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Abstract
We address principles of time evolution in classical mechanical/thermo-
dynamical systems in translational and rotational motion, in three cases: when
there is conservation of mechanical energy, when there is energy dissipation
and when there is mechanical energy production. In the first case, the time
derivative of the Hamiltonian vanishes. In the second one, when dissipative
forces are present, the time evolution is governed by the minimum potential
energy principle, or, equivalently, maximum increase of the entropy of the
universe. Finally, in the third situation, when internal sources of work are
available to the system, it evolves in time according to the principle of
minimum Gibbs function. We apply the Lagrangian formulation to the sys-
tems, dealing with the non-conservative forces using restriction functions such
as the Rayleigh dissipative function.

Keywords: Lagrangian, thermodynamics, Rayleigh function

(Some figures may appear in colour only in the online journal)

1. Introduction

When a system is acted upon only by conservative forces, or when non-conservative forces
are present but they do not dissipate energy, it evolves in time with mechanical energy
conservation. Newton’s second law (for both translations and rotations) is then enough to
describe the process, and no thermal effects are present [1]. In section 2, we illustrate this
situation by considering a non-slipping disk moving on an incline.
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However, in the presence of dissipative forces, the mechanical energy of the system is
not conserved and the system evolves according to the principle of minimum potential energy
[2]: the endpoint of the trajectory has to be a state of minimum potential energy. In these cases
it might be necessary to take into account thermal effects, by using the first law of thermo-
dynamics [3]. The mechanical energy dissipated as heat it taken into account by the first law,
and the time evolution of the system follows the principle of maximum entropy: the entropy
of the universe increases until it reaches a maximum compatible with the actual conditions of
the process (second law of thermodynamics). In section 3, we illustrate this situation by
considering a sliding disk on an incline, with both translational and rotational motions, acted
upon by a kinetic friction force responsible for the energy dissipation.

Moreover, one may also consider a class of processes for which the system experiences a
mechanical energy increase resulting from a non-mechanical source, e.g. chemical reactions.
In section 4, we illustrate this case by considering a disk with an internal source of energy,
which consists of two cartridges where some chemical reactions take place. The device is able
to provide two symmetrical forces that produce a torque on the disk, making it going up an
inclined plane. In an ideal process, the maximum work these forces can perform equals the
variation of mechanical energy of the disk, and this is still equal to the decrease of the Gibbs’
function of the chemical substances [4].

The mechanical study in all three cases is conducted in the framework of the Lagrangian
formalism. However, due to the presence of non-conservative forces, it is necessary to
complement the formalism using restriction functions. When the non-conservative forces do
not perform any work, this can be implemented through the usual Lagrange multipliers. In
turn, when the non-conservative forces do work, a Rayleigh dissipation or production
function has to be taken into account at the level of the Euler–Lagrange equations. This paper
also pedagogically addresses such formalism, which is not very commonly used in the
classroom. Our conclusions are summarised in section 5.

2. Evolution with mechanical energy conservation

A disk rolling without slipping on top of an incline, as shown in figure 1, is a common
example of a process in which mechanical energy is conserved. For the disk, with radius R
and mass m, descending the incline, the Hamiltonian is

q a= + + -( ) ( ) ( )H x p J
p

m

J

I
mg d x, ; ,

2 2
sin , 1

2 2

where x describes the position of the centre-of-mass (initially x= 0) along the slope and θ the
angular position of the rotating disk (initially θ= 0). The other quantities entering the
Hamiltonian have the usual meaning: = =˙p mx mv is the linear momentum, q w= =˙J I I is
the angular momentum, =I mR1

2
2 is the moment of inertia, g is the acceleration of gravity, d

is the length of the incline and α its inclination angle with respect to the horizontal plane. The
non-slipping condition is expressed by the relation between the centre-of-mass velocity and
the angular velocity of the disk: v(t)=ω(t)R or, equivalently, x(t)=θ(t)R. In the Lagrangian
formulation, one considers two pairs of variables (x, v) and (θ, ω). In terms of the Lagrangian
dynamical variables, the Hamiltonian can be written as

q w w a= + + -( ) ( ) ( )H x v mv I mg d x, ; ,
1

2

1

2
sin 22 2
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and then the Lagrangian reads

q w w q w w a= + - = + - - ( )( ) ( ) ( ) 3L x v vp J H x v mv I mg d x, ; , , ; ,
1

2

1

2
sin .2 2

The Lagrangian formalism is here applied using a restriction function that allows us to
explicitly consider the static friction force,


f , exerted by the plane on the rim of the disk [6].

The restriction function implements the interdependence of the variables used in the
Lagrangian. The use of restriction functions at the level of the Lagrangian, as we do here, is
equivalent to the more familiar addition of a Lagrange multiplier term. When the disk rolls
down the incline, the restriction function is given by [7]

 q q= - + =( ) ( )x fx fR, 0, 4

which already takes into account that the force opposes the displacement when the disk
descends, making a positive torque that leads to a clockwise increasing angular velocity
(  - for the disk going up the incline). The Euler–Lagrange equations with such a
restriction function are

¶
¶

-
¶
¶

=
¶
¶

( )
t

L

v

L

x x

d

d
, 5


w q q

¶
¶

-
¶
¶

=
¶
¶

( )
t

L Ld

d
. 6

From here, one obtains, respectively, two equations, namely Newton’s second law for the
translation and for the rotation, the latter also known as the Poinsot–Euler equation [1]:

a- = - ( )m v mg t f td sin d d , 7

Figure 1. (a) A disk—with a red light spot at its centre and a blue light spot at its rim—

rolls down an inclined plane without slipping. In (b) the disc goes up an inclined plane
reaching the same vertical level. Simulation performed with the software Algodoo [5].
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w = ( )I fR td d . 8

When the non-slipping condition, which can also be expressed as w=v Rd d , is fulfilled,
the previous two equations lead to a=f mg sin1

3
. This force must be lower than the max-

imum frictional force, m a=f mg cosmax
s , which can be exerted by the plane upon the disk,

where μs is the coefficient of static friction.
From equations (7) and (8), and using =x v td d and q w= td d , the pseudo-work

equations [8] are readily obtained for the translation and rotation,

a= -( ) ( )m v mg f x
1

2
d sin d , 92

w q= ( )I fR
1

2
d d , 102

which lead to

w a+ = ( )m v I mg x
1

2
d

1

2
d sin d . 112 2

Pseudo-work is defined through the resultant force and the centre-of-mass displacement and it
is the part of the work that goes into changing the centre-of-mass kinetic energy [9]. The
pseudo-work equation (11) for the process can also be expressed as

w a+ + - =
⎡
⎣⎢

⎤
⎦⎥( ) ( )mv I mg d xd

1

2

1

2
sin 0. 122 2

One recognises that the quantity in brackets is the Hamiltonian (2) which, of course, is
implicitly time dependent through v(t), ω(t) and x(t). However, equation (12) allows us to
conclude that

= ( )H

t

d

d
0, 13

and the bottom line is that the mechanical energy is conserved during this process.
The equation expressing the first law of thermodynamics [10] is

d d+ = +K U W Qd dcm , where the left hand side refers to the centre-of-mass kinetic energy
and the internal energy variations, respectively, and the right hand side refers to the work and
heat transfers to/from the system during the process. In the present case,

w a d+ = + ( )m v I mg x Q
1

2
d

1

2
d sin d , 142 2

where d a=W mg xsin d is just the work performed by the gravitational force, since the other
forces do not perform any work. We note that the rotational kinetic energy is disk’s internal
energy. By comparing equations (12) and (14) one concludes that

d
= ( )Q

td
0, 15

i.e. there are no thermal effects during the process. The variation of the entropy of the
universe is zero, = - =dSd 0Q

TU , where T is the temperature of the thermal reservoir
surrounding the disk. Therefore, the process is reversible and the description of the process is
essentially the same whether the disk descends or ascends the inclined plane.
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3. Evolution with minimisation of potential energy (maximum entropy)

Next we consider a process in which the disk descends and then ascends the inclined planes,
but now one assumes that the static friction coefficient is such that m a< tgs

1

3
. The non-

slipping condition is no longer fulfilled and therefore the disk rolls and slides. Figure 2 depicts
the process.

The force applied on the rim of the disk is the kinetic friction force, m a=f mg coskin
k

(μk is the coefficient of kinetic friction), and we can still use the pairs of dynamical variables
(x, v) and (θ, ω) which are now independent from each other. The Hamiltonian (2) and the
Lagrangian (3) are still valid for this process.

The dissipative force is responsible for conversion of mechanical energy into heat,
increasing the entropy of the universe [3]. The phenomenological description of this dis-
sipation does not fit naturally into the Lagrangian formalism. However, it can be incorporated
in the Euler–Lagrange equation [11], in a heuristic way, through the so-called Rayleigh
dissipative function. This Rayleigh function will allow for the correct description of the
dynamics of the system. Based on expression (4), for the descendent motion we use the
Rayleigh dissipative function  q q= - +( )x f x f R, kin kin (  - for the ascending
motion). This function cannot be directly introduced in the Lagrangian, since it would cor-
respond to a potential energy that does not exist [12], so it is introduced at the level of the
Euler–Lagrangian equations.

Thus, the two Euler–Lagrange equations are

¶
¶

-
¶
¶

=
¶
¶

( )
t

L

v

L

x x

d

d
, 16

Figure 2. (a) A disk descends an inclined plane, not fulfilling the rolling condition.
(b) After damped oscillations in both planes, the disk eventually stops at the bottom of
both planes. Simulation performed with Algodoo.
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
w q q

¶
¶

-
¶
¶

=
¶
¶

( )
t

L Ld

d
. 17

The translational and rotational equations are now, respectively, given by

a m a- = - ( )m v mg t mg td sin d cos d , 18k

w m a= ( )I mg R td cos d . 19k

We repeat the process described in the previous section to obtain the pseudo-work
equations for translation and for rotation

a m a= -( ) ( )m v mg mg x
1

2
d sin cos d , 202

k

w m a q= ( )I mg R
1

2
d cos d , 212

k

and, after a term by term summation of these two equations, one arrives at

w a m a q+ + - = - -
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )mv I mg d x mg x Rd

1

2

1

2
sin cos d d . 222 2

k

So far, we have considered the descendent motion of the disk, but the description of the
ascending motion follows the same ideas. From Hamiltonian (2), we can now write, for the
sliding disc, for which v>Rω (whether in the descending or in the ascending motion),

m a w= - -( ) ( )H

t
mg v R

d

d
cos . 23k

We stress that dissipation always occurs irrespective of the motion being descendant or
ascendant. Therefore, the mechanical energy is not conserved in the process: it is dissipated,
and concomitantly the value of the Hamiltonian decreases [13]. The disk stops at the position
where gravitational potential energy compatible with the process is minimum, i.e. at the
bottom of the two inclines.

The first law of thermodynamics equation, assuming that the disk neither varies its
temperature nor its entropy, is expressed by [14]

w a d+ = + ( )m v I mg x Q
1

2
d

1

2
d sin d 242 2

and comparison with equation (22) allows us to conclude that

d
m a w= - - <( ) ( )Q

t
mg v R

d
cos 0. 25k

Thermal effects are present in the process resulting in an increase of the entropy of the
universe:

m a w
=

-
>

( )
( )S

t

mg v R

T

d

d

cos
0 26U k

and the process is irreversible.
The expression

= - ( )H

t
T

S

t

d

d

d

d
, 27U

relates the mechanical description of the process with its thermodynamical description [15].
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4. Evolution with maximum work (minimum of Gibbs function)

Figure 3 shows a disk going up an inclined plane due to two cartridges, where chemical
reactions occur, which are fixed close to the rim of the disk in such a way that, while the
chemical reactions are taking place, two opposite forces,


F and -


F , exert a net torque

τ=2Fr upon the disk (r is the distance from the application point of each force to the centre
of the disk). We assume constant F.

The forces exerted on the disk due to the chemical reaction in the cartridges perform
work, but it cannot be associated with either a mechanical potential or with a mechanical
work reservoir [16] whose potential energy decreases.

The Hamiltonian for this system is

q a= + +( ) ( )H x p J
p

m

J

I
mgx, ; ,

2 2
sin , 28

2 2

and the corresponding Lagrangian is

q w w a= + -( ) ( )L x v mv I mgx, ; ,
1

2

1

2
sin . 292 2

We note that cartridge forces,


{ }F , produce a positive torque whilst the static friction force,

f ,

produces a negative torque, τf=−fR. We assume that f is lower than the maximum friction
force m a=f mg cosmax

s , i.e. the non-slipping condition x=Rθ is fulfilled.
In the present case there is mechanical energy production, but we can proceed using a

heuristic point of view similar to the one applied in the previous section for the dissipative
forces. Now we use a Rayleigh production function q q=( )x Fr, 2P which should be added
to restriction function (4), which, for the ascending motion, reads  q q= - =( )x fx fR, 0.
Altogether, the restriction function turns out to be  q q q¢ = + -( )x Fr fx fR, 2 . Then, the
Euler–Lagrange equations for the ascending disk are


a

¶
¶

-
¶
¶

=
¶ ¢
¶

 + = ( )
t

L

v

L

x x t
mv mg f

d

d

d

d
sin 30

for the translation, and


w q q

w
¶
¶

-
¶
¶

=
¶ ¢
¶

 = - ( )
t

L L

t
I Fr fR

d

d

d

d
2 31

Figure 3. A disk goes up an inclined plane, fulfilling the rolling condition, due to the
action of two cartridges where chemical reactions take place. Simulation performed
with Algodoo.
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for the rotation. These equations of motion can also be written as

a= -( ) ( )m v f mg td sin d , 32

w = -( ) ( )I Fr fR td 2 d . 33

After some short transient regime, the disk reaches the rolling condition, v=ωR. In this
regime, from the above equations, one readily obtains

a m a= + < ( )f F
r

R
mg mg

4

3

1

3
sin cos . 34s

Inserting this expression for the static friction force in the equations of motion (32) and (33),
and then integrating,

a= -⎜ ⎟⎛
⎝

⎞
⎠( ) ( )v t

F

m

r

R
g t

4

3

2

3
sin , 35

w a= -⎜ ⎟⎛
⎝

⎞
⎠( ) ( )t

F

m

r

R

g

R
t

4

3

2

3
sin . 36

2

Also from the equations (32) and (33) the pseudo-work equations are obtained:

a= -⎜ ⎟⎛
⎝

⎞
⎠ ( )m v F

r

R
mg x

1

2
d

4

3

2

3
sin d , 372

w a q= -⎜ ⎟⎛
⎝

⎞
⎠ ( )I Fr Rmg

1

2
d

2

3

1

3
sin d . 382

Integration leads to

a= -⎜ ⎟⎛
⎝

⎞
⎠( ) ( )v d

F

m

r

R
g d

8

3

4

3
sin , 392

w a q= -⎜ ⎟⎛
⎝

⎞
⎠( ) ( )d

F

m

r

R
g

R

8

3

4

3
sin

1
, 402

hence, the final linear and angular velocities are independent of the coefficient of static
friction, provided, of course, the non-slipping condition is fulfilled.

Since q=x Rd d , from (37) and (38) one has

w a q+ + = ( )m v I mg x Fr
1

2
d

1

2
d sin d 2 d . 412 2

The mechanical energy variation of the disk is equal to the work performed on the disk by the
forces coming from the chemical reactions.

Hence, when the rolling condition is fulfilled,

w= ( )H

t
Fr

d

d
2 , 42

expressing the mechanical energy production rate while the reactants are consumed in the
cartridges.

To study the thermodynamics of the system, it is convenient to include the cartridges and
the reactants (assumed to be massless) in the system. The first law of thermodynamics can
then be written as
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w a+ + = - - +x x x ( )m v I U mg x P V T S
1

2
d

1

2
d d sin d d d , 432 2

where xUd is the variation of the chemical internal energy, a-mg xsin d is the work of the
external gravitational force and - xP Vd is the work on the gases produced in the chemical
reactions by the external pressure, P, corresponding to a volume variation xVd . The forces


{ }F

are now internal ones, but internal work does not enter in (43). The rotational kinetic energy is
internal energy of the system. Finally, when <xSd 0 in a chemical reaction, a heat transfer to
the external thermal reservoir, d = - >xQ T Sd 0min , ought to occur in order to ensure that the
entropy of the universe does not decrease.

The energy balance equation (43) can still be written as

w a+ + = - x ( )m v I mg x G
1

2
d

1

2
d sin d d , 442 2

where we have introduced = + -x x x xG U P V T Sd d d d , the Gibbs function variation for the
chemical reactions.

Comparison with (41) and (42) allows us to write

w- =x ( )
G

t
Fr

d

d
2 . 45

If the heat transfer to the surrounding is just δQmin, the process is reversible (no universe
entropy increase) and, at least in principle, the produced mechanical energy can be used back
to increase the Gibbs function towards its original value. For instance, if hydrogen and
oxygen react producing water, the mechanical energy can be, in principle, totally used to
hydrolise the water.

The expression (principle of minimum of Gibbs function),

= - >x ( )H

t

G

t

d

d

d

d
0, 46

relates the mechanical description with the thermodynamic description of the process. Of
course, if the heat transfer is such that d > - xQ T Sd , then less mechanical energy is obtained
than the maximum possible and the process is partly irreversible, with >Sd 0U . It is
completely irreversible if no mechanical energy is obtained and, in this case,- =xG T Sd d U.

This process is equivalent to many other processes such as those discussed in [17] and
also equivalent to a cyclist riding a bicycle up a mountain slope. In a broad sense, all thermal
engines work according to the above mentioned principle.

5. Conclusions

The study of the time evolution of mechanical/thermodynamical systems goes much beyond
[18] the analysis that we carried out in this article. Here we have studied three processes that
are pedagogically relevant to analyse how classical systems evolve in time and to figure out
what is the best evolution criterion to be applied in a concrete situation.

In all cases, we have considered the motion of a disk that rotates while its centre-of-mass
also moves, descending or ascending inclined planes. The examples also serve to illustrate
how the Lagrangian formalism (used in all three cases) is implemented, even when there are
non-conservative forces involved in the processes. Such implementation proceeds via the
consideration of the so-called restriction functions, such as the Rayleigh dissipation function
when dissipative forces are present.
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In the first example, the non-conservative forces do not do any work so the system
evolves in a way that the mechanical energy is conserved. In other words, the time derivative
of the Hamiltonian of the system is zero. In the second example, we considered the motion of
a disk that slides while it rolls and there is dissipation of energy in the surrounding. The
system evolves until it reaches the minimum possible potential energy, while the entropy of
the universe increases to a maximum value. Finally, in the third example, we show that
chemical energy can be transferred without losses to the system, being incorporated as
mechanical energy. The time evolution of the system is then governed by the principle of
minimum Gibbs function.

A student familiar with the basics of mechanics and thermodynamics may certainly find it
useful to compare the three systems studied in this work.
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