

Abstract

In this work we have created a versatile evolutionary algorithm
that can evolve an auto encoder neural network structure in an
attempt to maximize the performance of di↵erent classifiers by
using the resulting compressed version of the instances. During
this process the algorithm searches for structures that compress
as much as possible the representation to facilitate the classi-
fiers training while maintain the necessary information in the
datasets.

This approach is set around the evolution of the number and
size of the layers of a deep autoencoder, which is then trained
using back propagation in a semi supervised fashion. The tests
executed spanned multiple classifiers, and show promising re-
sults in which we observed an overall improvement in the classi-
fication on most the cases and, as expected, significant decrease
in the training times.

On the context of this thesis, a methodical approach was taken
to analyze the impact that an autoencoder has, and how it be-
haves when its structure is evolved by means of Evolutionary
Computation. As a stepping stone for the final work, pre-
liminary experiments were performed, where multiple auto en-
coders were implemented and tested to confirm their correct
behaviour and performance. To complement this a an evolu-
tionary algorithm was tested in order to assess the usefulness
and potential of evolving the structures, without imposing any
restrictions on their shape.

Keywords

Deep Learning, AutoEncoder, Evolutionary Algorithms

i

Resumo

No decorrer desta dissertação foi criado um algoritmo evolu-
cionário altamente versátil capaz de evoluir com sucesso a es-
trutura de um rede neural de auto encoder, que procura max-
imizar a performance de diferentes classificadores. Durante
este processo, o algoritmo procura maximizar a compressão de
forma a facilitar a tarefa de treino dos classificadores sem que
exista perda de performance dos mesmos.

Esta abordagem consiste na evolução do número de camadas
e número de neurónios presentes em cada uma, sendo a estru-
tura treinada de forma semi supervisionada através de retro-
propagação. Foram executados testes sobre um leque variado
de classificadores, onde observámos uma melhoria na sua per-
formance bem como uma significativa redução nos tempos de
treino.

No contexto desta tese , consta tambem uma análise metódica
sobre o funcionamento e performance de autoencoders profun-
dos e quais são as vantagens práticas de evoluir a sua estrutura.
Como primeiro passo, no decorrer do trabalho, foram testados
múltiplos autoencoders e abordagens evolucionárias de forma
a confirmar o seu comportamento e performance.

Palavras-Chave

Deep Learning, AutoEncoder, Computação Evolucionária

iii

Contents

1 Introduction 1
1.1 Scope . 2
1.2 Goals . 2
1.3 Document Structure . 2

2 State of Art 3
2.1 Evolutionary Computation . 3
2.2 Neural Networks . 8

2.2.1 Deep Learning . 9
2.3 Autoencoders . 11
2.4 Neuroevolution . 14

3 Automatic Evolution of Deep Autoencoders 15
3.1 AutoEncoder Implementation . 15
3.2 EA Implementation . 17

3.2.1 Fitness Function . 18
3.2.2 Mutation Operators . 19
3.2.3 Crossover Operator . 19
3.2.4 Parent Selection . 19
3.2.5 Survivor Selection . 20
3.2.6 Initialization . 20
3.2.7 Stop Criteria . 20

3.3 Evolutionary Experiments . 20
3.3.1 EA Changes . 23
3.3.2 Final Approach . 25

4 Conclusions and Future Work 30

v

Acronyms

AE AutoEncoder.

ANN Artificial Neural Network.

BCE Binary Cross Entropy.

CAE Convolutional Autoencoder.

CNN Generative Adversial Network.

DAE Denoising Autoencoder.

DBN Deep Belief Network.

EA Evolutionary Algorithm.

EC Evolutionary Computation.

GAN Generative Adversial Network.

LSTM Long Short Term Memory.

NE Neuro Evolution.

VAE Variational Autoencoder.

vii

List of Figures

2.1 Evolutionary Algorithm flowchart. 4
2.2 Scheme of a natural neuron, and synapse. 8
2.3 Artificial neuron representation. 8
2.4 Feed-forward Artificial Neural Network structure. 9
2.5 Architecture of shallow vs deep networks. 10
2.6 Example of a symmetric Deep AutoEncoder 11
2.7 Stacking autoencoders to initialize weights [34] 12
2.8 Example of a non symmetric Deep AutoEncoder. 13

3.1 Visual inspections of error intervals . 16
3.2 Impact of the compression value (x) on the error on the test set (y) 18
3.3 Example of the application of the used crossover operators. 19
3.4 Evolution of compression layer size. Results are average of 10 independent

runs. 21
3.5 Best solutions fitness evolution. 22
3.6 Populations fitness evolution. 22
3.7 Evolution of fitness of the best solutions across generations. Results are

average of 10 independent runs. 23
3.8 Compression of the best individuals per generation. 23
3.9 Fitness of the population per generation. 24
3.10 Updated binary crossover. 24
3.11 Fitness evolution averaged over 10 independent runs. 25
3.12 Evolution of fitness parameters averaged over 10 independent runs. 25
3.13 Results of the reconstruction with the target digits updated. On the top

row we have the original digits, on the middle the reconstructions and on
the bottom the targets . 26

3.14 Results from the best solutions found per generation averaged over 30 runs. 27

ix

List of Tables

3.1 Initial comparison between optimizers and epochs 17
3.2 Evolutionary Approach Parameters . 20
3.3 Initial Experiment Results . 21
3.4 Evolutionary approach parameters. 21
3.5 Second experiment results. 22
3.6 Evolutionary Approach Parameters . 27
3.7 Classifier performance comparison with and without using compression.

These results are averaged over the result of 30 AEs. The pvalue are the
result of a independent Mann Whitney. 28

3.8 Execution time in seconds, to train the classifier and to test on the validation
set. These results are averaged over the result of 30 AEs. 28

xi

List of Algorithms

1 Evolutionary Algorithm pseudo-code . 5

xiii

Chapter 1

Introduction

Nature has succeeded in bringing forth humanity as a whole through evolution, and these
manage to mold their surrounding to their will using the immense potential of their in-
tellectual. The question arises, if each succeeded on these seemly impossible tasks, can’t
we learn from them and apply them to solve the problems that we encounter? In com-
puter science, fueled by these question, arose the Evolutionary Computation and Neural
Networks fields which arbor nearly endless potential to solve close to any problem when
tailored to fit a certain solution, but are ultimately limited by the amount of data avail-
able for the given problem and computational power needed to be considered e↵ective
solutions.

Recent years have motivated a significant increase in the computational power which
has led deep learning to flourish, consequently leading to an increased and widespread
enthusiasm in the Pattern Recognition and Machine Learning areas.

Deep architectures are inspired in the neurosciences and aim at decomposing a hard prob-
lem into simpler tasks (recursive decomposition), by stacking several layers of neurons,
each one responsible for learning a di↵erent set of features. However, the problem of
finding the appropriate topology for an Artificial Neural Network (ANN) often follows
a trial-and-error approach, which is a di�cult and time consuming task. In order to
overcome this challenge, researchers have focused their attention on the development of
algorithms to automate the discovery of adequate topologies (and/or weights) of ANNs
relying on methods such as Evolutionary Computation(EC).

The main goal of this thesis is the study, understanding and development of an evolutionary
framework for the evolution of the topology of Deep autoencoders(AE). In brief words,
autoencoders are unsupervised learning models that aim at rebuilding the original data,
i.e., whereas typical feed-forward neural networks try to predict the correct classes (y)
from the input data (x), auto encoders try to predict x from x. Therefore, one of the
main advantages of autoencoders is their ability to learn compressed representations of
the original data, in a process that resembles similarities with common feature selection
techniques, such as the Principal Component Analysis (PCA) algorithm.

There are many variables in attempting to test this concept such as:

• How does an autoencoder behave with di↵erent types and sizes of data?

• What benefits does a deep architecture bring to the basic function of an auto en-
coder?

1

Chapter 1

• What elements in the topology of an autoencoder are relevant to its performance?

• What kind of evolutionary approach can we take on the training and/or design of
an autoencoder?

• How to measure the network compression and what is considered to be an acceptable
result of the autoencoder compression?

1.1 Scope

On the current thesis we will focus on the development and implementation of an Evolu-
tionary Algorithm(AE) that is both versatile and e↵ective in the compression of data sets
for use in other tasks such as classification, reducing the time required while improving
the performance of these methods. The final result should be able to evolve a population
of AutoEncoder Structures and provide the user with a fully trained AutoEncoder, that
should provide compression and feature selection for the task selected beforehand.

1.2 Goals

As stated before, the main goal of this study is to analyze the potential applications of
Deep autoencoders in a practical setting, while using an evolutionary approach to design
the autoencoders. We hope to achieve an evolutionary framework that can produce high
performing autoencoders, that can be applied to multiple problems with a minimum need
for user tweaking.

We intend to analyze the impact of choosing a structure for the Auto Encoder in its
performance and ability to improve the classification of standard classifiers.

1.3 Document Structure

This thesis is organized into three di↵erent Chapter, excluding the current one.

Chapter 2 presents itself as the analysis of the state of art and goes through a brief overview
of EC and NNs, followed by an analysis into autoencoders and NeuroEvolution(NE), which
are the key topics of this thesis.

Chapter 3 contains the detailed description of all the work done in this project, which
includes what tests were planned and how they were executed, followed by an analysis of
their results.

Chapter 4 closes o↵ the thesis with the roundup of the work made and how it translates
into results that met our goals followed by the observation of what work might be made
in the future.

2

Chapter 2

State of Art

This section aims at describing and presenting the work that has been done in the fields
within the scope of this thesis. As such we will start by analyzing Evolutionary Compu-
tation, what it is and how it has been used in the past followed by an introduction and
analysis of what are Artificial Neural Networks (ANNs) and what this field has produced
in practical settings. In the follow up we will explain what are AutoEncoders and how this
concept will be used in context of this thesis. To close this section we will briefly survey
the area that combines both the previous approaches (ANNs & EC), which is known as
NeuroEvolution, what di↵erent kind of algorithms and approaches does this area of study
contain and what results were obtained.

2.1 Evolutionary Computation

Finding solutions to real world problems has been for centuries the aim of scientists and
engineers alike. This problems can range from simple choices to how the universe is
expanding. Although some of these problems are very simple, others take years to discover
or are currently impossible to solve.

To fill this void, researchers changed their aim towards what has happened in nature, how
does nature solve this problems, how does it adapt to its ever changing environment and
thrives with what would seem custom tailored species that inhabit even the harshest en-
vironments. The immense variety of di↵erent species and their adaptation to the changes
in the environment through generations, can be explained by the overall accepted evolu-
tionary theory proposed by Darwin [9]. In this theory Darwin states that the evolution
observed in species occurs naturally due to the selection pressure the environment exerts
on the individuals, such as predatory relationships and resource scarcity, which result in
the demise of the poorly adapted individuals. This results on a higher chance of better
individuals to survive and reproduce (survival of the fittest) transferring their distinct
and vital characteristics to the next generations, thus improving the overall quality and
adaptation of a species as a whole.

This is interesting to computer science, since we can observe how evolution has been
able to solve and create interesting responses to problems across the world, from creating
cooperative behaviours in ants to evolving birds capability to extract nectar from plants,
by imposing morphological changes onto the species. It becomes clear that evolution
approaches is the ideal algorithm, one which can solve entirely di↵erent complex problems
in multiple ways, given only the context.

3

Chapter 2

Figure 2.1: Evolutionary Algorithm flowchart.

This concept was brought to life in the realms of computation as what is known as Evo-
lutionary Computation (EC) and its corresponding Evolutionary Algorithms (EAs).
These can be seen as stochastic search procedures that aim to solve problems[11]. One of
it’s greatest advantages lies in their capability of finding a good solution to a problem in
a limited amount of time or in search spaces that are unfeasible to be tackled by exact
algorithmic approaches, such as NP-hard, and have been used to create solutions for many
di↵erent real life problems that range from System Optimization to Pattern Recognition
[11].

Although there are many variations as to what is, and how an EA works, the basic structure
that is used in most of the approaches is still rooted in the traditional evolutionary process.
As such, EAs work on a population of individuals, where each represents a possible
solution to the problem that is being solved. The individuals are then evaluated on
how well they perform as a solution, usually by a numeric value attributed by a fitness
function (objective function) that seeks to module the problem to be solved. Knowing
the individual’s representation (genotype) and how it represents a solution (phenotype)
and its corresponding quality (fitness) we can simulate natural selection by means of
reproduction, where we select the individuals that will become parents. Usually, two
individuals are selected as parents, based on their fitness.Genetic operators are applied
to the parents. We apply a crossover function to produce new solutions (o↵spring), from
the combination of the parents genotype. As in nature we make it possible to occur
mutation to the o↵spring which enables new genetic material to be generated which might
be advantageous for the species. Once we have created the o↵spring we then select the next
generation; this is usually obtained by comparing the existing solutions fitness (survival
selection). This process is then repeated to the next generations of solutions until a stop
condition is fulfilled, which can range from the selected number of generations have gone
by, a time limit as been exceeded or the quality of the solutions has not improved after a
(fixed) period of time. We can represent this procedure as a flowchart, as seen below in
figure 2.1.

4

State of Art

Algorithm 1: Evolutionary Algorithm pseudo-code
Result: Best Solution

1 population = GENERATE POPULATION(size);
2 for indiv in population do
3 indiv.fitness = EVALUATE(indiv);
4 end
5 while stopCondition() == False do
6 parents = PARENT SELECTION(population);
7 o↵spring = RECOMBINATION(parents);
8 o↵spring = MUTATION(o↵spring);
9 for indiv in o↵spring do

10 indiv.fitness = EVALUATE(indiv);
11 end
12 population = SURVIVOR SELECTION(population, o↵spring);

13 end
14 return best indiv in population;

By analyzing figure 2.1 and algorithm 1, one can simply conclude that EAs fall into
the category of generate-and-test algorithms. The fitness function represents an heuristic
function of a solution’s quality and the search process is led by the selection, recombination
and mutation operators. EA possess some features that strengthen their position within
the category of generate-and-test, such as:

• Evolutionary Algorithms operate at population level. A collection of candidate so-
lutions are processed simultaneously;

• They mostly use recombination to create new candidate solutions from existing ones;

• They perform actions according to probabilistic information;

• They are easily parallelizable.

As the field matured we saw many di↵erent approaches appear with di↵erent interpre-
tations and implementations of the basic concepts of evolution. In many cases the ap-
proaches di↵er on how each individual presents itself, some take the form of string over
a finite alphabet, such as Genetic Algorithms (GA)[24] where others use real-valued vec-
tors (ES)[5] , finite state machines in classical evolutionary programming (EP)[13] or even
binary trees in classic Genetic Programming (GP)[28]. Other approaches di↵er from the
classical structure above by implementing variations on the algorithm, some were based
on other popular methods such as Particle Swarm Optimization (PSO)[48] or on other
biological systems such as the human immunity systems [10], other simply apply changes
such as sexual reproduction[43], competing species or evaluate individuals based on how
unique they are in novelty exploration approaches [37].

A given representation or approach might be more adequate than others if it matches the
problem better, i.e., if the encoding of candidate solutions represents an easier or more
natural form of solution to the problem. It is important but not vital to understand the
problem we wish to solve in order to select and fine tune the approach we intend to use
for the best results.

For a better understanding, we can further divide the structure of an EA into the several
elements, which are detailed in the following sections.

5

Chapter 2

Representation

In order to represent real world problems it is almost always necessary to represent the
problems in such a way that enables the computation of a problem, and it is clear that
there are multiple valid ways to represent the same problem. In order for a computer to
execute and manipulate a solution to produce new solutions there is a need to select the
representation of our individuals (genotypes), that will be modified and evaluated, which
is then mapped to a solution to the problem at hand (phenotype). The evolutionary search
takes place in the genotype space. A solution is obtained by decoding a genotype, and as
such it is desirable that all possible feasible solutions can be represented.

Fitness Function

The fitness function is one of the most important parts of an EA, since in its core is the
representation of the problem to be solved, and defines what improvement is for a solution,
serving as a way to distinguish between the many possible solutions. As such, it is the
basis for selecting the most fit individuals and thus inducing progress in the algorithm.

Technically, it is a function or procedure that assigns a quality measure to genotypes.
Typically, this function is composed from the inverse representation (to create the corre-
sponding phenotype) followed by a quality measure in the phenotype space.

Population

The population in any point of the execution, is the set of possible solutions (their rep-
resentation) that encode the species that is being evolved by the algorithm. The initial
population is often composed of multiple randomly generated individuals which can be
biased depending on prior information obtained on the problem.

Parent Selection and Survivor Selection

In order to simulate evolutionary pressure done by the environment it is necessary to select
which individuals manage to reproduce and which individuals, both parents and o↵spring
manage to survive.

Parent selection is the method used to select what solutions will mate in order to create
new solutions, this is usually done by taking into account the individuals fitness. This
selection together with the survivor selection mechanism is responsible for generating
selective pressure over the population, ideally creating improvements in future generations.

This methods are typically probabilistic, in such a way that high quality individuals have
higher chances of being selected to mate than those with lower quality, which in most
cases still have a low chance of being selected since they might possess important genetic
information relevant to a good solution, and are important to avoid greedy local search,
or the loss of variety in the population.

Some of the most used methods for parent selection are: roulette-wheel selection, stochastic
universal sampling, tournament selection and truncation selection. [11]

In survivor selection, similarly to the parent selection method, its purpose is to select the
most fit individuals that will pass onto the next generation of the population. This is

6

State of Art

done to apply selective pressure to the population in order to improve its overall fitness
over the generations. The most common approach to this selection is based only on the
fitness value, where the worse individuals are removed from the population, reducing the
population to the initial population size(before reproduction).

Variation Operators

As we have observed previously in order for a population to evolve, new individuals must
be created from the existing population through what is commonly known as Variation
Operators (Crossover and Mutation). Base on genetics crossover, the crossover operators
in EC usually are composed by a process which divides each parents genotype into small
parts and assigning each of the o↵spring created with di↵erent ones from each parent.
This ensures that each o↵spring will be di↵erent from their parents and one another while
carrying the genetic material of their parents which translates into similar yet di↵erent
solutions which will then compete in the population for survival.

In the second method, Mutation, an individual will su↵er a small, or large depending on
the function, modification to their genotypes, usually by modifying one or more of its basic
representation elements, usually known as genes.

In order to achieve good results in search procedure it is essential to achieve variation. This
is done by the variations imposed by both the mutation and crossover functions together,
since they can make small variations to the solution, thus carrying out exploitation, or
large variations which result in exploration. Exploration which linked with the principle
of global search, and exploitation, which linked to local search, must strive for a balance
in order to achieve a successful search, as they must be able to avoid the local optimal
solutions while searching for increasingly better solutions.

7

Chapter 2

2.2 Neural Networks

Neural Networks found in the human brain are composed of millions of interconnected
neurons, where each neuron receives signals through synapses located on its dentrites or
membrane. When the signals received are strong enough (surpass a certain threshold),
the neuron is activated and emits a signal through the axon, which might be connected to
other neurons synapses, and may cause them to also activate. The complex combination
of exterior and internal input and network structure is what makes the behaviour we can
observe on a daily basis possible. An image representing the neurons can be found in
Figure 2.2.

Figure 2.2: Scheme of a natural neuron, and synapse.

Given the incredible potential of the human intellectual, which is mostly due to the brain
structure and capability to learn almost anything given the right information and time,
many have sought to make machines which present the same problem skills of a human,
i.e, universal approximators/problem solvers. This serves as the basis to the entire field
of Artificial Intelligence, but on a more direct interpretation of this concept, ANNs were
created in order to simulate a human brain.

First created in the 1950s [14], ANNs are mathematical/computation models that mimic
the activity of the human brain at a conceptual level. In its simplest form, an ANN is a
group of many interconnected mathematical modules (Artificial Neurons) or nodes, which
usually consist of applying a mathematical function (Activation Function) to the sum of
the weighted inputs. In many cases a bias may also be applied, which is then output to
the neurons it is connected to, producing a sequence of real-valued activation’s. These
structures are usually organized in layers, starting with the input layer and ending in the
output layer. All the layers between the input and output re known as hidden-layers.
The structure of an artificial neuron and of an ANN are depicted in Figures 2.3 and 2.4
respectively.

Figure 2.3: Artificial neuron representation.

When observed mathematically, an Artificial Neuron is composed by a set of weights w

8

State of Art

which refer to its inputs x, with an overall bias b and an activation function �. When all
pieces are set together we get the activation value z for the neuron j given by:

zj = �(w · x+ b) (2.1)

This leads to the basic neural network model, which can be described as a series of func-
tional transformations [6]:

ak =
MX

i=1

wkjzj + wj0 (2.2)

Although the structure is quite fascinating, a model by itself is just that, a model with no
purpose. When creating an ANN, usually we want it to model a function that can attempt
to solve a given problem, but in order to do this we need to design the architecture of the
network and, above all, to train the network to fit the problem. In supervised problems,
the task of training is the adaptation of the network weights wkj so that the ANN can
map a set of input patterns to the desired corresponding outputs or behaviour.

This is usually done by utilizing techniques such as gradient descent on a loss function
such as the mean squared error, using problem dependent previously acquired training
samples. For such purpose the use of training algorithms like BackPropagation (BP) [53]
have become widespread for the scientific community even though other methods like EAs
have also been used for this purpose.

The study of neural networks has evolved through the decades and many di↵erent concepts
and types of networks have been used to produce excellent real world performances, with
approaches that range from Convolutional Neural Networks (CNNs) specialized in image
and sound analysis [29], to recurrent architectures [22] that enable networks to keep and
use collections of sequential data, correlating them to produce great results in problems
such as prediction, which also include Long short-term memory (LSTM) [23] networks
that have risen in popularity in the last years.

In principle ANNs are universal aproximators [38]. Due to their flexibilty, ANNs can can
be fairly easily adapted in structure to deal with specific problems/domains,and as long
as data is available to learn from, it is likely that it is possible to build e↵ective models.
As example, ANNs have been applied to problems which range from computer vision [55]
to security intrusion [54] presenting on many the state of art when it comes to result and
performance.

Figure 2.4: Feed-forward Artificial Neural Network structure.

2.2.1 Deep Learning

The field of ANNs has a long history, dating back to the 1950’s. Perhaps the earliest
example of ANNs is the Perceptron algorithm developed by Rosenblatt in 1957 [14]. In

9

Chapter 2

the late 1970’s, researchers discovered that the Perceptron cannot approximate many
nonlinear decision functions, such as the XOR function. In 1980’s, researchers found a
solution to that problem by stacking multiple layers of linear classifiers (hence the name
multilayer perceptron) to approximate nonlinear decision boundaries. Neural networks
again took o↵ for a while but due to many reasons, e.g., the lack of computational power
and labeled data, neural networks were left out of mainstream research in late 1990’s
and early 2000’s. Since the late 2000’s, neural networks have recovered and become more
successful thanks to the availability of inexpensive, parallel hardware (graphics processors,
computer clusters) and a massive amount of labeled data. There are also new algorithms
that make use of unlabeled data and achieve impressive improvements in various settings,
but it can be argued that the core is almost the same with old architectures of the 1990’s.

In a naive definition, ANNs are said to be shallow when they possess a single or few hidden
layers with a large number of neurons, and as its counterpart deep networks are composed
by multiple layers (Figure 2.5).

When the problem at hand exhibits nonlinear properties, deep networks are computation-
ally more attractive than shallow networks due to being computationally more e�cient.
It has been observed empirically that in order to get to the same level of performances of
a deep network, one has to use a shallow network with many more connections (e.g., 10x
number of connections in speech recognition [2]). It is thus much more expensive to com-
pute the decision function for these shallow networks than the deep network equivalences
because for every connection we need to perform a floating-point operation (multiplication
or addition).

Figure 2.5: Architecture of shallow vs deep networks.

Key results are obtained when the networks are deep and are used on massive amounts
of data: in speech recognition [18], computer vision [8], and language modeling [42]. And
thus the field is also associated with the name Deep Learning. There are many reasons
for such success. Perhaps the most important reason is that neural networks have a lot of
parameters, and can approximate highly nonlinear functions.

10

State of Art

2.3 Autoencoders

In the context of this thesis we will attempt to evolve a specific type of ANN: AutoEncoders
(AEs).

An AutoEncoder is an unsupervised neural network which is structured and trained to
map the inputs (x) to themselves (x0), i.e the number of neurons at the input layer and
output layer is equal, and thus the optimization goal for the output layer is set to x = x

0.
In this process we convert, implicitly, the input into an intermediary state h by passing
the data through the hidden layers in the network which can be seen a learning an higher
level representation of the input. When decomposed further we can identify that the AE
is made out of two distinct parts: the encoder (f) which maps x to h, f(x) = h, and the
decoder (g) which maps h to x

0, g(h) = x

0, which lets us describe an the AE functionally
as g(f(x)) = x, as we can observe in figure (Figure 2.6).

Figure 2.6: Example of a symmetric Deep AutoEncoder

Traditionally AEs possess an hidden layer which has a lower number of neurons when
compared to the input which creates a bottleneck shape in the AE, also called an un-
dercomplete AutoEncoder. This restriction is done with the intention of forcing h to
represent a compressed representation of x by learning the main properties of the infor-
mation and their relationships while making it impossible for the network to learn the
identity function. We can then throw away the decoder and use the h representation as
the input for tasks such as classification problems. This can be seen as a dimensionality
reduction method, similar to methods such as Principal Component Analysis (PCA). In
fact a simple AE with a linear decoder and mean squared error as the loss function will
indeed replicate the results of PCA, since it will map the linear relationship between the
principal components of the data. However, AEs can, and usually are composed of neurons
with nonlinear activation, which in theory are capable of learning more powerful nonlinear
relations present in the data, improving their capacity to find more robust and reliable
dimensional reductions.

In recent advances, AEs have generalized the idea of encoder and decoder beyond deter-
ministic functions to stochastic mappings, Pe(h|x)Pd(x|h) [4]. This becomes clearer when
we observe sparse Autoencoders. In this approaches, such as the Variational autoencoders
(VAEs)[31], the training criterion includes a sparsity penalty ⌦(h) on the code layer h
in addition to the reconstruction error, i.e., an AE that has been trained to be sparse
must respond to unique statistical features of the dataset rather then simply performing
the copying task, which can result in the learning useful features as a byproduct. These
approaches enable the use of overcomplete AE encodings, i.e., where the layer h has an

11

Chapter 2

higher number of neurons than the inputs, since it will not learn the identity function due
to the restrictions imposed. Such encoding have showed improvement of classifications
performance in certain applications [20] . When using VAEs, many consider h as being
latent vectors, which can easily be manipulated or generated to modify the characteristics
of the resulting decoding process, as such AEs have also been studied and applied with
success in generative models such as Generative Adversial Networks (GAN) [32].

Up to now we have mentioned the applications of autoencoders as a powerful dimension-
ality reduction method, compression and use in generative models, but some approaches
prefer to take their capacity to rebuild data using the entire AE. One of the most promis-
ing uses of this concept comes from the capacity of an AutoEncoder to learn to remove
noise from the input when trained with corrupted inputs. These models, also called de-
noising autoencoders (DAE) [60], are trained using corrupted data from x with some form
of noise, having achieved remarkably good results in denoising applications [63]. Addi-
tionally DAEs also manage to create good representations [61] in the dimension h, since
the network is forced to learn useful new features when there is information missing and
as such will never learn the identity function.

Another prominent use of autoencoders is the ability to stack multiple simple AEs into
a single more complex structure, to support an existing structure, such as weight initial-
ization in Deep ANNs (Figure 2.7). This translates into the creation of Deep Networks
(DBN) such as Deep Belief Networks [19][25] as an alternative to the use of Restricted
Boltzman Machines [35]. Given an input, into a DBN, it will be passed through the deep
structure of the network, resulting in high level outputs. In a typical implementation, the
outputs may then be used for supervised classification if required, serving as a compact
higher level representation of the data [19].

Figure 2.7: Stacking autoencoders to initialize weights [34]

AEs are also capable of using convolutional layers in their structure to create Convolutional
Auto Encoders (CAE) [51]. These specialized AE can also be stacked [40] or combined
with sparse representations [3] to produce great results. As a matter of fact many of the
most interesting results presented by AEs can be observed when we are dealing with deep
architectures [33][46], which more often than not, combine the use of DAE [39], CAE [21]
and VAE [49] with problem specific configurations.

The purpose of this thesis revolves around exploring the potential of deep networks serving
as autoencoders, and what benefits we can extract from using larger encoders spawned
from multiple layers and what applications it can have on real world problems. Our
motivations are focused on exploring the novelty of using EAs to evolve the structure of
a more unorthodox AE, composed by a deep network, which as far a our knowledge goes

12

State of Art

has never been explored in state of art in such a manner.

In this context we will consider all deep networks that map input x to xi as explained
above, with at least one layer that has lower dimensions than both the input and the
corresponding output such as the networks represented in Figure 2.8. In theory the output
of the layer with the lowest dimensionality can be seen as a compressed representation of
the input.

Figure 2.8: Example of a non symmetric Deep AutoEncoder.

13

Chapter 2

2.4 Neuroevolution

Evolutionary Computation and Artificial Neural Networks, both spawned from the need
to solve problems in the real world by observing the solutions already implemented by
nature itself, be it the survival of the fittest or the incredible complexity of human neural
systems. As one might expect, there are many situations where both can be combined in
order to account for the two main issues that occur when looking at ANNs: how do to
design their structure and evolve (train) its weights to account for the desired behaviour.
The application of this concept is known as NeuroEvolution (NE).

EAs possess multiple properties that fit both of the problems that need to be solved whilst
designing and training a neural network, such as their capacity to search globally, handle
infinitely large, non-di↵erential and multimodal search spaces.

With that said, it is easy to distinguish NE approaches based on the aspects that they
optimize: The weights [50][15][45] , network topology [17] [52] [56] or both the topology
and weights simultaneously [62] [57][59].

One other issue to take into account is the intended depth of the networks. NE that aim to
evolve deeper structures tend to have a greater focus on high level feature evolution, such
as hyper parameters or resorting to layer-based encodings [58], in contrast to the most
common approaches that target the evolution of small networks for very specific tasks.
This is a natural shift, due to the significant increase of the search space size when we are
evolving the connections [27][12] or nodes [59][44] or weights in deeper and larger networks,
which renders some of them impractical for discovering high performing networks.

On the same reasoning, it is unfeasible to directly evolve the weights of the networks,
which might reach millions of parameters to optimize. As such when the training of the
networks is optimized using EC usually only the hyper-parameters are tuned and the
networks trained using gradient-descent algorithms [41] [58].

The idea of optimizing hyper-parameters for deep networks is further extended in Coevo-
lution DeepNEAT (CoDeepNEAT) [41], where the structure of the network is searched
combining the ideas behind Symbiotic, Adaptive Neuro-Evolution (SANE) [44] and Neu-
roEvolution of Augmenting Topologies (NEAT) [57]. Two populations are evolved in
simultaneous: one of modules and another one of blueprints, which specify the modules
that should be used. Learning and data augmentation parameters are also optimised.

On the topic of evolving autoencoders, as far as our research went, only once did we stumble
upon the use of EC to evolve the structure and weights of a single layered Autoencoder.
In this study [30], the authors explore the possibility of evolving basic autoencoders with a
single hidden and fully connected layer. By initializing multiple autoencoders and training
them using backpropagation. Using each node and their weigths as gene allows them,
to combine multiple networks by exchanging their nodes, or modifying them by adding
nodes from other encoders, which are once again trained using BP. The shortcoming of
this approach come from being tailored to work on single layered fully connected AEs
which won’t be our focus in this work. As such we expect our approach to be a novel
method for evolving deep autoencoders.

14

Chapter 3

Automatic Evolution of Deep
Autoencoders

In the previous section we severed and described all the parts that serve as the foundation
for this work, namely Evolutionary Computation, Neural Networks, NeuroEvolution and
autoencoders. While any of these topics presents a moderate amount of complexity, and
some time was required to fully understand each of them, to the best of our knowledge
this is the first approach focused on the automatic evolution of Deep Topologies for au-
toencoders by means of an EA. Only one case was found that makes use of EC implicitly
to evolve autoencoders [30] where the algorithm evolved the structure and weights of a
basic AutoEncoder with a single fully connected hidden layer, but due to its specificity
it cannot scale to deep structures. Additionally our approach does not intend to restrict
autoencoders to a symmetric structure which is the most common in the literature; this
should provide us with interesting insight into the potential of this approach.

3.1 AutoEncoder Implementation

To get us started, we implemented simple autoencoders using the KERAS framework
[7] using Tensor Flow [1] as our primary back-end. At this phase we assumed simple
symmetric topology ANNs in a traditional “V” shape, composed by multiple layers of
fully connected neurons, where the left side of the network (the structure responsible for
the encoding) is symmetric to the right part (responsible for the decoding) and at the
middle is the narrowest part of the network that defines the amount of compression to be
executed(Figure 2.6). This is implemented by converting a list containing the first part
of the layers in a list similar to [a b c], and then creating the appropriate tensor model
and stacking the appropriate layers in the correct order, making sure to add the input
and output layers to complete the structure. In an initial approach all the intermediary
networks possessed the activation function ReLU and were trained using GPU assisted
BP. The loss function to be minimized was the binary cross entropy [16](BCE) between
the original and reconstructed data. As per hardware, most of the tests explained further
were executed in servers with GTX 1080 Ti GPUs.

Our initial concern was to find a way to compare the performance of multiple autoencoders
by using a generic approach. For this goal we randomly handpicked similar autoencoders
with a symmetric structure composed of 8 fully connected layers. This correspond of
a structure composed by 3 components such as [a b c]. The AEs are trained using the

15

Chapter 3

training samples belonging to the MNIST dataset[36]. A simple value comparison does not
present interesting results by itself, since we do not know how the variation in the loss value
translates into the actual images. For this purpose, we attempted to recreate intervals of
error values, and visually explore the images that were being reconstructed to have an
idea of which values corresponded to images that were correct and easily recognized by a
human (Figure 3.1).

Figure 3.1: Visual inspections of error intervals

We can thus see that our autoencoders that manage to reach error values above 0.18 were
incapable of producing the result we intended as the images presents mostly a blur that
on occasion appears to represent the average result of the dataset, however when the error
values are bellow 0.14 the results were clearly recognizable with the expected noise from
the imperfect reconstruction expected of this approach. On a second observation, it is
very di�cult for a human eye to recognize a significant di↵erence between values that are
bellow 0.1 . Taking these results into account we made the informed assumption that a
deep AE trained using back propagation is able to produce the results that we expected,
and reproduce with fidelity the input images when the error values are bellow a threshold.
We could then expect these error values to be a reasonably good approach to measuring
the quality of the structures, or as the fitness in an EA.

The results obtained so far indicate that our approach is valid but some questions and
curiosity inspired new tests. Since we are dealing with deep networks it is impossible to
ignore the cost and importance that the training of these structures impose on the overall
result of the network, regardless of how simple or complex the structure is. Additionally
the training process has multiple parameters that need to be set, which many times can
make or break the results. On this few initial tests our neurons were set to the ReLU
activation function with Adam as the training optimization algorithm and the training
epochs were changed accordingly to attempt to generate error values in each interval,
keeping the smaller layer as small as possible to attempt to recreate a good compression.

Taking into account the scope of this thesis, a full study of each parameter and their impact
on the performance would be too time expensive. However as we have mentioned before,
our EA would most likely need to train and obtain the results of over a thousand networks
and since we know that our networks need to avoid having their performance bellow an
expected threshold to result in good results, we need to balance the time spent during
training and the relative performance gained. With this in mind further tests were run
in an attempt to understand which optimizer and how many epochs would be enough to
obtain satisfactory results. The Table 3.1 presents results from six optimizers available in
the framework, trained during 2 di↵erent amounts of epochs on a single network structure
[626,271,23]. The values presented correspond to 20 runs per configuration.

Observing the average performance shown by each optimizer we opted to use the adam

16

Automatic Evolution of Deep Autoencoders

Optimizer Epochs MEAN STD
adadelta 7 0.1694 0.004053
adadelta 15 0.1363 0.002206
adam 7 0.0933 0.002220
adam 15 0.0858 0.002135
nadam 7 0.1052 0.001830
nadam 15 0.0948 0.001520
adamax 7 0.0970 0.002127
adamax 15 0.0865 0.001847
adagrad 7 0.1185 0.002551
adagrad 15 0.1060 0.002907
rmsprop 7 0.1107 0.002147
rmsprop 15 0.0990 0.001125

Table 3.1: Initial comparison between optimizers and epochs

optimizer [26] with the reference values (learning rate = 0.001, beta = 0.9, beta 2 =
0.999, epsilon = 1e8, decay = 0), trained during 7 epochs as it is seen that more epochs
do not lead to an increase in performance. Using 7 epochs seems to be the most appealing
choice since when using adam the networks consistently surpass acceptable values with
this small number of training epochs, and when time execution is important we accept the
loss in the final performance that it might bring as we assume that this di↵erence in error
will not a↵ect the EA performance.

On another note, we speculate that an AE does not need to be symmetric to compress and
rebuild the data, so we created multiple non symmetric autoencoders, which we trained
to obtain the error values and images, that resulted in reconstructions that were on par
with the symmetric autoencoders we have tried so far. This might be due to the nature
of the MNIST dataset but this approach appears to be valid under these circumstances.

Since our main purpose for evolution at this point, was to attempt to create a good
compression or e↵ective pre-processing of the information it was also necessary to study the
e↵ect of the dimensionality size of h in this context. With this in mind we executed a simple
test that consists in using a fixed structure and modifying the size of the compression layer
h. The networks structure was [610, 1000, 100, 400, h, 740, 500, 710]. The results shown
on Figures 3.11 are an average of 20 executions per configuration.

While observing the results, and although we cannot assume that this e↵ect is universal
among all networks and problems, we can observe that as we expected the performance
does decrease significantly at lower dimension sizes (more or less from 5 to 14) and increases
as the compressing layer becomes larger (Figure 3.2a).This may be due to the nature of
the data-set having 10 di↵erent classes, but it would seem that the optimal compression
to be found by our EA will likely be above these values. In Figure 3.2b we can also verify
that the standard deviation from the test samples increases as the number of neurons in
the compression layer decreases, and the AE struggles in the training process.

3.2 EA Implementation

Given the results we obtained during the first batch of tests, we were confident that we
were able to create by hand networks capable of fulfilling our expectations, but we still
had to decide how we were going to evolve the structures of our autoencoders.

17

Chapter 3

(a) Loss value

(b) Standard Deviation of Error

Figure 3.2: Impact of the compression value (x) on the error on the test set (y)

Due to how our networks were structured in previous tests, the direct translation into an
evolutionary approach would orbit around evolving the size of the layers and number of
layers in an AE, where we would seek to evaluate their fitness based on the loss function
after train. Keeping in mind that our objective is to evolve networks to have the best
features present in the layer h we must take into account the size of the compression being
applied. What came forth was a textbook evolutionary algorithm that would serve as a
basic prototype for the work to come.

In this first approach we opted to use an indirect representation that translates the sym-
metric V structure, as used in the initial tests to represent and build our autoencoders.
Since we are dealing with a minimalist indirect representation in order to test our concept,
the representation selected was a simple n sized vector of integer values, where n is the
number of layers in the decoding side of the AE and each value represents the number of
neurons in that layer since we are assuming a symmetric topology. As an example, the
genotype [a , b , c] would map to the AE [INPUT a b c b a OUTPUT] where a,b and
c represent the size of the corresponding layer, with the restriction that a > b > c to
generate networks with the typical funnel structures of AEs.

3.2.1 Fitness Function

Recall that the purpose of this EA is to evolve the structure of autoencoders in order to
obtain the topologies that result in a greater compression, while maintaining a low error
in the representation. Consequently, our fitness function can be obtained by assigning
a quality to each individual based on their performance after a short period of training
and the amount of compression, which is given by the following equation:

↵E + �C, (3.1)

where E is the error given by the structure on the test set, after being trained on the
framework explored in the initial tests, and C is the size of the narrowest layer. E and C

are multiplied by the weight factors ↵ and �, respectively.

With the problem at hand we can additionally define a threshold T representing a value
in which our compression is good enough, and any improvements above this error can
be ignored in the evolution process without the risk of compromising the end results.

18

Automatic Evolution of Deep Autoencoders

This improvement could potentially lead to the improvement of the structure and avoid
potentially local optima or bloat. The final fitness function is given by equation 3.2.

↵(min(E, T)) + �C (3.2)

3.2.2 Mutation Operators

As the mutation operator, a simple integer gaussian mutation was used, where an individ-
ual has a probability of m to have one of its layers size modified by adding a value taken
from a gaussian distribution with mean = 0 and deviation = 5. Using this method it is
likely that the mutated individual will be similar to the original, making use of exploita-
tion, but it is also possible for the same mutation to have a greater impact which results
in a greater exploration of the fitness landscape.

3.2.3 Crossover Operator

The crossover methods implemented in this prototype were a simple one point cross and
a random matrix crossover (see Figure 3.3). In the first one a cut position is selected in
the representation, which divides each parent into two distinct halves. As a result each
o↵spring is created by joining opposing halves from both parents. On the random matrix
crossover, a binary vector is randomly generated in order to create the mapping of what
genes are passed to the o↵spring.

These operators in particular were chosen due to their capability of producing good o↵-
spring combinations due to the limited size of the representation.

Figure 3.3: Example of the application of the used crossover operators.

3.2.4 Parent Selection

The parent selection implemented in this prototype was a simple tournament selection.
In this method we randomly select a sample of tSize individuals from the population,
selecting the one with the highest fitness to be used as a parent. This process is then
repeated until the required number of parents have been selected.

19

Chapter 3

3.2.5 Survivor Selection

The selection of individuals that form the next generation is an elitism-based method. In
this approach we guarantee that a percentage (e) of the best individuals chosen as parents
are retained to the next generation while the remaining individuals are chosen from the
most fit o↵spring created.

3.2.6 Initialization

In order to initialize a population in this approach, four di↵erent network creation methods
were developed:

Random decreasing generation – We select sequentially n (the number of encod-
ing/decoding layers) while making sure that each selected number is lower than
the previous one.

Evenly space creation – We divide the space into n parts, generating a random number
for the first layer then adding the input/n to this value to generate the remaining
layers.

Region generation – We divide the space into n regions, as in the previous method,
and proceed to generate a random number for each region.

Random generation – The simplest method, n random numbers are selected and or-
dered in order to generate an individual.

To generate a population one of the above methods is selected and used multiple times to
generate the initial population, no heuristics are used at the moment.

3.2.7 Stop Criteria

Our algorithm will run until a predefined number of generations have passed or the fitness
of the best individual has stagnated, i.e, not improved for a given number of generations.
This stagnation value was set as 7 generations as default.

3.3 Evolutionary Experiments

In order to test this approach we perform 10 evolutionary runs, with the parameters of
Table 3.2. The obtained results are reported in Table 3.3 and Figure 3.5.

crossP elitism mutP PopSize tSize trainE threshold

0.5 0.02 0.7 100 2 7 0.09

Table 3.2: Evolutionary Approach Parameters

In this experiment the number of generations needed to imply stagnation was set to 7,
with ↵ = 1000 and � = 0.5, as the fitness function parameters. The initial population was
generated by using the random decreasing generation method mentioned in the previous
section.

20

Automatic Evolution of Deep Autoencoders

Run Number Fitness Max Individual Generations Compression Error
1 105,4336793 [626, 271, 23] 26 23 0,093933679
2 105,2465687 [636, 321, 29] 17 29 0,090746569
3 104,9859118 [634, 321, 29] 30 29 0,090485912
4 105,624386 [668, 252, 27] 23 27 0,092124386
5 105 [697, 515, 30] 32 30 0,09
6 105 [663, 287, 30] 30 30 0,09
7 105,3969231 [633, 443, 29] 22 29 0,090896923
8 105,3466392 [703, 318, 29] 16 29 0,090846639
9 104,2987375 [736, 231, 27] 40 27 0,090798737
10 105,8262697 [666, 300, 30] 14 30 0,09082627

Mean 105,2159115 25 28,3 0,091065912
Std 0,403106653 7,771743691 2,051828453 0,001107277

Table 3.3: Initial Experiment Results

We can observe in the results (Figure 3.5 and Table 3.3) that the EA is indeed evolving the
overall population and producing individuals that possess a good compression value while
reaching performance values very close to the set threshold. By observing the individuals
created we can see a pattern where the resulting networks layers are more or less evenly
spaced, however this cannot be fully verified in this test since we did not plan to analyze
the evolution of each layer.

Figure 3.4: Evolution of compression layer size. Results are average of 10 independent
runs.

As such, to cover this last point, and to attempt to observe the behaviour of the algorithm
with slightly di↵erent parameters another test was run with the same basic assumptions
of the first, as can be observed in Tables 3.4, 3.5, and in Figure 3.5.

crossP elitism mutP PopSize tournSize trainE optimizer

0.8 0.01 0.5 100 2 7 adam

Table 3.4: Evolutionary approach parameters.

As we were expecting, the change in both the mutation and crossover probabilities did not
impact the overall quality of the results, as these were similar on both tests. In Figure 3.5

21

Chapter 3

Figure 3.5: Best solutions fitness evolution.

Figure 3.6: Populations fitness evolution.

Run number FitnessMax Individual Generations Compress Error

1 104,3522324 [667, 285, 28] 22 28 0,090352232
2 105,5781388 [741, 409, 31] 15 31 0,090078139
3 104,4446218 [732, 358, 25] 23 25 0,091944622
4 104,8861725 [731, 514, 28] 17 28 0,090886172
5 104,8552107 [718, 455, 26] 20 26 0,091855211
6 105,1016529 [626, 442, 30] 22 30 0,090101653
7 105,0912969 [734, 296, 27] 16 27 0,091591297
8 105,2155912 [712, 152, 27] 15 27 0,091715591
9 103,8599937 [736, 452, 27] 19 27 0,090359994
10 106,0392149 [607, 492, 31] 11 31 0,090539215

Mean 104,9424126 18 28 0,090942413
Std 0,592265126 3,660601044 1,949358869 0,000718581

Table 3.5: Second experiment results.

we can visually observe the evolution of each layer in the AE, which allows us to observe
that the population is indeed evolving and converging towards the best solution while
evolving all three layers, in what appears to be an evenly spaced structure as we observed

22

Automatic Evolution of Deep Autoencoders

in the previous test. That being said, we can verify that our EA has managed to evolve
successfully the structure of these simple, fixed size autoencoders to an interesting result.
This is nevertheless quite restricting as far as possible structures go, as we would like to be
able to make our EA responsible for deciding the number of layers of the evolved solutions.

3.3.1 EA Changes

Taking the algorithm one step further we enabled the structures to be able to change in
size by adding two additional mutation functions, which can add a random size layer or
remove one of the existing layers. This does not, remove the symmetry restriction from
the EA.

Although these changes were very subtle, we still feel like it would be interesting to observe
the behaviour of the algorithm, without any parameter changes other than slightly ad-
justing the mutation probabilities which resulted in the results seen bellow in the Figures
3.7,3.9 and 3.8 that maps the average among all evolutionary runs.

Figure 3.7: Evolution of fitness of the best solutions across generations. Results are average
of 10 independent runs.

Figure 3.8: Compression of the best individuals per generation.

As one might have expected, the algorithm tends to evolve structures that are smaller than
the ones imposed by our previous algorithm. This might be so because we are dealing
with symmetric autoencoders, and incrementing a layer to the structure implies adding

23

Chapter 3

Figure 3.9: Fitness of the population per generation.

two layers to the final AE. Since we have limited time to train the networks, smaller
networks without fine tuning will have a slight advantage against their deep counterparts.
When we are only trying to evolve based on the loss error we are very likely to be left
with a basic network which is not our initial objective.

On a further study on the matter we once again modified the algorithm to evolve any
kind of structure by removing the symmetry constraint out of the picture and making the
necessary adaptations:

• The crossover operator no longer sorts the networks and we now mainly use a modi-
fied version of the binary crossover which takes into account that the size of two layers
might not match. Based on this second occasion, the new networks are formed by ap-
pending the next available gene present in the binary selection array.Consequently,
it is possible that the parents and the o↵spring di↵er in the number of layers as
observable in Figure 3.10.

Figure 3.10: Updated binary crossover.

• The network initialization now generates structures with a random size, within a
given range. In practice the layers were commonly restricted to a size between 2 and
6 hidden layers.

• A swap mutation was implemented, which simply swaps the values in 2 genes along
with a reset mutation that restarts the value of one gene.

With this changes, a few more tests were executed to attempt to visualize the EA be-
haviour, where we maintained the previous configurations, but lowered the error threshold

24

Automatic Evolution of Deep Autoencoders

to 0.08 to observe what results were obtained when the EA attempts to maximize the loss
function over the compression.

(a) Average best individual fitness per gener-
ation.

(b) Average population fitness per generation.

Figure 3.11: Fitness evolution averaged over 10 independent runs.

(a) Average best individual compression per
Generation

(b) Average best individual error per genera-
tion

Figure 3.12: Evolution of fitness parameters averaged over 10 independent runs.

The results of these experiments show us that our algorithm can pick networks capable
of achieving error values below 0.09 (Figure 3.12b) with some ease when not constraint
by the threshold while still maintaining compression values similar to what we had seen
before in our previous EA setup. Observing the size of the compression and error side
by side (Figure 3.12) we can see that the EA in its current form manages to evolve both
the compression and the error simultaneously across the generations. On this tests the
resulting networks tend to have a genotype of size 4, corresponding to an AE with 6 layers
on total. It is also important to note that on its current state the algorithm tends to
produce networks with uneven encoder and decoder parts, namely the decoder size on
most cases far exceeded the encoder, which we might have to pay attention when fine
tuning it further.

3.3.2 Final Approach

At this point we had created an EA capable of evolving the structure of asymmetric
autoencoders as intended, but we have had yet to link our approach and results with our
goal, to which we have to assess the quality of autoencoders as a means to pre-process the
information without losing the minimum needed for classification. For this we would need
to make use of more than the reconstruction error of our current approach. As a result we

25

Chapter 3

(a) Class Average Target (b) Select numbers Target

Figure 3.13: Results of the reconstruction with the target digits updated. On the top
row we have the original digits, on the middle the reconstructions and on the bottom the
targets

would need to possess concrete proof that our compression translates into classification
performance and then on a further test validate these results.

As such, we modified our EA by changing the fitness function to include the classification
performance of a classifier on the compressed data, rather than the compression value.
To accomplish this, every time an individual is evaluated we construct the AE, which is
trained using the training set in the same fashion as previous tests to minimize the error
of reconstruction, and then proceed to remove the decoding part of the AE and compress
the entire entire dataset which is then used to train a simple MLP in order to evaluate
its accuracy on the test set. This MLP is a basic classifier with 1 hidden layer of size 100
and ReLU activated neurons.

The fitness thus becomes:
↵(1�Ac) + �C, (3.3)

where Ac is the accuracy provided by the classifier. On the previous tests our structures
seemed to create larger decoders, which feels like it might be counterproductive when we
attempt to create good representations for the information at h to improve classification
instead of minimizing the reconstruction error. Although this might not occur since we
no longer take this into a account, we still provided the fitness function with an additional
parameter Dp which stands for the decoder proportion of the autoencoder which we wish
to minimize. This value is given by the (total number of layer) / (number of decoder
layers) which brings us to the final fitness function as follows:

↵Ac+ �h+ �Dp (3.4)

Even though these changes to the EA would take us closer to our objective, it would be
interesting to make use of the labels available to maximize the changes of our autoencoders
collecting essential information of each digit identity. On our original approach we attempt
to transform x into h while attempting to recreate x in the output. In order to make use of
the class information, we will train the AutoEncoder to map xc to gc where gc is a number
image that represents the class c. With this modification we hope that our compressed
representation will inevitably present the information that represents each class identity
thus improving the changes of increasing the accuracy of the classifiers.

Similar to what we have done previously, simple manual tests were executed to prove if this
concept is promising (Figure 3.13). These initial results point out that the autoencoders
can reliably compress and construct the pretended images that represent the class, when
used on the MNIST data while also being able to use a small dimension size for h. This
remained true when testing with di↵erent targets, including hand picked numbers (Figure
3.13b) to represent each class or simply using the class average (Figure 3.13a).

Using the updated EA, capable of evolving the structure of asymmetric AEs, with the
updated fitness function, new experiments were planned and conducted with the parame-

26

Automatic Evolution of Deep Autoencoders

(a) Fitness Values of the best individuals. (b) h size of the best individuals.

Figure 3.14: Results from the best solutions found per generation averaged over 30 runs.

ters detailed in Table 3.6. 30 runs were executed, while dividing the MNIST dataset three
disjoint sets: train, test, and validation, of sizes 60000, 5000, and 5000, respectively. The
train set will be used to train both our autoencoders and, after compressed our classi-
fiers in the evolutionary process, while the validation set is used for posterior validation
experiments.

Parameter Value

Crossover Probability 0.8
Crossover Function Binary Crossover

Increment Mutation Probability 0.15
Decrement Mutation Probability 0.15

Swap Mutation Probability 0.05
Reset Mutation Probability 0.05

Gaussian Mutation Probability 0.6
Elitism Percentage 0.02
Population size 100
Tournament size 2

Min Number of layers 2
Max Number of layers 6

Alfa 20000
Beta 2

Gamma 10

Table 3.6: Evolutionary Approach Parameters

As far as the performance of the EA goes (Figure 3.14), we observe that the algorithm
is able to evolve the initial population, finding better solutions as generations pass until
the runs are interrupted by stagnation, and both the parameters being studied are being
successfully minimized. Even with a very small incentive, the networks created by the
algorithm tend to have a much larger encoder than decoder. We also observed that the
resulting structures are contain, on average, 4 hidden layers.

The average compression obtained using this method was around 16 and the error values
were consistently above 0.98 accuracy, compared to the 0.95 obtained using the entire
dataset on this particular neural network. This improvement,when compared to the results
of the NN with the full dataset, represents a significant shift as the returned a value of

27

Chapter 3

p=9.42976e-60. This test was the result of comparing 30 di↵erent AE results and 30 runs
with the original dataset.

To attempt to validate our results, and to assess whether our algorithm is capable of
speeding up di↵erent small solutions while improving their overall performance, 7 di↵erent
classifiers were chosen:

• Neural Network (NN) with one 100 ReLU activated neurons on the hidden layer.
(This solution was used in the EA)

• Adaboost (AB); estimators = 50, Learning rate 1

• Decision Tree (DT); max depth = 5

• Random Forest (RF); max depth = 5, n estimators=10, max features = 1

• Naive Bayes (NB)

• SVM; linear kernel and C = 0.025

• KNeighbors Classifier (KN); number of neighbours = 3

For all the algorithms above, the sklearn [47] package implementation was used with most
parameters set to their default values. These were chosen due to their ease of use and
simplicity which goes along with our intent to improve the speed and performance of
simple and easy to use solutions.

For this test we used all of the 30 autoencoders obtained during the previous runs of the
EA to compress the dataset which was then used to train each of the classifiers. The
classification target for these networks was the validation set which was set apart during
the EA execution.

Classifiers NN AB DT RF NB SVM KN

original 0.9565 0.7299 0.6747 0.6089 0.5558 0.9445 0.9705
compressed 0.983 0.7587 0.6177 0.98 0.9827 0.9843 0.9833

pvalue 9.42 e-60 0.0323 0.5218 9.59 e-59 3.04e-59 6.21 e-60 1.78 e-56

Table 3.7: Classifier performance comparison with and without using compression. These
results are averaged over the result of 30 AEs. The pvalue are the result of a independent
Mann Whitney.

Classifiers NN AB DT RF NB SVM KN

original 25.7 46 3.7 0.164 0.7 366 561
compressed 12.2 0.7 0.617 0.55 0.02 1.2 1.4

Table 3.8: Execution time in seconds, to train the classifier and to test on the validation
set. These results are averaged over the result of 30 AEs.

These results show a clear pattern, where the majority of the algorithms tested have
significant improvements on the time they take to train and evaluate the tests, which
was to be expected due to the significantly reduced dimensionality of the dataset. We
also observed that on nearly all the tested classifiers, the resulting accuracy with the

28

Automatic Evolution of Deep Autoencoders

compressed dataset managed to improve their performance, on some cases, such as the
Naives Bayes and Random Forest we saw a significant leap in the classifiers final accuracy.

With the current results of these tests, we are able to observe that autoencoders selected
by our EA can be used with success to aid the classification of problems in a accurate and
e�cient manner. The EA was able to successfully evolve the structure of the networks,
maximizing the classification gain by using the autoencoders while demanding that the
data is compressed as much as possible which minimizes the time needed to train and test
the classifiers to obtain good results.

This opens a large window of options as to how this can be used in real applications. The
reduced training times without the expense of the classification results clearly aids time
sensitive operations, which leads us to believe it can be used to optimize the information
being processed in real time from visual sensors or other similar tasks. As a matter of
fact, reducing the complexity of the problem also enables lower specs systems to be able
to reliably solve the problems in usable time, leaving training of the autoencoders is left
to a more robust system.

29

Chapter 4

Conclusions and Future Work

During the duration of this thesis, we iteratively built an EA that is capable of evolving
deep structures of autoencoders. This approach, as far as our knowledge goes has never
been done before, and even though the scopes of the tests for our final approach is rather
small, it presents interesting results that may spark the interest of the community or the
execution of more tests in the matter.

This takes us back to our final solution, where we implement a semi-supervised training
of the autoencoders in order to maximize its compression while retaining the information
that makes each class recognizable. We then completed this approach with an EA ca-
pable of evolving the number of layers and their respective size taking into account the
improvements on the classification error of a Neural Network classifier. Once the resulting
autoencoders were tested, using di↵erent basic classifiers we saw clear improvements in
the classification performance on most of them and a significant improvement on their
training times.

We have thus reached our initial purpose of developing an evolutionary framework that
is capable of reliably returning deep autoencoders that are able to consistently improve
other solutions performance.

It would be interesting to test on future work, how these kind of approach behaves when
dealing with other types of data, or harder bench-marking datasets. On a di↵erent note,
di↵erent aspects of the network could be taken into account such as the possibility to
evolve the weights of the autoencoders, or implementing the use of di↵erent autoencoders
such as the use of sparsity constraints, adding noise in the training process or enabling
convolutional layers into the evolutionary process. This could lead into a more versatile
approach that enables for more diverse solutions to be created.

And as any scientific work, one would hope that it is possible to translate our research into
solutions for real life problems down the line. We have only scratched the surface of what
this powerful structure and evolutionary approach can bring to the table, and with time
I think this structure will be able to prove that purely unsupervised or semi-supervised
autoencoders will present themselves as the solution for many problems to come.

30

References

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S Corrado, Andy Davis, Je↵rey Dean, Matthieu Devin, et al. Tensorflow:
Large-scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Advances in
neural information processing systems, pages 2654–2662, 2014.

[3] Moez Baccouche, Franck Mamalet, Christian Wolf, Christophe Garcia, and Atilla
Baskurt. Spatio-temporal convolutional sparse auto-encoder for sequence classifica-
tion. In BMVC, pages 1–12, 2012.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-
wise training of deep networks. In Advances in neural information processing systems,
pages 153–160, 2007.

[5] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies–a comprehensive
introduction. Natural computing, 1(1):3–52, 2002.

[6] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[7] François Chollet et al. Keras, 2015.

[8] Dan C Ciresan, Ueli Meier, Jonathan Masci, Luca Maria Gambardella, and Jürgen
Schmidhuber. Flexible, high performance convolutional neural networks for image
classification. In IJCAI Proceedings-International Joint Conference on Artificial In-
telligence, volume 22, page 1237. Barcelona, Spain, 2011.

[9] Charles Darwin. On the origin of species by means of natural selection: or the preser-
vation of favoured races in the struggle for life. By Charles Darwin,... John Murray,
Albemarle Street, 1880.

[10] Leandro Nunes De Castro and Jonathan Timmis. Artificial immune systems: a new
computational intelligence approach. Springer Science & Business Media, 2002.

[11] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing,
Second Edition, volume 53. Springer, 20015.

[12] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, An-
drei A Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels
gradient descent in super neural networks. arXiv preprint arXiv:1701.08734, 2017.

[13] David B Fogel. Evolutionary programming: An introduction and some current direc-
tions. Statistics and Computing, 4(2):113–129, 1994.

31

Chapter 4

[14] R Frank. The perceptron a perceiving and recognizing automaton. tech. rep., Tech-
nical Report 85-460-1, 1957.

[15] Faustino Gomez, Jürgen Schmidhuber, and Risto Miikkulainen. Accelerated neural
evolution through cooperatively coevolved synapses. Journal of Machine Learning
Research, 9(May):937–965, 2008.

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[17] Steven A Harp, Tariq Samad, and Aloke Guha. Designing application-specific neural
networks using the genetic algorithm. In Advances in neural information processing
systems, pages 447–454, 1990.

[18] Geo↵rey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath,
et al. Deep neural networks for acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, 2012.

[19] Geo↵rey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[20] Geo↵rey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

[21] Geo↵rey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

[22] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhuber, et al. Gradient
flow in recurrent nets: the di�culty of learning long-term dependencies, 2001.

[23] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[24] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

[25] Yuming Hua, Junhai Guo, and Hua Zhao. Deep belief networks and deep learning. In
Intelligent Computing and Internet of Things (ICIT), 2014 International Conference
on, pages 1–4. IEEE, 2015.

[26] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[27] Hiroaki Kitano. Designing neural networks using genetic algorithms with graph gen-
eration system. Complex systems, 4(4):461–476, 1990.

[28] John R Koza. Genetic programming: on the programming of computers by means of
natural selection, volume 1. MIT press, 1992.

[29] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[30] Sean Lander and Yi Shang. Evoae–a new evolutionary method for training autoen-
coders for deep learning networks. In Computer Software and Applications Conference
(COMPSAC), 2015 IEEE 39th Annual, volume 2, pages 790–795. IEEE, 2015.

32

References

[31] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole
Winther. Autoencoding beyond pixels using a learned similarity metric. arXiv
preprint arXiv:1512.09300, 2015.

[32] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, Hugo Larochelle, and Ole
Winther. Autoencoding beyond pixels using a learned similarity metric. arXiv
preprint arXiv:1512.09300, 2015.

[33] Quoc V Le. Building high-level features using large scale unsupervised learning. In
Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Con-
ference on, pages 8595–8598. IEEE, 2013.

[34] Quoc V Le et al. A tutorial on deep learning part 2: Autoencoders, convolutional
neural networks and recurrent neural networks. Google Brain, 2015.

[35] Nicolas Le Roux and Yoshua Bengio. Representational power of restricted boltzmann
machines and deep belief networks. Neural computation, 20(6):1631–1649, 2008.

[36] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/, 1998.

[37] Joel Lehman and Kenneth O Stanley. Revising the evolutionary computation abstrac-
tion: minimal criteria novelty search. In Proceedings of the 12th annual conference
on Genetic and evolutionary computation, pages 103–110. ACM, 2010.

[38] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer
feedforward networks with a nonpolynomial activation function can approximate any
function. Neural networks, 6(6):861–867, 1993.

[39] Xugang Lu, Yu Tsao, Shigeki Matsuda, and Chiori Hori. Speech enhancement based
on deep denoising autoencoder. In Interspeech, pages 436–440, 2013.

[40] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked convo-
lutional auto-encoders for hierarchical feature extraction. Artificial Neural Networks
and Machine Learning–ICANN 2011, pages 52–59, 2011.

[41] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier
Francon, Bala Raju, Arshak Navruzyan, Nigel Du↵y, and Babak Hodjat. Evolving
deep neural networks. arXiv preprint arXiv:1703.00548, 2017.

[42] Tomáš Mikolov. Statistical language models based on neural networks. Presentation
at Google, Mountain View, 2nd April, 2012.

[43] Geo↵rey F Miller. Exploiting mate choice in evolutionary computation: Sexual se-
lection as a process of search, optimization, and diversification. In AISB Workshop
on Evolutionary Computing, pages 65–79. Springer, 1994.

[44] David E Moriarty and Risto Miikkulainen. Forming neural networks through e�cient
and adaptive coevolution. Evolutionary computation, 5(4):373–399, 1997.

[45] Gregory Morse and Kenneth O Stanley. Simple evolutionary optimization can rival
stochastic gradient descent in neural networks. In Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference, pages 477–484. ACM, 2016.

[46] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y
Ng. Multimodal deep learning. In Proceedings of the 28th international conference
on machine learning (ICML-11), pages 689–696, 2011.

33

Chapter 4

[47] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[48] Riccardo Poli, James Kennedy, and Tim Blackwell. Particle swarm optimization.
Swarm Intelligence, 1(1):33–57, Jun 2007.

[49] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[50] Amr Radi and Riccardo Poli. Discovering e�cient learning rules for feedforward neu-
ral networks using genetic programming. In Recent advances in intelligent paradigms
and applications, pages 133–159. Springer, 2003.

[51] Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann
Dauphin, and Xavier Glorot. Higher order contractive auto-encoder. Machine Learn-
ing and Knowledge Discovery in Databases, pages 645–660, 2011.

[52] Miguel Rocha, Paulo Cortez, and José Neves. Evolution of neural networks for clas-
sification and regression. Neurocomputing, 70(16):2809–2816, 2007.

[53] David E Rumelhart, Geo↵rey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego La
Jolla Inst for Cognitive Science, 1985.

[54] Jake Ryan, Meng-Jang Lin, and Risto Miikkulainen. Intrusion detection with neural
networks. In Advances in neural information processing systems, pages 943–949, 1998.

[55] Robert J Schalko↵. Digital image processing and computer vision, volume 286. Wiley
New York, 1989.

[56] Khabat Soltanian, Fardin Akhlaghian Tab, Fardin Ahmadi Zar, and Ioannis Tsou-
los. Artificial neural networks generation using grammatical evolution. In Electrical
Engineering (ICEE), 2013 21st Iranian Conference on, pages 1–5. IEEE, 2013.

[57] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through aug-
menting topologies. Evolutionary computation, 10(2):99–127, 2002.

[58] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic pro-
gramming approach to designing convolutional neural network architectures. arXiv
preprint arXiv:1704.00764, 2017.

[59] Andrew James Turner and Julian Francis Miller. Cartesian genetic programming
encoded artificial neural networks: a comparison using three benchmarks. In Pro-
ceedings of the 15th annual conference on Genetic and evolutionary computation,
pages 1005–1012. ACM, 2013.

[60] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceedings
of the 25th international conference on Machine learning, pages 1096–1103. ACM,
2008.

[61] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceedings
of the 25th international conference on Machine learning, pages 1096–1103. ACM,
2008.

34

References

[62] Darrell Whitley, Timothy Starkweather, and Christopher Bogart. Genetic algorithms
and neural networks: Optimizing connections and connectivity. Parallel computing,
14(3):347–361, 1990.

[63] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and inpainting with
deep neural networks. In Advances in Neural Information Processing Systems, pages
341–349, 2012.

35

	Introduction
	Scope
	Goals
	Document Structure

	State of Art
	Evolutionary Computation
	Neural Networks
	Deep Learning

	Autoencoders
	Neuroevolution

	 Automatic Evolution of Deep Autoencoders
	AutoEncoder Implementation
	EA Implementation
	Fitness Function
	Mutation Operators
	Crossover Operator
	Parent Selection
	Survivor Selection
	Initialization
	Stop Criteria

	Evolutionary Experiments
	EA Changes
	Final Approach

	Conclusions and Future Work

