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Abstract—Modern Programmable Logic Controllers (PLCs)
are pervasive components in Industrial Control Systems (ICS)
such as Supervisory Control and Data Acquisition (SCADA),
designed to control industrial processes autonomously or as part
of a distributed system topology. Its success may be explained
by its robustness and reliability, being one of the most enduring
legacies on modern ICS, despite having evolved very little over the
last years. This paper proposes an x86-based virtual PLC (vPLC)
architecture that decouples the logic and control capabilities from
the I/O components, while virtualizing the PLC logic within
a real-time hypervisor. To demonstrate the feasibility of this
concept, the topic of real-time virtualization for x86 platforms is
analyzed, together with an evaluation study of the properties of
real-time workloads in partitioned hypervisor environments.

Index Terms—ICS, Virtualization, Converged Infrastructures

INTRODUCTION

In recent years, SCADA ICS - a kind of systems used for
controlling industrial processes, power plants or assembly lines
— have become a serious concern because of manageability and
security issues. This comes as a consequence of years of air-
gaped isolation, together with the increased coupling of ICS
and IT systems and the absence of proper management and
security policies, exposing ICS to all sorts of threats. Suddenly,
ICS faced a reality that has been familiar for IT infrastruc-
ture managers for decades, which led to the development of
specific tools and protocols, as well as the establishment of
management frameworks and security-oriented policies.

However, bridging the gap between IT and ICS is not a
trivial matter of transposing technologies from one domain
to the other. This is due to the fact that the primary ICS
design and operation concerns are focused on reliability and
operational safety, advising against any mechanism or solution
with potential impact on operational performance indicators.
Despite the efforts to develop domain-specific security and
management capabilities for SCADA ICS, most of these solu-
tions try to fix what is wrong without introducing significant
change into existing architectures, which still struggle to deal
with lifecycle operations or change management.

In this paper we propose an innovative approach for ICS
infrastructure consolidation, which bridges computing and
networking virtualization technologies with ICS and targets
a vital SCADA ICS component: the PLC. Despite being
a mature concept that incarnates a design philosophy well
established across the industry, PLCs are one of the most
vulnerable components on ICS, due to design (e.g., most

PLCs lack redundant units such as power supplies) or cyber-
security issues (as demonstrated by Stuxnet [1]). By leveraging
virtualization and advanced communication technologies to
decouple the PLC physical I/O and computing capabilities, we
may turn it into a Real-Time Virtual Machine (VM) hosted
on a real-time hypervisor, connected to I/O modules on the
field using a switched deterministic and/or real-time Ethernet
fabric system, with benefits in terms of resource consolidation,
security, resiliency and manageability.

TOWARDS A VIRTUALIZED PLC

Modern PLCs are a class of embedded systems which in-
corporate technologies such as microprocessors and microcon-
trollers, RTOS (hosting the execution environment for the main
functions and services) and communication capabilities (from
serial point-to-point or bus topologies to Ethernet and TCP/IP).
PLC hardware generally includes analog or digital I/O mod-
ules, fieldbus interconnects or serial communication interfaces,
being occasionally coupled with Field-Programmable Gate
Arrays (FPGA) or Digital Signal Processors (DSP) for real-
time signal processing. Since a considerable share of these
devices use commodity Instruction Set Architecture CPUs
(such as x86 or ARM), the possibility of virtualizing them
comes to mind, which is one of the main requirements of the
vPLC architecture, discussed in this section.

A. PLCs and Real-Time Virtualization on x86 Platforms

The recent trend towards IT service and infrastructure
consolidation owes much of its success to virtualization tech-
nologies. This has provided the means to effectively leverage
computing and communication resources, introducing a great
deal of flexibility, while also streamlining and simplifying day-
to-day operations. For instance: by creating a VM snapshot
before applying a security patch, changes can be rolled back
in case of failure; VMs can be cloned for sandboxed testing,
prior to deployment into production; also, VM instances can
be live migrated, allowing for reduced downtime every time a
physical device needs to be stopped.

Unlike what happened in the IT domain, the introduction
of virtualization technologies for ICS has been a slow process
(as with any other new technology), and not as straightfor-
ward. Only recently operators started virtualizing SCADA
Master Stations (MS), Human-Machine Interfaces (HMI) and
Historian Database servers (HDB), using Commercial Off-
The-Shelf (COTS) hypervisors [2]. This was enabled by the



emergence of hardware-assisted memory management and /O
mechanisms [3], providing adequate performance guarantees
while avoiding resource overprovisioning.

But PLC virtualization is a different matter, as the re-
quirements for its RTOS environment and communications
prioritize low and consistent latency. Most COTS hypervisors
for x86 are designed for general-purpose workloads where
throughput is priority, resorting to techniques such as hardware
resource sharing or deferred interrupt processing, which have
a penalty in terms of latency and determinism. For this
reason, RT-sensitive applications such as servo control for
Computerized Numerical Control (CNC) machinery cannot
be reliably hosted within such hypervisors, as it only takes
a single latency peak to create a significant positioning skew.

Achieving RT compliance may prove difficult, even for
native execution. For instance, the end-to-end response latency
for components on interconnected buses can be affected by
aspects such as interrupt latency, message propagation delays,
asynchronous periodic task overhead or RTOS task scheduling
overhead. Particularly, interrupt latency and CPU overhead
involved in servicing interrupts are paramount in embedded
systems used for control applications. For example, [4] [5]
estimate interrupt and context switch latency requirements of
280 and 800 ws for machine and process control industrial
applications, respectively. For extreme cases, such as motion
control applications, PLCs have to provide very low operation
latencies, from 1ms to 250 us (Class 3 RT Systems [6]).

Originally, interrupt processing in the x86 PC architecture
was based on Programmable Interrupt Controllers (PIC). Cas-
caded 8259 PIC provided up to 15 fixed-priority interrupts
channels using pointers to locate the vector entry points for the
Interrupt Service Routines associated with each channel. Later,
the I0-APIC (Advanced PIC) was introduced, supporting up
to 24 interrupt channels, multiprocessor systems and pro-
grammable priorities — while an improvement in comparison
with the dual PIC arrangement, APIC interrupt processing and
routing was a latency-prone, multi-step procedure [4].

Things considerably improved with the advent of PCle (PCI
Express) and the Message Signalled Interrupts (MSI) model,
which supports 224 interrupts, eliminates the need to use the
IO-APIC, and allows every device to write directly to the
CPU’s Local-APIC, avoiding out-of-band interrupt signalling
overhead, by using memory write operations. MSIs reduce
the latency and CPU overhead involved in servicing inter-
rupts, improving system performance and IO responsiveness.
Latency can improve as much as 300% when compared to 10-
APIC and 500% when compared with 8259-PIC [4]. Table I
illustrates the results for IO-APIC and MSI modes.

Table 1
INTERRUPT LATENCY COMPARISON (FROM [4])

CPU + interrupt mode Worst Case (us) | Average Case (us)
Uniprocessor, [0-APIC 5.85 4.18
Multiprocessor(SMP), I0-APIC 7.16 4.14
Uniprocessor, MSI 3.60 1.66
Multiprocessor(SMP), MSI 3.56 1.58

Modern x86 CPUs provide code density and memory band-

width, supporting Single Instruction Multiple Data (SIMD)
ISA extensions such as SSE or AVX (akin to an integrated
DSP, with compilers performing auto-vectorization, eliminat-
ing communication and transport overhead). However, not
all x86 developments benefit real-time applications: power
optimization and throughput-enhancing technologies, such as
frequency-scaling or hardware threads (hyperthreading), harm
deterministic behaviour — though most of them can be disabled
or fine-tuned. Still, some notable (if somewhat odd) exceptions
persist, such as System Management Interrupts (SMI).

SMIs were originally introduced to support power man-
agement capabilities, and later used for other functions such
as USB legacy peripheral device emulation. A SMI event
asynchronously suspends all normal program execution in
order to switch to a special System Management Mode, where
specific firmware code is executed — for this reason, SMIs are
a common cause of latency spikes. Explicit SMI control is not
possible in all x86 platforms, as it depends on specific chipset,
firmware and OEM options.

Overall, the x86 platform has become an interesting can-
didate to host PLC applications, despite some manageable
shortcomings (e.g. several providers of RT turnkey solutions
provide certified hardware lists, while some tier-1 OEMs resort
to custom firmware or provide mechanisms to disable non-
critical SMIs for RT usage).

B. The Virtual PLC

Recent developments, such as low-latency deterministic
network connectivity for converged Ethernet (able to support
robust distributed I/O) and the availability of real-time hyper-
visors, made it possible to virtualize PLC components [7]. The
proposed VPLC architecture (Fig. 1) takes advantage of these
capabilities, by decoupling the PLC execution environment
from I/O modules — using a Software-Defined Networking
(SDN)-enabled Ethernet networking fabric to provide connec-
tivity to the I/O subsystem. This departs from the existing
SoftPLC concept (which mostly runs on COTS x86 systems,
eventually using RTOS systems, such as [8] [9]), by adopting
an approach close to [10] [11] but going one step further, by
leveraging converged fabric scenarios with SDN.
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Figure 1. A vPLC deployment (adapted from [7])

In the vPLC the dedicated PLC I/O bus is replaced by a
deterministic and high-speed networking infrastructure, using
SDN to enable the flexible creation of virtual channels on



the I/O fabric. These channels provide connectivity between
the VPLC instances and physical I/O modules, which can be
implemented using FPGA or Application Specific Integrated
Circuit technology. Finally, virtual channel reconfiguration
is managed by means of a SDN controller, via a High-
Auvailability server (not depicted in the figure) which monitors
SDN switch statistics and path reachability, reconfiguring
channel paths in case of performance degradation or failure.

This model is similar to remote or distributed I/O PLC
topologies, where networked I/O modules act as extensions
of the PLC rack, or even critical avionics systems, which
replace legacy interconnects with Ethernet-based technologies
such as Avionics Full-Duplex Switched Ethernet (AFDX) [12].
In fact, initiatives such as Converged Plantwide Ethernet
(CWpE) [13] already point in this direction. Developments in
cut-through switching, together with Remote Direct Memory
Access (RDMA), allow for port-to-port latencies in the order
of hundredths of nanoseconds in 10G Ethernet switch fabrics
and application latencies in the order of microseconds [14].
Also, resources such as Intel’s Data Plane Development Kit
(DPDK) [15] enable low latency, high-throughput packet pro-
cessing mechanisms that bypass kernels, bringing the network
stack into userspace and enabling adapters to perform DMA
operations. This enables single-digit microsecond jitter and
restricted determinism, allowing for bare-metal performance
on commodity server hardware. Additionally, Time Division-
based approaches — using IEEE 1588 clock synchronization,
such as Time Sensitive Networking [16] — allow for real-time
requirements in the microsecond range on COTS Ethernet,
compatible with strict isochronous operation needs.

Finally, real-time static partitioning hypervisors, such as
Jailhouse [17] or PikeOS [18], make it possible to host
RTOS guest VMs for real-time and certifiable workloads, with
PikeOS closely replicating the ARINC 653 [12] partitioning
model for safety-critical avionics RTOS. Moreover, [19] points
to the possibility of providing RT capabilities in the KVM [20]
hypervisor, when combined with the Linux RT-Preempt [21]
patch and specific tuning. In such environments, resources
such as PLC watchdogs and system-level debugging and trac-
ing analysis mechanisms (useful for continuous security and/or
safety assessment) can be implemented at the hypervisor level,
which is able to oversee partition behavior.

EVALUATION

Evaluation is focused on understanding to which point
partitioning techniques may prove effective for implementing
real-time hypervisor environments, when used on modern
hardware. The test platform uses an Intel Core i7-4770 running
at 3.40GHz (Haswell family) paired with 16GB DDR3 RAM,
using Debian Linux 8.4 with kernel version 3.18.29. Three
versions of the kernel were used: baseline, with the standard
distribution settings; host-optimized, with KVM hypervisor
support; and guest-optimized. The latter two were compiled
with the RT-Preempt patch, for realtime support.

Latency measurements were performed using cyclictest [22]
to measure the response latency for four timer threads clocked
at 10ms, spaced 500 ps from each other and run with a

high scheduler priority (PRIO_FIFO), to emulate a RT task.
Stress [23] was used for workload generation, instantiating
20 simultaneous threads (10 for CPU bound tasks and 10 for
spinning malloc/free operations on 64MB blocks), enough to
exhaust a single core. Tests were based on 120 minute runs.

The first round of tests (Fig. 2) focused on comparing a
baseline system configuration using a standard kernel, with
hyperthreading and power management support enabled, com-
paring it with an RT-optimized configuration. For the latter
purpose, all power management features were disabled (c-
states, dynamic core frequency, PCle power management),
as well as hyperthreading support, which have a negative
impact on latency and jitter. Also, the Linux kernel was
configured with core isolation, removing cores 1 to 3 from pro-
cess scheduling and balancing algorithms, interrupt processing
(whose affinity was manually adjusted to core 0) and other
tasks, such as Read-Copy Update threads. The test workload
contemplates three scenarios: idle state, load on shared core
(load generator and latency test scheduled on core 1) and split
core tests (latency and stress generator running on cores 1 and
2, respectively — emulating a scenario where Best Effort and
RT tasks could be run on separate cores).
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Figure 2. Bare metal test results

Results show the default configuration to be unreliable for
RT purposes. While the 2 (split) core test shows improvement,
there are are large latency spikes, probably due to dynamic
power management and scaling, together with dynamic OS
core scheduling and low core usage. Results for the RT-
optimized configuration show large improvements, with the
system behaving within very low latency margins, with low
jitter and spikes — in fact, these margins are within the
acceptable range for several motion control applications. These
values could be further improved using specialized RTOS or
kernel extensions such as Xenomai or RTAI [24].

The second round of tests (Fig. 3) evaluated RT performance
for a single VM, using resource partitioning and two use
cases: a VM with a single processor core assigned; and the
same VM with three processor cores — using core affinity
and memory locking on both cases. The three-core VM used
the same test pattern of the bare-metal RT-optimized tests.
Results show that, despite the contention effects (everything
is running on the same core), the single core VM shows a
controlled behaviour which is acceptable for a wide range
of PLC-class applications. Nested partitioning tests (3 core
VM, 2 core (split)) demonstrated the possibility of running RT
applications with even stricter timings within VMs. Moreover,



there is a considerable margin for improvement in terms of
hypervisor mechanisms and VM payload (e.g. we achieved
a 2us average latency with small jitter using a Xenomai co-
kernel, in the same setup).
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Figure 3. Test results for 1 VM

The third round of tests (Fig. 4) evaluated concurrent real-
time VM performance, using resource partitioning for 3 VMs
with a 1:1 core assignment ratio. Results show a uniform and
consistent behaviour pattern across the 3 VMs, demonstrating
the performance isolation of the partitioning approach.
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Figure 4. Test results for 3 VMs

Overall, the tests show that optimized resource partitioning
provides performance guarantees for isolated workloads, while
ensuring adequate graceful degradation under heavy load (a
situation that nonetheless must be avoided for RT workload
cores). Results can be further improved by software opti-
mization and enhancements such as device affinity (using 10-
MMU [3] mechanisms) or even cache partitioning (e.g. Intel’s
Cache Allocation Technology), which extend the partitioning
concept down to the CPU L3 cache, achieving better latency
and further containing and isolating partitioned workloads.

CONCLUSION

The proposed vPLC constitutes a convergent approach in the
sense that isolated PLC devices are virtualized and co-hosted
on the same physical equipment, with distributed I/O being
consolidated on the networked I/O fabric. This constitutes
a convergence of computing and communication resources
towards a unified infrastructure, much in the same way as
it happened with datacenter architectures in the IT domain.

Evaluation results show that the vPLC is feasible from a
systems virtualization perspective, with a considerable margin

for further improvement on x86 platforms. Nonetheless, this
paper is focused on the presentation of the vPLC concept and
evaluation of the suitability of x86 virtualization for concurrent
PLC workloads. Next developments include the implementa-
tion and validation of the SDN-based I/O orchestration and
RT communications capabilities (using Xenomai’s Real-Time
Driver Model framework) that provide the coupling of the
vPLC instances with the physical infrastructure — in order to
comply with determinism and latency requirements.

Finally, it should be stressed that, despite its name, the
vPLC is more than the simple virtualization of the PLC
device, constituting an integrated approach where the device
seamlessly merges with the infrastructure, providing potential
benefits in terms of manageability, cost and security.
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