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Abstract

The appearance of electricity exchanges has attracted much attention on the price
formation mechanism. There is an increasing interest in the relationship between
futures and spot electricity prices. This work provides an empirical analysis of electricity
spot and futures markets of the Iberian Electrical Energy Market. The used dataset
covers the period from 1 March 2006 to 30 September 2016 and incorporates 123 monthly
futures contracts. The determination of the ex-post risk premium and the analysis of its
properties were performed. We obtained a time dependent risk premium that fluctuates
between positive and negative values, resulting in the high volatility value of 18.094% of
its distribution. We concluded that futures contracts were traded on average at 7.54%
above the spot prices, meaning that the market agents are willing to pay a higher price
for futures contracts in order to reduce their risk exposure. We found a decreasing
non-linear dependence of the average risk premium as the futures contract maturity
approaches. We obtained statistical indications for rejecting the unbiased forward
hypothesis of the futures contracts prices near maturity. Finally, we considered the
weak-form efficient market hypothesis, analyzing the predictability of the risk premium.
We looked for information about the risk premium contained on the futures bases, spot
returns, and futures returns. We obtained indications that the futures return near
maturity contains information on the risk premium.





Resumo

O surgimento de mercados organizados de eletricidade tem atraído muita atenção para
o mecanismo de formação de preços. Existe um interesse crescente sobre a relação entre
os preços dos futuros e os preços spot. Este trabalho fornece uma análise empírica
dos mercados spot e de futuros pertencentes ao Mercado Ibérico de Energia Elétrica.
A base de dados usada abrange o período de 1 de Março de 2006 a 30 de Setembro
de 2016 e incorpora 123 contratos de futuros mensais. Foi determinado o prémio de
risco ex-post e realizada uma análise das suas propriedades. Obtivemos um prémio de
risco dependente do tempo que oscila entre valores positivos e negativos, resultando
no valor elevado de 18.094% para a volatilidade da sua distribuição. Concluímos que
os contratos de futuros foram transacionados em média a 7.54% acima do valor do
mercado spot, significando que os agentes do mercado estão disponíveis para pagar um
preço elevado pelos contratos de futuros por forma a reduzir a sua exposição ao risco.
Encontrámos uma dependência decrescente não-linear do prémio de risco médio com a
aproximação da maturidade do contrato. Obtivemos indicações estatísticas para rejeitar
a hipótese de não enviesamento futuro dos preços dos contratos de futuros próximos
da maturidade. Finalmente, considerámos a hipótese de eficiência do mercado na sua
forma fraca, analisando a previsibilidade do prémio de risco. Procurámos informação
sobre o prémio de risco contida nas bases dos contratos de futuros, nas rentabilidades
do mercado spot e nas rentabilidades do mercado de futuros. Obtivemos indicações de
que o retorno do mercado de futuros próximo da maturidade contém informações sobre o
prémio de risco.
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Chapter 1

Outine

The relationship between futures and spot electricity prices has attracted the attention
of both finance academics and market participants. Due to the worldwide deregulation
of electricity markets and to the creation of electricity exchanges, the mechanism of price
formation is of great importance an is still under debate.

In this work we analyze the relationship between electricity spot and futures prices,
based primarily on risk considerations. This work provides an empirical analysis of
the behavior over time of the futures risk premium, by studying the monthly futures
contracts traded at the Iberian Energy Derivatives Exchange.

This thesis is organized as follows: we give a brief introduction to the basic struc-
ture of electricity markets in Chapter 2, where we explain the main distinguishable
characteristics of electricity among other energy commodities; then, an overview of both
the spot and futures markets of the Iberian electricity market is present in Chapter 3;
two theories for valuation futures prices, namely the Cost-of-Carry and the Hedging
Pressure theories, are described in Chapter 4; in Chapter 6 we made a description of the
used data set; the results are presented both for spot and futures prices in Chapter 7;
and, finally, the conclusions are drawn in Chapter 8.
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Chapter 2

Introduction to Electricity
Markets

The electricity markets belong to a wider group of energy markets. The fuel markets,
e.g., oil, gas, coal and their byproducts, are the oldest energy markets at the wholesale
level. Recently, underlying assets related to electricity, e.g., weather and emissions, lead
to the formation of new energy markets.

Bellow, we give a brief overview of the electricity market structure, showing some of
its distinctive characteristics from other energy markets. We follow the references [1–3].
Therein, the reader can find a detailed discussion of the following topics.

2.1 Non-storability

The central feature that distinguishes electricity from other commodities is storage.
Contrary to electricity, most commodities can absorb sudden production and demand
variations by storage. Thus, generally, we can assume that electricity supply and demand
must be in equilibrium at every time. Actually, electricity can be stored, but not in the
form of electric current. It can be converted into other storable form of energy, which
allows future transformation into electric current. As an example, electric current might
be used for pushing water to a pumped storage that, at later time, can be converted back
to electric current by hydro power. This and other storage methods have, however, high
costs and low efficiencies. Therefore, when we say that electricity is non-storable, we
mean that, at the present time, it is financially infeasible.

2.2 Electricity supply stages

The non-storable characteristic of electricity is singular among other commodities. The
efficiency of electricity markets is thus a challenging task, requiring additional balancing
services and reserve resources, beyond the common production and distribution services.

3



4 Introduction to Electricity Markets

The essential stages in the supply chain of electricity are generation, transmission, and
balancing services.

The generation of electricity starts with its energy source, which can be fossil fuels
(coal, oil, and natural gas), renewable energy (mainly hydroelectric, wind, geothermal,
and solar), nuclear power, and other sources, e.g., bio-fuels and biomass. The energy
source might need further processing and refining before it enters into the power gener-
ation, i.e., the process by which the energy source is converted into electricity. The next
step is delivering the electricity into the distribution infrastructure.

The electricity generation is nowadays dominated by the following technologies:
nuclear, coal-steam, gas/oil-steam, combined cycle, combustion turbine, hydro, and
renewals. Different countries have distinct mixes of technologies. A generation unit
is mainly specified by its daily generation profile, the marginal cost per MWh that is
prepared to sell, and both the profile of the daily maximum capacity and minimum stable
generation. The electricity provided by power generators is normally classified by a load
factor. A base-load plant runs continuously with a steady load, although some plants can
provide with load variations to add to system stability and reserve capability. A peaking
plants are expected to run at certain periods of time. They have a reserve function to
cover events such as demand spikes or sudden outages.

Due to the absence of storage capability and the very low level of dynamic response
of power generators, the amount of electricity produced must be, at every instant, equal
to the amount of power consumed. An extremely high level of flexibility, e.g., short term
response in time and volume, is required from power generators to deal with sudden
variations in demand and both generator and network failures.

The electricity supply industry is driven by the time-space character of electricity: it
is instantaneously delivered over very long distances with high variations in the delivery
rate. Network considerations such as inefficiencies, electric resistance, and electric
reactance are crucial in the design of electricity markets. Transmission lines, distribu-
tion lines, transformers, and other equipment are needed to transmit and distribute
electricity.

The balancing services are mainly insured by the system and market operators. The
system operator is the energy management of the system, which guarantees the perfect
and continuously equilibrium of demand and supply, and also the stability of the network
transmission. Market operations involve the commercial arrangements for energy and
trading capacity between participants and the system operator.

2.3 The Wholesale Market

Conventional markets do not require any special organization, i.e., there is no central
coordination between buyers and sellers. The organization of electricity markets is,
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however, essential to ensure the perfect matching of supply and demand at any given
moment. Any demand variation within a day, hour or even minute must be perfectly
balanced by supply. Any imbalance between supply and demand can be very costly, and
may lead to wide-ranging blackouts.

In day-ahead markets, electricity is traded for every hour of the following day, and
can be seen as a forward market with delivery on the following day. Using the day-ahead
market information, the system operator establishes which generating units should be
scheduled and dispatched to meet demand in every hour of the following day in the
most economic way. The actual demand and generation capacity may change near to
the real time of delivery, and adjustments to the day-ahead schedules may be required.
This is accomplished through the intra-day markets (also known as real-time balancing
markets), where buyers and sellers can adjust their positions hours and minutes before
the operation taken place. These adjustments are made by changing the dispatch of
generators committed in the day-ahead market.

The day-ahead markets are organized with different centralization degrees: bilateral
markets, exchanges, and pools.

In the bilateral markets, trades are established directly between buyers and sellers,
without any external coordination. These bilateral trades are then collected by the
transmission operator, which is an external entity that ensures their technical feasibility,
i.e., the physical delivery will not overload any transmission lines or other equipment on
the system.

A power exchange is a centralized market that gathers simple price–quantity demand
bids and supply offers during each hour of the following day. Then exchanges determine
the market-clearing quantity by intersecting supply and demand curves. The market-
clearing price is typically unique, being paid by all cleared bids to all cleared offers.

The pools differ from exchanges mainly by accepting more complex bids from genera-
tors. Besides the price, bids may also include start-up costs, no-load costs, ramp rates,
and minimum run times. The generation is scheduled to meet the system demand by
minimizing the total ask-bid, by setting the price at the last accepted bid price. Even
though the clearing price may not always be enough to cover the start-up and no-load
costs, the generation units may be scheduled to operate. When this occurs, the pool
provides side payments to ensure that the scheduled generation receives an economic
profit.

Within bilateral markets, the participants can adjust the terms of the contract ac-
cording to their individual needs. However, bilateral trades can be established alongside
organized pools or exchanges using contracts for differences. On the other hand, bilateral
markets have inefficient generation scheduling and disadvantages in management of
transmission constraints. Efficiency is best attained by the coordination of power pools,
which simultaneously observes all power schedules, generators unit commitment costs,
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and available transmission capacity. Having a middle degree of centralization, between
bilateral markets and pools, power exchanges share some benefits and drawbacks of
both, e.g., some elements of explicit transmission congestion management are present.



Chapter 3

The Iberian Electricity Market

The Iberian Electrical Energy Market (MIBEL) is a joint wholesale electricity market
between Spain and Portugal. The agreement between both countries was signed on 1
October 2004. The agreement established the framework and organization of both a spot
and a derivatives markets. MIBEL was fully launched on 1 July 2007.

Herein, we provide a brief overview of the main properties of both spot and derivatives
markets of MIBEL. A detailed and complete information can be found in [4, 5].

3.1 Spot Market (OMIE)

The wholesale spot market allows for electricity trades between market agents. Buyers
are reference retailers, re-sellers, and direct consumers, while sellers are electricity
power producers The spot market is managed by the Spanish division of the Iberian
Energy Market Operator (OMIE). The OMIE regulates two complementary markets:
the daily and the intra-day markets.

The daily market sets the electricity prices for the twenty-four hours of the following
day, i.e., the day-ahead. On a daily basis, purchase and sale orders are received in the
daily market. The electricity price and volume are determined by the equilibrium be-
tween supply and demand for each hour of the day-ahead. The equilibrium is determined
by the marginal pricing model.

When the traded electricity overcomes the total capacity of the electrical interconnec-
tion network between Spain and Portugal, a market splitting mechanism sets in, and
different electricity prices take place on Portugal and Spain daily markets. When the
interconnection network is not congested, both Spain and Portugal daily markets have
the same prices.

The results from the daily market are evaluated by the system operator, which
ensures their technical viability. If required, changes are conducted by the System
Operator and a final viable daily schedule is established.

7



8 The Iberian Electricity Market

3.1.1 Intra-day market

Adjustments to the final viable daily schedule are possible via the intra-day market,
where market agents can adjust their positions some hours earlier to the delivery time.
All market agents that have participated in the corresponding daily market session or
have executed a physical bilateral contract may participate in the intra-day market.

Once the daily market closes, six intra-day markets sessions are held, where market
agents can adjust their positions up to four hours ahead of real time delivery. The
adjustments in each session are made by submitting bids for the purchase and sale of
electricity. The market operator matches the demand/supply, obtaining for each hour in
the schedule a marginal price and volume of electricity accepted for each production.

3.2 Derivatives market (OMIP)

The Operador do Mercado Ibérico de Energia – Pólo Português, S.G.M.R., S.A. (OMIP) is
the energy derivatives market of MIBEL, and is responsible for organizing and managing
the derivatives market. The derivatives contracts traded in OMIP are futures, options,
swaps, and other forward contracts, whose underlying asset is electricity. Contracts have
either physical or purely financial delivery during the delivery period of the contract:
in the former there is a physical settlement, while the latter is subject to an exclusive
financial settlement. There are base and peak derivative products. The delivery period
of base derivatives covers all daily hours, while peak derivatives only covers peak hours
(typically from 8a.m. to 7p.m.).

The OMIClear performs the role of the clearing house, central counter-party, and
Settlement system. Bilateral transactions are also registered trough OMIClear.

Two trading modes coexist within OMIP [6]: the continuous market and the call
auction. The continuous trading is the default trading mode, in which anonymous buy
and sell orders match immediately, generating trades with an undetermined number
of prices for each contract. Buy orders with the highest prices and sell orders with
the lowest prices are executed first. In the call auction trading, a single-price auction
maximizes the traded volume, with all trades being settled at the same price. It uses an
algorithm based on the maximum tradable volume and minimum price criteria.

3.2.1 Futures Contracts

There are different futures contracts traded on OMIP that are identified by their delivery
periods: day, weekend, week, month, quarter, and year. For each futures contract there
are base and peak loads with financial or physical settlement. The underlying asset of
each contract is the notional supply/receiving of electric energy at a constant power of
1 MWh, during all hours of the delivery period. Furthermore, the underlying asset is
evaluated daily on the delivery period, based on the spot reference price. Base and peak
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load with financial or physical settlement contracts are quoted in euros per MWh. The
futures contracts are specified by: first trading day, last trading day (the trading day
preceding the first delivery day), first delivery day, last delivery day, trading period, and
delivery period. The trading period of a contract begins on the first trading day and ends
on the last trading day. On the other hand, the delivery period is the time between the
first delivery day and the last delivery day.

Trading is conducted in continuous mode, auction mode, or through bilateral transac-
tions, being subsequently registered at the OMIClear. To protect the position exposure
of the clearing members, the OMIClear identifies and collects the margins on a daily
basis. For futures contracts, the main cash settlements executed by the OMIClear are
the variation margin and the delivery settlement value. In the former, the profits and
losses in tradable contracts are covered by daily cash settlements, and the latter covers
the settlement risk originated from open positions in contracts under delivery.

After the closing of each trading session, the OMIP defines the settlement price for
each contract. At the end of the last trading day session of each contract, the open
positions are deemed final for settlement on the delivery period, being subject, on a daily
basis, to a purely financial settlement by the OMIClear. During the delivery period, the
spot reference price is the value of the PTEL or SPEL base/peak indexes1. On a daily
basis, the OMIClear processes the financial settlement of the delivery settlement value,
which results from the difference between the spot reference price and the settlement
price of each contract on the last trading day, having as underlying the notional sup-
ply/receiving of electric energy at a constant power for the number of hours of each day
of the delivery period. Furthermore, for physical settlements contracts the positions are
submitted to the spot market (OMIE) as limit prices orders.

1Note that the PTEL and SPEL indexes are only different when the market splitting mechanism sets in.





Chapter 4

Futures Pricing

There are two theories that explain how equilibrium prices of futures contracts are
determined for general commodities. The first theory is the well known cost-of-carry
model [7]. The second one is the hedging pressure theory [8]. The former is applied for
storable commodities, and the latter to storable and non-storable commodities, such as
electricity.

Below, we give a brief description of both theories. We follow the reference [9], where
the reader can find a detailed discussion.

4.1 Cost-of-Carry

For a certain futures contract, let us assume that there is no cost of storing the underlying
commodity, and there is neither dividends nor additional profit from its storage. Then,
the cost-of-carry theory tells us that the market price of the futures contract at time t is

F (t, T ) = S(t)er(T−t), (4.1)

where S(t) is the value of the underlying commodity at time t, r gives the time-
independent risk-free rate, and T is the maturity of the futures contract.

Storage costs affect the futures price, and can be taken into account as

F (t, T ) = S(t)e(r+q)(T−t), (4.2)

where q is the continuous rate of storage costs. Additionally, in the presence of any
yields from owning the commodity, known as convenience yield, the cost-of-carry model
is given by

F (t, T ) = S(t)e(r+q−c)(T−t), (4.3)

where c is the continuous convenience yield.

11
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The cost-of-carry equations are deduced from arbitrage-free arguments, being the
above price the only one that does not allow arbitrage opportunities. Note that the model
is only applicable to commodities that can be stored. The cost-of-carry model does not
have any application in terms of risk premium.

4.2 The Theory of Hedging Pressure

Since electricity cannot be stored, an alternative approach is needed to evaluate the
electricity futures contracts. The theory of hedging pressure applies to storable and
non-storable commodities, and thus is applicable to to futures electricity markets. Within
this theory, futures contracts are instruments to hedge away price risk, as they protect
against future price changes of the underlying asset. The futures contract plays a
similar role of an insurance contract: the insured agent pays a premium to eliminate
future (price) risk. Therefore, the futures contract price reflects the expected price of the
underlying asset at the future delivery date and the risk premium.

Like in an insurance contract, the expected risk premium is the price associated with
the transfer of risk between agents involved in the exchange of futures contract. Thus,
the risk premium is the price that the hedgers are willing to pay to hedge away their
exposure to price volatility. Conversely, the risk premium is the compensation required
by the agent who is willing to take the price risk.

The sign of the risk premium will depend on whether the hedgers are mainly produc-
ers or consumers. If the hedgers are mainly producers, there is a negative risk premium:
the producers are willing to sell their expected production at a fixed price, lower than the
expected future spot price. The producers are willing to obtain a lower profit, by paying
the risk premium to hedge away the spot price risk. On the other hand, if hedgers are
mainly consumers, then the risk-free premium would be positive: the consumers are
willing to buy their expected electricity needs at a fixed price, higher than the expected
future spot price. Therefore, the consumers are willing to pay a higher price, associated
with the risk premium, to hedge away the spot price risk. Thus a positive (negative) risk
premium means that the hedger accepts a higher (lower) future price than the expected
spot price.

During periods of high demand, when the volatility is high and the occurrence of
spikes is probable, consumers are more willing to pay a positive risk premium. Producers,
however, may prefer not to be exposed to (potential) positive price shocks and be less
inclined to offer cover, i.e., sell futures contracts. Thus, during periods of intense
volatility of spot prices is may be very expensive to hedge away risk. During these high-
risk premium periods, the speculators have the important role of making the market
more competitive, pushing the risk premium to lower values. The risk premium is thus
the price associated with the transfer of risk between speculators and hedgers.
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4.3 The Forward Risk Premium

By the theory of hedging pressure, forward contract price can be split into the expected
price of the underlying asset on the maturity and a risk premium, also known as forward
or futures premium.

The forward risk premium is normally defined as ex-ante or ex-post. The ex-ante
is defined as the difference between the forward price and the expected price of the
underlying asset. As the expected price is not directly observable from market data, the
ex-ante requires a model for the dynamics of the underlying asset. Therefore, different
models will generally result in different values for the expected price of the asset, and
thus in distinct values for the ex-ante risk premium.

On the other hand, the ex-post forward premium is defined as the difference between
the forward and the realized spot price at the maturity period of the contract.

The forward ex-ante and ex-post risk premium are defined, respectively, by

RP ex-ante
t,T = Ft,T − Et[S(T )], (4.4)

RP ex-post
t,T = Ft,T − S̄T , (4.5)

where Ft,T stands for the futures price at day t with future delivery time period of T , and
S̄T denotes the realized average spot price over the delivery time period T . The operator
Et[.] represents conditional expectation at time (day) t. The ex-post risk premium can be
written as the ex-ante forward premium plus the forecast error,

RP ex-post
t,T = Ft,T − S̄T

= Ft,T − Et[S(T )] + Et[S(T )]− S̄T

= RP ex-ante
t,T + {Et[S(T )]− S̄T }.

The difference between the expected and the realized commodity price during the
delivery period, Et[S(T )]− S̄T , represents the forecast error. Generally, the forecast error
is assumed to be a random white noise, and therefore the ex-post risk premium is a good
proxy for the ex-ante risk premium. Evidence of a nonzero ex-post risk premium is also
evidence of a nonzero ex-ante risk premium.





Chapter 5

State of the art

Several models have been proposed in the literature for the dynamics of the risk pre-
mium. An equilibrium model for the risk premium was introduced in [10], in which
the risk premium is a function of the variance and skewness of the spot prices. A
mean-reverting jump diffusion model for the electricity spot price was derived in [11],
and a closed-form for the forward premium was then obtained. The model was applied to
the electricity market of England and Wales. A model function of demand and capacity
for the wholesale electricity prices was proposed in [12]. Using a two-state price model
that depends on demand (load) and fuel price, the risk premium from the Pennsylvania-
Jersey-Maryland electricity power pool was studied in [13].

There are several empirical studies that evaluated the relation between spot and
futures prices of electricity, and the presence of risk premium. The risk premium
dynamics for the German electricity market was studied in [14]. It was shown that the
risk premium exhibits a term structure, which can be explained by the combination of
risk aversion of market agents, and how the market power of producers, relative to that
of buyers, affects forward prices with different delivery periods. Market efficiency is
analyzed for the Iberian futures markets and other European power markets trough the
presence of risk premium in [6]. The study concludes the present of risk premium in
all markets, and thus no noticeable level of market efficiency was found. The sign and
magnitude of the risk premium was found to depend on both the unexpected variation
in demand and in the hydroelectric capacity for the Spanish Electricity market [15].
The forward premium turned out to be negatively related to the variance of spot price.
The risk premium in Nord Pool electricity market was studied in [16]. It was found the
existence of risk premium that varies significantly throughout the year, but positive
on average. Some links between risk premium and both the variance and skewness
of electricity spot prices were seen, providing some support for the model [10]. The
effect of fundamental, behavioral, dynamic, market conduct and shock components,
on electricity forward market European Energy Exchange was conducted in [17]. The
impact of forward electricity prices and the relationship between forward and future spot
prices is addressed in [18], for the European Energy Exchange (EEX) and the Nord Pool

15
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Power Exchange. It was found the skewness of spot prices is significant determinant of
the baseload futures-spot bias at the EEX, whereas the variance of spot prices positively
influences premium in peak load. Future contracts for delivery in Germany traded at the
EEX show evidence of significant positive risk premium at the short-end [19]. Futures
from the Amsterdam Power Exchange – European energy Derivatives Exchange indicate
that futures prices are not unbiased predictor of the future spots, and thus the presence
of risk premium [20]. An empirical analysis of futures prices on New York Mercantile
Exchange supports the presence of risk premium [21].



Chapter 6

Data description

We use daily spot and futures prices extracted from OMIP [5]. The data-set covers the
period from 1 March 2006 to 30 September 2016. Both spot and futures prices correspond
to the Spanish zone of the Iberian Electricity Market. The spot reference price1 is the
daily SPEL Base index, which corresponds to the arithmetic mean of hour marginal
prices of the Spanish system for the 24 hours of the day. We consider the MIBEL SPEL
base load futures contracts with monthly delivery period2. The futures prices correspond
to the settlement prices, which are fixed on a daily basis by OMIP for each contract
traded on the market. Our data-set incorporates 123 monthly SPEL base load futures
contracts.

The analysis presented in this work is performed in R [22, 23].

6.1 Future Market Liquidity

Among the SPEL Base Load futures traded in the OMIP Derivatives Market, the month
contracts have the highest liquidity. We confirm this by the histogram in Fig. (6.1), in
which we calculate the number of traded contracts by delivery period.
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Fig. 6.1 Number of traded contracts by delivery period: Week (We), Month (M), Quarter
(Q), and Year (Y).

1The price considered by OMIClear for calculation of the settlement amount on delivery.
2The period following the trading period on which the financial settlement or physical delivery of the

electricity is processed.
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Therefore, due to the highest liquidity, we focus on the monthly contracts in this work.
Let us now analyze the trading volume and the number of trades as a function of trading
days to maturity for monthly contracts. Number of trades is the number of transactions
that were placed on a contract during a given period of time, and indicates the activity of
a contract. Trading volume is the total quantity of contracts traded during a given period
of time, measuring the total number of contracts transacted and gives information about
the contracts’ liquidity. A contract with higher traded volume indicates higher liquidity.
To determine averages over all contracts, we synchronize the contracts at maturity.

6.1.1 Number of trades

We start by constructing the two histograms shown in Fig. 6.2: the average number of
trades per trading day by contract delivery period (left panel) and total number of trades
by contract delivery period (right panel). The right histogram gives the accumulated
number of trades during all the trading period, and shows that the most traded futures
contracts are December, November, and June month contracts. Since the trading period
lengths of the contracts are different, the left histogram displays the average number of
trades per trading day. It shows that only December and November contracts have more
one trade per trading day on average.
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Fig. 6.2 Average number of trades per trading day (left panel) and total number of trades
(right panel) by contract delivery period for the years 2007-2016.

It is worth to analyze the distribution of trades along the trading period for some
specific contracts. Thus, we select the two most traded contracts and represent their
number of trades as a function of the trading days in Fig. 6.3. Interestingly, the period of
time with higher number of trades is near 10 and 20 days to maturity for both contracts.
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Fig. 6.3 Number of trades for the December 2014 (top) and November 2014 (bottom)
contracts as a function of trading days to maturity.

To get an overall behavior, we must do an average over all contracts. The result
is in Fig. 6.4. As expected, the average number of trades increases gradually as we
approximate the contracts’ maturity. Even though the monthly contracts are the most
active contracts in the futures market (see Fig. 6.1), their average number of trades are,
however, very low, reflecting the low liquidity of the futures market.
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Fig. 6.4 Average number of trades over all contracts as a function of trading days to
maturity.

Traded Volume

Now, we perform the same analysis, but for the contracts traded volume. Fig. 6.5 shows
the average traded volume per trading day (left panel) and total traded volume (right
panel) by contract delivery period. Unsurprisingly, the contracts with higher traded
volume match the ones with higher number of trades.
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Fig. 6.5 Average traded volume per trading day (left panel) and total traded volume
(right panel) by contract delivery period for the years 2007-2016.

Let us now analyze the trading volume as a function of days to maturity for the
same contracts, i.e., November and December 2014. The result is in Fig. 6.6. Almost
all the traded volume is concentrated on the 19th day to maturity for the November
2014 contract. On the other hand, there is some dispersion of the traded volume for the
December 2014 contract.
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Fig. 6.6 Traded volume for the December 2014 (top) and November 2014 (bottom)
contracts as a function of trading days to maturity.

The average traded volume over all contracts is in Fig. 6.7. The traded volume
increases along the trading period of the contract. As for the average number of trades,
the average traded volume is higher near the contracts’ maturity.
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Fig. 6.7 Average traded volume over all contracts as a function of trading days to
maturity.

6.1.2 Futures prices series

We define three time series for the futures prices, corresponding to 1-month ahead,
2-month ahead, and 3-month ahead. To illustrate how they are constructed, we show in
Fig. 6.8 several month contracts that were traded in 2015. There are always six open
contracts for trading with delivery periods corresponding to the next 6-month ahead. In
the following, we focus on the first 3-months ahead contracts. The terminology used can
be clarified through the following example: if we are considering some trading day in
September 2015, the 1-month ahead price corresponds the Out 15 contract price (pink
color), with delivery period in October 2015; the 2-month ahead price is given by the
Nov 15 contract price (purple color), with delivery period on November 2015; finally, the
3-month ahead price is the Dec 15 contract price (gold color), with delivery period in
December 2015.
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Fig. 6.8 Prices of the futures contracts traded in 2015 with delivery period in 2015.

In the next Chapter these three futures prices series will be analyzed.





Chapter 7

Results

In this Chapter, both the spot and futures prices are analyzed and their statistical
properties are studied.

7.1 Spot Market

Herein, we analyze the daily electricity spot price variation given by the daily SPEL Base
Load index, obtained via the arithmetic mean of hour marginal prices of the Spanish
system for the 24 hours of the day. Figure 7.1 shows the spot price dynamics.
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Fig. 7.1 Daily electricity prices (top), in units of e/MWh, and the logarithm of daily
prices (bottom) traded for the day-ahead on MIBEL, over the time period of 1 March
2006 to 30 September 2016.
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We notice some typical properties shared by all electricity markets: temporary spikes,
frequent extreme values, and a high volatility levels and clustering. These features are
often attributed to both the non-storable nature of the electricity and reduced number of
market players. The high volatility of spot prices results from the inability to smooth
supply/demand via inventories. The extreme volatility is a well known attribute of
electricity markets [24].

Due to the non-storable property of electricity, periods of extreme demand lead to the
occurrence of spikes on spot prices. Spikes are defined as suddenly events that occur
for short period of time, leading to extreme fluctuations in the spot prices. Looking
at the logarithm of spot prices (Fig. 7.1, bottom panel), we notice a mean-reversion
characteristic, i.e., the price tends to fluctuate around a long-term equilibrium value.
The mean-reversion of spot prices is also a common attribute of electricity markets.
Table 7.1 shows some statistical quantities of spot prices.

Spot Price
Maximum 93.110

Day 2013-12-08
Minimum 0.0000

Day 2013-04-01
Mean 45.405

Std. Dev. 13.683

Kurtosis 3.9140

Skewness −0.1549

JB statistic 153.16

p-value 0.0000

ADF statistic −5.9112

p-value < 0.0100

PP statistic −431.55

p-value < 0.0100

Table 7.1 Descriptive statistics for the daily spot prices. The Jarque-Bera (JB) statistic
is used to test the normality of spot prices: being the null hypothesis (H0) of normality
tested against the alternative hypothesis (H1) of non-normality. Augmented Dickey-
Fuller (ADF) and Phillips-Perron (PP) statistics are useful to check for the presence
of unit roots: both test the null hypothesis (H0) of presence of an unit root against the
alternative hypothesis (H1) of no unit root.

The sample mean is 45.405e/MWh, being 93.11e/MWh the highest value, which
happened on 8 December 2013. The standard deviation value of 13.683e/MWh reflects
the high volatility of spot prices. The negative skewness indicates more persistent down-
ward spikes in spot prices. Forecast these abrupt and partially unanticipated extreme
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changes remains an important challenge in electricity markets.

The normality of a distribution can me measured by the the Jarque-Bera statistic.
Stationarity of a time series is often analyzed trough several statistical tests. We use
both the Augmented Dickey-Fuller (ADF) and the Phillips-Perron (PP) statistics. The
test results for the spot prices are reported in Table 7.1. By the Jarque-Bera statistics,
we reject the null hypothesis of distributional normality at the 0.01 level. The ADF and
PP statistics allows us to reject the null hypothesis of a unit root at the 0.01 level, and
thus the spot prices are stationary.

Weather conditions strongly affect electricity demand, leading to seasonal patterns.
Seasonality can be understood by the distinct cooling needs trough-out the year. Eco-
nomic and business activities generate different seasonal patterns on distinct time scales:
intra-daily, weekly, and monthly. The electricity demand is higher during the day (at
business hours) than at night. Moreover, we expect a lower demand on weekends than
during business days. Therefore, the electricity supply/demand is highly dependent on
time, e.g., it changes trough both the day and week.

In order to capture seasonality patterns on the spot prices, we start by analyzing the
daily spot price in each year. To illustrate the distinct dynamics that spot prices undergo,
we display in Figure 7.2 the spot prices in the years 2011 and 2014. A descriptive
statistics summary for the whole sample is given in Table 7.2.
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Fig. 7.2 Daily electricity prices (e/MWh) for the following years: 2011, 2012, 2013, 2014,
and 2015.

Several conclusions can be extracted from Fig. 7.2 and confirmed in Table 7.2. The
volatility of spot prices is highly dependent on the year. In 2011 it was 6.92e/MWh,
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being lower than in the years 2012-2015. The lowest volatility occurred in 2009 and the
highest in 2013, with a value more than three times higher. From a visual inspection of
Fig. 7.2, it seems that the volatility is lower on the middle than at both the beginning
and ending of each year. We will verify this when we calculate monthly averages.

2006 2007 2008 2009 2010 2011
Maximum 91.660 79.210 82.130 58.620 54.910 65.310

Day 01-31 12-17 01-29 01-16 12-11 09-26
Minimum 24.050 22.380 46.300 3.4000 2.4700 15.520

Day 12-08 02-25 12-25 12-31 04-03 11-13
Mean 50.532 39.346 64.426 36.962 37.011 49.922

Std. Dev. 13.601 8.858 7.1905 5.5831 10.633 6.9245

Kurtosis 3.6965 4.9228 2.1997 9.0005 3.7924 7.4789

Skewness 1.0110 1.2423 −0.0690 0.4559 −1.0723 −1.1616

2012 2013 2014 2015 2016
Maximum 67.510 93.110 71.060 66.410 59.650

Day 12-12 12-08 10-10 12-02 10-20
Minimum 9.5500 0.0000 0.4800 16.350 5.4600

Day 11-01 04-01 02-09 02-22 05-08
Mean 47.237 44.257 42.130 50.324 35.318

Std. Dev. 8.8362 17.464 15.657 9.2580 10.912

Kurtosis 5.5484 4.0608 3.1127 3.8368 3.1020

Skewness −1.3597 −0.4343 −0.8609 −0.8428 −0.5416

Table 7.2 Descriptive statistics for annual spot prices.

The spot price variation in 2013 is remarkable, being zero on 1 April and 93.11 on 8
December (the highest value of the sample). The variation range of both the kurtosis
and skewness indicates that the spot price distribution is high dependent on the year.
However, this is expected due to the high number of factors that affects electricity prices,
some of which are completely unpredictable.

The financial crisis of 2009 affected the prices of several energy commodities: elec-
tricity, gas, oil, and coal. All around Europe, the average electricity prices went down
in 2009, when compared to 2008. Both the wholesale and retail electricity prices have
shown a downward trend. Despite the colder than normal winter temperatures that
triggered electricity demand, the industrial sector, influenced by the financial crises, had
a crucial impact on the lower electricity demand in 2009.

Looking at Table 7.2, it is clear the effect that economic crisis had on the MIBEL
electricity market. For the first time, due to low demand and overflow of renewable
energy, the MIBEL registered 74 hours of thermal power sales for free from 28 December
2009 to 15 January 2010 [25]. The average price decreases from 64e/MWh in 2008 to
37e/MWh in 2009. The electricity price reached the lowest value of 3.4e/MWh in 2009.
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The electricity prices remained low in 2010, with approximate the same average as in
2009. In fact, the MIBEL experienced one of the lowest electricity prices on the first
quarter of 2010 [25].

Also worth mention is the lowest price value of zero and the highest of 93e/MWh
reached in 2013. In April 2003, an unprecedented combination of high hydro-based
power generation level and lower level of fossil fuel generation, costlier than the re-
newables or nuclear, took place in Iberia Peninsula. This exceptional combination of
power generation sources lead to several days in April with average prices between zero
and 10e/MWh [25]. On the other hand, the wind and hydro-based power generation
decreased in December 2013. Therefore, the power generation mix was mainly composed
of expensive conventional sources, which drove the spot price up to 93e/MWh, the
highest value on the sample.

The next step is to determine monthly averages in electricity spot prices, and analyze
possible seasonal patterns. By looking at monthly averages, we are removing intra-daily
and weekly seasonal patterns. Monthly averages are given by the arithmetic mean of
the individual daily spot prices. The result is plotted in Fig. 7.3, and the descriptive
statistics is presented in Table 7.3. April has the lowest average price and September
the highest. Figure 7.3 (bottom panel) shows an high volatility on the first months that
is confirmed by the standard deviation in Table 7.3. The volatility is higher for months
between January and April (bottom panel of Fig. 7.3). The skewness and kurtosis
fluctuation ranges show that the distribution of spot prices is strongly dependent on the
month.
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Fig. 7.3 Monthly average spot prices (top) and volatility (bottom).

The average spot price decreases from January to April (Fig. 7.3). Then, in between
April and September, the price increases but with a slight decrease in August. October
and November show lower values than September, but in December it increases again.
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January February March April May June
Maximum 73.143 72.623 58.997 56.176 56.279 58.336

Year 2006 2006 2008 2008 2008 2008

Minimum 29.057 17.116 19.629 18.166 25.765 36.825

Year 2010 2014 2010 2013 2016 2009

Mean 48.428 43.567 37.687 37.138 41.996 46.228

Std. Dev. 13.800 16.927 12.527 11.951 8.4008 7.7127

Kurtosis 2.4583 2.3242 1.7973 1.8961 2.7214 1.5298

Skewness 0.5153 0.3031 0.1685 −0.0483 −0.2780 0.1456

July August September October November December
Maximum 68.189 70.101 73.028 69.768 66.532 63.640

Year 2008 2008 2008 2008 2008 2013

Minimum 34.618 34.677 35.805 35.782 32.390 30.434

Year 2009 2009 2007 2009 2009 2009

Mean 48.662 47.832 50.385 49.358 45.395 48.357

Std. Dev. 9.5764 10.021 10.723 9.5770 9.3478 10.261

Kurtosis 2.8070 3.3788 3.0322 3.0118 3.8209 2.2033

Skewness 0.5038 0.7211 0.5286 0.5924 0.9478 −0.2896

Table 7.3 Descriptive statistics of monthly averages spot prices.

To search for patterns connected with the four different seasons, we calculate the
average spot price for each one. Table 7.4 shows the obtained values. The highest average
price happen in fall and the lowest in spring. The summer has a higher average spot price
than winter. Prices are normally higher in summer when total demand is high, requiring
more expensive power generation so that supply can meet the increased demand. The
demand peaks coincide with the highest (summer) and lowest (winter) temperatures.
This relationship between electricity demand and temperature is non-linear, increasing
both for decreasing and increasing temperatures [26].

Fall Spring Summer Winter
Maximum 79.650 72.360 75.860 93.110

Minimum 9.5500 0.0000 18.180 0.4800

Mean 48.443 38.960 47.589 46.853

Std. Dev. 11.495 13.370 10.074 16.788

Kurtosis 2.9008 3.3120 2.7893 3.2470

Skewness 0.2209 −0.6617 0.4205 −0.0008

Table 7.4 Descriptive statistics of seasons average spot prices.
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The use of gas-powered equipment for heating, makes the residential consumption of
gas heaviest during winter months. Thus, the winter prices are higher compared with
lower summer prices. On the other hand, cooling is made via electric air-conditioning,
making the electricity demand highest on summer. Therefore, the gas prices show the
opposite season pattern compared with electricity prices.

7.2 Futures Market

In Fig. 7.4 are displayed the 1-month ahead (red), the 2-month ahead (blue), the 3-month
ahead (green), and the spot (black) prices 1. Table 7.5 contains their descriptive statistics.
From a visual inspection, all three futures series seem to follow a similar pattern, and
their fluctuation reflects the spot price movements. This behavior suggests the existence
of a comovement between the spot and futures prices.
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Fig. 7.4 Futures prices for the 1-month ahead (red), the 2-month ahead (blue), and the
3-month ahead (green) contracts. The spot prices (black) are also shown on the bottom
panel.

Comparing the descriptive statistics of both futures and spot prices (see Table 7.1),
we verify that the spot market is more volatile than the futures market. While the
average futures price increases with time do delivery, the volatility decreases. Both the
skewness and kurtosis increase with time do delivery, showing that the futures prices
distribution becomes more positive asymmetrical and leptokurtic. For all the three
futures prices series, the distributional normality is rejected by the Jarque-Bera test.

1Their definitions can be seen in Section 6.1.2.
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The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) statistical results show
that all series are stationary at the 0.1 level.

1-month ahead 2-month ahead 3-month ahead
Maximum 74.500 76.130 75.380

Day 2008-10-03 2008-09-08 2008-08-29
Minimum 24.250 26.880 28.750

Day 2014-02-20 2014-02-27 2015-01-02
Mean 47.886 48.838 49.083

Std. Dev. 9.3186 8.8254 7.9898

Kurtosis 3.1938 3.2379 3.5039

Skewness 0.2898 0.3687 0.5624

JB statistic 40.191 64.582 161.20

p-value 0.0000 0.0000 0.0000

ADF statistic −3.3815 −3.5220 −3.1617

p-value 0.0566 0.0402 0.0945

PP statistic −23.213 −22.722 −21.311

p-value 0.03707 0.04079 0.05286

Table 7.5 Descriptive statistics for the 1-month ahead, the 2-month ahead (blue), and
the 3-month ahead futures prices. The Jarque-Bera (JB) statistic is used to test the
normality: being the null hypothesis (H0) of normality tested against the alternative
hypothesis (H1) of non-normality. Augmented Dickey-Fuller (ADF) and Phillips-Perron
(PP) statistics are useful to check for the presence of unit roots: both test the null
hypothesis (H0) of presence of an unit root against the alternative hypothesis (H1) of no
unit root.

The cross correlation function for (Xt+h, Yt), where t = 0± 1± 2 + ... represents the
days, measures the correlation of both Xt+h and Yt series. In Fig. 7.5 we plot the cross
correlation function for (St+h, Ft). The conclusion one can take from Fig. 7.5 is that F1

follows the spot more closely, and both F2 and F3 are lagged with relation to the spot. In
other words, a fluctuation in the spot prices is transmitted firstly to the 1-month ahead
futures series, then it diffuses to the 2-month ahead futures, and finally to the 3-month
ahead futures. At a specific time, a fluctuation in the spot price market affects the future
expectations of the spot evolution, then the futures contracts that first reflect this new
information will be the ones with closest maturity.

In the process of forecasting month-ahead spot prices, market agents readjust and
accommodate new information arriving from spot prices fluctuations in their expecta-
tions. Therefore, it is expected that the correlation between one month-ahead and the
spot prices should be higher than two or three month-ahead prices. In fact, the higher
correlation values obtained between the spot and the one month-ahead futures prices
approve the visual comovement tendency of both series shown in Fig. 7.4.
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Fig. 7.5 Cross correlation function for (St+h, F
i
t ) , where t = 0± 1± 2 + ... is the lag. F 1,

F 2, and F 3 denotes, respectively, the 1-month ahead, the 2-month ahead, and 3-month
ahead futures prices.

To understand the dynamics of both futures and spot series, we show their values for
2009 and 2015 in Fig. 7.6. It is clear the higher volatility of the spot prices. While the
spot market is a one-day ahead market, the futures market is an 1 to 3 -month ahead
(for monthly contracts). The futures prices volatility is much lower than the one that
characterizes the spot market, which reflects the daily time dependent supply/demand
relationship.
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Fig. 7.6 Spot (black) and futures prices for the 1-month ahead (red), the 2-month ahead
(blue), and the 3-month ahead (green) contracts in the years 2009 (top) and 2015 (bottom).
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7.3 Risk Premium

Herein, we determine and analyze the ex-post risk premium of the SPEL base load
futures contracts for monthly delivery. For simplicity, we designate hereafter the ex-post
risk premium simple as risk premium. We have introduced the (ex-post) risk premium
in Chapter 4.3 as

RPt,T = RP ex-post
t,T = Ft,T − S̄T , (7.1)

where Ft,T stands for the futures price at trading day t with (future) delivery time
period T 2, and S̄T denotes the realized average spot price over the corresponding futures
delivery period T . Since the realized spot price S̄T is a known value, the futures risk
premium only depends on its price definition Ft,T .

The last trading day settlement price3 is generally used as contract price, which in
our notation is represented by t = 0. Distinct definitions can be used for the contract
price Ft,T , e.g., the average settlement prices over a specific trading period. Regardless
of how Ft,T is selected, each contract has an associated risk premium determined by
Eq. (7.2).

We calculate the risk premium for the futures contracts using the last trading days
settlement prices, F0,T , as futures prices,

RP0,T = F0,T − S̄T . (7.2)

The result is presented in Fig. 7.7. In the top panel we display both F0,T and S̄T , and
in the bottom panel the risk premium. The risk premium fluctuates between positive
and negative values. The relation between futures prices and the realized average spot
prices depends on the risk aversion among market participants.

2The delivery period is the time period following the trading period on which the financial settlement or
physical delivery of the electricity is processed.

3The last trading day settlement price is the settlement price on the last day on which a certain contract
is tradable in the market.
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Fig. 7.7 The futures prices on the last trading days, F0,T , and the average spot price in
the delivery period, S̄T (top), and the respective risk premium RP0,T (bottom) [Eq. (7.2)]
for each contract. The correlation coefficient between F0,T and S̄T is 0.8928

Sellers with a more risk-averse posture than buyers are willing to accept a lower
price for the futures, resulting in an average positive risk premium. Buyers with a more
risk-averse attitude than sellers are able to pay a higher price for the futures, and the
risk premium becomes negative on average. Accordingly, an electricity generator com-
pany can protect its exposure to spot price fluctuations by selling futures contracts on its
expected output. On the other hand, an electricity retailer company that wishes to cover
its exposure on spot prices buys futures contracts to secure its future electricity needs.
Futures are an import mechanism for transferring risk between market agents. The
correlation coefficient between F0,T and S̄T of 0.8928 shows their expected linear relation.

The behavior between futures and spot prices for each contract can be analyzed by
writing the risk premium as

RP0,T (%) =
F0,T − S̄T

S̄T
. (7.3)

The result of Eq. (7.3) is displayed in Fig 7.8, and a descriptive statistics summary is
given in Table 7.6.
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Fig. 7.8 The risk premium (%) for each contract [Eq. (7.3)].
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Several conclusions can be drawn: the risk premium is positive with an average value
of 7.5352%, the high volatility value 18.094 reflects a broad risk premium distribution,
the high kurtosis indicates the frequent occurrence of spikes in the risk premium
distribution, and the positive skewness reflects the more frequently occurrence of positive
spikes (Fig 7.8). The average positive risk premium indicates that market agents are
willing to pay a higher price for futures contracts in order to reduce their risk exposure.
The futures contracts were traded on average at 7.5352% above the spot prices.

Risk Premium (%)
Maximum 104.78

Contract FTB M Apr-13
Minimum −20.490

Contract FTB M Dec-13
Mean 7.5352

Std. Dev. 18.094

Kurtosis 15.505

Skewness 3.0655

ADF statistic −4.4847

p-value < 0.0100

PP statistic −129.40

p-value < 0.0100

Table 7.6 Descriptive statistics for the risk premium [Eq. (7.3)]. Augmented Dickey-
Fuller (ADF) and Phillips-Perron (PP) statistics are useful to check for the presence of
unit roots: they test the null hypothesis (H0) of the presence of an unit root against the
alternative hypothesis (H1) of no unit root.

The minimum and maximum risk premium occurred in April 2013 and December
2013, respectively. As we mentioned when we analyzed the spot prices, an unprecedented
mix power generation level occurred in April 2003, leading to several days with average
spot prices between zero and 10e/MWh. The opposite was reported in December 2013:
the power generation mix was mainly composed of expensive conventional sources that
drove the spot price up to 93e/MWh. Therefore, the maximum/minimum risk premium
values are explained by the inability to forecast these extreme spot movements. The
April 2013 contracts were traded at a price 105% higher than the realized average spot
prices. On the contrary, the December 2013 contracts were exchanged at a price 20%
lower than the the average realized spot prices.
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The risk premium may also be studied by delivery period. In Fig. 7.9 we show the
risk premium for each month (delivery period) as a function of the year. Monthly average
risk premium and the respective standard deviation are plotted in Fig. 7.10. Besides the
presence of a high volatility throughout the year, February and April have the highest
risk premium volatilities (see bottom panel of Fig. 7.10). The volatility distribution is
expected by the occurrence of intense spikes in the risk premium for the first months
of the year, particularly in February and April (see Fig. 7.9), where the risk premium
reaches values as high as 100%. The risk premium shows an overall oscillating pattern.
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Fig. 7.9 Risk premium by the contracts delivery periods.
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Fig. 7.10 Monthly average risk premium (top) and standard deviation (bottom).

It is also interesting to analyze the risk premium by season. Some statistical infor-
mation can be seen in Table 7.7. The risk premium and its volatility are higher in winter
and lower in summer. The winter futures contracts were traded on average 17.1% higher
than the respective realized spot prices. On the other hand, summer futures contracts
were traded on average 2.3% higher than the realized spot prices. Furthermore, the
lowest risk premium volatility on summer reflects the higher forecast power of futures
market players for the summer months spot prices.

Fall Spring Summer Winter
Maximum (%) 35.483 104.78 18.435 102.74

Minimum (%) −20.490 −15.017 −15.181 −9.0458

Mean (%) 3.6384 7.5626 2.3188 17.098

Std. Dev. 11.000 20.699 7.0426 25.095

Kurtosis 3.9723 17.541 3.0683 6.0677

Skewness 0.4421 3.5922 −0.0876 1.7825

Table 7.7 Descriptive statistics of the average risk premium by season.

7.3.1 Trading period

The trading period of a contract comprises the time period between the first and the last
trading days, during which the futures contracts can be traded. To analyze how the risk
premium behaves over the trading period, we synchronize all futures contracts by their
last trading days (we follow the procedure applied in [21]). We determine the average
risk premium over all contracts as a function of the remaining trading days, i.e., the risk
premium at each trading day is averaged over all contracts.
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For the contracts synchronization procedure one must assure that only business days
are considered. This is simple to obtain since the trading period only covers the trading
days, and thus only business days. If we define a variable that gives the remaining
number of days until the last trading day of a contract, different results are obtained
whether it is considered the total number of days or only the number of trading days
(business days). We illustrate this feature in Fig. 7.11, where we plot several January
contracts prices as a function of both remaining days and trading days until the last
trading day.
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Fig. 7.11 The price of futures contracts with delivery in January 2011-2015 as a function
of the days (left) and the trading days (right) up to the last contracts trading days.

Hence, different results are obtained whether the average risk premium over all
contracts is performed by the remaining trading days or the by remaining days until the
last trading day. The results are shown in Fig. 7.12. The average risk premium to be
considered must be the one determined as a function of the remaining trading days (blue
line). By looking at Fig. 7.12, we see that the risk premium decreases as we get closer to
the last trading day, or, in other words, as the remaining trading days decreases. This
means that hedging electricity production near the contract maturity has a lower return
than hedging long time prior to contract maturity. On the other hand, hedging electricity
needs near the contract maturity has a higher return than hedging long time prior.
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When we look at the average risk premium as a function of the remaining trading
days in Fig. 7.13, a striking result is seen: a non-linear dependence of the average risk
premium is present. Even though it seems to exist an almost linear dependence for the
last 7 trading days (center panel in Fig. 7.13), an approximate square root dependence
is present when we consider the last 80 trading days: RPt,T ∝

√
t, where t stands for the

remaining trading days, with t = 0 representing the last trading day. The variation of
the risk premium is more intense near the contract maturity. This seems a reasonable
feature since the forecast power depends in a non-linear fashion on time to maturity:
the information near the maturity is much more reliable for an accurate forecasting of
the future spot prices, and thus the risk premium converges quickly to lower values.
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Fig. 7.13 Average risk premium over all contracts as a function of the remaining trading
days (left panel) and a zoom for the last 30 trading days (center panel). The linear
regression of the left panel data is shown on the right panel.

We perform a linear regression for the risk premium on the the square root of the
remaining trading days t,

RPt,T = α+ β
√
t+ ϵ. (7.4)

The regression results are shown in Table 7.8 and in the right panel of Fig. 7.13.

α p-value β p-value R2

7.6711 0.0000 1.1171 0.0000 0.9495

Table 7.8 Results for the linear regression [Eq. (7.4)].

An increasing risk premium with increasing time to the contract maturity was also
obtained for the California-Oregon Border area in [21], but with a linear dependence. In
[19], for futures contracts traded in the European Energy Exchange (EEX) for delivery
in Germany, the same behavior is seen in the region of 60 to 70 days to maturity, but
with a subsequently decrease more far for maturity. Its behavior followed a quadratic
plus a linear dependence for the risk premium on days to maturity [19].
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7.3.2 Dynamics

In the previous Section, we concluded that the risk premium decreases as we approach
the last trading day (as the remaining trading days decreases). Herein, the same
conclusion is achieved trough a different approach. We calculate the risk premium for
each contract by taking as the futures price, Ft,T , the average settlement prices over:
the last 0-30 trading days, F[0,30],T ; the last 30-60 trading days, F[30,60],T ; and the last
60-90 trading days, F[60,90],T . The results are displayed in Fig. 7.14 and the respective
descriptive statistics summary in Table 7.9.
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Fig. 7.14 Risk premium (%) (bottom) for every contract by using as contract price (top)
the average settlement prices over: the last 0-30 trading days, F[0,30],T (red); the last
30-60 trading days, F[30,60],T (green); the last 60-90 trading days, F[60,90],T (blue); and the
last trading day price, F0,T .

Several important conclusions can be taken from Fig. 7.14 and Table 7.9. The
average risk premium and volatility decrease as we approach the contracts maturity.
When the contracts are being traded far from their maturity, the high risk premium and
volatility reflect the poor and divergent forecasts made by market agents. As the trading
day approximates the last trading day and thus the contract maturity, the available
information allows more accurate forecasts, and the forecast discrepancy decreases. This
characteristic explains the decrease of both the average risk premium and volatility as
the trading period advances towards the contracts maturity.
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RP{F0,T} RP{F[0−30],T} RP{F[30−60],T} RP{F[60−90],T}
Maximum (%) 104.78 160.40 238.99 199.92

Minimum (%) −20.490 −24.466 −27.935 −31.860

Mean (%) 7.5352 10.576 14.348 15.921

Std. Dev. 18.094 24.555 32.462 32.482

Kurtosis 15.505 16.918 23.445 13.495

Skewness 3.0655 3.1652 3.7769 2.6814

ADF statistic −4.5228 −4.4352 −4.3306 −4.1417

p-value < 0.0100 < 0.0100 < 0.0100 < 0.0100

PP statistic −123.18 −122.91 −126.58 −126.55

p-value < 0.0100 < 0.0100 < 0.0100 < 0.0100

Table 7.9 Risk premium (%) descriptive statistics using as contract price the average
settlement prices over: the last 0-30 trading days, F[0,30],T ; the last 30-60 trading
days, F[30,60],T ; the last 60-90 trading days, F[60,90],T ; and the last trading day price,
F0,T . Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) statistics check for the
presence of unit roots: both test the null hypothesis (H0) of presence of an unit root
against the alternative hypothesis (H1) of no unit root.

In Fig. 7.15 we show the risk premium for August contracts. As the last trading
day gets closer, the risk premium differs among contracts. To illustrate, let us focus on
the 2007 and 2008 August contracts. The average risk premium of the 2008 contract
is higher than 25% for the 60-90 trading days (blue line), then it decreases to 15% for
the 30-60 trading days (green line), and, finally, the average risk premium of the last
30 trading days (red line) is already very close to the risk premium in the last trading
day (black). For the 2008 contract, a similar behavior occurs but with negative values
for the risk premium. In both cases, the forecasting accuracy increases as the contract
maturity approaches. The positive and negative values for the risk premium show an
underestimate and an overestimate of the future spot price in the years 2007 and 2008,
respectively.
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Fig. 7.15 Risk premium for August contracts by using as contract price the average
settlement prices over: the last 0-30 trading days, F[0,30],T (red); the last 30-60 trading
days, F[30,60],T (green); the last 60-90 trading days, F[60,90],T (blue); and the last trading
day price, F0,T (black). T corresponds to August months for the years 2009-2016.
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7.3.3 Unbiased Forward Hypothesis

In an efficient market the futures prices are the best predictors of future spot. Therefore,
there is no risk premium in efficient markets. Several studies show, however, that the
futures prices are not unbiased predictors of future spot due to a time varying risk
premium. The presence of risk premium indicates that the market is inefficient. In elec-
tricity markets, where consumers and generators can negotiate in both spot and futures
markets, these inefficiencies can be explored in designing strategies with risk-less profits.

The weak-form of the Efficient Market Hypothesis implies that asset prices incor-
porate all available historical information, and that price changes are unpredictable in
terms of their own past. In forward markets this means that all available information is
incorporated into forward prices. Historical spot price information should not improve
predictions of future spot prices when compared to predictions based exclusively on the
forward prices. An intuitive way to test the weak-form Efficient Market Hypothesis
is via the unbiased forward hypothesis, which states that futures prices are unbiased
forecasts of future spot prices, i.e.,

S̄T = α+ βFt,T + ϵT , (7.5)

if α = 0 and β = 1. The residuals ϵT must have zero mean and being non-correlated. As
in [27], we assumed that an α significantly different from zero indicates the presence
of systematic risk premium, and β significantly different from one shows evidence of
biased predictions, and thus of a forecast error.

We are going to analyze the linear regression, Eq. (7.5), using several definitions for
the futures contract price, Ft,T . Let us denote the remaining trading days by t = 0, 1, 2, ....
As before, F0,T is the contract price on the last trading day (the last settlement price).
We define F[t1,t2],T as the average settlement prices between the trading days t1 and t2,
and Fall,T is the average settlement prices over the whole trading period.

We start by fixing t1 = 0, i.e., F[0,t2],T , and increase t2 in order to compare the
regression results with the ones obtained for F0,T . Table 7.10 summarizes the results.
To take non-spurious conclusions from the regression analysis, both series must be
stationary. Otherwise, misleading results could be obtained due to spurious regression.
From the ADF and the PP unit root tests, we reject the null hypothesis of non-stationary
for all series. Even though the residuals show no correlations, the residuals squared
for F[0,5],T , F[0,10],T , and F[0,15],T seam to contain some correlations. Then, we perform a
robust linear regression using the Newey–West estimator, which uses heteroskedasticity
and auto-correlation consistent covariance matrix estimators.

From Table 7.10 we see that as we increase the time window, on which the price
average is performed, the α becomes statistically zero. α is statistically different from
zero at 0.1 level only for both F0,T and F[0,5],T . Therefore, unless we use as contract
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price the last trading day or the last five trading days average, there is no evidence for
systematic risk using averages over longer trading periods. Furthermore, β is always
significant and its value increases as we approach the last trading day. When we take
Fall,T , the estimated value β = 0.94981 indicates that the forecasts made by market
agents underestimated the spot prices. On the other hand, we obtain β = 1.04164 for
F0,T that signs an overestimation of the spot prices. The best predictor of spot prices is
F[0,10],T , because the systematic risk is statistical zero and β is almost one.

F0,T F[0,5],T F[0,10],T F[0,15],T Fall,T

α −4.1705 −3.7762 −2.6531 −2.0225 −1.6372

p-values 0.0195 0.0581 0.2442 0.4055 0.6431

β 1.0416 1.0264 0.9973 0.9810 0.9498

p-value (H0 : β = 0) < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000

p-value (H0 : β = 1) 0.2348 0.5035 0.9526 0.6978 0.4728

R2 0.7971 0.7446 0.6906 0.6558 0.4694

Q(10) 7.7012 9.3203 10.891 11.527 21.665

p-value 0.6580 0.5020 0.3660 0.3179 0.0169

Q2(10) 9.9179 18.401 23.846 26.076 13.420

p-value 0.4477 0.0486 0.0080 0.0036 0.2012

DW 2.0297 2.0076 2.0340 2.0328 2.1410

p-value 0.5696 0.5210 0.5794 0.5773 0.7875

ADF −3.2061 −3.2299 −3.1809 −3.2366 −2.9878

p-value 0.0197 0.0184 0.0212 0.0180 0.0361

PP −143.65 −144.72 −146.37 −148.46 −140.76

p-value < 0.0100 < 0.0100 < 0.0100 < 0.0100 < 0.0100

KPSS 0.3034 0.3145 0.3016 0.2902 0.2440

p-value > 0.1000 > 0.1000 > 0.1000 > 0.1000 > 0.1000

Table 7.10 Summary statistics of the robust linear regression of Eq. 7.5, using
Newey–West estimators, i.e., heteroskedasticity and autocorrelation consistent covari-
ance matrix estimators. Null hypothesis: α = 0 and β = 0 [α = 0 and β = 1]. The Ljung-
Box statistics Q(10) (we used 10 lag autocorrelation coefficients) and the Durbin-Watson
(DW) test the null hypothesis of no residual autocorrelation. Q2(10) is the Ljung-Box
statistics applied to the residuals squared. We applied the Augmented Dickey-Fuller
(ADF), the Phillips-Perron (PP), and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
tests to each Fi,T series. In both ADF and PP tests the the null hypothesis (H0) is the of
presence of an unit root, and the alternative hypothesis (H1) is the absence of an unit
root. In the KPSS test the null hypothesis (H0) is level stationary. The Fi,T series are
defined as follows: F0 is contract price on the last trading day, F[t1,t2],T is the average
contract price between the trading days t1 and t2, and Fall,T is the average price over the
whole trading period.
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A similar analysis can be implement by defining F = F[t1,t2],T , where [t1, t2] takes the
following values: [1, 5], [5, 11], [12, 17], and [18, 23]. This way we have a rolling window
with fixed time length of t2 − t1 = 5 trading days. The contract price is defined as the
average price over the trading days enclosed by the window. The results are presented
in Table 7.11. As before, a similar behavior is seen: as the window gets near the last
trading day (one approaches the contract maturity), β takes higher values and the α

becomes statistical significant.

F0,T F[1−5],T F[6−11],T F[12−17],T F[18−23],T

α −4.1705 −3.4866 −0.1349 1.0807 1.0598

p-value 0.0195 0.0912 0.9598 0.7002 0.7127

β 1.0416 1.0189 0.9381 0.9079 0.9009

p-value < 0.0000 < 0.0000 < 0.0000 < 0.0000 < 0.0000

R2 0.7971 0.7310 0.6073 0.5581 0.5268

Table 7.11 Summary statistics of the robust linear regression of [Eq. 7.5], using
Newey–West estimators, i.e., heteroskedasticity and autocorrelation consistent covari-
ance matrix estimators. Null hypothesis: α = 0 and β = 0. F0,T is contract price on the
last trading day, F[t1,t2],T is the average contract price between the trading days t1 and
t2.

The main impression is that β is not statistically different from one for all definitions
of the futures contract price. Thought not statistically different from one, its estimated
value increases as we approximate the last trading day price F0,T . An underestimate
(β < 1) is present when the whole trading period is considered, but for the last settlement
price an overestimate (β > 1) occurs. The significance of α also increases when we
approach the contract last trading day. When the futures contracts price is F[0,10],T , i.e.,
an average over the last 10 trading days, the estimated parameters are very close to the
null hypothesis α = 0 and β = 1.

7.3.4 Predictability

As already mentioned, the weak-form of the Efficient Market Hypothesis suggests that
asset prices incorporate all the available historical information, and that price changes
are unpredictable in terms of their own past. Therefore, it must be impossible to predict
ex-ante the future asset prices. Within the present context, it translates into the impos-
sibility of predicting the risk premium using all the available historical information.

Thus, in this section we analyze whether the spot and futures prices contain some
information on the realized risk premium.
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I) Futures base

Let us first examine if the futures base, at a specific day to maturity, contains information
about the risk premium. The futures base is given by

Bt,T = log(Ft,T )− log(St) = log

(
Ft,T

St

)
,

where Ft,T and St are the futures and the spot prices, respectively. The index t represents
the remaining trading days, i.e., the number of trading days until the last contract
trading day. We want to investigate if the basis has an explanatory power on the realized
risk premium. Therefore, we consider the following linear regression

RP log
0,T = α+ βBt,T + ϵT , (7.6)

where
RP log

0,T = log(F0,T )− log(S̄T ) = log

(
F0,T

S̄T

)
. (7.7)

F0,T indicates that the contract risk premium is determined using the last trading day
price. The regression results for each t = 1, 2, ..., 10 remaining trading days are in Table
7.12.

α p-value β p-value R2 Q(10) p-value Freq (sign)
B1,T 0.0507 0.0000 0.2876 0.0000 0.1429 5.5073 0.8548 0.5854

B2,T 0.0485 0.0003 0.2493 0.0000 0.1402 4.4351 0.9256 0.6179

B3,T 0.0383 0.0002 0.2478 0.0000 0.2895 6.6021 0.7624 0.6504

B4,T 0.0451 0.0000 0.3175 0.0001 0.1932 5.7289 0.8375 0.7154

B5,T 0.0589 0.0000 0.2017 0.0046 0.0281 5.3783 0.8645 0.6748

B6,T 0.0608 0.0001 0.0295 0.6467 0.0013 6.7836 0.7457 0.5854

B7,T 0.0625 0.0000 −0.0248 0.3840 0.0031 8.1313 0.6160 0.6016

B8,T 0.0587 0.0000 0.1295 0.4201 0.0265 7.1669 0.7096 0.6016

B9,T 0.0607 0.0000 0.0674 0.4781 0.0038 7.1557 0.7107 0.6344

B10,T 0.0601 0.0000 0.0220 0.7702 0.0017 7.1154 0.7145 0.6098

Table 7.12 Summary statistics of the robust linear regression [Eq. (7.6)], using
Newey–West estimators, i.e., heteroskedasticity and autocorrelation consistent covari-
ance matrix estimators. Freq (sign) is the ratio of the number of times that the signs
of Bt,T and RP log

0,T match. The Ljung-Box statistics Q(10) test the null hypothesis of no
residual autocorrelation.

The main conclusion is that the statistical significance of the futures base explanatory
power on the risk premium increases as t approximates the last trading day. Despite the
increasing R2 values (measuring the amount of risk premium variation explained by the
basis) near the last trading day, their low values indicates that the futures base do not
contain much information on the realized risk premium.
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II) Spot Return

Let us now analyze a possible relation between the risk premium and the return of spot
prices. We consider the following regression equation,

RP log
0,T = α+ β∆S[t1,t2],T + ϵT , (7.8)

where
∆S[t1,t2],T = log

(
St2

St1

)
(7.9)

is the spot return over the period [t1, t2]. Equation 7.8 relates the risk premium of
a contract, RP log

0,T , with the spot return over a specific time period [t1, t2], denoted by
∆S[t1,t2],T .

Table 7.13 shows the regression results by considering ∆S[t,t+1],T with t = 1, 2, ..., 10.,
which identifies the remaining trading days. The results for the case ∆S[1,t],T are
presented in Table 7.14.

α p-value β p-value R2 Q(10) p-value Freq (sign)
∆S[1,2],T 0.0611 < 0.0000 0.0412 0.7002 0.0023 6.9930 0.7261 0.5040

∆S[2,3],T 0.0541 < 0.0000 0.1949 0.0386 0.1150 11.559 0.3156 0.5690

∆S[3,4],T 0.0528 < 0.0000 −0.1906 0.0261 0.1143 5.0720 0.8863 0.4800

∆S[4,5],T 0.0512 < 0.0000 −0.2469 0.0062 0.1347 8.7398 0.5570 0.4800

∆S[5,6],T 0.0634 < 0.0000 −0.2085 0.0708 0.0279 8.8131 0.5499 0.4230

∆S[6,7],T 0.0620 < 0.0000 −0.0395 0.2428 0.0069 7.8697 0.6416 0.4720

∆S[7,8],T 0.0626 < 0.0000 0.0640 0.3727 0.0208 9.3690 0.4975 0.5040

∆S[8,9],T 0.0601 < 0.0000 −0.1368 0.5398 0.0217 7.3863 0.6885 0.5770

∆S[9,10],T 0.0615 < 0.0000 0.0017 0.9825 0.0000 7.2832 0.6985 0.5040

∆S[10,11],T 0.0646 < 0.0000 0.3590 0.0034 0.1387 7.0728 0.7186 0.5690

Table 7.13 Summary statistics of the robust linear regression [Eq. 7.8], using
Newey–West estimators, i.e., heteroskedasticity and autocorrelation consistent covari-
ance matrix estimators. Freq (sign) is the ratio of the number of times that the signs of
∆S[t1,t2],T and RP log

0,T match. The Ljung-Box statistics Q(10) test the null hypothesis of no
residual autocorrelation.

The first conclusion from Table 7.13 is that ∆S[4,5],T and ∆S[10,11],T show the highest
significance. Freq (sign) is the ratio of the number of times that the signs of ∆S[t1,t2],T

and RP log
0,T match. As expected, their values are likely to fluctuate around 50% due to

randomness. Tables 7.13 and 7.14 show that the significance of β also increases in the
last trading days.
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α p-value β p-value R2 Q(10) p-value Freq (sign)
∆S[1,3],T 0.0538 < 0.0000 0.1543 0.0496 0.0998 9.7768 0.4603 0.5450

∆S[1,4],T 0.0615 < 0.0000 0.0191 0.7779 0.0009 7.6795 0.6601 0.5530

∆S[1,5],T 0.0530 < 0.0000 −0.2292 0.0002 0.1143 5.2970 0.8705 0.5280

∆S[1,6],T 0.0544 < 0.0000 −0.2484 0.0011 0.1571 7.3955 0.6877 0.4880

∆S[1,7],T 0.0590 < 0.0000 −0.1558 0.0885 0.1258 8.0210 0.6268 0.5280

∆S[1,8],T 0.0544 < 0.0000 −0.2170 0.0248 0.1046 4.4126 0.9268 0.5040

∆S[1,9],T 0.0502 < 0.0000 −0.2639 < 0.0000 0.1690 4.0597 0.9446 0.5200

∆S[1,10],T 0.0628 < 0.0000 −0.1364 0.0131 0.0863 5.5589 0.8509 0.4550

Table 7.14 Summary statistics of the robust linear regression [Eq. 7.8], using
Newey–West estimators, i.e., heteroskedasticity and autocorrelation consistent covari-
ance matrix estimators. Freq (sign) is the ratio of the number of times that the signs of
∆S[t1,t2],T and RP log

0,T match. The Ljung-Box statistics Q(10) test the null hypothesis of no
residual autocorrelation.

III) Future Return

As a last step, we analyze a possible relation between futures prices return and the
realized risk premium. As for the spot return, we analyze a possible linear relation
between the risk premium and the return of futures contracts. We consider the following
regression equation,

RP log
0,T = α+ β∆F[t1,t2],T + ϵT , (7.10)

where
∆F[t1,t2],T = log

(
Ft2,T

Ft1,T

)
(7.11)

is the futures contract return over the trading period [t1, t2]. The above linear equation
relates the risk premium of a contract, RP log

0,T , with the futures return in a specific
trading time period [t1, t2], ∆F[t1,t2],T .

The results are presented in Tables 7.15 and 7.16. We see that the statistical signifi-
cance of α is always realized, and for β increases as we move towards the last trading
day. It means that the explanatory power of the regressor ∆F[t1,t2],T is more significant
near the contract maturity. When we compare these results with the ones obtained for
the futures base and spot returns, a main difference is noticeable in the R2 regression
values. The model explains almost 30% of the variation risk premium for both ∆F[1,6],T

and ∆F[1,7],T (Table 7.16).

Two striking results are present in Tables 7.15 and 7.16: the signs of the estimated
β values and the magnitude of Rsign. The β values are always negative, meaning that
whatever the period on which the futures return is computed, as long as we are nearer
the maturity, the risk premium has a negative dependence on the futures return. If
the futures return increases the risk premium decreases, or the other way around.
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Furthermore, it is remarkable the low values that Rsign continuously takes. From Table
7.16, the Rsign values are repeatedly of the order of %30, i.e, the signs of ∆F[t1,t2],T and
RP log

0,T only match %30 of the times. In other words, ∆F[t1,t2],T (calculated near maturity)
and RP log

0,T show opposite signs %70 of the times. These two features indicate that futures
returns near maturity contain information on the realized risk premium.

α p-value β p-value R2 Q(10) p-value Freq (sign)
∆F[1,2],T 0.0601 < 0.0000 −0.5947 0.2887 0.0055 6.6488 0.7581 0.3500

∆F[2,3],T 0.0577 < 0.0000 −1.2131 0.2226 0.0188 6.2562 0.7933 0.4150

∆F[3,4],T 0.0508 < 0.0000 −2.8023 0.0001 0.1129 8.4238 0.5875 0.3330

∆F[4,5],T 0.0521 < 0.0001 −2.7992 0.0026 0.2131 4.5747 0.9177 0.3170

∆F[5,6],T 0.0558 < 0.0000 −2.0005 0.0088 0.0748 7.7339 0.6548 0.3580

∆F[6,7],T 0.0614 < 0.0000 −0.5008 0.2572 0.0037 7.3218 0.6948 0.4720

∆F[7,8],T 0.0613 < 0.0000 −0.2768 0.7367 0.0011 7.3847 0.6887 0.4720

∆F[8,9],T 0.0612 < 0.0000 −0.5800 0.4288 0.0058 7.8531 0.6432 0.4390

∆F[9,10],T 0.0606 < 0.0000 −0.8048 0.1982 0.0133 7.8235 0.6461 0.5040

∆F[10,11],T 0.0603 < 0.0000 −2.1435 0.0269 0.0507 11.545 0.3167 0.4550

Table 7.15 Summary statistics of the robust linear regression [Eq. 7.10], using
Newey–West estimators, i.e., heteroskedasticity and autocorrelation consistent covari-
ance matrix estimators. Freq (sign) is the ratio of the number of times that the signs of
∆F[t1,t2],T and RP log

0,T match. The Ljung-Box statistics Q(10) test the null hypothesis of
no residual autocorrelation.

α p-value β p-value R2 Q(10) p-value Freq (sign)
∆F[1,3],T 0.0576 0.0000 −0.7027 0.1070 0.0174 5.9439 0.8200 0.3740

∆F[1,4],T 0.0506 0.0000 −1.1520 < 0.0004 0.0749 5.4723 0.8575 0.3330

∆F[1,5],T 0.0404 0.0000 −1.6454 < 0.0000 0.2322 2.7643 0.9864 0.2850

∆F[1,6],T 0.0360 0.0004 −1.6226 < 0.0000 0.2897 2.4814 0.9911 0.2930

∆F[1,7],T 0.0379 0.0003 −1.4718 < 0.0000 0.2735 3.1241 0.9783 0.2850

∆F[1,8],T 0.0382 0.0002 −1.3770 < 0.0000 0.2614 2.6581 0.9884 0.2930

∆F[1,9],T 0.0390 0.0002 −1.2793 < 0.0000 0.2556 4.7629 0.9064 0.3010

∆F[1,10],T 0.0421 0.0000 −1.0400 < 0.0000 0.2249 6.8523 0.7393 0.3090

Table 7.16 Summary statistics of the robust linear regression [Eq. 7.10], using
Newey–West estimators, i.e., heteroskedasticity and autocorrelation consistent covari-
ance matrix estimators. Freq (sign) is the ratio of the number of times that the signs of
∆F[t1,t2],T and RP log

0,T match. The Ljung-Box statistics Q(10) test the null hypothesis of
no residual autocorrelation.





Chapter 8

Conclusion

This work provided an empirical analysis of electricity spot and futures markets of the
Iberian Electrical Energy Market, and on the forward risk premium.

The constructed data-set covers the period from 1 March 2006 to 30 September 2016.
The monthly contracts are the most liquid contracts in the Iberian futures electricity
market. In this work we focused on monthly base (covers all daily hours) contracts, and
our data-set incorporates 123 contracts. We analyzed the liquidity of monthly futures
contracts, showing that the average of both the number of trades and the volume traded
increases gradually as the contracts approximate their last trading day. We constructed
three times series for the one-month ahead, two-month ahead, and three-month ahead
futures prices.

We examined the dynamics of both the spot and futures prices. We found the pres-
ence of high volatility clustering and the occurrence of spikes on the spot prices. These
features are mainly attributed to the non-storable property of electricity, and thus to the
required perfect equilibrium of supply and demand at every time. Seasonal patters were
found in spot dynamics at different time scales. The average spot price was higher in
summer and lower in spring.

We found evidences of a collective movement between the spot and the futures prices.
A fluctuation in the spot prices is transmitted firstly to the futures contracts close to
maturity. The futures prices volatility is lower than the spot prices volatility, reflecting
the daily time dependent supply/demand relationship in spot market.

We determined the ex-post risk premium and show that it fluctuates between positive
and negative values. The risk premium turned out to be 7.53% on average. Therefore,
the futures contracts were traded on average at a value 7.53% higher than the realized
spot prices. We studied the month and season risk premium distribution, concluding
that the volatility is higher in winter and lower in summer. The winter futures contracts
were traded on average 17.1% higher than the respective spot prices. We found that
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the risk premium exhibits a square root dependence on the trading days to maturity,
showing an intense variation to lower values as the contract maturity approaches.

We tested the unbiased forward hypothesis, showing that there is no statistical
indication of biased predictions when the futures prices far from maturity are used. On
the other hand, when the contract maturity gets closer, there is statistical indications
for rejecting the unbiased forward hypothesis .

Finally, we look for explanatory power of the futures base, spot return, and futures
return on the realized risk premium. Though we found no statistical indication of
explanatory power for the futures base and spot return cases, a statistical significance
was observed for the futures return near maturity. The risk premium has a negative
dependence on the futures return, as long as we are nearer the maturity. Furthermore,
it was remarkable that futures returns and risk premium turned out to have opposite
signs %70 of the times. These two features indicate that futures return near maturity
contains information about the risk premium.

As a future work, we would like to determine the hedge ratio, i.e., the ratio of
the position that one should take in futures contracts that will exactly cancel out the
exposure in the spot market.
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