populated dictionaries for the large scale dictionaries,
while performing a severe redundancy reduction for the smaller scales. This is so because
in MMP methods, larger blocks provide a very efficient way of encoding image pixels, while
the use of smaller scales implies higher bit rate cost. Furthermore, MMP-I, as MMP, tends
to use mostly blocks of the smaller scales (block sizes from 2 x 2 to 4 x 4 pixels). Therefore,
the reduction of the redundancy of the dictionary elements for these scales contributes
more to increase the coding efficiency. On the other hand, having richer, highly populated
dictionaries for the larger scales increases the chances of a successful match, which also
benefits compression performance, since it allows for the encoding of a large number of

pixels using one single code-vector.

Figure 6.12 shows the effect of using of redundancy control scheme on the dictionary
of scale 1 (2 x 1 pixel blocks), for image Lena encoded at 0.49 bpp. A 2D plot of the 2 x 1
code-vectors of the dictionary D' is presented, both for the original MMP-I encoder and
for an MMP-I encoder that uses redundancy control, with d = 10. The reduction on the
total number of code-vectors is clear (from 2045 to 147), but it can also be observed that
the code-vectors that are maintained by the redundancy reduction algorithm cover the

same space as the original dictionary, but with a much smaller density. This means that
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Figure 6.13: Results for original MMP-I and MMP-I using redundancy control (both

methods also use dictionary partitioning), for image Lena.

the relevant patterns for encoding the input signal are not eliminated from the dictionary,
but one avoids overpopulating the dictionary space with redundant code-vectors.

Figures 6.13 and 6.14% compare the performance of the MMP-I algorithm when the
original dictionary updating procedure is used and when the new redundancy control tech-
nique is applied (both encoders also use the dictionary partitioning technique described in
Section 6.1). We observe that the proposed technique consistently increases the RD per-
formance of MMP-I encoder for all tested images and all target compression ratios. These
results demonstrate the efficiency of the new redundancy reduction algorithm, that is able
to filter the patterns that introduce a negligible gain in terms of approximation power but

generate an unfavourable penalty in the overall entropy of the index symbols.

6.3 Improving dictionary approximation power

The previous section described a set of techniques that attempt to improve the overall
performance of the dictionary adaptation process by removing inefficient patterns. If the
code-vector exclusion is performed is a way that does not compromise the dictionary’s

ability to produce good approximations for future image blocks, then a rate reduction is

3The results for other test images are presented in Figure C.21 of Appendix C.
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Figure 6.14: Results for original MMP-I and MMP-I using redundancy control (both

methods also use dictionary partitioning), for images PP1205 and PP1209.

achieved with no distortion penalty, and the overall performance of the encoder is increased.
In this section we investigate a new paradigm: the insertion of additional vectors in the
dictionary, in order to increase its approximation power, i.e. the ability to achieve a low
distortion value when approximating image patterns.

Adaptive approximate pattern matching methods, like MMP and MMP-I, explore the
self similitude properties of digital images. They rely on the supposition that each block

used to approximate one region of an image has a fair probability of being useful in approxi-
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mating other regions of the same image. The MMP-based methods expand this concept for
blocks of different dimensions, through the use of scale transformations. The “multiscale”
feature means that each new block is inserted in all scales of the dictionary, providing it
with a richer set of patterns. In this section we discuss the use of other updating strategies,
that enhance the dictionary approximation power by inserting more than one vector per
approximation.

When using such updating strategies, one would expect the cardinality of the dictionary
to increase at a much faster rate. An increase in cardinality implies an increase both in rate
and computational complexity, i.e. an opposite effect to that achieved by the redundancy
control techniques. Since this may be unfavourable in terms of the overall performance,
the new blocks used in the updating procedure must be carefully chosen. In this section
we show that, by using carefully chosen updating strategies and combining them with the
previous described redundancy control methods, this new updating procedure increases
the efficiency of the dictionary adaptation process.

MMP-I uses scaled versions and concatenations of the approximated residue blocks,
Rﬂw (m,n) to update the dictionary. In this section we consider some methods for gener-
ating new patterns for the dictionary updating step, other than just the scaled versions of
f{lM(m, n). Some of these strategies have been previously proposed for the MMP encoder
[18, 79], like the use of geometric transforms of the original block and displaced versions of
the image residue. These methods were adapted to the new paradigm of MMP-I, namely
the use of predicted residue blocks. Furthermore, novel updating strategies resulted from
this work, like the use of the additive symmetric of the original vector. In the following
sub-sections we describe individually each of the proposed updating methods and present
their impact in the performance of the encoder. In Section 6.3.4 we evaluate the combined
use of these techniques, in order to determine the most favourable methods to use for

dictionary adaptation.

6.3.1 Geometric transforms

The prediction modes used in MMP-I are mainly directional modes, that try to predict
patterns which occur in the image with different orientations. Spatial relations between
these orientations can be easily observed, as has been previously discussed in Section 6.2.1.

An obvious example is the connection between the horizontal and vertical predictions, that
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Figure 6.15: New patterns created by using geometric transformations.

may be related by the use of a 90° rotation. To exploit this fact, geometric transforms
are applied to RSM, originating four new versions of the original block, that are used
in the dictionary updating process. The chosen transforms are two rotations, by 90°
and —90°, and two mirroring operations, using horizontal and vertical axes (see Figure
6.15). The rotations transform the horizontal direction into the vertical one and vice versa.
The mirroring operations relate some of the prediction directions of the third and fourth
quadrants. The use of these four new blocks means that the new updating strategy may
lead to the insertion of five times more patterns than the dictionary adaptation method.
Based on preliminary experimental results for this method, the four blocks resulting from
the combination of rotations and mirroring operations (e.g. the rotation of the block from
Figure 6.15 d)) were not considered.

Figures 6.16 and 6.17* show the results of original MMP-I and MMP-I using geometric
transforms in the dictionary updating process. Both versions also use the dictionary parti-
tioning technique with scale contexts described in Section 6.1. The dictionary redundancy
algorithm is nevertheless disabled, and its use will be independently evaluated in a future
section. From Figure 6.16 we have that the use of extra patterns in the dictionary updat-

ing process marginally increases the performance of MMP-I for smooth images. In Figure

4The results for other test images are presented in Figure C.22 of Appendix C.



6.3 IMPROVING DICTIONARY APPROXIMATION POWER 133

Image Lena
42

40

. e

g y
o
& /
L 34 /
3 //
30 d
MMP-| Original —+—
MMP-I GT ——
28 : ‘
0 0.2 0.4 0.6 0.8 1 1.2 1.4

bpp

Figure 6.16: Results for MMP-I with the use of new dictionary updating with geo-

metric transforms, for image Lena.

6.17 we may notice that for the text image the results are overall equivalent, despite some
fluctuations that give a marginal gain for both techniques at specific compression ratios;
for compound image, PP1209, one also notices a marginal performance gain, that results

from the compression of the smooth areas of the image.

6.3.2 Displaced blocks

The use of displaced versions of the reconstructed residue block exploits the fact that the
patterns in a digital image may occur at any position. This is relevant because the binary
segmentation process used by MMP only allows for the exploitation of similar patterns
that occur at some fixed image points. One example is the fact that any 8 x 8 block
of the dictionary may only be used to match an image block with upper left corner pixel
coordinates given by (8i,8j), wherei = 0,..., Njjpes/8 and j = 0, ..., Nyows/8. To overcome
this limitation, we have tested the use of displaced versions of the reconstructed block as
a source for new dictionary patterns. This is achieved by using a sliding window that is
displaced along the previously encoded area of the image. When one applies this to MMP,
the sliding window originates regions of reconstructed image patterns with the same size

as the original block, but located at neighbouring positions [18]. As for the case of the



134

6. EFFICIENT DICTIONARY ADAPTATION

40

38

36

34

32

PSNR (dB)

30

28

26

24

40

38

36

34

PSNR (dB)

32

30

28

26

Image PP1205

e

e

A

MMP-| Original —+—
, MMP-IGT —=—

0.3 0.4 0.5

06 07 08 09 1 11 12 13
bpp

Image PP1209

//
/ MMP-1 Original —+—
‘ MMP-I G'I" —%—
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
bpp

Figure 6.17: Results for MMP-I with the use of new dictionary updating with geo-

metric transforms, for images PP1205 and PP1209.

geometric transforms, one must consider that, when using this method with MMP-I, the

dictionary patterns correspond to predicted residues and not to the input image blocks,

meaning that the sliding window must be used on the previously reconstructed residues.
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Figure 6.18: New patterns created by using displaced versions of the original pat-

terns, with s = 2.

This means that the new blocks used in the updating process are given by®:
R 5, (m,n) = X' (m — 6, n —8,) — P — 6pyn — 6y, (6.3)

where P(m,n) represents the prediction pixels used for pixel (m,n), using the correspond-
ing prediction mode. In the previous equation one must bare in mind that the prediction
mode for all possible positions (m — d,,,n — d,,) may vary, because these pixels may have
been predicted in different steps. Because of this, one has to keep a record of the prediction

values that have been used within the search window.

In our tests we have used displacement steps that correspond to one half or one quarter
of the block dimensions and maximum displacement values that have the same dimensions
as the block f{gm 5, (m,n). This means that, for a block of size 2M x 2N we include in the

dictionary all blocks

Rl

DSm,q0n Rl (m - pémy n— qdn)a (64)

®In order to simplify the notation, we dropped the mode subscript form the residue and prediction

blocks.
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Figure 6.19: Results for MMP-I with the use of new dictionary updating with dis-

placed blocks, for image Lena.

with

p
p:07 78_1
qZO, 78_1
om = |57
o= 5]
s=2,4

\

where s is the fraction of the block dimensions corresponding to the displacement steps,

e.g., s = 2 corresponds to displacements of half the block size in each dimension, whereas

s = 4 corresponds to displacements of a quarter of the block size. Figure 6.18 represents this

process for s = 2. The shaded area represents the previously encoded pixels of the residue

image. The current block is represented, as well as the three positions that correspond to

the residue areas which are also used to update the dictionary. For s = 4, each new block

originates fifteen new other blocks, corresponding to all possible (,,,d,) positions defined

by equations (6.4) and (6.5).

The experimental results for the described techniques are presented in Figures 6.19

and 6.208. It is possible to observe that the use of displaced versions of the reconstructed

5The results for other test images are presented in Figure C.23 of Appendix C.
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Figure 6.20: Results for MMP-I with the use of new dictionary updating with dis-

placed blocks, for images PP1205 and PP1209.

residue patterns achieves performance gains for all tested images and all compression ratios.

The gains are particularly relevant for the compression of text patterns, like those of

image PP1205. This may be understood due to the structure of the compressed patterns,

that have a lot of symbols (characters or character segments) often repeated, but not

necessarily at the positions defined by the original MMP “grid”, i.e. the positions that may

be determined by binary segmentations of the original macroblock. The use of displaced

versions allows the dictionary to “learn” these symbols at arbitrary locations, favouring
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Figure 6.21: New pattern created by using the additive symmetric of the original
block.

future approximations. For text regions the MFV prediction mode is predominately used,
preserving the structure of the input image patterns. In this case, the use of displaced
blocks allows the exploitation of the self similitude of the patterns in the original image.
For natural images, the residue patterns are not as correlated with the input image,
and the experimental results do not show the same significant gains. Nevertheless, the new
updating technique is consistently able to improve the quality of MMP-I encoding across
all compression ratios. For compound images we observe a combination of the previous
phenomena: high gains for the text regions combined with more moderate gains in the
smoother areas, resulting in intermediate increments of the PSNR values. Generally we
can observe that the use of displacements of one quarter of the blocks dimensions (s = 4)
is only advantageous over the use of s = 2 for non-smooth images. This means that, for
smooth images, the gains originated by the extra patterns introduced when this technique
is applied are only sufficient to counterbalance the additional rate associated with the extra

dictionary indexes.

6.3.3 Additive symmetric

In our investigation, we have also used the additive symmetric of each block to update the
dictionary, i.e. at each dictionary adaptation step we also include the block —f{l(m,n).
This technique can only be applied on MMP-I, that processes predicted residue samples
which may have positive or negative values. The additive symmetric of a predicted block
(Figure 6.21) tends to have the same directional structure as the original block, meaning
that it has the potential of being useful to encode future residues determined with a similar

prediction mode, or even with a different one.
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Figure 6.22: Results for MMP-I with the use of new dictionary updating with the

additive symmetric block, for image Lena.

Figures 6.22 and 6.237 presents the experimental results of the simulations conducted
with this new updating strategy. For smooth images, the overall results are equivalent
to those of the original method, but for text image we observe significant losses in the
PSNR value. This means that the symmetric residue blocks introduced in the dictionary
do not improve the approximation power of the stored patterns. For the highly structured
text images, that tend to use a prediction mode which produces patterns with consistently
negative values (see Figure 5.24), the insertion of the symmetric counterparts only has
the negative effect of increasing the indexes’ entropy, leading to severe losses in the PSNR

values.

6.3.4 Combining the new updating strategies

In the previous sections we have assessed each new technique independently. In order
to optimise the use of these strategies we have also tested the performance of their joint
use. We have thus tested each possible combination of these schemes, and compared the
results with those of each isolated technique. This was done to evaluate if the individual

contributions of the updating methods still have beneficial effects when they are combined.

"The results for other test images are presented in Figure C.24 of Appendix C.
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Figure 6.23: Results for MMP-I with the use of new dictionary updating with the
additive symmetric block, for images PP1205 and PP12009.

Based on these experimental observations, the best combination of updating methods was
chosen.

A detailed description of all tests needed to cover the possible combinations of the
discussed methods would be very extensive and unnecessarily tedious. Therefore, we chose
to briefly describe the main conclusions of these tests and present only the most relevant
results. The best results were achieved by the combination of all updating strategies, which

confirms the usefulness of the studied techniques. Nevertheless, two other combinations
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Figure 6.24: Results for MMP-I using combinations of the new dictionary updating

techniques, for image Lena .

achieved almost equivalent results, namely a) the use of geometric transforms combined
with block displacements using s = 2 and b) the isolated use of displacements with s = 4.
However, for all these cases, the PSNR gains corresponding to the use of just the displaced
blocks with s = 2 were marginal. Therefore, taking into account the increased computa-
tional complexity resulting from the introduction of extra dictionary blocks, we conclude
that the isolated use of the displaced blocks with s = 2 is a better option. Figures 6.24
and 6.25% compare the results for MMP-I using the original dictionary updating technique
(MMP-I), the new updating strategies using only displaced blocks with s = 2 (MMP-I
Displaced 1/2) and the new updating strategies when all of the studied methods are used
(MMP-T All).

Other important conclusion of this study is that the effects of the proposed redundancy
control methods become even more relevant when the updating techniques are used. In
fact, the use of multiple blocks to update the dictionary generates a large number of new
patterns, thus increasing the redundancy among the dictionary vectors. To reduce this
effect, the redundancy control techniques, developed in Section 6.2.2, were applied. This
combination resulted in a very efficient compromise between two opposite goals: increas-

ing the approximation power of the dictionary, while avoiding a compromising redundancy

8The results for other test images are presented in Figure C.25 of Appendix C.
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Figure 6.25: Results for MMP-I using combinations of the new dictionary updating
techniques, for images PP1205 and PP1209.

among its patterns. Another interesting observation is that some of the updating tech-
niques, that originally introduced coding losses, became favourable when the redundancy
removal was applied. Moreover, the comparative results among the techniques discussed in
this section change slightly when redundancy control is used. Therefore, all of the results

presented in Figures 6.24 and 6.25 already use the redundancy reduction method described
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Figure 6.26: Effects of using redundancy control with new dictionary updating tech-

niques (using displaced blocks with s = 2), for images Lena and PP1205.

in Section 6.2.2. Figure 6.26° presents an example of the effect of using redundancy control

for the most favourable updating strategy, i.e. the use of displaced blocks with one half of

the block dimension.

The updating strategies described in this section were also evaluated as a context

conditioning criterion, to be used in the dictionary partitioning scheme described in Section

9The results for other test images are presented in Figure C.26 of Appendix C.
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Figure 6.27: Results for MMP-II for image Lena, when context conditioning associ-

ated with the code-vectors’ origin is used.

6.1. In this case, separate partitions were created to distinguish the blocks that were
originally created using each different updating criterion (displaced blocks, geometrically
transformed blocks, etc.). However, experimental results have shown that these extra
partitions lead to no performance improvements, as can be seen in Figure 6.27 for the
case of image Lena. This is mainly due to two reasons: first, the probability distribution
associated with the use of different dictionary updating processes does not favour the two-
step encoding; second, the increased number of partitions (arithmetic encoding contexts)
makes it harder for the arithmetic coder to learn the distribution statistics associated with

each context.

The increased efficiency of the new updating procedure described in this section is
accompanied by a larger number of dictionary vectors, that severely increases the com-
plexity of the coding algorithm. This is because the redundancy reduction performed by
the hypersphere restriction is in fact able to avoid the inclusion of redundant blocks, but
is not capable of avoiding the insertion of new patterns, that are sufficiently different from
all other dictionary vectors, but are not useful to approximate future image patterns. A
discussion on this topic is presented in the following section, together with the proposal of

techniques that significantly reduce, or even cancel, this complexity escalation.
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6.4 Avoiding the inclusion of unnecessary blocks

In Section 6.2.2 we developed a redundancy control algorithm that avoids the insertion of
blocks that are very similar to those already present in the dictionary. The performance
gains of this process come from the concentration of all similar patterns into one single
index of the dictionary. In this section we also deal with the problem of removing code-
vectors from the dictionary, but we tackle this problem from another point of view: we
try to avoid the inclusion of new patterns that will not be useful in future approximations
(i.e. code-vectors that will never be used). The insertion of these code-vectors does
not necessarily reduce the compression performance, since by updating the probability
histograms of the coding symbols, the arithmetic encoder tends to eliminate the effects of
the non-used elements. Therefore, a significant impact in the coding performance of the
method should not be expected.

This is very different from what happens with the elimination of redundant blocks, e.g.,
through the use of the hypersphere technique. In this case relevant blocks, i.e. blocks with
relevant probability counts, are condensed in one single element, meaning that we are in
fact eliminating vectors that would cause an increase in the average entropy of the used
index symbols. One would expect the hypersphere to also eliminate some vectors that
correspond to useless patterns, but this has a less significant impact on the performance
of the encoder.

The previous discussion led us to consider the elimination of unnecessary blocks as a
secondary objective, since at this stage, as we have already pointed out, the main focus
of our work is to maximise coding performance. Furthermore, as we have observed in
previous attempts to restrict the dictionary growth, trivial block elimination methods tend
to decrease the coding performance. Nevertheless, the large escalation of the dictionary
size for the new updating methods, described in the previous section, has the effect of
severely increasing the computational complexity of the method. This motivated the study
of these techniques, as a way to efficiently control the computational complexity without
compromising the algorithm’s efficiency.

In an initial study of the MMP algorithm (see Section 3.4.1), the use of simple meth-
ods that limit the maximum number of dictionary elements was investigated, but these
schemes were shown to degrade the algorithms’ performance. This losses are caused by the

elimination of code-vectors that would be useful in future approximations. In this section
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Scale | lb=0 | lo=1|1l,=2 | lo=3 | lo=4 | lb=5 | lb=6 | l,b=7 | I, =38
1=0|100,0% | 00% | 00% | 00% | 00% | 00% | 00% | 0,0% | 0,0%
1=1]| 32,2% | 16,1% | 19,3% | 28,1% | 1,1% | 03% | 02% | 0,0% | 2,6%
1=2| 122% | 2,7% | 27,6% | 37,7% | 158% | 0,1% | 0,0% | 0,7% | 3,3%
1=3] 10,0% | 07% | 75% | 14,2% | 58,7% | 3.8% | 14% | 35% | 0,3%
=4 02% 01% | 15% | 95% | 10,8% | 17,0% | 42,9% | 3.8% | 14,2%
=51 26,1% | 02% | 0,7% | 56% | 15,6% | 65% | 34,1% | 7,7% | 3,5%
1=6| 55% 00% | 13% | 03% | 69% | 10,1% | 11,9% | 30,3% | 33,9%
1=7| 58,3% | 00% | 05% | 14% | 05% | 31% | 14,3% | 24% | 19,5%
=8| 43,6% | 00% | 00% | 00% | 05% | 05% | 11,3% | 159% | 28,2%

Table 6.1: Percentage of used code-vectors of each scale, [, that were created from

blocks with an original level, [,, for image Lena coded at 0.5 bpp.

we investigate two techniques that successfully eliminate dictionary blocks without caus-
ing performance losses. The first approach limits the range of the scale transforms used
in the updating step of the dictionary. The second method adaptively chooses the max-
imum block dimensions. Both methods were optimised in order to achieve the expected

computational gains without compromising the encoding performance.

6.4.1 Limiting the range of scale transforms

In the original algorithm, when a new block Sl of level I, is created, scaled versions of

sl

2o are used to update the dictionary at all used scales. In this process, an original 2 x 1

block is expanded to patterns that may reach a size of 16 x 16 pixels. Due to the large
difference in the blocks dimensions, the scale transformations for which the final scale is
very different from [, may create new blocks that are not closely related to the original
patterns. Because of this, the usefulness of these new code-vectors may be reduced. In
order to study this phenomenon, we have observed the number of used blocks of each scale
and the level [,, at which they were originally created. Table 6.1 shows, for each dictionary
scale [ (represented in the table’s lines), the percentage of used code-vectors that were
created from blocks of each original scale [,. These data were collected from an MMP-I
encoder used on image Lena compressed at 0.5 bpp. From table 6.1 we notice that for each
dictionary scale, the encoder tends to use mainly dictionary patterns that were created at

a scale [ that is close to [,. The exception for this is the use of blocks created at scale 0,
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that correspond to uniform elements that were created with the dictionary’s initialisation.
This behaviour was also observed for other test images and compression ratios.

The previous result shows that a 16 x 16 block created from the expansion of a 2 x 2
block has a very small probability of ever being used (0% in the example of table 6.1). This
knowledge was exploited by adapting the scale transform procedure used for dictionary
updating. In the new procedure, each new block created at an original scale [, is only used

to update dictionary scales [ that are “close” to l,. Namely, only scales in the range
max{0,l, — Liow} < I <min{lnrae,lo + Lhign} (6.6)

are updated, instead of all available scales. In this equation, the values of L;,, and Lyp;gp
define the bounds of the scale interval that is used in the dictionary adaptation. Several
tests were performed in order to determine the best values for these bounds. The optimum
values for these parameters varied slightly for different image types. However, as a general
rule, the use of Ljo, = Lpign = 2 allowed for a significant reduction on the computational
complexity, without a relevant loss in the final quality of the compressed images. One
interesting fact is that, for some particular images and compression ratios (mainly text
and compound images), such a restriction on the updated scales leads to some marginal
PSNR performance gains. This happens because, in such cases, a large number of useless
patterns are introduced by the original updating process.

Figures 6.28 and 6.29'0 present a summary of the effects of scale restriction in the

dictionary adaptation process. It shows the RD performance for:

o MMP-I combined with new updating techniques using extra displaced blocks with
s = 2, dictionary segmentation and redundancy reduction (from this point on, this

combination will be referred to as MMP-II A);

e The previous technique combined with scale restriction (from this point on, this

combination will be referred to as MMP-II B).

In spite of the equivalent compression results when all scales are used and when one restrict
the scales using Ljo = Lpign = 2, the effects of this technique in the dictionary growth
(and hence in the computational complexity of the method) are very significant, as will be

discussed in section 6.4.3.

10The results for other test images are presented in Figure C.27 of Appendix C.
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Figure 6.28: Results for MMP-II when scale restriction in dictionary adaptation
(MMP-II B) and scale restriction plus adaptive block size (MMP-II C) are used, for

image Lena.

6.4.2 The use of adaptive block sizes

Another factor that affects the computational complexity is the maximum block size used
by MMP, that corresponds to the highest level of the MMP segmentation tree. Smaller
block dimensions mean that segmentation trees with smaller depths have to be used, both
in the optimisation of the prediction mode and in the search of the best match, decreasing
the overall complexity. Originally, initial 1616 blocks were used for all cases, since they
provided the best rate-distortion performance gains, especially for high compression ratios,
where the use of large blocks allows bit rate savings for coarser approximations. However,
for low compression ratios, where smaller distortions are targeted, blocks of the largest
scales are almost never used. This phenomenon was previously discussed for the original
MMP algorithm (see Figure 3.13 and the its discussion) and similar results were also

observed for MMP-I-based encoders.

We have exploited this fact by using an adaptive rule that controls the initial MMP
block size. The idea is to use larger blocks when higher compression ratios are targeted,
while smaller blocks are progressively used for lower compression ratios. We have again

related the target compression ratio with the input parameter A, that is used in RD op-
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Figure 6.29: Results for MMP-II when scale restriction in dictionary adaptation
(MMP-II B) and scale restriction plus adaptive block size (MMP-II C) are used, for
images PP1205 and PP1209.

timisation (see Section 6.2.2 for a description of this process). An experimental study

of both the computational complexity and coding efficiency of MMP-I, for various initial
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block sizes, led to the following equation:

8 (16 x 16 blocks), if A > 150;
L(A) =147 (16 x 8 blocks), if 25 < A < 150; (6.7)

6 (8 x 8 blocks), if A\ < 25;

where L is the scale of the used macroblocks. As for the case of the distortion threshold
rule, described in Section 6.2.2, a negligible overhead (two bits) must be used to transmit
the macroblock size to the decoder. The use of this rule avoids any relevant quality loss
for all tested images at all target bit rates, due to the current focus on the algorithms’
performance. The performance of MMP-II B with adaptive block size (ABS), referred to
as MMP-II C, is presented in Figures 6.28 and 6.29. The experimental results show an
equivalent RD performance when ABS is used. Nevertheless, a significant reduction in the
computational complexity was achieved when this technique was applied. This effect will

be discussed in Section 6.6.2.

6.4.3 The effects on dictionary adaptation

In this section we discuss the effects of scale restriction and the use of ABS on the dictionary
growth. Figure 6.30 shows the final number of elements for all scales of the dictionary for
image Lena, encoded with the original MMP-I (a), MMP-IT A (b), MMP-II A combined
with scale restriction (MMP-II B) (c) and MMP-II B with ABS (MMP-II C) (d). In this
figure it is possible to observe the severe effects of the additional blocks used by MMP-IT A
in the dictionary growth. A large increase in the final number of elements of the dictionary
is noticeable, even with the use of the redundancy control algorithm. The scale limiting
procedure (MMP-II B) also has a noticeable effect on the growing pattern of the dictionary.
One observes a large reduction on the number of elements for all scales, with a larger effect
on the smaller (lower than 4) and larger (higher than 6) scales. This is so because most
used blocks have scales in the [2,4] interval. This means that the updating procedure will
be more frequent for the scales in the [0, 6] interval, which accounts for the reduction of
the cardinality of D7 and D8. The use of the redundancy reduction scheme explains the
decrease of the number of code-vectors for the smaller scales (see Section 6.2.2). Finally,
the effects of using of ABS with MMP-II (MMP-II C) are only noticeable for the higher

scales of the dictionary. Scales 7 and 8 of the dictionary are only used for the first seven
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Figure 6.30: Final size of the dictionaries of each scale vs. the compression ratio, for

image Lena: a) MMP-I; b) MMP-II A; ¢) MMP-II B and d) MMP-II C.

and three points of Figure 6.30, respectively. This is so because these scales are disabled,

depending on the used value for the A encoding parameter. In terms of the remaining

scales, one notices only a small reduction on the number of elements used for scale 6. All

other scales have more or less the same number of code-vectors.

6.5 Norm equalisation of scaled blocks

In the previous chapter we have demonstrated the accuracy of the generalised Gaussian

model in the characterisation of the predicted residue signal used by MMP-I. In this section

we investigate some theoretical results on the problem of encoding GG sources with vector-

quantisation. Previous works describe the properties of the GG sources that are useful in

the project of VQ encoders [74, 78]. Based on some generic premises described in these
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references and experimental tests aiming the analysis of the statistical properties of the
MMP-I’s source vectors, we introduce a norm equalisation process in the MMP’s dictionary
update procedure.

Theoretical results for GG sources with a shape parameter o describe the stability of
the L norm of the input vectors x, when their dimension tends to infinity [78, 74]. The

L® norm (also called the a-norm) of a vector x = (xg,z1,...,2,—1) is defined as:

1/a
|| = (Z\M‘l) : (6.8)

A simple case with particular interest is the Euclidean or L? norm of a vector, defined as

jaly = [[al| = \/a? + 2§ + ... +a2. (6.9)

The L? norm of a vector corresponds to the common measure of the vector’s length. When
applied to the difference of two vectors, ||x — y|| returns the Euclidean distance between
x and y.

In [78] a study of the properties of a Laplacian source is presented and a new source
coding theorem is described. Similar results are then demonstrated for GG sources in [74].
In sum, these results show that, for high rate and dimension, N, the GG source vector’s, x,
will cluster on a thin “shell” of constant probability, meaning that the optimum source code
can be asymptotically designed based only on a N-dimensional shell corresponding to the
locus of the vectors with a constant L® norm, where « is the shape parameter of the GG
model of the source. Both theoretical and experimental observations show, nevertheless,
that the standard deviation of the L* norm increases with dimension, meaning that the
considered shell is not infinitely thin. However, from a distortion point of view, the shell
is of practical interest when one considers that its thickness relative to its distance from
the origin tends to zero, for large vectors [74].

This result suggests that the use of dictionary blocks with a uniform L* norm could
provide a better approximation for the residue blocks used by MMP-I. However, one has
to consider the limited size of the blocks used by MMP-I, as well as the skew between
the theoretical model and the actual predicted residue signal, that may limit the accuracy
of this model. Because of this, an experimental evaluation of the regularity features of
the predicted residue blocks used by MMP-I was conducted. This study demonstrated

a regularity in the norm of the predicted residue blocks used by MMP-I. Based on these
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Figure 6.31: Histograms of the L% norm of the predicted residue blocks approxi-
mated by MMP-I for each scale of image Lena coded at 0.83 bpp.

observations, Section 6.5.2 describes a new norm equalisation procedure that is consistently

able to increase the encoding efficiency.

6.5.1 Probability distribution of the predicted residue norms

In this section we study the distribution of the L™ norm of the MMP-I predicted residue
blocks. In order to do this, the actual prediction residue blocks approximated by MMP-I
at different scales were analysed and the value of the L® norm for each of these blocks was
determined. Figure 6.31 represents the histograms of the L% norm of the residue blocks
of each scale, for image Lena encoded at 0.83 bpp with MMP-I. The abscissa axes of the
representations were limited from zero to five times the average value of the corresponding
distribution (the remaining values are sufficiently low to be negligible). The L%® norm was
chosen because the estimated value for the shape parameter of the generalised Gaussian
model of the predicted error distribution is 0.56 (see table 5.2).

In Figure 6.31 we may observe a concentration of the vectors’ norms. This originates
narrow distributions, that are very similar except for the higher and the lower scales. For
the higher scales, one does not have sufficient blocks in order to be able to build a good

distribution model. This happens because, at this relatively low compression ratio, MMP-
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Figure 6.32: Normalised histograms of the L® norm of the MMP-I predicted residue

blocks for each scale, for image Lena coded at 0.83 bpp.

I tends to use smaller blocks to approximate the original image. At the lower scales we

observe a greater scattering of the blocks norms. These scales are used by MMP-I when

the prediction process is not efficient enough to create a smooth residue pattern, that can

be approximated by a larger block. These cases generally correspond to residue samples

with a greater variance. Also, for these smaller blocks the infinite size condition is severely

violated and the norm concentration property does not hold. Despite this, from scale 2

(2 x 2 blocks) to scale 6 (8 x 8 blocks), one may observe a reasonably narrow distribution

of the L% norm distribution, that seems to be uniform across these scales.

In order to evaluate if this phenomenon depends on the used norm, Figure 6.32 com-

pares the plots of the previous figure with equivalent histograms, determined using different

L% norms. All plots are normalised using the maximum frequency value of each histogram,

in order to facilitate the comparison for values of o = 0.2 (left column), o = 0.5, a = 0.75,

a =1 and a=2 (right column). We may see that narrow distributions are observed also for

values of « different from the estimated shape parameter for the corresponding generalised



6.5 NORM EQUALISATION OF SCALED BLOCKS 155

80

gca:ez
S 70 LT | Scale 3
S 0 e, gca:e4
3 | T | Scale5 =
£ Scale 6 -+
B 50| o Scale 7 -+
£
S 40f 1
2,
5 30r 1
e e
8 e T
g 10 F e e ——

0 1
02 03 04 05 06 075 1 2
o

Figure 6.33: Kurtosis of L norm distributions for the represented block scales and

different values of «.

Gaussian model (equal to 0.56, see table 5.2).

Given this apparent similarity of distributions for the several values of a, we need
to further evaluate the regularity of the L® norm across all scales, for a given value of
a. In terms of coding efficiency, one would desire similar distributions, perfectly centred
around a constant value of L%, at all scales. In order to evaluate what is the best value
for «, two factors were studied: first, how narrow are the distributions of the norm values
for each scale, and second, to which extent do the histograms’ higher frequencies occur
around a constant value. In order to evaluate the first factor, we plotted the value of each
distributions’ kurtosis [80]. The kurtosis of a probability distribution is a measure of its
concentration around its peak. The reference value is zero for the normal distribution.
Positive values correspond to narrower distributions than the Gaussian, while negative
values result from frequent high variations. The kurtosis of the probability distribution of
the L* norm of the MMP-II residue blocks is represented in Figure 6.33, for several values
of a and for the block scales with a relevant number of used blocks. This figure shows
that the value of the distributions’ kurtosis tends to be generally higher for values of «
between 0.5 and 1. Nevertheless, the observed variations are two small for distinguishing

4

the distributions for each value of «, because the “peakedness” does not have a linear
variation with the kurtosis.

Figure 6.34 plots the most frequent value of each L% norm (that corresponds to the
peak of the corresponding histogram), as a function of the block scale. In order to evaluate

the accuracy of this value, two bound lines corresponding to the distribution’s standard
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Figure 6.34: Most frequent value of each L™ norm, as a function of the block scale

(bold line), for the represented values of .

deviation added and subtracted from the considered value are also represented. In these
plots we can see that the peak of the norm histogram has a smaller variation for larger values
of o, which seem to indicate a grater regularity for these cases, and thus an advantage of
using higher values of o. Nevertheless, this regularity is partly a consequence of the much
smaller dynamic range of the norm values, and this advantage must be confirmed with
experimental tests. Generally, the L® distributions are concentrated in a small range of
values, except for the very small or very large scales, where the number of observed blocks,
or the number of vector elements, are too small. In spite of this, for « values below 2, we

observe a growing tendency of the norm value with the considered scale.

The presented data are representative of what happens generally, but some variations
are observed depending on the considered image and target compression ratio. For non-
smooth images, like text and compound images, the prediction process tends not to be as
efficient as for smooth images. In these cases, the predicted residues tend to have wider
distributions, as do the residue blocks’ norms. This also happens for smooth images, when
higher compression ratios are used. In these cases we observe the same tendency described
in Figure 6.34, but with a higher variation of the norm value. Nevertheless, this higher

variation is also accompanied by larger standard deviations, meaning that the “confidence”
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interval, represented by the two bound lines of Figure 6.34, is also larger.

Furthermore, depending on these same factors (image type and compression ratio),
MMP-I tends to use mostly blocks of a given scale range: for higher compression ratios
and smoother images MMP-I uses larger blocks, while for lower compression ratios or more
detailed images, MMP-I uses mainly blocks from the lower scales. In these cases one has
that for the least used scales the observations loose significance. Nevertheless, for other
scales one may observe an identical behaviour to that presented in the previous discussion

of a particular case.

6.5.2 A new norm equalisation procedure

The experimental investigation performed in the previous section demonstrated that, in
spite of the reduced dimensions of the used blocks, there is a consistency in the norm
of the predicted residue vectors of different scales. This means that when a new pattern
is generated by MMP-I at a scale [,, the new blocks used to update the dictionary at
different scales, resulting from the scale transformation of Rle, should have a similar norm.
This norm preserving property is not present in the original scale transforms. The scale
transformations, that are basically related with linear interpolations of the original blocks,
tend to transform the block’s norm in the same proportion as the relation between the
number of elements of the original and scaled blocks.

In order to exploit the norm regularity, a new version of the scale transformations was

implemented. It uses the original scaling procedure, i.e.
R' =T] (R"), (6.10)

but introduces a norm equalisation step, where one assures the equivalence of the L® norms

of the original (R%) and the scaled block (R!), i.e.

R! = sl!TH(RY), (6.11)
where
[R*|o
o= R, (6.12)

The study presented in the previous section indicates that this procedure should be
adequate for several norms. Experimental results confirmed this result and demonstrated

that the L® norm used in the new scale transformation step does not have to be very
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accurate. The use of norm equalisation generally improved the final quality of the recon-
structed image, for values of « in the interval [0.2,2]. Changing the value of o causes some
variation in the final result, but the L' norm represents a good compromise for all tested
images, because it achieves either the best result or very nearly that, for all tested images
and values of o. Besides this, the L! norm also has the advantage of being computationally
more efficient to implement.

Geometrically, the use of L' norm is also a compromise between the actual value of
the GG shape parameter of the signal and the reduced dimensions of the residue vectors
used by MMP-I. From Table 5.2 we have that the GG distributions of the input signal are
characterised by a value of « in the range [0.3, 1], suggesting that the best value of o would
be L%5. Nevertheless, experimental tests revealed a small advantage when the L! norm is
used. This may result from the fact that, for blocks of the same dimension, the block shell
is thinner for higher values of o [74].

One interesting fact observed in the simulations is that the described procedure is in
fact effective, but only when its use is restricted to block expansions, maintaining the
original contractions without the use of norm equalisation. One may easily understand the
reason for this fact by observing once again the Figure 6.34. Considering the plot for L'
as an example, we can see that the use of the norm equalisation procedure corresponds
to a shift in the abscissa axis, maintaining the same ordinate value. A block expansion
corresponds to a left-to-right movement in the plot. In this case, the resulting norm will
most probably fall within less than one standard deviation from the most frequent value
of the L'-norm at the final level. Nevertheless, for block contractions, where we use a shift
form right-to-left, the probability of the norm of the new block belonging to this “tolerance”
interval is very small. This means that, in this case, we are in fact creating a new block
that will not be efficient in approximating the residue vectors of the new scale. Also, the
use of scale restriction in dictionary updating (see Section 6.4.1) limits the amplitude of the
scale shift, increasing the chances that the norm of the new block belongs to the interval
defined by the bound lines in Figure 6.34.

Figures 6.35 and 6.36'! show the quality gains for MMP-I when the norm equalisation
procedure is used. We can see that this technique generally allows for quality gains for

smooth images (that range up to 0.2 dB), without compromising the quality of non-smooth

1The results for other test images are presented in Figure C.28 of Appendix C.
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Figure 6.35: Results when L' norm equalisation is used with MMP-II A, for image

Lena.

images, where the smaller efficiency of the predictive step generates a set of predicted
residue blocks that do not correspond to the used model as accurately as those of smooth

images.

6.6 Some considerations on the computational complexity of

MMP-based methods

In this section we start by presenting a brief discussion on the computational complexity
of the proposed algorithms and on the factors which have the most relevant effects on this
measure. We then describe some implementation techniques that effectively reduce the
complexity of MMP-based methods. Finally, we evaluate the effects on the computational
complexity of the several techniques that were proposed along this thesis.

Since MMP-based encoders use an approximate pattern matching scheme, they have
a computational complexity similar to that of standard VQ methods, that is traditionally
higher than that of transformed-based encoders. The computational complexity of these
encoders is mainly associated with the calculations of the sum of square differences (SSD),
used in the search for the best match for a given image block. Because of this, the com-

plexity closely depends on the number of blocks stored on the dictionary. Besides this, the



160 6. EFFICIENT DICTIONARY ADAPTATION

Image PP1205

40

38

) rd
30 /
ol

Original ——
/ L1‘ Equal T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
bpp

PSNR (dB)

26

Image PP1209
40

38 —

36 —

34

32 /

30 /

28 /

/ Original ——
L1 Equql —%—

0.2 0.4 0.6 0.8 1 1.2 1.4 16
bpp

PSNR (dB)

26

Figure 6.36: Results when L' norm equalisation is used with MMP-II A, for images
PP1205 and PP1209.

MMP encoder also has another relevant time consuming task, that is related with the com-
putation of the rate associated with every encoded symbol. This involves the computation
of a logarithmic function, that is traditionally a computationally expensive task.

The use of predictive techniques does not impose a significant additional computational
cost, since it involves only a few additions. Nevertheless, the use of prediction in MMP-I
implies the optimisation of the encoding process for the residue blocks determined for each

of the M considered prediction modes. This means that one should expect MMP-I to be
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about M times more complex than the original MMP algorithm. In fact, this is only the
case for MMP-I using FBS. Because MMP-I uses hierarchical prediction, every prediction
level must be optimised for all of the available prediction modes. This causes a severe
increase on the computational effort, when compared with the original MMP. As we have
stated before, the computational complexity of the algorithms developed in this thesis was a
secondary concern, when compared with the improvement of the compression performance
of MMP for smooth images. Despite this, some of the described techniques enable an
interesting reduction of the complexity of these algorithms, as will be discussed later.
Also, a significant reduction can be achieved by using some appropriate implementation

strategies. A brief summary of some of these strategies is presented in the next section.

6.6.1 Implementation issues

As has been previously discussed, the operations that must be considered for the complexity
analysis of MMP are SSD computations, used for the search of the best match, and the
computation of the Lagrangian cost function for each block. Determining the Lagrangian
cost for a block involves processing a logarithmic function, since the rates involved in the

cost equations are generally estimated by:
R(i) = —loga(P(ills)), (6.13)

where i is the symbol for which the rate is being estimated and P(i|l;) is the probability
of i in the considered probability context (in this case, the one associated with scale
l;). Roughly speaking, we have to compute one log function value for each attempted
block match. A comparatively small number of log values are also determined for the
segmentation and prediction mode flags.

The most time consuming task is the determination of the SSD in the search for the
best match for a given block. In a straightforward implementation, this process implies
one integer addition and one integer multiplication for each pixel of each code-vector in the
dictionary. This means that the number of add and multiply operations used to calculate
the SSD values when searching for the best match, is given by the number of dictionary
elements at each scale, multiplied by the corresponding number of block pixels. In most
computer systems, the multiplication of two numbers requires a much greater computa-

tional effort than their sum. In the case of MMP-based methods, the multiplications are
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used to determine the squared differences for the SSD computations. A simple technique
to avoid the computation of these operations is the use of a table with the squared values
of each possible difference. This replaces each multiply operation by one memory fetch
operation. Similarly, a table that stores the values of the base 2 logarithms may be used
in the computation of the Lagrangian cost functions. This allows a considerable reduc-
tion in the computational complexity of the methods, at the cost of additional memory
requirements, associated with the square and log tables. These memory requirements are,
however, tolerable in a standard personal computer (PC) based implementation.

A significant reduction in the number of operations used in the search for the best
match can also be achieved through the use of fast search methods, like those described
in [81, 82]. These methods efficiently limit the number of dictionary blocks that must be
tested when searching for the best match, reducing the number of operations associated
with this process. Due to the focus on compression efficiency, only optimum schemes
(i.e. schemes that always return the best match) were considered in our implementation.
Much larger gains in computational efficiency have been reported in the literature for sub-
optimum search methods. Nevertheless, the simple techniques described in this section led
to interesting gains in complexity. We feel that further gains could be introduced by some

complexity oriented implementations of the algorithms, in a future work.

6.6.2 On the computational complexity of the proposed algorithms

In spite of the complexity gains achieved by the above implementation techniques, the
complexity of the proposed algorithms is still strongly dependent on the number of code-
vectors. Because of this, the changes in the dictionary adaptation procedure also impact
on the computational complexity of the method. Some of the proposed techniques have
almost no effect on the computational complexity of the algorithm, while others have a
strong impact on this value. In this section we briefly discuss the complexity implications
of each of the proposed dictionary adaptation algorithms.

The use of dictionary partitioning, described in Section 6.1, is one example of a tech-
nique that has no noticeable effect in the computational complexity of the encoder. Another
case is the use of norm equalisation, described in Section 6.5.2. This is because the compu-
tation and equalisation of the L'-norms of the new blocks is a very simple procedure that

has no relevance when compared with the other tasks involved in MMP-based compression.
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Figure 6.37: Final number of elements for scale 8 of the dictionary vs. rate for image

Lena.

The redundancy reduction technique, proposed in Section 6.2.2, has some beneficial effects
on the complexity of the MMP-II encoder, since it avoids the introduction of some elements
in the smaller dictionary. The measured complexity gains depend on the reduction of the
number of dictionary elements, and increase with the value of parameter d.

Other design techniques have a significant impact on the computational complexity
of the method. The techniques proposed in Section 6.3 are based on the inclusion of
extra elements in the dictionary. The extra code-vectors cause a significant increase of
the dictionaries’ cardinalities (relate to Figure 6.30 and the corresponding discussion, on
Section 6.4.3). The escalation of the dictionary size for the new updating procedure severely
increases the complexity of the method. Figure 6.37 summarises the effects of the use of
extra displaced blocks with s = 2 (MMP-IT A) for image Lena. Only the size of D8 is
presented. The comparison between the number of code-vectors for MMP-IT A ws. that of

MMP-I is well representative of the additional complexity introduced by the new dictionary

blocks.

On the other hand, the use of scale restriction in dictionary updating (Section 6.4.1)
and the use of an adaptive block size with MMP-II (Section 6.4.2) have the opposite effect.
As we have discussed in Section 6.4.3, these techniques cause a considerable reduction on

the number of elements of the dictionary. This reduction can also be observed in Figure
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Figure 6.38: Increase in computational complexity of the new updating techniques

relative to MMP-I, for image Lena.

6.37, that shows a reduction of about 75% on the dictionary size for MMP-II B and MMP-
IT C when compared with MMP-II A (see Figure 6.30 for an analysis of all dictionary
scales).

Due to the computational optimisation techniques discussed in the previous sub-section,
it is not a trivial task to theoretically evaluate the relation between the computational
complexity and the number of dictionary elements, or the used block size. Because of this,
an experimental study was performed, in order to evaluate the impact of the proposed
techniques in the reduction of the methods’ complexity. Figure 6.38 shows the percentage of
additional computational complexity, relative to MMP-I, for: MMP-I with extra displaced
blocks (MMP-II A); MMP-II A with scale restrictions (MMP-II B) and MMP-II B with
blocks of adaptive dimensions, using equation (6.7) (MMP-II C). The experimental results

have shown that:

e For MMP-II A, the computational complexity grows at a smaller rate than the num-

ber of dictionary words;

e Limiting the range of the updated dictionary scales allows for an important reduction

of the computational complexity for all compression ratios;

e The combined use of scale restriction and adaptive block size allows for a significant
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reduction of the complexity. In fact, for some rates we observe a reduction in the total
computation time for MMP-II using these techniques (MMP-II C), when compared
with the original MMP-I.

One should note that, although the above techniques provide a large reduction in com-
putational complexity for MMP-II, it is still, at least, one order of magnitude higher than
that of MMP, that already was much more complex than the one of transform-based meth-
ods. Also, all tests were performed using C-based implementations of the algorithms that
were mainly intended for compression performance evaluation, as well as for the extraction
of several coding statistics, such as those that have been presented in the previous sections.
The implemented MMP-based encoders have only been subjected to a minor effort to op-
timise them for execution performance, corresponding to the implementation techniques
described in Section 6.6.1. Future work will focus on other efficient ways to reduce the
computational burden of the proposed methods. Some of the described techniques give
a good indication that good computational gains can be achieved at the cost of minor
performance losses. However, at this point of our investigation the main focus is still on

optimising the algorithm’s rate-distortion performance.

6.7 Experimental results for MMP-11

In the previous sections of this chapter we have presented several techniques for MMP
dictionary adaptation. Experimental results were analysed for each independent technique,
in order to assess its individual contribution to the compression performance of the MMP-I
encoder. In this section we present a summary of the experimental results for the combined
effects of the methods described in this chapter, as well as a brief discussion on their effects.

Along the presentation of the dictionary adaptation methods we were able to determine

which techniques contributed to a better encoding performance, namely:

e The context conditioning for the adaptive arithmetic encoder used on the dictio-
nary indexes’ symbols, described in Section 6.1, results in a more efficient lossless

compression of the MMP symbols;

e The redundancy control scheme, proposed in Section 6.2, allows for an efficient elimi-
nation of redundant code-vectors, achieving a more efficient compromise between the

average entropy of the indexes’ symbols and the dictionary’s approximation power;
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e The enhanced dictionary updating strategies, described in Section 6.3, allow for the
inclusion of new code-vectors that improve the approximation power of the dictio-
nary’s patterns. In this case, we have used displaced blocks with s = 2 (see Section
6.3.2), because they represent the best compromise between compression efficiency

and computational complexity;

e The use of scale restriction and ABS, proposed in Section 6.4, allow for a significant
reduction of the computational complexity of the method with a negligible decay in

encoding performance;

e The L'-norm equalisation procedure, defined in Section 6.5, allows for a greater
concentration of the dictionary patterns, increasing the coding efficiency of the algo-

rithm.

As was previously mentioned, we refer to MMP-I combined with these techniques as
MMP-II. Figures 6.39 to 6.41 compare the results of MMP-II with those of MMP and
MMP-I, in order to evaluate the effects of the dictionary adaptation techniques on the
algorithm. The results for the JPEG2000 [12] and H.264/AVC high profile Intra-frame
image encoder [13]| are also presented, in order to evaluate the relative performance of
MMP-IT when compared with the current state-of-the-art image coding algorithms.

The depicted experimental results demonstrate that the use of the new techniques
increases the performance of the MMP-I encoder for all test images for all compression
ratios. For text and compound images (see Figure 6.39), the introduced gains add to the
original performance advantage of MMP-I, over the transform-based encoders. For text
image PP1205, MMP-II achieves an advantage of about 6 dB over JPEG2000 and 5 dB over
the H.264/AVC high profile Intra frame encoder. For compound image PP1209, MMP-II
also outperforms all other tested methods, presenting gains over MMP-I of about 0.5 dB
and an advantage over MMP of more than 1 dB. When compared with the state-of-the-art
encoders, MMP-II achieves gains over JPEG2000 of about 2 dB, while the advantage of
the proposed method over the H.264/AVC encoder goes up to about 1 dB.

The usefulness of the dictionary adaptation process is also evident for natural scene
images, where MMP-II nearly eliminates the performance gap that exists between MMP-I
and the transform-based encoders. In fact, MMP-II is generally able to achieve a coding

performance equivalent to that of JPEG2000 for this type of images. In some cases it is
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Figure 6.39: Experimental results for MMP-II, for images PP1025 and PP1209.

even able to beat the DWT-based encoder, as for the Cameraman image. When compared
with H.264/AVC, the relative performance of MMP-II depends on the used test image.
MMP-II tends to achieve a close result for the higher rates, but still presents a small
performance disadvantage for higher compression ratios. Image Cameraman serves once
again as an exception, but for image Peppers MMP-II is equivalent to H.264/AVC for
compression ratios below 0.35 bpp (see Figure 6.41).

A brief perceptual evaluation of MMP-II is presented in Figures 6.42 and 6.43. For the
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Figure 6.40: Experimental results for MMP-II, for images Lena and Goldhill.

smooth image Lena (Figure 6.42'2), we observe perceptual gains for MMP-II over MMP-1.
Smoother images are produced, with a more accurate representation of areas with a slow
variation in luminance. We also notice that the perceptual quality achieved by MMP-II
is now very close to that of JPEG2000 and H.264/AVC. JPEG2000 introduces a slight
blurring effect, while MMP-II still suffers from mild blocking artifacts. H.264/AVC is able

to avoid these blocking artifacts, trough the use of its post-filtering technique [83].

12Refer to Figures C.29 to C.31 of Appendix C for a representation of the entire images.
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For text image PP1205 (Figure 6.43'3), the perceptual quality advantage of MMP-II
is easily observed. When compared with MMP-I, the use of the new dictionary adapta-
tion techniques cause a reduction in some artifacts that appeared in the background areas
located near the text characters. JPEG2000 introduces some disturbing ringing and blur-

ring artifacts as a consequence of the quantisation of the DWT coefficients. This tends

13Refer to Figures C.32 to C.34 of Appendix C for a representation of the entire images.
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(b) MMP-II (36.94 dB)
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Figure 6.42: Detail for image Lena compressed at approximately 0.5 bpp using
a) MMP-I; b) MMP-II; ¢) JPEG2000; and d) H.264/AVC.

to eliminate higher frequency coefficients of the DWT image spectrum, resulting in the
well known Gibbs phenomenon for the very steep transitions on the signal. H.264/AVC
efficiently avoids the ringing artifacts. This results from the higher adaptability of this
block-based encoder and, once again, from the use of the post-processing adaptive de-
blocking filter. Nevertheless, we observe a clear perceptual advantage of MMP-II in terms

of the distortion in the image’s characters.
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Figure 6.43: Detail for image PP1205 compressed at approximately 0.65 bpp using

a) JPEG2000 and b) H.264/AVC.

6.8 Conclusions

In this chapter we have described several new dictionary adaptation techniques for mul-

tiscale recurrent pattern matching image coding. The use of these methods in MMP-I

resulted in an enhanced coding scheme that we refer to as MMP-II. Each of the meth-

ods described in this chapter explores some feature of MMP-based encoding, in order to

improve its efficiency. One example of this is the use of context conditioning for the adap-

tive arithmetic encoder (see Section 6.1), that achieves a better coding performance by

improving the lossless compression of the MMP dictionary indexes’ symbols. Other useful
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method introduces a L'-norm equalisation procedure (see Section 6.5), that changes the
new dictionary patterns according to a probability distribution criterion, thus increasing
the coding efficiency of the algorithm.

The combination of the several dictionary adaptation methods also results in some
interesting synergies. One example is the combination of the redundancy reduction tech-
niques, described in Section 6.2.2, with the enhanced dictionary updating strategies (see
Section 6.3), that add extra blocks to the dictionary. In the first case we try to selectively
remove dictionary blocks that are not useful in improving the matching distortion. This
reduces the indexes’ average entropy, and increases the performance of the encoder. In the
second case, we aim to over-populate the dictionary space, by introducing new code-vectors
that will help in future block approximations. The joint use of these processes results in an
efficient compromise between their two antagonistic goals, identified in the experimental
study presented in Chapter 3. In this analysis we observed the disparity between the dic-
tionary size and the number of used blocks, but also the advantage of using fast growing
dictionaries.

Other methods were also developed, to eliminate unnecessary dictionary vectors. These
methods, presented in Section 6.4, have proved to be advantageous, allowing a significant
reduction in processing time, with only negligible performance losses.

One interesting point is that, in spite of the obvious connection of these dictionary
adaptation methods with MMP-based algorithms, most of the proposed schemes are generic
enough to be easily used with other adaptive pattern matching algorithms.

In terms of coding performance, MMP-II is able to achieve quality gains over both MMP
and MMP-I for every tested image and all compression ratios. For non-smooth images,
these gains further increase the advantage of MMP-based algorithms over the state-of-the-
art, transform-based encoders. For smooth images, the methods proposed in this chapter
allow MMP-II to reach a performance level similar to that of the JPEG2000 algorithm.

In terms of perceptual quality, MMP-II suffers from some blocking artifacts, that result
from the independent optimisation of each of the image blocks. The use of an adaptive de-
blocking filter justifies some of the perceptual advantage of the H.264/AVC algorithm over
MMP-II. In the next chapter we study a post-processing deblocking scheme for MMP-II,

along with some other techniques that aim at further improving the method’s performance.



Chapter 7

Further improvements to MMP-II

In the previous chapters we have described new schemes that are able to significantly
improve the performance of the MMP algorithm, especially for natural images. The MMP-
I algorithm, described in Chapter 5, uses adaptive predictive techniques to exploit the
spatial redundancy of the images. MMP-II achieves its performance gains through the use
of enhanced dictionary adaptation methods, that were described in Chapter 6.

In this chapter we investigate other ways to improve the performance of MMP-II,
inspired by some observations described in previous chapters. In Section 7.1 we study the
prediction process used by MMP-II. The performance of the current prediction modes is
evaluated and the usefulness of some new methods is tested. In Section 7.2 we describe
a post-processing deblocking method for MMP-II, that increases both the perceptual and
the objective quality for smooth images. This method is based on the MMP deblocking
scheme, previously described in Section 4.3.3. Tests revealed that the original method
leads to severe losses in both objective and subjective image quality, when applied to
MMP-II. The new deblocking process not only corrects these issues, but also enhances the

compression performance MMP-II.

7.1 The prediction process

MMP-IT uses a set of prediction modes inspired by the ones defined for H.264/AVC [13].
A discussion on the prediction process used by MMP-II was presented in Section 5.2.3.
We now return to this subject, motivated by some previous observations on the MMP-II

encoding process, in search for changes that could lead to a better encoding performance
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or a reduction of the computational complexity of the method.

The use of several prediction modes aims a reduction of the predicted error signal’s
activity. Nevertheless, each used prediction mode adds complexity to the method, because
it represents one more option that has to be processed by the encoder. Therefore, the
removal of prediction modes that do not lead to any performance gain will be beneficial
in terms of computational complexity. In Section 7.1.1 we test several configurations for
this purpose. In Section 7.1.2 we investigate the effects of using different block sizes for
prediction, as a way to improve the performance of MMP-II, especially for higher rates.
Finally, in Section 7.1.3 we study the effects of using a new prediction mode, based on an

algorithm originally proposed for texture synthesis, called template matching.

7.1.1 Altering the available prediction modes

In this section we study the effects of disabling some of the prediction modes. The objec-
tives of this study are twofold: first, we intend to further understand the impact of the used
prediction modes in the performance of MMP-II; second, we are searching for nonessential
methods, that may be removed with no loss of encoding performance. From the analysis
of the prediction mode usage, like the one performed in Figure 5.15 of Section 5.3.1, no
obvious conclusions could be reached. Therefore, we have used the knowledge gathered
along the previous sections of this work, to make some educated guesses on what would be
good policies for altering the set of used prediction modes.

The importance of the MFV mode became evident from the discussion presented in
Section 5.2.3. Therefore we tried to eliminate some directional prediction modes. From
Figure 7.1 we notice the use of several prediction directions that are located in the same
angle quadrant. In our tests we have eliminated the prediction modes that are represented
by the dashed lines, creating a new version of the encoder that we refer to as MMP-
IT Pred A. This was done because we hypothesised that if one of these directions should
be necessary, it could be replaced by a neighbour orientation. As an example, a prediction
block using mode 7 could eventually be replaced by the usage of either mode 3 or mode 0.

MMP-II uses nine prediction modes for all block scales except scale 8, i.e. 16 x 16
blocks, for which only four modes are used. The restriction of the prediction modes at this
higher scale is justified by the smaller accuracy of the prediction process for larger blocks.

This means that the extra complexity caused by the use of additional modes is expected
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Figure 7.1: The prediction directions used by the MMP-II prediction modes.
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Figure 7.2: Effects of changing the MMP-II prediction modes, for image Lena.

to have no noticeable return in terms of quality gains. An investigation was conducted in
order to determine the influence of this procedure in MMP-II. In this test, that we refer
to as MMP-II Pred B, the use of all available prediction modes for 16 x 16 blocks was
investigated.

Figures 7.2 and 7.3 show the results of the described MMP-II Pred A and MMP-
IT Pred B tests!. The experimental results show that eliminating some of the directional
prediction modes has a negative impact on the performance of MMP-II, especially for

smooth images. On the other hand, the use of additional prediction modes for MBs of scale

!The results for other images are presented in Figure C.35.



176 7. FURTHER IMPROVEMENTS TO MMP-II

Image PP1205

40
/
38 /7/
N yd =
) il
- 34
g ///
n 32
. J
30 / v
28 MMP-Il —— -
/ MMP-Il Pred A —o—
26 7  MMP-II Pred B -+
03 04 05 06 07 08 09 1 11 12 13
bpp
Image PP1209
40
38 o~
36 o
S 34
o
5 32 Y.
o /
30 //
28 MMP-I| ——
/ MMP-Il Pred A —=—
MMP-Il Pred B o
26 ‘ ‘
0.2 0.4 0.6 0.8 1 1.2 1.4 16
bpp

Figure 7.3: Effects of changing the MMP-II prediction modes, for images PP1205
and PP1209.

8 introduces almost unnoticeable gains, but only for smooth images and high compression
ratios, due to the use of adaptive block sizes on MMP-II (see Section 6.4.2). For text
images one notices that the performance of the encoding process is almost unaltered by
the changes in the prediction process, which has a smaller influence than for the case of
smooth images.

Other tests were implemented regarding the prediction modes used in MMP-II. In one

test (MMP-II Pred C), we only used the MFV prediction mode for 16 x 16 blocks. In



7.1 THE PREDICTION PROCESS 177

another test (MMP-II Pred D), only the first three modes (vertical, horizontal and MFV)
were used for scales 16 x 16 and 16 x 8 blocks, assuming that the Plane prediction mode
could be efficiently replaced by one of these modes. The results for these tests? showed
only negligible changes in the encoding performance for all image types.

The previous tests show that some computational complexity reduction may be attained
by restricting the used prediction modes. The observed impact on coding performance was
negligible when the restriction was made only for the blocks of the higher scales. Therefore,
we confirmed the consensus that led to the choice of prediction modes currently used by
the MMP-II prediction scheme. Future investigations could be carried out to determine
if eliminating some prediction modes is a favourable method to achieve a computational

complexity reduction, at the cost of some losses in coding efficiency.

7.1.2 Altering the prediction block sizes

In the definition of the prediction stage of MMP-I we have used the same convention
as H.264/AVC, that uses prediction only for block partitions with at least 4 x 4. In
H.264/AVC, this threshold was set because this block size would result in a sufficient
accuracy for prediction and because of the use of 4 x 4 blocks for DCT-like transform. In
MMP-I and MMP-II we maintained this threshold, inspired by the H.264/AVC convention.
Nevertheless, in the analysis of the prediction process (see, for example, Figures 5.16 and
5.17 and the corresponding discussion, in Section 5.3) one notices that MMP-I often uses
4 x4 blocks in the prediction step. This means that it could be advantageous to decrease the
minimum size of the prediction blocks used for the prediction step. The potential benefits of
this change in terms of encoding performance come from a more accurate prediction. This
would result in a more regular prediction error that would be more efficiently compressed
by MMP.

In order to test this hypothesis, we implemented several versions of the MMP-II encoder
using different values for the minimum prediction block size. Experimental results showed
that a minor gain is in fact achieved by this change in the prediction process. Nevertheless,
this gain is only relevant for smooth images, since for other image types the prediction

process does not play an equally important role in the compression efficiency. Also, the

2These results present only negligible variations when compared with the original method and are

therefore presented only in Figures C.36 and C.37.



178 7. FURTHER IMPROVEMENTS TO MMP-II

Image Lena
42
38 /
S 36
2
32 //
30 o
Orig. (Scale 4) ——
Scale 2 —x—
28 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4
bpp

Figure 7.4: Effects of changing the minimum block scale used in the prediction stage

of MMP-II, for image Lena.

gain is only observed for higher rates, since for smaller rates the encoder cannot afford the
small prediction block sizes. Experimental results for several tested scales were analysed,
in search for a compromise between performance gains and computational complexity. The
use of scale 2 (2 x 2 blocks) as the minimum prediction scale was chosen. Figures 7.4 and
7.5% show the experimental results for this case. In this figure we can see that PSNR gains
occur only for the medium to the higher rates of the smooth and compound images. For
text images we have an equivalent performance. The small gains observed for these tests
demonstrate that the initial MMP-I threshold is a good compromise between compression

efficiency and computational complexity.

7.1.3 Block prediction with template matching

The previous section revealed that the use of a more flexible prediction process generally
leads to a better encoding performance for MMP-II. The removal of some of the original
prediction modes led to performance losses, while the use of new block sizes for prediction
allowed for some PSNR gains. In this section we study the introduction of a new prediction

method, as a way to improve the flexibility of the prediction process.

3The results of this test for other images are presented in Figure C.38.
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Figure 7.5: Effects of changing the minimum block scale used in the prediction stage

of MMP-II, for images PP1205 and PP1209.

The efficiency of the H.264/AVC prediction process is widely recognised and its modes

have proved their efficiency [61, 75]. Nevertheless, two problems were observed [84]: first,

they often loose efficiency in predicting blocks with complex texture and second, pixels

of the current target block that are positioned far from the prediction borders, and are

thus less correlated with the prediction values, are usually poorly predicted. Because of

this, the new prediction method uses a different prediction paradigm from those of the

H.264/AVC prediction modes. It is based on template matching (TM). TM was originally
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Search Window
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Figure 7.6: Intra prediction using template matching.

proposed as a texture synthesis algorithm [85], but has been successfully applied to a
slightly different goal, namely spatial prediction in a video encoding framework. Previous
works describe advantageous implementations of this method as inter-frame [86] and intra-
frame [84] prediction schemes, in a H.264/AVC video encoder.

When using template matching for intra prediction, the current image block, X!, is
estimated by comparing its spatial neighbourhood, N(X'), with all identical regions in
an adjacent area of the reconstructed portion of the image. N(X!) is called the template
of X! and is composed by its causal neighbouring pixels. The search for a best match
for the pixels of N(X!) returns a position in the causal search window. The block of
the reconstructed area of the image with the most similar neighbourhood to the template
N(X!) is assigned as the prediction block, Pl.,, (see Figure 7.6). The sum of absolute
difference (SAD) is used to access the best match between the pixels of the candidate
neighbourhood and the block template.

Template matching prediction can be related with motion compensation using previ-
ously reconstructed pixels from within the intra picture, but with the advantage of not
needing additional overhead associated with the motion vectors. The prediction step is
performed in the encoder and the decoder, that uses the same search area of the recon-
structed image to determine the same prediction block used by the encoder.

In [84], the use of TM for intra prediction in a H.264/AVC encoder is proposed using
a fixed block size of 4 x 4, but applying template matching prediction on four 2 x 2
target sub-blocks. The predictor block for the target 4 x 4 block is then made up from
the concatenation of the four best match 2 x 2 candidate sub-blocks. Because MMP-II
uses an adaptive block size for prediction, with blocks that range from 4 x 4 to 16 x 16,

several tests were performed regarding the use of sub-blocks for the template matching
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Figure 7.7: Effects of using template matching in the prediction stage of MMP-II,

for image Lena.

step. These experiments showed that the best results for MMP-II are achieved when no
sub-blocks are used, i.e. when the used template corresponds to the entire predicted block,
independently of its size. A search region of 24 columns and 32 rows, centred around the
current block (see Figure 7.6), was used for all prediction block scales. Experimental
tests showed that such a search region represents a good compromise between prediction
efficiency and computational complexity.

Figures 7.7 and 7.8* compare the compression performance of MMP-II with and without
the use of template matching prediction. A small but consistent increase in the PSNR level
for smooth and compound images can be observed, when one uses TM prediction. For text
images, the use of the new prediction mode has an equivalent performance to that of the

original MMP-II method.

7.2 Efficient deblocking for MMP-II

The experimental results of the MMP-II encoder, presented in Section 6.7, show relevant
improvements on both the objective and subjective qualities of the encoded image, when

compared with the original method. Nevertheless, MMP-II compressed images still suffer

4The results of this test for other images are presented in Figure C.39.
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Figure 7.8: Effects of using template matching in the prediction stage of MMP-II,
for images PP1205 and PP1209.

from some some blocking artifacts, especially for smooth images. In this section we describe
an adaptation of a deblocking scheme that was originally proposed for MMP in [1, 2, 65].
A study of the original method revealed some unexpected drawbacks, that compromise
its efficiency when we use it with MMP-II. This motivated the investigation of several
improvements to the original method, that not only enable its use on MMP-II, but also
allow for both objective and subjective quality gains for smooth images. At the same

time, the limitations of the original scheme, that introduced highly destructive artifacts on
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Figure 7.9: Use of FIR filters with adaptive support according to the MMP block

scale.

non-smooth images, are also eliminated.

The original (MMP) deblocking method was described in Section 4.3.3, where we re-
lated it with an MMP synthesis scheme that uses overlapping basis vectors. As we have
seen, the method consists on the use of a two-dimensional FIR kernel on each block of the
reconstructed image. For each image block the deblocking filter’s dimensions are succes-
sively adapted, by using information about the scale used by MMP to approximate the
corresponding image area. This causes blocks of larger scales to be filtered by a kernel with
a larger support region, while blocks of smaller scales use shorter smoothing filters (see
Figure 7.9, repeated here for convenience). Large scale blocks tend to be used in smooth
image areas, so the filtering with longer, more smoothing kernels is appropriate. On the
other hand, blocks of smaller scales are used on image areas with higher activity. The use

of shorter filters attempts to preserve the detail of these regions.

In [1, 65|, a rectangular kernel with length NV + 1 was used for the deblocking, where
N is the length of the block that is being filtered. This resulted in an improved objective
performance, due to the reduction of the blocking artifacts, that was accompanied by a
decrease on the PSNR values for the reconstructed image. In [2], the use of a Gaussian
impulse response was proposed. This method reduces the blocking artifacts, increasing the
perceptual quality for smooth images, but also introduces PSNR gains. Nevertheless, both
methods have one important drawback: they introduce highly disturbing blurring artifacts
in non-smooth images, that result in a severe decrease in both subjective and objective
quality. This fact limits the applicability of this filter, because there is no practical way of

avoiding the blurring of non-smooth images.

In order to assess the performance of the original method, we tested both these schemes
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in MMP-II. Both methods lead to a severe decrease in the objective quality of the recon-
structed image. For the rectangular kernel, the drop in PSNR value was far larger than the
one observed for MMP. When the Gaussian kernel was used, the PSNR gains observed for
MMP were replaced by noticeable losses, that went up to almost 1 dB for the case of image
Lena. An analysis of the filtered image revealed disturbing blurring artifacts, meaning that
the filtering process was too strong. Also, unexpected artifacts were observed, that lead
not only to PSNR losses but also to a decrease in the objective quality of the reconstructed
image. In the next sections we describe the problems revealed by the use of the original
scheme in MMP-II and propose a new method, that is able to avoid these problems and

perform efficiently for MMP-II.

Adapting shape and support for the deblocking kernel

In order to increase the performance of the original methods for MMP-II, different kernels
with various support regions for the deblocking filter were tested. Experimental results
confirmed the advantage of using Gaussian kernels, as was the case for MMP [1]. Besides
this, these tests also demonstrated that the quality of the deblocked image strongly depends
on the dimensions of the support region of the used filter. In the original method, this
support is set to 2% + 1, where I;, is the MMP scale of the original rectangular pulse that
is used to approximate the current image block. We varied this value and discovered that
it is in general the best option for the running average filter, but this is not the case when
we use a Gaussian kernel.

Instead of explicitly adjusting the support region of the Gaussian kernel, we have set the
filter length to a constant value (the original 2% 4 1 samples), but adapted the Gaussian’s
variance. This method produces filter kernels with different shapes.

Consider a Gaussian filter, with variance o2 and length L, with an impulse response

(IR) given by:

grn)=e T, (7.1)

where [}, is the MMP scale, L = 2% + 1 and n = 0,1,..., L. — 1. The shape of the filter is
controlled by changing a filter parameter «, that controls the variance of the Gaussian, by

using the expression:

gr(n) =e L7 (7.2)
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Figure 7.10: Shape of the impulse responses of the adaptive filters used for deblock-

ing.

to determine the filter’s impulse response.

Figure 7.10 represents the shape of a 17 tap filter, ¢®(n), for several values of param-
eter . This figure clearly demonstrates the relation between the filter’s shape and its
approximate support. By varying the value of the o parameter, one is able to efficiently
adjust the IR of the filter from a nearly rectangular filter, with a support region 2% + 1,
to a Gaussian filter with different lengths. Also, when « tends to zero, the IR of the filter
becomes a simple impulse. This disables the deblocking effect, for those cases were it is
not beneficial.

In order to chose the adaptive kernel that optimises the filtering result, the value of
the parameter « is controlled by the MMP-II encoder. At the end of the encoding stage,
the deblocking process is tested, using different values for the a parameter. Figure 7.11
shows the effects of using different values of a for the deblocking methods in the rate-
distortion curve, for image Lena. Using a trial and error scheme, the encoder is able to
determine the value of o that maximises the PSNR of the reconstructed image. This value
is appended at the end of the encoded bit-stream, by using a 3 bit code, that corresponds
to one of eight possible values for «, represented in table 7.1. This introduces a marginal
computational cost in the encoder, as well as negligible rate overhead. The eight values
of o were determined experimentally by using a set of several test images. Code 000

corresponds to o = 0, meaning that no filtering should be applied to the decoded image.
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Figure 7.11: Effects of the MMP-II deblocking method on the image’s PSNR, when

different values of parameter « are used, for image Lena.

Value of o | Binary code

0 000
0.05 001
0.10 010
0.15 011
0.20 100
0.25 101
0.30 110
0.40 111

Table 7.1: Three bit binary codes used to represent the parameter a.

Eliminating artifacts introduced by the deblocking process

The original method only takes into account the dimensions of the block currently being
filtered to set the filter support. Nevertheless, the filter may be used across several neigh-
bouring blocks. In our investigation we noticed that this may introduce an unexpected
artifact, for example when wide and narrow blocks, with very different intensity values,

occur in neighbouring regions. This case is represented in Figure 7.12, where a wide dark
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Figure 7.12: The concatenation of blocks with very different supports and pixel

intensities causes the appearance of an image artifact after the deblocking filtering.

block, A, is concatenated with two bright blocks: one narrow block, B, followed by one
wide block, C. When blocks A and B are filtered, a smooth transition appears that elimi-
nates the blocking effect in the AB border. When the block C' is filtered, because the used
filter has a very wide support region, the pixels near the BC border will suffer from the
influence of some of the dark pixels of block A. This causes a dark "valley" to appear in
the BC' border, that introduces a visible artifact in the deblocked image.

In order to avoid these artifacts, the new method controls the filter length, so that the
deblocking filter does not take into consideration pixels that are neither from the current
block nor from its immediate neighbours. In the example of Figure 7.12, the length of
the filter used in the C block’s pixels that are near the BC border is limited, so that the
left most pixel that is used in the deblocking is always the first (left most) pixel of block
B, eliminating the described artifact. In Figure 7.12, this means that the new method
uses the filter represented by the solid line, instead of the original one, represented by the
dashed line.

Another artifact caused by the original method is the introduction of smooth variations
in regions of the image that originally have very steep transitions (from low to high pixel
intensity values, or vice versa). This problem was corrected by monitoring the differences
in the frontiers’ pixels’ intensities, in order to avoid filtering steep variations that do not
correspond to blocking artifacts. This is again controlled by the MMP-II encoder, using
an adaptive method. A step intensity threshold, s, is used. This value corresponds to
the maximum intensity difference between the two border pixels for which filtering is still
performed. This process is represented in Figure 7.13, where two blocks A and B with very
different intensity values are concatenated. In this case, the AB border is only filtered if

the absolute difference between the border pixels is inferior to the defined value for s, i.e.
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Figure 7.13: A steep variation in pixel intensities may be a feature of the original

image, that should not be filtered.

Threshold s | Binary code

0 000

16 001

32 010

64 011

96 100

128 101

192 110
255 111

Table 7.2: Three bit binary codes used to represent the parameter s.

if |[Ap — By| < s.

The value of s is chosen in order to maximise the PSNR for the image that is being
deblocked. The encoder tests a set of different values and transmits the code corresponding
to the chosen step threshold. A three bit code is used to represent eight possible values
for s, determined experimentally. The code assignment is described in table 7.2. In this
process s = 0 corresponds to no filtering and s = 255 corresponds to the case where all

blocks are filtered.

7.2.1 Experimental Results

Experimental tests were performed using the new and the original deblocking methods.

Figure 7.145 presents a detail of image Lena, encoded using MMP-II, and compares it with

5The entire images corresponding to these cases are presented in Figures C.40 and C.41. Figure C.42

presents the deblocking results for image Peppers.
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(a) No deblocking (31.08 dB) (b) MMP deblocking rectang. [1]
(28.94 dB)

(c) MMP deblocking Gaussian [2] (d) MMP-II deblocking (« = 0.10
(30.25 dB) and s = 256) (31.35 dB)

Figure 7.14: A detail of image Lena, encoded with MMP-IT at 0.135 bpp.

the results of using the original deblocking techniques, referred to as MMP deblocking.
Perceptually, we can observe that the new deblocking filter is able to efficiently eliminate
the blocking artifacts in Lena’s face and hat, without compromising the image quality at
regions with high detail, like Lena’s hair and the hat’s feathers. In this case, the used filter
has a = 0.10 and s = 255. When compared with the original deblocking methods, we can
observe that the blurring artifacts that are noticeable in Figures 7.14 b) and c) (especially
in the areas with finer details) are avoided. The perceptual advantage of using Gaussian

kernels instead of rectangular ones is also clear from these figures.

In Figures 7.14 b) and c) we can also observe the first type of artifacts, explained in the
previous section. They appear in Lena’s shoulder, where the described “dark valleys” are

easy to observe. We can see that the proposed method efficiently eliminates these artifacts.
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Figure 7.15: Objective quality gains for image Lena (adaptive deblocking filter used
with @ = 0.10 and s = 256).

These figures also show why the methods developed originally for the MMP encoder suffer
from a unexpectedly high performance loss, when used with MMP-I1. Because MMP-II uses
predictive coding, the used dictionary blocks approximate residue patterns. In some cases,
where the prediction step is particularly efficient, some detailed areas are approximated by
large, uniform, residue blocks and a detailed prediction block. In this case, the deblocking
process uses a wide filter to deblock an image area that is not necessarily smooth. When
this happens, the use of the original deblocking method originates noticeable artifacts, like
the one observed in Lena’s lip. This results in a severe reduction both in subjective and
objective quality measures, thus compromising the performance of the original method for
MMP-II. However, due to its adaptability, the new MMP-IT deblocking procedure does
not seem to suffer from this disturbing factor. This can be observed in Figure 7.15%, that
shows the rate-distortion performance of the described methods, for image Lena. Figure
7.16 highlights the PSNR quality gains introduced by the new deblocking method. As
would be expected, these gains are more relevant for higher compression ratios, where the
blocking artifacts are more noticeable.

We also performed experimental tests using non-smooth images, like text image PP1205

and compound image PP1209. The use of any of the MMP deblocking strategies in text

5The corresponding results for image Peppers are presented in Figure C.43.
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Figure 7.16: PSNR gains for the MMP-II deblocking method, for image Lena.

regions introduces highly disturbing blurring artifacts. These artifacts are noticeable in
Figure 7.17, that shows a detail of the text image PP1205 processed using the various
deblocking methods. However, the use MMP-II deblocking enables the encoder to adapt
the filtering strength of the kernel. By setting the o parameter to 0, the encoder is
able to turn off the deblocking process, thus eliminating the blurring artifacts from the
reconstructed image, as may be observed in Figure 7.17. This feature solves one of the

main drawbacks of the original deblocking methods.

When the deblocking schemes are used for compound images we get a combination of
the previously described effects: an improved quality is observed for the smooth areas of
the image, but with a loss of sharpness in the text regions. Nevertheless, the optimisation
procedure used on the MMP-II encoder always chooses the best parameter set for the
deblocking filter, avoiding the PSNR losses that were introduced by the MMP deblocking
methods. Figure 7.18 presents the perceptual results for compound image PP1209. In
this case, the MMP-II deblocking uses o = 0.05 and s = 32. These values cause a very
mild deblocking effect, that is not able to eliminate the blocking artifacts on smooth areas.
Nevertheless, stronger deblocking procedures would lead to noticeable quality losses in the
text regions. As a comparison, Figure 7.18 e) shows the effects of using MMP-II deblocking
with sub-optimal parameters, in terms of PSNR. From this figure it is clear that the post
processing method is able to efficiently reduce the blocking artifacts of the smooth regions

without compromising the quality of the text regions.
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Figure 7.17: A detail of text image PP1205, encoded with MMP-II at 0.54 bpp.

Figure 7.18 also exposes the second type of artifacts introduced by the original MMP
methods, that were previously explained. These artifacts consist of a smoothing ramp
in areas of the image that originally had an abrupt variation, like the boundaries of the
smooth areas in image PP1209. Because the MMP-II deblocking method uses an adaptive
step threshold, it is able to avoid the introduction of these artifacts. However, even if
one ignores these artifacts for the original methods, the severe loss in subjective quality
compromise the suitability of these algorithms as generic deblocking schemes. This is not

the case for the new deblocking scheme.
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(a = 0.05,s = 32) (28.35 dB)
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Figure 7.18: A detail of image PP1209, encoded with MMP-II at 0.32 bpp.
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7.3 Conclusions

In this chapter we presented the results of a more detailed investigation on the predic-
tion process used by the MMP-II encoder and discussed a new MMP-II post-processing
deblocking method.

The study of MMP-II prediction determined the usefulness of a flexible prediction
scheme, originally defined in Section 5.2.3, that is composed by eight directional prediction
modes plus the MFV mode. Experimental tests showed performance losses when some of
the directional modes are disabled for the smaller scales. Furthermore, a study of the
MMP-IT prediction block sizes, revealed that the use of intra-frame prediction for blocks
down to 2 x 2 pixels allows a better performance than the use of the original 4 x 4 block
size limit, inherited from the H.264/AVC encoder. Finally, the use of a different prediction
mode, that is not based on directional prediction but on template matching, was also
investigated for MMP-II, with favourable results.

The investigation of a deblocking method for MMP-II was motivated by the observa-
tion of some blocking artifacts, especially for highly compressed smooth images. The use
of two deblocking methods originally proposed for MMP was studied for the MMP-II case,
revealing several compromising inefficiencies. A new deblocking method was then inves-
tigated, based on the original MMP schemes. The MMP-II deblocking algorithm uses an
adaptive FIR filter to process each image block. The filter’s shape is adapted according to
the image region that is being processed. Two filtering parameters are determined by the
encoder, in order to maximise the deblocking performance for smooth images and elimi-
nate the severe PSNR losses for non-smooth ones. The parameters are transmitted to the
decoder using a negligible overhead. Experimental results show that the new deblocking
method is suitable for any image type. Additionally, for the smooth regions, its use results

in an improvement of both objective and subjective quality levels.



Chapter 8

Pattern matching-based video

compression

In the previous chapters we observed the good performance of MMP for image coding,
namely in the compression of the intra-predicted error signal. In this is chapter we inves-

tigate the use of the pattern matching and MMP paradigms in video compression.

Several decades of video coding standards have confirmed the hybrid model as the
preferred architecture for video encoding algorithms. In these methods, a motion com-
pensation stage reduces the temporal redundancy of the signal. The motion compensated
residue is then compressed using traditional transform-quantisation-entropy coding meth-

ods, that efficiently exploit the data’s spatial correlation.

This general architecture was maintained in the successful H.264/AVC [13] standard,
that achieves more than twofold gains over its predecessors. A relevant fact is that these
performance gains are not the result of a change of coding paradigm; they come mainly
from the exploitation of a richer set of tools for each of the encoders’ modules, resulting in
a more complex, but highly efficient method [75].

As for the case of image compression, there have been rare proposals to adapt pattern
matching-based algorithms to video coding applications. Some exceptions can be found
in the work of [30, 52, 53, 87|, but, to the authors knowledge, none of these methods has
been able to achieve a performance near to that of current state-of-the-art methods.

In this chapter we develop two pattern matching-based approaches to video compres-

sion. In Section 8.2 we investigate a version of the H.264/AVC video compression standard
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that uses no residual error encoding. Experimental results demonstrate that this tech-
nique can provide significant improvements in the performance of the original encoder for
Bi-predictive (B) slices, especially at low to medium bit rates. A formal analysis of this
process relates it to coding paradigms not usually associated with video coding, like vector
quantisation and Lempel-Ziv encoders.

In Section 8.3 we investigate an MMP-based video encoding algorithm, named MMP-
Video. It uses MMP to encode the motion compensated residue, in a hybrid video coding
scheme. MMP-Video naturally inherited some of the dictionary updating strategies de-
scribed in previous chapters. Nevertheless, a study on the particular aspects of using MMP
for video compression also led to new dictionary design techniques for MMP-Video.

Both of the previous methods were developed based on the original H.264/AVC stan-
dard [13]. Because of this, this standard is briefly described in the next section.

8.1 The H.264/AVC video encoding standard

In this section we present a brief overview of the H.264/AVC video coding standard [13].
This overview is justified by the relevance of H.264/AVC video coding for the discussion of
the algorithms described in this chapter. The following discussion is therefore limited to
the most relevant aspects of the H.264/AVC encoding algorithm. For a detailed description
of the H.264/AVC standard, the reader is advised to refer to one of the many available
texts on this subject, namely [13, 14, 61, 76].

In spite of the ever growing available band-width and network speeds, the increasing
number of services, as well as the growing popularity of high definition television, make
the need for efficient video encoding algorithms as important now as it has ever been.
This fact led to the combination of efforts from the two main video coding standards
developing groups: the ITU-T’s Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG). This unified the H.26x and the MPEG-x families
of standards, that had been developed by these groups. As a product of this joint effort,
the H.264/AVC video coding standard [13] emerged as the current state-of-the-art video
compression scheme. The H.264/AVC standard defines a set of new coding tools, that
improve its efficiency to about two times that of previous standards (namely the highly

successful MPEG-2 standard [88]), at the cost of an increased computational complexity.
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Figure 8.1: Architecture of an H.264/AVC video encoder.

In spite of the importance of the new H.264/AVC coding tools, this standard maintains
the traditional hybrid coding architecture, as well as a transform-quantisation based encod-
ing scheme to compress the motion compensated residue patterns. The hybrid video coding
paradigm, represented in Figure 8.1, uses a combination of signal prediction and transform-
quantisation-based encoding. Previous video encoding standards used mostly temporal
prediction, by exploiting the similarities among consecutive sequence frames (inter-frame
prediction) through the use of motion compensation (MC). H.264/AVC also uses a highly
efficient intra frame prediction scheme, that uses several prediction modes to exploit the
redundancies among the neighbouring pixels of a frame (see Section 5.2.3). A slice that
uses only macroblocks coded with intra prediction is called an intra (I) slice.

The prediction process of H.264/AVC represents a very significant evolution in relation
to the previous standards. For intra macroblocks (MB) a set of directional spatial predic-
tion modes is used to estimate the image data. Improvements have also been introduced
for inter-frame, or motion-compensated, prediction. The fixed MC block size has been
replaced by a more flexible scheme, that uses adaptive block sizes. H.264/AVC allows for
seven different segmentation modes of the motion compensated block, organised into two

levels: in the first level, MBs may be partitioned into luma blocks with 16x16, 16x8, 8 x16



198 8. PATTERN MATCHING-BASED VIDEO COMPRESSION

16 x 16 16 x 8 8 x 16 8x8

MB 0 0 1
types 0 0 1

1 2 3

8x8 8 x4 4x8 4x4

8x 8 0 0 1
types 0 0 |1

1 2 3

Figure 8.2: Adaptive block sizes used for partitioning each MB for motion compen-

sation.

or 8x8 pixels; for 8x8 partitions, each block can be further divided into partitions of 8 x4,
4x8 or 4x4 luma samples (second level). The segmentation sizes used for MC are repre-
sented in Figure 8.2. Independent translational motion vectors (MV) and reference frame
indexes are assigned to each luma partition, meaning that each inter MB can be encoded
using a number of MVs ranging from 1 (for a 16x16 partition) to 16 (when 4x4 partitions
are used). Each MV can be associated to a different reference frame, among a set of pic-
tures stored in a dedicated buffer. Besides the performance improvements resulting from
the use of smaller blocks, each MV can be represented up to quarter-pixel accuracy, by
using interpolation techniques to determine the half and quarter-sample positions. More-
over, MVs may point beyond picture boundaries, by repeating the edge samples before

interpolation occurs. Additional details on this process may be found in [89].

H.264/AVC also allows the simultaneous use of several reference frames for MC. The
reference frames used for MC are organised into one or two lists, maintained in a synchro-
nised manner by both the encoding and decoding algorithms. For each MB, a reference
index parameter is transmitted for each motion-compensated partition. In addition to the
I slices, H.264/AVC also defines P and B slices. Both P and B slices use mainly inter-
frame prediction, but they may also use intra predicted MBs. While P slices use inter
prediction with at most one MC prediction signal per prediction block, B slices may use
inter prediction with two MC prediction signals. Figure 8.3 represents the multiframe MC

used by H.264/AVC.

For P slices, the prediction modes corresponding to the several partition sizes may
be used (see Figure 8.2). Additionally, a P macroblock may be encoded using a P skip

mode, for which no MC data is transmitted. Instead, the reconstructed MB is obtained
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by using the 16 x 16 prediction block associated with the MV predictor and frame 0 of
the picture buffer. For B slices, four types of inter prediction may be used: list 0, list 1,
bi-predictive and direct prediction. In bi-predictive coding, the prediction signal for each
MB is composed by a weighted average of motion compensated prediction signals from
list 0 and list 1. The direct prediction mode uses information inferred from previously
transmitted syntax elements to estimate the current block. Additionally, a B skip mode
is also defined, that uses a similar technique to that of P skip MBs. The reference frames
stored in list 0 and list 1 may include future frames and not only causal ones. This is

possible due to a highly flexible ordering scheme for referencing and display purposes.

As its predecessors, H.264/AVC uses transform-coding to compress the predicted residue
signal. Nevertheless, as for the case of spatial and temporal prediction, several novelties
were introduced, that allow for an improved coding performance. The adoption of a sepa-
rable integer transform (IT), with similar properties to the DCT; the use of 4 x 4 transform
blocks and a two step transform coding for the DC coefficients of each MB are the main
differences, when compared with the previous standards. Additionally, the encoder may
select a special coding mode, that extends the length of the transform block to 16 x 16, for
low-frequency residue information (a 8 x 8 block size is also available for the fidelity range
extensions (FRExt) profiles [61]). Despite these changes, the same basic paradigm is used:
at the encoder, a forward transform is used, followed by zig-zag scanning, quantisation
and entropy coding (see Figure 8.1); the decoder uses the inverse procedure, in order to
reconstruct the predicted error signal. Further details on the H.264/AVC transform coding

and quantisation may be found in [77, 90].
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Another improvement factor for the encoding performance of H.264/AVC is the in-
troduction of an adaptive in-loop deblocking filtering, that reduces the blocking artifacts
introduced by the block-based processing of each input frame. Both the encoder and the
decoder control the filtering strength, based on the values for several syntax elements that
were used on each block. The filtering is applied inside of the prediction loop (see Figure
8.1), meaning that the prediction signal is also affected by the process. The improvement
in subjective quality is accompanied by a 5 to 10% reduction on the bit-rate for the same
objective quality. A detailed description of the adaptive deblocking filter can be found in
[83].

The encoding parameters of H.264/AVC are compressed using a variable length code
(VLC) compression algorithm. H.264/AVC combines VLC with binary arithmetic coding
(BAC), in a context-adaptive framework. This results in the definition of two highly
adaptive and efficient compression algorithms: context-adaptive variable length encoding
(CAVLC) and context-adaptive binary arithmetic coding (CABAC). A simple universal
VLC code table is also used for some higher-layer syntax elements, like sequence and slice
headers. Other syntax elements, like reference frame indexes, MVs and quantised transform
coefficients may be encoded using CAVLC or CABAC. The encoding performance is also
favoured by the use of predictive techniques for encoding several syntax elements, like the
used MVs. Both CAVLC and CABAC use context modelling to choose which probability
model should be applied in the VLC step. This choice is based on local statistics of the
current stream. CABAC uses an additional binarisation step, to transform the original
symbols into a set of bits that are then compressed using the adaptive arithmetic encoder.
The use of CABAC allows for an increased compression efficiency, when compared with
CAVLC, at the cost of an additional computational complexity. Detailed information

about H.264/AVC’s VLC coding can be found in [91].

One important reason for the performance gains of H.264/AVC is the very high number
of available encoding strategies for each block. A number of prediction modes (intra, inter
and bi-directional) may be used in conjunction with blocks with adaptive sizes. Because
of this, efficient encoder control strategies are essential for determining the best encoding
option for each block. H.264/AVC (namely its verification model software, used in this
thesis) uses a Lagrange optimisation technique to perform rate-distortion optimisation.

For each block, the encoder tests all available encoding modes and block sizes and deter-
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mines the corresponding distortion and estimated rate values. Based on the value of the
Lagrangian cost function (see equation (3.2)) for each possibility, the encoder chooses the
most efficient compression mode for the current block, in an RD sense. A description of
the coder control strategies used in H.264/AVC is presented in [92].

Several other encoding tools are defined by H.264/AVC, namely related with: robust-
ness to data errors and information losses; flexible operation for a variety of network
environments; use of flexible macroblock and slice ordering and lossless macroblock modes,
among others (see [76, 14, 13] for information on these methods). As for the case of the
previous encoding standards, H.264/AVC has a set of encoding profiles, that define which
coding tools are available for the encoder. A baseline profile was defined to minimise com-
plexity while the main profile was designed with an emphasis on coding performance. The
extended profile was design in order to combine the coding performance of the main profile
with a set of techniques related with extra network robustness. A fidelity range extensions
(FRExt) amendment was also published, that includes a set of new features, used by a
new family of profiles, called the high profiles. These tools are mainly related with: sup-
porting higher sample resolution video signals (up to 12 bits per sample) and other chroma
sampling formats (namely the 4:4:2 and the 4:4:4 formats), using adaptive block sizes for
residual spatial frequency transform and the use of encoder-specific perceptual-based quan-
tisation matrices. Information on the FRExt coding techniques and profiles may be found

in [61].

8.2 On overriding H.264/AVC’s motion-compensated residue

coding

In H.264/AVC, as in most video coding standards, the transmission of the MC-prediction
error is generally accepted as crucial for the performance of video encoders. This results
from the fact that the prediction process alone is not able to eliminate the prediction error
for the current segment of the message. The coding error is thus propagated, since it also
compromises the performance of the prediction of the following block. Despite this, in this
section we describe a successful H.264/AVC-based compression scheme that does not use
the transmission of the motion-compensated residue. The described method has an inter-

esting relation with the pattern-matching coding paradigm, as described in Section 8.2.2.
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Experimental results, presented in Section 8.2.3, demonstrate that, unlike other pattern-
matching video coding algorithms proposed in the literature, the described method is able

to achieve compression gains when compared with state-of-the-art H.264/AVC standard.

8.2.1 The Overriding Process

In Section 8.1 we described the inter-frame prediction process used by H.264/AVC. As
was previously discussed, the use of the highly adaptive MC algorithm creates a residual
error information that can be efficiently compressed. For B slices, that use information
from both past and future reference frames, the combination of these techniques provides
even larger gains in compression performance. The gains introduced in H.264/AVC by the
motion compensation process and its efficient RD optimisation scheme were impressive.
They led us to hypothesise that, at least in some cases, motion compensation is efficient
enough to obviate the need for MC-predicted error coding. Furthermore, the flexible use of
several prediction schemes and reference frames allows the encoder to efficiently determine
the best prediction block, among a wide set of possibilities. This allows the prediction
process to reduce, or even eliminate, the prediction error. In this section we investigate
the performance of a H.264/AVC-based encoder!, that does not transmit the information
for the motion-compensated residue block.

Figure 8.4 presents a schematic of the structure of the tested encoder. We have called it
H.264/AVC No MPE (no motion-compensated prediction error). The original optimisation
scheme tests each available prediction mode and then uses transform coding to compress
the predicted error block, in order to determine the encoding distortion. Therefore, the
optimisation process always takes into account the distortion and rate values associated
with the transmission of the predicted error. In order to create a coding scheme that is
compliant with the original standard, instead of simply removing all the residual error
information from the bitstream, the samples of the MC residue block are set to zero, prior
to the residual encoding step. This is also done during the optimisation stage, meaning
that the encoder chooses the prediction mode that optimises the Lagrangian cost function
in the absence of the encoded error signal. The H.264/AVC encoding syntax efficiently

compresses the overhead associated with the null coefficients. The encoder signals the

!The H.264/AVC reference software [93] (version JMY9.8) was used for the development of the new

algorithm.



8.2 ON OVERRIDING H.264/AVC’S MOTION-COMPENSATED RESIDUE CODING 203

Motion-compensated error coding overriding
\

| Ot T - Q i

Input
sequence

Reconstructed MB Q! |

Surpoo Adoxyug/Surxordrymy
wreorysyrg possorduro)

Figure 8.4: Architecture of a hybrid video encoding scheme that uses no compression

of the motion-compensated error.

null IT coefficient block by setting the Coded Block Pattern (CBP) parameter to zero
and transmits no further information. This fact is efficiently exploited by the entropy
coding tools defined in the H.264/AVC standard. On the decoder side, the used prediction
mode and the null error block are decoded and used for the reconstruction of the MB,
using exactly the same process as for the case of non-null residue patterns. Therefore, the
resulting bit-stream is fully compliant with the original H.264/AVC reference decoder [94].

It is important to note that for intra-frame prediction, the compression of the intra-
predicted error is maintained. This is so because, for the intra case, the encoder has no
way to avoid the prediction error propagation. Also, for P or B slices, the intra prediction
process ensures that the encoder always has a viable option to approximate the original
block, in case that the motion prediction fails, even if it much more costly in terms of used

rate.

8.2.2 A pattern matching video encoding point-of-view

In this section H.264/AVC No MPE is regarded as an implementation of a lossy pattern

matching-based video encoder and is related both to LZ and VQ-based video compression
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schemes.

As was previously discussed in Chapter 2, in Lempel-Ziv based encoders, each new
block of the input signal is approximated by using segments of the previously encoded
part of the message. In LZ77 [3] encoders, pointers are used to identify the longest match
for the current block within a search buffer, composed by the recently encoded data. In
this case the length of the matched string is also transmitted. LZ78 [4] implementations
use an explicit dictionary, composed by an indexed list of previously used portions of the
message. Vector quantisation algorithms [5] use a set of codewords, stored in a fixed or
adaptive dictionary, to approximate the input signal. Each message block is thus encoded
by replacing it with a dictionary index. More details on both LZ and VQ algorithms may

be found in Section 2.2.

When we override the compression of the MC-prediction error, the best approximation
of the current block is given solely by a block in a reference frame, pointed to by the
MYV determined by the motion-estimation algorithm. As in LZ schemes, the used block
corresponds to a previously encoded portion of the message. We can thus think of the
MVs in H.264/AVC No MPE as LZ77 pointers, that are encoded by using a predictive
scheme and a context adaptive arithmetic encoder. The length of the message used in each
approximation is implicitly encoded by the partition size used in the MC process. The
LZ search buffer (see Section 2.2.1) is defined by the reference frames that are used for
each slice, together with the motion vectors’ range. H.264/AVC No MPE also presents
an interesting addition to this basic LZ scheme: the use of B slices allows the use of
a combination of blocks of the reference frames. This means that each segment of the
message may be encoded as a combination of two previously encoded segments of the

search window.

We can also relate the patterns stored in the reference frames to an adaptive dictionary.
Because the dictionary is composed by previously encoded segments of the video sequence,
this may be related either to a LZ78 or a VQ algorithm (see Sections 2.2.1 and 2.2.2,
respectively). For this dictionary, each MV acts as an index that identifies the chosen
codeword. The use of different partition sizes in the MC process can be regarded as the
use of several dictionaries, that store blocks with different dimensions. The dictionary
indexing process is implicitly determined by the choice of the partition size. Furthermore,

the dictionary adaptation process consists in the use of a variable set of codewords, that are
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chosen according to temporal (related to the choice of reference frames) and neighbourhood
(represented by the search window) criteria. This increases the dictionary’s efficiency,
because it tends to use codewords that are likely to be similar to the current frame’s
blocks. As for the LZ77 analysis, the use of B slices can be interpreted as an extension
of the dictionary-based coding paradigm, to the case were a weighted combination of two

codewords is employed.

8.2.3 Experiment description and simulation results

A set of experimental tests was performed using the first 100 frames of several well known
test sequences Foreman (CIF), Mobile & Calendar (CIF), Akiyo (QCIF) and Flower Garden
(SIF), with 4:2:0 colour sub-sampling?. These sequences were chosen due to their common
use as benchmarks for video encoding and also because they represent a wide variety of
video content: from a typical head and shoulders sequence to highly detailed sequences,
with large motion.

Experimental tests were performed for a wide set of input parameter values, in order to
assess their effect in the performance of H.264/AVC No MPE. However, some configurations
are common to all simulations, namely: RD optimisation is enabled, 30 Hz frame-rate,
variable bit-rate (VBR) mode, only the first frame is intra, 5 reference frames are used,
CABAC and deblocking filter are enabled and single level bi-predictive sub pixel motion
estimation was used. The H.264/AVC high profile was used both for the original version
and for the new encoder.

We first evaluated the results when residual error coding is disabled for non-intra blocks
of B slices only, with an IPBP pattern. In this test, the coding strategies for the I and
P slices were left unaltered. Different target bit rates were achieved by varying the values
of the input quantisation parameter (QP), according to the values of table 8.1. Note that
there is a direct relationship between the values of QP and the Lagrangian multiplier
parameter A, used in the RD optimisation [92].

Figure 8.5% presents the results for this test. Since the coding strategies for the I and
P slices were unaltered, the results for these slice types are similar. Therefore, only the

RD results for B slices are presented. In this figure we observe that disabling the com-

2 An overview of these sequences is presented in Section A.2.
3Results for other test sequences are presented in Figure C.44.
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Figure 8.5: Experimental results of the original H.264/AVC encoder and the new

encoder, that disables the compression of motion-predicted error (for B slices only).
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QP for B slices 45140 | 35|30 | 25 | 20 | 157
QP for I and P slices | 43 | 38 | 33 | 28 | 23 | 18 | 13*

(* used only for the version with no residual coding)

Table 8.1: QP values used in the experimental tests.

Foreman - B slice (QP=20) Mobile & Calendar - B slice (QP=20)
10000 Oriiral — 10000 Oriiral —
! riginal -+ A riginal -+
& 2000 | No MPE —=— 7 & 2000 1% No MPE —=— 1
_‘Z’ 8000 |- _‘Z’ 8000 |\
re] 7000 re] 7000
S 6000 S 6000
[0 [0
-g 5000 -g 5000
E 4000 I:_:s/ 4000
) 3000 } ) 3000 5 :
o) \ o)
S 2000 \ S 2000 e
] YA + o > /
1000 — 1000 S &S
0 - 0 .
> © [ee] © [ee] < [ee] © > © [ee] © [ee] < [ee] ©
o — x — x X x — o — x — x X x —
o < © X [ee] < e} X o < © X [ee] < [ce} X
(&) o — © © © © (&) o — © © © ©
T E E ® T E E T
= =
Prediction mode count Prediction mode count

Figure 8.6: Number of MB’s that use each of the available prediction modes, for the

B slices.

pression of the inter residue error increases the performance of the original H.264/AVC
algorithm, for all components of all tested sequences. In these cases the motion compen-
sation procedure is able to efficiently reconstruct the bidirectionally predicted frames from
the previously encoded slices, with no need to encode the MC-prediction error. For se-
quences with small motion (like Akiyo sequence), not using residual coding for B slices is
always advantageous, achieving, in some cases, the same PSNR using less than half the
bit rate of the original H.264/AVC encoder. For sequences with complex or high speed
motion, the H.264/AVC No MPE method still outperforms the original encoder, but only
for low to medium qualities/bit rates.

Figure 8.6 represents the total number of MB’s encoded with each prediction mode,
for the B slices of sequences Foreman and Mobile & Calendar, using QP= 20. We may
observe that, even for this relatively low value of the QP parameter, the copy mode is used
frequently. Also, when we deactivate the residual error encoding, the motion estimation

uses more partitions of a small size*. These smaller blocks allow for a reduction of the

“Note that, due to a limitation in the H.264/AVC reference software, the 8 x 8 column has the number
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distortion values, favouring the RD performance of these modes when no residue is encoded.
For the original encoder, the use of these prediction modes is penalised by the higher bit-
rate. For the Mobile & Calendar sequence we can also observe an increase in the number
of used intra predicted MB’s. As was previously discussed, intra blocks are used when the
motion-estimation is not able to efficiently reconstruct the original signal without the use
of the motion-predicted error, resulting in a high distortion and therefore a higher value

for the RD cost function.

Figure 8.6 shows that, when no residual information is used, the encoder is able to
compensate the distortion losses by using smaller block sizes for MC. Nevertheless, this
effect is limited by the minimum allowed block size for H.264/AVC, set to 4x4. As a
consequence, for higher rates the encoder is not able to provide the needed fidelity. In
fact, the plots of figure 8.5 show that the PSNR of the B slices tends to be bounded for
rates above a certain point. For higher rates we observe that the original encoder is able to
increase the PSNR value, as the bit-rate increases, but this is not the case for the altered
version of the algorithm. In this version, the PSNR remains approximately constant, even
for higher rates. This phenomenon is more evident for sequences with higher motion. In
these cases, the use of residual error information is advantageous, because it allows the
encoder to reduce the distortion of the reconstructed sequences, increasing the objective
quality levels. Nevertheless, from these observations one may conjecture that the use of
smaller block sizes in the MC process would increase the performance of inter-prediction.
This would increase the performance of the altered encoder, possibly allowing it to achieve
good performances also in the high quality/bit-rate regions.

In order to better evaluate the proposed technique, other tests were performed by
varying the most relevant encoding parameters. The relative gains presented previously
were also observed when the main profile was used (see Figure C.45), when the bi-predictive
coding mode was turned off (see Figure C.46) and also when the width of the motion search
window was increased to 32x32 pixels (see Figure C.47). For all tested cases, the proposed
method maintained an advantage for all sequences and bit rate scenarios.

In one other test, we increased the number of B slices. This decreases the accuracy of
the prediction step, since the key frames for the B slices (the I and P frames) are "further

away" (from a temporal point of view), from each encoded B slice. Nevertheless, the same

of all 8 x 8 blocks and their partitions
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Figure 8.7: Experimental results of original H.264/AVC and new encoder, that dis-
ables the compression of motion-predicted error (for B slices only), using IPBBBP. ..

slice pattern.

tendency described for the IPBP case has been observed. The difference is that the points
for which the absence of residual data becomes a disadvantage happen at a lower rate than
for the IPBP case. However, for low to medium rates it is still advantageous to override the
transmission of residual data, as can be seen if Figure 8.7°, that presents the comparative
results of the new algorithms, when B slices are used with a IBBBPBBBP. .. slice pattern.

The overriding of motion-predicted error coding was also tested for P slices. In this
case, the performance of the encoder decreases significantly, as can be seen in Figure 8.8%,
that shows the experimental results for H.264/AVC No MPE, when the transmission of
the motion predicted error is disabled for the P slices. These losses result from the use of
only past I and P slices as references for the P frames. This means that, after the initial
frames are compressed, each P slice uses only past P slices as reference. This fact not only
limits the patterns that may used to approximate each new image block, but also means
that, because no prediction error is transmitted for the reference signal, the reconstruction
error is propagated from each P frame to the next. Furthermore, one should consider the

inferior performance of the unidirectional MC process, due, for example, to problems with

SResults for other test sequences are presented in Figure C.48.
5Results for other test sequences are presented in Figure C.49.
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Experimental results of original H.264/AVC and H.264/AVC No MPE,

when the compression of motion-predicted error is disabled for P slices (results for P

and B slices, of sequence Foreman).

uncovered background. Figure 8.9 shows the performance of H.264/AVC No MPE when no

residue is used for both P and B slices. As one would expect from the previous discussion,

in this case the prediction error is propagated across all inter frames and the performance

suffers considerably from this fact.



8.3 VIDEO CODING WITH MULTISCALE RECURRENT PATTERNS: THE MMP-VIDEO ALGORITHM 211

Foreman (CIF) - P Slices

e
46 T |
—~ 44 o
g 42 w —_— e
g 40 ." o + 4
O g i N
o Wt i
o 36
% 34 ! f"'
§ / Original - Y -+
= e No MPE - Y —— |
Original - U ----e---
No MPE -U —e—
» ’! Original - V ----a---- 7]
28 NO‘MPE -V —e—

0 10000 20000 30000 40000 50000 60000 70000 80000
Average Rate (bits/P frame)

Foreman (CIF) - B Slices

o .
46 T O =S
a ¢ e e i o
= e o
g @[ -
8 40T R =
m //
r 38 n* S R .
=z .‘% —
n B
o 36 /,
S
o 34 ;
2 / Original - Y -+
= No MPE - Y —«— |
Original - U ----e---
No MPE -U —e—
” Original - V & 7]
No MPE -V —&—

28

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Average Rate (bits/B frame)

Figure 8.9: Experimental results of original H.264/AVC and H.264/AVC No MPE,
when the compression of motion-predicted error is disabled for both P and B slices
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8.3 Video coding with multiscale recurrent patterns: the

MMP-Video algorithm

In the previous section we have presented an H.264/AVC-based video compression algo-
rithm that overrides the transmission of the MC-prediction error. The described algorithm

revealed an interesting relation with traditional pattern-matching compression schemes.
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Experimental results for the proposed scheme revealed advantageous performances for high
compression ratios, when the MC error is not transmitted for the B slices. Nevertheless,
the maintenance of a satisfactory performance for higher rates demands the compression
of the error information.

In this section we investigate a second pattern matching-based paradigm for video
compression, namely the use of MMP to encode the motion compensated residual data, in
a hybrid video coding scheme. We refer to this algorithm as MMP-Video. The good results
achieved by MMP-I and MMP-II (see Chapters 5 and 6) demonstrate that MMP is an
efficient method to encode image residue patterns, that result from a prediction process (in
those cases, intra-frame prediction). Furthermore, the comparison with H.264/AVC intra-
frame encoder shows that approximate pattern matching with scales can, in some cases, be
advantageous over the H.264/AVC’s integer transform. In the following sections we first
present an overall description of the MMP-Video encoder, followed by a discussion on some
functional improvements and architectural adaptations, namely related with dictionary

adaptation for MMP-Video. Experimental results are also presented.

8.3.1 MMP-Video architecture

The MMP-Video architecture is based on that of H.264/AVC, but uses MMP for the
compression of the motion compensated residual data. Because of this, the MMP-Video
implementation shares its basic structure with H.264/AVC reference software’. Figure 8.10
presents a diagram of the architecture of an MMP-Video encoder. The implementation of
MMP-Video according to this architecture raises some interesting issues that were analysed
during the definition of the method. Some of these general features of the algorithm
are discussed in this section. The specific optimisations, that resulted from a thorough
investigation on the MMP-Video, including the corresponding experimental tests, will be
described with more detail in the following sections.

In this investigation we are mainly interested in assessing the performance of MMP
for inter residual coding, since the performance of MMP for intra MBs has already been
documented in the previous chapters of this document. In the previously presented results
we have shown that the performance of MMP and transform coding for intra frames is

different. Because MMP-Video, as H.264/AVC, uses the I slices as references for the MC

"The H.264/AVC reference software [93] (version JMY.2) was used for the development of MMP-Video.
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Figure 8.10: Basic architecture of an MMP-Video encoder.

frames, the use of different intra compression schemes could compromise the comparison of
the performance of MMP-Video and H.264/AVC, for coding motion compensated residual
errors. Because of this we have used an encoder that processes all the intra MB using
exactly the same procedure has H.264/AVC, including the same integer transform.

As H.264/AVC, the MMP-Video encoder also uses adaptive block sizes (ABS) to per-
form the motion estimation/compensation of the inter-predicted MBs. The MMP-Video
MC process optimises the partition sizes and corresponding MVs, through the use of the
same Lagrangian RD cost function. MMP-Video uses the same scheme as the H.264/AVC
reference software to control the RD compromise for the compression of a sequence. Two
quantisation parameter values are defined in order to control the target compression ratio
of the encoder. The values of the QP parameter are set independently for the I/P slices and
for the B slices. These values have a direct correspondence to the value of the Lagrangian
multiplier, A [92]. MMP-Video uses the same value of A as the one defined for H.264/AVC,
to perform the RD optimisation of the MMP encoder.

During the optimisation loop, the encoder tests exhaustively all of the coding options.
Because of the high complexity of MMP, the computation of the RD cost function in

MMP-Video is performed using the same measurements as in the H.264/AVC encoder.
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This means that the distortion is estimated based on the transform coding of the residues,
either by using the sum of absolute differences (SAD) or the sum of absolute transformed
differences (SATD). It is important to note that, unlike the case of H.264/AVC’s, the
residue block with minimal SAD or SATD is not necessarily the block that is more efficiently
encoded by MMP-Video. This means that the MC parameter search is sub-optimal, from
the MMP coding point-of-view. Nevertheless, our simulations have demonstrated that
the use of these error measures still allows MMP-Video to perform efficiently, with a
significant reduction in computational complexity. This complexity reduction results from
two factors: first, the simplification inherited from the original encoder, that replaces a
whole MB’s residue direct and inverse transform evaluation with a simpler SAD or SATD
calculation; and second, the replacement of the full dictionary search, required by MMP
encoding, by the simpler transform-based algorithm. Nevertheless, once the optimum
coding parameters are determined, the MC data is encoded and transmitted, followed by
the MMP compression of the MC residue block. This has the interesting side effect of
allowing for a fair comparison between the encoding efficiency of MMP and H.264/AVC’s
transform coding, because the residue patterns, generated by the motion compensation

process, tend to be approximately the same for both encoders.

The use of ABS motion-compensation means that each MC-prediction error macroblock
(with 16 x 16 luma samples) can be the result of the concatenation of several smaller
segments, depending on the used partition (see Figure 8.2). H.264/AVC encodes this
residue MB with a block size for the transform coding that depends on the MC partition
size. In MMP-Video, this information can also be used, by considering each partition
independently in the MMP compression step. Nevertheless, the MMP encoder may also
disregard the MC partitioning and process the entire 16 x 16 residue block, composed by the
concatenation of the several MC partition blocks. In this case, MMP segments the original
16x16 block in a way that optimises the compression cost of the MC residue. Considering
the original partition of the MB can be regarded as a efficient way to encode the first few
segmentation decisions of the 16 x 16 block, which could lead to some performance gains.
Nevertheless, experimental tests showed a marginal performance gain when the entire MB
was processed by MMP, especially for B slices, so this was adopted in the final versions of

MMP-Video.

Apart from the motion compensated residual data, all information transmitted by



8.3 THE MMP-VIDEO ALGORITHM 215

MMP-Video is encoded using the original H.264/AVC techniques [13]. This includes all
MC information, like the partition modes and the motion vectors for each block, as well
as sequence, slice and MB headers. In these cases, the original H.264/AVC options were
maintained, namely the use of CAVLC or CABAC, depending on the used encoding pro-
file. Furthermore, the in-loop deblocking process was maintained in MMP-Video. This
decision was justified by the performance gains observed in some experimental tests, that

demonstrated the efficiency of this method also for MMP-Video.

8.3.2 Dictionary design for MMP-Video

In a video coding framework, the MMP dictionary design possibilities increase significantly,
because it is possible to exploit additional signal features. MMP-Video, as H.264/AVC,
divides the video sequence into I, P and B slices (for all our tests, each sequence frame
corresponds to an individual slice). Due to the different encoding tools used for each slice
type, one may expect the residue signals to vary accordingly. Furthermore, because we are
dealing with colour sequences, each frame is composed by a luma (Y) and two chroma (U
and V) components®. The information about the frame type and the colour component
that is being processed can be used in the MMP-Video dictionary design process. Another
relevant feature is the longer time available for dictionary adaptation, when compared with
image coding. Depending on the number of compressed sequence frames, the MMP-Video
dictionary has much more time to “learn” the new patterns.

Several tests were performed in order to evaluate which was the best configuration
for the MMP-Video’s dictionary. In these tests we have used much of the knowledge
gathered from the work on MMP dictionary adaptation for image coding, described in
the previous chapters of this document. One relevant aspect of the dictionary design
process for MMP-Video is the possibility of using independent dictionaries for different
image components or slice types. In its initial version, MMP-Video used six independent
dictionaries to encode the MBs of each colour (YUV) component of the P and B slices. In
this case, each dictionary only “learns” the specific residue patterns of each type of source
data, e.g. the P-Y dictionary is only used to approximate luma patterns of P slices and is

exclusively updated for such cases. On one hand, this can be a performance improvement

8In this thesis we follow the H.264/AVC convention, that uses the terms luma and chroma instead of

luminance and chrominance [13].
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factor, because it results in highly specialised dictionaries. On the other hand, this means
that a MB of a given component/slice type can only be approximated by blocks of the
corresponding dictionary, that has a smaller approximation power than a more general
(and thus more complete) dictionary.

Our tests demonstrated that the use of six independent dictionaries limited the perfor-
mance for the chroma components. Since chroma residue blocks tend to be very smooth,
the number of segmentations performed by MMP for these blocks is small. This causes
the chroma dictionaries to learn very few new patterns, which compromises their coding
efficiency. Therefore, several other dictionary configurations were tested.

Another important tool for MMP-Video dictionary design is the use of context condi-
tioning techniques, like the ones discussed in Section 6.1. In these cases, the dictionary
elements are organised into different partitions, which use independent probability con-
texts for the arithmetic encoding of the indexes. The following criteria were tested as the

probability contexts:

e The original block scale, in which each dictionary partition contains the vectors that

were originally created at a given scale;

e The slice type, meaning that each partition contains the vectors that were created

for the I, P or B slices;

e The image component, where each partition contains the vectors that were created

for the Y, U or V colour components.

Experimental tests were conducted, in order to evaluate the performance of using a
different number of dictionaries and different context conditioning criteria. In these tests
there was not a unique configuration that proved to be the best for all frame types and
colour components, at all compression ratios. Nevertheless, two options achieved the best

overall results:

e In the first option, MMP-Video uses two independent dictionaries: one for the P
slices (all colour components) and another for the B slices. Each dictionary is thus
able to learn the residue patterns that correspond to all three components of every
MB of each slice type, allowing MMP to use a richer dictionary to encode the chroma

components, improving the coding efficiency of these residues. On the other hand,
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luma MBs have to “share” the dictionary with the chroma patterns, causing a slight
efficiency loss for the luma component. Nevertheless, this configuration achieved the
best overall results when we used independent dictionaries, because the small loss for
the luma components is compensated by the relevant gains achieved for the chroma

components.

e In the second option, a single dictionary is used to approximate all residue blocks,
independently of their corresponding component and slice type. This dictionary is,
however, segmented considering the original level of each new block of the dictionary,
using a similar procedure to the one described in Section 6.1. The results for this
method were almost equivalent to the use of the two independent dictionaries of the
previous case, segmented by level. The use of a single dictionary means that all dic-
tionary blocks are always available, regardless of the slice type and colour component
that is being encoded. Once more, this has a beneficial effect in the compression of
the chroma components, at the cost of a small reduction in the efficiency of luma

compression.

The dictionary redundancy control scheme, discussed in Section 6.2, and the scale
restriction technique (see Section 6.4.1), were also used in MMP-Video. The use of redun-
dancy control introduces consistent quality gains for all sequences. As for the case of image
encoding, the best value for the used distortion threshold, d, depends on the target rate
and is related with the value of A\. The parameter A\ of the MMP-Video encoder is set based
on the QP parameter, using the same relation that was defined for the original H.264/AVC
encoder [92]. An experimental optimisation of the d(\) rule was performed, according to
a procedure similar to the one described for MMP image coding in Section 6.2.2. In spite
of the greater variance of the results for video sequence coding, the original rule defined
for MMP-II (see equation (6.2)) was found to be appropriate also for MMP-Video. As for
MMP-II, the restriction of the scale transforms used in dictionary updating also achieves
relevant computational complexity gains, without a noticeable impact on the performance
of MMP-Video.

A maximum dictionary size was set for both versions of MMP-Video. We used a
value that did not generally limit the dictionary growth (100.000 elements). Nevertheless,
this limit was sometimes reached, especially for more complex sequences (like Mobile &

Calendar) and for higher rates. The index frequency-based elimination rule, determined
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in Section 3.4.1 for image coding, was also used for MMP-Video. As for the case of image
compression, experimental tests revealed that the performance of the MMP-Video encoder
does not strongly depend on this threshold, unless the maximum dictionary size is severely
reduced.

The norm-equalisation procedure, described in Section 6.5, was also tested. Experimen-
tal results revealed that the benefits of this technique depend on the input video sequence
and on the features of the encoder. For some cases, the use of norm equalisation improves
the coding performance, but, for some sequences, it has a negative impact. Because of

this, this technique was disabled for MMP-Video.

8.3.3 The use of a CBP-like flag

As was previously described, the H.264/AVC standard uses a coded block pattern (CBP)
parameter to characterise the encoded residue block transform coefficients (for instance
the absence of non-zero AC coefficients), for each MB. This allows the encoder to avoid
transmitting information associated with some null residual coefficients, saving overhead
bits. Since MMP does not use encoded coefficients, the direct use of the CBP value is
not possible. Nevertheless, an analysis of the MMP-Video coding data revealed that a
large number of null 16 x 16 and 8 x 8 blocks were transmitted. This can be a source of
inefficiency for the MMP-Video encoder. For a null residual block, MMP has to transmit
one no-segmentation flag followed by the index that corresponds to the null block, for each
of the three components, i.e., a total of six symbols.

Two techniques for reducing this inefficiency in the MMP-Video encoder were studied.
Both of them use the transmission of CBP-like information. In the first case, a binary
flag signals the existence of non-zero residue blocks for any of the YUV components. If all
component residues are null, this flag (we maintained the CBP designation, as a reference
to its purpose in the original H.264/AVC encoder) will be zero and the encoder simply
does not transmit any MMP information for the current MB, thus saving bits for the same
reconstruction quality. When there are non-null residues, the CBP flag is set to one and
its transmission is followed by the encoded MMP residue blocks. The second version of
this process uses a CBP value with three bits, one for each of the Y, U and V components.
As an example, a CBP with value 5 is followed by the MMP encoded residues for the Y

and V components and explicitly signals the decoder that the U residue is null.
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In both cases, the CBP value is encoded using an adaptive arithmetic encoder and
transmitted for every MB, immediately before the MMP data that encodes the residue
patterns. The use of the CBP parameter by MMP-Video thus requires an additional rate
overhead. Because of this, both options were tested for MMP-Video, in conjunction with
the investigation of the most favourable dictionary architectures. Some simulations were
performed in order to determine which of the CBP parameter configurations were more ef-
ficient, for the two dictionary architectures described in the previous section. Experimental
results demonstrated that the best option for the use of a CBP parameter in MMP-Video

depends on the dictionary configuration:

e When two independent dictionaries are used, the best option is to encode a CBP
parameter with three bits and use it for both P and B slices. In this case, the
three-bit CBP is able to efficiently avoid the transmission of null residue for some of
the components and was shown to be more efficient than the use of a binary valued

parameter;

e When MMP-Video uses only one dictionary, it is more efficient to use a binary CBP
and transmit this value only for the B slices. In this case, the overhead introduced
by the use of a three-bit CBP results in a loss of coding efficiency, as does the use of

the binary CBP for the P slices.

8.3.4 Experimental results

In this section we present the experimental results of the performance of the MMP-Video

encoder. The two versions discussed in the previous section were tested:

e MMP-Video 2Dic: uses two independent dictionaries and a three bit CBP, applied

on P and B slices;

e MMP-Video 1Dic: uses one dictionary, with context conditioning, and a one bit CBP,

used only of B slices.

The results of MMP-Video were compared against those of the H.264/AVC high profile
video encoder (best coding performance). The first 99 frames of the 4:2:0 test sequences
Foreman (CIF), Akiyo (QCIF) and Mobile & Calendar (CIF) where used in the tests.

A set of common encoding parameters was used for all the encoders, namely a IBPBP

pattern with only one intra reference frame and the high profile. The slices were set to
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Figure 8.11: Comparative results for MMP-Video encoder and the H.264/AVC high

profile video encoder, for the B slices of sequence Foreman (CIF).

the entire frames. RD optimisation and the use of I MBs in inter-predicted frames were
enabled, while no error resilience and no weighted prediction for B frames were used.
The context-based adaptive arithmetic coder (CABAC) option was set for all encoders.
Variable bit rate mode was used and the encoders were tested for several quality levels of

the reconstructed video sequence, by fixing the QP parameter for the I/P and B slices.

Figures 8.11 to 8.16 show the results for the P and B slices of three test sequences. The

results for the frame I are not presented, because they are equivalent for all the encoders.
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Figure 8.12: Comparative results for MMP-Video encoder and the H.264/AVC high

profile video encoder, for sequence Foreman (CIF).

This results from the use of the original H.264/AVC intra coding techniques in the tested

versions of MMP-Video, as was previously explained. The RD lines represent the average

PSNR values vs. the average number of bits per frame. The results are represented for the

luma component of the P and B slices (Figures 8.11, 8.13 and 8.15) and for the U and V

chroma components of the B and P slices (Figures 8.12, 8.14 and 8.16).

When we compare the two versions of the MMP-Video encoder we observe that they

vary in performance but have generally the same behaviour. MMP-Video 1Dict tends to
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Figure 8.13: Comparative results for MMP-Video encoder and the H.264/AVC high
profile video encoder, for sequence Mobile & Calendar (CIF).

be marginally better for the chroma components of the P slices, while MMP-Video 2Dicts
presents some advantage for the luma components of both P and B slice types. When
compared with the H.264/AVC high profile video encoder, the performance of the MMP-
Video encoder is consistently better for all components of B slices, especially at higher bit
rates, for CIF sequences Foreman (see Figures 8.11 and 8.12) and Mobile & Calendar (see
Figures 8.13 and 8.14). For these rates we may observe PSNR gains that range up to 2dB.

For the P slices we observe that MMP-Video is able to achieve some coding gains over the
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Figure 8.14: Comparative results for MMP-Video encoder and the H.264/AVC high

profile video encoder, for sequence Mobile & Calendar (CIF).

H.264/AVC encoder for the chroma components, for all sequences except for Akiyo (see

Figures 8.15 and 8.16). For the luma component of the P slices, the relative performance

of MMP-Video varies with the tested sequence: it is better than the H.264/AVC for the

Mobile & Calendar sequence, equivalent for the Foreman sequence and slightly worse for

Akiyo.

For QCIF sequence Akiyo, one may also observe quality gains for the B slices, but only

at higher rates. For the lower rates one observes some quality losses. The sequence Akiyo
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Figure 8.15: Comparative results for MMP-Video encoder and the H.264/AVC high
profile video encoder, for sequence Akiyo (QCIF).

is a typical head-and-shoulders sequence, with very small motion. This means that the
motion-compensated residue generally has a very small, or null, amplitude, particularly
for the B slices. When high compression ratios are used, the encoder tends to use the
null blocks very often. This has an unfavourable effect on the comparative performance
of MMP-Video, for two reasons: first, the use of the original H.264/AVC tends to be
more efficient in compressing the null residues, due to its highly optimised choice of coding

parameters and adaptiveness of the CABAC entropy encoder; and second, the repetitive
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Figure 8.16: Comparative results for MMP-Video encoder and the H.264/AVC high
profile video encoder, for sequence Akiyo (QCIF).

use of the null codeword by MMP-Video tends to limit the dictionary growth, meaning
that, when the MC fails to produce a near null residue, the encoder has more difficulty in

finding a good match in the dictionary.

Figure 8.17 presents a comparison between the performances of MMP-Video, H.264/AVC
and H.264/AVC No MPE, described in Section 8.2. We may observe that MMP-Video is
able to achieve the same good results as H.264/AVC No MPE, for the medium to the
higher rates. Nevertheless, the performance limitation that was observed for H.264/AVC
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Figure 8.17: Comparative results for MMP-Video encoder and the H.264/AVC No

MPE video encoder, for sequence Foreman (CIF).
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No MPE for higher rates does not exist for MMP-Video, since, in this case, the encoder is
able to achieve the low distortion levels required for these cases.

Figures C.50 to C.53 (see Appendix C) show the results for other previously discussed
options of the MMP-Video encoder, namely the use of 6 independent dictionaries, the use
of ABS, overriding of the deblocking filter and the use of the norm equalisation procedure

in MMP-Video, for sequence Foreman.

8.4 Conclusions

In this chapter we have proposed two successful algorithms for video compression. In
Section 8.2 we describe H.264/AVC No MPE: an H.264/AVC-based compression scheme
that does not use the transmission of the motion-compensated residue. An interesting
relation was established between the described algorithm and traditional pattern-matching
coding methods, namely Lempel-Ziv and VQ. Part of the bit-rate that is usually associated
with the compression of the motion-compensated predicted residue is used by the proposed
encoder in more elaborate prediction modes. Experimental tests show that, when the
motion-compensated error is not encoded for B slices, the proposed compression method
has compression gains over the original standard, for low to medium rates.

The use of MMP for video coding was also investigated and a new method, referred to
as MMP-Video, was presented in Section 8.3. The use of MMP in a hybrid video coder
framework took into consideration some important functional optimisations. Some of these
techniques resulted from the investigation on MMP as a digital image encoder, presented
in the previous chapters. Nevertheless, new techniques were especially designed in order to
exploit the particular characteristics of digital video encoding. Experimental results show
that the general coding performance of the MMP-Video encoder is better than the one of
H.264/AVC high profile, especially for medium to high bit-rates and for the B slice data,
where the coding gains range up to 2dB. Moreover, MMP-Video avoids the performance
limitations of H.264/AVC No MPE for higher rates, due to the absence of the motion
predicted error.

The described results for MMP-Video show that, in spite of its larger computational
complexity, the multiscale recurrent pattern matching paradigm may also be used in video

compression. These results also show the importance of using appropriate dictionary design
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techniques for MMP-Video.



Chapter 9

Conclusions and future work

This thesis investigated new and efficient image and video compression schemes based
on the multiscale recurrent pattern matching coding paradigm. A previously proposed
compression algorithm, referred to as multidimensional multiscale parser (MMP) was used
as the starting point for the development of this paradigm. After an introduction to the
pattern matching compression paradigm and the MMP algorithm, the two main goals of

this research work were addressed:

e New MMP-based image compression algorithms were proposed, that achieve a similar
coding performance to the state-of-the-art image compression schemes for smooth
images, while maintaining, or even improving, the MMP gains for non-smooth image

coding;

e A new MMP-based video compression algorithm, with state-of-the-art compression

results, was developed.

Chapter 2 presents a brief introduction to pattern matching-based algorithms, with a
special focus on applications to the compression of image and video signals.

Chapter 3 presented a description of the MMP algorithm for image compression. An
experimental evaluation of MMP was also made, in order to assess the compression per-
formance of the original method against that of the state-of-the-art image compression
algorithms. Some functional aspects of MMP, related with the bit-stream structure and
code-vector usage, were investigated. This knowledge proved to be very useful in the

development of new compression techniques, described in later sections of the thesis.
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Chapter 4 presented a formal analysis of the MMP algorithm, revealing other insights.
MMP was then regarded both as an extension of traditional vector quantisation methods
and as a string matching-based algorithm (Lempel-Ziv). Some other analogies were also
described, namely between MMP and transform-based decomposition schemes or non-
uniform sampling procedures. These insights were at the genesis of some of the work

presented in other sections of the document.

As suggestions for future work, one could exploit the non-uniform sampling analogy,
in order to develop alternative ways to reconstruct the MMP-compressed signal, namely
by using other interpolation methods. The pattern matching nature of MMP could also
be explored, namely by adapting some of the traditional VQ dictionary design strategies
to MMP.

Chapter 5 first presented a study that demonstrated the advantage of using sources
in MMP with more concentrated probability distributions, that were represented by gen-
eralised Gaussian functions. Based on this investigation, a new image compression algo-
rithm, that combines MMP’s multiscale recurrent pattern matching and predictive coding
paradigms, was proposed. The new algorithm, referred to as MMP-I, uses adaptive image
prediction techniques, similar to the ones defined for the H.264/AVC compression stan-
dard, to transform the input image’s pixels into predicted residue samples with highly
concentrated probability distributions. The use of the predicted error signal favours the
adaptation of MMP’s dictionary, leading to a significant improvement on the compression
performance, especially for smooth images, where the prediction process has a higher ac-
curacy. An experimental evaluation of MMP-I's performance revealed that the advantage
over the state-of-the-art transform-based compression algorithms was maintained for non-
smooth images, like text and graphics. For smooth images, where MMP presented a clear
performance deficit, the PSNR gains put the MMP-I performance only about 0.5 dB below
that of JPEG2000 and H.264/AVC intra frame encoder.

As a suggestion for future work, the generalised Gaussian-like probability distributions
of the prediction signal could be exploited by relating MMP-I compression with a pyramid
VQ scheme [78], namely for the development of new, more computationally efficient ver-
sions of the encoder. Another interesting research line would be the use of fast VQ search
algorithms, to improve the computational efficiency of MMP algorithms. A simple method

was used for MMP-I, with good results, but the investigation on the performance of faster,
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sub-optimum search schemes is an open problem.

Chapter 6 presented some new techniques related with dictionary adaptation for MMP-
I. The use of these methods resulted in a new compression algorithm, referred to as MMP-II,
that presents a better coding performance for all tested images. The proposed schemes are
related with several aspects of the MMP encoding process: the use of context conditioning
for the adaptive arithmetic encoder (see Section 6.1) improves the lossless compression
of MMP dictionary indexes’ symbols; redundancy reduction techniques (see Section 6.2)
selectively remove disadvantageous dictionary blocks, reducing the indexes’ average en-
tropy and increasing the encoding performance; enhanced dictionary updating strategies
(see Section 6.3) introduce new code-vectors that will be useful for future block approx-
imations; scale-adaptive updating schemes for the dictionary (see Section 6.4) allowed a
significant reduction in processing time with only negligible performance losses; a L'-norm
equalisation procedure (see Section 6.5) adapts the new dictionary patterns according to

a probability distribution criterion.

Despite their MMP-based genesis, most of the proposed schemes are generic enough
to be used with other adaptive pattern matching algorithms. As an example, one could
consider the use of the proposed redundancy control techniques in a lossy LZ78-based

encoder (e.g. [35]), in order to avoid the insertion of disadvantageous code-vectors.

Experimental results showed that MMP-II is able to achieve quality gains over both
MMP and MMP-I for every tested image and all compression ratios. For non-smooth
images, these gains further increase the advantage of MMP-based algorithms over the
state-of-the-art, transform-based encoders. For smooth images, the methods proposed in
this chapter allow MMP-II to reach a performance level similar to that of the JPEG2000

algorithm, fulfilling one of the main objectives of this thesis.

Future work could include the exploitation of the MMP-II features to compress other
signal types. This thesis was mainly focused on increasing smooth image compression effi-
ciency. In spite of the gains that were observed also for non-smooth images, the problem of
optimising the encoding performance for these image classes was not specifically addressed.
An open research line is the optimisation of MMP-based algorithms for text and compound
image compression. Another interesting problem is the optimisation of MMP-II compres-
sion methods for other signal types. An example would be the compression of stereoscopic

images and video sequences, or electrocardiogram (ECG) signals [15, 16].
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In Chapter 7 we revisited the prediction process used by MMP-II and proposed a new
MMP-II post-processing deblocking method. The initial proposal of MMP-I inherited the
prediction methods of the H.264/AVC standard. In this chapter, an evaluation of the
used prediction scheme was performed, and some optimisations were introduced, related
with prediction block size and the use of additional prediction modes. Additionally, a new
deblocking method for MMP-II was investigated, motivated by some blocking artifacts
observed in the MMP-II images, especially for highly compressed smooth images. The
proposed deblocking algorithm uses an adaptive filter, that varies depending on the image
region that is being processed. The filtering parameters are optimised by the encoder
and then transmitted to the decoder using a negligible overhead. This maximises the
deblocking performance for smooth images and eliminates the traditional PSNR losses for
deblocked non-smooth images, making the proposed scheme suitable for any image type.
Additionally, for the smooth regions, experimental results show an improvement in both

objective and subjective quality levels.

The investigation on the use of other prediction methods in MMP-II is an interesting
future research problem. Several new prediction paradigms have been recently proposed
[95, 96, 97, 98], which could provide nice performance gains in MMP-II, especially for

smooth image compression.

Chapter 8 investigated the use of MMP for video compression. As a results a new algo-
rithm, MMP-Video, was proposed. Some functional optimisations were developed specifi-
cally for MMP-Video. The use of some of the previously mentioned techniques, developed
in the MMP-II framework, was also considered. MMP-Video encoder achieved a better
encoding performance than the current state-of-the-art encoder, the H.264/AVC high pro-
file, for medium to high bit-rates and for the B slice data, where the coding gains range up
to 2dB. These results show that the multiscale recurrent pattern encoding paradigm may
also be successfully used for video compression, fulfilling the second major objective of
this thesis. Additionally, an H.264/AVC-based compression scheme that does not use the
transmission of the motion-compensated residue was also investigated. Some interesting
relations were established, in order to regard this algorithm as a pattern matching video
compression scheme. Experimental tests showed that this method is able to achieve better

results than the original H.264/AVC standard, for low to medium rates.
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Future work options include the investigation on the use of fast intra and inter frame
prediction methods for MMP-Video. Many related techniques have been proposed for
H.264/AVC, with good results [99, 100, 101]. Such schemes are a promising research line
in the reduction of MMP-Video’s computational complexity. The research on MMP-Video
demonstrated good performance on the compression of the chroma components of the video
sequences. As future work one could investigate optimised ways to compress colour images,
by exploiting the particular features of the several image components, for different colour
spaces.

As a summary, one may conclude that the use of the multiscale recurrent pattern
matching coding paradigm, and of MMP-based methods, may lead to successful image
compression schemes. For smooth images, the proposed techniques were able to achieve a
coding performance that is comparable to the one of the current state-of-the-art transform-
based image compression standards. Nevertheless, unlike the traditional algorithms, the
proposed methods also achieve top performances for non-smooth images, like text and
compound images, assigning them a very useful universal feature. Additionally, the pro-
posed MMP-based video compression algorithm also demonstrated an encoding perfor-
mance above the levels achieved by the current state-of-the-art standard. These results
show that, in spite of its larger computational complexity, the multiscale recurrent pattern
matching paradigm is not only a viable alternative for image and video compression, that

is worth further investigation.
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Appendix A

Test Signals

A.1 Test images

Figure A.1: Grayscale natural test image Lena, 512x512.
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Figure A.3: Grayscale compound (text and graphics) test image PP1209, 512x512.
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Figure A.4: Grayscale natural test image Goldhill, 512x512.

Figure A.5: Grayscale natural test image Peppers, 512x512.
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Figure A.6: Grayscale natural test image Cameraman, 256 x256.
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A.2 Test video sequences

(a) Frame 0

SIEMENS,

(c) Frame 40 (d) Frame 60

(e) Frame 80 (f) Frame 99

Figure A.7: Some frames of the test video sequence Foreman (CIF: 352 x 288).
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Figure A.8: Some frames of the test video sequence Mobile & Calendar (CIF: 352 x

288).
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(e) Frame 80 (f) Frame 99

Figure A.9: Some frames of the test video sequence Flower Garden (SIF: 352 x 240).
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(a) Frame 0 (b) Frame 20

(c) Frame 40 (d) Frame 60

(e) Frame 80 (f) Frame 99

Figure A.10: Some frames of the test video sequence Akiyo (QCIF: 176 x 144).



Appendix B

Implementation details for the MMP

algorithms

B.1 Introduction and basic definitions

In this appendix we present a detailed description of the Multidimensional Multiscale
Parser-based algorithms that have been discussed throughout this document. All these
methods partition the input image into blocks of fixed size, X, that are compressed in-
dependently. A standard raster scan order is used for block selection. MMP uses dyadic
segmentations of each original image block, to divide the image into variable size texture
regions, that are encoded using vectors from a multi-scale adaptive dictionary, D. The
decision to perform the bisection of each sub-block is based on rate-distortion criteria
and repeated recursively. The segmentation structure that results from this optimisation

procedure is represented by a binary segmentation tree, 7, as shown in Figure B.1.

node 0

node 2

Figure B.1: Segmentation tree for a block encoded with MMP.
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Figure B.2: Vertical segmentation of an original 4 x4 block (level 4): a) segmentation

decisions; b) block partitioning.
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Figure B.3: Horizontal segmentation of an original 4 x 4 block (level 4): a) segmen-

tation decisions; b) block partitioning.
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We define X! as an input image block of scale I. This scale value (identified by the
use of the superscript ) has a direct correspondence with the level of the segmentation
tree, 7, that it corresponds to. There is also a direct relation between this value and the

dimensions of X!:

e If the square blocks, corresponding to even values of [, are segmented into two vertical

rectangles (Figure B.2), then a block of level [ has dimensions:
9l « olsl, (B.1)

e If the square blocks are segmented into two horizontal rectangles (Figure B.3), then
a block X! has dimensions:

9ls) x ol5H, (B.2)

Note that both examples of Figures B.2 and B.3 use the segmentation tree represented in
Figure B.1. The level 0 of 7 (the deepest level) always corresponds to blocks of dimension
1 x 1. The root of 7 is always located at the level that corresponds to the size of X'. Each
node of the binary tree represents a decision to divide the corresponding block, while a
tree leaf corresponds to an undivided rectangular sub-block. A tree leaf is represented by
a binary flag set to ‘0’ while a segmentation is represented by a ‘1’. The following sections
have an algorithmic representation of the considered methods. A detailed description of
these methods may be found in the main text of this thesis.

The rate-distortion optimisation procedures use a Lagrangian multiplier, A [54, 55]
in order to weight both the distortion of one block and the rate needed to encode the
associated information. This optimisation problem is solved by minimising the value of a

cost function J(7), given by:
J(T)=D(T)+ M\R(T), (B.3)

where D(7) is the distortion of the approximation represented by 7 and R(7) is the rate
used to encode this approximation. The sum of squared differences (SSD) is used as the
distortion measure between two blocks, X! and Sﬁ. It is defined as:
D(X!, s ZZ (Xl y,z) — Sk(y, ))2. (B.4)
y=1z=1
Consider a block X' of scale [, corresponding to a node n; in the segmentation tree.

nj can be a tree leaf (in this case X! is approximated by a single dictionary vector) or
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it can be a tree node, parent of two nodes ngj;1 and nojyo (in this case, n; signals the
segmentation of X!). This decision is made after comparing the cost functions of the
original approximation with the one of the two segments. More precisely, if n; is a leaf

node, its cost is given by
J(leaf(n;)) = D(X',8) + AR(leaf(n;)), (B.5)

where R(leaf(n;)) is the rate spent to encode node n; as a leaf node. R(leaf(n;)) is the
sum of the rate spent to encode the dictionary vector, R(SJ!), with the rate of the binary

flag that signals that the block should not be segmented, R(f!), i.e.
R(leaf(n;)) = R(S}) + R(f}). (B.6)

The rate values are determined based on the probability of the used symbol in the corre-
sponding histogram. Independent probability distributions are kept for the segmentation

flags and dictionary indexes of each scale. Thus, we have that

R(z) = lOsz = —logs (P(x[i(x))), (B.7)

where x is the current symbol and I(z) is the scale of x, that corresponds to its encoding
context. The expression P(x|l(x)) represents the probability of symbol z in the context
(probability histogram) corresponding to scale [(x). As an example, for the particular case

of dictionary indexes we have that
R(S!) = —logs(P(i[D)), (B.3)

where P(i'|D') is the probability of occurrence of the vector with index i of level [ of the
dictionary.
The Lagrangian cost of approximating block X! using the concatenation of two nodes

n2j+1 and n2j42 is estimated by:
J(node(nj)) = J(ngj1) + J(najva) + AR(f7). (B.9)

where R(f}) corresponds to the rate used to encode flag ‘0’ at level [.

B.2 Algorithm for MMP

The MMP compression! of an input image block, X!, may be defined by two main steps
(see Figure B.4):

!See Section 3.1 for a detailed description of the MMP algorithm.
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T = MMP_optimise_block(X!,\)

v

X! = MMP_encode_block(T)

X! = next_block()

T

last  block?

Figure B.4: Flowchart for the MMP algorithm.

e First: procedure {Xl,’f, J(T)} = MMP_optimise_block(X!, \) performs an opti-
misation of the encoded block. It receives an input block, X! of scale I, as well as
the value for the Lagrangean RD optimisation parameter, A. It determines the best
MMP representation of the original blocks in a RD sense and returns the MMP tree
T that represents it, as well as the resulting approximated block, XtoJ (7) is the
Lagrangean cost of the approximation performed by 7. This procedure is described

in Section B.2.1;

e Second: procedure X! = MM P _encode_block(T) performs the encoding of the
previously optimised block. This procedure analyses the MMP segmentation tree, 7,
determined by the optimisation function, generates the MMP string with the symbols
for the segmentation flags and dictionary indexes and encodes each symbol using
the adaptive arithmetic encoder. Also, for each block segmentation, the encoding
procedure performs the relevant dictionary updating operations. This procedure is

described in Section B.2.2;

B.2.1 MMP optimisation procedure
Procedure {XI,T,J(T)} = MMP _optimise_block(X!, \)

Step 1: search D' for the element Sé that minimises the approximation cost defined by

J(T") = D(X', S + A.R(S!), where D(X!,S!) is the squared error between
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

the input block and the dictionary element and R(S!) is the rate needed to

encode index i of D';

segment X! into two blocks: Xé_l and Xll_1 using the appropriate rule (ver-

tical or horizontal);
compute {Xé‘l, 7o, J(%)} = MMP _optimise_block(X5™, \);
compute {Xll_l, T, J(Tl)} = MMP_optimise_block(X™1,\);
determine the cost of approximating X' using a single block from D':
Jicaf = J(T') + XR(f}),

where R(f}) is the number of bits needed to encode the leaf flag ‘0’ of level /;
determine the cost of approximating X! using a segmentation:

Tnode = J(To) + J(T1) + \.R(f1),

where R(f!) is the number of bits needed to encode the node flag ‘1’ of level
l
if (Jleaf <= Jnode), then do

X! = St;

T =leaf(S});

J(T) = Jleaf;
else do
X! = (Xé‘l : Xll_l), where ( : ) means the concatenation of two

blocks according to the appropriate direction (vertical or horizontal);

T = (7oU71), where (  |J ) is the combination of two binary trees

under a common root node;

J(T) = Jnode;

return {Xl, 7,J(T) } .
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B.2.2 MMP encoding procedure

Procedure X! =MMP _encode_ block(7)

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Step 12:

if I =0 then go to step 5;

set 79 = left_node(T) and T3 = right_node(T);
if 7o = 0 and 7; = 0 go to step 4; else go to step 7;
encode and output flag ‘0’ of level [;

encode and output index 7 of level [, representing element Si- associated with

T;

return Xl;

encode and output flag ‘1’ of level [;
do X' = MMP_encode_block(Ty);
do X!™' = MMP_encode_block(T);
determine X! = (Xlo_l : Xll—1>;

for each scale [;, do:

determine X! = Tlll (Xl>, where Tlll () performs a scaling operation from

original scale [ to scale I;;
update dictionary D% with block X%, unless a similar element already

exists in D

return Xl = <X6_1 : Xll_1>.

B.3 Algorithm for MMP-1I FBS.

The MMP-I FBS (Fixed Block Size) algorithm? considers image blocks of constant size

for the prediction step. This size corresponds to the top level of the segmentation tree

for the MMP algorithm. For each input block, MMP-I FBS first determines all prediction

%See Section 5.2 for a detailed description of the MMP-1 FBS algorithm.
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modes available for X!. Then it performs the prediction step using each available mode
and optimises the MMP compression of the corresponding prediction error block, by using
the previously described MMP encoding procedure. Finally, the algorithm chooses the
best prediction mode, based on the determined values of the RD cost functions. It is

implemented using two procedures:

e procedure {XI,T, J(T), M} = MMPI_FSB_optimise_block(X!,\), that deter-
mines the best prediction mode, M, among the available modes for the current block
and returns the MMP data that optimises the compression of the predicted residue.
RIM and PZM are, respectively, the prediction residue and prediction blocks for block

X! using mode M.

e procedure X! = MMPI FBS_encode_block(T, M) analyses the MMP-I segmen-

tation tree and encodes all the symbols associated with the block representation.

As for the MMP algorithm, each image block is first processed by the optimisation
routine and the results of this function are then passed to the encoding procedure. A
definition of these two procedures is presented in the following sections, while a flowchart

of the algorithm is shown in Figure B.5.

B.3.1 MMP-I FSB optimisation procedure

Procedure {XI,T,J(T),M} — MMPI_FSB_optimise block(X!, )

Step 1: determine the set of prediction modes that are available for block X!, based

on the previously encoded image pixels, M;
Step 2: initialise J,,;, = oo and M = 0;

Step 3: for each available prediction mode, m € M, do:
determine P! and R!, by performing block prediction using mode m;

compute {fiﬁn,TTa,J(Trﬁb)} = MMP_optimise_block(R.,, \) (see sec.
B.2.1);

set J(TL) = J(TL) + \.R(f.)), where R(fL)) is the rate used to encode

prediction flag m of level [;

if (J(T) < Jmin) then set Jyi = J(TL) and M = m;
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1

M = Available_modes(X")

R!, = Prediction(X!,m)

v

T, = MMP_optimise_block(R!,, \)

Yes

encode(Mpest)

v

MMP _encode_block(Tyy,,,,)

v

Figure B.5: Flowchart for the MMP-I FBS algorithm.

Step 4: determine X! = PZM + RlM;

Step 5: return {XI,TM,J(TM),M}.

B.3.2 MMP-I FSB encoding procedure

Procedure X!'=MMPI_FBS_encode_block(7, M)

Step 1: output prediction flag m of level [;

Step 2: do R}, = MMP_encode_block(T},;, M) (see sec. B.2.2);
Step 3: determine PZM by performing block prediction using mode M;
Step 4: determine X! = PZM + f{lM,

Step 5: return X'.
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B.4 Algorithm for MMP-I.

The implementation of MMP-I? is based upon the MMP original optimisation and encod-
ing procedures, combined with an hierarchical, adaptive block size prediction step. The
prediction may use blocks with dimensions down to 4x4, corresponding to [ = 4. In or-
der to perform the joint optimisation of both the prediction mode and prediction block
size, the possible combinations are tested recurrently, using the MMP-I FBS optimisation
procedure, defined in the previous section. A new procedure is defined for this purpose:
{XI,T, J(T)} = MMPI_optimise_block(X!,\). In this case, the segmentation tree
structure was altered so that it also holds the information about the prediction procedure.

Three flags are used:

e Flag ‘0’ indicates a tree node (block segmentation) for which no prediction is neces-
sary. This flag is used when no prediction mode has been set and both the prediction
block and MMP block must be segmented or when the prediction step has already
been performed, but the MMP block should be segmented;

e Flag ‘1’ indicates a tree leaf. If no prediction mode has been previously set for the
pixels of this block, this flag is followed by a prediction mode flag, that describes the
prediction process that should be used at this scale. If prediction data has already
been defined for this block, flag "1’ signals a simple tree leaf and is followed by the

dictionary index of the vector used for the approximation;

e Flag ‘2’ corresponds to a tree node (MMP segmentation) but at a scale where pre-
diction should be performed. It is always followed by the corresponding prediction
mode flag. From this point on no further prediction should be used and all flags

represent coding decisions related to the MMP process.

A flowchart of the MMP-I algorithm is shown in Figure B.6.

B.4.1 MMP-I optimisation procedure
Procedure {XI,T,J(T)} = MMPI_optimise_block(X!, \)

Step 1: compute {XI,T, J(T),M} — MMPI_FSB_optimise_block(X!,\) (see
sec. B.3.1);

3See Section 5.2 for a detailed description of the MMP-I algorithm.
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Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

v

T = MMPI_FSB_optimise_block(X!)

Yes

segment (X') — X5 | x|

v

Ty = MMPI_FSB_optimise_block(X}y™")
T, = MMPI_FSB_optimise_block(X\™")

Yes No
T(T) < J(T) + J(T))
% A 4
L Segment prediction
Do not segment prediction
T process(Tp)
process(T) process(Ty)

l

Figure B.6: Flowchart for the MMP-I algorithm.

compute J(7T) = J(T) + \.R(f.), where R(f.) is the rate needed to encode

the segmentation flag used for this case:
fi=1if (T =T = 0);

fi=2if (To # 0N Ti # 0);
if | = 4 then return {Xl, 7, J(T)};
segment X! into two blocks: Xf)_l and Xll_1 using the appropriate rule;
compute {Xé‘l, 7o, J(’ZE))} = MMPI _optimise_block(X5™1, \);
compute {Xﬁ‘l, T, J(’Z'l)} = MMPI_optimise_block(Xa_l, A);

if (J(T)< J(To)+ J(T1) + A.R(f])), then the prediction should be made us-
ing mode M at level [, so return {Xl, T, J(T)}, determined in step 2;
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Step 8: else

set X! = <X6‘1 : Xll_1>, where ( : ) means the concatenation of two

blocks according to the appropriate direction;

set T = (7-01—1 U 7-11—1)’ where ( |J ) is the combination of two binary

trees under a common root node;
set J(T) = (J(To) + J(T1) + AR(f}));
return {XI,T, J(T)}.

B.4.2 MMP-I encoding procedure
Procedure X!= MMPI_encode block(7)
Step 1: read first segmentation flag from 7" and store it into f.;

Step 2: if (fglc = 0) then segment the block
output flag ‘0’ of level [;
set 7o = left_node(7T) and 7; = right _node(T);
compute Xy ' = MMPI_encode_block(Ty);
compute X\™' = MMPI _encode_block(T);
set X! = (Xlo_l : Xll_l);
Step 3: else, if (ffc = 1) then:
output flag ‘1’ of level [;
if the prediction process has not yet been performed then
compute X! = MMPI_FBS_encode_block(T, M) (see sec. B.3.2);
else

compute X! = MMP__encode_block(T) (see sec. B.2.2);

Step 4: else, if (fglc = 2) then:
output flag ‘2’ of level [;

compute X! = MMPI _FBS_encode_block(T, M) (see sec. B.3.2);

Step 5: return X!
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Experimental results for the

proposed methods

C.1 Complementary results for Chapter 3
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Figure C.1: Experimental results of MMP for natural test image Goldhill.
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Figure C.2: Experimental results of MMP for natural test image Peppers.
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Figure C.3: Final number of elements for the dictionary for MMP, as a function of

the image compression ratio, for images Goldhill and PP1209.
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Figure C.4: Results for MMP when dictionary updating is interrupted at a percent-

age of the total number of blocks, for images Goldhill and Cameraman.
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Figure C.5: Results for MMP using a maximum dictionary size and the two tested

elimination criteria, for image Goldhill.
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Figure C.6: Results for MMP using a maximum dictionary size and the two tested

elimination criteria, for image PP1209.
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C.2 Complementary results for Chapter 4
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Figure C.7: Results of the deblocking post-processing for image Lena encoded with
MMP.

Figure C.8: Image Lena compressed by MMP at 0.29bpp with no deblocking post-
processing (PSNR = 32.55dB).
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(a) Rectangular (32.65dB)

(b) Gaussian (32.87dB)

Figure C.9: Results of the MMP post-processing deblocking filters for image Lena
coded at 0.29bpp for a) deblocking with rectangular kernel and b) deblocking with

Gaussian kernel (see Figure C.8 for the original image with no deblocking).
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Figure C.10: Rate-distortion results for the post-processing deblocking filters for

Figure C.11: Results of the MMP post-processing deblocking filters for a detail of
image PP1205 coded at 0.75bpp.
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Figure C.12: Rate-distortion results for the post-processing deblocking filters for

compound image PP1209 encoded with MMP.
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Figure C.13: Results of the MMP post-processing deblocking filters for a detail of
image PP1209 coded at 0.78bpp.
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(a) Independent 64 x 64

(b) Independent 32 x 32

Figure C.14: Result of the thin-plate spline interpolation using independent optimi-
sation of image blocks with dimensions a) 64 x 64 and b) 32 x 32.
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(a) Overlapping 64 x 64

(b) Overlapping 32 x 32

Figure C.15: Result of the thin-plate spline interpolation using optimisation of over-

lapping image blocks with dimensions a) 64 x 64 and b) 32 x 32.



C.2 COMPLEMENTARY RESULTS FOR CHAPTER 4 267

(a) MMP (28.787 dB)

(b) TPS (27.974 dB)

Figure C.16: Image Lena compressed at 0.12 bpp: a) Thin-plate spline interpolation
using 16 x 16 overlapping blocks; b) original MMP synthesis.
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(a) MMP (33.855 dB)

(b) TPS (31.496 dB)

Figure C.17: Image Lena compressed at 0.45 bpp: a) Thin-plate spline interpolation
using 16 x 16 overlapping blocks; b) original MMP synthesis.
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C.3 Complementary results for Chapter 5
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Figure C.18: Experimental results of MMP-I for grayscale test images Goldhill and
Peppers.
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C.4 Complementary results for Chapter 6
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Figure C.19: Results for the use of context conditioning with MMP-I, for image
Goldhill.
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Figure C.20: Results for original MMP-I and new techniques that use several inde-

pendent dictionaries (MMP-I MD), for image Goldhill.
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Figure C.21: Results for original MMP-I and MMP-I using redundancy control (both

methods also use dictionary partitioning), for image Goldhill.
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Figure C.22: Results for MMP-I with the use of new dictionary updating with

geometric transforms, for image Goldhill.
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Figure C.23: Results for MMP-I with the use of new dictionary updating with
displaced blocks, for image Goldhill.
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Figure C.24: Results for MMP-I with the use of new dictionary updating with the

additive symmetric block, for image Goldhill.
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Figure C.25: Results for MMP-I using combinations of the new dictionary updating

techniques, for image Goldhill.
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Figure C.26: Effects of using redundancy control with new dictionary updating

techniques (using displaced blocks with s = 2), for images PP1209 and Goldhill.
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Figure C.27: Results for MMP-II when scale restriction in dictionary adaptation
(MMP-II B) and scale restriction plus adaptive block size (MMP-II C) are used, for
image Goldhill.
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Figure C.28: Results when L! norm equalisation is used with MMP-II A, for image
Goldhill.
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C.5 Perceptual results for the MMP-based methods

(a) MMP (34.82dB)

Figure C.29: Image Lena compressed at approx. 0.5bpp using MMP.
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(a) MMP-I (36.57dB)

(b) MMP-II (36.94dB)

Figure C.30: Image Lena compressed at approximately 0.5bpp using MMP-I and
MMP-II.
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(a) JPEG2000 (37.15dB)

(b) H.264/AVC (37.24dB)

Figure C.31: Image Lena compressed at approximately 0.5bpp using JPEG2000 and
H.264/AVC.
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Figure C.32: Image PP1205 compressed at approximately 0.65bpp using a) MMP

and b) MMP-I.
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JPEG2000 and b) H.264/AVC.

Image PP1205 compressed at approximately 0.65bpp using
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(a) H.264/AVC (28.27dB)

Figure C.34: Image PP1205 compressed at approximately 0.65bpp using H.264/AVC.
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C.6 Complementary results for Chapter 7
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Figure C.35: Effects of changing the MMP-II prediction modes, for image Goldhill.
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Figure C.36: Effects of using a different number of prediction modes for higher scales

of MMP-II, for image Lena.
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Figure C.37: Effects of using a different number of prediction modes for higher scales

of MMP-II, for images PP1205 and PP1209.
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Figure C.38: Effects of changing the minimum block scale used in the prediction

stage of MMP-II, for image Goldhill.
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Figure C.39: Effects of using template matching in the prediction stage of MMP-II,
for image Goldhill.
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(b)

Figure C.40: Image Lena, encoded with MMP-IT at 0.135 bpp: a) no deblocking
(31.08 dB); b) MMP deblocking with rectangular kernel [1] (28.94 dB).
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(b)

Figure C.41: Image Lena, encoded with MMP-IT at 0.135 bpp: a) MMP deblocking
with Gaussian kernel [2] (30.25 dB); b) MMP-II deblocking (31.35 dB).
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(a) No deblocking (31.70 dB) (b) MMP deblocking rectang. [1]
(28.76 dB)

(c) MMP deblocking Gaussian [2] (d) MMP-II deblocking (o = 0.10
(30.26 dB) and s = 32) (31.91 dB)

Figure C.42: A detail of image Peppers, encoded with MMP-II at 0.16 bpp.



288 C. EXPERIMENTAL RESULTS FOR THE PROPOSED METHODS

Image Peppers
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Figure C.43: Objective quality gains for image Peppers (adaptive deblocking filter
used with a = 0.10 and s = 32).
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C.7 Complementary results for Chapter 8
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Figure C.44: Experimental results of the original H.264/AVC encoder and the new

encoder, that disables the compression of motion-predicted error (for B slices only).
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Figure C.45: Experimental results of original H.264/AVC and new encoder, that

disables the compression of motion-predicted error (for B slices only), for the main

profile.
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Foreman (CIF) - B Slices
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Figure C.46: Experimental results of original H.264/AVC and new encoder, that
disables the compression of motion-predicted error (for B slices only), when no bi-

predictive coding is used.
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Figure C.47: Experimental results of original H.264/AVC and new encoder, that
disables the compression of motion-predicted error (for B slices only), when a 32 x 32

search window is used.
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Figure C.48: Experimental results of original H.264/AVC and new encoder, with no

compression of motion-predicted error (B slices ounly), for a IPBBBP. ..

slice pattern.
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Figure C.49: Experimental results of original H.264/AVC and H.264/AVC No MPE,
when the compression of motion-predicted error is disabled for P slices (results for P

and B slices, of sequence Mobile & Calendar).
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Figure C.50: Comparative results for MMP-Video encoder using two and six inde-

pendent dictionaries, for sequence Foreman (CIF).
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Figure C.52: Comparative results for MMP-Video encoder (1 dictionary), with and

without the in-loop deblocking filter, for sequence Foreman (CIF).
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