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Abstract Tau hyperphosphorylation, amyloid plaques, and neuronal death are major

neuropathological features of Alzheimer’s disease (AD) and Prion-related encephalopathies

(PRE). Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase, active in post-mitotic

neurons, where it regulates survival and death pathways. Overactivation of Cdk5 is conferred

by p25, a truncated fragment of the p35 activator formed upon calpain activation. Cdk5

deregulation causes abnormal phosphorylation of microtubule-associated protein tau, leading

to neurodegeneration. In this work we investigated the involvement of Cdk5 in the neurode-

generation triggered by amyloid-beta (Ab) and prion (PrP) peptides, the culprit agents of AD

and PRE. As a work model, we used cultured rat cortical neurons treated with Ab1–40 and

PrP106–126 synthetic peptides. The obtained data show that apoptotic neuronal death caused by

both the peptides was in part due to Cdk5 deregulation. After peptide treatment, p25 levels

were significantly enhanced in a pattern consistent with the augment in calpain activity.

Moreover, Ab1–40 and PrP106–126 increased the levels of tau protein phosphorylated at Ser202/

Thr205. Cdk5 (roscovitine) and calpain (MDL28170) inhibitors reverted tau hyperphosph-

orylation and prevented neuronal death caused by Ab1–40 and PrP106–126. This study

demonstrates, for the first time, that Cdk5 is involved in PrP-neurotoxicity. Altogether, our

data suggests that Cdk5 plays an active role in the pathogenesis of AD and PRE.
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Introduction

Alzheimer’s disease (AD) and Prion-related encephalopathies (PRE) are two progressive fatal

types of neurodegenerative disorders, characterized by the cerebral deposition of amyloido-

genic proteins, the amyloid-beta (Ab) protein and the scrapie isoform of prion protein (PrPSc),

respectively. These proteins aggregate and accumulate extracellularly in the form of amyloid

plaques, having the same basic structure which consists of a core surrounded by degenerated

neuritis, activated microglia, and astrocytes (Aguzzi and Haass 2003). Increasing evidences

support that Ab and PrPSc are key molecules in the pathogenesis of AD and PRE. Extensive

neuronal death and hyperphosphorylation of tau are also features of these pathologies (Selkoe

1993; Prusiner 1998; Aguzzi and Haass 2003). In AD, hyperphosphorylated tau protein

aggregates intracellularly forming paired helical filaments (PHFs), which are the major

structural component of neurofibrillary tangles (NFTs) (Lee et al. 2001; Hardy 2003; Bautista

et al. 2006). Although the presence of NFTs is not evident in PRE, the participation of

hyperphosphorylated tau in these pathologies is widely recognized (Ishizawa et al. 2002;

Bautista et al. 2006), and high levels of phospho-tau were found in the CSF of patients with

prion diseases (Riemenschneider et al. 2003). Several evidences suggest a link between Ab
accumulation and NFTs formation in AD (Oddo et al. 2003a, b; 2004), however, few studies

have established a correlation between prion deposition and intracellular accumulation of

hyperphosphorylated tau (Bautista et al. 2006).

Cyclin-dependent kinase 5 (Cdk5), a proline-directed serine–threonine kinase, is considered

to have a major tau-phosphorylating function in the brain, with pathological relevance in AD.

Hyperphosphorylated tau perturbs microtubule organization and leads to cytoskeleton

disruption and neuronal death (Grundke-Iqbal et al. 1986; Tsai et al. 2004). Mass spectrometry

studies have shown that Cdk5 phosphorylates tau on S202, T212, S396, and S404, sites that are

phosphorylated in PHF preparations and in the brain of AD patients (Tsai et al. 2004). Sim-

ilarly to other elements of the Cdk family, isolated Cdk5 does not display any enzymatic

activity. In order to be activated, Cdk5 must bind to a regulatory subunit, p35 or p39 (Tsai

et al. 1994; Humbert et al. 2000), which are cyclin-like proteins highly expressed in post-

mitotic neurons. The p35–Cdk5 complex has an important role in neurodevelopment and

corticogenesis (Dhavan and Tsai 2001). Indeed, Cdk5 knockout mice display widespread

disruption of cortical layering and prenatal mortality (Ohshima et al. 1996; Gilmore et al.

1998), whereas p35 null mice, although viable and fertile, have defects in cortical lamination

(Chae et al. 1997). Recent evidence also shows that Cdk5 participates in synaptic plasticity

and memory (Angelo et al. 2006). During neuronal injury and subsequent intracellular calcium

homeostasis deregulation, membrane-associated Cdk5 activator p35 can be cleaved, by

calcium-regulated calpains, into the cytosolic C-terminal fragment p25. This truncated Cdk5

activator, lacking the N-terminus, will relocalize to the cell soma and nucleus. Moreover, p25

is more stable and binds tightly to Cdk5 than p35, forming a hyperactive and mislocalized

p25–Cdk5 complex (Tsai et al. 2004). Such cleavage of p35 into p25 is crucial for the

alteration of Cdk5 substrate specificity and contributes to tau hyperhosphorylation, cytoskel-

etal disruption and neurodegeneration (Tsai et al. 2004; Shelton and Johnson 2004). Elevated

levels of p25 have been reported in some neurodegenerative disorders, such as AD, Parkin-

son’s disease, and amyothrophic lateral sclerosis (Nguyen et al. 2002; Tsai et al. 2004).

However, there are no studies concerning a possible role for Cdk5 in PRE.

In order to determine the involvement of Cdk5 in the neuronal injury triggered by PrP and

Ab, we performed a comparative study in primary cultures of cortical neurons using the
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synthetic peptides, PrP106–126 and Ab1–40. Ab1–40 is one of the major components of amyloid

plaques in AD, whereas PrP106–126, is a peptide fragment that reproduces PrPSc toxicity and

forms fibrils in vitro (Forloni et al. 1996; Combs et al. 1999). Studies performed by our group

have shown that aged Ab1–40 and PrP106–126 form fibrils and can trigger apoptotic neuronal

death (Resende et al. personal communication; Melo et al. 2007; Garção et al. 2006). Inhib-

itors of Cdk5 and calpains were used to investigate whether this kinase mediates tau

phosphorylation and neuronal death triggered by these peptides. The obtained data show that

Ab and PrP increased p25 levels, through the activation of calpains, causing Cdk5 deregulation

and, consequently, tau hyperhosphorylation and apoptotic death. This is the first study showing

the involvement of Cdk5 in neurotoxicity triggered by PrP peptides.

Material and Methods

Materials

Neurobasal medium and B-27 supplement were purchased from Gibco (Paisley, United

Kingdom). Synthetic peptides of Ab1–40 and PrP106–126 were from Bachem (Bubendorf,

Switzerland). Alexafluor1 IgG conjugate secondary antibodies and Hoechst 33342 were

acquired from Molecular Probes (Leiden, The Netherlands). The fluorescent mounting medium

was from DakoCytomation (Glostrup, Denmark). Reagents and apparatus used in immuno-

blotting assays were obtained from Bio-Rad (Hercules, CA, USA), whereas PVDF membranes,

alkaline phosphatase-linked anti-mouse secondary antibody and the enhanced chemifluores-

cence (ECF) reagent were from Amersham Biosciences (Buckinghamshire, United Kingdom).

The monoclonal antibodies against Cdk5 (C-8) and p35 (C-19) were purchased from Santa

Cruz Biotechnology (Santa Cruz, CA, USA), whereas the anti-tau (BT2) and anti-human PHF-

tau (AT8) antibodies were from Pierce Endogen (Rockford, IL, USA). The monoclonal

antibody anti-GAPDH (6C5) was from Chemicon-Milipore (Temecula, CA). Calpain activity

assay kit was acquired from BioVision (Mountain View, CA, USA). All other reagents were

from Sigma Chemical Co. (St. Louis, MO, USA).

Cell Culture

Primary cultures of cortical cells were prepared from 15 to 16-day embryos of Wistar rats

according to previously described procedures (Agostinho and Oliveira 2003). Cortical cells

were cultured in Neurobasal medium with 2 mM L-glutamine, 2% B27 supplement, penicillin

(100 U/ml), and streptomycin (100 lg/ml). The neurons were seeded in poly-L-lysine (0.1 mg/

ml)-coated plates or coverslips at a density of 0.4 · 106 cells/cm2 and 0.05 · 106 cells/cm2,

respectively.

Peptide Treatment

Cultured cortical neurons were treated with Ab1–40 (1 lM) or PrP106–126 (25 lM) for different

periods of time, ranging from 6 to 96 h, as indicated in figure captions. The peptides were

added into culture medium at the 5th culturing day. The peptides were reconstituted according

to the manufacturers’ instructions, and Ab1–40 was aged in PBS buffer, in a stock concentration

of 231 lM, for 7 days at 37�C.

Cell Mol Neurobiol (2007) 27:943–957 945

123



Neuronal Viability

To assess cell viability we used two methods: a modified MTT assay (Mosmann 1983) and the

fluorescent DNA stain Hoechst 33342.

MTT Assay

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) is reduced to for-

mazan by metabolic active cells, and therefore this conversion is directly related to the amount

of viable cells. Briefly, MTT was dissolved in Krebs medium, containing (in mM): NaCl 132,

KCl 4, CaCl2 1, MgCl2 1.4, H3PO4 1.2, glucose 6 and HEPES-Na 10 (pH = 7.4), to a con-

centration of 5 mg/ml and then added to the neuronal culture medium for 2 h at 37�C. After

this incubation, the medium was removed and the blue formazan crystals formed were dis-

solved in DMSO (Ankarcrona et al. 1995) and quantified by measuring absorbance at 570 nm

in a Molecular Devices SpectraMax Plus 384 plate reader. Results were expressed as a per-

centage of the absorbance in control cells.

Hoechst Assay

Neurons plated in glass coverslips were incubated in the dark for 5 min with 300 ll of Hoechst

33342 (10 lg/ml). After being washed with PBS, the cells were observed and scored in a

fluorescence microscope (Zeiss, Axioskop2 Plus). Those cells showing irregular and relatively

high blue fluorescence (dead cells) were identified from an average of 300 cells per treatment

and cell batch. Each individual experiment was made in duplicate. The cells were examined by

blinded counting. Four pictures from different fields (selected randomly) were taken from each

individual experiment, in which all the cells (± 300) were counted. Data were expressed as the

percentage of dead cells versus the total cells counted.

Western Blot

For the preparation of total cell extracts, untreated- or peptides treated-cultured neurons were

scraped in 100 ll of ice-cold lysis buffer containing (in mM): HEPES-Na 25, MgCl2 2, EDTA

1, EGTA 1, supplemented with 100 lM PMSF, 2 mM DTT and protease inhibitor cocktail

(containing 1 lg/ml leupeptin, pepstatin A, chymostatin, and antipain). Cell lysates were

frozen three times in liquid N2 and centrifuged at 14000· g to remove nuclei and large debris.

Protein concentration in the supernatant was measured using the Bio-Rad protein dye assay

reagent. Samples were denaturated at 95�C for 5 min in a sample buffer, containing (in mM):

Tris 500, DTT 600, 10.3% SDS, 30% glycerol, and 0.012% bromophenol blue. Equal amount

of each sample of protein was separated by electrophoresis on a 10% SDS-polyacrylamide gel

(SDS-PAGE) and electroblotted onto PVDF membranes. The identification of proteins of

interest was facilitated by the usage of a pre-stained precision protein standard (Bio-Rad),

which was run simultaneously. The proteins in gel were electrophoretically transferred to

membranes that were incubated for 1 h at room temperature (RT) in Tris buffer (TBS-T (in

mM) NaCl 150, Tris-HCl 25, pH 7.6, with 0.1% Tween 20), containing 5% nonfat dry milk to

block nonspecific binding. Then the membranes incubated with the primary antibodies over-

night at 4�C in TBS-T containing 1% nonfat dry milk. The primary antibodies used were:

(i) rabbit monoclonal anti-Cdk5 (1:500 dilution) (ii) rabbit monoclonal anti-p35 (1:500 dilu-

tion), (iii) mouse monoclonal anti-tau (1:500 dilution), and (iv) mouse monoclonal anti-

phospho-tau (1:250 dilution). After this incubation, the membranes were washed and incubated
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in TBS-T with 1% nonfat dry milk for 2 h at RT, with the appropriate alkaline-phosphatase-

conjugated anti-rabbit or anti-mouse secondary antibody at a dilution of 1:25000 or 1:20000,

respectively. Immunoreactive bands were detected after incubation of membranes with ECF

reagent for 5–10 min, on a Bio-Rad Versadoc 3000 Imaging System.

Immunocytochemistry

Primary cortical neurons cultured in glass coverslips were treated with peptides and inhibitors.

Then, the cells were washed with PBS and fixed with a 4% paraformaldehyde solution (pH

7.4) for 30 min at RT. The cells were permeabilized with 0.2% Triton X-100/PBS for 2 min at

RT, and blocked with 0.1% bovine serum albumin (BSA) before incubation with a primary

antibody anti-Human PHF-Tau (1:40) for 1 h at RT. After being washed in PBS to remove the

unbound antibody, they were incubated with labeled anti-mouse Alexa Fluor 488 IgG anti-

bodies (1:500) for 1 h at RT. Finally, the cells were mounted with the DakoCytomation

fluorescent medium and visualized in a fluorescence microscope.

Calpain Activity Assay

Calpain activity was determined according to the Calpain Activity Assay Kit (BioVision, CA,

EUA) protocol. Cultured rat cortical neurons either untreated or treated with the peptides and/

or inhibitors for 24 h were lysed using a buffer provided in the kit. Calpain substrate Ac-LLY-

AFC was then added to the total cell extract and the mixture was incubated at 37�C for 1 h, in

the dark. Fluorescence was measured at excitation/emission wavelengths of 400/505 nm in a

Molecular Devices SpectraMax Gemini EM plate reader.

Statistical Analysis

Results are expressed as means ± SEM. Statistical analysis was made using Graphpad Prism

software. Significance was determined using an analysis of variance (ANOVA), followed by

Dunnett‘s post-tests, or by the two-tailed Students’ t-test.

Results

In the present study, we used the synthetic peptides Ab1–40 and PrP106–126 at concentrations

previously defined by studies of our group (Garção et al. 2006; Melo et al. 2007; Resende

et al. 2007). The cortical neurons used in this study were cultured in serum-free Neurobasal

medium in the presence of B27 supplement, which supports the growth of neurons and

minimizes glial cell proliferation, as confirmed by prior studies at our lab (Ferreiro et al.

2006).

Cdk5 is Involved in Neuronal Death Induced by Ab and PrP

In order to evaluate the involvement of Cdk5 in neuronal death triggered by Ab1–40 and

PrP106–126, we used the Cdk5 inhibitor roscovitine. Changes in neuronal viability were

assessed by determining modifications in the metabolic capacity of cells through the MTT test

and by evaluating nuclear apoptotic morphology with the fluorescent dye Hoechst 33342. As

can be seen in Fig. 1a, Ab1–40 and PrP106–126 significantly (P \ 0.05) decreased the capacity of
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Fig. 1 The Cdk5 inhibitor (roscovitine) partially prevents the neuronal death induced by Ab and PrP peptides.
Cultured cortical neurons from rat brain were exposed to Ab1–40 (1 lM) or PrP106–126 (2.5 lM) peptide in the
presence or absence of the Cdk5 inhibitor roscovitine (0.5 lM) for 24 h. (a) Cell viability was assessed using the
MTT assay. The viability of control (untreated) and treated cells was evaluated by measuring the capacity of the
cells to reduce MTT. The assay evaluated the metabolic capacity of cells, and the values were expressed as
percentage of the absorbance determined for control cells. (b) Quantification of apoptotic cell death was
performed using the fluorescent nuclear dye Hoechst 33342, which identifies neurons undergoing DNA
fragmentation and nuclear condensation. The values were expressed as a percentage of dead cells relative to the
total number of cells counted (± 600 cells per treatment and cell batch). Data are means ± SEM of duplicates
from three to six independent experiments for MTT assay and four to nine independent experiments for Hoechst
test. * P \ 0.05, ** P \ 0.01, significantly different from control cells; ++ P \ 0.01, ### and +++ P \ 0.001,
compared with cells treated with the same peptide
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neurons to reduce MTT by 28.9 ± 4.2% and 19.5 ± 5.0%, respectively. The neuronal injury

caused by Ab1–40 and PrP106–126 was partially reverted by the Cdk5 inhibitor, roscovitine. In

fact, in the presence of this inhibitor, the viability of neurons treated with Ab and PrP peptides

was not significantly different from control cells. Figure 1b shows that both Ab1–40 and

PrP106–126 significantly increased the number of apoptotic neurons, and this effect was once

again reverted by roscovitine. These data suggest that Cdk5 was involved in apoptotic neuronal

death triggered by Ab and PrP peptides. Therefore, we assessed if these peptides affect Cdk5

expression and/or activity.

Ab and PrP Affect the Levels of Cdk5 Activators

The levels of Cdk5 were assessed in cortical neurons untreated or treated with Ab1–40 and

PrP106–126 for different time periods (8, 24, 48, and 96 h). The obtained data show that the

peptides did not affect Cdk5 expression for all the incubation periods tested (Fig. 2). Since the

peptides did not cause time-related changes in the levels of Cdk5, we determined if the levels
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Fig. 2 Cdk5 expression is not affected by Ab and PrP peptides. Cultured cortical neurons were treated for 8, 24,
48 or 96 hours with Ab1–40 (1 lM) or PrP106–126 (25 lM). (a) Lysates from untreated and peptide-treated cells
were resolved by SDS-PAGE and analyzed by Western Blotting with an anti-Cdk5 antibody. An antibody
against GAPDH was used to estimate the total amount of protein loaded in the gel. The immunoreactive bands
were visualized by scanning on a Versadoc Image System. (b) Quantitative analysis of immunoreactive bands
was performed in the Quantity One program. The bars represent the relative levels of Cdk5 compared with
GAPDH and are expressed as percentage of the control value. The data are means ± SEM of three to six
independent experiments
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of Cdk5 activators, p35 and p25, were affected by Ab1–40 and PrP106–126. Our results show that

the levels of p25, which can induce Cdk5 overactivation, were increased in Ab and PrP-treated

neurons (Fig. 3). Since p35 can be cleaved to p25 by calpains (Lee et al. 2000), we further

evaluated the activity of these cysteine proteases in neurons untreated or treated with the

peptides. Figure 4 shows that calpain activity was significantly higher in Ab- (about 50%) and

PrP- (about 20%) treated cells than in control cells. This augment in calpain activity parallels

the increase of p25 levels (see Figs. 3 and 4), suggesting a direct correlation between the

increase in calpain activity induced by Ab1–40 and PrP106–126 and the extent of p35 cleavage to

p25. To confirm the involvement of calpains in the decrease of p35/p25 on our experimental

conditions, we tested the effect of the calpain inhibitor, MDL28170, in the levels of the Cdk5

activators. We found that neurons treated with the peptides plus MDL28170 showed almost no

p35 cleavage when compared with neurons exposed only to Ab and PrP (Fig. 3). Regarding

calpain activity (Fig. 4), we also observed that co-incubation with MDL28170 prevented the

increase induced by the treatment with Ab and PrP. Therefore, we decided to evaluate the

effect of MDL28170 in preventing neuronal injury triggered by Ab1–40 and PrP106–126. As can

be seen in Fig. 5, the calpain inhibitor was able to significantly prevent neuronal death caused

by Ab1–40 and PrP106–126.

Cdk5 is Involved in Tau Hyperphosphorylation Caused by Ab and PrP

To evaluate the impact of p25-induced Cdk5 deregulation on tau phosphorylation, we used the

phospho-specific antibody AT8, which recognizes the Ser202/Thr205 phosphorylation site of

tau protein. Consistently with the previous results, in Ab-treated cells, there was a marked
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Fig. 4 Ab and PrP peptides cause calpain activation. Cultured cortical neurons were incubated for 24 h with
Ab1–40 (1 lM) or PrP106–126 (25 lM) in the presence/absence of the calpain inhibitor MDL28170. It were also
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consisting of Ab-treated cells plus calpain inhibitor Z-LLY-FMK. The values of calpain activity were expressed
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Fig. 5 MDL28170 partially reverts the cell death caused by Ab and PrP peptides. The calpain inhibitor
MDL28170 (25 nM), was incubated simultaneously with the peptides Ab1–40 (1 lM) or PrP106–126 (25 lM) for
24 h. Cell viability was then assessed using the MTT assay. The viability of control (untreated) and treated cells
was evaluated by measuring the capacity of the cells to reduce MTT. The assay evaluated the metabolic capacity
of cells, and the values were expressed as percentage of the absorbance determined for control cells. The data are
means ± SEM of four independent experiments. * P \ 0.05, ** P \ 0.01, significantly different from control
cells; ### P \ 0.001, +++ P \ 0.001, compared with cells treated with the same peptide
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increase in tau hyperphosphorylation at the AT8 site (Fig. 6d and Fig. 7). The effects induced

by PrP were milder than those obtained with Ab, although still significantly (P \ 0.01) dif-

ferent from control cells (Fig. 6g and Fig. 7). In the presence of roscovitine, the levels of

hyperphosphorylated tau in Ab- and PrP-treated cells were similar to those in control cells

(Fig. 6e, h and Fig. 7a). MDL28170 also led to a similar shift of tau phosphorylation in Ab-

and PrP- treated cells, with a decrease to control-like levels (Fig. 6f, i and Fig. 7b). In addition,

we analyzed total tau levels and observed that Ab1–40 and PrP106–126 did not affect the levels of

this protein (data not shown). Taken together, the results suggest that the increase in hyper-

phosphorylated tau levels, caused by Ab and PrP, was correlated with Cdk5 overactivation due

to calpain cleavage of p35.

Discussion

Several studies have addressed the mechanism of Ab- or PrP-toxicity in different models

(Forloni et al. 1996; Combs et al. 1999; White et al. 2001; Agostinho et al. 2003; Fereiro et al.

2006; Garcao et al. 2006), but no work so far has tried to assess the role of Cdk5 in the

neurotoxicity caused by PrP106–126, a peptide that mimics the toxic effects of PrPSc. Since AD

and PRE share analogous clinical and neuropathological characteristics (Aguzzi and Haass

2003; Veerhuis et al. 2005; Barnham et al. 2006), in the present work, we perform a com-

parative study, using Ab and PrP synthetic peptides in order to determine the involvement of
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+ MDL 28170

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6 Effect of Ab and PrP peptides on tau protein phosphorylation. Cultured rat primary cortical neurons were
treated with Ab1–40 (1 lM) or PrP106–126 (25 lM) for 24 h in the absence (a,d,g)/presence of the Cdk5 inhibitor
roscovitine (0.5 lM) (b,e,h) or calpain inhibitor MDL28170 (25 nM) (c,f,i). The cells were immunostained using
anti-human PHF-tau (clone AT8) antibody and observed in a fluorescence microscope. The images are
representative for each experimental condition
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Cdk5 in tau phosphorylation and neuronal death under AD and PRE conditions. Using the

selective Cdk5 inhibitor roscovitine, we observed that, when Cdk5 is not active, there is a

significant reduction in the neuronal apoptotic death caused by PrP106–126 or Ab1–40 (Fig. 1a,

b). Since this decrease was only partial, we can speculate that there are other cell death

pathways acting simultaneously and independently from Cdk5, and thus not inhibited by

roscovitine (Agostinho et al. 2003; Ferreiro et al. 2006). Although several other studies have

shown that Cdk5 mediates the neurotoxicity triggered by Abpeptides (Alvarez et al. 2001; Liu

et al. 2004), this is the first study showing that Cdk5 is in part responsible for the neurotoxic

effect of PrP. In our experimental conditions, PrP106–126 and Ab1–40 did not affect Cdk5 levels

(Fig. 2). Since the activity of this kinase depends on the levels of p35 or p25, we determined

their levels in cortical neurons treated with the peptides. Our results showed that Ab and PrP

significantly increase the levels of p25, which is responsible for Cdk5 overactivation. This is

consistent with other studies that report an increase in p25 levels when cells are exposed to Ab
peptides and in AD brains (Patrick et al. 1999; Tseng et al. 2002), and also confirmed our

hypothesis that PrP causes Cdk5 deregulation in a manner similar to Ab. However, the effects

of PrP treatment are less pronounced than those of the Ab peptide. The increase in p25

triggered by Ab and PrP was prevented by the calpain inhibitor MDL28170 (Fig. 3), indicating

that this augment in p25 levels is due to calpain activation. Indeed, we found that Ab and PrP
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Fig. 7 Ab and PrP peptides increase tau protein hyperphosphorylation in cultured cortical neurons. Neuronal
cultures were incubated with Ab1–40 and PrP106–126 for 24 h in the presence/absence of Cdk5 inhibitor
roscovitine (0.5 lM) or calpain inhibitor MDL 28170 (25 nM). (a, b) Lysates from treated cells were resolved
by SDS-PAGE and analyzed by Western Blotting with an antibody for human PHF-Tau (clone AT8). (c)
Quantitative analysis of immunoreactive bands was performed in the Quantity One program. The bars represent
the relative levels of PHF-tau compared with GAPDH levels and are expressed as percentage of the control
value. The data are means ± SEM of three to six independent experiments. * P \ 0.05, ** P \ 0.01 significantly
different from control cells; # P \ 0.05, + P \ 0.05 compared with cells treated with the same peptide
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significantly increase calpain activity, although once again the effects were more pronounced

in cells treated with Ab (Fig. 4). Other studies have also reported the activation of calpains in

neurons exposed to Ab peptides (Boland and Campbell 2003; Raynaud and Marcilhac 2006)

and in human neuroblastoma cells treated with PrP106–126 (O’Donovan et al. 2001). This

enhancement in calpain activity is probably due to intracellular Ca2+ homeostasis deregulation,

which has been shown to occur in cortical neurons treated with Ab or PrP peptides (Agostinho

and Oliveira 2003; Ferreiro et al. 2006). To determine the involvement of this calpain/Cdk5-

p25 pathway in the neuronal death caused by these peptides, we then analyzed the effect of the

calpain inhibitor MDL28170 on neuronal viability. The obtained data show that this inhibitor

prevented Ab- and PrP-neurotoxicity in a pattern similar to that of roscovitine (Fig. 5). These

observations strongly support the idea that p35 cleavage by calpains is a crucial event in Cdk5-

mediated neurotoxicity triggered by Ab or PrP peptides.

Another consequence of p35 cleavage into p25 is the loss of a membrane targeting

sequence, causing qualitative changes in Cdk5 activity (Dhavan and Tsai 2001). Increasing

evidence suggests that the p25/Cdk5 complex is responsible for tau protein phosphorylation in

several sites associated to AD (Cruz et al. 2003; Tsai et al. 2004). Our data show that both Ab
and PrP treatments increased the levels of phosphorylated tau at the AT8 sites (Figs. 6 and 7).

Although the increase in phospho-tau levels caused by PrP was more moderate than that

A or
PrP

calcium 
influx

Activation of 
calpains

p35 to p25 
cleavage

Hyperphosphorylation
of tau

Overactivation and 
relocalization of Cdk5

Apoptosis

MDL 28170

Roscovitine

Fig. 8 Hypothetic model for Ab and
PrP neurotoxicity involving Cdk5.
The treatment of cortical neurons with
Ab or PrP causes a deregulation in
calcium homeostasis, leading to an
increase of the intracellular Ca2+

level. Overactivation of calpains will
consequently increase the cleavage of
the Cdk5 activator p35 to p25. The
augment in p25 levels promotes the
formation of a hyperactive p25/Cdk5
complex, responsible for tau
hyperphosphorylation and apoptotic
neuronal death. By halting this
pathway, either by inhibiting calpains
(using MDL28170) or by blocking
Cdk5 itself (with roscovitine), the
neurotoxicity triggered by Ab and PrP
can be prevented
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observed in the presence of Ab, in PrP-treated neurons the levels of phospho-tau were sig-

nificantly different from untreated cells (control). This is somehow consistent with the fact

that, in PRE, even though tau hyperphosphorylation can be observed, the formation of NFTs

does not occur (Bautista et al. 2006). In rat brain cortex, it was shown that Cdk5 is co-localized

with tau and glycogen synthase kinase 3b (GSK3b, which also mediates tau phosphorylation at

sites characteristic for tauopathies and AD (Li et al. 2006). This study also shows that Cdk5

primes the tau protein for subsequent phosphorylation by GSK3b. Since the AT8 site (cor-

responding to S202/T205) does not require priming, phosphorylation can occur independently

by both kinases (Li et al. 2006). On the other hand, a study performed in mice that overexpress

p25 reported that GSK3b is directly involved in tau hyperphosphorylation, whereas Cdk5 acts

as an inhibitory modulator of GSK3b (Plattner et al. 2006), suggesting that Cdk5 overacti-

vation may avoid tau hyperphosphorylation. On the contrary, our data showed that Cdk5

inhibition, as well as the blockage of p25 formation, prevents tau hyperphosphorylation and

neuronal death.

In conclusion, our results showed that Ab and PrP peptides increase the levels of p25, due to

calpain overactivation. This augment in calpain activity may be due to an increase in intra-

cellular Ca2+ concentration, which was shown to occur at an early phase in cortical neurons

treated with Ab and PrP peptides (Ferreiro et al. 2006). The increase in p25 levels can promote

the formation of a hyperactive p25/Cdk5 complex leading to tau hyperphosphorylation and

apoptotic neuronal death (Fig. 8). Our work is the first of demonstrating a connection between

Cdk5 deregulation and PrP-induced tau hyperphosphorylation and neuronal death. Since our

data revealed that the direct or indirect inhibition of Cdk5 activity prevents the neuronal

damage caused by Ab and PrP peptides, we can speculate that therapeutic strategies directed to

the calpain/p25/Cdk5 pathway may be useful for Alzheimer’s and Prion diseases.
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