
Differential glutamate-dependent and glutamate-independent
adenosine A1 receptor-mediated modulation of dopamine release in
different striatal compartments

Janusz Borycz,* M. Fátima Pereira,� Alessia Melani,� Ricardo J. Rodrigues,� Attila Köfalvi,�
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Abstract

Adenosine and dopamine are two important modulators of

glutamatergic neurotransmission in the striatum. However,

conflicting reports exist about the role of adenosine and

adenosine receptors in the modulation of striatal dopamine

release. It has been previously suggested that adenosine A1

receptors localized in glutamatergic nerve terminals indirectly

modulate dopamine release, by their ability to modulate

glutamate release. In the present study, using in vivo

microdialysis, we provide evidence for the existence of a

significant glutamate-independent tonic modulation of dop-

amine release in most of the analyzed striatal compartments.

In the dorsal, but not in the ventral, part of the shell of the

nucleus accumbens (NAc), blockade of A1 receptors by local

perfusion with the selective A1 receptor antagonist 8-cyclo-

pentyl-1,3-dimethyl-xanthine or by systemic administration of

the non-selective adenosine antagonist caffeine induced a

glutamate-dependent release of dopamine. On the contrary,

A1 receptor blockade induced a glutamate-independent

dopamine release in the core of the NAc and the nucleus

caudate–putamen. Furthermore, using immunocytochemical

and functional studies in rat striatal synaptosomes, we

demonstrate that a fraction of striatal dopaminergic terminals

contains adenosine A1 receptors, which directly inhibit dop-

amine release independently of glutamatergic transmission.
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Adenosine plays a key modulatory role in the control of
motor function, mainly by acting on striatal circuits. Striatal
circuits are triggered by cortico-limbic-thalamic glutamater-
gic inputs and the flow of information is under tight
mesencephalic dopaminergic control (Gerfen 2004). Both
striatal dopamine and glutamate inputs are under the
inhibitory control of adenosine acting through adenosine
A1 receptors. In fact, endogenous adenosine exerts a tonic A1

receptor-mediated inhibition of glutamate and dopamine
release in the ventral striatum, particularly in the shell of the
nucleus accumbens (NAc) (Solinas et al. 2002; Quarta et al.
2004a,b). Blockade of this tonic A1 receptor-mediated
inhibition is involved in the increase in extracellular levels
of dopamine and glutamate in the NAc after the systemic
administration of caffeine (Solinas et al. 2002; Quarta et al.
2004a,b).

We have recently shown that the majority of glutamatergic
terminals in the striatum contain A1 receptors (Ciruela et al.
2006), which are responsible for the A1 receptor-mediated
inhibition of striatal glutamatergic neurotransmission and
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glutamate release that has been demonstrated with in vitro
and in vivo experiments (Malenka and Kocsis 1988;
Lovinger and Coi 1995; Calabresi et al. 1997; Flagmeyer
et al. 1997; Manzoni et al. 1998; Solinas et al. 2002; Quarta
et al. 2004a,b; Ciruela et al. 2006). However, the possible
localization of A1 receptors in dopaminergic terminals
remains unclear (Wojcik and Neff 1983; Alexander and
Reddington 1989; Moser et al. 1991). As A1 receptors are
located in glutamatergic terminals, it has been suggested that
the ability of A1 receptors to modulate dopamine release is
secondary to their ability to decrease glutamate release and,
thus, decrease the activation of ionotropic glutamate recep-
tors localized in dopaminergic terminals (Gracy and Pickel
1996; Tarazi et al. 1998). In fact, dopamine release induced
by the direct application of an A1 receptor antagonist or
caffeine in the NAc was counteracted by NMDA receptor
blockade (Quarta et al. 2004b).

The A1 receptors localized in the striatal glutamatergic
terminals form heteromeric complexes with A2A receptors.
In the A1–A2A receptor heteromer, the A2A receptor exerts a
strong inhibitory modulation of A1 receptor function and
stimulation of A2A receptors overrides the inhibitory effects
of A1 receptors and induces glutamate release (Ciruela et al.
2006). As A1 receptors have a higher affinity for adenosine
than A2A receptors, the A1–A2A receptor heteromer provides
a switch mechanism by which low and high concentrations
of adenosine inhibit and stimulate glutamate release,
respectively (Ciruela et al. 2006). In a previous study, we
found that the dopamine release in the NAc induced by an
A2A receptor agonist could be counteracted by co-admin-
istration of an A1 receptor agonist (Karcz-Kubicha et al.
2003). In view of the predominant effects of the A2A

receptor in the A1–A2A receptor heteromer of the striatal
glutamatergic terminals, those results suggested the exist-
ence of a glutamate-independent modulation of dopamine
release, possibly by A1 receptors localized in striatal
dopaminergic nerve terminals.

In the present study, using in vivo microdialysis, we
provide additional evidence for the existence of a significant
glutamate-independent tonic modulation of dopamine release
in most of the analyzed striatal compartments and, using
immunocytochemical and functional studies in rat striatal
synaptosomes, we demonstrate that a fraction of striatal
dopaminergic terminals contains adenosine A1 receptors,
which directly inhibit dopamine release independently of
glutamatergic transmission.

Materials and methods

In vivo microdialysis

Male Sprague-Dawley rats (Charles River Laboratory, Wilmington,

MA, USA), weighing 300–350 g were used. Animals were

maintained in accordance with the guidelines of the Institutional

Care and Use Committee of the Intramural Research Program,

National Institute on Drug Abuse, NIH. Concentric microdialysis

probes with 2-mm long dialysis membranes were prepared as

described previously (Pontieri et al. 1995). Animals were anesthe-

tized with Equithesin (NIDA Pharmacy, Baltimore, MD, USA) and

probes were implanted in six different striatal areas about 1.7 mm

anterior to bregma and in the medial prefrontal cortex, about

2.2 mm anterior to bregma. Figure 1 shows the limits of the

positions of the dialysis probes (superimposed rectangles), with

overlapping of the positions for ‘shell v’ and ‘shell d’ and the

positions ‘core m’ and ‘cpu m’. The striatal areas included the

ventral and dorsal portions of the shell of the NAc (‘shell v’ and

‘shell d’, respectively), lateral and medial cores of the NAc (‘core l’

and ‘core m’, respectively) and lateral and medial caudate–putamen

(‘cpu l’ and ‘cpu m’, respectively). Lateral and ventral coordinates

with respect to bregma were, respectively: ‘shell v’ = +0.9 and

)8.4; ‘shell d’ = +0.9 and –7.4; ‘core l’ = +1.7 and )7.6; ‘core

m’ = +1.2 and )7.6; ‘cpu l’ = +2.5 and –6.2; ‘cpu m’ = +1.2 and

)6.0; cortex = +0.7 and )4.9. The experiments were performed on

freely moving rats 24 h after the probe implantation. A Ringer

solution (in mmol/L) of 147 NaCl, 4 KCl, and 2.2 CaCl2 was

pumped through the dialysis probe at a constant rate of 1 lL/min.

After a washout period of 90 min, samples were collected at 20-min

intervals and split into two fractions of 10 lL, to separately

measure glutamate and dopamine contents. Additional experiments

were performed to measure adenosine content. Each animal was

used to study the effect of one treatment by local administration

(perfusion by reverse dialysis) of the A1 receptor antagonist

8-cyclopentyl-1,3-dimethyl-xanthine (CPT; Sigma, St Louis, MO,

USA), with or without the NMDA receptor antagonist DL-2-amino-

5-phosphonovaleric acid (APV; Tocris, Ellisville, MO, USA), or

systemic administration of caffeine (Sigma). The concentration of

CPT used (1 mmol/L) was previously shown to be selective for the

A1 receptor (Quarta et al. 2004b). In addition, the concentration of

APV used (0.1 mmol/L) was previously found to be optimal for

counteracting NMDA-induced striatal dopamine release (Quarta

et al. 2004b). At the end of the experiment, rats were killed with an

overdose of Equithesin and methylene blue was perfused through

the probe. The brain was removed and placed in a 10%

formaldehyde solution, and coronal sections were cut to verify

the probe location. Dopamine content was measured by reverse

high-performance liquid chromatography (HPLC) coupled to an

electrochemical detector, as described in detail previously (Pontieri

et al. 1995). Glutamate content was measured by HPLC coupled to

a flourimetric detector, as described before (Quarta et al. 2004a).
Adenosine content was analyzed by HPLC coupled to a spectro-

fluorimetric detector, as described elsewhere (Melani et al. 1999).
In the microdialysis experiments, ‘n’ corresponds to the number of

animals per group. One value per animal (basal value previous to

any drug administration) was used to study differences between

striatal compartments on the basal extracellular levels of dopamine,

glutamate and adenosine and statistical comparisons were made

with one-way analysis of variance (ANOVA) followed by Newman–

Keuls tests. In the experiments with different drug administrations

(either intracerebral perfusion or systemic administration), the

statistical analysis consisted of a multi-level analysis with maxi-

mum likelihood estimation with SAS software (SAS Institute, Cary,

NC, USA) using Proc Mixed procedure (Singer 1998). This
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procedure has the flexibility to handle repeated-measures data sets

in which some subjects were not tested under all conditions. The

Tukey–Kramer procedure was used to conduct post hoc pairwise

comparisons.

Striatal synaptosomes

Male Wistar rats (6–8 weeks old, 140–160 g, obtained from Harlan

Ibérica, Barcelona, Spain) were used and were handled according to

EU guidelines for use of experimental animals, the rats being

anesthetized under halothane atmosphere before being killed by

decapitation. The synaptosomes were prepared by centrifugation of

homogenized striatal tissue (dissected striatum corresponded mostly

to the nucleus caudate–putamen) in sucrose medium (see Rodrigues

et al. 2005). For immunochemical analysis (see Rodrigues et al.
2005), the striatal synaptosomes were placed onto coverslips

previously coated with poly-L-lysine, fixed with 4% paraformalde-

hyde for 15 min and washed twice with phosphate-buffered saline

(PBS). The synaptosomes were permeabilized in PBS with 0.2%

Triton X-100 (Sigma) for 10 min and then blocked for 1 h in PBS

with 3% bovine serum albumin and 5% normal rat serum. The

synaptosomes were then washed twice with PBS and incubated with

either rabbit anti-adenosine A1 receptor (1 : 500; from Upstate

Biotechnology, Golden, CO, USA) or rabbit anti-synaptophysin

antibodies (1 : 200; from Zymed Laboratories, Lisbon, Portugal)

together with either rat anti-dopamine transporter (1 : 500; from

Chemicon, Southampton, UK) or mouse anti-tyrosine hydroxylase

antibodies (1 : 500; from Chemicon) for 1 h at 20�C. The

synaptosomes were then washed three times with PBS with 3%

bovine serum albumin and incubated for 1 h at 20�C with

AlexaFluor-488 (green)-labeled goat anti-rabbit and either Alexa-

Fluor-594 (red)-labeled goat anti-rat or AlexaFluor-594 (red)-

labeled goat anti-mouse antibodies (1 : 200 for all, from Molecular

Probes, Leiden, The Netherlands). The selectivity of the A1 receptor

antibody was confirmed by the lack of signal obtained in

synaptosomes derived from A1 receptor knockout mice tissue

(generously supplied by Bertil B. Fredholm, Karolinska Institutet,

Sweden). We also confirmed that none of the secondary antibodies

produced any signal in preparations to which the addition of the

corresponding primary antibody was omitted. After washing and

mounting on slides with Prolong Antifade, the preparations were

visualized in a Zeiss Axiovert 200 inverted fluorescence microscope

(Zeiss, Göttingen, Germany) equipped with a cooled CCD camera

and analyzed with MetaFluor 5.0 software (Universal Imaging Co.,

Downingtown, PA, USA). Data represent means ± SEM of three

experiments and in each experiment, using different synaptosomal

preparation from different animals, four different fields acquired

from two different coverslips were analyzed. Each coverslip was

analyzed by counting two different fields and in each field, a total

amount of 500 individualized elements. For the release experiments

(see Köfalvi et al. 2005), the synaptosomes were labeled with 5 lCi
of [7,8-3H]-dopamine (41.0 Ci/mmoL from Amersham, Bucking-

hamshire, UK) for 5 min at 37 C, layered over Whatman GF/C

filters and superfused (flow rate: 0.7 mL/min) with Krebs solution

for 20 min before starting collection of the superfusate every 2 min.

Fig. 1 Extracellular levels of dopamine and glutamate in the ventral

and dorsal parts of the shell of the NAc (‘shell v’ and ‘shell d’,

respectively) lateral and medial parts of the core of the NAc (‘core l’

and ‘core m’, respectively), lateral and medial parts of the nucleus

caudate–putamen (‘cpu m’ and ‘cpu l’, respectively) and the medial

prefrontal cortex. Data represent means ± SEM (n = 10–16/group);

* and **: p < 0.05 and p < 0.01 compared with ‘shell v’, respectively

(one-way ANOVA followed by Newman–Keuls tests).
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The synaptosomes were stimulated for 1 min with 20 mmol/L K+

(isomolar substitution of NaCl by KCl in the Krebs solution) at 4

and 16 min (first and second stimulation periods, S1 and S2,

respectively) after starting sample collection, triggering a release of

tritium in a Ca2+-dependent manner that was mostly 3H-dopamine,

gauged by HPLC (data not shown). The A1 receptor agonist N6-

cyclopentyladenosine (CPA; Sigma) was added 6 min before the

start of S2 and its effect was quantified by the modification of S2/S1
ratio versus control (i.e., absence of drugs), whereas the A1 receptor

antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; Sigma)

was added 15 min before starting sample collection and did not

modify the S2/S1 ratio versus control. The concentrations of A1

receptor agonists and antagonists used in synaptosomal experiments

were previously shown to be selective for the A1 receptor (Ciruela

et al. 2006). Radioactivity was expressed in terms of fractional

release, i.e., percentage of tritium released as a function of the total

amount of tritium retained in each chamber. A paired Student’s t-test
was used to test the significance of the effect of a drug versus control

with ‘n’ representing the number of experiments carried out using

different animals, always in duplicate. When making comparisons

from different sets of experiments with control, one-way ANOVA was

used followed by Dunnett’s test.

Results

Differential effects of adenosine A1 receptor blockade on

dopamine and glutamate release in different striatal

compartments

Basal extracellular levels of dopamine were significantly
lower (about 40%) in the ventral portion of the NAc
compared with other striatal areas (one-way ANOVA followed
by Newman–Keuls tests; see Fig. 1 for statistical signifi-
cance). Extracellular dopamine levels were even lower in the
medial prefrontal cortex (about 60% lower than that in the
ventral shell of the NAc; see Fig. 1 for statistical signifi-
cance). On the contrary, no significant differences were
observed between the basal extracellular levels of glutamate
in all the areas analyzed (Fig. 1). The extracellular levels of
adenosine were also measured in three striatal areas, the
dorsal and ventral portions of the shell and the lateral portion
of the core of the NAc, and their values (in means ± SEM:
28 ± 2, 29 ± 3 and 28 ± 3 nmol/L, respectively; n = 8–12)
were not significantly different (one-way ANOVA followed by
Newman–Keuls tests: p = 0.8).

Perfusion with the A1 receptor antagonist CPT (1 mmol/L)
by reverse dialysis produced different qualitative and quan-
titative effects in the different analyzed areas. In the dorsal
portion of the shell of the NAc, but not in the ventral portion
of the shell of the NAc, CPT significantly increased both
dopamine and glutamate levels (with a maximum increase of
about 200% vs. basal levels; SAS Proc Mixed analysis
followed by Tukey–Kramer tests; see Figs 2 and 3 for
statistical significance). Taking into account the overlapping
positions of the microdialysis probes implanted in the shell of

the NAc (Fig. 1), these results indicate that only the most
dorsal part of the shell of the NAc (which is excluded in the
‘shell v’ position) responded to the A1 receptor antagonist.
Perfusion of the core of the NAc and the nucleus caudate–
putamen with CPT produced strikingly different results than
that in the dorsal shell of the NAc. Levels of dopamine, but
not of glutamate, were significantly increased in the core of
the NAc and nucleus caudate–putamen (SAS Proc Mixed
analysis followed by Tukey–Kramer tests; see Figs 2 and 3
for statistical significance). Increases in dopamine levels
were significantly larger in the medial compared with the
lateral portion of the core of the NAc (SAS Proc Mixed:

Fig. 2 Differential effect of the local perfusion with the A1 receptor

antagonist CPT on the extracellular levels of dopamine in different

striatal compartments (see Fig. 1 legend for abbreviations). Horizontal

bars show the period of CPT perfusion. Data represent means ± SEM

(n = 5–8/group); *, ** and ***: p < 0.05, p < 0.01, and p < 0.001

compared with the values previous to CPT perfusion, respectively (SAS

Proc Mixed analysis followed by Tukey–Kramer tests).
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p < 0.05), with maximum increases of about 180% and 80%,
respectively, versus basal levels. Similarly, increases in
dopamine levels were significantly larger in the medial
compared with the lateral portion of the nucleus caudate–
putamen (SAS Proc Mixed: p < 0.05), with maximum
increases of about 100% and 40%, respectively, versus basal
levels. Intracortical perfusion with CPT did not significantly
modify the extracellular concentrations of dopamine or
glutamate in the medial prefrontal cortex (Fig. 4).

It was previously reported that dopamine release produced
by CPT in the shell of the NAc was secondary to glutamate
release and NMDA receptor stimulation (Quarta et al.

2004b). In the present study, co-perfusion with the compet-
itive NMDA receptor antagonist APV (0.1 mmol/L) blocked
the increase in dopamine release induced by CPT in the
dorsal portion of the shell, but not in the medial portion of
the core of the NAc (SAS Proc Mixed analysis followed by
Tukey–Kramer tests; see Fig. 5 for statistical significance).
Therefore, the present results not only confirm the existence
of a glutamate-dependent A1 receptor-mediated modulation
of dopamine levels in the dorsal portion of the shell of the
NAc, but also demonstrate the existence of a glutamate-
independent modulation of dopamine levels by A1 receptors
in the core of the NAc and nucleus caudate–putamen.

It was also previously shown that the effect of local
perfusion of CPT on dopamine and glutamate release in the
shell of the NAc was mimicked by caffeine, but not by an
A2A receptor antagonist (Quarta et al. 2004b). Furthermore,
systemic administration of either CPT or caffeine, but not an
A2A receptor antagonist, induced dopamine and glutamate
release in the shell of the NAc (Solinas et al. 2002; Quarta
et al. 2004a). In the present study, the systemic administra-
tion of caffeine (30 mg/kg, i.p.) significantly increased
extracellular levels of dopamine and glutamate (with maxi-
mum increases of about 50% and 100%, respectively, vs.
basal values), in the dorsal, but not the ventral shell of the
NAc (SAS Proc Mixed analysis followed by Tukey–Kramer

Fig. 4 Lack of effect of the local perfusion with the A1 receptor ant-

agonist CPT on the extracellular levels of dopamine and glutamate in

the medial prefrontal cortex. Horizontal bars show the period of CPT

perfusion. Data represent means ± SEM (n = 5–7/group).

Fig. 3 Differential effect of the local perfusion with the A1 receptor

antagonist CPT on the extracellular levels of glutamate in different

striatal compartments (see Fig. 1 legend for abbreviations). Horizontal

bars show the period of CPT perfusion. Data represent means ± SEM

(n = 5–8/group); **: p < 0.01 compared with the values previous to

CPT perfusion (SAS Proc Mixed analysis followed by Tukey–Kramer

tests).
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tests; see Fig. 6 for statistical significance). These results
provide a possible explanation for previous contradictory
findings about the ability of caffeine to increase dopamine

levels in the shell of the NAc (Acquas et al. 2002; Solinas
et al. 2002).

Identification of A1 receptors in striatal dopaminergic

nerve terminals

The glutamate-independent effects of CPT on dopamine
levels in the core of the NAc and the caudate–putamen
observed in the microdialysis experiments support the
hypothesis that there are functional adenosine A1 receptors
in dopaminergic terminals. Double immunocytochemical
studies were carried out with striatal synaptosomes to
confirm the presence of A1 receptors in striatal dopaminergic
nerve terminals (labeled with either tyrosine hydroxylase or
dopamine transporter immunoreactivity). We first determined
that only 25% ± 1% and 22% ± 1% of the striatal nerve
terminals (immunopositive for synaptophysin) were labeled
with either anti-tyrosine hydroxylase or anti-dopamine
transporter antibodies, respectively (n = 3; data not shown).
As shown in Fig. 7, we determined that 20–25% of the

Fig. 5 Counteraction by the NMDA receptor antagonist APV on the

effects of the A1 receptor antagonist CPT on the extracellular levels of

dopamine in the dorsal part of the shell (‘shell d’) but not in the medial

part of the core (‘core m’) of the NAc. Horizontal bars show the period

of APV and CPT perfusion (long and short bars, respectively). Data

represent means ± SEM (n = 5–6/group); ***: p < 0.001 compared

with the values previous to APV perfusion (SAS Proc Mixed analysis

followed by Tukey–Kramer tests).

Fig. 6 Differential effect of the systemic administration of caffeine

(30 mg/kg, i.p.) on the extracellular levels of dopamine and glutamate

in the dorsal and ventral parts of the shell of the NAc. Arrows show the

time of administration. Data represent means ± SEM (n = 5–6/group);

* and **: p < 0.05 and p < 0.01 compared with the values previous to

caffeine administration (SAS Proc Mixed analysis followed by Tukey–

Kramer tests).

(a)

(b)

Fig. 7 Identification of the presence of A1 receptors in a subset of

dopaminergic nerve terminals by double immunocytochemical analy-

sis of rat striatal single nerve terminals. (a) Immunocytochemical

identification of A1 receptors in dopaminergic terminals identified as

immunopositive for either vesicular dopamine transporter (DAT, first

row) or tyrosine hydroxylase (TyrOH, second row), which comprise

20–25% of the total synaptosomal population. The right panels show

the co-localization of A1 receptors with DAT or TyrOH in yellow

(arrows). (b) Quantification of the percentage of dopaminergic nerve

terminals endowed with A1 receptors. Data represent means ± SEM

of three experiments and, each experiment obtained using different

synaptosomal preparation from different animals.

360 J. Borycz et al.

� 2007 International Society for Neurochemistry, J. Neurochem. (2007) 101, 355–363
No claim to original US government works



putative dopaminergic nerve terminals contained A1 receptor
immunoreactivity (24.8% ± 2.9% of tyrosine hydroxylase-
positive terminals endowed with A1 receptors and
19.6% ± 2.1% of dopamine transporter-positive terminals
endowed with A1 receptors, n = 3).

A1 receptor-mediated modulation of dopamine release

in striatal dopaminergic nerve terminals

To demonstrate that the adenosine A1 receptors localized in
striatal dopaminergic terminals were functional, depolariza-
tion-induced dopamine release experiments were performed
in preparations of striatal nerve terminals. In control
conditions, striatal nerve terminals were superfused with
20 mmol/L K+ for 1 min, during two stimulation periods (S1
and S2) separated by 12 min. There was a release of 3H-
dopamine with a constant S2/S1 ratio of 0.61 ± 0.01 (see
open symbols of Fig. 8a). When the A1 receptor agonist,
CPA (100 nmol/L), was added 6 min before the second
stimulation period (S2), the amount of 3H-dopamine released
during S2 was systematically lower than control (compare the
open symbols with the filled symbols, corresponding to the
presence of 100 nmol/L CPA in Fig. 8a). In four similar
experiments, it was found that 100 nmol/L CPA inhibited the
stimulation-induced release of 3H-dopamine from striatal
synaptosomes by 22% ± 5% (p < 0.05). Higher (300 nmol/
L, n = 4), but not lower (30 nmol/L, n = 5), concentrations
of CPA also significantly (p < 0.05) inhibited the stimula-
tion-induced release of 3H-dopamine (Fig. 8b). In accord-
ance with the involvement of A1 receptors, the ability of CPA
(100 nmol/L) to inhibit the release of 3H-dopamine from
striatal synaptosomes was blocked by the selective A1

receptor antagonist DPCPX (100 nmol/L, n = 4) (closed
square in Fig. 8b).

Discussion

In the present study, we demonstrate that functional A1

receptors exist in striatal dopaminergic nerve terminals using
a combination of immunological and pharmacological tech-
niques. Immunocytochemical analysis of striatal synapto-
somes demonstrates that at least one fourth of striatal
dopaminergic terminals contain adenosine A1 receptors.
Activation of these A1 receptors directly inhibits depolariza-
tion-induced dopamine release. In previous studies, the non-
selective adenosine agonist 2-chloroadenosine (van Galen
et al. 1994) was also found to inhibit depolarization-induced
dopamine release in striatal synaptosomes (Michaelis et al.
1979; Ebstein and Daly 1982). However, the adenosine
receptor subtype involved in this modulation of dopamine
release was not determined, as the non-selective adenosine
receptor ligand used had an atypical pharmacological profile
(Michaelis et al. 1979; Ebstein and Daly 1982). We were
able to demonstrate the involvement of A1 receptors in the
present study using selective adenosine A1 receptor ligands.
The selective A1 receptor antagonist DPCPX counteracted
the inhibition of dopamine release induced by the selective
A1 receptor agonist CPA. In superfused synaptosomes, there
is no possibility for bioactive molecules to accumulate in the
biophase around terminals, because of their very small
thickness and because of the efficient removal of substances
by superfusion (e.g., Raiteri and Raiteri 2000). As a result,
the effect of the A1 receptor agonist can only be interpreted
as an activation of A1 receptors in dopaminergic terminals
directly inhibiting the release of dopamine. Previous neur-
ochemical studies using integral tissue preparations, such as
brain slices (Jin et al. 1993) or in vivo microdialysis
(Zetterström and Fillenz 1990; Ballarin et al. 1995; Okada
et al. 1996), did not allow establishing this A1 receptor-
mediated pre-synaptic effect. Thus, the present studies
provide the first clear demonstration that adenosine A1

receptors are present in a fraction of dopaminergic terminals
of the rat striatum, and that activation of these receptors
directly inhibits the release of dopamine.

In a previous study using in vivo microdialysis techniques
in awake, freely moving rats, we found that the selective A1

receptor antagonist CPT produced a glutamate-dependent
elevation in dopamine levels in the shell of the NAc (Quarta
et al. 2004b). In the present study, we further demonstrate a
differential adenosine A1 receptor-mediated modulation of
dopamine release in different compartments of the shell of
the NAc. Blockade of A1 receptors produced a glutamate-
dependent elevation in dopamine levels in the dorsal part of
the shell of the NAc, but there were no significant changes in
dopamine or glutamate extracellular levels in the ventral part
of the shell of the NAc. In addition, blockade of A1 receptors

Fig. 8 Stimulation of A1 receptors inhibits the evoked release of 3H-

dopamine (DA) from rat striatal nerve terminals. (a) Super-imposed

time course of 3H-DA release from superfused synaptosomes labeled

with 3H-DA in control conditions (open symbols) and when the

selective A1 receptor agonist CPA (100 nmol/L) was added 6 min

before the second stimulation period with 20 mmol/L K+, as indicated

by the upper bar. The lower bars indicated the two periods of stimu-

lation (S1 and S2) with 20 mmol/L K+. (b) Concentration–response

curve for the ability of CPA to inhibit the evoked release of 3H-DA (filled

circles) and the ability of the selective A1 receptor antagonist DPCPX

(100 nmol/L) (added from 15 min before starting sample collection

onwards) to abolish the effect of CPA 100 nmol/L (filled square). Data

represent means ± SEM (n = 4–5/group); * and #: p < 0.05 compared

with control or with 100 nmol /L CPA, respectively.
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produced glutamate-independent dopamine release in the
core of the NAc and the nucleus caudate–putamen. Again,
there were differential effects, with significantly greater
increases in dopamine in the medial portions of the core of
the NAc and the nucleus caudate–putamen compared with
the lateral portions. These regional differences in adenosine
A1 receptor-mediated modulation of striatal dopamine release
fit with recent functional subdivisions of striatal compart-
ments, which consider a more mediolateral instead of a
dorsomedial functional gradient (Voorn et al. 2004).

The present study also sheds light on the mechanisms by
which caffeine controls levels of dopamine in striatal
structures (reviewed in Cauli and Morelli 2005). We
previously reported that either systemic or local (reverse
dialysis) administration of caffeine produces elevated dop-
amine levels in the shell of the NAc and that this is related to
caffeine’s actions as an adenosine A1 receptor antagonist
(Solinas et al. 2002; Quarta et al. 2004a,b). This finding
could not be reproduced by another research group (Acquas
et al. 2002). Di Chiara et al. (2004) subsequently suggested
that the increases in extracellular levels of dopamine in the
shell of the NAc after systemic administration of caffeine in
our study might be related to sampling from the adjacent
medial prefrontal cortex (infralimbic and prelimbic), where
caffeine was reported to increase extracellular dopamine
(Acquas et al. 2002). The present study does not support this
hypothesis, as adenosine A1 receptor blockade did not alter
extracellular levels of dopamine or glutamate in the medial
prefrontal cortex. Furthermore, as extracellular levels of
dopamine in the prefrontal cortex were about five times
lower than that in the adjacent (dorsal) part of the NAc,
caffeine would have had to produce exceptionally large
increases in dopamine levels in the medial prefrontal cortex
(a fivefold increase vs. basal levels) to sufficiently contam-
inate samples from the probes implanted in the NAc shell and
thus account for findings in our study. The present findings
suggest, instead, that the precise localization of the micro-
dialysis probe may account for these conflicting findings.
Both the local perfusion with the adenosine A1 receptor
antagonist and the systemic administration of caffeine only
produced dopamine and glutamate release in the present
study when the area being sampled included the most dorsal
portion of the shell of the NAc.

The present in vivo results showing a significant effect
of the A1 receptor antagonist on glutamate release in only
one of the striatal areas analyzed (the dorsal part of the shell
of the NAc) might seem at odds with the current knowledge
of the important role of A1 receptors in the modulation of
striatal glutamate release (Lovinger and Coi 1995; Calabresi
et al. 1997; Flagmeyer et al. 1997; Malenka and Kocsis,
1988; Manzoni et al. 1998), including our recent observation
that most striatal glutamatergic terminals from striatal
synaptosomal preparations contain A1 receptors, which on
stimulation inhibit glutamate release (Ciruela et al. 2006).

However, this would only indicate a weak tonic activation of
A1 receptors localized in the glutamatergic terminals of most
striatal areas under basal conditions. In fact, most in vitro
studies demonstrate a preferential effect of adenosine A1

receptor agonists versus antagonists upon stimulated cortico-
striatal synaptic transmission (Lovinger and Coi 1995;
Calabresi et al. 1997; Flagmeyer et al. 1997; Malenka and
Kocsis, 1988; Manzoni et al. 1998).

The regional differences in the effects of A1 receptor
blockade on glutamate and dopamine release can be better
explained by considering that different A1 receptor-contain-
ing glutamatergic and dopaminergic synapses from different
striatal regions are under different tonic adenosinergic
control. We attempted to provide direct evidence for the
presence of different levels of endogenous extracellular
adenosine in different striatal compartments with in vivo
microdialysis, but found no significant differences. As
microdialysis only allows a direct estimate of global
extracellular levels of adenosine outside synapses, this
supports the hypothesis that the control of the release of
neurotransmitters by endogenous adenosine is predominantly
a synaptic event, depending on the levels of intrasynaptic
adenosine, which cannot be estimated with currently avail-
able microdialysis probes. Recent electrophysiological
experiments in slices from the NAc agree with this
interpretation. The level of tonic inhibition by endogenous
adenosine mediated by A1 receptors was found to differ in
different synapses, by analyzing glutamatergic excitatory and
GABAergic inhibitory post-synaptic currents in the core and
shell of the NAc (Brundege and Williams 2002).

In conclusion, the present results show a regional differ-
ence in the A1 receptor-mediated control of glutamate and
dopamine release in different limbic structures. This empha-
sizes the care required when drawing general conclusions on
the role of a particular neuromodulatory system in a given
brain area when only a limited set of synapses are studied or
when global non-synaptic end points are evaluated.
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