Long-term Effect of Convulsive Behavior on the Density of Adenosine A_1 and A_{2A} Receptors in the Rat Cerebral Cortex

*Nelson Rebola, *Lisiane O. Porciúncula, †Luísa V. Lopes, *Catarina R. Oliveira, ‡Patrício Soares-da-Silva, and *Rodrigo A. Cunha

*Center for Neuroscience of Coimbra, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, †Laboratory of Neurosciences, Faculty of Medicine, University of Lisboa, and ‡Department of Research & Development, BIAL, S. Mamede do Coronado, Portugal

Summary: *Purpose:* Adenosine is a neuromodulator that has been proposed to act as an anticonvulsant mainly via inhibitory A_1 receptors, but recent data show that genetic deletion of facilitatory A_{2A} receptors might also attenuate convulsions. Since both A_1 and A_{2A} receptors are prone to down- and upregulation in different stressful situations, we investigated if convulsive behavior leads to a long-term change in A_1 and A_{2A} receptor density in the rat cerebral cortex.

Methods: Stage 4-5 convulsions (Racine's scale) were induced in adult Wistar rats either through amygdala stimulation (kindling) or by intraperitoneal injection of kainate (10 mg/ml). Rats were killed after 4 weeks to evaluate adenosine A_1 and A_{2A} receptor density in the cerebral cortex using both Western blot and membrane binding assays.

Adenosine is a ubiquitous neuromodulator that mainly inhibits synaptic transmission and neuronal excitability through activation of the predominant adenosine A1 receptors (1). The ability of adenosine to selectively depress glutamatergic excitatory pathways makes A1 receptors interesting anticonvulsant targets [reviewed in (2)]. Accordingly, exogenous administration of A1 receptor agonists attenuates seizures, and the use of A₁ receptor antagonists has proconvulsant effects [reviewed in (2)]. It has even been proposed that the loss of the A1 receptor-mediated control of glutamatergic function could contribute to the implementation of epileptic status (3). However, conflicting results have been reported in relation to the impact of convulsive behavior on cortical A1 receptors [reviewed in (4)]. In other brain regions, chronic stressful situations, such as amygdala kindling (5) or Alzheimer's disease (6), decreased the density of A₁ receptors.

Results: The binding density of the A₁ antagonist, ³H-DPCPX, decreased by 40. \pm 4.4% and by 20.7 \pm 0.5% after kindling or kainate injection. Likewise, A₁ receptor immunoreactivity in cortical membranes from kindled or kainate-injected rats decreased by 19.1 \pm 3.3% and 12.7 \pm 5.7%, respectively. In contrast, the binding density of the A_{2A} receptor antagonist ³H-SCH 58261 increased by 293 \pm 34% and by 159 \pm 32% in cortical membranes from kindled or kainate-injected rats, and A_{2A} receptor immunoreactivity also increased by 151 \pm 12% and 79.6 \pm 7.0%.

Conclusions: This indicates that after convulsive behavior there is a long-term decrease of A_1 receptors accompanied by an increased density of A_{2A} receptors, suggesting that A_{2A} antagonists rather than A_1 agonists may be more promising anticonvulsive drugs. **Key Words:** Adenosine—Cortex—Kindling—Kainate—Epilepsy— A_1 receptor— A_{2A} receptor.

Adenosine can also activate another less abundant adenosine receptor subtype, i.e., A_{2A} receptors, with effects generally opposite to these mediated by A1 receptors (7). These facilitatory A_{2A} receptors are most abundant in the basal ganglia and have a density 20 times lower in the cerebral cortex (8). However, despite their low abundance, and by mechanisms still to be resolved, pharmacological blockade or genetic inactivation of these A2A receptors confer robust neuroprotection in the limbic and neocortex in different noxious brain situations [reviewed in (9)]. In particular, genetic inactivation of A2A receptors decreases ethanol withdrawal-induced seizures (10), suggesting a role for A_{2A} receptors also in the control of convulsive behavior. Interestingly, studies in nonbrain preparations have documented that prolonged stressful situations, such as hypoxia (11) or exposure to cytokines (12), enhance the expression and density of these A2A receptors, but this has not yet been documented in brain tissue.

Therefore, there is ground to consider both A_1 and A_{2A} receptors as possible targets for the development of anticonvulsants. However, since noxious situations lead to

Address correspondence and reprint requests to Dr. R. A. Cunha at Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal. E-mail: racunha@clix.pt; Web page: http://cnc.cj.uc.pt/lab_lef/

changes in the density of both A_1 and A_{2A} receptors, it appears necessary to determine if the occurrence of seizures might also lead to changes in A_1 and A_{2A} receptor densities. Thus, this study was designed to investigate the long-term changes of the densities of A_1 and A_{2A} receptors in the cerebral cortex using two different strategies to induce episodic convulsive behavior: amygdala kindling (13) and intraperitoneal injection of kainate (14).

METHODS

Reagents

³H-1,3-Dipropyl-8-cyclopentyladenosine(³H-DPCPX, specific activity 109.0 Ci/mmol) was from DuPont NEN (Anagene, Portugal), and ³H-5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*] pyrimidine (³H-SCH 58261, specific activity 77 Ci/mmol) was prepared by Amersham (Buckinghamshire, U.K.) and was a generous gift of Dr. Ennio Ongini (Shering-Plough, Milan, Italy). Kainate and adenosine deaminase (calf intestine suspension, 2000 U/ml, EC 3.5.4.4) were from Sigma (Reagente 5, Oporto, Portugal), 8-{4-[(2aminoethyl)amino]carbonylmethyl-oxyphenyl}xanthine (XAC) was from Research Biochemical International (Reagente 5, Oporto, Portugal), goat purified IgG antiadenosine A_{2A} receptor antibody (200 μ g/ml) was from Santa Cruz Biotechnology-Europe (Freelab, Lisbon, Portugal), and rabbit purified IgG antiadenosine A1 receptor antibody (1.8 mg/ml) was from Affinity Bioreagents (Golden City, CA, U.S.A.).

Animals and convulsive models

The experiments were performed using male Wistar rats from Harlan Ibérica (Barcelona, Spain) weighing 240–280 g for the amygdala-kindling experiments and 160–180 g for the kainate-injection experiments. The rats were handled according to the EU guidelines for use of experimental animals (86/609/EEC); they were anesthetized under halothane atmosphere before being killed by decapitation.

For the amygdala-kindling studies, the rats were divided into three groups: control rats, fully kindled rats, and sham-operated rats (electrode implemented but no stimulation delivered). Kindling was achieved by insertion of an electrode in the amygdala to allow chronic subthreshold stimulation to implement a fully kindled state, as previously described (5). Briefly, the rats were anesthetized with sodium pentobarbitone 60 mg/kg (3% wt/vol in saline) and coaxial bipolar electrodes (David Kopf) were implanted to the left amygdala. After a postoperative recovery of 1 week, animals were stimulated twice a day (10 a.m. and 4 p.m.) with a 50 Hz, 1 s, 500 μ A, square wave with a positive pulse of 1 ms (Hugo Sachs stimulator, March-Hugstetten, Germany). After five consecutive stage 5 convulsions, fully kindled rats were allowed a 4-week recovery period before being killed for in vitro studies.

For the kainate injection studies, the rats were divided into two groups: control (saline-injected) and kainate-injected animals. Kainate (10 mg/ml) was injected intraperitoneally and the animal was placed in an observation box facing two experimenters who recorded the behavior changes displayed by the animals during a period of 4 hours according to the Racine's scale. Kainate-injected animals displayed a convulsive behavior that ranked at stage 4 (two rats) and stage 5 (one rat), whereas two other rats also reached stage 5 but died within the next hour, thus being excluded from the study. The rats were then allowed a 4-week recovery period before being killed for in vitro studies.

Adenosine receptor binding studies in cortical membranes

Saturation binding curves of the selective A₁ receptor antagonist, ³H-DPCPX, or of the selective A_{2A} receptor antagonist, ³H-SCH 58261, were performed as previously described using whole membranes from the cerebral cortex (8,15). Binding of ³H-DPCPX (0–10 nM) or of ³H-SCH 58261 (0-10 nM) was for 2 or 1 hours, respectively, at 37°C, with 32–159 μ g of membrane protein in a final volume of 200 μ l in an incubation solution containing 50 mM Tris-HCl and 10 mM MgCl₂, pH 7.4, with 2 U/ml adenosine deaminase. The binding reactions were stopped by vacuum filtration through Whatman GF/C glass fiber filters, followed by washing of the filters and reaction tubes with 8 ml of the incubation solution, kept at 4°C. Radioactivity retained in the filters was then determined after addition of 4 ml of scintillation liquid (Scintran Cocktail T, Wallac, Turku, Finland). Results are expressed as specific binding, determined by subtraction of the nonspecific binding, which was measured in the presence of $2 \,\mu M$ XAC, and normalized per amount of protein. All binding assays were performed in duplicate. To derive the binding parameters from saturation curves (K_D and B_{max} values), the data were fitted by a rectangular hyperbola using the GraphPad Prism software (San Diego, CA, U.S.A.).

Western blot analysis of adenosine receptor immunoreactivity in cortical membranes

Adenosine A_1 and A_{2A} receptor immunoreactivity was evaluated by Western blot analysis, as previously described (5,15) in whole membranes from the rat cerebral cortex. Cortical membranes solubilized in 5% SDS were separated by SDS-PAGE (13%) and electrotransferred to polyvinylidene difluoride (PVDF) membranes (0.45 μ m from Amersham). After blocking, the membranes were incubated overnight at 4°C with either the antiadenosine A_1 receptor (1:1000 dilution) or anti- A_{2A} receptor antibodies (1:500 dilution), then with the alkaline phosphatase-conjugated anti-rabbit or anti-goat secondary antibody (1:10,000 dilution from Amersham Little Chalfont, Buckinghamshire, U.K.), and finally with Enhanced Chemi-Fluorescence (Amersham) for 5 min, then analyzed densitometrically with Quantity one, Versadoc 3000 (BioRad).

Statistics

The values presented are mean \pm SEM of *n* experiments. Comparison between the different animal groups was made using the two-tailed Mann–Whitney test. Statistical significance was considered at p < 0.05.

RESULTS

Modification of cortical A_1 and A_{2A} receptors in kindled rats

The selective A₁ receptor antagonist, ³H-DPCPX, bound with a K_D of 0.77 n*M* (95% confidence interval: 0.58–0.96 n*M*, n = 4) and a B_{max} of 917 ± 60 fmol/mg protein (n = 4) to whole membranes from the cerebral cortex of control rats. As illustrated in Fig. 1A, there was a decrease of ³H-DPCPX binding to cortical membranes obtained from kindled rats. In fact, in cortical membranes from kindled rats, the B_{max} of ³H-DPCPX binding was decreased (40.4 ± 4.4%, p < 0.05) to 546 ± 52 fmol/mg

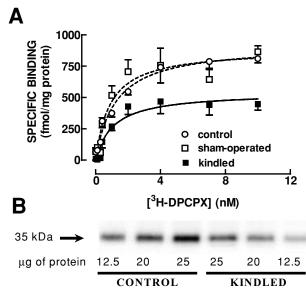


FIG. 1. Long-term effect of convulsions induced by amygdala kindling on the density of adenosine A1 receptors in the rat cerebral cortex. A: Average saturation binding curves with the selective A1 receptor antagonist ³H-DPCPX in cerebral cortical membranes of control (open circles), sham-operated (open rectangles), and fully kindled rats (filled rectangles). The ordinates represent the specific binding of ³H-DPCPX, obtained on subtraction of the nonspecific binding, determined in the presence of 2 μ M XAC from total binding. The results are mean \pm SEM of four experiments. B: A Western blot comparing the A1 receptor immunoreactivity in membranes from the rat cerebral cortex of control (first three lanes from the left) and fully kindled rats (first three lanes from the right). The SDS-PAGE gel was loaded with three different amounts of cortical protein from each group of rats and is representative of three similar separations carried out with membranes prepared from different animals. It is evident that the intensity of bands identified as the A₁ receptor protein is systematically lower in the membranes derived from kindled rats when compared to the same amount of loaded cortical membrane from control rats.

protein (n = 4), whereas the K_D of ³H-DPCPX binding was not significantly (p > 0.05) modified (K_D= 0.81 n*M*, 95% confidence interval of 0.45–1.37 n*M*, n = 4). This decreased density of A₁ receptors was not due to the surgical procedure since the K_D (0.77 nM, 95% confidence interval of 0.43–1.11 n*M*, n = 4) and the B_{max} of ³H-DPCPX binding (866 ± 23 fmol/mg protein, n = 4) in cortical membranes from sham-operated rats were not different (p > 0.05) from control rats (Fig. 1A).

To confirm that there was indeed a decreased density of A_1 receptors in cerebral cortical membranes of kindled compared to control rats, we compared by Western blot analysis the immunoreactivity against A_1 receptors in membranes from cortical membranes of control and fully kindled rats. As illustrated in Fig. 1B, there was a decrease in the densitometrically measured anti- A_1 receptor immunoreactivity in cortical membranes from kindled compared to control rats, with an average value of $19.1 \pm 3.3\%$ (n = 3).

The selective A_{2A} receptor antagonist, ³H-SCH 58261, bound with a K_D of 0.98 nM (95% confidence interval: 0.47–1.49 nM, n = 4) and a B_{max} of 27.7 ± 3.1 fmol/mg protein (n = 4) to whole membranes from the cerebral cortex of control rats. As illustrated in Fig. 2A, there was a marked increase of ³H-SCH 58261 binding to cortical membranes obtained from kindled rats. In fact, in cortical membranes from kindled rats, the Bmax of 3H-SCH 58261 binding was nearly tripled (293 \pm 34% increase, p < 0.05) to 109.0 ± 3.5 fmol/mg protein (n = 4), with no change (p > 0.05) of K_D (1.07 nM, 95% confidence interval of 0.65-1.50 nM, n = 4). This increased density of A_{2A} receptors was not due to the surgical procedure since the K_D (0.88 nM, 95% confidence interval of 0.41–1.36 nM, n = 4) and the B_{max} of ³H-SCH 58261 binding (30.6 \pm 3.4 fmol/mg protein, n = 4) in cortical membranes from sham-operated rats were not different (p > 0.05) from control rats (Fig. 2A).

To confirm that there was indeed an increased density of A_{2A} receptors in cerebral cortical membranes of kindled compared to control rats, we compared by Western blot analysis the immunoreactivity against A_{2A} receptors in membranes from cortical membranes from control and fully kindled rats. As illustrated in Fig. 2B, there was an increase in the densitometrically measured anti- A_{2A} receptor immunoreactivity in cortical membranes on kindled compared to control rats, with an average value of $151 \pm 12\%$ (n = 3).

Modification of cortical A_1 and A_{2A} receptors in kainate-injected rats

To further strength the idea that a convulsive period caused a long-term effect on the density of adenosine receptors in the cerebral cortex, we decided to use a different experimental paradigm to trigger convulsions. Thus, rats were injected with kainate, which induced convulsions

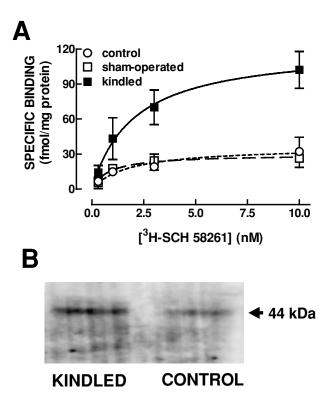


FIG. 2. Long-term effect of convulsions induced by amygdala kindling on the density of adenosine A2A receptors in the rat cerebral cortex. A: Average saturation binding curves with the selective A2A receptor antagonist ³H-SCH 58261 in cerebral cortical membranes of control (open circles), sham-operated (open rectangles), and fully kindled rats (filled rectangles). The ordinates represent the specific binding of ³H-SCH 58261, obtained on subtraction of the nonspecific binding, determined in the presence of 2 μ M XAC from total binding. The results are mean \pm SEM of four experiments. B: A Western blot comparing the A2A receptor immunoreactivity in membranes from the rat cerebral cortex of control (right lane) and fully kindled rats (left lane). The SDS-PAGE gel was loaded with 200 μ g of cortical protein from each group of rats and is representative of three similar separations carried out with membranes prepared from different animals. It is evident that the intensity of bands identified as the A2A receptor protein is higher in the membranes derived from kindled compared to control rats.

reaching a stage 4-5 between 30 and 240 min after kainate injection, and the density of cortical A1 and A2A receptors was evaluated after 30 days. As was observed in amygdalakindled rats, there was a decrease in the binding density of the selective A₁ receptor antagonist, ³H-DPCPX. Thus, ³H-DPCPX bound with a K_D of 1.04 nM (95% confidence interval: 0.50–1.51 nM, n = 3) and a B_{max} of 907 ± 4.5 fmol/mg protein (n = 3) to whole membranes from the cerebral cortex of control (i.e., saline-injected rats). As illustrated in Fig. 3A, in cortical membranes from kindled rats, the B_{max} of ³H-DPCPX binding was decreased to 719 \pm 15 fmol/mg protein (20.7 \pm 0.5% decrease, p < 0.05, n = 3) without change in K_D (K_D= 1.03 nM, 95% confidence interval of 0.82–1.24 nM, n = 3). This decreased density of A₁ receptors was also confirmed by Western blot analysis. In fact, as illustrated in Fig. 3B,

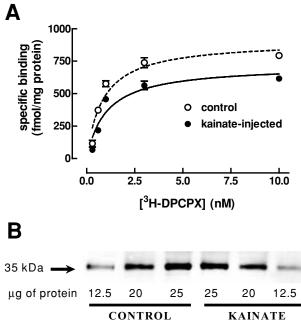


FIG. 3. Long-term effect of convulsions caused by the intraperitoneal injection of kainate on the density of adenosine A1 receptors in the rat cerebral cortex. A: Average saturation binding curves with the selective A1 receptor antagonist ³H-DPCPX in cerebral cortical membranes of control (open circles) and kainateinduced kindled rats (filled rectangles). The ordinates represent the specific binding of ³H-DPCPX, obtained on subtraction of the nonspecific binding, determined in the presence of 2 μ M XAC from total binding. The results are mean \pm SEM of three experiments. B: A Western blot comparing the A1 receptor immunoreactivity in membranes from the rat cerebral cortex of control (first three lanes from the left) and fully kindled rats (first three lanes from the right). The SDS-PAGE gel was loaded with three different amounts of cortical protein from each group of rats and is representative of three similar separations carried out with membranes prepared from different animals. It is evident that the intensity of bands identified as the A1 receptor protein is systematically lower in the membranes derived from kainate-injected rats when compared to the same amount of loaded cortical membrane from control rats.

there was a decrease in the densitometrically measured anti-A₁ receptor immunoreactivity in cortical membranes of kainate-injected compared to control rats, with an average value of $12.7 \pm 5.7\%$ (n = 3).

Convulsions induced by kainate also caused a marked upregulation of A_{2A} receptors, as occurred in kindled rats. In fact, as illustrated in Fig. 4, there was a near doubling $(159 \pm 32\%$ increase, p < 0.05) of the density of ³H-SCH 58261 binding in kainate-injected rats (B_{max} of 70.2 \pm 5.8 fmol/mg protein, n = 3) compared to control (B_{max} of 26 \pm 2.9 fmol/mg protein, n = 3), with no change in K_D (0.89 n*M*, 95% confidence interval: 0.78–1.01 n*M*, n = 3, in control vs. 0.91 n*M*, 95% confidence interval: 0.59–1.21 n*M*, n = 3, in kainate-injected rats). This increased density of A_{2A} receptors was also confirmed by Western blot analysis. In fact, as illustrated in Fig. 4B, there was a marked increase in the densitometrically measured anti- A_{2A} receptor immunoreactivity in cortical membranes of

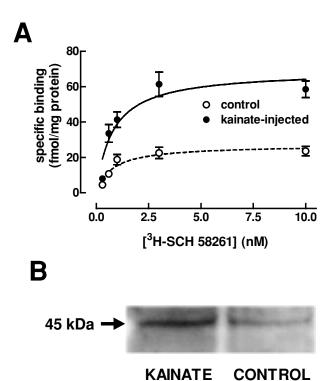


FIG. 4. Long-term effect of convulsions caused by the intraperitoneal injection of kainate on the density of adenosine A2A receptors in the rat cerebral cortex. A: Average saturation binding curves with the selective A2A receptor antagonist ³H-SCH 58261 in cerebral cortical membranes of control (open circles) and kainate-induced kindled rats (filled rectangles). The ordinates represent the specific binding of ³H-SCH 58261, obtained on subtraction of the nonspecific binding, determined in the presence of 2 μ M XAC from total binding. The results are mean \pm SEM of three experiments. B: A Western blot comparing the A2A receptor immunoreactivity in membranes from the rat cerebral cortex of control (right lane) and kainate-injected rats (left lane). The SDS-PAGE gel was loaded with 180 μ g of cortical protein from each group of rats and is representative of three similar separations carried out with membranes prepared from different animals. It is evident that the intensity of bands identified as the A2A receptor protein is higher in the membranes derived from kindled compared to control rats.

kainate-injected compared to control rats, with an average value of $79.6 \pm 7.0\%$ (n = 3).

DISCUSSION

The neuromodulator adenosine has been associated with epileptic phenomena [reviewed in (2)] since there is a massive amount of adenosine released during seizures (16) and manipulation of the activity of either A₁ [reviewed in (2)] or A_{2A} receptors (10) affects convulsive behavior. We now found that convulsive behavior triggers a long-term decrease of A₁ receptor density and an increase of A_{2A} receptor density in the cerebral cortex. This conclusion was reached using two different and well-established paradigms to trigger convulsive behavior, amygdala kindling (13) and kainate injection (14), and two different experimental approaches to measure the density of adenosine A_1 and A_{2A} receptors, i.e., radioligand binding with selective antagonists and using selective antibodies against each adenosine receptor subtype. Thus, the observed remarkable qualitative similarity between the findings obtained when using two different ways to trigger convulsions and two different methods to evaluate changes in adenosine receptor density emphasizes the robustness of this major conclusion, i.e., that convulsive behavior causes a long-term increase in A_{2A} receptor density and a decrease of the density of A_1 receptors.

Several studies have shown that A₁ receptors undergo desensitization on prolonged activation (17-19), which is expected due to the massive and prolonged increase of extracellular adenosine occurring upon ictal activity (16,20,21). However, previous studies failed to reach an agreement on the effects of seizure activity on the density of A_1 receptors in the brain [reviewed in (4)]. In fact, most studies evaluating acute or short-term effects (i.e., after 24 h) of convulsions most commonly found an increase in the density of A₁ receptors in different brain regions, either upon induction of seizures with pentylenetetrazole (22,23), bicuculline (24,25), or 3-mercaptopropionate (26). In contrast, no acute or shortterm changes in the density of brain A1 receptors were found after electroconvulsive stimulation (27,28) or upon intraperitoneal injection of kainate (29). Changes in the density of A1 receptors occurring 2-15 days after the observation of convulsive behavior also seem to depend on the strategy used to trigger convulsions. Thus, convulsions triggered by pentylenetetrazole (22) or repeated electroconvulsive stimulation (27,28) enhanced the density of A₁ receptors in most brain regions, whereas no measurable modification of A₁ receptor density was reported upon amygdala kindling (30)] or kainate injection (29,31). Interestingly, most studies seem to find a long-term decrease in the density of adenosine A1 receptors, at least in the hippocampus (5,29,31). Thus, there is a general trend indicating that convulsive behavior leads to a long-term decrease in the density of A_1 receptors, as we now report has occurred in the cerebral cortex. This conclusion is in general agreement with the development of tolerance in relation to the anticonvulsive effects of A_1 receptor agonists (3,32).

However, the currently observed decrease of A_1 receptor density does not necessarily exclude A_1 receptors as potential targets for the development of new anticonvulsant drugs. In fact, while the efficiency of most anticonvulsants decreases markedly with increasing severity of seizures, A_1 receptor activation is able to suppress seizures in an animal model of pharmacoresistant epilepsy (33). This may be understood if one keeps in mind that seizures cause a long-term greater modification of the extracellular levels of adenosine able to activate A_1 receptors than a desensitization of responses mediated by A_1 receptors [(5), reviewed in (4)]. This suggests that strategies aimed at increasing the extracellular levels of adenosine may be more

effective than using A_1 receptor agonists (34,35), which also have the disadvantages of poor brain penetration and causing potent peripheral side effects (36).

In contrast to the well-defined potential of A₁ receptor activation to control seizures, the role of A2A receptors is less well established. In fact, some reports with purportedly selective A2A receptor agonists consistently observed anticonvulsant effects (32,37–39). However, despite the established presence of low amounts of A2A receptors in cortical brain regions, it has recently been concluded that A_{2A} receptor agonists (like CGS 21680) mostly bind to A_1 rather than to A_{2A} receptors in cortical regions (8). This suggests that the activation of A_1 receptors might underlie the anticonvulsive effects of these purportedly selective A_{2A} receptor agonists (40). However, there are reasons to believe that A_{2A} receptors might play a role in the control of seizures and/or epileptogenesis. In fact, the group of Vaugeois showed that pharmacological blockade or genetic deletion of A2A receptors decrease ethanol withdrawal-induced seizures in mice (10). Likewise, it has systematically been shown that blockade of A2A receptors is neuroprotective in different noxious situations that involve limbic or cortical degeneration [reviewed in (9)], as is the case of temporal lobe epilepsy (41). This preliminary evidence, together with the presently observed robust increase in the density of adenosine A_{2A} receptors in the cerebral cortex of rats that had undergone a convulsive period, make A_{2A} receptor antagonists an attractive novel class of anticonvulsive drugs.

In conclusion, the presently observed long-term decrease in the density of A_1 receptors and the parallel increase of the density of A_{2A} receptors in the cerebral cortex provide a preliminary rationale for the development of novel anticonvulsive strategies targeting the adenosine neuromodulatory systems, which might be based on the combined use of strategies to burst the extracellular levels of adenosine to activate inhibitory A_1 receptors together with antagonists of facilitatory A_{2A} receptors.

Acknowledgment: This work was partially supported by Fundação para a Ciência e Tecnologia (grant POCTI/44740/2002). Lisiane O. Porciúncula is supported by CNPq – Brazil postdoctoral fellowship program (proc. N° 200868/03-9).

REFERENCES

- Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Ann Rev Neurosci 2001;24:31–55.
- Dunwiddie TV. Adenosine and suppression of seizures. In: Delgado-Escueta AV, Wilson WA, Olsen RW, Porter RJ, eds. *Jasper's basic mechanisms of the epilepsie.*, 3rd Ed. *Advances in neurology*, vol. 79, Lippincott Williams & Wilkins, Philadelphia, 1999.
- Young D, Dragunow M. Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms. *Neuroscience* 1994; 58:245– 61.
- Malva JO, Silva AP, Cunha RA. Presynaptic modulation controlling neuronal excitability and epileptogenesis: role of kainate, adenosine and neuropeptide Y receptors. *Neurochem Res* 2003;28:1499–513.

receptors to G proteins in Alzheimer hippocampus: a quantitative autoradiographic study. *Neuroscience* 1993;52:843–54.
7. Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the neurone systemy different regulator and response systemy.

 Rebola N, Coelho JE, Costenla AR, et al. Decrease of adenosine A₁ receptor density and of adenosine neuromodulation in the hip-

pocampus of kindled rats. Eur J Neurosci 2003;18:820-8.

- regulator in the nervous system: different roles, different sources and different receptors. *Neurochem Int* 2001;38:107–25.8. Lopes LV, Halldner L, Rebola N, et al. Binding of the prototypical
- adenosine A_{2A} receptor agonist CGS 21680 to the cerebral cortex of adenosine A_1 and A_{2A} receptor knockout mice. *Br J Pharmacol* 2004;141:1006–14.
- Cunha RA. Neuroprotection by adenosine in the brain: from A₁ receptor activation to A₂ receptor blockade. *Purinergic Signal* 2005;1:111–34.
- El Yacoubi M, Ledent C, Parmentier M, Daoust M, Costentin J, Vaugeois JM. Absence of the adenosine A_{2A} receptor or its chronic blockade decrease ethanol withdrawal-induced seizures in mice. *Neuropharmacology* 2001;40:424–32.
- Kobayashi S, Millhorn DE. Stimulation of expression for the adenosine A_{2A} receptor gene by hypoxia in PC12 cells. A potential role in cell protection. *J Biol Chem* 1999;274:20358–65.
- Trincavelli ML, Costa B, Tuscano D, Lucacchini A, Martini C. Up-regulation of A_{2A} adenosine receptors by proinflammatory cytokines in rat PC12 cells. *Biochem Pharmacol* 2002;64:625–31.
- Kulkarni SK, George B. Kindling model of epilepsy. *Meth Find Exp Clin Pharmacol* 1994;16:735–45.
- Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. *Neuroscience* 1985;14:375–403.
- Rebola N, Pinheiro PC, Oliveira CR, Malva JO, Cunha RA. Subcellular localization of adenosine A₁ receptors in nerve terminals and synapses of the rat hippocampus. *Brain Res* 2003;987:49– 58.
- During MJ, Spencer DD. Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 1992;32:618–24.
- Fernandez M, Svenningsson P, Fredholm BB. Adaptative changes in adenosine receptors following long-term treatment with the adenosine receptor agonist R-phenylisopropyladenosine. *Life Sci* 1996;58:769–76.
- Hettinger BD, Leid M, Murray TF. Cyclopentyladenosine-induced homologous down-regulation of A1 adenosine receptors (A1AR) in intact neurons is accompanied by receptor sequestration but not a reduction in A1AR mRNA expression or G protein alpha-subunit content. J Neurochem 1998;71:221–30.
- Wetherington JP, Lambert NA. Differential desensitisation of responses mediated by presynaptic and postsynaptic A₁ adenosine receptors. *J Neurosci* 2002;22:1248–55.
- Berman RF, Fredholm BB, Aden U, O'Connor WT. Evidence for increased dorsal hippocampal adenosine release and metabolism during pharmacologically induced seizures in rats. *Brain Res* 2000;872:44–53.
- Lewin E, Bleck V. Electroshock seizures in mice: effect on brain adenosine and its metabolites. *Epilepsia* 1981;22:577–81.
- Angelatou F, Pagonopoulou O, Kostopoulos G. Alterations of A1 adenosine receptors in different mouse brain areas after pentylentetrazol-induced seizures, but not in the epileptic mutant mouse 'tottering.' *Brain Res* 1990;534:251–6.
- Pagonopoulou O, Angelatou F, Kostopoulos G. Effect of pentylentetrazol-induced seizures on A₁ adenosine receptor regional density in the mouse brain: a quantitative autoradiographic study. *Neuroscience* 1993;56:711–6.
- Daval JL, Sarfati A. Effects of bicuculline-induced seizures on benzodiazepine and adenosine receptors in developing rat brain. *Life Sci* 1987;41:1685–93.
- Daval J, Werck M. Autoradiographic changes in brain adenosine A1 receptors and their coupling to G proteins following seizures in the developing rat. *Dev Brain Res* 2001;59:237–47.
- Vanore G, Giraldez L, Rodriguez de Lores Arnaiz G, Girardi E. Seizure activity produces differential changes in adenosine A₁ receptors within rat hippocampus. *Neurochem Res* 2001;26:225–30.

- Newman M, Zohar J, Kalian M, Belmaker RH. The effects of chronic lithium and ECT on A1 and A2 adenosine receptor systems in rat brain. *Brain Res* 1984;291:188–92.
- Gleiter CH, Deckert J, Nutt DJ, Marangos PJ. Electroconvulsive shock (ECS) and the adenosine neuromodulatory system: effect of single and repeated ECS on the adenosine A1 and A2 receptors, adenylate cyclase, and the adenosine uptake site. *J Neurochem* 1989;52:641–6.
- Ekonomou A, Sperk G, Kostopoulos G, Angelatou F. Reduction of A1 adenosine receptors in rat hippocampus after kainic acid-induced limbic seizures. *Neurosci Lett* 2000;284:49–52.
- Simonato M, Varani K, Muzzolini A, Bianchi C, Beani L, Borea PA. Adenosine A₁ receptors in the rat brain in the kindling model of epilepsy. *Eur J Pharmacol* 1994; 265:121–4.
- Ochiishi T, Takita M, Ikemoto M, Nakata H, Suzuki SS. Immunohistochemical analysis on the role of adenosine A1 receptors in epilepsy. *Neuroreport* 1999; 10:3535–41.
- Adami M, Bertolli R, Ferri N, Foddi MC, Ongini E. Effects of repeated administration of selective adenosine A₁ and A_{2A} receptor agonists on pentylenetetrazole-induced convulsions in the rat. *Eur J Pharmacol* 1995;294:383–9.
- Gouder N, Fritschy JM, Boison D. Seizure suppression by adenosine A1 receptor activation in a mouse model of pharmacoresistant epilepsy. *Epilepsia* 2003;44:877–85.
- 34. Huber A, Padrum V, Déglon N, Aebischer P, Mölher H, Boison

D. Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. *Proc Natl Acad.Sci USA* 2001;98:7611–6.

- Gouder N, Scheurer L, Fritschy JM, Boison D. Overexpression of adenosine kinase in epileptic hippocampus contributes to epileptogenesis. J Neurosci 2004;24:692–701.
- Brodie MS, Lee KS, Fredholm BB, Stahle L, Dunwiddie TV. Central versus peripheral mediation of responses to adenosine receptor agonists: evidence against a central mode of action. *Brain Res* 1987;415:323–30.
- De Sarro G, De Sarro A, Di Paola ED, Bertorelli R. Effects of adenosine receptor agonists and antagonists on audiogenic seizuresensible DBA/2 mice. *Eur J Pharmacol* 1999;371:137–45.
- Khan GM, Smolders I, Ebinger G, Michotte Y. Anticonvulsant effect and neurotransmitter modulation of focal and systemic 2chloroadenosine against the development of pilocarpine-induced seizures. *Neuropharmacology* 2000;39:2418–32.
- Huber A, Güttinger M, Möhler H, Boison D. Seizure suppression by adenosine A2A receptor activation in a rat model of audiogenic brainstem epilepsy. *Neurosci. Lett* 2002;329:289–92.
- Zhang G, Franklin PH, Murray TF. Activation of adenosine A₁ receptors underlies anticonvulsant effect of CGS21680. *Eur J Pharmacol* 1994;255:239–43.
- Lee HK, Choi SS, Han KJ, Han EJ, Suh HW. Roles of adenosine receptors in the regulation of kainic acid-induced neurotoxic responses in mice. *Mol Brain Res* 2004; 125:76–85.