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Abstract 

This paper analyzes empirically the performance gains of using high frequency data in portfolio 

selection. Assuming Constant Relative Risk Aversion (CRRA) preferences, with different relative risk 

aversion levels, we compare low and high frequency portfolios within mean-variance, mean-variance-

skewness and mean-variance-skewness-kurtosis frameworks. Using data on fourteen stocks of the 

Euronext Paris, from January 1999 to December 2005, we conclude that the high frequency portfolios 

outperform the low frequency portfolios for every out-of-sample measure, irrespectively to the relative 

risk aversion coefficient considered. The empirical results also suggest that for moderate relative risk 

aversion the best performance is always achieved through the jointly use of the realized variance, 

skewness and kurtosis. This claim is reinforced when trading costs are taken into account. 
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1. INTRODUCTION 

 

The reliability of the classical mean-variance portfolio selection model is drawn upon 

the assumptions of a normal returns distribution or a quadratic utility function (Markowitz, 

1952), however these conditions are seldom verified in practice. At least since Mandelbrot 

(1963), one of the stylized facts of financial time series is that returns distributions exhibit fat 

tails. Consequently, it seems that investors take into account the non-normal features of the 

returns distribution, showing preference for positive skewness (see, e.g., the seminal work of 

Arditti, 1967) and disliking high kurtosis (see, e.g., the empirical work of Maringer and 

Parpas, 2009). On the other hand, several empirical studies suggest that there are performance 
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gains when higher moments (namely skewness and kurtosis) are considered in portfolio 

selection (see, e.g., Amaya et al., 2015; de Athayde and Flores, 2004; Brito et al., 2017a, 

2017b; Harvey et al., 2010; Maringer and Parpas, 2009). 

For many years, GARCH (see Bollerslev, 1986; Engle, 1982; Nelson, 1991) and 

stochastic volatility models (see Taylor, 1986) have been widely used in the financial services 

industry. More recently, motivated by the increasing availability of high frequency data, 

Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002) paved the way for the use 

of realized estimators. Since then, researchers and quants began to dedicate special attention 

to the estimation of the realized variance, i.e., began to use intraday data to estimate the 

variance as the sum of squared returns. The realized variance offers considerable estimation 

power since it is a model-free measure and converges theoretically to the quadratic variation. 

It was early observed by Merton (1980) that the accuracy of the variance estimation increases 

with the sample frequency, due to the continuity of its sample path. In fact, many empirical 

papers, such as Fleming et al. (2003) and Liu (2009), have supported this claim.  

A similar approach to the one used for the realized variance can be designed for the 

estimation of higher moments. The realized skewness can be defined as the sum of the 3rd 

power (see, e.g., Neuberger, 2012) and the realized kurtosis can be defined as the sum of the 

4th power (see, e.g., Amaya et al., 2015) of intraday returns. But an important question 

remains open to discussion: Are there performance gains in portfolio selection when using 

jointly the three realized moments (variance, skewness and kurtosis)? This paper contributes 

empirically to answer this question. Motivated by the works of Brandt et al. (2009) and Brito 

et al. (2017a, 2017b), the portfolio selection problem is defined in a Constant Relative Risk 

Aversion (CRRA) world, where the returns distribution is characterized not only by the first 

two moments but also by the skewness and kurtosis. Therefore, three different frameworks 

are considered: MV (mean-variance), MVS (mean-variance-skewness) and MVSK (mean-

variance-skewness-kurtosis). The methodological design is the following: For each 

framework and a given relative risk aversion level two utility-maximizing portfolios are built, 

one based on daily data (which we designate by low frequency portfolio) and another based 

on intraday data (the high frequency portfolio); then, the performances of the low and high 

frequency portfolios are compared using eight out-of-sample measures: utility, mean return, 

standard deviation, skewness, kurtosis, Sharpe ratio, turnover and net Sharpe ratio. 

The contribution of this paper is twofold. First, within the three frameworks and for 

different relative risk aversion levels, we try to find evidence on the advantage of using high 

frequency data to the portfolios' performance. Second, bearing in mind that previous studies 

(see, e.g., Fleming et al., 2003; Liu, 2009) suggest that using the realized variance helps to 

improve the portfolio performance, we investigate if introducing the realized skewness and 

kurtosis also has a significant positive effect in the portfolios' performance. 

The analysis is conducted on the same dataset used in Brito et al. (2017a) formed by 

fourteen stocks, belonging (at current date, August 2018) to the CAC 40 Index, for a seven-

year period (January 1999 to December 2005). The empirical evidence is quite clear: For the 

three frameworks (MV, MVS and MVSK), the high frequency portfolios outperform the low 

frequency portfolios for every out-of-sample measure, irrespectively to the relative risk 

aversion coefficient considered. The empirical results also suggest that for moderate relative 

risk aversion levels, the best performance is always achieved through the jointly use of the 

realized variance, skewness and kurtosis. 
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The remainder of the paper proceeds as follows. Section 2 formulates the basic investor's 

portfolio selection problem and presents three different approximations for the investor's 

expected utility. Section 3 develops the MV, MVS and MVSK frameworks under CRRA 

preferences. Section 4 explains the procedures for estimating higher moments using high 

frequency data. Section 5 presents an empirical application on fourteen stocks of the CAC 40 

Stock Market Index. Finally, Section 6 concludes the paper. 

 

2. UTILITY MAXIMIZATION AND THE INVESTOR'S PROBLEM 

 

Following the same notation as in Brito et al. (2017a, 2017b), suppose that the investor 

has a certain wealth to invest in a set of 𝑁 stocks. In this setting, the portfolio at time 𝑡 is 

defined by a 𝑁 × 1 vector, 𝑤𝑡 , of weights representing the proportions of the total wealth 

invested into the 𝑁 stocks. Let 𝐸𝑡(𝑟𝑖,𝑡+1), 𝑖 = 1,… , 𝑁, denote the expected return of stock 𝑖 

at time 𝑡 + 1. The portfolio is assumed to be linear in 𝑤1,𝑡 , … , 𝑤𝑁,𝑡, and thus its expected 

return, at time 𝑡 + 1, is given by 𝐸𝑡(𝑟𝑝,𝑡+1) = ∑ 𝑤𝑖,𝑡𝐸𝑡(𝑟𝑖,𝑡+1)
𝑁
𝑖=1 . 

According to the utility maximization criterion, and denoting the investor's utility by 

𝑢(∙), the investor's problem can be formulated as 

 

max
𝑤𝑡∈ℛ

𝑁
𝐸𝑡[𝑢(𝑟𝑝,𝑡+1)] = 𝐸𝑡 [𝑢 (∑𝑤𝑖,𝑡𝑟𝑖,𝑡+1

𝑁

𝑖=1

)]

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑤𝑖,𝑡 = 1

𝑁

𝑖=1

 , 𝑤𝑖,𝑡 ≥ 0, 𝑖 = 1,… , 𝑁 

                                                                            

 (1) 

 

Short selling is not allowed in Problem (1), since in real markets there are some practical 

and regulatory constraints on short trading positions (especially within the European Union). 

Furthermore, the use of these non-negative constraints usually results in more robust 

portfolios (see, e.g., DeMiguel et al., 2009a; 2009b). However, we must point out that 

allowing for short selling would not change the rationale of the model. 

In Problem (1), the investor's expected utility, 𝐸𝑡[𝑢(𝑟𝑝,𝑡+1)], needs to be estimated. In 

this paper, and following Brito et al. (2017b), we consider the approximations for the 

investor's expected utility based on the second, third and fourth order Taylor expansions 

around the expected return of the portfolio, 𝐸𝑡(𝑟𝑝,𝑡+1). The expansions are truncated at the 

fourth order because there are no theoretical grounds, in terms of the investor's preferences, 

to include higher polynomial terms (for further details see Dittmar, 2002; Kimball, 1993; 

Martellini and Ziemann, 2010). 

Considering the second order Taylor's expansion of the expected utility, 𝐸𝑡[𝑢(𝑟𝑝,𝑡+1)], 

around the expected return of the portfolio, 𝐸𝑡(𝑟𝑝,𝑡+1), we have 

 

𝐸𝑡[𝑢(𝑟𝑝,𝑡+1)] ≈ 𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] − 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)]𝜐𝑡(𝑟𝑝,𝑡+1) (2) 
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where 𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] = 𝑢[𝐸𝑡(𝑟𝑝,𝑡+1)], 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)] = −𝑢′′[𝐸𝑡(𝑟𝑝,𝑡+1)]/2, and 

𝜐𝑡(𝑟𝑝,𝑡+1) = 𝐸𝑡[𝑟𝑝,𝑡+1 − 𝐸𝑡(𝑟𝑝,𝑡+1)]
2
 is the portfolio variance. Since: 

 

𝑣𝑡(𝑟𝑝,𝑡+1) = 𝐸𝑡[𝑟𝑝,𝑡+1 − 𝐸𝑡(𝑟𝑝,𝑡+1)]
2
= 𝐸𝑡 [∑𝑤𝑖,𝑡𝑟𝑖,𝑡+1 − 𝐸𝑡 (∑𝑤𝑖,𝑡𝑟𝑖,𝑡+1

𝑁

𝑖=1

)

𝑁

𝑖=1

]

2

 (3) 

 

then 

 

𝑣𝑡(𝑟𝑝,𝑡+1) =∑∑𝐸𝑡[(𝑟𝑖,𝑡+1−𝜇𝑖,𝑡)(𝑟𝑗,𝑡+1 − 𝜇𝑗,𝑡)]

𝑁

𝑗=1

𝑁

𝑖=1

𝑤𝑖,𝑗𝑤𝑗,𝑡 (4) 

 

or, in a more condensed form 

 

𝑣𝑡(𝑟𝑝,𝑡+1) = 𝑤𝑡
𝑇Σ𝑡𝑤𝑡  (5) 

 

where Σ𝑡 is the covariance matrix. 

 

Considering the third order Taylor’s expansion, the investor’s expected utility is 

approximated by  

  

𝐸𝑡[𝑢(𝑟𝑝,𝑡+1)] ≈ 𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] − 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)]𝜐𝑡(𝑟𝑝,𝑡+1) + 𝜃3[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑠𝑡(𝑟𝑝,𝑡+1) (6) 

 

where 𝜃3[𝐸𝑡(𝑟𝑝,𝑡+1)] = 𝑢′′′[𝐸𝑡(𝑟𝑝,𝑡+1)]/6, and 𝑠𝑡(𝑟𝑝,𝑡+1) = 𝐸𝑡[𝑟𝑝,𝑡+1 − 𝐸𝑡(𝑟𝑝,𝑡+1)]
3
 denotes 

the portfolio skewness, which can be computed as a three dimensional tensor. Following de 

Athayde and Flores (2004) it is possible to transform this tensor into a 𝑁 × 𝑁2 matrix: 

 

𝑠𝑡(𝑟𝑝,𝑡+1) = 𝐸𝑡[𝑟𝑝,𝑡+1 − 𝐸𝑡(𝑟𝑝,𝑡+1)]
3
= 𝑤𝑡

𝑇Φ𝑡(𝑤𝑡⨂𝑤𝑡) (7) 

 

where Φ𝑡  is the coskewness matrix and ⨂ denotes the Kronecker product. The coskewness 

matrix of dimension 𝑁 × 𝑁2 can be represented by 𝑁 matrices, 𝐴𝑖,𝑡 , of dimensions 𝑁 × 𝑁 

such that 

 

Φ𝑡 = [𝐴1,𝑡|𝐴2,𝑡|⋯ |𝐴𝑁,𝑡] (8) 

 

where 

 

𝐴𝑖,𝑡 = [

𝑎𝑖11,𝑡 𝑎𝑖12,𝑡 ⋯ 𝑎𝑖1𝑁,𝑡

𝑎𝑖21,𝑡 𝑎𝑖22,𝑡 ⋯ 𝑎𝑖2𝑁,𝑡

⋮
𝑎𝑖𝑁1,𝑡

⋮
𝑎𝑖𝑁2,𝑡

⋱
⋯

⋮
𝑎𝑖𝑁𝑁,𝑡

] (9) 
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and each element, 𝑎𝑖𝑗𝑘.𝑡, is given by: 

 

𝑎𝑖𝑗𝑘,𝑡 =
1

𝑡
∑[𝑟𝑖,𝜏 − 𝐸𝑡(𝑟𝑖,𝜏)][𝑟𝑗,𝜏 − 𝐸𝑡(𝑟𝑗,𝜏)][𝑟𝑘,𝜏 − 𝐸𝑡(𝑟𝑘,𝜏)]

𝑡

𝜏=1

 (10) 

 

with 𝑖, 𝑗, 𝑘 = 1,… , 𝑁.  

 

Finally, considering the fourth order Taylor expansion of the expected utility, 

𝐸𝑡[𝑢(𝑟𝑝,𝑡+1)], around the expected return of the portfolio, 𝐸𝑡(𝑟𝑝,𝑡+1), it follows that  

 

𝐸𝑡[𝑢(𝑟𝑝,𝑡+1)] ≈ 𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] − 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)]𝜐𝑡(𝑟𝑝,𝑡+1) + 𝜃3[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑠𝑡(𝑟𝑝,𝑡+1)

− 𝜃4[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑘𝑡(𝑟𝑝,𝑡+1) 
(11) 

 

where 𝜃4[𝐸𝑡(𝑟𝑝,𝑡+1)] = −𝑢′′′′[𝐸𝑡(𝑟𝑝,𝑡+1)]/24, and 𝑘(𝑟𝑝,𝑡+1) = 𝐸𝑡[𝑟𝑝,𝑡+1 − 𝐸𝑡(𝑟𝑝,𝑡+1)]
4
 is 

the portfolio kurtosis. Analogously to the portfolio skewness, 𝑘(𝑟𝑝,𝑡+1) can be computed as 

 

𝑘𝑡(𝑟𝑝,𝑡+1) = 𝐸𝑡[𝑟𝑝,𝑡+1 − 𝐸𝑡(𝑟𝑝,𝑡+1)]
4
= 𝑤𝑡

𝑇Ψ𝑡(𝑤𝑡⨂𝑤𝑡⨂𝑤𝑡) 
(12) 

 

where Ψ𝑡 is the cokurtosis matrix, corresponding to 𝑁2matrices, 𝐵𝑖𝑗,𝑡, of dimensions 𝑁 ×

𝑁 such that  

 

Ψ𝑡 = [𝐵11,𝑡|𝐵12,𝑡|⋯ |𝐵1𝑁,𝑡|𝐵21,𝑡|𝐵22,𝑡|⋯ |𝐵2𝑁,𝑡|⋯ |𝐵𝑁1,𝑡|𝐵𝑁2,𝑡|⋯ |𝐵𝑁𝑁,𝑡] (13) 

 

with 

 

𝐵𝑖𝑗,𝑡 =

[
 
 
 
 
𝑏𝑖𝑗11,𝑡 𝑏𝑖𝑗12,𝑡 ⋯ 𝑏𝑖𝑗1𝑁,𝑡

𝑏𝑖21,𝑡 𝑏𝑖𝑗22,𝑡 ⋯ 𝑏𝑖𝑗2𝑁,𝑡
⋮

𝑏𝑖𝑗𝑁1,𝑡

⋮
𝑏𝑖𝑗𝑁2,𝑡

⋱
⋯

⋮
𝑏𝑖𝑗𝑁𝑁,𝑡]

 
 
 
 

 (14) 

 

and where each element, 𝑏𝑖𝑗𝑘𝑙,𝑡, is given by  

 

𝑏𝑖𝑗𝑘𝑙,𝑡 =
1

𝑡
∑[𝑟𝑖,𝜏 − 𝐸𝑡(𝑟𝑖,𝜏)][𝑟𝑗,𝜏 − 𝐸𝑡(𝑟𝑗,𝜏)][𝑟𝑘,𝜏 − 𝐸𝑡(𝑟𝑘,𝜏)][𝑟𝑙,𝜏 − 𝐸𝑡(𝑟𝑙,𝜏)]

𝑡

𝜏=1

 (15) 

 

with  𝑖, 𝑗, 𝑘, 𝑙 = 1,… , 𝑁. 
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3. CRRA PREFERENCES AND HIGHER MOMENTS 

 

Supposing that the investor has CRRA preferences, her utility is given by 

 

𝑢(𝑟𝑝,𝑡+1) = {

(1 + 𝑟𝑝,𝑡+1)
1−𝛾

− 1

1 − 𝛾
        𝑖𝑓   𝛾 > 1

 
log(1 + 𝑟𝑝,𝑡+1)                𝑖𝑓   𝛾 = 1

 (16) 

 

where 𝛾 represents the relative risk aversion coefficient (a higher value of 𝛾 implies more risk 

aversion). A CRRA-utility allows the incorporation of preferences toward higher moments in 

a parsimonious manner (Brandt et al., 2009; Brito et al., 2017a, 2017b). According to the 

previous section, three different frameworks are considered, denoted by MV, MVS and 

MVSK, where the approximated expected utility is given by Equation (2), Equation (6) and 

Equation (11), respectively. Thereby, within the MV framework the investor’s problem is 

 

max
𝑤𝑡∈ℛ

𝑁
𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] − 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)]𝜐𝑡(𝑟𝑝,𝑡+1) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑤𝑖,𝑡 = 1

𝑁

𝑖=1

 , 𝑤𝑖,𝑡 ≥ 0, 𝑖 = 1,… , 𝑁

                                                             

 (17) 

 

where 

 

𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] = {

[1 + 𝐸𝑡(𝑟𝑝,𝑡+1)]
1−𝛾

− 1

1 − 𝛾
   𝑖𝑓   𝛾 > 1

log(1 + 𝑟𝑝,𝑡+1)                   𝑖𝑓   𝛾 = 1

 

𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)] =

{
 
 

 
 𝛾[1 + 𝐸𝑡(𝑟𝑝,𝑡+1)]

−(𝛾+1)

2
   𝑖𝑓   𝛾 > 1

1

2(1 + 𝑟𝑝,𝑡+1)
2                    𝑖𝑓   𝛾 = 1

 

(18) 

 

In turn, within the MVS framework the investor’s problem is given by 

 

                
    max
𝑤𝑡∈ℛ

𝑁
𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] − 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)]𝜐𝑡(𝑟𝑝,𝑡+1)

+𝜃3[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑠𝑡(𝑟𝑝,𝑡+1) 
 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑤𝑖,𝑡 = 1

𝑁

𝑖=1

 ,  𝑤𝑖,𝑡 ≥ 0, 𝑖 = 1,… , 𝑁 

                                                                 

 (19) 

 

where 
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𝜃3[𝐸𝑡(𝑟𝑝,𝑡+1)] =

{
 
 

 
 𝛾(𝛾 + 1)[1 + 𝐸𝑡(𝑟𝑝,𝑡+1)]

−(𝛾+2)

6
   𝑖𝑓   𝛾 > 1 

1

3(1 + 𝑟𝑝,𝑡+1)
3                       𝑖𝑓   𝛾 = 1           

 (20) 

 

Finally, within the MVSK framework the investor’s problem is formulated as 

 

max
𝑤𝑡∈ℛ

𝑁
𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] − 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)]𝜐𝑡(𝑟𝑝,𝑡+1)

+𝜃3[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑠𝑡(𝑟𝑝,𝑡+1) − 𝜃4[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑘𝑡(𝑟𝑝,𝑡+1)
 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑤𝑖,𝑡 = 1

𝑁

𝑖=1

 ,       𝑤𝑖,𝑡 ≥ 0, 𝑖 = 1,… , 𝑁

    

 (21) 

 

where 

 

𝜃4[𝐸𝑡(𝑟𝑝,𝑡+1)] =

{
 
 

 
 𝛾(𝛾 + 1)(𝛾 + 2)[1 + 𝐸𝑡(𝑟𝑝,𝑡+1)]

−(𝛾+3)

24
        𝑖𝑓   𝛾 > 1

                                                                                                     
1

4(1 + 𝑟𝑝,𝑡+1)
4                        𝑖𝑓   𝛾 = 1                               

 (22) 

 

The solutions of Problem (17), Problem (19) and Problem (21), when the moments and 

co-moments are estimated using daily returns, are called hereafter low frequency portfolios 

and are denoted by 𝑤(𝑙𝑜𝑤). 

 

4. PARAMETERS ESTIMATION WITH HIGH FREQUENCY DATA 

 

Arguably the use of high frequency data reduces the estimation error of the parameters 

in the portfolio selection problem. Therefore, inspired by the works of , Andersen et al. (2001), 

Brito et al. (2017a), and Neuberger (2012), we use the realized variance, the realized skewness 

and the realized kurtosis of the portfolio as inputs in Problem (17), Problem (19) and Problem 

(21). 

Supposing that at day 𝑡 + 1 there are 𝑄 intraday sampling periods, the realized variance 

of stock 𝑖 (with 𝑖 = 1,… , 𝑁) is defined as 

 

𝑟𝑣𝑖,𝑡+1
𝑄 =∑𝑟𝑖,𝑡+(𝑞/𝑄)

2

𝑄

𝑞=1

 (23) 

 

where 𝑟𝑖,𝑡+(𝑞/𝑄) represents the return of stock 𝑖 in the intraday period 𝑡 + (𝑞/𝑄).  

Analogously, the realized skewness, at day 𝑡 + 1, of stock 𝑖 is defined as  
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𝑟𝑠𝑖,𝑡+1
𝑄 =∑𝑟𝑖,𝑡+(𝑞/𝑄)

3

𝑄

𝑞=1

 (24) 

 

and the corresponding realized kurtosis is defined as  

 

𝑟𝑘𝑖,𝑡+1
𝑄 =∑𝑟𝑖,𝑡+(𝑞/𝑄)

4

𝑄

𝑞=1

 (25) 

 

According to the previous definitions, the daily portfolio realized variance is computed as 

 

𝑟𝑣𝑡+1 = 𝑤𝑡+1
𝑇 RΣ𝑡+1𝑤𝑡+1 (26) 

 

where  RΣ𝑡+1 represents the realized covariance matrix, with each entry, 𝑟𝑐𝑖𝑗,𝑡+1, given by 

 

𝑟𝑐𝑖𝑗,𝑡+1 =
1

𝑡
∑∑𝑟𝑖,𝜏+(𝑞/𝑄)𝑟𝑗,𝜏+(𝑞/𝑄)

𝑄

𝑞=1

𝑡

𝜏=1

 (27) 

 

Proceeding in the same way as described in Section 2, for the computation of the 

portfolio skewness, the daily portfolio realized skewness is computed as 

 

𝑟𝑠𝑡+1 = 𝑤𝑡+1
𝑇 RΦ𝑡+1(𝑤𝑡+1⨂𝑤𝑡+1) (28) 

 

where RΦ𝑡+1 is the realized coskewness matrix. The realized coskewness matrix corresponds 

to 𝑁 matrices 𝑅𝐴𝑖,𝑡+1 of dimension 𝑁 × 𝑁 such that  

 

RΦ𝑡+1 = [𝑅𝐴1,𝑡+1|𝑅𝐴2,𝑡+1|⋯ |𝑅𝐴𝑁,𝑡+1] (29) 

 

where 

 

𝑅𝐴𝑖,𝑡+1 = [

𝑟𝑎𝑖11,𝑡+1 𝑟𝑎𝑖12,𝑡+1 ⋯ 𝑟𝑎𝑖1𝑁,𝑡+1

𝑟𝑎𝑖21,𝑡+1 𝑟𝑎𝑖22,𝑡+1 ⋯ 𝑟𝑎𝑖2𝑁,𝑡+1

⋮
𝑟𝑎𝑖𝑁1,𝑡+1

⋮
𝑟𝑎𝑖𝑁2,𝑡+1

⋱
⋯

⋮
𝑟𝑎𝑖𝑁𝑁,𝑡+1

] (30) 

 

with each element, 𝑟𝑎𝑖𝑗𝑘,𝑡+1 given by  

 

𝑟𝑎𝑖𝑗𝑘,𝑡+1 =
1

𝑡
∑∑𝑟𝑖,𝜏+(𝑞/𝑄)𝑟𝑗,𝜏+(𝑞/𝑄)𝑟𝑘,𝜏+(𝑞/𝑄)

𝑄

𝑞=1

𝑡

𝜏=1

 (31) 

 

for 𝑖, 𝑗, 𝑘 = 1,… , 𝑁. 
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The daily portfolio realized kurtosis can be obtained by computing the following 

products 

 

𝑟𝑘𝑡+1 = 𝑤𝑡+1
𝑇 RΨ𝑡+1(𝑤𝑡+1⨂𝑤𝑡+1⨂𝑤𝑡+1) (32) 

 

where RΨ𝑡+1 represents the realized cokurtosis matrix, which corresponds to 𝑁2 matrices 

𝑅𝐵𝑖𝑗,𝑡+1 of dimension 𝑁 × 𝑁 such that 

 

𝑅Ψ𝑡+1 = [𝑅𝐵11,𝑡+1|𝑅𝐵12,𝑡+1| … |𝑅𝐵1𝑁,𝑡+1|𝑅𝐵21,𝑡+1|𝑅𝐵22,𝑡+1| …

|𝑅𝐵2𝑁,𝑡+1|… |𝑅𝐵𝑁1,𝑡+1|𝑅𝐵𝑁2,𝑡+1|… |𝑅𝐵𝑁𝑁,𝑡+1]
 (33) 

 

with 

 

𝑅𝐵𝑖𝑗,𝑡+1 =

[
 
 
 
 
𝑟𝑏𝑖𝑗11,𝑡+1 𝑟𝑏𝑖𝑗12,𝑡+1 ⋯ 𝑟𝑏𝑖𝑗1𝑁,𝑡+1

𝑟𝑏𝑖𝑗21,𝑡+1 𝑟𝑏𝑖𝑗22,𝑡+1 ⋯ 𝑟𝑏𝑖𝑗2𝑁,𝑡+1
⋮

𝑟𝑏𝑖𝑗𝑁1,𝑡+1

⋮
𝑟𝑏𝑖𝑗𝑁2,𝑡+1

⋱
⋯

⋮
𝑟𝑏𝑖𝑗𝑁𝑁,𝑡+1]

 
 
 
 

 (34) 

 

and where each element, 𝑟𝑏𝑖𝑗𝑘𝑙,𝑡+1, is given by 

 

𝑟𝑏𝑖𝑗𝑘𝑙,𝑡+1 =
1

𝑡
∑∑𝑟𝑖,𝜏+(𝑞/𝑄)𝑟𝑗,𝜏+(𝑞/𝑄)𝑟𝑘,𝜏+(𝑞/𝑄)𝑟𝑙,𝜏+(𝑞/𝑄)

𝑄

𝑞=1

𝑡

𝜏=1

 (35) 

 

with  𝑖, 𝑗, 𝑘, 𝑙 = 1,… , 𝑁.  

 

The investor’s problems with realized moments within the MV, MVS and MVSK 

frameworks, are given, respectively, by 

 

max
𝑤𝑡∈ℛ

𝑁
𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] − 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑟𝜐𝑡(𝑟𝑝,𝑡+1) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑤𝑖,𝑡 = 1

𝑁

𝑖=1

 ,  𝑤𝑖,𝑡 ≥ 0, 𝑖 = 1,… , 𝑁 

 

 (36) 

 

   
max
𝑤𝑡∈ℛ

𝑁
𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] − 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑟𝜐𝑡(𝑟𝑝,𝑡+1)

+𝜃3[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑟𝑠𝑡(𝑟𝑝,𝑡+1) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑤𝑖,𝑡 = 1

𝑁

𝑖=1

 , 𝑤𝑖,𝑡 ≥ 0, 𝑖 = 1,… , 𝑁 

 

 (37) 
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max
𝑤𝑡∈ℛ

𝑁
𝜃1[𝐸𝑡(𝑟𝑝,𝑡+1)] − 𝜃2[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑟𝜐𝑡(𝑟𝑝,𝑡+1)

+𝜃3[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑟𝑠𝑡(𝑟𝑝,𝑡+1) − 𝜃4[𝐸𝑡(𝑟𝑝,𝑡+1)]𝑟𝑘𝑡(𝑟𝑝,𝑡+1) 
 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∑𝑤𝑖,𝑡 = 1

𝑁

𝑖=1

 ,  𝑤𝑖,𝑡 ≥ 0, 𝑖 = 1,… , 𝑁 

 

 (38) 

 

Notice that for the estimation of the daily mean return using intraday data, only the first 

and last price observations (open and closing daily transaction prices) will matter.  

The solutions of Problem (36), Problem (37) and Problem (38), are referred as high 

frequency portfolios and are denoted hereafter as 𝑤(ℎ𝑖𝑔ℎ).  

All the objective functions of Problem (17), Problem (19), Problem (21), Problem (36), 

Problem (37) and Problem (38) are continuous nonlinear but smooth functions, thereby all the 

presented problems can be solved using a nonlinear constrained optimization algorithm. This paper 

uses a sequential quadratic programming (SQP) algorithm implemented in MATLAB. 
 

5. EMPIRICAL ANALYSIS 
 

5.1 Data description 
 

In each framework presented in the previous sections, the performances of the low and high 

frequency portfolios are compared using a dataset from the CAC 40 Index of the Euronext Paris 

(formerly, before 2000, called the Paris Bourse). The dataset was provided by the European 

Financial Institute (EUROFIDAI) and corresponds to intraday price observations of fourteen 

stocks (see Table no. 1). These stocks were always traded in the Euronext Paris during the sample 

period, but they did not always necessarily belong to the CAC 40 Index. The intraday data were 

gathered during each trading session (09:00 a.m. - 17:30 p.m., local time), from January 1999 to 

December 2005 (1777 trading days). In the raw dataset, the intraday price observations were 

unsynchronized, which can lead to serious biases in the estimation of the moments and co-

moments of the stocks returns (see Campbell et al., 1997, pp. 84-98, for further details). The data 

was synchronized using a well-known algorithm called the all refresh-time method (described in 

Barndorff-Nielsen et al., 2011). After the synchronization procedure, there were on average about 

61 prices changes per day (see Figure no. 1), which correspond to an average frequency of one 

observation per 8 minutes. 
 

Table no. 1 – The fourteen stocks from the France Stock Market Index (CAC 40) 

Stock Designation 

AIR LIQUIDE LVMH 

AXA MICHELIN 

CARREFOUR PERNOD RICARD 

DANONE SAINT-GOBAIN 

ESSILOR INTL SANOFI-AVENTIS 

FRANCE TELECOM TOTAL 

L’OREAL UNIBAL 

Notes: This table lists the stocks used in the empirical analysis. The intraday data on these stocks, from January 

1999 to December 2005, were provided by the European Financial Institute (EUROFIDAI).  
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Notes: This figure reports the average number of intraday price changes (on the fourteen stocks) per day. The 
horizontal axis corresponds to the number of trading days. The solid horizontal line represents the overall average 

number of price changes per day. 

Figure no. 1 – Average number of intraday price changes per day 

 

5.2 Out-of-sample performance 

 

The comparison between the performances of the low frequency portfolios (𝑤(𝑙𝑜𝑤)) and 

the high frequency portfolios (𝑤(ℎ𝑖𝑔ℎ)) was conducted using a rolling-window approach (see, 

e.g., DeMiguel et al., 2009a), for a total of 771 evaluation periods (days). Firstly, for each 

relative risk aversion level (with 𝛾 = 1, 4, 5, 10), the low frequency portfolios (solutions of 

Problem (17), Problem (19) and Problem (21)) and the high frequency portfolios (solutions 

of Problem (36), Problem (37) and Problem (38)) were computed, for the in-sample window, 

from the first trading day of January 1999 to the last trading day of December 2002. Each 

portfolio was held fixed and its return was observed over the next trading day (first trading 

day of January 2003). Then the first trading day of January 1999 was discarded and included 

the first trading day of January 2003 into the sample. This process was repeated until 

exhausting the 771 trading days from January 2003 to December 2005. With this procedure, 

the time series of daily returns for each 𝑤(𝑙𝑜𝑤) portfolio and for the corresponding 𝑤(ℎ𝑖𝑔ℎ) 

portfolio were recorded, resulting in a total of 24 time series of out-of-sample portfolio 

returns, one for each combination of risk aversion level, moments framework and sampling 

frequency. 

This paper considers four relative risk aversion coefficients. The 𝛾 = 1 case corresponds 

to the important case of the optimal growth portfolio, which has been often used in the 

financial literature, at least since the ground breaking paper of Kelly (1956); 𝛾 = 4 and 𝛾 = 5 

are reasonable values as estimated in Bliss and Panigirzoglou (2004), and 𝛾 = 10 corresponds 

to an extreme case, also commonly used in the literature (see, e.g., Brandt et al., 2009). 

The recorded time series of out-of-sample daily returns for each portfolio (𝑤(𝑙𝑜𝑤) and 

𝑤(ℎ𝑖𝑔ℎ))  are used to compute the out-of-sample utility, �̂�, given by 
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�̂� = {

(1 + �̂�)1−𝛾 − 1

1 − 𝛾
          𝑖𝑓   𝛾 > 1   

                                                             
log(1 + �̂�)                   𝑖𝑓    𝛾 = 1 

 (39) 

 

where  �̂� represents the out-of-sample mean return. The results are reported in Table no. 2. 

 
Table no. 2 – Utility (�̂�) 

Framework MV MVS MVSK 

Relative risk aversion level 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 

𝛾 = 1 9.52 10.26 9.44 10.26 9.42 10.26 

𝛾 = 4 6.90   9.64 6.77   9.64 6.74 9.64 

𝛾 = 5 7.09 10.17 7.05 10.17 7.07 10.17 

𝛾 = 10 9.63 12.28 9.68 12.27 9.75 12.27 
Notes: This table reports, for each framework (mean-variance (MV), mean-variance-skewness (MVS) and mean-

variance-skewness-kurtosis (MVSK)) and relative risk aversion level (𝛾), the annualized out-of-sample utility (�̂�) of 

the low frequency (𝑤(𝑙𝑜𝑤)) and high frequency (𝑤(ℎ𝑖𝑔ℎ)) portfolios. The values are in percentage. 

 

For all relative risk aversion levels and frameworks considered, the high frequency 

portfolios always outperform the corresponding low frequency portfolios in terms of out-of-

sample utility. Table no. 2 shows that when 𝛾 = 1, the differences between the 𝑤(𝑙𝑜𝑤) and the 

𝑤(ℎ𝑖𝑔ℎ) portfolios are 74bp (basis points), 82bp and 84bp for the MV, MVS and MVSK 

frameworks, respectively; when 𝛾 = 4, the differences between the 𝑤(𝑙𝑜𝑤) and the 𝑤(ℎ𝑖𝑔ℎ) 

portfolios are  273bp, 287bp and 290bp, for the MV, MVS and MVSK frameworks, 

respectively; when 𝛾 = 5 these differences are 307bp, 311bp and 310bp; and  when 𝛾 = 10 

these differences are 265bp, 259bp and 253bp. Hence the minimum difference occurs in the MV 

framework for 𝛾 = 1, while the maximum difference occurs in the MVS framework for 𝛾 = 5. 

For 𝛾 = 1, 4 and 5, the main effect of including higher moments (skewness or kurtosis) is the 

deterioration of the 𝑤(𝑙𝑜𝑤) portfolios out-of-sample utility, producing an increase in the 

performance superiority of the 𝑤(ℎ𝑖𝑔ℎ) portfolios. For 𝛾 = 10 the reverse effect is observable. 

The investor wants to achieve the portfolio with the highest mean return and skewness and 

the lowest volatility and kurtosis, therefore the superiority of the high frequency portfolios may 

be the result of its dominance in any of these dimensions. Strikingly, regardless of the relative 

risk aversion coefficient and moments framework, the high frequency portfolio is able to 

outperform out-of-sample the corresponding low frequency portfolio in terms of mean return, 

standard deviation, skewness and kurtosis (see Table no. 3). 
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Table no. 3 – Out-of-sample moments 

Framework MV MVS MVSK 

Relative risk aversion level 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 

Mean (�̂�) 
𝛾 = 1 9.52 10.26 9.44 10.26 9.42 10.26 

𝛾 = 4 6.91 9.64 6.77 9.64 6.75 9.65 

𝛾 = 5 7.10 10.18 7.06 10.18 7.07 10.18 

𝛾 = 10 9.65 12.31 9.70 12.30 9.77 12.30 

Standard deviation (𝑠𝑡�̂�) 

𝛾 = 1 19.33 18.14 19.30 18.14 19.29 18.14 

𝛾 = 4 17.94 16.55 17.92 16.55 17.93 16.55 

𝛾 = 5 17.87 16.23 17.84 16.23 17.83 16.23 

𝛾 = 10 17.40 15.21 17.43 15.21 17.41 15.21 

Skewness (�̂�) 
γ = 1 -0.88 -0.36 -0.89 -0.36 -0.89 -0.36 

γ = 4 -1.66 -0.96 -1.70 -0.96 -1.74 -0.95 

γ = 5 -2.24 -1.10 -2.26 -1.10 -2.29 -1.10 

γ = 10 -3.14 -1.37 -3.11 -1.38 -3.14 -1.38 

Kurtosis (�̂�) 

γ = 1 14.40 8.11 14.52 8.12 14.50 8.12 

γ = 4 18.68 10.25 19.11 10.25 19.60 10.21 

γ = 5 27.08 11.74 27.16 11.76 27.62 11.74 

γ = 10 41.96 14.87 41.14 14.97 41.66 14.97 
Notes: This table reports, for each framework (mean-variance (MV), mean-variance-skewness (MVS) and mean-

variance-skewness-kurtosis (MVSK)) and relative risk aversion level (𝛾), the annualized out-of-sample mean return 

(�̂�), the annualized out-of-sample standard deviation (𝑠𝑡�̂�),  the daily out-of-sample skewness (�̂�) and the daily out-

of-sample kurtosis (�̂�) of the low frequency (𝑤(𝑙𝑜𝑤)) and high frequency (𝑤(ℎ𝑖𝑔ℎ)) portfolios. The values of the mean 
and standard deviation are in percentage. 

 

In order to assess the statistical significance of the results, the bootstrap 𝑝-values for the 

difference between all the above statistics of each pair of portfolios (𝑤(𝑙𝑜𝑤) and 𝑤(ℎ𝑖𝑔ℎ)), 

within each framework, were also computed. None of the differences were statistically 

significant for �̂�, �̂�, 𝑠𝑡�̂�, �̂� and �̂�. However, these results present quite strong evidence 

favoring the use of high frequency data, in the sense that for any possible out-of-sample 

performance measure, involving any of the four moments (mean, variance, skewness and 

kurtosis), the high frequency portfolio will always exhibit a better performance than the 

corresponding low frequency portfolio. A commonly used performance metric is the out-of-

sample Sharpe ratio, which, assuming that the risk-free rate is zero, is computed as: 

 

𝑠�̂� =
�̂�

𝑠𝑡�̂�
 (40) 

 

The results for the out-of-sample Sharpe ratios presented in Table no. 4 show that for 

reasonable relative risk aversion levels of 𝛾 = 4 and 𝛾 = 5 (Bliss and Panigirzoglou, 2004) 

the differences between the Sharpe ratios are statistically significant (at the 5% level) in every 

framework. 
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Table no. 4 – Sharpe ratio (𝒔�̂�) 

Framework MV MVS MVSK 

Relative risk aversion level 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 

𝛾 = 1 
29.36 33.60 29.16 33.62 29.11 33.60 

(0.5097) (0.4781) (0.4757) 

𝛾 = 4 
23.23 34.70 22.80 34.70 22.72 34.73 

(0.0480) (0.0378) (0.0368) 

𝛾 = 5 
23.93 37.25 23.86 37.25 23.90 37.27 

(0.0394) (0.0392) (0.0392) 

𝛾 = 10 
33.03 47.63 33.14 47.58 33.39 47.59 

(0.0986) (0.0970) (0.1008) 
Notes: This table reports for each framework (mean-variance (MV), mean-variance-skewness (MVS) and mean-

variance-skewness-kurtosis (MVSK)) and relative risk aversion level (𝛾), the daily out-of-sample Sharpe ratios (𝑠�̂�) 

of the low frequency (𝑤(𝑙𝑜𝑤)) and high frequency (𝑤(ℎ𝑖𝑔ℎ)) portfolios. All Sharpe ratios values are multiplied by a 

factor of 103. In parenthesis are the bootstrap p-values of the difference between the Sharpe ratio of the low frequency 

portfolio (𝑤(𝑙𝑜𝑤)) and the corresponding high frequency portfolio (𝑤(ℎ𝑖𝑔ℎ)). These bootstrap p-values were computed 
according to the Ledoit and Wolf (2008) robust methodology. 

  

In most cases the out-of-sample Sharpe ratios, both for the low and high frequency 

portfolios, increase with the relative risk aversion level (the exceptions are the changes of the 

Sharpe ratio for the 𝑤(𝑙𝑜𝑤) portfolios, when 𝛾 increases from 1 to 4). This result support the 

findings of Martellini and Ziemann (2010). 

The portfolio turnover can be defined as the average, over all time periods, of the 

absolute changes in weights across the 𝑁 available stocks: 

 

𝑡𝑟 =
1

#𝑝𝑒𝑟𝑖𝑜𝑑𝑠
∑ ∑(|𝑤𝑖,𝑡+1 −𝑤𝑖,𝑡

ℎ |)

𝑁

𝑖=1

#𝑝𝑒𝑟𝑖𝑜𝑑𝑠

𝑡=1

 (41) 

 

where 𝑤𝑖,𝑡
ℎ  and 𝑤𝑖,𝑡+1 are the portfolio weights before and after rebalancing at time 𝑡 + 1, 

respectively. The quantities 𝑤𝑖,𝑡
ℎ  are computed as 

 

𝑤𝑖,𝑡
ℎ = 𝑤𝑖,𝑡−1

1 + 𝑟𝑖,𝑡

1 + 𝑟𝑝,𝑡
 (42) 

 

The low and high frequency portfolios turnover results, 𝑡𝑟, are reported in Table no. 5.  

 
Table no. 5 – Turnover (𝒕𝒓) 

Framework MV MVS MVSK 

Relative risk aversion level 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 

𝛾 = 1 80.23 77.32 80.88 77.30 81.02 77.29 

𝛾 = 4 57.38 51.18 57.26 51.20 56.98 51.17 

𝛾 = 5 52.68 46.33 52.40 46.31 52.12 46.30 

𝛾 = 10 36.30 29.66 35.74 29.68 35.24 29.66 
Notes: This table reports, for each framework (mean-variance (MV), mean-variance-skewness (MVS) and mean-

variance-skewness-kurtosis (MVSK)) and relative risk aversion level (𝛾), the daily turnover (𝑡𝑟) of the low frequency 

(𝑤(𝑙𝑜𝑤)) and high frequency (𝑤(ℎ𝑖𝑔ℎ)) portfolios. All the turnover values are multiplied by a factor of 103. 
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Similar patterns to the ones presented before for other out-of-sample measures are also 

found here, i.e. the turnover decreases with 𝛾 in each framework and sampling frequency. For 

each sampling frequency and 𝛾, the turnover is remarkably stable across the three frameworks, 

and, most importantly, the high frequency portfolios outperform the corresponding low 

frequency portfolios.  

Therefore, in the presence of proportional transaction costs, the high frequency 

portfolios provide a saving in trading costs, arguably implying that the superiority of these 

portfolios increase after considering these costs. In order to directly observe this effect, the 

proportional trading cost is set equal to 50bp per trade, as assumed in DeMiguel et al. (2009a). 

Accordingly, the cost of the portfolio rebalancing at each time t+1 is computed as 

 

𝑐𝑜𝑠𝑡𝑡+1 = 0.5%∑(|𝑤𝑖,𝑡+1 − 𝑤𝑖,𝑡
ℎ |)

𝑁

𝑡=1

 (43) 

 

Following DeMiguel et al. (2009b), in the presence of proportional transaction costs, the 

one-period investor's wealth change is given by 

 

𝑊𝑡+1 = 𝑊𝑡(1 + 𝑟𝑝,𝑡+1)(1 − 𝑐𝑜𝑠𝑡𝑡+1) (44) 

 

Hence 
𝑊𝑡+1

𝑊𝑡
− 1 corresponds to the return net of transaction costs. Accordingly, the net 

Sharpe ratio can be defined as 

 

𝑠�̂�𝑛𝑒𝑡
𝑟𝑒𝑓

=
�̂�𝑛𝑒𝑡

𝑠𝑡�̂�𝑛𝑒𝑡
 (45) 

 

where �̂�𝑛𝑒𝑡 and  𝑠𝑡�̂�𝑛𝑒𝑡 represent the mean and standard deviation of the out-of-sample 

returns after transaction costs, respectively. When the numerator is negative, the Sharpe ratio 

should be refined in order to achieve the correct ranking of the portfolios. This can be 

accomplished using the methodology proposed by Israelsen (2005). Thus, the refined net 

Sharpe ratio is given by 

 

𝑠�̂�𝑛𝑒𝑡
𝑟𝑒𝑓

=
�̂�𝑛𝑒𝑡

𝑠𝑡�̂�𝑛𝑒𝑡
�̂�𝑟𝑒𝑓/abs(�̂�𝑟𝑒𝑓)

 (46) 

 

where abs(∙) is the absolute value function. Note that when �̂�𝑛𝑒𝑡 is positive, Equation (45) 

and Equation (46) are equivalent.  

 

Table no. 6 reports the results for the refined net Sharpe ratios. The results are similar to 

the results observed for the Sharpe ratio (see Table no. 4), but the observed performance 

differences between low and high frequency portfolios are now larger. 
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Table no. 6 – Refined net Sharpe ratio (𝒔�̂�𝒏𝒆𝒕
𝒓𝒆𝒇
) 

Framework MV MVS MVSK 

Relative risk 

aversion level 
𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 𝑤(𝑙𝑜𝑤) 𝑤(ℎ𝑖𝑔ℎ) 

𝛾 = 1 
-0.00057 -0.000077 -0.00064 -0.000073 -0.00066 -0.000075 

(0.6075) (0.5361) (0.5195) 

𝛾 = 4 
-0.00030 9.91 -0.00035 9.90 -0.00035 9.93 

(0.0178) (0.0152) (0.0184) 

𝛾 = 5 
0.31 14.36 0.31 14.37 0.47 14.40 

(0.0178) (0.0152) (0.0184) 

𝛾 = 10 
16.30 31.99 16.69 31.93 17.16 31.95 

(0.0404) (0.0502) (0.0560) 
Notes: This table reports for each framework (mean-variance (MV), mean-variance-skewness (MVS) and mean-

variance-skewness-kurtosis (MVSK)) and relative risk aversion level (𝛾), the daily out-of-sample refined net Sharpe 

ratios (𝑠�̂�𝑛𝑒𝑡
𝑟𝑒𝑓

) of the low frequency (𝑤(𝑙𝑜𝑤)) and high frequency (𝑤(ℎ𝑖𝑔ℎ)) portfolios. All the daily refined net Sharpe 

ratios values are multiplied by a factor of 103. In parenthesis are the bootstrap p-values of the difference between the 

net Sharpe ratio of the low frequency portfolio (𝑤(𝑙𝑜𝑤)) and the corresponding high frequency portfolio (𝑤(ℎ𝑖𝑔ℎ)). 

These bootstrap p-values were computed according to the Ledoit and Wolf (2008) robust methodology.  

 

All the results obtained for the different performance evaluation measures (�̂�, �̂�, 𝑠𝑡�̂�, �̂�, 

�̂�, 𝑠�̂�, 𝑡𝑟 and 𝑠�̂�𝑛𝑒𝑡
𝑟𝑒𝑓

), suggest that the use of high frequency data improves the out-of-sample 

performance of the portfolios, most especially when trading costs are considered. This claim 

seems quite robust, as it does not depend on the framework, i.e. the moments used, nor does 

it depend on the relative risk aversion level. 

Table no. 7 shows, for each out-of-sample measure and relative risk aversion level, the 

best framework when using high frequency data.  

 

Table no. 7 – High frequency portfolio (𝒘(𝒉𝒊𝒈𝒉)) performance 

Performance measure 𝜸 = 𝟏 𝜸 = 𝟒 𝜸 = 𝟓 𝜸 = 𝟏𝟎 

Utility (û) MVS MVSK MVSK MV 

Mean (�̂�) MVS MVSK MVSK MV 

Standard deviation (𝑠𝑡�̂�) MV MVSK MVSK MV 

Skewness (�̂�) MV MVSK MVSK MV 

Kurtosis (�̂�) MV MVSK MVSK MV 

Sharpe ratio (𝑠�̂�) MVS MVSK MVSK MV 

Turnover (𝑡𝑟) MVSK MVSK MVSK MVSK 

Net Sharpe ratio (𝑠�̂�𝑛𝑒𝑡
𝑟𝑒𝑓
) MVS MVSK MVSK MV 

Notes: This table reports, for each out-of-sample performance evaluation measure (�̂�, �̂�, 𝑠𝑡�̂�, �̂�, �̂�, 𝑠�̂�, 𝑡𝑟 and 𝑠�̂�𝑛𝑒𝑡
𝑟𝑒𝑓

), 

and relative risk aversion level (𝛾), the framework, mean-variance (MV), mean-variance-skewness (MVS) or mean-

variance-skewness-kurtosis (MVSK), where the high frequency portfolio (𝑤(ℎ𝑖𝑔ℎ)) achieves the best performance. 

 

The summary information in Table no. 7 highlights a very interesting pattern: for moderate 

relative risk aversion levels, 𝛾 = 4 and 𝛾 = 5, the best performance is always achieved when 

all the moments, the realized variance, skewness and kurtosis, are jointly used. 

Summarizing, the results presented in this paper show that, for the typical investor, with 

moderate risk aversion, the consideration of higher moments improves the performance of the 
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portfolios (see, for instance Harvey et al., 2010, for low frequency portfolios), and, that those 

higher moments, such as skewness and kurtosis, can be better estimated using high frequency 

data (see, e.g. Neuberger, 2012; Amaya et al., 2015). 

 

6. CONCLUSIONS 

 

Nowadays the use of big data seems to offer a competitive advantage in many fields. 

Particularly in Finance, the increasing availability of huge high frequency datasets encourages 

the emergence of new investment strategies built on all the trading information.  

This paper contributes to the existing literature by analyzing the practical benefits of using 

intraday information in portfolio selection. The analysis is conducted in a CRRA utility 

maximization world, where investors can have different risk aversion levels. The comparison 

between low frequency portfolios, where the inputs of the optimization problem are obtained 

from daily data, and high frequency portfolios, where these inputs are obtained from intraday 

data, is accomplished considering three frameworks according to different information sets: 

mean-variance, mean-variance-skewness and mean-variance-skewness-kurtosis. 

The empirical results, based on fourteen blue-chip stocks traded in the Euronext Paris, 

show a superior daily out-of-sample performance of the high frequency portfolios, 

irrespectively of the framework and level of risk aversion considered. This result is transversal 

to all the out-of-sample performance measures (utility, mean return, standard deviation, 

skewness, kurtosis, Sharpe ratio, turnover and net Sharpe ratio). For moderate relative risk 

aversion levels, the differences between the high frequency and low frequency portfolios, in 

terms of the Sharpe ratio and most particularly in terms of the net Sharpe ratio, are always 

statistically significant (at the 5% level). The superior performance of high frequency 

portfolios, measured by the net Sharpe ratio, highlights that the advantage of using high 

frequency data in portfolio selection problems is even more pronounced when real market 

conditions, such as transaction costs, are brought into the analysis. 

Assuming moderate risk aversion, which arguably defines most investors, the best high 

frequency portfolios are always the ones that consider not only the mean and variance but also 

the skewness and kurtosis, irrespectively of the performance metric used. Hence, for the 

typical investor, the portfolio selection problem is only adequately defined if all these 

moments are included into the information set.  

The literature is unanimous in pointing out that returns are non-normal and therefore are 

better described by skewed fat-tailed distributions. Although, there is no empirical evidence 

suggesting that high frequency data has additional information that can be used to estimate 

expected returns at lower frequencies, there is a prolific literature on the use of high frequency 

data for estimating the volatility. This paper contributes to the existing literature, by clearly 

supporting the claim that high frequency data can also be used to produce better estimates of 

the skewness and kurtosis, which in turn can be used to create better portfolios. In conclusion, 

this paper provides compelling empirical evidence on the existence of real gains when using 

high frequency data and higher moments in portfolio selection.  
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