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Abstract
We present a relativistic formalism inspired by the Minkowski four-vectors
that also includes conservation laws such as the first law of thermodynamics. It
remains close to the relativistic four-vector formalism developed for a single
particle, but is also related to the classical treatment of problems that require
both Newtonʼs second law and the energy conservation law. We apply the
developed formalism to inelastic collisions to better show how it works.

Keywords: mechanics, thermodynamics, special relativity

(Some figures may appear in colour only in the online journal)

1. Introduction

It is not uncommon to find in the literature papers whose motivation is to link mechanics and
thermodynamics [1], thus proposing ways to approach textbook exercises from both sides [2].
This approach obviously deals with Newtonʼs law and with the conservation of energy as
expressed by the first law of thermodynamics [3]. In fact, some textbook exercises, involving
dissipation of mechanical energy or mechanical energy production, are solely approached
from the mechanical point of view [4]. Since some energy transfers or some energy variations
are not described by Newtonian equations, such approaches give credit to those authors
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arguing that a satisfactory integration of classical mechanics and thermodynamics has not yet
been achieved [5].

Intuitively, one might think that the best way to integrate mechanics and thermo-
dynamics is by means of a theory in which both areas of physics are imbedded and, as
defended in [6], Einsteinʼs theory of special relativity is a good candidate. Indeed, the
theory of relativity must deal with all types of energies involved in a process and it
associates linear momenta to these energies, a general feature imposed by the Lorentz
transformation of a four-vector [7].

Even if we were interested in processes occurring at low velocities, the special theory of
relativity would offer the appropriate framework to develop a formalism that integrates
dynamics and thermodynamics on equal footing [8], therefore avoiding conceptual difficulties
associated with that unification, as noted by some authors [9]. In the relativistic framework,
one has to regard the energy variations, heat, and work as components of four-vectors which
obey a mechanical–thermodynamical fundamental equation [10].

Relativistic treatments of problems that require both a mechanical and a thermo-
dynamical approach are not common in the literature [11] (a notable exception is the recent
textbook by Chabay and Sherwood [12]). This paper is a contribution to incorporate
relativity into thermodynamics. We start with the special relativity formulation using four-
vectors in the Minkowski space [13, 14] and incorporate, in that known formalism, con-
servation laws such as the first law of thermodynamics [10, 15]. We illustrate how the
formalism works in practice, using the example of a deformable ball inelastically colliding
against a wall. This is the type of exercise involving extended macroscopic bodies that can
be found in relativity textbooks [16], with references to heat, temperature variations and
internal energy.

The formulation of a relativistic thermodynamics has been a long and not yet successful
process, but this paper is not the appropriate stage for thoroughly reviewing or criticizing
those works. Nevertheless, we shall try to give a brief overview focusing on the disputes that
most probably have been responsible for obstructing progress. In our opinion, the ‘tem-
perature transformation’ has been one of those issues. In our presentation, based on the
asynchronous formulation of relativity, it turns out that the temperature is the same in all
inertial frames, i.e., the temperature is a Lorentz scalar.

This paper is organized as follows. In section 2 we present the essentials of the
formalism, and explain how conservation laws can be embodied. Some points in our review
of the Minkowski four-vector formalism, such as the action of several forces acting on an
extended body in a relativistic treatment, are presented in detail in the appendices. The
synchronous and the asynchronous formulations of relativity are discussed in the context of
the construction of a coherent relativistic thermodynamic formalism. In section 3 we
illustrate the formalism using the mentioned example of an inelastic collision of a ball
against a wall. This problem is analysed at constant temperature, in two different reference
frames. In section 4 we examine a similar problem but now considering that the mechanical
energy variation in the collision process is reabsorbed by the body as internal energy
(adiabatic process), so it experiences a temperature (and an inertia) change. The discussion
of concrete examples, even academic ones, is usually absent from the presentations of
relativistic thermodynamics which are mostly focused on the formalism. By discussing
those examples, we demonstrate that we have developed a formalism able to deal with
concrete situations, besides showing the formalism itself at work. Section 5 is devoted to
the conclusions.
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2. The formalism

In an already long series of papers we explored the complementary aspects of Newtonian
mechanics and thermodynamics when one solves textbook exercises involving extended
systems, in particular rigid or deformable [3] or articulated bodies [17–19]. This is carried on
by exploring the equations

K F rd Newton s law 1cm ext cm· ( ʼ ) ( )òD =
 

(usually expressed, in vector form, as P F td ,cm extòD =
 

where Pcm


is the center of mass linear

momentum) and

K U W Q first law of thermodynamics . 2cm ext ( ) ( )D + D = +

In these equations, ΔKcm is the variation of the center of mass kinetic energy; ΔU is the
variation of the internal energy; the work of the external forces, Wext, and the heat, Q, in (2),
are the energy transfers crossing the system boundary.

In those papers, we particularly emphasized that the second member in (1), the so-called
pseudo-work, should not be confused with the real work: in general, for a system of particles,

K W .cm extD = For each external force, F ,j


the corresponding work is given byW F rd ,j j j·ò=
 

where the infinitesimal displacement rd j

refers to the application point of that external force.

In (1), the force in the integral is the resultant external force, F F
j jext å=

 
(the resultant

internal force vanishes, according to Newtonʼs third law) and the infinitesimal displacement
rd cm


refers to the center of mass of the system. In (2), the total external work isW W .
j jext å=

In some cases, such as for a system consisting of a single particle, we may have ΔU = Q = 0
and the above mentioned distinct physical laws provide the same information (this happens
whenever the work is equal to the pseudo-work).

In this article we aim to incorporate relativity into the formalism developed in that series
of papers.

2.1. Relativistic mechanics and thermodynamics

In intermediate level courses on special relativity, one describes the dynamics of a single
particle by an equation that is formally very similar to Newtonʼs second law, written as

F
p

t

d

d
,=

 
namely [20]

F
pd

d
, 3( )

t
=m

m

where Fμ is the four-vector force, pμ is the four-vector momentum and td d1t g= - is the
infinitesimal proper time interval, γ being the usual relativistic factor. In appendix A we
explicitly write down the components of the four-vector force and momentum.

An expression that resembles Newtonʼs second law as expressed by equation (1) can also
be derived for describing the dynamics of a single relativistic particle. In differential form,
such an equation is written as

E Wd . 4( )d=m m

Equation (4), whose similarity with the work–kinetic energy theorem expressed by (1) is
rather obvious, can be regarded as a ‘momentum–energy/impulse–work equation’ and it is
indeed equivalent to the more familiar equation (3). The four-vector differential energy on the
left-hand side of (4) is just E c pd d ,=m m and it is an exact differential. From (3), we may
write E c p c Fd d dt= =m m m and, defining the infinitesimal impulse–work four-vector as
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W c F dd t=m m (the infinitesimal work is not an exact differential, therefore it is denoted by
δ), one arrives at equation (4). In appendix A we give more details of the relativistic dynamics
of a single particle, and then we generalize equation (4) to systems of particles.

Explicitly, equation (4) reads as [21]

E

c m v v

c m v v

c m v v

m c v

c F t
c F t

c F t
F x F y F z

Wd

d

d

d

d

d
d

d
d d d

5

x

y

z

x

y

z

x y z2

[ ]

[ ]

( )

( )

( )
[ ( )]

( )

g

g

g

g

d= =

+ +

=m m

⎛

⎝

⎜⎜⎜⎜⎜

⎡⎣ ⎤⎦
⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

for a particle of mass m and velocity v v v v, , ,x y z( )=


in reference frame S, acted upon by the
force F F F F, , .x y z( )=


The function γ = γ(v) has its usual meaning:

v v v
v

c
1 , with . 62 1 2( ) ( ) ( ) ( )g b b= - =-⎡⎣ ⎤⎦

It is important to note that both dEμ and δWμ in (5) are four-vectors, i.e., their com-
ponents, under Lorentz transformations between inertial reference frames, transform like the
components of the position–time contravariant four-vector xμ. It is also important to note that
dt is a time interval measured in the reference frame S (by a set of two synchronized clocks)
and should not be confused with the proper time dτ, entering in the definition (3), measured
by a single clock that moves with the application point of the force, or, in other words, with
the object that is a point-like particle. This distinction is crucial when one generalizes δWμ, as
we shall do later on, to include the effect of several forces acting then on an extended body.

Going back to (5) and to the point-like particle, the set of the first three equations—the
space-like components—can be regarded as the relativistic counterpart of Newtonʼs second
law in vector form (i.e. corresponding to the non-relativistic equation of motion
m v F td d=

 
) [20, p 277]; and the equation for the time-like fourth component can be

regarded as the equation corresponding to the differential form of the non-relativistic
equation (1) for the single particle case (i.e. corresponding to K F rd d·=

 
). It is worth

noticing that this relativistic time-like equation can be obtained from the top three space-like
equations using (see appendix B for the proof of this identity)

v c v v v v v v v v vd d d d . 7x x y y z z
2 [ ] [ ]( ) ( ) ( ) ( ) ( )g g g g= + +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

This relation, which establishes the equivalence between the information provided by the
space-like components and by the time-like component of equation (5), is the relativistic

counterpart of the expression v v v v v v vd
1

2
d d d ,x x y y z z

2 = + +
⎡
⎣⎢

⎤
⎦⎥ which allows the derivation,

in classical mechanics, of the work–kinetic energy theorem (1) (of course, that equation also
applies to a single particle) starting from Newtonʼs law in vector form. Hence, in a sense,
there is some redundancy in the information provided by the set of four components in the
four-vector equation (5). However, this redundant information, inherent to equation (5), is not
present, in general, when we generalize the formalism to systems of particles, such as
extended deformable bodies.

In the spirit of equation (2), the generalization of expression (4) for an extended body
acted upon by various forces and undergoing a process in which non-mechanical energies are
present is [12, p 221]

E W Qd 8( )d d= +m m m
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with W W
j jåd d=m m being the impulse (space-like part) and the work (time-like part) of the

external forces acting on the system, and δQμ is a four-vector associated with the energy
exchanged as heat [22] to be discussed later on.

When an extended body (or a system of particles) is considered, there is an internal
energy associated to the system. The internal energy in the rest frame of the body, U, is
related to the inertia of the body, M, through [25] U = Mc2 or M = Uc−2 which, being the
same expression, better expresses the idea that the inertia of the system comes from its
internal energy. Though in thermodynamics it is not required to make any microscopic
hypothesis about the constitution of a system, it is tempting to do so and to relate the internal
energy of the body with the kinetic energies of its constituents, in the reference frame where
the system is at rest, as well as with the potential energies associated with all the interactions
inside the body. The clustering of the particles (whatever they are) forming the system leads
to an energy decrease with respect to the configuration where all the constituents of the body
are at rest and far away from each other—the binding energy ought to be negative [23]. On
the other hand, any temperature increase always leads to an internal energy increase [24]. If
the system, in its rest frame, is assumed to be made out of elementary particles (electrons,
quarks, the Higgs boson, whatever they are), the internal energy can always be expressed by

U T m c U C T T U C T Td d 9
i

i
T

T

P
T

T

P
2

0 0

( ) ˜ ( ) ( ) ( )ò òå= - + = +

where mi is the inertia of each constituent particle, Ũ- is the binding energy, U is the internal
energy at some reference temperature, T0, and CP is the heat capacity of the body.

In the reference frame where the system is at rest, U is the fourth component of the
energy four-vector, and it is the only non-vanishing component of that four-vector. In another
inertial frame, there are space-like components different from zero, as happens for the single
particle case. Moreover, if the body of inertia M is moving with velocity v with respect to
some inertial frame, the kinetic energy of the body is K v U1[ ( ) ]g= - or, equivalently,
E K Mc K U,2= + = + where E is the energy of the body (by writing the energy in this
form, it is directly relatable with the left-hand side of (2)). Of course, the inertia of a
composite body is not an absolute constant because it may change. In particular it changes
when the temperature of the body varies, when its composition gets modified, etc, as
expressed by equation (9). Hence, the inertia, M, depends on the temperature but, since it is a
relativistic invariant, all observers, in any inertial frame, must assign the same temperature to
the body [26]. This statement is inherent to our treatment, i.e. it is not an ab initio assumption.
Rather, it is a consequence of the invariant norm of a Minkowski four-vector—the inertia—
which is directly related to the energy–momentum of the system. In subsection 2.3 we shall
discuss the Lorentz scalar nature of the temperature, then in connection with a photon gas
system.

If there are several external forces acting on the relativistic body, we introduce the
following four-vector

W W

cF t

cF t

cF t

F x F y F z

d

d

d

d d d

10
j

j
j

j x

j y

j z

j x j j y j j z j

,

,

,

, , ,

( )å åd d= =

+ +

m m

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

where Fj


represents each external force and the differentials are the components of the four-

vector infinitesimal displacement x x y z c td d , d , d , dj j j j( )=m (note that the time interval in S is
the same for all forces [12, p 251]). In appendix A we give more detail about the
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generalization that allows us to write equation (10). For the same time interval dt in the space-
like components of (10), each term Wjd m is a four-vector (a proof is given in appendix C) and
therefore δWμ is indeed a four-vector: in any other inertial frame, the components of Wd ¢m are
obtained after the application of the Lorentz transformation matrix to (10). The subtle point is
the requirement of dt to be the same in S for all forces. This means that the proper time dτj
relative to the force j, is generally different from the other proper times for the other forces.

Let us denote by S’ an inertial reference frame that moves from left to right with velocity
V along the x axis, i.e. a reference frame in standard configuration [27]. The Lorentz matrix
transformation readily allows us to convert any four-vector and, therefore, any four-vector
equation, from one inertial reference frame to another [28]. For the standard configuration, the
transformation matrix is given by

V

V V V

V V V

0 0
0 1 0 0
0 0 1 0

0 0

. 11( )

( ) ( ) ( )

( ) ( ) ( )

( )

g b g

b g g

L =

-

-

n
m

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

When it is applied to equation (8), this leads to [29]

V E W Q E W Qd d . 12[ ]( ) ( )d d d dL = +  ¢ = ¢ + ¢n
m n n n m m m

Similar transformations can be applied to any other four-vector or four-vector equation.
Going back to equation (8), δQμ stands for the four-vector heat transferred from a

reservoir to the system or from the system to the reservoir. In a reference frame where the heat
reservoir is at rest, the only non-vanishing component is the fourth one, i.e. the three-
momentum associated with the heat should be zero in that particular frame [10]. If we take the
example of heat transfer as a process being associated with the emission or absorption of
photons, the corresponding overall linear momentum is zero [30] (i.e., for each photon which
is emitted in one direction, on average there is another photon, of the same frequency, emitted
in the opposite direction). This is what we take into account when we write down δ Qμ as

Q

Q

0
0
0

. 13( )d

d

=m

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

However, the vanishing of the space-like components of the heat four-vector is not general. In
a reference frame where the heat reservoir is not at rest, there should be a space-like
component for δQμ and this is the impulse associated with the heat transfer. The relativistic
Doppler effect and the aberration effect [20, chapter 31] provide the explanation for this
result. This ‘non-mechanical’ impulse plays a role similar to the normal impulse of the
resultant of the external forces, since both contribute to changing the three-momentum of the
system. Therefore, equation (8) presents, simultaneously, the conservation laws for the energy
and for the linear momentum: the energy of a system varies as a consequence of work or heat
crossing the system boundary, and the linear momentum of the system varies because of the
impulse (of mechanical and non-mechanical origin) crossing the same boundary.

As discussed in appendix A, the heat itself, as the counterpart of the heat in thermo-
dynamics, should be regarded as the norm Qd m of the four-vector (13). This norm is δQ for
the four-vector δQμ and it is a relativistic invariant [31].

In the next section we examine, through an example, the usefulness and the predictions
that may be obtained from equation (8). But, before that, in the next subsections we shall
discuss several aspects related to the construction of a relativistic thermodynamical theory.
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2.2. Brief review of relativistic thermodynamics—synchronous and asynchronous formulations

What usually is mentioned as relativistic thermodynamics is not the proposal of relativistic
equations suitable for application to thermodynamics problems [11], but rather the search for
the relativistic transformations of thermodynamical magnitudes. This mainly applies to the
temperature, whose transformation rule has been a matter of dispute [26], though there is no
evidence of any experimental methodology proposed to distinguish between the various
options [32]. Once the first principle of thermodynamics is written using four-vectors, such as

E W QD = +m m m [22], to the extent of our knowledge, concrete problems have only been
addressed in the framework of that equation in a previous paper by one of the authors [10].

Briefly, one may say that the formulation of a relativistic thermodynamics was approa-
ched from two different sides: the so called ‘synchronous formulation’ [33] and the so-called
‘asynchronous formulation’ [34]. Let us imagine an experiment with some simultaneous
events in S, such as a set of forces acting simultaneously, at different positions, upon a
system. Let us then imagine the experiment with the very same simultaneity character in S’,
i.e. a second but exactly similar experiment repeated in S’. When we want to relate both
experiments we are on the grounds of the ‘synchronous’ formulation of relativity. The term
‘asynchronous’ applies when an experiment, whose different parts are simultaneous in S, is
then also observed (now necessarily non-simultaneously) in S’—in this case one has just a
single experiment [29]. The experiment is described in S by certain coordinates and mag-
nitudes, but is also observed in S’ where it is described with different coordinates and
magnitudes [35]. In many discussions and comments, the authors seem to not completely
realize that, when they are defending their view points, they are talking about distinct for-
mulations of relativity.

Let us make even more clear the distinction between the synchronous and the asyn-
chronous formulations. An observer in S performs an experiment in which two events take
place simultaneously: they are described in S by the four-vectors x x t, 0, 0,1 1( )=m and
x x t, 0, 0, .2 2( )=m A similar experiment is led in S’, in standard configuration with velocity V
with respect to S, imposing that the events should also take place simultaneously [36].

The two four-vectors describing the corresponding events are x x t, 0, 0,1 1( )¢ = ¢ ¢m and
x x t, 0, 0, .2 2( )¢ = ¢ ¢m The experiments in S and S’ are distinct and therefore x1

m and x1¢m are not
related by a Lorentz transformation, i.e. x V x1 1( )¢ ¹ Lm

n
m n and, of course, the same applies to

x2
m and x .2¢m

As far as the asynchronous formulation is concerned [37], an observer carries out an
experiment, such that two events take place simultaneously in S. For instance he observes two
forces, F1 and F2, simultaneously applied in the space–time intervals x x c td d , 0, 0, d1 1( )=m

for F1 and x x c td d , 0, 0, d ,2 2( )=m for F2. In S, the associated impulse–work four-vectors are
W cF t F xd , 0, 0, d1 1 1 1( )d =m and W cF t F xd , 0, 0, d ,2 2 2 2( )d =m respectively. Now, an observer
in S’ in the standard configuration does not conduct a similar experiment but rather expresses,
in his own space–time coordinates, the events and the space–time intervals associated with the
experiment. In S’ the corresponding space–time intervals are the following four-vectors:
x x c td d , 0, 0, d1 1 1( )¢ = ¢ ¢m and x x c td d , 0, 0, d .2 2 2( )¢ = ¢ ¢m Clearly, events and processes that are
simultaneous in S will not be simultaneous in S’ (relativistic non-simultaneity effect), justi-
fying the denomination ‘asynchronous’. One postulates that the four-vectors in S’ are related
to the S ones by the Lorentz transformation, e.g. x V xd d ,1 1( )¢ = Lm

n
m m (the same for xd 2¢m and

xd 2
m). In general, in the asynchronous formulation, any four-vector in S, is expressed in S’ by

its corresponding transformed four-vector, A .¢m This means that the same process described in
S by certain coordinates and magnitudes is now described in S’ by the coordinates and
magnitudes of this reference frame. As for any four-vector, one has:
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A V A A V A; and . 14( ) ( ) ( )¢ = L = L - ¢m
n
m n m

n
m n

2.3. The asynchronous formulation

In our perspective, the asynchronous formulation of relativity provides an appropriate ground
to develop a relativistic thermodynamic formalism and is the one adopted in this article. In
this framework we are able to describe not only pure thermodynamical processes but also
those processes involving dissipative forces whose description requires both mechanics and
thermodynamics. The methodological process is clear: first, one has to construct the Min-
kowski four-vectors associated with the process that is described by equations between these
four-vectors; then we may use the Lorentz transformations to relate the observations of the
same process in one and in any other inertial reference frame, therefore enforcing ab initio the
fulfilment of the first postulate of Einstein’s relativity theory.

For the asynchronous formulation, a process is described in a given reference frame, say
the inertial frame S, by the four-vector equation E E W Q

j jf i å- = +m m m m [38] such that (i)
all forces are simultaneously applied during the same time interval, Δt, though they might be
applied at different points of the system and with different displacements; (ii) the heat
reservoir is at rest in S and there is no net linear momentum associated with the heat. The
corresponding equation in S’, i.e. the one written by an observer in S’ for the same process. is
obtained in a straightforward way just by applying the Lorentz transformation to the above
four-vector equation [39]:

V E E W Q E E W Q , 15
j

j
j

jf i f i( ) ( )å åL - = +  ¢ - ¢ = ¢ + ¢n
m n n n n m m m m

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

which is the integral form of equation (12) when several simultaneous forces on S are applied
to the system. This asynchronous formulation guarantees the fulfillment of the principle of
relativity, since the equations are covariant under Lorentz transformations, even though forces
simultaneously applied from the point of view of S are not simultaneous in S’, and a set of
thermal photons with zero linear momentum in S must have a linear momentum different
from zero in S’. It also guarantees the fulfilment of Einstein’s equation, in the sense that the
internal energy of the system totally contributes to its inertia. Finally, the asynchronous
formulation guarantees that, in the limit c , ¥ the non-relativistic equations—Newtonʼs
second law and the first law of thermodynamics—are recovered, a necessary condition for the
consistency of any relativistic theory. In particular, in the non-relativistic limit, the forces are
simultaneously applied in all reference frames.

In the asynchronous formulation of the relativity, the relativistic transformation of the
quantities that are components of a four-vector is prescribed by the Lorentz transformation.
However, if a physical magnitude is not directly related to those components, such as the
temperature, the transformation properties can be indirectly obtained. For the sake of illus-
tration, let us consider an ensemble of thermal photons contained in a cavity of volume  at
rest (in reference frame S) in thermodynamical equilibrium at temperature T [31]. The global
linear momentum is zero in reference frame S, meaning that, on average, for a photon moving
in one direction (θ, f) there should exist another one of the same frequency moving in the
opposite direction. The internal energy of the system is U T a T ,4( ) = where a is the so-
called radiation constant. The energy–momentum four-vector of each photon is
e c h c c h c c h c hcos cos , sin cos , sin , ,n n n n n n n n n n{ }( ) ( ) ( )n q f n q f n f n=m and the sum of
all these four-vectors, for the same instant in S, is the following four-vector
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where A is a universal constant and N T3~ is the number of photons [40].
For an observer in S’, the same photons have different frequencies, due to the Doppler

effect, and they move in different relative directions, with respect to S, due to the aberration
effect. For the observer in S’ the frequency distribution in not Planckian any more [41]. The
Lorentz transformation applies both to each photon, e V e ,n n( )¢ = Lm

n
m n and then one sums up,

or it applies to the global four-vector. The result is the same:

E V E V e

c V c h V
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0
0

0
0
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⎠⎟

⎛
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⎞
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⎜⎜⎜
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⎠

⎟⎟⎟

where γ = γ (V) and β = β(V). If the observer in S’ computes the norm of the four-vector E¢m

he is bound to conclude that E ANT .¢ =m Recognizing that this is the internal energy of the
system of N photons in S’, the same as observed in S, he is also bound to assign the
temperature T to the system, exactly as in S. In this formulation, the temperature is a Lorentz
scalar but it is not the norm of any four-vector. However, one should note that different
formulations of relativistic thermodynamics may lead to a different conclusion on the
temperature transformation [31], an issue not yet settled from the experimental point of view.
Therefore, one may not strongly argue that the above result is unquestionable (though that is
not our focus in this article). But it is certainly an outcome in the framework of the adopted
perspective and approximations.

3. Inelastic collision

To illustrate the formalism, let us take a ball, far from gravitational fields, moving with
velocity v


in the positive direction of the x axis, when it collides with a wall (of infinite mass)

placed along the y axis, as shown in figure 1 [42]. The wall is at rest in the reference frame S
(the reference frame represented in the figure).

The ball has a positive electric charge q at its center, and moves in a static electric field,
E Ee ,x=
 

in reference frame S, that we assume to be also uniform, for the sake of simplicity.
Using the formalism presented in the previous section and in appendix A we describe, in S,
the inelastic collision of the ball since the instant it touches the wall, until it stops.

During the collision process, there are two forces applied to the ball, namely, the electric
force along the x direction, of magnitude F qE,e = and the contact force in the opposite
direction, N Nex= -

 
which is time dependent and responsible for the braking process. In the

initial state, N = 0 and in the final state N = Fe.
We have to make some assumption on the thermodynamical character of the colli-

sion, and a simple choice is to consider it as an isothermal process as represented in
figure 1: conceptually, we may think that the process evolves slowly enough for the
dissipated mechanical energy might be emitted as heat and absorbed by the heat
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reservoir. Hence the ball keeps its temperature, T0, which is also the temperature of the
wall and of the involving surrounding that act as a static heat reservoir, in S, hence
everything is at temperature T0. Under such conditions, the inertia of the system, M, is
assumed to be constant during the process. Of course, due to the deformation effect, Ũ in
equation (9) is not the same for the spherical and deformed ball, but they should not be
very different specially if the deformation is not sizeable. For simplicity, we assume M to
be the same, i.e. the deformation does not introduce an inertia variation, and this is
clearly an approximation in this study. The velocity of the ball, say, of its center of inertia
[43, section 6.7] is denoted by v, with initial value v0 and zero final value. Of course, the
two forces are acting simultaneously and, in the present case, equation (8) explicitly
reads as

c M v

M c

cF t

F x

cN t

N x Q

d
0
0

d

d
0
0
d

d
0
0

d

0
0
0

, 18

N2

e

e

( )

( )

( )

g

g d

= +

-

-

+

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

where dx denotes the displacement of the application point of the electric force, and dxN the
displacement of the application point of the contact force. Clearly, this stopping force does
not displace its application point, and therefore dxN = 0 (in other words, this force does not
perform work) and so we can write the following equations:

c M v c F N t

M c F x Q

d d

d d .
19e

2
e

( )( )
( )

g

g d

= -

= +

⎪

⎪

⎧
⎨
⎩

Even before carrying on integrations, and making use of equation (7), which in the present
kinematical situation reads as c v vd d ,2[ ] [ ]g g = the first of these equations can be written in
the following form:

M c v c F N t Mc F N v t Mc F N xd d d d d d 20e
2

e
2

e( ) ( ) ( )( ) ( )g g g= -  = -  = -

where we have used dx = v dt for the infinitesimal displacement of the object. Note that v is a
time dependent function.

Figure 1. A ball colliding with a wall at rest in reference frame S in an isothermal
process.
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The integration of the above equations requires a model for the stopping force. Let us
assume that this is a constant force of magnitude N .¯ Denoting by t0 the collision time (proper
time for the application point of N


since it does not move) we can view this average force as

N t N t td .
t

0
1

0

0¯ ( )ò= - On the other hand, the initial and final energy four-vectors are Ei
m and

E ,f
m explicitly given by

E

c v M v

v M c

E

M c

0
0

0
0
0

. 21i

0 0

0
2

f

2

( )

( )

( )

g

g

= =m m

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

As mentioned above, we are assuming an isothermal process, i.e. the inertia of the system is
the same before and after the collision and the heat is completely transferred to the heat
reservoir. Now we are ready to integrate (19), yielding

c v M v c F N t

M c v F x Q1 .
22

0 0 e 0

2
0 e

( )
[ ]
( ) ¯

( )
( )

g

g

- = -

- = D +

⎪

⎪

⎧
⎨
⎩

The integration of (20) is straightforward leading to

M c v F N x1 232
0 e( )[ ]( ) ¯ ( )g- = - D

which, combined with the last equation in (22), allows us to conclude that

Q N x. 24¯ ( )= - D

The heat released in the process is equal to the pseudo-work performed by the stopping force.
On the other hand, from equation (23) heat can also be regarded as the variation of kinetic
energy of the ball and the work done by the electric force. The result (24) is identical to the
one obtained in the corresponding non-relativistic collision [3]. In particular, the variation of
the entropy of the Universe is positive also here, S Q T 0,UD = - > so this process is
irreversible. Moreover, in the limit c , ¥ equations (22) reduce to the corresponding
equations for that classical inelastic collision. The same happens, of course, with (23) that

reduces, in the same limit, to the center of mass equation (1), i.e. to Mv F N x
1

2
.0

2
e( ¯ )- = - D

3.1. Principle of relativity

It is useful to look at the same process from the reference frame S’ in the standard config-
uration with velocity V. The Lorentz matrix transformation applied to equation (8) (see
equation (12)) leads explicitly to

V c M v V V M c

V V c M v V M c

V c F N t V V F x

V V c F N t V F x

V V Q

V Q

d d
0
0

d d

d d

0
0

d d

0
0

, 25
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e e
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where γ without any argument denotes γ(v). The nice feature with this global Lorentz
transformation applied to equation (8) is that we do not have to bother with any
transformation of the variables (such as the collision time), or even with the transformation of
the velocities: everything is properly taken care of by the Lorentz transformation itself.
However, it is interesting to explicitly check this point. Firstly, one recognizes that the left-
hand side of equation (25) can be written in the following form (see the left-hand side of
equation (18)):

c M v v

M c v

d

0
0

d

26

2

( )

( )
( )

g

g

¢ ¢

¢

⎛

⎝
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⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎞

⎠

⎟⎟⎟⎟⎟
where

v
v V

v V c1
27

2
( )¢ =

-
-

(note that v v v V v V( ) ( ) ( )( )g g g¢ ¢ = - and v v V vV c1 2( ) ( ) ( )( )g g g¢ = - ) is the well-
known velocity transformation. Regarding the time interval during which the forces are
applied, it is the same in S, and equal to t0, but in S’ one has t V t V c xF0, 0

2
e

( )[ ( ) ]g¢ = - D for
Fe, and t V tN0, 0( )¯ g¢ = for N ,¯ i.e. forces simultaneously applied in S are not simultaneous in S’
[37]. But, as mentioned above, the application of the Lorentz transformation as in (12) implies
that everything is consistently taken into account. Since the electric field in S is along the x
direction, the electric field in S’ is an identical vector and therefore the electric forces in S and
in S’ are the same, Fe [20, p 282], and there is no magnetic field in S’ either.

It is worth stressing the effects of the Lorentz transformation on the four-vectors on the
right-hand side of equation (8), i.e. on the momentum–energy transfers. On the one hand, in
the four-vector W ,d m both the space- and the time-like components get modified. In particular
there is now a work W V NV tdN ( ) ¯d g¢ = assigned to the contact force in S’ (the work of N̄ is
zero in S). On the other hand, the four-vector Qd m acquires a space-like component along the x

axis (which is zero in S) that is given by p V
Q

c
Vd ,Q 2

( )g
d¢ = - where the appearance of the

inertia associated with the heat [44]
Q

c
,

2

d
is rather evident; moreover, the time like component

of δ Qμ gets modified as well, with respect to S. In particular, for the heat, this means that, in
S’, it does not flow isotropically, as is the case in reference frame S. A physical interpretation
can be easily provided if we relate the heat transfer with the emission of thermal photons (i.e.,
an ensemble of photons with zero total momentum in S). Indeed, as already mentioned in
section 2, the above result can be obtained by applying the Doppler effect [45] and the
aberration effect transformations in S’ [10, section 7]. In particular, δ Q/c2 turns out to be the
inertia associated with the ensemble of thermal photons [46] and it is a Lorentz invariant. The
matrix equation (25) reduces to the set of equations

c M v V Mc c F N t V F x Q

c M V v M c V c F N t F x Q

d d d d

d d d d
28

2
e e

2
e e

( ) ( )
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( ) ( ) ( )
( ) ( ) ( )

( )
g b g b d

b g g b d

- = - - +

- + = - - + +

⎪

⎪

⎧
⎨
⎩
which is compatible with equation (19), as one immediately recognizes.

Had we started with the description in reference frame S’, i.e. with forces not simulta-
neously applied and net linear momentum associated with the heat, the transformation

V( )L -n
m would yield, of course, the description in S, according to the principle of relativity.
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On the other hand, if the experiment is conducted in S and correctly described in that
reference frame (forces simultaneously applied and thermal reservoir at rest), the transfor-
mation V( )Ln

m would automatically provide the description in S’.

4. Adiabatic inelastic collision

In the previous section we considered the isothermal collision, meaning that there should exist
a heat reservoir with which the system may exchange heat. In this section we consider an
adiabatic collision, i.e. we may imagine a sudden process during which the system does not
exchange heat with the surroundings. As such, the system must incorporate the variation of
e.g. kinetic energy that occurs in the process. In relativity this also means that the system must
change its inertia. Therefore, M is not a constant parameter always characterizing the system,
rather it is a varying function [12, p 264]. Formally we can imagine that the ball’s boundary is
an adiabatic one, as represented in figure 2.

In the adiabatic process, there is no heat exchange, δQμ = 0, so equation (8) now reduces
to E Wd .d=m m On the other hand, in the formalism developed in section 2 and in appendix A,
one has to take proper care of the fact that, for this process, M is not a constant. This means
that, on the left-hand side of equation (18), which refers to S, one has to perform the following
transformations: M c v c M vd d( ) ( )g g and M c c Md d .2 2( ) ( )g g The equation
corresponding to (18) is now written as

c M v
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where we have used the fact that the contact force does not perform work. The integration of
this equation is straightforward on the left-hand side, because we only have exact differentials
(for the three-momentum and for the energy). On the right-hand side we may again simplify
the approach by considering an average constant braking force, N̄ (the force Fe is constant,
anyway). We are lead to the following set of equations:

Figure 2. A ball colliding with a wall at rest in reference frame S in an adiabatic
process.
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The initial and final temperatures of the body are denoted by Ti and Tf, respectively and the
inertia, which is a function of the temperature, M = M(T), is different for the initial and final
state:

M M c C Td , 31
T

T

Pf i
2

i

f

( )ò= + -

where CP is the body thermal capacity (C M c ,P P= where cP is the specific heat). As in
section 3, we assume that there is no inertia change due to deformation effects of the ball.
From the previous equation and from the second equation (30) one readily obtains [47]
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Under the assumption M Mi f» the first equation (29) still allows us to write
M v F N td d .i e( ) ( )g » - By using expression (7) one concludes that
M c F N xd d ,i

2
e( ) ( )g » - yielding, after integration,

M c v F N x1 . 33i
2

0 e( )[ ]( ) ¯ ( )g- » - D

By comparing this equation with (32) one arrives at

M c N x 342 ¯ ( )D » D

i.e. the inertia increment, which is directly related to the bodyʼs internal energy increment, is
also equal to the magnitude of the pseudo-work of the contact force, somehow in analogy
with the previous isothermal example where such pseudo-work was equal to the heat flow.

The description of the process in the reference frame S’ follows pari passu the procedure
presented in 3.1, namely by applying the Lorentz transformation to the matrix equation (29).
Since the ball’s inertia, at any given instant, is a Lorentz invariant, both observers agree with
the same value for the inertia of the system, in particular, for the initial state, M M T ,i i( )= and
for the final state, M M T .f f( )= Therefore they must agree that Ti is the same in S and S’, and
the same happens with Tf: the temperatures are the same in both reference frames [41].

5. Conclusions

The relation between relativity and thermodynamics is not usually presented in textbooks.
Inspired by the relativistic dynamics for a single particle, using four-vectors in the Minkowski
space, we generalize that formalism arriving at a suitable one for application to relativistic
systems of particles, including extended, composite and deformable bodies.

The generalization consists in introducing a four-vector momentum–energy for an
extended body, a four-vector for the impulse–work associated with the forces simultaneously
applied to the body, and a similar four-vector associated to the heat, satisfying the maximum
entropy principle. These entities obey an equation that, on the one hand, embodies the
conservation of the energy and, on the other, the conservation of the linear momentum. In the
heat four-vector, the fourth component is the energy transfer, and the space-like components
are associated to the ‘non-mechanical impulses’ that lead to changes in the three momentum
of the system. We keep a parallelism with the four-vector work, whose fourth component
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represents the energy exchange with the system as work, the space-like components being the
usual impulse of the external resultant force that leads to a variation of the linear momentum
of the system.

We applied the formalism to an inelastic collision of a deformable ball, subjected to more
than one force, in two different situations: an isothermal process where there is heat exchange
with a heat reservoir, and an adiabatic process which results in a change of the temperature
and of the inertia of the system itself. The processes are described in frame S in which forces
are simultaneously applied and the thermal reservoir (for the isothermal process) is at rest.
Then, the Lorentz transformation straightforwardly provides the description of the process in
reference frame S’. If the forces in S are simultaneously applied, in the limit c  ¥ the non-
relativistic descriptions, both in S and in S’, are recovered.

Appendix A

The metric tensor, g ,mn with zero off-diagonal elements, is taken with diagonal elements (−1,
−1,−1,+1), where the first three stand for space and the fourth for time. The norm of a four-
vector A A A, 0( )=m


is A A A A A A A ,1 2

0
2( ) ·º = = -m m

m
 

where A g A .=m mn
n The

position and momentum four-vectors, in an obvious shorthand notation, are given by
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Usually, the dynamical equation for a single relativistic particle moving with velocity v

in

reference frame S, and acted upon by force F,


is written in the form given by (3) that we
repeat here for the sake of completeness [7]:

F
pd

d
, 36( )

t
=m

m

where τ denotes the proper time measured by the clock that moves with the particle, and the
components of the four-vector (36) are given by
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where v .( )g g= By introducing the four-vector energy, which is the momentum multiplied
by c, E c p ,=m m equation (36), after being expressed as E c p F cd d d ,t= =m m m explicitly
leads to
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One should note that td dg t= is the time interval measured by synchronized clocks in
reference frame S. Therefore v rd dg t =

 
is the displacement of the force in that frame and

the previous equation can be written as
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where δWμ is the impulse-work four-vector. If there are several forces acting upon the
particle, we can replace all of them by the resultant force and apply the above derivations to
this single resultant force.
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However, it is interesting to generalize the fundamental equation (39) to a finite system
(or a system of several particles) with several external forces all acting simultaneously (the
internal forces add up to zero). In this case, one should note that the inertia of the system, M,
may vary (due to temperature changes, for instance) and there might happen processes
involving forces that do not perform work, or involving non-mechanical energy exchanges
like heat. The infinitesimal energy variation four vector now should be written as

E c P
E

d d
d

40( )=m
⎛

⎝⎜
⎞
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where the space-like component is the variation of the linear momentum of the system
P M v v( )g=
 

and the time-like component is the variation of the energy, E M v c .2( )g=
Here we use v


to denote the velocity of the system as a whole. The energy four-vector for the

system is expressed by

E cP
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where, byM(T) we already admit that the inertia may vary with the temperature. As explained
in subsection 2.1, the inertia of a system is directly related to its internal energy,
M T c U T .2( ) ( )= - The equation corresponding to (9) for the inertia is (see that equation for
the meaning of the quantities in the following one)

M T m Uc Mc c T T M Mc c T Td d 42
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2 2 2
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where byM (without any argument) we are denoting the inertia at a reference temperature, T0.
All observers know M(T) since they know the number of elementary particles in the body,
their characteristics and how they are organized to form the system. They also know the
specific heat cP(T). Therefore, at a given instant, the body’s inertia is defined as
M T c E c E c P ,2 2 2 2 2 1 2( ) ( )= = -m- - which is a relativistic invariant that, of course,
may change along a process. Because of this invariance, all observers, in different inertial
reference frames, assign the same inertia to the system and, consequently, assign also the
same temperature.

On the other hand, the impulse–work four-vector becomes a summation over the four-
vector for each external force, namely

W
c v F

v F v

d

d
43

j j j j

j j j j j

( )

( ) ·
( )

å
å

d
g t

g t
=m



 

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

where d jt is the proper time measure by the clock that travels with the application point of the
jth force that moves with velocity vj


in S (in other words, that clock is located exactly at the

application point of the force). Therefore all dτj are different, in principle, but all
v td dj j( )g t = correspond exactly to the same time interval measured in reference frame S.

Hence, in the reference frame S all forces are simultaneously applied and this ensures that, in
the Newtonian limit c , ¥ they are simultaneously applied too, which is a necessary
condition. Notwithstanding, in frame S’ these forces will not be simultaneously applied [34].
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In conclusion, the impulse-work four vector in S reduces to

W
cF t

F r

d

d . 44

j
j j

ext

· ( )åd =m


 

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

In the space-like component of this matrix equation, F Fjext = å
 

is the resultant of the
external forces. In the time-like component one has the real work (and not the pseudo-work)
of the external forces.

In a certain sense, it can be argued that relativity is most closely related with thermo-
dynamics [6] than with mechanics [48]. The equation E Wd d=m m has to be generalized in
order to include non-mechanical energy–momentum exchanges with the surroundings. This
generalization corresponds, after all, to the implementation in the formalism of the principle
of the energy–momentum conservation. It can be written in the form [12, p 303]

E W Qd , 45( )d d= +m m m

where Qμ is the four vector related to energy exchanges as heat (i.e. that are not mechanical
work). In general, for Qμ one has

Q
c P

E
46Q

Q
( )=m

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

and one defines heat as the norm of this four-vector [7, p. 94], namely

Q Q E c P . 47Q Q
2 2 2 1 2( ) ( )º = -m

This heat is exchanged between the system and the heat reservoir, which plays an important
role. For simplicity, let us assume a heat reservoir which is at rest in a given reference frame.
The second law of thermodynamics imposes that the energy exchange with the reservoir
should take place with maximum entropy increase of the Universe. The entropy variation of

the Universe is S
Q

T
S,UD = + D where the first term refers to the reservoir and the second

term to the body. The body interchanges the energy EQ which results in a certain fixed value
for its entropy variation, ΔS. Hence, the maximum entropy increase of the Universe occurs
when, for a given EQ, one has P 0.Q =


This means that, in S, all space components must

vanish in (46), as it is the case in the inelastic collision studied in section 3. In the reference
frame S the heat reservoir is at rest and all forces are simultaneously applied. In the same
section, we look at the problem from a different inertial reference frame and, indeed, the
space-like components in (46) are not zero, P 0.Q =


Moreover, in general, the forces are not

simultaneously applied, as we explicitly observe in the example treated in subsection 3.1.
We conclude with a remark on the relativistic invariance of Q and T (therefore of the

internal energy of the reservoir). As a consequence, the entropy variation of the body and of
the Universe are relativistic invariants as well. An (infinitesimal) entropy variation can be

regarded as the invariant norm of a four-vector defined by S
Q

T
d .

d
=m

m

Appendix B

The linear momentum and the energy can be expressed as p v Mv( )g=
 

and E v Mc .2( )g=
On the other hand, E c p p M c2 2 2 4·= +

 
and, by differentiating both sides of this equation,

one obtains E E c p pd d .2 ·=
 

Using here the previous expressions for the linear momentum
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and for the energy, one arrives at an equation equivalent to (7):

v c v v vd d . 482 [ ]( ) · ( ) ( )g g=  ⎡⎣ ⎤⎦

Appendix C

Let us consider a single force F F F, , ,x y z( ) applied in a certain point of an extended body. This
application point moves with velocity v v v v, ,x y z( )=


and its infinitesimal displacement,

measured in S, is r v t x y zd d d , d , d ,( )= =
 

where dt is the corresponding time interval
measured in S (this is not a proper time). We want to prove that

W

cF t
cF t

cF t

F r

d
d

d

d
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is a four-vector. To this end we must prove that

W

cF t

cF t

cF t

F r

d

d

d
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is obtained from (49) by means of a Lorentz transformation W W ,d d¢ = Lm
n
m n where Lm

n is the
Lorentz transformation matrix. We shall only consider the case of the standard configuration
of S’ relative to S, so that the transformation matrix V( )Ln

m is given by (11).
Let us consider (50) and the following well-known transformations

F
F V c F v

v V c
F

F

v V c
F

F

v V c1
,

1
,

1
51x

x

x
y

y

x
z

z

x

2

2 2 2

( ) ·
( )

g g
¢ =

-

-
¢ =

-
¢ =

-

 

x x V t y y z z t t V c xd d d , d d , d d , d d d 522( )( ) ( )g g¢ = - ¢ = ¢ = ¢ = -⎡⎣ ⎤⎦
where γ = γ(V). Introducing these primed quantities in (50), after some straightforward
algebraic manipulations, one arrives at

c F t c F t
V

c
F r

c F t c F t

c F t c F t

F r
V

c
cF t F r

d d d

d d

d d

d d d . 53

x x

y y

z z

x

2
·

· · ( )

g g

g g

¢ ¢ = -

¢ ¢ =
¢ ¢ =

¢ ¢ = - +

 

   

⎡
⎣⎢

⎤
⎦⎥

Hence, each component of δ Wμ transforms according to the transformation rule of a four-
vector, i.e. W V W( )d d¢ = Lm

n
m n for the standard configuration. The same reasoning applies to

each force applied to the extended body. Since the sum of four-vectors is a four-vector, one
concludes that (43) or (44) are four-vectors.

It is useful here to borrow the arguments of Gamba in the framework of the asynchronous
formulation [29]: one can write a four-vector A x t X T, , ,( )m  

as the sum of two four-vectors
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B x t,( )m 
and C X T, ,( )m


with the condition t = T. In a shorthand notation,

A x X t B x t C X t, , , , .( ) ( ) ( )= +m m m   
Because each four-vector Wkd m (k N1, 2, ,= ¼ ) in S

refers to exactly the same time interval, dt, as measured by synchronized clocks in S, the sum

W W
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is a four-vector. The sum of these four-vectors defined simultaneously or, better to say,
referring to the very same interval of time, is coherent with the classical requirement of
simultaneity of all applied forces to the system, acting during the same interval of time, in any
reference frame (in the classical limit forces could be applied at different spatial points of the
system). By choosing the reference frame S in which forces are simultaneously applied, one
ensures the correctness of the classical limit. Of course, an observer in S’ will observe the
same physical situation now with the four-vectors not simultaneously applied. Therefore, the
impulse–work (43) or (54) is not a four-vector in the general sense of special relativity
because a well-defined four-vector must be defined in each system simultaneously and is
obtained in another reference frame by a Lorentz transformation. But considering the
simultaneity in a particular reference frame, we can consider the impulse–work as a four-
quantity in such a reference frame and it can be seen as a four-vector if we apply a Lorentz
transformation to such a four-quantity. Therefore a four-vector is always related to the
reference frame where simultaneity is defined. When the inverse is done, i.e. when the
impulse–work is defined in another reference frame, it will not correspond to the four-quantity
obtained by applying the Lorentz transformation to that four-quantity in the first reference
frame.
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