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Abstract
With the discussion of three examples, we aim at clarifying the concept of
energy transfer associated with dissipation in mechanics and in thermo-
dynamics. The dissipation effects due to dissipative forces, such as the friction
force between solids or the drag force in motions in fluids, lead to an internal
energy increase of the system and/or to heat transfer to the surroundings. This
heat flow is consistent with the second law, which states that the entropy of the
universe should increase when those forces are present because of the irre-
versibility always associated with their actions. As far as mechanics is con-
cerned, the effects of the dissipative forces are included in Newton’s equations
as impulses and pseudo-works.

Keywords: dissipation effects, mechanics, thermodynamics

1. Introduction

Many textbook exercises, presented in the context of mechanics, involve the action of dis-
sipative forces, therefore immediately entering the perimeter of thermodynamics [1]. In this
paper we address three such classroom problems to highlight the need to use the laws of
thermodynamics, besides the laws of mechanics, if one really wants to describe the energetic
aspects whenever we are in the presence of dissipative forces.

A very common approach to deal with textbook exercises of classical mechanics in
secondary schools and in a typical general physics curricular unit is the reduction of the actual
body to a so-called material point [2]. Although the representation of an extended body by a
particle (its centre-of-mass) may have obvious advantages, that simplification usually does
not always allow for a complete analysis of the pertinent energetic issues, for instance, when
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dissipative forces are present. This is true even when we are in the presence of just a
translational motion.

A major point in this article is the discussion around the work [3]. In mechanics, work is
defined as a ‘force–displacement’ product [4]. The same is true in thermodynamics, where the
notion is extended to the ‘generalized force–generalized displacement’ product involving
conjugate variables [5]. But, in thermodynamics, there is a significant supplementary aspect,
that cannot be circumvented, related to the absolute necessity to introduce the concept of a
work reservoir [6]. This is in close analogy with the need to introduce the concept of a heat
reservoir in relation with the heat transfer to or from the system. In a limited strict sense, work
is the energy exchanged between a system and a work reservoir such that the mentioned
energy can be totally stored in an organized manner either in the system or in the reservoir.
This organized energy (which is stored) can always be recovered in reversible processes with
no change of the entropy of the universe. A work reservoir, by definition, only performs
reversible processes (similarly to the heat reservoir) without increasing the entropy of the
universe (this is not the case for a heat reservoir). However, the mechanical description of
processes involving dissipative forces uses equations in which there are terms with the
dimension of energy, which are products of a force by a displacement, but cannot be con-
sidered as work in the sense referred to above.

In particular, these products enter the centre-of-mass equation (equivalent to Newton’s
second law), and are called pseudo-works [7]. They account for the kinetic energy variation of
the center-of-mass of the system but, in general, they are not work.

Actually, from the first law of thermodynamics point of view, those products may
represent energy exchanged between the system and the surroundings, but they should not be
regarded as work (i.e. they are not work). In fact, some force–displacement products are
related to physical processes in which the system does not interact energetically with a work
reservoir. Commonly, one refers to the product of a dissipative force by a characteristic
displacement of the body as dissipative work. At a more formal level, one may say that this
happens whenever a product ‘generalized force–generalized displacement’ involves macro-
scopic variables which do not serve to characterize the state of the system, i.e. when they are
not state variables of the system. Moreover, the equivalence between dissipative work and
heat, established long ago after Joule’s famous wheel paddle experiment, is crucial to explain
the irreversibility, with an increase of the entropy of the universe, which always takes place
whenever dissipative forces play a role in a process [8]. That experiment established the
‘mechanical equivalent of heat’ an expression coined by James Joule himself.

We illustrate these ideas using concrete and even popular examples such as the motion of
sliding blocks under the action of friction forces [9], the motion of an accelerating car also
acted upon by a drag force produced by air resistance [10], and the rotation/translation
motion of a disc descending a slippery slope, therefore with kinetic frictional forces playing
a role.

Since we are dealing with fundamental concepts, to make our points very clear we need
to start with a necessarily brief review of some basic aspects of mechanics and thermo-
dynamics. This is carried on in section 2. In sections 3 to 5 we analyse three situations which
are usually considered as mechanical problems involving dissipative forces—we use the
examples to illustrate how to consistently deal with the effects of these forces both in
mechanics and in thermodynamics. Finally, in section 6 we draw the conclusions.
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2. Mechanics and thermodynamics—a brief review of the pertinent equations

From the energetic point of view associated with their effects, we may distinguish between
several types of forces. For instance, a conservative force can be expressed as the negative of
the gradient of a potential field (gravitational, electrostatic, etc) and, through its action, the
system always interacts with a work reservoir. For a non-conservative but non-dissipative
force, which cannot be expressed as a gradient, there is no work reservoir: usually these
forces, such as the constraint forces as the normal force acting on an object placed or moving
on top of a surface, do not perform any work. Other examples are the tension force in a
pendulum, also a constraint force, or the static friction force on a car’s wheel or on the rim of
a rolling non-slipping disc. On the other hand, there are dissipative forces, necessarily non-
conservative ones (hence, no work reservoir involved), whose action leads to the dissipation
of mechanical energy. These forces can only be applied to extensive bodies [11] and they are
central to the discussion in this paper. In spite of the requirement that a dissipative force, such
as the kinetic friction force, can only be applied to extensive bodies, one often uses the point-
like approximation for the body in a pure mechanical approach to the problem. Of course this
approximation introduces limitations in the physical treatment of the situation and sometimes
it also does introduce inconsistencies with respect to the realistic approach.

Let us summarize some important results for a system of N particles, each of which with
mass mi. We admit that the particles may interact by means of two body forces described by a
potential energy, Vij, which depends on the distance ∣ ∣ 

= -r r rij j i . In a given reference frame,
say the lab frame, the total energy of the system is the sum of the kinetic and potential
energies, i.e.

( )å å= +
=

E m v V
1

2

1

2
1

i
i i

i j i
ijtotal

2

,

int

(the second 1/2 is introduced to avoid double-counting). The dummy summation indexes run
from 1 to N. The centre-of-mass velocity is defined by

( )
 å=V

M
m v

1
, 2

i
i icm

where å=M m
i i is the total mass of the system.

The velocities

vi can always be written as

( )  = + ¢v V v , 3i icm

where by
¢vi we denote the velocity of particle i in the centre-of-mass frame. If we insert (3)

into (1), one arrives at

( )å å= + ¢ +
=

E MV m v V
1

2

1

2

1

2
, 4

i
i i

i j i
ijtotal cm

2 2

,

int

where we have already used the fact that
 

å ¢ =m v 0
i i i , i.e. the centre-of-mass velocity

vanishes in the centre-of-mass frame. The three terms on the right-hand side of equation (4)
are: the kinetic energy of the centre-of-mass, K ;cm the kinetic energy of the system with
respect to the centre-of-mass, K int (internal kinetic energy); and the potential energy
associated with the interactions inside the system,V int (internal potential energy). The last two
terms can be aggregated into a single one, the internal energy of the system, = +U K Vint int.
Therefore the total energy of the system of N particles can be written, in a given inertial
reference frame, as the sum of two terms:
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( )= +E K U. 5total cm

To describe several physical situations, in recent papers [12, 13] we have used this splitting of
the total energy of a system whose validity is then quite general under the assumed
conditions. Hence, the internal energy can always be regarded as the energy of the system that
is not the centre-of-mass kinetic energy, irrespective of the reference frame.

2.1. The first law of thermodynamics

The first law of thermodynamics, established in the middle of the 19th century, is a statement
on the energy conservation. For a system that interacts with the surroundings, its total energy
varies by the exact amount of energy transferred through the system boundary:
D =E Etotal transf [14]. On the one hand, this energy transfer can be work performed by the
external forces,W ext. Indeed, any external force acting upon the system generally gives rise to
an energy transfer to/from the system, and the total external work is given by

· ( )
 

òå=W F rd , 6
j

j j
ext ext

where

Fj

ext
represents each external force acting on the system, and


rd j its own infinitesimal

displacement. In (6), the dummy j is used now to label these external forces (not to label
particles as previously). On the other hand, any energy transfer that cannot be associated with
work, should be considered as heat, Q. Therefore, the energy conservation can be expressed
in the following form [12]:

( )D + D = +K U W Q, 7cm
ext

which expresses the first law of thermodynamics. The left-hand side accounts for the system
total energy variation and the right-hand side refers to the energy that crosses the system’s
boundary. Once the energy had crossed the system boundary, it may either change the kinetic
energy of the system centre-of-mass—the first term on the left-hand side of (7)—or the
internal energy of the system, or both. Of course, equation (7) also allows for a direct
conversion of U into Kcm and vice versa, even when there is no energy crossing the system’s
boundary in processes permitted by the second law.

2.2. Newton’s second law

Much before the formulation of the first law of thermodynamics, Isaac Newton developed the
theory for describing the translational motion of a body. For a single particle, labeled i,
belonging to a system of N particles, Newton’s second law can be formulated by the equation

( )
 =f t m vd d , 8i i i

where

fi is the resultant force acting upon particle i. We can scalar multiply both terms of the

previous equation by

vi and integrate between an initial and a final state. This leads to the

well-known work–energy theorem

· ( )
 

ò = Df r kd , 9i i i

where
 
=r v td di i is the infinitesimal displacement of particle i in the time interval td and ki is

its kinetic energy. The work performed by the resultant force acting on the particle is equal to
its kinetic energy variation. The resultant force acting on the particle is the sum of the internal
and external resultant forces, +f fi i

int ext. This splitting allows us to write the left-hand side of
(9) as the sum of an internal and external work, namely
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( )+ = Dw w k , 10i i i
int ext

where ·
 

ò=w f rdi i i
int int

and similarly for the resultant external force acting on particle i. If
we now go to the macroscopic world, summing up over all particles, and defining

åD = DK k
i i one arrives at

( )D = +K W W . 11int ext

This equation, algebraically derived from Newton’s second law and therefore totally
equivalent to it, is a work–energy theorem for the system of particles, stating that the total
variation of kinetic energy of the system is equal the internal and external works.

We should note that equation (11) is usually not operative for a many particle system
(such as a thermodynamical system) because, in general, one does not explicitly know either
the forces acting on each particle or the respective displacement. We also note that the left-
hand side of equation (11) can still be decomposed as D = D + DK K Kcm

int (the König
theorem), which are the first and the second terms on the right-hand side of equation (4).

There is another way to proceed from equation (8). We may sum over all particles and
then use expression (2) to conclude that

( )
 

=F t M Vd d . 12
ext

cm

The sum over all forces acting on all particles,
 

å =f F
i i

ext
, is the resultant of all external

forces (conservative and non-conservative) acting on the system, since the resultant of the
internal forces must vanish (Newton’s third law),

 
=F 0

int
. After scalar multiplying both sides

of (12) by

Vcm, one arrives, after integration to

· ( )
 

òD =K F Rd , 13cm
ext

cm

where

Rd cm is the infinitesimal displacement of the centre-of-mass. The force–displacement

product ·
 
F Rd

ext
cm is usually called pseudo-work [15] (it artificially becomes work if the

body is assumed as a point-like object).
Though equation (13) is a well-known result, at this point we should stress that it was

algebraically derived from Newton’s second law (plus the third law) applied to a system of
particles, hence it is equivalent to that fundamental law. Both equations (11) and (13) are
different forms of expressing Newton’s second law which is usually given in vector form such
as (12).

One should also note that the right-hand side in (13) is not the external work given by
equation (6). In equation (6) each external force and its own displacement is considered
separately, whereas in (13) it is the resultant of the external forces and the displacement of the
centre-of-mass that appears. To emphasize the distinction, the right-hand side of (13) is
usually referred to as pseudo-work, but the name does not matter. The important point is to
realize that, in general, = DW Kext

cm [16] or, more explicitly, in general

· ·
   

ò òå =F r F Rd d
j j j

ext ext
cm, where

 
å=F F

j j
ext ext

.
For a system with moment of inertia I, rotating around a principal axis the angular

impulse–angular momentum equation and the kinetic energy equation, corresponding to (12)
and (13) in the case of rotations are given, in differential form, by [17]

( )wG =t Id d 14ext

( )q= GKd d , 15rot ext

where Gext is the resultant external torque (G = 0int ), ω the angular velocity and θ the rotation
angle. Of course, the rotational energy variation DK rot is part of DK int that enters in DU .
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In sections 3–5 we are going to study three examples illustrating the complementarity of
the first law of thermodynamics with respect to Newton’s second law.

2.3. Work in mechanics and in thermodynamics

Equations (7) and (13) (or (11)), express the first law of thermodynamics and Newton’s
second law, respectively, and are general, i.e. they are applicable to any system, of whatever
nature.

In mechanics, the energy interaction is only accountable through force–displacement
products. But, in thermodynamics, besides work, heat is another mechanism to account for an
energetic interaction between the system and the surroundings.

There are some subtle points associated with the work even in the pure mechanical
framework, when one goes from the real extended system to the description of its motion only
in terms of its centre-of-mass [16]. For instance, when one walks, the horizontal force on the
foot, pointing alternately in the forward and backward directions, does not perform any work
—it is a static friction force whose application point does not move [18]. Now, if one
considers the body reduced to a single point, the horizontal force is applied at this point that
moves and, therefore, there is indeed work associated with the force. The appearance of this
work is then an artifact of the particle model approach since we know that, for the real system,
that force does not perform any work whatsoever. A force that is called ‘static friction force’
now moves its application point, contradicting its own denomination, all because of the model
in use! The instructor should be very clear when he explains the ‘work’ of that force—we
even suggest to suppress the denomination ‘static’ force if the body is reduced to its centre-of-
mass. The right-hand side of equation (13) is not work but it (artificially) ‘becomes’ work if
the extended body is reduced, from the outset, to a point-like object.

There are several identical examples of forces that do not perform any work if the
extended (usually deformable) system is considered, but they seem to do when the description
of the motion reduces to the centre-of-mass. In previous papers we discussed the physics of a
person that jumps [13]: during the time interval the person keeps contact with the ground, the
normal force on the feet does not do any work. But it does if the problem is discussed after
reducing the person to a point-like object. A car in motion [19], to be discussed in section 4,
provides another good example of the point we want to make: the car accelerates in the
forward direction due to the forward static friction forces exerted by the ground on the tires.
These (neither conservative nor dissipative) forces do not perform any work (the car moves
thanks to the gas consumption in the engine, there is no energy coming from the ground). The
force exerted by the infinite mass body (the ground) intermediates the process of converting
internal energy into kinetic energy. However, if the car is reduced to a single moving point,
the tractive forces do work indeed, though this work is again an artifact of the point-like
approach.

These three examples illustrate the difficulties the instructor may face when she/he tries
to explain real problems, only from the mechanical point of view, in the framework of the
particle model [20]. The way to prevent such problems is to avoid the oversimplification
introduced by the particle model when discussing the energetics of the situation. Of course we
may continue to invoke the centre-of-mass to describe the motion of the body, and the
concept is even very useful. Equation (13) does apply but one should note that its right-hand
side must not be confused with work [21], as mentioned above.

In thermodynamics, in order to have an energy transfer to or from a system, there should
exist so-called reservoirs. This is not surprising when we consider heat flows. In this case we
talk about heat reservoirs. For the work one also needs work reservoirs. The atmosphere is a
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very common work reservoir for PVT systems. It may provide or receive work without
changing its pressure, as the heat reservoir may exchange heat without changing its temp-
erature. By definition, the reservoirs only perform reversible processes. Unlike the heat
reservoir, the processes in the work reservoir do not increase the entropy of the universe.

The infinitesimal work for a PVT system is d = -W P Vd , with -P and V being con-
jugate variables. Whenever the system interchanges work described by other variables, for
instance mg hd as in Joule’s paddle experiment [17], that is dissipative work, which is
equivalent to heat.

3. The two blocks example

One block of mass m and velocity vi gets suddenly on top of another block of higher mass m0

moving horizontally with kinetic friction on its upper surface. This second block, initially at
rest, may move without friction on top of an infinite horizontal surface. We are interested in a
mechanical description of the system as well as in the thermodynamics aspects related to the
effect of the friction force. For the sake of simplicity, we consider the friction force as a
constant one. Figure 1 represents the situation. After a while the two blocks move together
with the common velocity vf . Air resistance is neglected.

The centre-of-mass velocity is equal to the final velocity of the two blocks and is given
by

( )= =
+

V v
m

m m
v . 16cm f

0
i

The small block exerts a force on the lower one, pointing in the positive direction and the
lower block exerts an equal and opposite force in the upper block. These contact forces are
represented at the centre-of-mass of each block in figure 1. According to equation (8) applied
to each block

( )
- D = -

D =

⎧⎨⎩
f t mv mv

f t m v ,
17f i

0 f

and, from equation (9),

( )
- D = -

D =

⎧
⎨⎪
⎩⎪

f x mv mv

f x m v .
18

1
2 f

2 1
2 i

2

0
1
2 0 f

2

Figure 1. The block at the top, initially with velocity

vi moves with friction on top of

lower block. After some time the two blocks move with a common velocity

vf The

lower block, initially at rest, moves without friction on top of a horizontal surface not
represented in the figure.
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The variation of the kinetic energy of the system is

( ) ( )D = + - = -
+

⎛
⎝⎜

⎞
⎠⎟K m m v mv mv

m m

1

2

1

2

1

2

1

1
19i0 f

2
i
2 2

0

and this quantity is still equal to the sum of the two equations in (18), namely

( ) ( )D = D - DK f x x . 200

We now analyse the situation from the thermodynamical point of view. In the fast, nearly
adiabatic process of the collision, there is an internal energy rise of thermal origin (the
temperature of the blocks increased). However, the heat transfer to the surrounding during the
adiabatic process is negligible. This fast process is followed by a slow process of thermal
conduction from the hot blocks to the cooler air. After this thermalization process the blocks
are moving with the velocity vf they had at the end of the fast process, and the increase of
internal energy they experienced has been dissipated to the surrounding heat reservoir, with
the heat transfer Q equal to the internal energy rise given numerically by equation (20), as we
shall see. We can now apply the first law of thermodynamics, expressed by equation (7), to
the whole process: from the initial state to the final state where the two blocks are moving
with the common velocity vf at at the same temperature, which is equal to their initial
temperature and to the temperature of the heat reservoir, the surrounding air. We recall that, in
equation (7), the internal energy, U, is the energy of the system in the centre-of-mass frame.
The variation of the kinetic energy of the centre-of-mass of the system is zero,D =K 0;cm the
variation of the internal kinetic energy is, therefore, D = DK K;int on the other hand, after
thermal equilibrium is reached, the internal energy variation is solely the kinetic energy
relative to the center of mass, which has decreased:D = DU K int, since the two blocks are at
the same temperature in the initial and final states (i.e. there is no internal energy variation due
to a temperature variation); finally, since =W 0ext , starting from equation (7) one arrives at

( ) ( )= -
+

= D - D
⎛
⎝⎜

⎞
⎠⎟Q mv

m m
f x x

1

2

1

1
. 21i

2

0
0

This heat transfer to the surroundings is given by a force displacement product which should
not be regarded as a work. The increase of the entropy of the universe during this process is
given by

( ) ( )D = - =
D - D

S
Q

T

f x x

T
. 22U

0

where T is the temperature of the reservoir.
It is interesting to consider the limiting situation of an infinite massive lower block [22].

This limit corresponds to the actual situation of the small block sliding with friction on top of
the ground. Eventually the body stops, i.e. =v 0f . In this case the force acting on the block is
a kinetic friction force [23], usually described by m=f Nk , where mk is the kinetic friction
coefficient, and N is the normal force exerted by the ground on the block [24]. In this limiting
case, the impulse of the friction force still exists, m Dm v N t0 f k . On the other hand, in the
same limit, the displacement of the lower block vanishes, D x 00 , as well as its kinetic
energy, m v 01

2 0 f
2 . The displacement of the upper block coincides with the displacement of

the centre-of-mass of the system,D  Dx Xcm. The impulse and the centre-of-mass equations
above—equations (17) and (18)—now reduce to
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( )m mD = D =N t m v N X mvand
1

2
. 23k i k cm i

2

From equation (21) the heat released in this limiting case can be related both to the initial
kinetic energy of the block and to the action of the friction, namely

( )m

- =

=- D

mv Q

Q N X

1

2
. 24

i
2

k cm

Macroscopic objects, being made of atoms, have many degrees of freedom and can
deform, which means that the work done on them may involve forces acting through dis-
tances that are different from the displacement of the center of mass, and which can lead to
increased internal energy and higher temperature. In fast mechanical processes the heat
transfer (microscopic work of a random nature, in fact) is typically negligible until after the
mechanical process has occurred.

The microscopic view of the energy transfers is helpful in the present context. Thus, the
energy transfer as heat can described in many situation by an ensemble of thermal photons
and the variation of internal energy related to temperature variations can be described e.g. by
phonons in a solid [25].

3.1. The principle of relativity

Galileo’s principle of relativity establishes that Newton’s equation is covariant under inertial
reference frame transformations. In particular the mass and force are frame invariant quan-
tities [26]. As far as thermodynamics is concerned, the equation expressing the first law (7) is
covariant as well. The temperature and internal energy variations and the heat flows are
invariant quantities. But, e.g., the kinetic energy and the work are not Galilean invariant. In
particular, for the work, because the displacement is not an invariant quantity, but the force is,
one expects a change upon a reference from transformation.

Let us look at the sliding block problem from the point of view of the reference frame S’
moving with velocity V with respect to S (the lab frame considered so far)—for simplicity we
analyze the single block problem.

In S’, the initial velocity of the block is -v Vi and the final velocity is -V , hence
equation (23) now reads

( )

( ) ( ) ( )

m

m

- D =- - -

- D - D = - -

N t mV m v V

N X V t mV m v V
1

2

1

2
. 25

k i

k cm
2

i
2

The first equation is exactly the first equation (23). The second equation above is

( )m m- D + D = - +N X N V t mv mv V
1

2
. 26k cm k i

2
i

Using here the first equation in (23) one arrives at the second equation in (23). This is an
expected result because the dynamical information obtained in one inertial reference frame
must be equivalent to the information obtained in any other reference frame for the same
motion.

Let us finally look at the first law of thermodynamics (7), which now reads
D ¢ + D ¢ = ¢ + ¢K U Q Wcm

ext. We recall that the temperature is the same before and long after
the collision, therefore the internal energy variation is solely due to the internal kinetic energy
variation,D ¢ = D ¢U K int. On the other hand, there is an obvious external work related to the
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friction force due to the velocity of S’ with respect to S, namely ( )m- - DN V tk . The first
law of thermodynamics then leads to

( ) ( )m- - = ¢ + DmV m v V Q N V t
1

2

1

2
. 272

i
2

k

After using the first equation (23) one concludes that

( )¢ = -Q mv
1

2
28i

2

i.e. ¢ =Q Q (see equation (24)) and the heat flows are the same in both inertial frames. The
external work m DN V tk in (27) is performed by the external agent that keeps constant the
velocity -V of the floor underneath the block, similarly to the block placed on top of a
conveyor belt as discussed in [27].

4. The motion of an accelerated car

The motion of an accelerating car was discussed in some detail in [19]. We revisit the
example here with some simplifications that allow us to better concentrate on the main point
on which we want to focus. First of all, we consider a 2-dimensional car. The force on the
tractive front wheel, powered by the engine but exerted by the ground, is represented in
figure 2 for the car in its accelerating motion. As shown in [19] the force exerted on the rear
non-tractive wheel points in the backward direction, but it is rather small and we neglect it
here. Moreover, in the energetic discussion in [19] we considered the heat exchange with the
air and the external work associated to the functioning engine, to conclude that the appro-
priate thermodynamical potential is the Gibbs function. However, here we neglect these
energy transfers and take the internal energy variation of the fuel as the relevant thermo-
dynamical potential. This is actually similar to considering the car moving due to the action of
an internal source of energy provided by a spiral spring, as happens in many toys. An
additional simplification consists in neglecting the mass of the wheels, therefore their moment
of inertia vanishes and there is no kinetic energy associated with the rotation of the wheels.

In the framework of the above mentioned approximations we can write the following
equations for the car, of mass M, that accelerates in a straight horizontal road. Let us first
consider the motion of the car without air resistance. The force


F acts during the time interval

Dt, and the car accelerates from the initial velocity =v 0i to the final one =v Vf cm, traveling
a distance DXcm. Newton’s second law expressed by (12) and the centre-of-mass
equation (13) lead, respectively, to

( )D = - =F t Mv Mv M V 29f i cm

Figure 2. The car, due to the action of force

F moves from rest to a final velocity.
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and

( )D = = DF X MV K
1

2
. 30cm cm

2
cm

This is also the variation of the kinetic energy of the car, since there is no internal kinetic
energies (the wheels are massless):

( )D = + = DK W W K . 31ext int
cm

The internal energy variation is solely due to the fuel consumption (by ξ we denote the
chemical reaction that transforms fuel in reaction products),

( )D = D = Dx xU U n u , 32

where n is the number of moles and D <xu 0 is the molar fuel internal energy variation
associated with the chemical reaction.

The tractive force is a static friction force that does not perform any work, =W 0ext .
Moreover, there is no heat either, Q = 0, and, as a consequence with no entropy increment
D =S 0U , leading to the conclusion that the tractive force is non-dissipative. Then,
equation (7) leads to

( )= - D xMV n u
1

2
. 33cm

2

From here and equation (31), one concludes that the internal energy variation goes into
internal work,

( )= DW K 34int
cm

which, in turn, by using (30), can be related to a force–centre-of-mass displacement product,
namely

( )- D = Dxn u F X , 35cm

where the indicated displacement is not the displacement of the application point of the force
(such displacement is zero).

Before discussing the effect of the air drag force, it is instructive to simulate its effect
using a conservative force opposite to


F . This conservative force acts upon an electric charge,

q, placed at the centre-of-mass of the car and assuming that the car is moving in a region of a
constant electric field,


E . The electric force is given by = -F qEE , the negative sign indi-

cating that the force is opposite to the direction of the motion. Due to this new force, the car,
after the same time interval,Dt, only reaches the velocity <V Vcm cm after traveling a distance

<X Xcm cm. The dynamical equations (29) and (30) now read

( ) ( ) ( )- D = - = = DF qE t MV F qE X MV Kand
1

2
. 36cm cm cm

2
cm

There is an external work, = -W q E Xext
cm , so the variation of the system’s kinetic energy,

equation (11), is

( )D = - + = = DK q E X W MV K
1

2
. 37cm

int
cm
2

cm

Note that W int is the same as before because the car’s engine operates exactly in the same
regime during exactly the same time interval. Therefore,D = D xU n u and = - D xW n uint as
before the introduction of the electric braking force. The first law of thermodynamics leads to
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( )+ D = - +xMV n u q E X Q
1

2
. 38cm

2
cm

Using (37) one concludes that Q = 0 and, as a consequence,D =S 0U . The energy transfer to
the car due to the electric force is ultimately due to an external work reservoir (for instance, a
large capacitor creating the electric field). This external work can still be written as

( )= - = -W q E X MV MV
1

2

1

2
39ext

cm cm
2

cm
2

and this energy can be totally recovered since the difference of these kinetic energies (with
and without electric force) is stored elsewhere as electric potential energy.

Let us now assume that the braking electric force is replaced by a drag force of equal
magnitude F fE . In this case, the dynamical discussion remains the same just with this
replacement: qE = f. The final velocity is the same, V ;cm the distance traveled is the same,
X ;cm the variation of internal energy, the work of the internal forces is the same,
D = D = -xU n u W int. For completeness, we rewrite the above equations for this new
situation as

( ) ( ) ( )- D = - = = DF f t MV F f X MV Kand
1

2
40cm cm cm

2
cm

and

( )D = - + = = DK f X W MV K
1

2
, 41cm

int
cm
2

cm

where the ‘mechanical’ effect of the drag has been included in (41). The same term,-f Xcm,
should enter on the right-hand side of the expression of the first law (7), accounting for the
energy exchange between the car and the surrounding air:

( )- D = -xMV n u f X
1

2
. 42cm

2
cm

Ultimately, the air resistance force is the time/space-averaged momentum transfer rate of
random collisions with air molecules, in which purely conservative electric forces act
microscopically. But macroscopically this force performs dissipative work equivalent to heat

( )= - D <Q f X 0, 43cm

which eventually flows to the surrounding air, the heat reservoir, leading to the entropy
increase D >S 0U . The kinetic energy obtained by the car results from an internal work
reservoir. But, from the thermodynamical point of view, the effect of the drag force cannot be
associated to a work reservoir.

The previous expression can still be written as

( )= -Q MV MV
1

2

1

2
. 44cm

2
cm
2

The difference in the kinetic energies with and without air resistance is equal to the
energy released at heat, leading to an increase of the entropy of the universe. Since there is no
potential behind the drag force, the energy involved due to the action of that force cannot get
organized as a potential energy. Its usefulness has been lost.
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5. Sliding and rotating disc in a slippery slope

In this section we study a sliding and rotating disc, of mass M and moment of inertia
=I MR1

2
2, where R is its radius, descending a slippery incline, whose inclination angle is α.

The kinetic friction force is m m a= =f N Mg cosk k (see figure 3) and the non-slipping
condition is not observed: w =R Vcm, where Vcm is the instantaneous centre-of-mass velocity
and ω is the instantaneous angular velocity around the rotation axis.

For the translational motion, Newton’s equation (12) leads to

( ) ( )a m a- D =M g Mg t MVsin cos , 45k cm

where Vcm now represents the final centre-of-mass velocity i.e. at the base of the incline (zero
initial velocity is assumed) and the distance DXcm was traveled in the time interval Dt. The
centre-of-mass equation (13) leads to

( ) ( )a m a- D =Mg Mg X MVsin cos
1

2
. 46k cm cm

2

After integration, the rotational equations (14) and (15) lead to

( )w m= DI MgR t, 47k

where ω now stands for the final angular velocity, and

( )w m q=I MgR
1

2
482

k 0

(by q0 we denote the total rotation angle of the disc around its axis).
Regarding the thermodynamical discussion, to be realistic, one has to admit that there is a

temperature increase of the disc due to friction, and this gives rise to an energy transfer as heat
to the surrounding air, the heat reservoir. The corresponding increment of the internal energy
is DUT . Once a steady state is reached the disc moves at a constant temperature that is
sufficiently higher than the air temperature for that value of the rate of Q to go to the air that
keeps the disc temperature constant.

Figure 3. Forces applied to a rotating disc descending an incline (with or without
slipping).
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The internal energy variation, wD = + DU I UT
1

2
2 , is due to the rotational energy var-

iation and to the temperature increment of the disc. The external work of the conservative
forces is a= DW Mg X sinext

cm . The work of the dissipative force leads to the incrementDUT

of the internal energy and ultimately to a heat transfer to the surrounding air:

( )w a+ + D = D +MV I U Mg X Q
1

2

1

2
sin . 49Tcm

2 2
cm

The consistency of the above equations requires

( ) ( )m a q= - D - + D <Q Mg X R Ucos 0 50Tk cm 0

i.e. there should be a heat transfer to the surroundings. The lower the internal energy increase
of the disc, the higher this heat transfer will be. The increment of the entropy of the universe
should be positive D >S 0U . Should the rolling without slipping condition be observed,

qD =X Rcm 0, that term would be zero, there will be no increment of the internal energy due to
thermal effects (D =U 0T ) and the heat would be zero as well.

6. Conclusions

We discussed the effects of dissipative forces acting on a system. One effect of the dissipative
force is the reduction of the energy of the system due to heat transfer to the surroundings. This
heat may be quantitatively given as the product of a force by a characteristic displacement of
the body, being accounted for as pseudo-work in Newton’s second law.

As a result of the examples discussed in this article, we may argue, in general, that an
energy exchange between the system and the surroundings expressed in terms of variables
that are not state variables of the system, is dissipative work, thermodynamically equivalent to
heat. In other words, when the energy transfer cannot be expressed by products of conjugate
state variables of the system, that energy is not macroscopically organized and therefore it
cannot be stored and recovered as work.

At a mesoscopic scale, friction and drag forces are ultimately conservative electric forces
that do work to deform multiparticle systems, with an associated temperature rise, which leads
to a heat transfer to the surroundings. At a macroscopic scale, from the mechanical point of
view, these forces perform dissipative work.

We stress again that instructors should be aware of the limitations introduced when an
extensive body acted upon by dissipative forces is reduced to a point like object: in that case
one incorrectly refers to the dissipative force–centre-of-mass displacement product as work,
though actually it is pseudo-work [28].
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