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Abstract

Hippocampal metabotropic glutamate 5 receptors (mGlu5Rs)

regulate both physiological and pathological responses to

glutamate. Because mGlu5R activation enhances NMDA-

mediated effects, and given the role played by NMDA recep-

tors in synaptic plasticity and excitotoxicity, modulating

mGlu5R may influence both the physiological and the patho-

logical effects elicited by NMDA receptor stimulation. We

evaluated whether adenosine A2A receptors (A2ARs) modu-

lated mGlu5R-dependent effects in the hippocampus, as they

do in the striatum. Co-application of the A2AR agonist

CGS 21680 with the mGlu5R agonist (RS)-2-chloro-s-hydr-

oxyphenylglycine(CHPG) synergistically reduced field excita-

tory postsynaptic potentials in the CA1 area of rat

hippocampal slices. Endogenous tone at A2ARs seemed to be

required to enable mGlu5R-mediated effects, as the ability of

CHPG to potentiate NMDA effects was antagonized by the

selective A2AR antagonist ZM 241385 in rat hippocampal sli-

ces and cultured hippocampal neurons, and abolished in the

hippocampus of A2AR knockout mice. Evidence for the inter-

action between A2ARs and mGlu5Rs was further strengthened

by demonstrating their co-localization in hippocampal synap-

ses. This is the first evidence showing that hippocampal

A2ARs and mGlu5Rs are co-located and act synergistically,

and that A2ARs play a permissive role in mGlu5R receptor-

mediated potentiation of NMDA effects in the hippocampus.
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In the hippocampus, group I metabotropic glutamate receptors
(mGluRs, which include the mGlu1R and mGlu5R subtypes)
regulate synaptic plasticity and spatial learning (reviewed in
Anwyl 1999; Balschun et al. 1999; Bortolotto et al. 1999;
Balschun and Wetzel 2002), contribute to the generation of
epileptiform activity (Sacaan and Schoepp 1992), and modu-
late excitotoxic processes (Attucci et al. 2002). Because
mGlu5R is the most abundant group I mGluR in the
hippocampus (Romano et al. 1995; Lujan et al. 1996, 1997;
Shigemoto et al. 1997), this subtype is thought to play a
predominant role. One of the most noteworthy effects of
mGlu5R activation is an enhancement of NMDA-mediated
effects (reviewed in Anwyl 1999; Bortolotto et al. 1999) and,
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in general, it is well accepted that mGlu5Rs ‘set the tone’ of
NMDA receptor-mediated neurotransmission (Alagarsamy
et al. 1999). Given the key role of NMDA receptors in both
synaptic plasticity (Collingridge and Bliss 1995) and excito-
toxicity (Rothman andOlney 1995), modulatingmGlu5Rmay
help regulate both the physiological and the pathological
effects elicited by NMDA receptor stimulation in the hippo-
campus. Indeed, hippocampal long-term potentiation is
blocked in rats by the selective mGlu5R antagonist
2-methyl-6-(phenylethyny) pyridine hydrochloride (MPEP)
(e.g. Balschun and Wetzel 2002), and reduced in mice lacking
mGlu5Rs (Lu et al. 1997). In another brain region, the
striatum, mGlu5Rs are under the tight control of adenosine
A2A receptors (A2ARs). Indeed, A2ARs and mGlu5Rs have
been reported to interact in models of Parkinson disease
(Popoli et al. 2001; Coccurello et al. 2004), and to synergis-
tically modulate GABA (Diaz-Cabiale et al. 2002) and
glutamate release (Rodrigues et al. 2005). Furthermore, the
existence of A2AR–mGlu5R heteromeric complexes in striatal
membranes and a synergistic interaction between the two
receptors in inducing c-fos expression has been reported (Ferre
et al. 2002; Fuxe et al. 2003). Very recently, it has been shown
that the state of activation of striatal A2ARs influences some
mGlu5R-dependent effects, such as dopamine-and cAMP-
regulated phosphoproten of Mr 32,000 (DARPP-32) phos-
phorylation (Nishi et al. 2003) and NMDA potentiation
(Domenici et al. 2004).

Although A2ARs are most abundant in the striatum, they
are also present in the hippocampus, where they modulate
synaptic transmission and excitotoxicity (reviewed in Cunha
2005). However, unlike the striatum, nothing is known about
the possible co-localization of A2ARs and mGlu5Rs in the
hippocampus, nor whether A2ARs can modulate hippocam-
pal mGlu5Rs, thus influencing NMDA-mediated responses.

The primary aim of the present study was to explore the
hypothesis that A2ARs can regulate mGlu5R-mediated
effects in the hippocampus. Having found a clear functional
A2AR–mGlu5R interaction in electrophysiological and cell
culture experiments, we then confirmed the hypothesis that
hippocampal A2ARs exert a permissive role on mGlu5R-
mediated effects (namely the potentiation of NMDA
responses) by using mice lacking A2ARs. The interaction
between A2ARs and mGlu5Rs was further strengthened by
the finding of their co-localization in hippocampal synapses.

Materials and Methods

Animals

Male and pregnant female Wistar rats (2–3 months old) obtained

either from Harlan-Nossan (Udine, Italy) or from Charles River

(Barcelona, Spain), and A2AR knockout (KO) and wild-type (WT)

mice (2–4 months old, see below) were used. The animals were kept

under standardized temperature, humidity and lighting conditions,

and had free access to water and food. All animal procedures were

carried out according to the European Community Guidelines for

Animal Care, DL 116/92, application of the European Communities

Council Directive (86/609/EEC).

Preparation and maintenance of slices

The animals were decapitated under ether anesthesia, and brains were

quickly removed from the skull. Transverse hippocampal slices

(400 lm thick) were cut with a McIlwain tissue chopper. Slices were

maintained at room temperature (22–25�C) in artificial cerebrospinal
fluid (ACSF) containing 126 mM NaCl, 3.5 mM KCl, 1.2 mM

NaH2PO4, 1.2 mM MgCl2, 2 mM CaCl2, 25 mM NaHCO3 and

11 mM glucose (pH 7.3) saturated with 95% O2 and 5% CO2. After

incubation in ACSF for at least 1 h, a single slice was transferred to a

submerged recording chamber and continuously superfused at 32–

33�C with ACSF at rate of 2.7–3 mL/min. The drugs were added to

this superfusion solution. Extracellular field excitatory postsynaptic

potentials (fEPSPs) were recorded through a glass microelectrode

filled with 2 M NaCl (pipette resistance 2–5 MW) placed in the

stratum radiatum of the CA1 area. A bipolar twisted NiCr-insulated

electrode (50 lm outer diameter), placed in the stratum radiatum,

was used to stimulate the Schaffer collaterals. Stimulation was

delivered every 20 s (square pulses of 100-ls duration at a frequency
of 0.05 Hz) and every three consecutive responses were averaged.

Signals were acquired with a DAM-80 AC differential amplifier

(WPI Instruments, Woltham, MA, USA) and analyzed with the LTP

program (Anderson and Collingridge 2001). At least 10 min of stable

baseline recording preceded drug application. To allow comparisons

between experiments, in each experiment the slope values were

normalized, taking the average of the values obtained over the 10-

min period immediately before applying the test compound as 100%.

The washout period lasted at least 30 min.

In order to establish a possible involvement of presynaptic

mechanisms in the effects of A2AR and mGlu5R agonists, a series of

experiments was performed under a protocol of paired-pulse

stimulation (PPS), in which the Schaffer fibers were stimulated

twice with an interpulse interval of 50 ms. Under control conditions,

such a protocol normally elicits a condition of paired-pulse

facilitation, in which the response elicited by the second stimulus

(R2) is greater than that elicited by the first stimulus (R1). The

degree of paired-pulse facilitation is quantified by the R2/R1 ratio

and a modification of this ratio is an indication of a presynaptic

action on neurotransmitter release (Schulz et al. 1994). Data were

expressed as mean ± SEM from N slices.

Lactate dehydrogenase (LDH) release from cultured

hippocampal neurons

Neurons were isolated from hippocampi dissected from E17 Wistar

rat embryos. Pregnant rats were anesthetized with ether, decapitated

and the fetuses were collected and rapidly decapitated. After

removal of the meninges, the hippocampi were collected in Hank’s

balanced salt solution (HBSS) and dissociated. Hippocampal cells

were then washed in HBSS and resuspended in Neurobasal medium

supplemented with 0.5 mM L-glutamine, 2% B-27 supplement and

gentamicin (50 lg/mL) (referred as complete medium). Aliquots of

2–3 · 105 cells were placed in 24-well culture plates coated with

poly-L-lysine (5 lg/mL) and maintained at 37�C in humidified air

with 5% CO2.
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Every 4 days, 0.5 mL medium was removed and replaced by

the same volume of fresh complete medium. Assays were done on

12–14-day-old cultures. At the time of the experiment, culture

medium was removed and substituted with an appropriate

volume of Neurobasal medium supplemented with gentamicin

(50 lg/mL). Cultured cells were then exposed to NMDA (300 lM)
and/or CHPG (500–1000 lM) for 60 min. ZM 241385 (30 nM) or

MPEP (30 lM) were applied 15 min before and then co-applied

with NMDA and/or CHPG. Following exposure to the drugs, the

culture medium was removed and replaced with fresh complete

medium. Cultures were then returned to the incubator and cellular

damage was evaluated 24 h later by measuring the amount of LDH

released into the medium using a cytotoxicity detection kit (Roche

Diagnostic, Indianapolis, IN, USA). Results are expressed as a

percentage of control (100%), and represent mean ± SEM values

of 3–4 independent experiments, assayed in triplicate.

Experiments in A2AR KO mice

A2AR KO mice were generated as described previously (Chen

et al. 1999) to produce the near congenic (N6) line used here.

A2AR KO mice (A2AR–/–) and their WT littermates (A2AR+/+)
were generated by cross-breeding heterozygous A2AR mice

(A2AR+/–). They were genotyped on the basis of PCR analysis

performed on DNA isolated from tail samples. PCR amplification

products were routinely fractionated through 2% agarose gels and

stained with ethidium bromide. Photographs of the gels were

made by using incident ultraviolet light to record the results of

electrophoresis. In each experiment, age- and sex-matched A2AR
KO mice and WT littermates were used.

The experimental procedure described for rats was used for

electrophysiological recordings in mice hippocampal slices.

To verify whether changes in mGlu5R density occurred in the

hippocampus of A2ARKO versus WTmice, western blot experiments

were performed. Proteins for mGlu5R analysis were extracted from

previously frozen hippocampal tissues by homogenization in cold

buffer containing 0.32 M sucrose, 10 mM HEPES, 0.1 mM EGTA,

0.1 mM EDTA, 0.1 mM phenylmethylsulfonyl fluoride (PMSF),

10 lg/mL leupeptin and 10 lg/mL aprotinin (pH 7.4). Homogenates

were centrifuged at 500 g for 20 min and the resulting supernatant

was centrifuged at 20 000 g. Pellets were resuspended in ice-cold

25 mM Tris-HCl buffer (pH 7.4) containing 1 mM PMSF, and an

aliquot was used for protein determinations (Bio-Rad DC protein

assay; Bio-Rad, Hercules, CA, USA). Samples were resuspended in

Laemmli sample buffer, boiled for 5 min at 90�C and resolved by

sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis

(PAGE) using 10% gels (Laemmli 1970). For western blot analysis,

proteins (5, 10 or 20 lg) were separated by SDS–PAGE (10% gels)

and transferred overnight to nitrocellulose paper (Shleicher & Schuell

BioScience, Dassel, Germany) at 35 V. Blots werewashedwith TBST

buffer (20 mM Tris, pH 7.5, 0.05% Tween 20, 150 mM NaCl) and

blocked with TBST containing 1% bovine serum albumin for 1 h.

Blots were then incubated at room temperature with the primary

antibody, a rabbit anti-mGlu5R antibody (1 : 1000 dilution; Upstate

Biotechnology, Lake Placid, NY, USA) for 1 h. After extensive

washes in TBST, the immunoreactive bands were detected by

incubation with alkaline phosphatase-conjugated secondary antibod-

ies (Promega Corporation, Madison, WI, USA) and revealed by

Western blue substrate for alkaline phosphatase (Promega).

Subcellular distribution of A2AR and mGlu5R immunoreactivity

in cultured hippocampal neurons

Immunocytochemistry in the coverslip-mounted neurons was carried

out as described previously (Rebola et al. 2005). Briefly, the cultures
were washed twice with 1 mL phosphate-buffered saline (PBS;

140 mM NaCl, 3 mM KCl, 20 mM Na2HPO4, 1.5 mM KH2PO4) kept

at 37�C during 10 min, and fixed with 4% paraformaldehyde with 4%

sucrose for 30 min at 37�C. Coverslip-mounted cells were then

permeabilized with 0.2% Triton X-100 for 2 min at room temperature

(22–25�C) and non-specific binding subsequently blocked with 3%

bovine serum albumin for 30 min at room temperature. Cells then

incubated for 1 h at room temperature with mouse anti-A2AR (1 : 500

dilution; Upstate Biotechnology), rabbit anti-mGlu5R receptor

antibody (1 : 1000 dilution; Upstate Biotechnology), rabbit or mouse

anti-synaptophysin antibody (1 : 200 dilution; Sigma, Sintra, Portu-

gal) and guinea pig anti-vesicular glutamate transporter (vGluT) type

1 (1 : 5000; Chemicon, Temecula, CA, USA) and guinea pig vGluT2

(1 : 5000; Chemicon), and then washed three times with 200 lL PBS

for 5 min. Incubation with secondary antibody, an AlexaFluor-598

(green)-labeled goat anti-guinea pig IgG antibody (1 : 200 dilution;

Amersham, Little Chalfont, UK), AlexaFluor-598 (red)-labeled goat

anti-mouse IgG antibody (1 : 200 dilution; Amersham), AlexaFluor-

488 (green)-labeled goat anti-rabbit IgG antibody (1 : 200 dilution;

Amersham) or AlexaFluor-488 (green)-labeled goat anti-mouse IgG

antibody (1 : 200 dilution; Amersham), was conducted for 1 h at

room temperature. We confirmed that none of the secondary

antibodies produced any signal in preparations from which the

corresponding primary antibody was omitted. After three washing

periods of 5 min with 200 lL PBS, the cells were mounted using a

ProlongAntifade kit (Amersham) and, after drying, were visualized in

a Zeiss Axiovert 200 fluorescence microscope (Obertcochen,

Germany) equipped with a cooled camera (Coolsnap Photometrics,

Tucson, AZ, USA) or with a Bio-Rad 600 confocal microscope

(Hercules, CA, USA) and analyzed with MetaFluor 4.0 software

(Molecular Devices, Downingtown, PA, USA).

Subsynaptic distribution of A2ARs and mGlu5Rs in rat

hippocampus

Separation of the presynaptic active zone, postsynaptic density (PSD)

and non-synaptic fractions from hippocampal nerve terminals was

carried out as initially described by Phillips et al. (2001) with minor

modifications (see Rebola et al. 2003). Briefly, the hippocampi from

eight male Wistar rats were homogenized at 4�C with a Teflon–glass

homogenizer in 15 mL isolation solution (0.32 M sucrose, 0.1 mM

CaCl2, 1 mM MgCl2, 0.1 mM PMSF). The concentration of sucrose

was raised to 1.25 M by addition of 75 mL 2 M sucrose and 30 mL

0.1 mM CaCl2, and the suspension was divided into 10 ultracentri-

fuge tubes. The homogenate was overlaid with 8 mL of a solution

containing 1.0 M sucrose and 0.1 mM CaCl2, and with 5 mL

homogenization solution and centrifuged at 100 000 g for 3 h at

4�C. Synaptosomes were collected at the 1.25/1.0 M sucrose

interface, diluted 1 : 10 in cold 0.32 M sucrose containing 0.1 mM

CaCl2 and pelleted by centrifugation at 15 000 g for 30 min at 4�C.
The pellets were resuspended in 1 mL 0.32 M sucrose with 0.1 mM

CaCl2 and a small sample was stored for western blot analysis.

Synaptosomes were then diluted 1 : 10 in cold 0.1 mM CaCl2 and an

equal volume of 2 · solubilization buffer (2% Triton X-100, 40 mM

Tris, pH 6.0) was added to the suspension. The membranes were
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incubated for 30 min on ice with mild agitation and the insoluble

material (synaptic junctions) was pelleted by centrifugation at

40 000 g for 30 min at 4�C. The supernatant (extra-synaptic fraction)
was decanted, and proteins were precipitated with six volumes of

acetone at )20�C and recovered by centrifugation at 18 000 g for

30 min at ) 15�C. The synaptic junction pellet was washed in

solubilization buffer (pH 6.0) and resuspended in 10 volumes of a

second solubilization buffer (1% Triton X-100, 20 mM Tris but at

pH 8.0). This increase in pH allows the dissociation of the

extracellular matrix that maintains the presynaptic active zone tightly

bound to the PSD (Phillips et al. 2001). Hence, the active zone is

solubilized whereas the PSD is essentially preserved because the

amount of detergent is not enough for its solubilization (Phillips et al.
2001). After incubation for 30 min on ice with mild agitation, the

mixture was centrifuged (18 000 g for 30 min at )15�C) and the

supernatant (presynaptic fraction corresponding to the active zone)

processed as described for the extra-synaptic fraction. The protease

inhibitor PMSF (1 mM) was added to the suspension in all extraction

steps. The pellets from the supernatants and the final insoluble pellet

(postsynaptic fraction) were solubilized in 5% SDS and the protein

concentration determined by the bicinchoninic acid protein assay.

The samples were added to an equal volume of 2 · SDS–PAGE

sample buffer before freezing at )20�C. As reported previously

(Rebola et al. 2003), this fractionation procedure allows an effective

separation (over 90% efficiency) of markers of the presynaptic

(containing syntaxin or SNAP25), postsynaptic (containing PSD-95

or NMDA receptor subunits) and non-active zone (containing

synaptophysin) fractions, and can be used to determine the

subsynaptic distribution of mGluRs by western blot analysis (e.g.

Rebola et al. 2003; Rodrigues et al. 2005).
Western blot analysis was carried out using 20–140 lg of each

protein fraction, obtained as described above. Samples were

loaded on to SDS–polyacrylamide gels (7.5%) and transferred on

to polyvinylidene difluoride membranes. The membranes were

then blocked for 1 h at room temperature in 5% low-fat milk in

Tris-buffered saline medium with 0.1% Tween 20 (Sigma) before

being probed with primary antibodies raised against the A2AR

(1 : 500) and mGlu5R (1 : 1000), applied overnight at 4�C.
Detection was performed using alkaline phosphatase-conjugated

secondary antibodies goat anti-rabbit IgG (1 : 20 000 dilution;

Amersham) or rabbit anti-goat IgG (1 : 5000 dilution; Santa Cruz

Biotechnology, Santa Cruz, CA, USA). Immunoblots were

visualized using ECF detection reagent (Amersham) and a

VersaDoc 3000 (Bio-Rad).

Drugs

CHPG, MPEP, CGS 21680, ZM 241385, forskolin, cyclopenthy-

ladenosine (CPA) and KT 5720 were obtained from Tocris Cookson

(Northpoint, UK); NMDA was from RBI (Natik, MA, USA) and

bicuculline was from Sigma-Aldrich (Milan, Italy).

Results

A2AR activation facilitates CHPG-induced effects

in rat hippocampal slices

As shown in Fig. 1(a and c), the selective mGlu5R agonist
CHPG (500 lM over 10 min) did not significantly affect the

fEPSP recorded in the CA1 area (p > 0.05). Only at
concentration of 1 mM did CHPG induce a reduction in the
fEPSP slope () 21.8 ± 4% of basal, N ¼ 13; p < 0.005
versus baseline, Wilcoxon signed rank test) that completely
recovered after washout. This effect was significantly
reduced by the selective mGlu5R antagonist MPEP
(30 lM) () 7.1 ± 1.5% of basal, N ¼ 4; p < 0.01 vs. 1 mM

CHPG, Mann–Whitney U-test) (Fig. 1c). MPEP (30 lM) by
itself did not affect synaptic transmission.

We then investigated whether the co-activation of A2ARs
and mGlu5Rs had a synergistic effect on synaptic transmis-
sion, as reported to occur in the striatum (Popoli et al. 2001;
Domenici et al. 2004; Rodrigues et al. 2005). Co-application
of the selective A2AR agonist CGS 21680 (50 nM) and
CHPG (500 lM) elicited a significant reduction in the fEPSP
slope () 25.0 ± 5.4%, N ¼ 6; p < 0.03 vs. CHPG or
CGS 21680 alone, Mann–Whitney U-test; p < 0.005 vs.
baseline, Wilcoxon signed rank test) (Figs 1b and c),
whereas neither CGS 21680 (50 nM) nor CHPG (500 lM)
alone affected synaptic transmission (Fig. 1c). The selective
A2AR antagonist ZM 241385 (100 nM) abolished the syner-
gistic effect resulting from the co-activation of A2ARs and
mGlu5Rs (data not shown), whereas ZM 241385 had no
effect on its own, as reported previously (Cunha et al. 1997).
MPEP (30 lM) also prevented the fEPSP slope reduction
induced by CGS 21680 + CHPG (500 lM) (data not shown).
These data indicate that activation of A2ARs facilitates
mGlu5R receptor-mediated effects.

In order to explore the mechanisms responsible for the
A2AR–mGlu5R interaction, we investigated the possible
involvement of the cyclic AMP (cAMP)–protein kinase A
(PKA) pathway, the canonical transduction mechanism of
A2ARs (Fredholm et al. 2003). To this end, we tested
whether the adenylyl cyclase activator forskolin also poten-
tiated the effect of CHPG. As shown in Fig. 2(a), application
of forskolin (30 lM) plus CHPG failed to significantly
modify the fEPSP slope () 5.2 ± 2.4%, N ¼ 5, p > 0.05 vs.
baseline). Moreover, application of the PKA inhibitor
KT 5720 (1 lM, added 10 min before and then along with
CGS and CHPG) did not influence the fEPSP slope reduction
with respect to that observed with CGS 21680 + CHPG
(mean fEPSP slope 84.2 ± 1.8%, N ¼ 4) (Fig. 2a). Forskolin
(30 lM) and KT 5720 (1 lM) did not influence the fEPSP
slope on their own (data not shown).

We next investigated whether the interaction between
A2ARs and mGlu5Rs involved GABAergic transmission,
which has been reported to be controlled by both A2ARs
(Cunha and Ribeiro 2000a) and mGlu5Rs (Mori and Gerber
2002). We observed that CGS 21680 (50 nM) and CHPG
(500 lM) still inhibited the fEPSP slope in the presence of
bicuculline (10 lM) () 32.2 ± 8.5%, N ¼ 5; p > 0.05 vs.
CGS + CHPG in the absence of bicuculline) (Fig. 2a). This
suggests that GABAergic transmission is not involved in the
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synergistic reduction of the fEPSP slope induced by the
co-administration of CGS 21680 and CHPG.

We tested whether the synergistic effect resulting from the
co-activation of A2ARs and mGlu5Rs involved presynaptic
control of glutamate release. This was evaluated by testing
whether the co-administration of CGS 21680 and CHPG
affected PPS. However, co-application of CGS 21680
(50 nM) and CHPG (500 lM) did not modify the R2/R1

value (1.44 ± 0.07) compared with that of the control
(1.38 ± 0.06, N ¼ 5) (Fig. 2b). Finally, in order to check
the sensitivity of the PPS protocol to changes in presynaptic
neurotransmitter release, we tested whether the adenosine A1

receptor agonist CPA, a known inhibitor of presynaptic
neurotransmitter release, was able to increase the R2/R1
ratio. As expected, CPA (50 nM) significantly increased the
R2/R1 value with respect to control (1.89 ± 0.09 vs.
1.45 ± 0.07, N ¼ 5; p < 0.05). Thus, the failure of
CGS 21680 + CHPG to influence the PPS protocol makes
it unlikely that the synergism between A2ARs and mGlu5Rs
in the control of glutamatergic transmission has a presynaptic
locus.

Ability of CHPG to potentiate NMDA effects requires the

activation of A2ARs

ZM 241385 reduces the potentiating effects of CHPG on
NMDA-induced fEPSP reduction in rat hippocampal slices
and NMDA-induced LDH release in hippocampal neurons
As shown in Figs 3(a and d), superfusion of rat hippocampal
slices with NMDA (8 lM for 10 min) caused a reversible
reduction in the fEPSP slope () 26.8 ± 2.3% of baseline,
N ¼ 20), as observed previously (Nikbakht and Stone 2001).
This effect was strongly potentiated () 76.9 ± 4.5%, N ¼ 6;
p < 0.05 vs. NMDA alone, Wilcoxon signed rank test)
(Figs 3a and d) when 500 lM CHPG, a concentration devoid
of effects on its own, was co-applied with NMDA. Such a
potentiation was actually due to the co-application of CHPG,
as in preliminary control experiments we had established that
two consecutive applications of NMDA alone did not result
in an increased response to the second application (M. T.
Tebano and A. Martire, unpublished results). The selective
mGlu5R antagonist MPEP (30 lM) completely abolished the

Fig. 1 Stimulation of A2ARs and mGlu5Rs synergistically reduces the

fEPSP slope in rat hippocampal slices. Superfusion of rat hippocampal

slices with the selective mGlu5R agonist CHPG (500 lM) did not sig-

nificantly modify the fEPSP slope, whereas CHPG (1 mM) induced a

significant decrease in fEPSP slope that recovered after washing (a,

c). This effect was reduced significantly by the selective mGlu5R

antagonist MPEP (30 lM) (c). Co-application of concentrations of

CGS 21680 (50 nM) and CHPG (500 lM) that were ineffective when

each drug was applied alone significantly reduced the fEPSP slope (b,

c). The graphs in (a) and (b) represent the average time course of

changes in fEPSP slope derived from 6–13 experiments. Inserts in (a)

show representative fEPSP traces obtained in one of the individual

experiments in control conditions and in the presence of 1 mMCHPG.

In (a) and (b) values are mean ± SEM percentage of baseline values

and the period of drug application is indicated by the horizontal bars.

(c) Histograms show the mean ± SEM of the fEPSP slope, expressed

as a percentage of baseline, at the end of the superfusion period.

�p < 0.005 versus baseline (Wilcoxon signed rank test); *p < 0.01

versus 1 mM CHPG (Mann–Whitney U-test); §p < 0.03 versus CHPG

and CGS 21680 alone (Mann–Whitney U-test).
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CHPG-induced potentiation of NMDA effects () 19.1 ±
6.9%; N ¼ 3; p < 0.03 vs. NMDA + CHPG, Mann–Whit-
ney U-test) (Figs 3b and d). Interestingly, the selective A2AR
antagonist ZM 241385 (30 nM) also significantly reduced the
ability of CHPG to potentiate the effect of NMDA
() 50.1 ± 8.3%, N ¼ 8; p < 0.05 vs. NMDA + CHPG,
Mann–Whitney U-test) (Figs 3c and d). When given alone,

neither MPEP nor ZM 241385 modified basal synaptic
transmission or the NMDA-induced inhibition of the fEPSP
slope (data not shown).

To evaluate whether the A2AR–mGlu5R interaction also
played a role in the modulation of NMDA-induced toxicity,
primary cultures of rat hippocampal neurons were studied.
Incubation of hippocampal neuronal cultures for 1 h with
300 lM NMDA induced a significant increase in LDH
release with respect to basal levels (190.2 ± 32.4%, N ¼ 4;
p < 0.01, Mann–Whitney U-test) (Fig. 4). CHPG alone did
not modify LDH release up to a concentration of 1 mM

(100.9 ± 3.2%, N ¼ 3). However, when co-applied with
NMDA, CHPG (1 mM) significantly potentiated the NMDA-
induced LDH release (312.4 ± 60.1%, N ¼ 4; p < 0.05 vs.
NMDA alone, Mann–Whitney U-test) (Fig. 4). The poten-
tiating effect of CHPG on the NMDA-induced LDH release
was prevented by MPEP (30 lM). Pretreatment with MPEP
for 15 min before administration of CHPG + NMDA was
able to restore the same degree of LDH release as induced
by NMDA alone (174.2 ± 5.5%, N ¼ 3; p < 0.05 vs.
NMDA + CHPG, Mann–Whitney U-test) (Fig. 4). Similarly,
ZM 241385 (30 nM) also abolished the ability of CHPG to
potentiate NMDA-induced LDH release (160.8 ± 20.9%,
N ¼ 4; p < 0.02 vs. NMDA + CHPG, Mann–Whitney
U-test) (Fig. 4). When applied alone, neither MPEP nor
ZM 241385 influenced basal or NMDA-induced LDH
release (data not shown).

Ability of CHPG to potentiate NMDA effects is lost in the
hippocampus of A2AR KO mice
To further test the hypothesis that hippocampal A2ARs might
play a permissive role in mGlu5R-dependent effects, the
ability of CHPG to potentiate NMDA-induced fEPSP slope
reduction in hippocampal slices was compared in A2AR KO
and WT mice.

As observed in rat hippocampal slices, application of
NMDA (8 lM during 10 min) in WT mice significantly
depressed the fEPSP slope () 33.3 ± 8.5%, N ¼ 8; p < 0.05
vs. baseline, Wilcoxon signed rank test), an effect that was
fully reversed after 30 min of washout (Figs 5a and c). An
identical effect of NMDA was observed in A2AR KO mice
() 29.3 ± 6.6%, N ¼ 8; p < 0.05 vs. baseline, Wilcoxon
signed rank test) (Figs 5b and c). As CHPG (500 lM)
depressed fEPSP on its own in mouse hippocampal slices
(M. R. Domenici and A. Martire, unpublished results), a
concentration of 300 lM was used. Ten minutes of subse-
quent co-administration of CHPG (300 lM) and NMDA
(8 lM) produced a marked and significant potentiation of the
NMDA-induced reduction in fEPSP slope in WT mice
() 46.4 ± 8.0%, N ¼ 8; p < 0.05 vs. NMDA alone,
Wilcoxon signed rank test) (Figs 5a and c), again in a
manner similar to that observed in rat hippocampal slices.
Likewise, the potentiating effect of CHPG was blocked either
by MPEP (30 lM) () 24.0 ± 2.3%, N ¼ 7; p < 0.02 vs.

Fig. 2 Synergism between A2ARs and mGlu5Rs in the control of

fEPSPs in rat hippocampal slices does not appear to involve PKA

activation, GABAergic neurotransmission or presynaptic mechanisms.

(a) Histograms show that inhibition of the fEPSP slope caused by the

simultaneous application of CGS 21680 (50 nM) and CHPG (500 lM)

was not mimicked by the co-application of CHPG (500 lM) together

with the adenylyl cyclase activator forskolin (30 lM) instead of

CGS 21680. Moreover, the PKA inhibitor KT 5720 (1 lM) did

not prevent inhibition of the fEPSP slope induced by

CGS 21680 + CHPG. Application of bicuculline (10 lM), which pre-

vents GABAergic transmission, failed to modify the synergistic

reduction in the fEPSP slope induced by CGS 21680 + CHPG. Values

are mean ± SEM of five experiments. *p < 0.05 versus baseline

(Wilcoxon signed rank test). (b) Application of CGS 21680 and CHPG,

alone or in combination, did not modify the paired pulse facilitation

ratio (R2/R1) in comparison to that in control (i.e. no added drugs).

Values are mean ± SEM of five experiments.
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CHPG + NMDA, Mann–Whitney U-test) (data not shown)
or by ZM 241385 (30 nM) () 25.1 ± 5.4%, N ¼ 5; p < 0.05
vs. CHPG, Mann–Whitney U-test) (data not shown). In
contrast, in slices from A2AR KO mice, CHPG (300 lM)
failed to potentiate the fEPSP slope reduction induced by
NMDA () 38.4 ± 7.4%, N ¼ 8; p > 0.05 vs. NMDA alone)
(Figs 5b and c). When given alone, CHPG (300 lM) did not
modify basal synaptic transmission. The impairment of
CHPG-mediated potentiation of NMDA responses did not
appear to depend on a reduced density of mGlu5Rs in the
hippocampus of A2AR KO mice. Indeed, the density of
mGlu5Rs was not modified in the hippocampus of A2AR KO
compared with WT mice, as evaluated by western blot
analysis Fig. 5c.

Subcellular distribution of A2AR and mGlu5R

immunoreactivity in cultured hippocampal neurons

The synergistic effect achieved after stimulating A2ARs and
mGlu5Rs raises the possibility that these two receptors are

co-localized in the hippocampus. We decided to evaluate by
immunocytochemistry the distribution of both receptors in
cultured hippocampal neurons using antibodies against the
A2AR and mGlu5R. As observed previously (Rebola et al.
2005), the A2AR was highly localized in synapses in
hippocampal neurons (Fig. 6a). The mGlu5R had a much
broader distribution, being present all over the neurons,
namely in the cell body, axons, dendrites and synapses
(Fig. 6b).

Co-localization studies with synaptophysin (located in
synaptic vescicles and considered to be a marker of nerve
terminals or synaptic contacts) and vGluT1 and vGluT2
(markers of glutamatergic synapses) indicated that the
mGlu5R was present in synaptic contacts (although also
elsewhere in neurons) and, in particular, in glutamatergic
synapses (Figs 6d–f). The A2AR was found to be highly
concentrated in synaptic contacts (co-located with synapto-
physin; see Rebola et al. 2005) and was present in
glutamatergic synapses (co-located with vGluT1 and

Fig. 3 Both the mGlu5R antagonist MPEP and the adenosine A2A

receptor antagonist ZM 241385 prevent CHPG-induced potentiation of

NMDA effects in rat hippocampal slices (a–c). Time-course of changes

in fEPSP slope recorded in rat hippocampal slices. A 10 min super-

fusion period with NMDA (8 lM) reduced the fEPSP slope, an effect

that was potentiated by the co-application of 500 lM CHPG (a, d).

Each point/bar represents the mean ± S.E.M. of 6–20 experiments,

except for the group MPEP + CHPG + NMDA (N = 3). Representative

fEPSP traces recorded in control conditions and in the presence of

tested drugs are recorded in panel A. The CHPG-induced potentiation

of NMDA effects was abolished by 30 lMMPEP (b,d) and significantly

attenuated by 30 nM ZM 241385 (c, d). For clarity, the lack of effects

of 30 lM MPEP or 30 nM ZM 241385 alone on fEPSP slope are not

presented. *p < 0.05 versus NMDA (Wilcoxon signed rank test);

�p < 0.05 versus CHPG + NMDA (Mann–Whitney U-test).
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VGluT2) (Figs 6g–i). Double immunocytochemical labeling
with anti-A2AR and anti-mGlu5R antibodies revealed co-
localization of these two receptors mostly in synaptic
contacts, where the A2AR was concentrated (Fig. 6c).

Subsynaptic distribution of A2ARs and mGlu5Rs in rat

hippocampus

The resolution of the above immunocytochemical studies did
not allow discrimination between presynaptic and postsy-
naptic localization of either receptor. For example, under our
experimental conditions, we observed co-localization of anti-
synaptophysin (a presynaptic marker) and anti-PSD-95 (a
marker of PSDs) immunoreactivities (data not shown). Thus,
we decided to investigate the relative distribution of A2ARs
and mGlu5Rs in the presynaptic active zone and in the PSD
of hippocampal synapses. For this purpose, we used a
pH-based fractionation of synaptic contacts into their main
constituents (Phillips et al. 2001), namely the PSD, the
active zone (a presynaptic specialization lining the PSD) and
a presynaptic non-active zone fraction (that mostly includes
the majority of presynaptic constituents apart from the active
zone). As observed in Fig. 7, the mGlu5R was mostly
located in the PSD but there was also some immunoreactivity
present at the presynaptic active zone and extra-active zone
fractions. Quantification of the relative density of mGlu5R
immunoreactivity in the three fractions in three different
separations from different groups of rats revealed that

mGlu5R immunoreactivity was most abundant in the PSD
fraction (61.3 ± 4.3% of the total immunoreactivity, N ¼ 3)
but was also present in the presynaptic active zone
(25.0 ± 2.3% of total immunoreactivity, N ¼ 3) and had a
lower relative abundance in the extra-active zone fraction of

(a)

(b)

(c)

Fig. 5 Ability of CHPG to potentiate the effects of NMDA is abolished

in the hippocampus of A2AR KO mice. (a, b) Representative traces

showing time course of changes in fEPSP slope recorded in mice

hippocampal slices from (a) WT and (b) A2AR KO mice. Values are

mean ± SEM. (c) Histogram shows mean ± SEM values from eight

experiments. In hippocampal slices from WT (a, c) and KO (b, c) mice

application of 8 lM NMDA induced a very similar reduction in fEPSP

slope. CHPG (300 lM) significantly potentiated this effect in WT mice

(a, c) but not in KO mice (b, c). No changes in mGlu5R expression

were revealed by western blotting of hippocampus from KO and WT

mice (c). *p < 0.05 versus NMDA alone (Wilcoxon signed rank test).
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Fig. 4 Blockade of either A2ARs or mGlu5Rs prevents CHPG from

potentiating NMDA-induced LDH release from cultured hippocampal

neurons. Application of NMDA (300 lM for 60 min) to rat hippocampal

neurons induced a significant increase in LDH release. The mGlu5R

agonist CHPG (1 mM) had no effect on its own, but it significantly

potentiated NMDA-induced LDH release. The mGlu5R antagonist

MPEP (30 lM) and the A2AR antagonist ZM 241385 (30 nM) had no

effect by themselves but prevented CHPG from potentiating the

release of LDH. Values are mean ± SEM of 3–4 independent experi-

ments, assayed in triplicate. *p < 0.05 versus NMDA alone, �p < 0.05

versus CHPG + NMDA (Mann–Whitney U-test).
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hippocampal nerve terminals (13.7 ± 3.6% of total immu-
noreactivity, N ¼ 3). The A2AR was enriched in the presy-
naptic active zone fraction (�60%) but was also present at
the PSD. Quantification of the relative density of A2AR
immunoreactivity in the three fractions in three different
separations from different groups of rats revealed that A2AR
immunoreactivity was most abundant in the presynaptic
active zone fraction (56.2 ± 3.3% of total immunoreactivity,
N ¼ 3) but was also present in the PSD (35.2 ± 2.7% of total
immunoreactivity, N ¼ 3) and had a lower relative abun-
dance in the extra-synaptic fraction of hippocampal nerve
terminals (8.6 ± 1.8% of total immunoreactivity, N ¼ 3).

As also shown in Fig. 7, we validated this subsynaptic
fractionation by confirming over 90% separation in the three
subsynaptic fractions of the PSD marker PSD-95, presynap-
tic active zone marker syntaxin or SNAP-25, and extra-
synaptic marker synaptophysin (present in synaptic vesicles;
hence this protein is a presynaptic marker but is not located
in the active zone, which is a restricted zone of the
presynaptic boutton). In particular, we confirmed previously
obtained data showing that NMDA receptor subunits were
highly enriched in the PSD fraction and nearly absent in the
presynaptic or extra-synaptic fractions (see Rebola et al.
2003) (Fig. 7). Thus, although A2ARs and mGlu5Rs were
also co-localized in the presynaptic active zone, their ability
to control NMDA-mediated effects may result from a
postsynaptic interaction, as the PSD was the only subsynap-

tic compartment that contained all three receptors, i.e.
A2ARs, mGlu5Rs and NMDA receptors.

Discussion

The present study demonstrated, for the first time, that A2ARs
and mGlu5Rs are co-localized and functionally interact in the
rodent hippocampus.

A synergism between A2ARs and mGlu5Rs was demon-
strated by the finding that, in rat hippocampal slices,
co-application of ineffective concentrations of CGS 21680
and CHPG (50 nM and 500 lM respectively) significantly
reduced the fEPSP slope. Furthermore, selective antagonists
of either mGlu5Rs (MPEP) or A2ARs (ZM 241385) preven-
ted this synergistic effect, providing a pharmacological
demonstration for the involvement of both receptors. This
finding strictly reproduces our previous results in the striatum
(Domenici et al. 2004; Rodrigues et al. 2005), a brain area in
which the occurrence of functional interactions between
A2ARs and mGlu5Rs has been reported in several models
(see Introduction).

In order to investigate the mechanisms underlying the
A2AR–mGlu5R interaction, we tested the possible involve-
ment of GABAergic transmission. The inability of bicucul-
line to modify the synergism between A2ARs and mGlu5Rs
suggests that this interaction does not involve GABAergic
neurotransmission. This is in agreement with previous

Fig. 6 Co-localization of A2ARs and

mGlu5Rs in rat hippocampal neurons in

culture. (a–c) Immunocytochemical identifi-

cation of A2A Rs (a) and mGlu5Rs (b) and

merged image (c) illustrate the partial

co-localization of the two receptors (yellow

color); the insert in (c) corresponds to an

amplification (6-8 times) of the region indi-

cated by the arrow, clearly illustrating the co-

localization of both receptors in neuronal

branches. (d–e) Immunocytochemical iden-

tification of vGluT1 and vGluT2 (d; markers

of glutamatergic nerve terminals) and

mGlu5Rs (e) and the merged image (f)

illustrate the partial co-localization of

mGlu5Rs in glutamatergic nerve terminals

(yellow color). (g–i) Immunocytochemical

identification of vGluT1 and vGluT2 (g) and

A2ARs (h) and the merged image (i) illustrate

the partial co-localization of A2ARs in gluta-

matergic nerve terminals (yellow color).

These images are representative of three

different fields per coverslip, in experiments

carried out 3–4 times using different hippo-

campal neurons prepared from different

groups of rat embryos. Scale bars are 50 lm

in (a)-(c) and 10 lm in (d)–(i).
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reports showing that GABA receptor blockade did not
influence CGS 21680-mediated effects in hippocampal slices
(Lopes et al. 2002) and that, unlike the mGlu1R subtype of
group I mGluRs, the mGlu5R subtype predominantly affects
glutamatergic rather than GABAergic transmission (Battaglia
et al. 2001). It can therefore be concluded that the interaction
between A2ARs and mGlu5Rs might occur at glutamatergic
synapses. Accordingly, the studies carried out in cultured
hippocampal neurons allowed us to conclude that A2ARs and
mGlu5Rs are co-localized in synapses, and in particular in
glutamatergic synapses, although they did not allow dis-
crimination between a presynaptic or postsynaptic localiza-
tion. In electrophysiological experiments, we found that the
application of CGS 21680 and CHPG did not influence the
ratio of fEPSP responses under a protocol of PPS, which is

an index of presynaptic neurotransmitter release. This finding
suggests that, although both A2ARs (Lopes et al. 2002;
Marchi et al. 2002; but see Nikbakht and Stone 2001) and
mGlu5Rs (Fazal et al. 2003; Wang and Sihra 2004; Rodri-
gues et al. 2005) might control the evoked release of
glutamate presynaptically, the interaction between these
two receptors observed in the present study is unlikely to
occur presynaptically. The most likely hypothesis is that the
interaction between A2ARs and mGlu5Rs has a postsynaptic
locus, in accordance with the known postsynaptic effects of
both A2ARs (Li and Henry 1998; O’Kane and Stone 1998)
and mGlu5Rs (Mannaioni et al. 2001). This possibility is
reinforced by the predominant postsynaptic localization of
mGlu5Rs, in particular in the hippocampus (Lujan et al.
1996, 1997; Shigemoto et al. 1997; present results), and by
the present finding that one of the main consequences of the
interaction between A2ARs and mGlu5Rs is the control of
NMDA receptor-mediated effects, which is likely to occur
postsynaptically, because the PSD was the only neuronal
compartment shown to contain all three receptors.

The possible molecular mechanisms involved in the
synergistic interaction between A2ARs and mGlu5Rs remain
to be elucidated. Although the cAMP/PKA transduction
pathway is considered the canonical transduction system
operated by A2ARs (Fredholm et al. 2003), the inability of
forskolin to reproduce the effects of CGS 21680, and the
finding that KT 5720 did not inhibit the synergistic effect of
CGS 21680 and CHPG, excludes the involvement of the
cAMP/PKA pathway in the synergism between A2ARs and
mGlu5Rs, in contrast to findings in striatal slices (Domenici
et al. 2004). On the other hand, hippocampal A2ARs, besides
coupling to the classical cAMP/PKA pathway (Okada et al.
2001; Rebola et al. 2002), also use a protein kinase C-
dependent transduction pathway, in particular in the control
of glutamatergic transmission (Cunha and Ribeiro 2000b;
Lopes et al. 2002). However, we did not attempt to test
whether protein kinase C might be involved in this poten-
tiation of mGlu5R responses by A2ARs, as the manipulation
of protein kinase C activity is also expected to directly affect
the responses mediated by mGlu5Rs in the hippocampus
(Benquet et al. 2002; Kotecha et al. 2003). Thus, at this
stage, it can only be excluded that cAMP/PKA is involved
and hypothesized that A2AR stimulation facilitates mGlu5R-
dependent effects through activation of the protein kinase C
pathway.

We found that application of CHPG enhanced NMDA-
mediated responses in hippocampal slices from rats and WT
mice. This finding is in full agreement with some reports
showing that CHPG and RS3,5-dihydroxyphenylglycine
(DHPG) potentiated NMDA-induced depolarization in the
rat hippocampus (Fitzjohn et al. 1996; Doherty et al. 1997),
and is in line with several studies showing the ability of
mGlu5Rs to increase NMDA responses in several other
brain areas (Ugolini et al. 1999; Attucci et al. 2001; Pisani
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Fig. 7 Subsynaptic distribution of mGlu5Rs (b) and A2ARs (c) in the

rat hippocampus. Hippocampal nerve terminals were prepared

(synap) and further fractionated to obtain fractions enriched in the

presynaptic active zone (pre), the PSD (post), in nerve terminals

outside the active zone (extra). These fractions were over 90% pure,

as illustrated by the ability to recover the immunoreactivity for syntaxin

in the presynaptic active zone fraction, PSD95 in the PSD fraction and

synaptophysin (a protein located in synaptic vesicles) in the extra-

active zone fraction (a). One NMDA receptor subunit (NR2A) was

nearly confined to the PSD (a). (b) Representative western blot

showing mGlu5R immunoreactivity, corresponding to a 150-kDa band,

in the four fractions and histogram showing average mGlu5R immu-

noreactivity in each fraction. Values are mean ± SEM of three

experiments using fractions prepared from different groups of rats. (c)

Representative western blot showing A2AR immunoreactivity, corres-

ponding to a 45-kDa band, in the four fractions and histogram showing

average A2AR immunoreactivity in each of the fractions. Values are

mean ± SEM of three experiments using fractions prepared from dif-

ferent groups of rats.
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et al. 2001; Domenici et al. 2004). In the present study, the
ability of CHPG to potentiate NMDA-induced fEPSP
reduction was prevented not only by MPEP (which
confirms the selective involvement of mGlu5Rs in this
effect of CHPG), but also by the A2AR antagonist
ZM 241385, indicating that A2ARs enable mGlu5R-medi-
ated effects (namely, the potentiation of NMDA responses)
in the hippocampus. This view was confirmed by the
finding that CHPG was no longer able to potentiate the
effects of NMDA effects in hippocampal slices from A2AR
KO mice. According to our western blot experiments, the
reduced functional ability of CHPG in A2AR KO mice does
not appear to depend on changes in mGlu5R density. This
finding is not surprising, because in rat hippocampal slices
a single application of ZM 241385 (i.e. an ‘acute’ A2AR
blockade, not implying changes in mGlu5R density) was
enough to block the ability of CHPG to potentiate NMDA
effects. Therefore, the present findings demonstrate that
both the pharmacological blockade (use of ZM 241385 in
rats and in WT mice) and the genetic inactivation (KO
mice) of A2ARs seriously impair the ability of hippocampal
mGlu5Rs to potentiate NMDA responses. These results are
in line with our recent results showing that the state of
activation of A2ARs influences mGlu5R-dependent NMDA
potentiation in the striatum (Domenici et al. 2004). Thus,
the ability of A2ARs to control mGlu5R-dependent effects
might be a general feature of A2ARs in different brain
regions, irrespective of their density (which is considerably
greater in the striatum than in the hippocampus; Fredholm
et al. 2003). This further emphasizes the role of A2ARs as a
fine-tuning modulatory system (i.e. modulator of other
modulators) in the hippocampus (Sebastião and Ribeiro
2000).

The permissive role played by A2ARs on mGlu5R-
mediated effects also appears to be relevant in the modula-
tion of NMDA-mediated neurotoxicity. We observed here
that CHPG significantly potentiated NMDA-induced LDH
release from cultured hippocampal neurons in a manner
abolished by MPEP, whereas the mGlu5R ligands alone had
no effect. Most importantly, we found that the NMDA
potentiating effects of CHPG were fully prevented not only
by MPEP but also by ZM 241385. This provides an
important clue to our understanding of the surprising
neuroprotective effect afforded by blockade of A2ARs
(pharmacological or genetic) in an extra-striatal region where
this receptor is scarcely located (reviewed in Cunha 2005). It
is important to note that ZM 241385 alone did not influence
the NMDA effects, and that WT and A2AR KO mice showed
very similar responses to NMDA application, indicating that
A2AR inactivation does not directly impair NMDA receptor-
mediated effects.

In conclusion, the present results show that A2ARs and
mGlu5Rs are co-localized and interact functionally in the
hippocampus. The stimulation of A2ARs facilitates CHPG-

induced effects (namely fEPSP reduction) and, even more
interestingly, hippocampal A2ARs need to be activated in
order to elicit the NMDA potentiating effects of mGlu5Rs.
These data suggest that A2ARs might represent an interesting
target for the development of new therapeutic strategies for
disorders involving changes in NMDA receptor signaling,
such as Alzheimer’s disease, epilepsy and schizophrenia,
where they might exert a neuroprotective effect similar to
that recognized for striatal diseases (Chen et al. 2001; Popoli
et al. 2002).

Besides its possible role in modulating excitotoxicity, the
A2AR–mGlu5R interaction might also be important as far as
the physiological effects mediated by hippocampal NMDA
receptors are concerned. Indeed, because hippocampal
mGlu5Rs are highly involved in the modulation of
NMDA-dependent plasticity (see Introduction), this interac-
tion might represent a major mechanism in the regulation of
learning and memory processes, an issue that requires further
study.
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