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Abstract 

The work detailed in this thesis proposes solutions to automatically evaluate the reading 

ability of children, targeted towards European Portuguese. Contributions were made 

towards the state of the art of reading assessment by using sentences and pseudowords, 

proposing sentence utterance segmentation strategies that consider disfluencies and by 

proposing multiple features both for mispronunciation classification and overall reading 

performance estimation. 

Knowing how to read is one of the most important markers of a child’s cognitive 

development. Teachers usually have to expend a large effort to properly evaluate a child's 

reading aloud performance on a 1-on-1 basis, manually taking notes for accuracy and time. 

A tool that records and automatically analyzes reading tasks could be an important 

complement for reading evaluation. The objectives of this work were to develop methods 

that support an automatic reading evaluation of children 6 to 10 years old. Providing an 

overall reading aloud level score can be useful to quickly get an appreciation of a child’s 

ability and follow their evolution along time and to combine the information of several 

metrics that teachers take into account when evaluating a child.  

A large European Portuguese database of children reading aloud was collected to have 

sufficient data to train acoustic models and to have a large number of examples of reading 

disfluencies. The reading tasks presented to children were carefully designed by selecting 

appropriate sentences and generating pseudowords, distributed throughout tasks according 

to a difficulty metric. Several types of disfluencies were identified, with the most common 

being mispronunciations, false-starts, repetitions and intra-word pauses. Consequently, 

these were the ones targeted for automatic detection.  

Several strategies were developed to automatically detect reading disfluencies and get 

automatic annotation of utterances. All followed the same two-step basis: segmentation that 

detects extra content, and mispronunciation classification. First, segmentation is achieved 

by constrained decoding lattices based on the ideal pronunciation of the prompt text but 

allowing freedom of repetition and syllable-based false starts. The best approach uses 

syllables as units and allows optional silence between each syllable to address the problem 
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of intra-word pauses. Decoding an utterance results in word candidate segments that will be 

classified as correctly pronounced or not. The best performing feature to classify 

mispronunciations was a log-likelihood ratio between the ideal pronunciation and a free-

phone-loop filler model, done in a word-spotting manner. Additional features of likelihoods 

of individual phonemes and Levenshtein distances between correct pronunciation and 

recognized phonemes are combined in multi-feature models. 

Elementary school teachers were asked to rate the overall reading level score of children 

as 0-5, resulting in a ground truth of reading score. Regression models to estimate these 

scores were trained based on performance features extracted from the automatic annotation, 

with separate features for the reading of sentences or pseudowords. Gaussian process 

regression models achieved the best results from automatic annotation, with results closely 

approaching the use of features extracted from manual annotation.   

Two applications of the developed work were built: a demo and a prototype website. 

The demo application showcases the methodology applied to the children of the collected 

dataset. The prototype website is a platform for teachers where they can assign reading tasks 

to several students, tell children to read tasks using a microphone, and analyze the 

automatically given performance score and utterance annotations.  

 

Keywords: Automatic speech recognition, child speech, disfluency detection, reading 

aloud performance 
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Resumo 

O trabalho detalhado nesta tese propõe soluções para automaticamente avaliar a capacidade 

de leitura de crianças, tendo como alvo o Português europeu. Foram feitas contribuições 

para o estado da arte de avaliação de leitura ao usar frases e pseudopalavras, ao propor 

estratégias de segmentação de locuções de frases que consideram disfluências e ao propor 

vários parâmetros quer para classificação de pronunciações incorretas como para estimação 

de capacidade de leitura geral.  

Saber ler é um dos mais importantes marcadores do desenvolvimento cognitivo de uma 

criança. Os professores têm habitualmente de despender um grande esforço a avaliar 

decentemente a capacidade de leitura em voz alta de uma criança, um a um, manualmente 

tirando notas de exatidão e tempo. Uma ferramenta que grave e automaticamente analise 

tarefas de leitura poderá ser um importante complemento à avaliação de leitura. Os objetivos 

deste trabalho foram desenvolver métodos que suportem uma avaliação automática da 

leitura de crianças de 6 a 10 anos de idade. Fornecer um valor de nível geral de leitura em 

voz alta pode ser útil para rapidamente obter uma apreciação da capacidade de uma criança 

e seguir a sua evolução ao longo do tempo e para combinar a informação de várias métricas 

que os professores têm em conta quando avaliam uma criança. 

Uma grande base de dados de Português europeu de crianças a ler em voz alta foi 

adquirida para ter dados suficientes para treino de modelos acústicos e para ter um largo 

número de exemplos de disfluências da leitura. As tarefas de leitura apresentadas às crianças 

foram cuidadosamente construídas seleccionando frases apropriadas e gerando 

pseudopalavras, distribuídas ao longo das tarefas de acordo com uma métricas de 

dificuldade. Vários tipos de disfluências foram identificados, com os mais comuns sendo 

pronunciações incorretas, pré-correções, repetições e pausas intra-palavra. 

Consequentemente, estes foram o alvo de detecção automática. 

Foram desenvolvidas várias estratégias para automaticamente detetar disfluências da 

leitura e obter anotação automática de locuções. Todas seguiram a mesma base de duas 

fases: segmentação que deteta conteúdo extra, e classificação de pronunciações incorretas. 

Primeiro, segmentação é conseguida por gramáticas de descodificação restritas baseadas na 
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pronunciação ideal do texto mas permitindo liberdade de repetição e pré-correções baseadas 

em sílabas. O melhor método usa sílabas como unidades e permite silêncio opcional entre 

cada sílaba para responder ao problema de pausas intra-palavra. Descodificar uma locução 

resulta em segmentos candidatos de palavra que serão classificados como correta ou 

incorretamente pronunciados. O melhor parâmetro para classificar pronunciações incorretas 

foi uma razão de verosimilhança logarítmica entre a pronunciação ideal e um modelo de 

enchimento com todos os fones em paralelo, feita de uma forma semelhante a deteção de 

palavras. Parâmetros adicionais de verosimilhanças individuais de fonemas e de distâncias 

de Levenshtein entre pronunciação correta e fonemas reconhecidos foram combinados em 

modelos de múltiplos parâmetros.  

Professores do 1º ciclo do ensino básico foram convidados a avaliar o nível geral de 

leitura de crianças em 0-5, resultando em valores de referência. Modelos de regressão que 

estimem estes valores foram treinados baseados em parâmetros extraídos da anotação 

automática, com parâmetros diferentes para a leitura de frases e de pseudopalavras. Modelos 

de regressão de processos Gaussianos obtiveram os melhores resultados com anotação 

automática, resultados que se aproximaram do uso de parâmetros extraídos da anotação 

manual. 

Duas aplicações do trabalho desenvolvido foram construídas: uma demo e um website 

protótipo. A demo apresenta a metodologia desenvolvida aplicada às crianças da base de 

dados adquirida. O website protótipo é uma plataforma para professores onde estes podem 

atribuir tarefas de leitura a vários alunos, dizer às crianças para lerem tarefas usando um 

microfone, e analisar o nível de leitura automático e a anotação automática.  

 

Palavras-chave: reconhecimento automático de fala, fala de crianças, deteção de 

disfluências,  capacidade de leitura em voz alta  
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With current technological advancements, computational resources can play a part in most 

aspects of a child’s education and their use is foreseen to increase in the near future. 

Knowing how to read is an important skill for a child’s development and one of the markers 

of their cognitive capabilities. There are two main avenues where technology can contribute 

to improve reading aloud ability of children: automatic reading tutors and automatic 

evaluation. Reading tutors are usually attractive computational applications where the effort 

goes to following children’s reading, giving them feedback and encouraging them to 

improve their reading. On the other hand, automatic evaluation of a child’s reading 

performance can be an important tool to complement the current method of manual 

evaluations of overall reading ability in schools. Usually, teachers or tutors need to make 

the effort of providing a level-appropriate reading task to the child, manually take notes for 

time and accuracy, and calculate a metric such as correct words per minute. This 1-on-1 

procedure can be very time-consuming, especially if additional performance metrics are 

desired. Also, manual evaluations are not consistently equal and depend on evaluator bias 

and experience. An automatic system that can perform these steps accurately would be a 

great complement to the usual methods and an indispensable tool for teachers that may have 

classes with up to 30 children. It could also lead to more frequent assessments of a child 

throughout the school year, and a higher-quality accompaniment of their education. 

Providing an overall performance score, as opposed to specific metrics and subjective 
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parameters, can give a clear overview of a child’s status and can also be beneficial for the 

analysis of a child’s progress over time. 

1.1 Motivation and objectives 

As a PhD topic and having a final application in mind, a decision was made to focus on 

reading aloud evaluation. Both automatic reading tutors and automatic reading evaluation 

need to use automatic speech recognition and speech processing technologies, which are the 

main subjects of this work. The methodology for tutoring and evaluation are similar, 

because both need to analyze how well a child is reading by detecting reading mistakes. 

This means that the work developed here could be used to build reading tutors as well. 

Another possible use of the methodology of reading aloud assessment is to detect reading 

disorders and find specific problems, which is also not targeted here. These were the initial 

objectives/tasks proposed: 

 Data: Collect and annotate a database of reading aloud tasks from 1st grade children, 

rich in disfluencies, for training acoustic models and developing disfluency1 

detection methods; 

 Models: From a set of the collected data, train robust acoustic phoneme models, 

tailored for children. These are required to decode the audio signal of further 

utterances of children for disfluency detection; 

 Disfluencies: Develop methods to automatically detect all reading disfluencies 

(mispronunciations, repetitions, corrections, insertions, intra word pauses, 

extensions) in children’s reading tasks; 

 Reading Ability Index: develop an algorithm/formula to attribute an overall score 

for a child from several utterances of reading aloud, based on the automatic 

detection of problems. The score or index should be well correlated with the opinion 

of teachers or experts.  

                                                 
1 In this document, the term ‘disfluencies’ is used to represent all reading miscues and errors and may represent 

events of extra content as well as mispronunciations.  
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The objectives proposed for this PhD are closely related to the LetsRead project2. The 

Instituto de Telecomunicações internal project, with the collaboration of Microsoft, 

officially ran from 2014 to 2016, but developments continued, specifically on improvements 

to automatic detection of disfluencies and the development of a full web application that 

teachers can use, in addition to the project’s demo application. 

One of the main motivations for this work was that there were no computer assisted 

applications for European Portuguese (EP) that automatically evaluate the reading aloud 

performance of children. Even for other languages, this automatic evaluation is a developing 

topic. To provide an overall reading ability score, the focus was always on reading of 

isolated words (Black et al., 2011; Duchateau et al., 2007) and mainly using reading speed 

and number of correctly read words to estimate the score. Using and analyzing sentences 

and pseudowords (non-existing/non-sense words) for overall performance scoring is one of 

the contributions of this work and it is expected that, by working with sentences as well as 

pseudowords, a better understanding of a child’s reading ability can be achieved. New 

methods to automatically detect disfluencies are developed and regression models are 

explored to provide performance scores based on multiple sources of information that can 

be the ones that teachers consider to evaluate children. The work described in this document 

can be summarized to these topics: design, collection and analysis of a children reading 

database; automatic detection of reading disfluencies; automatic reading performance 

evaluation; final live application of the developed methods.   

There were several challenges to be tackled in this work. One is the lack of speech data 

of European Portuguese children reading, which led to the need to collect a new database of 

reading tasks. Another issue is that the speech of children presents significant differences to 

the speech of adults for whom speech recognition and speech technologies are relatively 

mature. Children can also make several distinct types of reading errors and disfluencies, 

which need to be addressed in an automatic fashion.  

Falling under the interest of the thesis work, several efforts were carried out on the topic 

of Query-by-Example spoken term detection (QbE-STD), from the onset of the PhD. The 

                                                 
2 The LetsRead project: http://lsi.co.it.pt/spl/projects_letsread.html  

http://lsi.co.it.pt/spl/projects_letsread.html
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objective of QbE-STD is to match the content of a spoken query (usually one or a few 

words) to a large number of audio files from speech databases, identifying where that query 

appears (Anguera et al., 2014; Metze et al., 2014; Szoke et al., 2015; Tejedor et al., 2016, 

2013). The challenge of spoken term detection ‘by example’ means that there is no prior 

textual knowledge of what is being said in the query. The main objective of exploring QbE-

STD was that it could be useful to identify where correctly pronounced words are in an 

utterance. Adding the extra challenging aspect of language independence, the usual strategy 

stems from using phonetic recognizers of different languages and using dynamic time 

warping (DTW) to match templates, without any textual inference of what is being said.  

Search ‘by example’ would ultimately not become an avenue to pursuit for the problem at 

hand of analyzing children’s reading attempts, since the focus became of detecting 

deviations to the intended reading, given by a prompt, and not of matching two spoken 

examples. However, the work developed for QbE-STD was of utmost relevance to acquire 

knowledge about training neural networks for phonetic recognition, working with posterior 

probabilities of phones and dealing with event detection issues – all pertinently applied in 

the detection of disfluencies in read utterances. The subject of QbE-STD is not described in 

this thesis, keeping the theme focused on children evaluation. Nevertheless, the 

contributions made about the topic will be summarily reported.  

The reader will find that this document is not focused on introducing speech recognition 

basics and topics such as deep neural networks. When describing disfluency detection and 

automatic transcription (chapter 3), it is assumed that the reader has some familiarity with 

automatic speech recognition. While not making developments towards the state-of-the-art 

of acoustic modelling, the focus is on new strategies for automatic transcription and using 

multiple features for mispronunciation classification and performance evaluation, with 

several machine learning approaches. The challenges of evaluating the reading ability of 

children and characteristics of their speech are discussed in this introductory section. 

1.2 Reading ability of children 

In the process of learning how to read, children can face phonological, phonic or rhythmical 

difficulties in reading aloud, reflecting different levels of fluency (Lopes et al., 2014; 
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National Reading Panel, 2000). Oral reading fluency depends on speed, accuracy, 

consistency of pace and expressiveness (Fuchs et al., 2001; National Reading Panel, 2000). 

It should be emphasized that this work targets oral reading fluency evaluation, and no effort 

is made to measure comprehension of what is being read. Nevertheless, there is evidence 

that oral reading fluency is an indicator of overall reading competence (Fuchs et al., 2001). 

The topic of language learning is most closely related to the field of educational 

sciences. Language learning is a complex cognitive process and there are several specific 

components that a child has to acquire to be able to process and read written text accurately: 

phonologic conscience, rules of morphology, syntax, semantics and an extensive 

vocabulary. Although the first grade of elementary school (children are 5-6 years old at the 

start of the school year) is when the learning of reading usually has its formal beginning, 

this often starts earlier on some children, depending on their upbringing or other factors. 

However, teachers need to expect that children will start to learn how to read at this stage. 

There are also distinct internal processes for reading, or, more exactly, evolving processes 

for reading. For example, some children at the end of the 1st grade still read syllable by 

syllable, and may only acquire the ability to visually recognize full words later on. Children 

also acquire an extensive vocabulary throughout the years, and the visual recognition of 

known words is correlated to how fast or how well a word is pronounced. This lexical 

acquisition has been studied for European Portuguese by the P-PAL project3, and a lexical 

database with grade-level word statistics has been collected - ESCOLEX (Soares et al., 

2014). This gives insight to the age-of-acquisition of some words, which may be related to 

the difficulty of reading such words.  

By the end of the school year, children are expected to have a certain level of knowledge 

and skills that reflect what they have learned. The Portuguese government has defined some 

of these curricular goals (metas curriculares) that include qualitative and quantitative 

objectives for reading aloud (Buescu et al., 2015). Some of these objectives are broad such 

as “reading with sufficiently correct articulation and intonation”. However, there are some 

goals that define target values of correct words per minute of different reading tasks, 

                                                 
3 http://p-pal.di.uminho.pt/about/project  

http://p-pal.di.uminho.pt/about/project
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summarized in Table 1.1: text/story words, list of random words from a text and list of 

pseudowords.  

Table 1.1: Correct words per minute targets from curricular goals (metas curriculares) for 

three reading aloud tasks.  

Grade Text Words Pseudowords 

1st 55 40 25 

2nd 90 65 35 

3rd 110 80 - 

4th 125 95 - 

 

Pseudowords are sequences of characters or syllables that make up “legal” and fully 

pronounceable words that do not belong to the lexicon and thus have no meaning. They 

should respect the language’s phonotactic constrains that describe how the phonemes of a 

language can organize to form syllables and words (Mateus and Pardal, 2000). The reading 

of pseudowords is useful to assess if a child is aware of and can correctly apply the 

language’s morphological and phonemic rules. Notice from Table 1.1 that for the 3rd and 4th 

grades, no goals for a pseudoword reading task are defined. This could be due to the 

expectation that the fundamental morphological and phonetic rules should be internalized 

at this stage, although the analysis of reading performance of pseudowords for these grades 

could be relevant to assess if further progression is made. 

The defined curricular goals can be a starting point to appraise a child’s reading ability. 

However, the Portuguese curricular goals are a controversial topic4, and there should be 

other ways to qualify reading performance. One possibility is to gather the opinion of 

experts and teachers, asking them to quantitatively rate the reading aloud performance of 

children (by listening to recordings of reading tasks). Their subjective opinion will be based 

on the several aspects of reading (speed, fluency, number of mispronunciations, etc.), and if 

these parameters can be quantified, there can be a correlation between the human score and 

a combination of the parameters. This is the premise of building an overall reading ability 

                                                 
4 News article in Portuguese: http://www.rtp.pt/noticias/pais/metas-curriculares-do-1-ciclo-sao-atrocidade-

cometida-contra-as-criancas_n835820  

http://www.rtp.pt/noticias/pais/metas-curriculares-do-1-ciclo-sao-atrocidade-cometida-contra-as-criancas_n835820
http://www.rtp.pt/noticias/pais/metas-curriculares-do-1-ciclo-sao-atrocidade-cometida-contra-as-criancas_n835820
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score that is well correlated with the opinion of expert evaluators (Black et al., 2011; 

Duchateau et al., 2007). 

The use of automatic speech recognition technologies to analyze reading performance 

gains prominence as an alternative to any kind of manual or 1-on-1 evaluation. The 

automatic evaluation of literacy or reading ability (not necessarily of children) is always 

related to detecting correctly read words, or optionally detecting what kind of mistakes are 

made. Additionally, there are several systems oriented to improve the literacy of an 

individual (Abdou et al., 2006; Probst et al. 2002), ideally denoting and warning about 

reading errors that occur. Computer-Assisted Language Learning (CALL) is the area of 

research that focuses on this subject, allowing a self-practice or an oriented training of the 

language. These systems are most often created for foreign language learning (Abdou et al., 

2006; Cincarek et al., 2009; Franco et al., 2010), therefore, targeted to adults or young adults 

for whom automatic speech recognition and speech technologies are significantly mature. 

Nevertheless, for children, there are also applications that deal with the improvement of 

reading aloud performance – reading tutors. Some projects aimed to create an automatic 

reading tutor that follows and analyzes a child’s reading, such as LISTEN (Mostow et al., 

1994), Tball (Black et al., 2007), SPACE (Duchateau et al., 2009) and FLORA (Bolaños et 

al., 2011). Most of these applications are helpers, e.g., highlighting words in a sentence as 

they are correctly pronounced.  

The final goal of the thesis work is to have an application that can evaluate children’s 

reading ability automatically, and not necessarily provide feedback to them, but to teachers 

and tutors. It should be mentioned that there is another important application of speech 

technologies for children in computer-aided speech therapy or diagnosis for impaired 

individuals (Maier et al., 2009; Saz et al., 2009). However, in this work, no focus will be 

made for children with specific reading disabilities, so only healthy unimpaired children 

will be considered. For EP, there are still no robust CALL applications. Nevertheless, some 

systems have been developed for EP that pursue the analysis of children’s reading in an 

interactive fashion, such as REAP.PT (Silva et al., 2012). However, it deals with issues such 

as readability of texts and is geared towards comprehension and not reading aloud ability. 
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As for the automatic detection of correct words and of disfluencies in children’s reading, 

most works are based on having decoding networks (or lattices) that allow the fully correct 

word or sequence of words to be detected, concurrently with alternative events that should 

be reading miscues. Other connections in these lattices can allow, e.g., repetitions of words. 

The state-of-the-art on this topic will be described in chapter 3. Most works focus on 

individual word reading, and the ones that aim to provide an overall reading ability score 

use individual word reading exclusively, whereas this PhD’s objective is to use sentences 

and pseudowords for that goal. Results of disfluency detection tasks in literature show that 

there is still a significant room for improvement in this topic. 

1.3 Child speech 

The speech of children, due to their smaller vocal tracts, presents certain acoustic 

characteristics that are significantly different from adult speech such as higher fundamental 

and formant frequencies, formant frequency variability and vowel duration variability 

(Ferreira, 2007; Hämäläinen et al., 2014b; Lee et al., 1999). Acoustic models trained with 

adult speech may have a diminished performance in automatic speech recognition (ASR) 

applications for child speech, and special care is needed to adapt or create models that target 

children (Hämäläinen et al., 2014a; Potamianos and Narayanan, 2003). Several methods can 

be found in the literature to deal with this issue: retraining adult models using a small amount 

of children data; frequency warping with vocal tract length normalization, and other speaker 

adaptation methods (Gray et al., 2014; Liao et al., 2015). However, it has been suggested 

that using large amounts of children data may be preferable than applying adaptation 

techniques (Liao et al., 2015).  

When considering reading aloud by children, the deviations to an appropriate reading 

include reading syllable by syllable, false starts followed by self-corrections, severe 

mispronunciations of words, and others. The wide range of possible problematic events 

presents a substantial challenge for computational systems that aim to detect these problems 

automatically. Having data of European Portuguese children reading aloud seems vital to 

allow both the creation of robust children’s speech acoustic models for EP and the 

identification of the common disfluencies that children commit while reading, pursuing 
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reading ability evaluation. Although there are some databases for EP such as Speecon with 

rich sentences5; ChildCAST (Lopes et al., 2012) with picture naming; the Contents for Next 

Generation (CNG) Corpus targeting interactive games (Hämäläinen et al., 2013) and Santos 

et al. (2014) with child-adult interaction, these do not present the necessary disfluent reading 

speech needed for the goals of this thesis. Therefore, a database was collected of 6-10 year 

old children reading aloud sentences and pseudowords, in alignment with the goals of the 

LetsRead project. Further discussion about child reading and state-of-the-art of 

automatically detecting reading mistakes and evaluating reading level will be included 

throughout this document’s chapters.  

1.4 Chapter overview 

This document is structured in the following fashion: 

Chapter 2 - Reading Tasks. This chapter revolves around the design and collection of a 

new database of children reading aloud. It will describe the effort needed to design reading 

tasks of children, specifically of sentences and pseudowords, along with a description of the 

data collection process and of the data itself. The performed manual transcription is 

described and all the types of reading disfluencies found are enumerated. Finally, an analysis 

of reading performance metrics for the database’s children is done.  

Chapter 3 - Automatic detection of disfluencies. This chapter will describe the systems 

developed for an automatic transcription of utterances of children reading where several 

types of disfluencies are targeted for detection (intra-word pauses, repetitions, false-starts 

and mispronunciations). The problem was tackled as a two-step process: first, a 

segmentation stage provides word candidate segments while detecting repetitions and false-

starts, and different decoding approaches are discussed; then, a classification stage decides 

if a word is mispronounced or not and multiple features were defined and combined for 

classification. The output of the automatic disfluency detection system allows several 

                                                 
5 The Speecon Portuguese Database: http://catalog.elra.info/product_info.php?products_id=798  

http://catalog.elra.info/product_info.php?products_id=798
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reading performance metrics to be extracted for the next topic (correct words per minute, 

rate of disfluencies, etc.). 

Chapter 4 - Automatic Assessment of Reading Level. This chapter will describe the 

strategy to automatically provide an overall assessment of a child’s reading level. A ground 

truth of reading level of the database’s children was collected from elementary school 

teachers, and machine learning methods are applied on automatically extracted features to 

closely approach the opinion of teachers. Two live applications of the methods developed 

to assess reading level will be presented. 

Chapter 5 - Conclusions. On the final chapter, final remarks and a perspective of future 

work on the thesis’s topic are given, along with a discussion of the most challenging aspects 

found for evaluating the reading ability of children. 

Figure 1.1 shows the workflow of the steps taken to be able to automatically estimate 

the reading level of children and on which chapters these steps will be detailed. 

 

Figure 1.1: Schematic of steps taken to automatically assess child reading level along with 

corresponding chapters. 
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1.5 Contributions 

The main contributions of this work, reported in 2 journal papers and 8 conference papers, 

can be defined as: 

 The collection of a new European Portuguese speech database of children reading 

aloud. The collected data of 6-10 years old children reading sentences and 

pseudowords is full of examples of reading mistakes and disfluencies and the 

children also vary greatly in reading capability. The audio amounts to 20 hours, 

more than half was fully manually annotated and the dataset was made available 

publicly6. The database was presented and analyzed in Proença et al. (2015c, 2016a, 

2016d).  

 Novel strategies to automatically detect extra content in utterances and deal with 

intra-word pauses. Several decoding grammars were proposed to segment 

utterances and detect extra events, reported in Proença et al. (2015b, 2015d, 2016b, 

2017a). Ultimately a syllable-based decoding grammar had the best performance, 

reported in Proença et al. (2018). 

 New features and feature combination to classify word candidates as 

mispronounced or not. Several features were proposed based on word likelihood, 

recognition likelihood and phonetic recognition to improve mispronunciation 

classification, reported in Proença et al. (2018). 

 Overall reading performance estimation based on multiple features from sentence 

and pseudoword reading. Separate features from sentences and pseudowords based 

on reading speed, frequency of disfluencies and task difficulty are used in 

regression models to get closer to the opinion of teachers for a child’s reading level. 

This work was reported in Proença et al. (2017b, 2017c). 

 Live demo of the methodology developed applied to children’s utterances7. 

                                                 
6 The LetsRead Database: http://lsi.co.it.pt/spl/letsreadDB.html  
7 The LetsRead demo: http://hades.co.it.pt:9000/index_en.html – A short video with an overview of the project and 

of the demo can be found at: http://lsi.co.it.pt/spl/letsread/Letsread_demo.mp4  

http://lsi.co.it.pt/spl/letsreadDB.html
http://hades.co.it.pt:9000/index_en.html
http://lsi.co.it.pt/spl/letsread/Letsread_demo.mp4
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 Prototype website for teachers to propose reading tasks to children and check the 

automatic analysis of their reading performance8.  

Furthermore, work developed in the topic of Query-by-example spoken term detection 

(QbE-STD) resulted in a 2nd place at IberSpeech 2016 ALBAYZIN Search on Speech 

evaluation9, 3rd place at MediaEval 2015 query-by-example search on speech task 

(QUESST) (Szoke et al., 2015) and an honorable mention for “best results with low 

resources” at MediaEval 2014 QUESST (Anguera et al., 2014). The main contributions to 

the topic were: 

 Novel dynamic time warping (DTW) strategies for inexact spoken queries allowing 

complex matches with DTW paths with extra content, word reordering and partial 

words (Proença et al., 2015e, 2014). 

 Inclusion of extra sub-systems for fusion based on the average distance matrix of 

all phonetic recognizers (Proença et al., 2015a; Proença and Perdigão, 2016a). 

 Candidate match selection based on document dependent thresholds (Proença and 

Perdigão, 2016b).  

 Recording of European Portuguese queries and data preparation used by the 

MediaEval 2015 evaluation (Szoke et al., 2015). 

                                                 
8 LetsRead prototype website: https://letsread.co.it.pt/  – The website is only available in Portuguese. 
9 ALBAYZIN 2016 Search on Speech: https://iberspeech2016.inesc-id.pt/index.php/albayzin-evaluation/  

https://letsread.co.it.pt/
https://iberspeech2016.inesc-id.pt/index.php/albayzin-evaluation/
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As discussed in the introductory chapter, there was a need to acquire a new database of 

European Portuguese children reading aloud in order to achieve the goals of this work. The 

main specific requirements of data collection for the study of reading performance were: 

 Reading without a chance to practice before-hand. If a child can see the prompt 

before the start of recording, reading performance may be higher and there can be 

no account of reaction time. This is in contrast to what is usually done in speech 

data collections where it is ideal to have a correct reading of prompts, so that it is 

easier to build acoustic models. The reaction time of starting to read a presented 

sentence or word can be indicative of reading level and have impact on reading 

speed. 

 Have varied material for the text of prompts, with diverse lengths and difficulty.  

 Have quality recordings with low noise and reverberation. It is not the objective to 

solve acoustic quality issues. 

 Get recordings from a large number of subjects at an elementary school level (1st to 

4th grades), ideally with similar numbers per gender and grade.   

This would allow for the collection of a large number of examples of reading mistakes 

and other disfluencies, examples needed to train automatic disfluency detection systems 

(which will be vital to automatic overall reading performance evaluation). Before data 
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collection, the main issue was then to propose reading tasks to be read. These tasks should 

be carefully designed and should be well balanced so that if a child reads one task, their 

performance should be similar to reading a separate task.  

As previously stated, the Portuguese government has defined a set of Curricular Goals 

(CG) with qualitative and quantitative objectives per grade for reading aloud (Buescu et al., 

2015). Some of these objectives include target reading speed of words per minute on short 

texts, individual words and pseudowords reading tasks. With the analysis of curricular goals 

in mind, utterances consisting of read sentences and pseudowords were the goal of data to 

be collected. It was decided not to include reading of isolated words, as the required time 

for a session could become too long and the child’s performance is likely to decrease with 

extended sessions. Additionally, similar works for reading level estimation use individual 

word tasks (Black et al., 2011; Duchateau et al., 2007) and it was expected that a more 

thorough analysis of reading ability could be done by using sentences and pseudowords10.  

The pseudoword reading task was included as it may provide a different and objective 

analysis of phonetic awareness and letter-to-sound rules independent of word familiarity 

and context. With sentences, plenty of reading disfluencies can be collected from which the 

overall reading performance of a child can be evaluated. For the LetsRead database 

collection, each child was presented with a reading task that asked them to read aloud twenty 

sentences and ten pseudowords. Initially, forty reading tasks were established (rotating 10 

per grade) to balance repetition and diversity of the data. At a later stage of data collection, 

these were shortened to 5 tasks per grade, to reinforce repetition of contents. The vocabulary 

of the set of sentences and pseudowords comprises a total of 3324 word types. Examples of 

the defined reading tasks for each grade can be found in Annex I. The distribution of the 

material for the different grades was made according to a difficulty metric. 

2.1 Difficulty 

The difficulty of reading a word or sentence is an important parameter to take into account 

while designing reading tasks. The expectation of what a first grader can read is different 

                                                 
10 In hindsight, it would have been interesting to also collect samples of reading individual real words to be able to 

directly compare results to other works. However, the justification of needing short collection times remains valid.  
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than for a fourth grader and, usually, they are evaluated on different texts. A metric of 

difficulty was defined and attributed to words and sentences to make reading tasks averagely 

harder as the grade increases and to make the prompts of a reading task diverse in difficulty.  

In literature, difficulty of reading often appears associated with silent reading and not 

necessary oral pronunciation. Popular metrics such as readability define how hard or 

advanced a text is to understand (Mc Laughlin, 1969; Silva et al., 2012), but there is no 

consideration for how hard it will be to read aloud for a child. For oral production, there are 

studies that consider pronounceability or phonetic complexity but are usually targeted 

towards speech disorders such as stuttering and dyslexia (Bose et al., 2011). The identified 

issues that may have impact on the reading aloud difficulty of words are: 

 Pronounceability – articulatory aspects of speech production; 

 Phonetic complexity; 

 Number of syllables and syllable encounters; 

 Word familiarity – age of acquisition, frequency of the word in the language, or 

similarity to frequent words; 

At the start of the study, for defining reading tasks, only phonetic complexity and 

syllable based rules are considered. A similar approach to Jakielski (1998) was taken, who 

defined an index of phonetic complexity attributing difficulty points to words based on 

factors such as consonant types, word length, consonant clusters and consonant-vowel 

structure. Although it would be ideal to also relate a word’s difficulty to its age-of-

acquisition or familiarity, not all words of the proposed reading tasks were present in 

available lexical databases such as ESCOLEX (Soares et al., 2014), and considering such 

features was not directly feasible. For example, ‘Daniel’ is a common given name and it is 

badly represented for its non-existing frequency in ESCOLEX. For later tasks, additional 

considerations will be made for difficulty, such as orthographic Levenshtein distance 20 

(OLD20) (Yarkoni et al., 2008), which defines the distance of a word to its closest 20 

orthographic neighbors, which is indicative of similarity to other words and may relate to a 

perception of familiarity.  
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It was decided to build a parameter of difficulty where sentences are evaluated in terms 

of phonetic complexity and variety. All words were split into their syllables and a difficulty 

level was assigned to each syllable, summing the scores given by the structural, grapheme 

and syllable encounter rules defined in Table 2.1. 

For each word, the difficulty scores given to its syllables are summed, as well as a ⅓ 

value per syllable so that word length is also accounted for (a word with 3 syllables would 

Table 2.1: Rules for syllable difficulty score (C – consonant, V – vowel, N – nasal vowel) 

Syllable rules 
Added 

score 
Syllable example Word example 

V 0 a, o aba, ovo 

CV 0 ca, po cama, sapo 

VC 1 al, er altar, ermida 

VV 1 ou, ei outro, eito 

CN 2 man, cam manto, campa 

CVC for a plural 0 cos, sas barcos, casas 

CVC 1 ter, bor meter, sabor 

CVV or VVC 1 dou, ais doutor, sociais 

VCC or CCV 2 plu plural 

CVN 2 quan, guin quando, guindaste 

CCN 3 plan, bran planta, lembrança 

CNC 4 vens vens 

5 graphemes 5 trans transporte 

C(r|l) 1 plu, flo, dra plural, florescer, quadra 

‘ch’ or ’qu’ or ’gu’ 1 cha, quin, gus chama, quintal, gustar 

‘nh’,’lh’ 2 nhe, lho amanhecer, olho 

‘x’ on a 1st syllable 1 xa xadrez 

‘x’ on a syllable’s end 3 fax, lix fax, felix 

‘x’ on other cases 5 xe, xa, xo trouxe, exame, baixo, fixo 

‘s’ on a syllable’s start, preceded 

and followed by a vowel 
1 sa casa 

‘r’ on a syllable’s start, preceded 

by ‘n’ or ‘l’ 
3 ra, ro honra, melro 

‘c’ or ‘g’ on a syllable’s start, 

followed by ‘e’ or ‘i’ 
1 cel, ci, gi, ge pincel, cima, giro, age 

‘em’ or ‘am’ at the end of a 

word not preceded by ‘e’ 
1 lem, cam falem, socam 

‘em’ preceded by ‘e’, or ‘êm’ at 

the end of a word 
3 em vêm, veem 

C on a syllable’s start, preceded 

by C 
1 pa, ma caspa, arma 

V on a syllable’s start, preceded 

by V 
1 ei candeeiro 
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have an added difficulty of 1). Further on, the difficulty metric will be used as a feature for 

mispronunciation classification, and it will be additionally considered without the length 

rule, meaning that there can be words of null difficulty (mostly CV-CV words). As an 

example of syllable difficulty without accounting for length, for the sentence “O Jorge 

desenha uma figurita” [u ʒˈɔɾʒə dəzˈɐɲɐ ˈumɐ fiɡuɾˈitɐ]11: 

O  Jor ·ge  de ·se ·nha  u ·ma  fi ·gu ·ri ·ta 

0  1 2  0 1 4  0 0  0 1 0 0 

 

The sentence’s difficulty would be 9 without accounting for length, or 13 by accounting 

for its 12 syllables.  

After data collection and transcription, an attempt was made to alternatively compute 

word difficulty based on the frequency of disfluent events for each word. It is expected that 

words for which more problems were found in attempts of reading them aloud should be of 

higher difficulty. In reality, due to the high number of different material in the defined 

reading tasks, there were many words that are apparently difficult but did not present any 

disfluencies. This fact will be discussed further on, and it will be apparent that there is some 

correlation of the proposed difficulty metric to the amount of reading disfluencies.   

2.2 Sentences 

A large set of sentences was extracted from children’s tales and school books and exercises 

of the level of the target group (6-10 years old, 1st-4th grades). Additionally, a small number 

of sentences from more advanced contents were collected, so that harder content would be 

included, probably with unfamiliar words. The selected sentences were mostly short, with a 

maximum length of 30 words and a mean and standard deviation of 11.1±5.8 words. Figure 

2.1 shows a histogram of sentence length given in number words. Twenty sentences were 

included in each reading task (for a recording session with one child). This number was 

selected for an estimated time per recording session of 10 minutes. 

                                                 
11 In this document, stress is marked before the stressed vowel and not the syllable. 
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Since sentences represent the bulk of material collected, the first concern for distributing 

sentences along the reading tasks of each grade was to maintain a good representation of all 

phones, so that acoustic models of good quality could be built from the data, similarly to 

Mendonça et al. (2014). The idea was to not leave out any phone and keep high frequencies 

for the least represented ones in the gathered material. For example, for the sentences 

gathered for a certain grade, the amount of phones of their phonetic transcription is analyzed 

and a subset of 100 sentences is selected (for 5 reading tasks with 20 sentences each), 

starting with the ones that contain the least represented phones. The considered phonetic 

alphabet is described in Annex II. An example of the number of phones for 200 sentences 

for the second grade is shown in Figure 2.2, along with the number of phones for the 100 

sentences selected, where the priority given to less frequent phones is apparent. Stressed 

and unstressed phones were separated here.  

The other main concerns in building appropriate reading tasks were to maintain the 

same average difficulty within a grade (with a rising average difficulty from 1st to 4th grades) 

and to have sentences of varying difficulty within a task (resulting in overlapping 

distributions of difficulty for different grades). Furthermore, it is necessary to elicit all types 

of reading disfluencies as training samples, so the difficulty cannot be too low, although a 

balance must exist so as not to make the tasks unduly hard. 

 

Figure 2.1: Histogram count of considered sentences per number of words. 
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Figure 2.2: Phonetic distribution of 200 sentences and of the 100 selected ones for second 

grade reading tasks. 

2.3 Pseudowords 

Pseudowords such as <traba> [tɾˈabɐ], <impemba> [ĩpˈẽbɐ] or <culenes> [kulˈɛnɘʃ], 

represent non-existing or nonsense words. They can be used to evaluate morphological and 

phonemic awareness of the child and word familiarity does not play a part while attempting 

to read these words. It is expected that the information extracted from the performance of 

reading pseudowords may be complementary to the performance of reading sentences, even 

if they appear correlated.  

A new method for the creation of pseudowords was developed. Existing tools such as 

Wuggy (Keuleers and Brysbaert, 2010) take as input existing words and output 

pseudowords that differ in one or two syllables to the original words. This creates 

pronounceable words that are similar to existing words (such as <sapado> [sɐpˈadu] from 

<sapato> [sɐpˈatu]). The proposed method creates pseudowords without the starting point 

of valid words while maintaining full pronounceability. It should create non-existing words 

and the difficulty of reading them is expected to be higher than familiar words. The aim was 

to create pseudowords of two, three and four syllables. First, the most frequent syllables in 

each position for words with those number of syllables were extracted from a large lexicon 
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of European Portuguese, CETEMPúblico (Rocha and Santos, 2000). A total of 1754 unique 

syllables were identified at a grapheme level. Then, words of two or more syllables are 

created randomly from a set of the most frequent syllables, following some restrictions. For 

example, to create a 3-syllable pseudoword: 

 For the first syllable, only syllables that exist in an initial position are allowed; 

 For the second syllable, only syllables that exist in the second-to-last position are 

allowed; 

 For the last syllable, only ones that exist in an ending position are allowed; 

 A syllable is randomly selected but with higher probability for higher frequency 

syllables of the considered position; 

 There can only be one syllable with an accented grapheme (e.g.: <ô>, <ã>); 

 A syllable cannot begin with the same letter as the final one of the previous syllable; 

 If the previous syllable ends with a consonant, the current one cannot start with a 

vowel; 

 The previous syllable must end in a vowel for the current one to start with <ss> or 

<rr>; 

 If the previous syllable ends with <m>, the current one must start with <b> or <p>; 

 If the previous syllable ends with <n>, the current one cannot start with <m>, <b> 

or <p>; 

 If the word is accented in the antepenultimate syllable, the last syllable must not 

end with <i>, <u>, <is>, <us>, <l> or <r>; 

 Words that exist in the lexicon (which may be created by chance) are removed. 

Furthermore, words that presented other syllabic combinations that do not respect 

pronounceability rules were manually excluded. Pseudowords such as ‘adodo’, ‘catido’ and 

‘detate’ are examples of generated words whose syllables are highly frequent and 

‘denrambol’, ‘posploei’ and ‘truambro’ are examples of words whose syllables are less 

frequent.  
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The difficulty score for a pseudoword is calculated by the previously described method 

and their distribution along the reading tasks is also similar to sentences, promoting a range 

of difficulty and rising average difficulty along the grades. 

2.4 Data Collection 

The corpus of children reading aloud was collected at two private and nine public schools 

in urban centers and peripheral areas of Portugal’s central region with children attending 

elementary school, aged 6 to 10 years. It was not feasible to collect data outside this region, 

even if there are certain regional varieties to consider in the country. However, some 

variations will be allowed as alternative pronunciations during automatic detection of 

disfluencies. 

The end of the school year was targeted (June), to allow first grade children a full year 

to learn how to read and to better analyze the expected reading level at the end of a grade. 

A specific application12 was developed in which the sentences are displayed in a large font 

size on a computer screen simultaneously with the start of recording. This presentation 

allows no practice time that would influence performance. A screenshot of the application 

can be seen in Figure 2.3 as well as an example of the recording environment.  

                                                 
12 Audio Prompt available at http://lsi.co.it.pt/spl/resources.html under “Software (Windows) to record utterances 

from multiple microphones”. 

 

Figure 2.3: Example of the recording environment (left) and software (right). 

 

http://lsi.co.it.pt/spl/resources.html
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The recordings were performed in school classrooms chosen for their low reverberation 

and noise acoustics. Children were brought to the recording stage in pairs, to lower 

intimidation and foster cooperation, and were asked to read aloud a set of 20 sentences and 

10 individual pseudowords. A lapel Lavalier microphone (Shure WL93) was used as the 

main recording device, accompanied by a standard table-top PC microphone as backup 

(Plantronics Audio 10). The background noise could not always be controlled completely, 

but was mostly low, with an average signal-to-noise ratio of 30 dB, also because the main 

recording microphone did a good job of filtering out background noise. 

The collected database consists of about 20 hours of 7418 utterances of recorded speech 

from 284 children, 147 female and 137 male, distributed from the 1st to the 4th grade with 

68, 88, 76 and 52 children, respectively. The LetsRead database is available13 with audio 

files, meta-data and descriptive documentation. It falls under the Creative Commons 

Attribution-ShareAlike 4.0 International license (CC BY-SA 4.0) (Figure 2.4). 

      

Figure 2.4: The LetsRead logo (left) and Creative Commons license for the database (right). 

A set of 4408 utterances of sentences and pseudowords from 213 children has been fully 

annotated, totaling 10.5 hours. The children (101 male and 112 female) are distributed along 

the four grade levels with 47, 52, 51 and 33 speakers (children from the 1st to 4th grades, 

respectively). This data was manually annotated in terms of correct words, 

mispronunciations and other disfluency events, with further details in the next subsection. 

Words and events have time alignments and for events that deviate from a word’s 

pronunciation, a phonetic transcription was included, making the data suitable for training 

acoustic models. These are the data sets defined for different stages of the study: 

 Full set of 10.5 hours: analysis of disfluencies and reading metrics (section 2.6).  

                                                 
13 The LetsRead database: http://lsi.co.it.pt/spl/letsreadDB.html  

http://lsi.co.it.pt/spl/letsreadDB.html
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 Subset of 9 hours: training set of 173 children used to train acoustic models for 

word and phone recognizers and to optimize decoders and mispronunciation 

classifiers (chapter 3). 

 Subset of 1.5 hours: test set of 40 children (10 per grade) with different speakers 

than the 9 hour training set (chapter 3). 

 Subset from 150 children of 5 sentences and 5 pseudowords each: reading level 

assessment (chapter 4). 

2.5 Manual Transcription 

The annotated speech exhibits a great variety of disfluencies that represent the most 

common types of errors in reading aloud by children. Based on the HESITA database 

(Candeias et al. 2013) of the HE[eee]SIT[u]ATION project14, the rules for the annotation 

and labelling procedure were defined and the full description of transcription guidelines is 

available at the database’s website15. An example of an annotated utterance using the 

Transcriber software16 is shown in Figure 2.5. 

Manual transcription is an arduous process, even more so if a high level of detail is 

needed. For the LetsRead database, transcription was done in two stages. For the first 5h30 

hours, the starting point was as a forced alignment of the word sequence of the utterance’s 

prompt. For the extra 5 hours, a version of the automatic system that detects repetitions, 

                                                 
14 The HE[eee]SIT[u]ATION project: http://lsi.co.it.pt/spl/hesitation/   
15 Transcription guidelines: http://lsi.co.it.pt/spl/letsreaddb.html under ‘Further description’. 
16 Transciber 1.5.1: http://trans.sourceforge.net  

 

Figure 2.5: Example of an annotated utterance of the LetsRead database. 

 

 

http://lsi.co.it.pt/spl/hesitation/
http://lsi.co.it.pt/spl/letsreaddb.html
http://trans.sourceforge.net/
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false-starts, intra-word pauses and mispronunciations was used to automatically obtain a 

prototype annotation that still needed to be checked and altered thoroughly.  

The annotated speech exhibits a great variety of disfluencies that represent the most 

common types of errors in reading aloud by children. The several types of disfluency were 

identified as follows: 

 PRE – False starts (or pre-corrections, reparandums) that are followed by the 

attempted correction, where multiple can occur. This follows the theory of there 

being an interruption point after a reparandum, followed by the repair (Moniz et 

al., 2014; Shriberg, 1994). Example: for prompt ˈgrande espantoˈ [ɡɾˈɐ̃də iʃpˈɐ̃tu], 

utterance is ˈgrande espa espantoˈ [ɡɾˈɐ̃də ˈiʃpɐ iʃˈpɐ̃tu].  

 REP – Repetition of a word (multiple repetitions may occur). Example: for prompt 

ˈEle já me deuˈ [ˈelə ʒa mə dew], utterance is ˈEle, ele já me deuˈ [ˈelə ˈelə ʒa mə 

dew]. 

 SUB – Substitution or severe mispronunciation of a word. Example: for prompt 

ˈvoava em largos círculosˈ [vuˈavɐ ɐ̃j ̃lˈaɾɡuʃ sˈiɾkuluʃ], utterance is ̍ voava em lares 

sicosˈ [vuˈavɐ ɐ̃j ̃lˈaɾəʃ sˈikuʃ]. 

 PHO – Small mispronunciation of a word, exactly with a change in one phone. 

Example: for prompt ˈA Lena chegou a casa, da escolaˈ [ɐ lˈenɐ ʃəɡˈo ɐ kˈazɐ dɐ 

iʃkˈɔ.lɐ], utterance is ˈA Lena chegou a casa, da escolaˈ [ɐ lˈenɐ ʃɐɡˈo ɐ kˈazɐ dɐ 

iʃkˈalɐ]. 

 INS – An inserted word that is not part of the original sentence. Example: for 

prompt ˈmas também dizemˈ [mɐʃ tɐ̃bˈɐ̃j ̃ dˈizɐ̃j]̃, utterance is ˈmas também me 

dizemˈ [mɐʃ tɐ̃bˈɐ̃j ̃mə dˈizɐ̃j]̃. 

 DEL – The word was not pronounced (deletion). Example: for prompt ˈonde 

morava uma velhaˈ [ˈõdə muɾˈavɐ ˈumɐ vˈɛʎɐ], utterance is ˈonde morava velhaˈ 

[ˈõdə muɾˈavɐ vˈɛʎɐ]. 
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 CUT – The word is cut off, usually in the initial or final syllable, but not corrected 

later. Example: for prompt ˈdá água ao papagaioˈ [da ˈaɡwɐ aw pɐpɐɡˈaju], 

utterance is ˈdá água ao papagaˈ [da ˈaɡwɐ aw pɐpɐɡˈa]. 

 EXT – Phonetic extension, marked with the symbol [:]. Example: for prompt ˈque 

queres dizer?ˈ [kə kˈɛɾəʃ dizˈeɾ], utterance is ˈque queres dizerˈ [kə: kˈɛɾəʃ dizˈeɾ]. 

 PAU (…) – Intra-word pause, when a word is pronounced syllable by syllable with 

intervening silences. The symbol [...] can also appear in other disfluency events 

denoting a pause. Example: for prompt ˈformosa e bonitinhaˈ [fuɾmˈɔzɐ i 

bunitˈiɲɐ], utterance is ˈformosa e boni...tinhaˈ [fuɾmˈɔzɐ i buni...tˈiɲɐ]. 

Silence and non-speech events such as breathing, labial and background noise were also 

annotated. Extensions and intra-word pauses may occur simultaneously with other 

disfluencies and are marked with [:] and […] in phonetic transcriptions. Some of the defined 

tags can overlap in broad definitions, such as SUB, PHO and CUT all being 

mispronunciations.  

2.6 Analysis of Performance  

From the manually annotated data, an analysis of certain metrics of children’s reading aloud 

performance can be done. The overall number of disfluencies encountered will be analyzed, 

along with reading speed metrics compared to curricular goals and pseudoword reaction 

times and disfluency rates.  

2.6.1 Disfluencies 

The number of occurrences for each type of disfluency and their percentage over total 

number of words are presented in Table 2.2 for sentences and Table 2.3 for pseudowords, 

for each of the four grade levels. 

Since events such as PRE and REP can occur multiple times for the same word, the 

percentage shown in relation to prompt words could be higher than 100%. By analyzing 

disfluency counts in sentences, some interesting phenomena can be observed, such as 1st-

graders being the ones that exhibit more intra-word pauses and extensions (due to slower 
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reading), and 4th-graders having more insertions and deletions (due to faster reading). 

Furthermore, for pseudowords, mispronunciations rise well above the defined false start 

type (PRE) since there are fewer attempts to correct unknown words, i.e., there is less 

awareness of errors done to try to correct them. Surprisingly, children did not use filled 

pauses when trying to read aloud as teen and adults do in spontaneous speech (Veiga et al., 

2012), using silent pauses instead when halting their reading. 

2.6.2 Reading speed 

With annotated data, a simple analysis of the reading performance of each individual child 

can be done. A common metric is to evaluate reading speed considering only correctly read 

Table 2.2: Distribution of disfluency types in sentences with number of events and 

percentage over prompt word count (total of 37960). 

Tags 1st grade 2nd grade 3rd grade 4th grade Total  

PRE 430 (8.3%) 549 (5.6%) 480 (4.0%) 384 (3.5%) 1843 (4.9%)  

REP 162 (3.1%) 181 (1.9%) 225 (1.9%) 203 (1.9%) 771 (2.0%)  

SUB 236 (4.5%) 339 (3.5%) 427 (3.5%) 224 (2.1%) 1226 (3.2%)  

PHO 250 (4.8%) 283 (2.9%) 316 (2.6%) 208 (1.9%) 1057 (2.8%)  

CUT 12 (0.2%) 19 (0.2%) 38 (0.3%) 35 (0.3%) 104 (0.3%)  

INS 40 (0.8%) 56 (0.6%) 68 (0.6%) 73 (0.7%) 237 (0.6%)  

DEL 6 (0.1%) 17 (0.2%) 22 (0.2%) 56 (0.5%) 101 (0.3%)  

EXT 228 (4.4%) 154 (1.6%) 117 (1.0%) 68 (0.6%) 567 (1.5%)  

PAU 373 (7.2%) 282 (2.9%) 280 (2.3%) 89 (0.8%) 1024 (2.7%)  

 

Table 2.3: Distribution of disfluency types in pseudowords with number of events and 

percentage over prompt word count (total of 1866). 

Tags 1st grade 2nd grade 3rd grade 4th grade Total  

PRE 78 (20.0%) 69 (12.5%) 66 (12.5%) 61 (15.4%) 274 (14.7%)  

REP 1 (0.3%) 1 (0.2%) 3 (0.6%) 0 (0.0%) 5 (0.3%)  

SUB 79 (20.3%) 74 (13.4%) 67 (12.6%) 34 (8.6%) 254 (13.6%)  

PHO 92 (23.6%) 95 (17.2%) 87 (16.4%) 65 (16.5%) 339 (18.2%)  

CUT 1 (0.3%) 0 (0.0%) 1 (0.2%) 0 (0.0%) 2 (0.1%)  

INS 9 (2.3%) 10 (1.8%) 7 (1.3%) 2 (0.5%) 28 (1.5%)  

DEL 3 (0.8%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (0.2%)  

EXT 73 (18.7%) 41 (7.4%) 34 (6.4%) 17 (4.3%) 165 (8.8%)  

PAU 103 (26.4%) 83 (15.1%) 89 (16.8%) 37 (9.4%) 312 (16.7%)  
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words, which is defined as Correct Words Per Minute (CWPM) (Hasbrouck and Tindal, 

2006). The average values of CWPM per grade of annotated children are shown in Table 

2.4, side-by-side with the target curricular goals (Buescu et al., 2015). A large inter-grade 

overlap of the distributions is observed, showing a variability in reading performance of 

different children, although the average does increase per grade. Figure 2.6 displays this 

behavior with a boxplot of the distributions of CWPM, showing one clear outlier for the 

third grade.  

Table 2.4: Per grade mean and standard deviation of measured Correct Words per Minute 

(CWPM), Curricular Goals (CG) of CWPM and relative difference of CWPM to CG, for 

sentences and pseudowords reading tasks. 

  Words in Sentences  Pseudowords 

Grade  CWPM CG CWPM-CG  CWPM CG CWPM-CG 

1st  56.9±18.6 55 3.5%  18.2+-7.4 25 -27.4% 

2nd  84.3±24.9 90 -6.3%  26.4+-8.4 35 -24.4% 

3rd  95.1±24.7 110 -13.5%  25.6+-6.7 -  

4th  109.8±23.6 125 -12.2%  33.9+-9.1 -  

 

Figure 2.6: Median and quartiles boxplots of Correct Words per Minute (CWPM) for 

sentence reading tasks for each of the four grade levels. The cross sign indicates an outlier.  

On data of adult speakers reading (Pellegrini et al., 2013), words per minute average 

130.3±17.8. Comparing these values to the observed child performance, there may still be 

expected improvement from 4th grade children, although some perform as well as adults. 

For sentence reading, the difference from average CWPM to curricular goals increases in 
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absolute terms along the grades, and these lower CWPM values may be explained by the 

difficulty of the reading tasks. It can be concluded that the suggested increase of difficulty 

along the grades may be too steep to directly evaluate CG as intended, and, for overall 

reading ability evaluation, this difficulty needs to be taken into account. For pseudowords, 

although there are no CGs for the third and fourth grades, average CWPM values are 

significantly lower than the CG, suggesting that the generated pseudowords (by joining 

common syllables and not based on existing words) are of high difficulty. 

The defined curricular goals can be a starting point to appraise a child’s reading ability. 

However, they do not take into account factors such as task difficulty or type of disfluencies; 

therefore, other ways to qualify reading performance should be considered. 

2.6.3 Pseudoword performance and reaction time 

To further analyze children’s performance on the task of reading individual pseudowords, 

data from 100 children is considered, in which they read 10 individual pseudowords, one at 

a time per recording. This task differs substantially from sentence reading as morphological 

and phonemic awareness are the factors that influence a good performance on reading 

unknown words. Several interesting metrics can be extracted here, which may contribute to 

overall reading performance. First, the reaction time of starting to read the word (the time 

between the start of presentation and the onset of speech) reflects how fast the child achieves 

confidence in reading the entire word or the first syllable, especially for first graders. 

However, this metric does not reflect whether the word is read correctly or not, and there 

are children with fast reaction times who do make several mistakes. Still, the average 

reaction time decreases along the grades, as observed in Table 2.5 and Figure 2.7, with only 

a small increase from third to fourth grades (Proença et al., 2017b). 

Also in Table 2.5, the number of words that had any disfluency event is indicated. For 

the first grade, the average of 6.5 disfluent words out of 10 is much higher than for other 

grades. Note that this measure is not identical to number of incorrect words (also presented 

in Table 2.5), since phone extensions or intra-word pauses may occur. 
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Table 2.5: Mean and standard deviation per grade of pseudoword reading reaction times (in 

seconds), number of uttered words with any kind of disfluency event (including extensions 

and intra-word pauses) and number of incorrect words.  

 1st grade 2nd grade 3rd grade 4th grade 

Reaction Time (s) 1.65±0.83 1.35±0.43 1.14±0.23 1.19±0.35 

Number of disfluent words (out of 10) 6.54±2.89 3.23±2.32 2.96±1.87 2.70±2.24 

Number of incorrect words (out of 10) 4.29±2.33 2.31±2.06 2.19±1.57 2.17±1.92 

 

 

Figure 2.7: Median and quartiles boxplots of average Reaction Times for the pseudoword 

reading task for each of the four grades. 

To analyze if the difficulty parameter used is suitable, the number of disfluencies given 

by children can be compared with the computed difficulty. Figure 2.8 shows a histogram-

like distribution of the average number of disfluencies given per pseudoword through 

intervals of the difficulty parameter (Proença et al., 2016a).  

An increase of disfluencies with higher difficulties is evident, showing that the 

parameter seems to be adequate. Due to the annotated data not presenting many repeated 

samples of the same tasks (resulting in, e.g., some pseudowords of high difficulty presenting 

zero disfluencies on three utterances), the correlation between difficulty and average number 

of disfluencies cannot be accurately computed. 
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Figure 2.8: Average number of disfluencies per pseudoword for different difficulty 

parameter intervals. 

0 1.8 3.6 5.4 7.2 9 10.8 12.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Dificulty Parameter

D
is

fl
u

e
n

c
y 

p
e

r 
W

o
rd



 

31 

 

Automatically detecting all the different types of disfluencies encountered in children’s 

reading can be a significant challenge. In this work, the most frequent types are targeted for 

automatic detection – mispronunciations, false starts and repetitions – as well as intra-word 

pauses that can occur simultaneously with other events. It could be argued that detecting 

only correct words is enough to characterize children’s reading in most applications, for 

example, to calculate correct words per minute. In that case, an approach such as word 

spotting (Veiga et al., 2014) could be enough to detect correct words, although it is 

expensive, especially for large sentences and would have to deal with repetitions. However, 

it has been found that features other than correct words per minute, such as the relative 

amount of specific disfluencies, may also be a relevant parameter for reading level 

assessment (Proença et al., 2017c) and the strategies developed stemmed from that goal. 

This chapter describes the effort of automatically detecting the targeted disfluencies, which 

will ultimately result in an automatic transcription of read utterances.  

3.1 State-of-the-art 

Although this study considers children aged 6 to 10 reading in their primary (native) 

language, the area of reading analysis is also relevant for second language learning. 

However, automatic analyses of foreign language reading (Abdou et al., 2006; Cincarek et 

al., 2009) are mostly targeted at adults or young adults for whom speech technologies are 

                                                        

Automatic Detection of Disfluencies 



 

 

Chapter 3. Automatic Detection of Disfluencies 

32 

 

significantly more mature. Moreover, although similar reading problems may be 

encountered for young and adult readers, most problems in young children arise from the 

inability to follow phonological and phonotactic rules, as well as hesitations, self-

corrections and slow reading speed. It is rarer to find problems of badly realized vowels, 

often the case in second language reading.  

There are several known methods to detect disfluencies, such as those based on hidden 

Markov models (HMMs), maximum entropy models, conditional random fields (Liu et al., 

2005) and classification and regression trees (Medeiros et al., 2013), though most of past 

research focusses on spontaneous speech. Applicability to read speech may not be 

straightforward since disfluencies vary according to different speaking styles (Moniz et al., 

2014). Disfluencies in reading have different nuances, and some prior work has targeted the 

automatic detection of these events in children’s reading, with the most relevant 

contributions described below. 

Black et al. (2007) aim to automatically detect disfluencies in isolated word reading 

tasks. They found that human evaluators rated fluency as important as accuracy when 

judging reading ability. The target of detection is mostly sounding-outs, where a child first 

reads phoneme by phoneme (which can be whispered) and then reads the complete word. 

They trained HMMs and built a grammar structure specialized for disfluencies, capable of 

detecting partial words and allowing silence or noise between phones. The correct word is 

compulsorily considered to be pronounced in the final state of the grammar. The results 

achieved were 14.9% miss rate and 8.9% false alarm rate for the detection of hesitations, 

sound-outs, and whispering. By comparison, in the LetsRead data, no phoneme-by-

phoneme sounding-out was found. Instead, there are syllable-by-syllable sounding-outs 

with possible silence between syllables, which will be addressed. 

Duchateau et al. (2007) also target the reading of isolated words. Based on HMMs, they 

use a two-layer decoding module, first with phoneme decoding using phoneme-level finite 

state transducers to allow false starts with partial pronunciations, and then a second lattice 

to allow for repetitions or deletions of words. For the detection of reading errors on word 

reading, a miss rate of 44% and a false alarm rate of 13% were achieved. For a pseudoword 

reading task, they achieved a 26% rate of both misses and false alarms. In Yilmaz et al. 
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(2014), an extension to the work by Duchateau et al. (2007) is developed. The new 

evaluation is on a mixture of word and sentence reading tasks, and the models are still based 

on HMMs. The decoding scheme is more flexible to allow for the most common 

substitutions, deletions and insertions of phones in the language, as described by a phone 

confusion matrix. This confusion matrix was obtained by comparing the output of the 

recognizer with transcripts on a larger corpus. The final result for the detection of all 

disfluencies (word repetitions, stuttering, skipping and mispronunciations) was 44% miss 

rate at a 5% false alarm rate. 

Hagen et al. (2007), targeting partial word pronunciations, found that syllables were the 

best subunits to use in a decoding lattice to detect these events. A 34.6% detection rate of 

partial words is achieved for a 0.5% false alarm rate, and the overall word error rate was 

similar to using a decoding grammar based solely on words. 

Li et al. (Li et al., 2007) aim to track children’s reading of short stories for a reading 

tutor. As a language model, they employ a word level context-free grammar for sentences 

to allow some freedom in decoding words. Each word also had a concurrent garbage model 

with the most common 1600 words, which allows detecting word level miscues, but was 

also able to detect some sub-word level miscues for short words. On a detection task of all 

reading miscues (including breaths and pauses), they achieved a miss rate 23.07% at a false 

alarm rate of 15.15%.   

It should be mentioned that much of the prior research focuses on individual word 

reading tasks – exceptions being (Li et al., 2007) and parts of (Yilmaz et al., 2014) –, 

whereas the present work targets the reading of sentences and pseudowords. Unfortunately, 

it will not be straightforward to make comparisons of the results in literature to the obtained 

ones, since the data is significantly different and the targeted disfluencies also vary. Some 

studies go further and attempt to provide an overall reading ability index that should be well 

correlated with the opinion of expert evaluators (Black et al., 2011; Duchateau et al., 2007), 

which is also a direct application of the presented work, as discussed in the next chapter. 
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3.2 Two stages approach 

In order to be able to extract several features to improve the classification of words as 

mispronounced or not, the developed strategies of disfluency detection are split into two 

stages:  

 First, a segmentation stage gets candidate word pronunciations along with their 

time-alignment information, while detecting word repetitions and false starts. A 

candidate word segment is ideally aligned with the pronunciation attempt of its 

word. 

 Secondly, a mispronunciation classification stage takes each candidate word 

segment, computes several features relating to the likelihood of pronunciation and 

phonetic sequence comparison and classifies the word attempt as correctly 

pronounced or not.  

The workflow of disfluency detection with the final goal of detecting mispronunciations 

follows the schematic of Figure 3.1. Although the second stage is called mispronunciation 

classification, it is in essence a detection task, since candidate segments must be detected 

automatically (as attempted in the first stage). By using segmentation information from a 

manual transcription, the task can be considered a case of classification. 

 

Figure 3.1: Schematic of disfluency detection workflow. 

Figure 3.2 shows an example of problematic reading with some of the disfluent events 

that need to be automatically detected. The figure also demonstrates the two stage process: 

getting segments and classifying the pronunciation.  

Although incorrect intonations of a word may relate to incorrect reading, this work only 

focuses on deviations from the ideal phonetic pronunciation. The manual transcription of 

the LetsRead database includes phonetic deviations but no marking is done for intonation 

problems. In fact, the features used for the automatic methods are derived from speech 
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recognition/decoding paradigms. Correct prosody is linked to a good reading performance 

and it only be partially addressed by considering duration metrics. As previously stated, it 

has been shown that considering different types of disfluency rates in addition to reading 

speed features (without other prosody metrics) can already improve the prediction of a 

child’s overall reading level (from 0.92 correlation for correct words per minute to 0.95 

using multiple features) (Proença et al., 2017c, 2017b). The output of the developed methods 

is also a full automatic annotation of children’s read utterances.  

Several acoustic models were trained throughout the developed work but two are 

ultimately used for disfluency detection, using the training set of 9 hours: 

 Triphone GMM-HMM models trained with the Kaldi toolkit (Povey et al., 2011). 

Used for the segmentation stage, the models have shown a satisfactory performance 

for decoding that is close to forced alignment.  

 Phonetic recognizer based on long temporal context (FIT, 2015). The recognizer 

achieves 27% phone error rate on the test set with a free phone-loop model, which 

is an acceptable performance for the amount of training data. The 9 hours of data 

are insufficient to build satisfactory deep neural networks. These models are used 

to get information of non-speech frames as well as phone likelihoods and phonetic 

sequence recognition. This training was based on the work developed for the topic 

of Query-by-example spoken term detection (Proença et al., 2015e; Proença and 

Perdigão, 2016a, 2016b), as stated in the introduction. 

 

Figure 3.2: Example of a prompt (top) and an utterance of its reading attempt (bottom), with 

segmentation for extra content and correct and incorrect words. Expected correct reading: 

[vẽdˈiɐ] [lˈĩduʃ] [ɡlɐdˈiuluʃ] [i] [ɡlisˈinjɐʃ]. Transcription: REP(vendia) REP(lindos) 

PRE([ɡlɐdjɔz]) vendia lindos SUB([ɡlɐdjˈɔ...luʃ]) e glicínias.  
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3.3 Detection of Repetitions and False Starts 

This first stage aims to get the best alignment possible for both correct words and 

mispronounced attempts, with the only given meta-information being the original prompt. 

The first challenge for segmentation comes from all the extra content that can frequently 

occur (repetitions, false starts and insertions) as well as deletions. Otherwise, a forced 

alignment of the prompt word sequence would suffice. The second challenge is that 

pronunciations can differ significantly from the reference pronunciation. Any decoding 

strategy must not be too unconstrained, since short words might otherwise be detected in 

false starts and mispronunciations. Consequently, the proposed decoding grammars are a 

mixture of strictly following the prompt with the added option of word repetition. It is still 

possible to obtain a good alignment for a mispronunciation, even if it deviates substantially 

from the reference word.  

For acoustic models, greater success was found in this segmentation task by simply 

using triphone hidden Markov models of Gaussian mixture models (GMM-HMMs), rather 

than neural networks for decoding with triphones. One possible explanation is that the 

amount of training data (9 hours) is not sufficient for neural network training of robust 

models for word decoding. 

Another substantial challenge is the occurrence of intra-word pauses. These are more 

common for the lower grades and stem from reading a word syllable by syllable, with a 

significant pause in between. A regular word decoder or aligner is not expecting silence 

inside of a word. Two ways to deal with intra-word pauses were investigated: cutting silence 

frames (more exactly non-speech frames) and decoding with word-based grammars, or 

using decoding grammar at the subunit level (syllables) and allowing silence between each 

subunit. 

For this segmentation stage, the approaches taken initially will be described (which had 

significantly worse results than later approaches), but the ones ultimately described and 

compared in depth are a baseline and two methods that deal with intra-word pauses before 

or during decoding: 
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 A baseline system where intra-word pauses are not considered and a word-based 

decoding is used, allowing repetitions and false-starts. 

 A word-based system where silent segments are cut in the waveform before 

decoding with full words, similarly to the baseline. This system was first reported 

in Proença et al. (2017a). 

 A syllable-based decoding grammar, where silence is optional between all 

syllables. This method was first reported in Proença et al. (2018). 

The methods are described in the following subsections. For all methods, the allowed 

false starts (represented by the suffix PRE) are based on stopping a word pronunciation at 

syllable boundaries, which are common interruption points. For example, for a word with 

four syllables [syl1.syl2.syl3.syl4], the allowed pronunciations for a false start are [syl1], 

[syl1.syl2] and [syl1.syl2.syl3]. Allowing deletions was found to provide worse alignment 

results from the onset of this study. This is probably because introducing ‘skip’ arcs in the 

alignment lattices produces a high degree of freedom that allows mispronounced words to 

be matched up incorrectly, as previously stated. Therefore, deletions were not allowed in 

the presented approaches. Insertions of spoken content not related to the prompted words 

(including out-of-vocabulary words) were also not considered, but it is likely that candidate 

segments for insertions and deleted words (with an imperfect alignment) will be detected as 

mispronounced on the pronunciation classification stage. In fact, repetitions and false-starts 

represent 92% of extra events in the transcribed data.  

3.3.1 Initial approaches 

It might be relevant to report on the two initial methods developed to solve word 

segmentation, even if newer approaches improved results substantially. The overall strategy 

was the same throughout: cut silent segments and allow for word repetitions and syllable-

based false starts.  

For the first approach, reported in Proença et al. (2015d, 2015b), HMMs were trained 

with 3 hours of child speech using the HTK toolkit (Young et al., 2006). To deal with intra-

word pauses, silence is cut at the Mel-frequency cepstral coefficient (MFCC) level, for 
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segments of low energy of at least 220ms duration. For each sentence, a specific word 

decoding lattice was employed, allowing false-starts and repetitions. Figure 3.3a shows the 

sub-lattice schematic for each individual word and Figure 3.3b shows the sentence lattice. 

Realizations of speech are made on nodes and not on arcs. The probabilities/weights of PRE 

and repetitions were defined as 1%. Even if silent segments were cut, silence/non-speech 

(pause) is still allowed between each event. Repetitions of sequences of two or three words 

are also allowed at the sentence lattice level.  

 

Figure 3.3: Schematic of an individual word sub-lattice (a) and example of a final lattice for 

a 4 word sentence using 4 word sub-lattices L1 to L4 (b). 

Considering only words and extra events, the system results in 5.20% word error rate 

(WER) compared to 8.14% WER of a forced alignment of the original prompt. The 

alternative use of acoustic models trained with 40 hours of adult speech and adapted using 

3 hours of child data with Maximum a Posterior (MAP) adaptation is also analyzed. The 

effect of varying word insertion log probabilities can be analyzed by detection error tradeoff 

(DET) curves (Martin et al., 1997). The DET graph usually provides clearer system 

comparison than receiving operator characteristic (ROC) curves by focusing on the area of 

interest and making a non-linear transformation which results in curves approaching a linear 

representation. Figure 3.4 shows the results of detection of events of false-starts and 

repetitions, comparing the use of the two acoustic models.  

For approximately 5% false alarm rate, the system achieves 15% miss rate with child-

only models and a 25% miss rate with adapted models. For a 1% false alarm rate, the miss 

rate falls around 30%. A conclusion taken early on from this study was that it was preferable 
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to train acoustic models with child data only. Therefore, no further efforts were taken to 

build acoustic models with larger amounts of adult speech and adapt to children.  

For the second approach, the Kaldi toolkit (Povey et al., 2011) was now used to train 

acoustic models and perform decoding. This method was reported in Proença et al. (2016b, 

2017b). The training set of transcribed data was now 5h30m, and a test set of 1h30m was 

used. Low energy segments longer than 150ms are also cut to deal with intra-word pauses, 

but before parameterization, at the waveform level. The task-specific decoding lattices 

changed substantially: finite state transducers (FST) are used where realizations are defined 

by arcs and not nodes. At this stage, it proved challenging to build decoding-ready FSTs for 

all sentences with a high degree of freedom (it was later found that the problem could be 

solved for some sentences by skipping determinization). Therefore, any back-transitions 

that complicate the FST and increase decoding times are avoided, and this strategy remains 

valid as a solution for fast decoding. As an example, Figure 3.5 describes the FST grammar 

for the three-word sentence ele sonhava muito [ˈelə suɲˈavɐ mˈũjt̃u] (ˈhe dreamed a lotˈ). 

There is a basic group of FST nodes representing each word, allowing false starts and 

repetitions of the word. For example, the word ˈeleˈ is represented by the nodes 0, 1 and 2, 

and the transitions arriving at nodes 1 or 2. The same applies to the word ˈsonhavaˈ with 

nodes 2, 3 and 4, and for the word ˈmuitoˈ with nodes 6, 7 and 8. 

 

Figure 3.4: Detection Error Tradeoff (DET) curves for the first disfluency detection system 

with varying word insertion log probabilities, for two acoustic models. 
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Figure 3.5: Sentence FST without back-transitions for the three-word sentence ele sonhava 

muito [ˈelə suɲˈavɐ mˈũjt̃u]. 

In addition, the possibility of repeating sequences of words is allowed, at most of the 

previous two or three words and only once for the same pattern. In the example FST, paths 

that go through nodes 5, 9 and 10, represent these possibilities. Furthermore, following the 

left-most arcs, one gets the original sentence without any false starts or repetitions (<eps> 

is an epsilon arc, consuming no input or output). 

The best WER obtained on the training set was 3.75%, corresponding to a false alarm 

rate of 0.89% and a 23.53% miss rate. The DET curve of the training set is shown in Figure 

3.6. Using the word insertion penalty and rescoring weight from the best WER, the results 

on the test set are: 4.47% WER, 1.94% false alarm rate and 20.60% miss rate. The best 

possible WER would be 4.01% by varying word insertion penalty. 

This method was the one used for an automatic transcription of data as a starting point 

for the second stage of manual transcription, combined with an automatic mispronunciation 

classification of words based only in one feature (LLR-spotter) which will be described in 
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section 3.4. This was also the automatic transcription used for the study of automatic reading 

level assessment (chapter 4). Although improved results were being obtained by moving to 

Kaldi, the lattice was still very strict and did not represent all the possibilities observed in 

the data. Subsequent approaches, which will be more thoroughly analysed in the next 

subsections, will provide more freedom for repetition through simpler decoding lattices, or 

even solve the intra-word pause issue by employing subunit decoding. 

3.3.2 Baseline 

As a baseline approach, only repetitions and false starts are targeted and nothing is done to 

address intra-word pauses. For a given utterance, a decoding grammar (lattice) is built from 

the original prompt, allowing repetitions and syllable-based false starts. Decoding is 

performed using this lattice and HMM models. 

The lattice built for a specific prompt is a finite state transducer (FST) based on the 

sequence of words of the original prompt. For each word, two additional elements are added 

to the lattice: an arc to go back after a word pronunciation, allowing for repetitions; and a 

self-loop arc before the word to allow multiple false starts. The arc weights of the FSTs used 

in this work were empirically decided. An example for the lattice built for the prompt “ele 

sonhava muito” [ˈelə suɲˈavɐ mˈũjt̃u] (he dreamed a lot) is shown in Figure 3.7. False starts 

 

Figure 3.6: Detection Error Tradeoff (DET) curve using lattices without back-transitions for 

the detection of false starts and repetition events on the training set. 
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are represented by the suffix PRE and, in this example: elePRE can only be [e]; sonhavaPRE 

can be [su] or [su.ɲˈa]; muitoPRE can only be [mũj]̃. 

 

Figure 3.7: Schematic of the lattice built for the prompt ˈele sonhava muitoˈ, for the word 

based-decoding method. 

Following the horizontal left-to-right arcs, the original sentence is obtained. By 

following multiple arcs that transition backwards (non-consuming <eps>), repetition of 

sequences of words are also allowed, such as “ele sonhava ele sonhava muito”. These 

occurrences are frequent in the data and typically represent corrections initiated by repeating 

every word from the start of sentence or clause. 

3.3.3 Word-based decoding with silence cutting 

The word-based approach reported in Proença et al. (2017a) is similar to the described 

baseline, but silence periods are removed before decoding so that words are expected to be 

continuous. The trained neural network based on long temporal context is used to provide 

posterior probabilities of phones and non-speech events. This output is used in this method 

to detect non-speech segments (it will also be used for mispronunciation classification). The 

method follows these steps: 

 Voice activity detection. Significant non-speech segments (longer than 150ms) are 

cut from an utterance to deal with intra-word pauses. Non-speech segments are 

found from sequences that have a high probability of being silence based on the 

posterior probabilities output by the phonetic recognizer. 

 Decoding using task-specific grammars. For a given utterance, the same word-

based decoding as described for the baseline is employed, allowing repetitions and 

false-starts (Figure 3.7).  

 Reintroduction of non-speech segments. Finally, information pertaining to the 

segments of non-speech that were originally cut (either separating words or inside 
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a word) is used to expand the decoded segmentation to the utterance’s original 

duration. 

3.3.4 Syllable-based decoding 

In the final approach the problem of silence inside a word is handled differently. Here, the 

decoding strategy is based on separating a word into its syllable components and building a 

lattice solely with these syllables. Figure 3.8 shows an example of the lattice for the same 

sentence “ele sonhava muito” [ˈelə suɲˈavɐ mˈũjt̃u]. The allowable repetitions and false 

starts are similar to the previous approach since, after a given syllable, it is only allowed to 

return, at most, to the beginning of the word. 

 

Figure 3.8: Schematic of the lattice built for the prompt “ele sonhava muito”, for the syllable 

based-decoding method. Optional silence is implicitly allowed at every node. Considering 

ele2:lə/0.01 - ele2 is the second syllable of the word ˈeleˈ, with pronunciation [lə] and 

negative log-probability of 0.01).  

Although it is not depicted, optional silence is allowed at every node. Sequences of 

words can also be repeated, as there are continuous back-transitions for full words. Although 

not shown in the example, if multiple pronunciations are possible for a given word, they are 
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taken into account as alternate pronunciations of a syllable. After decoding, a reconstruction 

step is needed to join adjacent syllables into their corresponding word, repetition or false 

start. 

The output of these approaches is a per-utterance segmentation into word-relevant 

segments, be they false starts, repetitions or word-candidates, to be classified in the next 

stage as mispronounced or not. 

3.3.5 Results 

Using both the word-based decoding with silence cutting and the syllable-based decoding 

for the segmentation stage, the overall word error rate (WER) and the detection of extra 

speech events (repetitions and false starts) can be analyzed.  

WER is analyzed by comparing the decoded sequence of words and events to the 

reference transcription. Using the full text of the original prompts as hypothesis, WER is 

9%, where errors correspond to repetitions, false starts, insertions and deletions. Since the 

decoding strategies do not take insertions and deletions into account, these will always 

appear as errors. WER values for the test set, when using the optimal insertion penalty for 

the training set, for the baseline without cutting silence and both segmentation approaches 

are presented in Table 3.1, as well as results when using the optimal penalty for the test set. 

The values on Table 3.1 for the best results on the test set (best) are just to get the 

hypothetical minimum/best results, by using the best possible insertion penalties for the test 

set. This shows how close the results are to applying the training set operating points 

(insertion penalties) on the test set vs. a theoretical optimization on the test set, which 

indicates if the operating point is correct. These optimizations on the test set are not used 

further on. 

Table 3.1: Overall word error rate (WER) and miss and false alarm rates for the detection 

of repetitions and false-starts, for the test set, using the optimal insertion penalty of the 

train set and the best one on the test set (best).  

Segmentation approach 
WER 

% 

Miss 

% 

False 

Alarm % 

WER % 

(best) 

Miss % 

(best) 

False Alarm 

% (best) 

Baseline 4.15 15.92 2.36 4.11 17.60 2.21 

Word-based w/ sil. cut  2.45 11.17 0.98 2.41 10.61 0.98 

Syllable-based 2.17 11.45 0.68 2.16 10.89 0.70 
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The recognition of repetitions and false starts is considered as a detection task, lumping 

both into a single class. Although the false starts allowed are up to the last syllable, in the 

transcribed data some are complete mispronunciations of a word, with a subsequent attempt 

of correction. Those are possibly detected as repetitions with these methods and motivate 

analyzing the detection of both repetition and false start events as just one class. To evaluate 

a system’s performance in the detection of these events, it is stipulated that: 

 Extra events (insertions) are false alarms; 

 Undetected events (deletions) are misses; 

 Events detected as belonging to a different word (substitution) are also misses. For 

example, a false start of one word may be detected as a repetition of the previous 

one. 

These specifications are similar to the ones used in NIST evaluations (Fiscus et al., 

2007). However, to calculate false alarm rates, the number of false alarms are divided by 

the total number of original words. Figure 3.9 shows the detection error trade-off (DET) for 

the segmentation approaches on the test set, obtained by using a wide search beam during 

 

Figure 3.9: Detection error tradeoff (DET) for the detection of repetitions and false starts on 

the test set, for both decoding approaches. Operating points are with the best train insertion 

penalties.  
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decoding and various word insertion penalties and lattice rescoring weights. Operating 

points correspond to using insertion penalties and lattice weights that resulted in the best 

WER on the training set. The equal error rate (EER) for the systems is not of interest since 

it corresponds to relatively high false-alarm rate (equal to the miss error rate) and higher 

WER, far from the targeted operating points. Table 3.1 presents the resulting miss and false 

alarm rates at these points, as well as the best possible ones by optimization on the test set. 

Comparing the WER results as well as the DET values, it is clear that the second 

approach – syllable-based decoding without cutting silent segments – performs better than 

the alternative method of cutting silent segments and aligning full words. Still, the above 

results do not take into account the time-wise alignment information. Comparing the 

decoded hypotheses to the manual transcription (reference), three metrics for alignment 

match are analyzed and presented in Table 3.2. The metrics are: 

 overlapRef – percentage of frames that overlap, per event, over the length of the 

reference word, averaged for all events. 

 overlapOverMax – percentage of frames that overlap, per event, over the maximum 

interval between the reference and hypothesis start and end frames, averaged over 

all events. This metric penalizes longer hypotheses. 

 overlapUtt – percentage of overlap frames per utterance over the length of all events 

of the sentence, averaged over all utterances. 

For each event of the reference transcription, only one hypothesis is compared: the one 

that corresponds to the same word and with the largest overlap if more than one exists. 

Therefore, all the metrics penalize shorter hypotheses. 

Table 3.2: Metrics analyzing frame-wise alignment match between the manual transcription 

and decoded hypotheses (defined in the text). 

Segmentation approach overlapRef % overlapOverMax % overlapUtt % 

Baseline 89.00 82.52 90.26 

Word-based w/ sil. cut 89.71 84.42 91.98 

Syllable-based 90.21 83.71 92.68 
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The alignment metrics also show that the syllable-based decoding performed better 

overall, although a smaller overlapOverMax shows that it may have provided slightly larger 

segments. Subsequently, only this automatic segmentation method will be used to analyze 

mispronunciation classification results. The method has the advantage of skipping a non-

speech removal step that needs to decide a minimum duration for non-speech segments to 

be cut. Leaving this decision as optional silence in the decoder seems to be ideal. 

3.4 Detection of Mispronunciations 

The analyzed reading material is extensive, including challenging words and pseudowords. 

Therefore, the proposed approach targets the possibilities of mispronunciation in a general 

way, in contrast to considering typical pronunciation errors during decoding. 

Mispronunciations by children can range from a simple change in one phoneme, or changes 

in phoneme order, or phoneme deletion or insertion, to severe changes from the intended 

correct reading. Intonation problems are currently not targeted by this work. 

A straightforward possibility to decide if a word pronunciation is correct or not is to 

compare the uttered sequence of phonemes to the allowable pronunciations. If there is a 

match, the pronunciation would be considered correct. However, the accuracy of automatic 

phoneme recognition is not high enough to support this method, since recognition 

inaccuracies (insertions, deletions and substitutions) can lead to numerous false alarms of 

mispronunciation. Therefore, methods based on the word likelihood given the correct 

pronunciation prove to be more successful. Phoneme recognition will still be applied to 

obtain additional inputs for mispronunciation classification. In fact, word pronunciations 

will be classified based on multiple individual features and combining them in multi-feature 

classifiers.  

For this task, a neural network based on long temporal context (FIT, 2015) was trained, 

as mentioned in section 3.2. It is targeted for phoneme recognition and its output, used here 

as the basis of likelihood computations, are state-level posterior probabilities of 34 phones 

with 3 states each, including non-speech. Compared to the phonetic alphabet of Annex II, 

semi-vowels [j], [w], [j]̃ and [w̃] are joined to its vowel counterparts [i], [u], [ĩ] and [ũ], 

since phonetic recognition results were slightly better compared to separating them. Also, 
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no distinction is made for stressed or non-stressed vowels. An example of the obtained 

posterior probabilities per frame for the reading attempt of the prompt “o carro do meu tio 

é azul” is shown in Figure 3.10. 

There are two considerable factors that need to be addressed to verify correct 

pronunciation: multiple allowable pronunciations due to commonly used pronunciation 

variants or accent-based variations; changes in pronunciation due to context and articulation 

with adjacent words (coarticulation). For all the features of mispronunciation classification 

 

Figure 3.10: Phonetic posterior probabilities per frame for the utterance “o carro do meu tio 

é azul”. The child said “o carro deu do meu tio é azul”. 
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that need to consider the reference pronunciation of a word, these possible variations need 

to be included.  The multi-pronunciation rules defined are:   

 For the phone sequence [ɐj], duplicate with [ej], or vice-versa, e.g. in the word 

<seis>: [sɐjʃ] or [sejS]  

 For words beginning with graphemes <ex> followed by a consonant, allow both 

[əʃ] and [ɐjʃ], e.g., for the word <excerto>: [əʃsˈeɾtu] or [ɐjʃsˈeɾtu]. 

 For words ending with [o], allow [ow] as well, e.g., for the word <fechou>: [fəʃˈo] 

or [fəʃˈow]. 

 Allow the removal of instances of schwa [ə], since it is often unspoken or an artifact 

of vocalization of previous phones in regular speech, e.g., for the word <semente>: 

[səmˈẽtə], [smˈẽtə], [səmˈẽt] or [smˈẽt]. This is usually not a problem for word 

recognizers where triphones solve the issue of non-existing schwa, but may be 

problematic for the phonetic recognizers.  

 Irregular cases of common word contractions that are usually not considered 

incorrect pronunciations: <para> with [pˈɐɾɐ] or [pɾɐ], <pelo> with [pˈelo] or [plu]. 

 For pseudowords, there can be words that may have several allowable 

pronunciations (like the case of heteronyms) and multiple pronunciations were 

defined manually, e.g.: <frecal> with [fɾɛkˈal] or [fɾəkˈal], <jodas> with [ʒˈodɐʃ] or 

[ʒˈɔdɐʃ]. 

Additionally and exclusively for words with pronunciations larger than 3 phones: 

 For words beginning with [ə], allow [i] as well, e.g.: <escuta> can be [əʃkˈutɐ] or 

[iʃkˈutɐ] (or [ʃkˈutɐ] from the schwa rule above).  

 For words beginning with [e] followed by a consonant, allow [i] as well, e.g.: 

<energia> can be [enəɾʒˈiɐ] or [inəɾʒˈiɐ]. 

 For words beginning with [o] or [ɔ] followed by a consonant, allow both [o] and 

[ɔ], e.g.: <origem> can be [oɾˈiʒɐ̃j]̃ or [ɔɾˈiʒɐ̃j]̃. 
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Context and word co-articulation rules are really only relevant for sentence reading, 

where allowable pronunciations can appear due to interactions with adjacent words. 

Following certain context rules, the issue was treated similarly to multiple pronunciation, 

by adding new possible pronunciations to be checked, case by case. The applied rules are 

based on the last phones of a word and the first phones of the following word, based on the 

phonetic dictionary. However, the time-alignment of the analyzed utterance is taken into 

account (e.g., automatic segmentation for section 3.3) and the first main rule is that nothing 

is done if the adjacent event is silence or non-speech. The rules defined for coarticulation 

are: 

 For words ending in [ɐ] with the next word beginning with [ɐ], both words’ phones 

can change to [a], e.g.: for <para aqui> [pˈɐɾɐ ɐkˈi], <para> can also be [pˈɐɾa] and 

<aqui> can also be [akˈi]. Although if the contraction is done the speaker only says 

one phone [a], it is added on both words since they are to be analyzed for correctness 

of pronunciation separately (and there will be a small leeway on the segmentation 

boundaries).  

 For words ending in [ʃ] followed by a word beginning with a voiced consonant, [ʃ] 

can be changed to [ʒ], e.g.: for <os gatos> [uʃ ɡˈatuʃ], <os> can also be [uʒ]. 

 For words ending in [ʃ] followed by a word beginning with a vowel, [ʃ] can be 

changed to [ʒ] or [z], e.g.: for <as aulas> [ɐʃ ˈawlɐʃ], <as> can also be [ɐz] or [ɐʒ].  

3.4.1 Individual Features 

The proposed features for mispronunciation are introduced in this section and they will be 

taken into account for multi-feature classification models. Features are extracted for each 

candidate segment from the previous segmentation stage, representing a word. The features 

are based on both expecting that the correct pronunciation is there as well as on what can be 

recognized in that segment. 

Goodness of pronunciation (GOP) (Witt and Young, 2000; Pellegrini et al., 2014) is a 

common metric to detect phonetic mispronunciations by computing the likelihood of a 

phone realization to belong to the ideal phone that should have been pronounced. For this 
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stage, GOP-like features on phone posterior probabilities are computed, as well as edit 

distances of recognized versus ideal phone sequences and other details about the word. The 

best feature considers a log-likehood ratio (LLR), which is based on comparing the 

likelihoods of a keyword model and a filler model. More detail about LLR is presented on 

the LLR-spotter feature description below. 

The computed features are listed in Table 3.3, with brief descriptions that are expanded 

in the text. Figure 3.11 shows an example of an aligned segment for a word, forced 

Table 3.3: Main features considered for mispronunciation classification. 

Feature 

abbreviation 
Summary 

LLR-spotter Log-likelihood ratio based on word-spotting (also LLR-s) 

LLR-ali Log-likelihood ratio strictly over the original alignment 

min-GOP Minimum (worst) likelihood of a phone from a forced alignment 

mean-GOP Average likelihood of phones from a forced alignment 

maxBadPhnProb Maximum post probability of mismatched (bad) recognized phones  

sumBadPhnProb Accumulated post probability of mismatched recognized phones  

LevBigram1 Levenshtein distance using a bigram phonetic model 

LevBigram2 Same as LevBigram1 but with lower substitution weights for phonemes of 

similar phonetic class 

LevBigram2 Same as LevBigram1 but with substitution weights according to a phone 

confusion matrix from phone recognition 

LevPL1 Levenshtein distance using a constrained phonetic lattice 

LevPL2 Same as LevBigram2 but using the constrained phonetic lattice 

LevPL3 Same as LevBigram3 but using the constrained phonetic lattice 

LevSumX Three features for the sum of LevBigram and LevPL, where X: 1, 2, 3 

LevProdX Three features for the product of LevBigram and LevPL, where X: 1, 2, 3 

Nframes Number of frames from LLR-spotter 

Area Area of the LLR-spotter graph 

Diff1 Difficulty of the word based on phonetic complexity rules (section 2.1) 

Diff2 Same as Diff1 but without accounting for word length 

OLD20 Mean edit distance of the word to its closest 20 orthographic neighbours 

Nphones Number of phones of the ideal pronunciation 

Ngraph Number of graphemes of the ideal pronunciation 

Nsylls Number of syllables of the ideal pronunciation 

LLR-s/X Normalizations of LLR-spotter where X: Nframes, Nphones, etc. 

LLR-s*X Interactions of LLR-spotter where X: LevBigram1, Diff1, etc. 
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alignment of phonemes, recognized phonemes from a bigram model, and how the features 

of LLR-spotter and LLR-ali are obtained. 

 

Figure 3.11: Schematic of an automatic alignment for the word eletricidade [ilɛtɾisidadə], 

with (top to bottom): waveform signal; forced alignment of reference pronunciation (Ali), 

recognized phones from a bigram model (Rec) resulting in a Levenshtein distance of 4 (2 

deletions and 2 substitutions), LLR from a spotting approach (flexible beginning and end) 

and LLR with fixed beginning and end.  

The features considered for mispronunciation classification are described below. 

LLR-spotter: A GOP-like accumulated log likelihood ratio (LLR) from a word 

spotting approach (LLR-spotter or LLR-s for short). Although the previous stage provides 

alignments for candidate segments, these may not have the ideal boundaries to calculate 

likelihood, due to segmentation errors. This can even be the case if segmentation from 

manual transcription is used (e.g., including some silence inside marked boundaries). LLR-

spotter is extracted from a word-spotting approach, as presented in Figure 3.12, in the near 

vicinity of the alignment boundaries (-50ms and +50ms). The keyword model is the 

sequence of ideal phones and the filler model is the free phone loop. Peak LLR between the 

models of ideal word and free phone loop is found in the vicinity of the ending time of 

alignment (-250ms and +50ms, empirically tuned), as shown in Figure 3.11. The best 

starting time is in the output token of the keyword model at each frame, as a result of the 
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token-passing decoding approach (Young et al., 1997). The keyword model may also win 

at different starting times, and new boundary information is obtained. In essence, if only 

this feature were used, the purpose of the initial segmentation stage would be only to obtain 

approximate boundaries for candidates. 

 

Figure 3.12: Schematic of obtaining a log-likelihood ratio from a word-spotting approach, 

using the keyword model of ideal pronunciation versus a filler free phone-loop model 

(Veiga et al., 2014).  

LLR-ali: A log likelihood ratio based strictly on the original segment boundaries. LLR-

ali is obtained similarly to the word spotting method, but the starting time has to be the 

initial frame and the ending at the final frame of the original segmentation as shown in 

Figure 3.11. Although it is considered mainly to compare to LLR-spotter, it might have 

alternative information for multi-feature classifiers. For example, LLR-spotter may find a 

words’ correct pronunciation when in reality something extra was said (such as a plural), 

which may be balanced by LLR-ali if that extra was aligned for that word in the 

segmentation stage.  

min-GOP and mean-GOP:  Minimum and average GOP of phones, measured using a 

posteriori probabilities of phones from the phonetic recognizer neural network. For a forced 

alignment of ideal phones over the new interval from the word spotting method, the 

minimum (worst) likelihood of the aligned phones is obtained as a feature, as well as the 

average likelihood over all phones. It is expected that low likelihoods for reference 

pronunciation phones will indicate mispronunciation. 
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maxBadPhnProb and sumBadPhnProb: Maximum probability and accumulated 

probability of mismatched phones. As an approximately inverse idea to min-GOP, a free 

phone loop is used over the posterior probabilities to recognize the uttered sequence of 

phones. For each recognized phone that does not match the ideal pronunciation, the average 

posterior probability is taken over its alignment. Both the maximum and sum of these values 

are taken as features. It is hoped that a mismatched phone with very high probability from 

the phonetic recognizer will indicate an increased confidence that the word is 

mispronounced. 

Levenshtein distances from phonetic recognition: Levenshtein distances 

(Levenshtein, 1966), or edit distances, are computed between the ideal phone sequence and 

the output of two phonetic recognition approaches, for each candidate segment: 

 Bigram model. With improved recognition results over a free phone-loop model, a 

phonetic bigram language model is obtained from the training set and used to 

decode the best recognized sequence of phones over the candidate segment. 

 Phonetic lattice (PL) based on ideal pronunciation. To overcome some errors by the 

recognizer’s output, constrained decoding models are built for each word, based on 

the notion that the ideal sequence of phones is the most probable to be detected on 

the segment. Loosely based on an implementation of a bigram model, a less 

probable back-off with a free phone loop is allowed in addition. The ideal sequence 

of phones has a higher probability, and only where deviations to this sequence are 

highly likely does the decoder choose the path of additional phones. An example of 

the phonetic lattice built for the word azul [ɐzul] (blue) is shown in Figure 3.13. 

The path through nodes 0-1-2-3-4-5-7 represents the correct word and those 

transitions are highly probable (low value of negative log probability). PHN 

represents all possible phones concurrently (self-loop at node 6), including silence. 

At the start or after a certain phone of the word, the most probable is the next correct 

one, as can be expected from a simple bigram model. Although posterior 

probabilities could also be obtained from the decoded lattices, they are often close 

to 1 due to the constrained decoding. 
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To compute the Levenshtein distance, phonetic substitutions, deletions and insertions 

are considered with the same unitary weight (cost). For example, ideal [ɐzul] versus 

recognized [ɐsul] results in a Levenshtein distance of 1 for the substitution of [z] for [s], 

whereas [zuiʃ] results in a distance of 3 for the deletion of [ɐ], substitution of [l] by [i] and 

insertion of [ʃ]. For each recognition, this distance is taken as a feature (LevBigram1 and 

LevPL1). Additionally, two slightly different distances are calculated: an edit distance with 

lower weights for substitutions among similar phonetic groups (LevBigram2 and LevPL2) 

where, for example, a substitution of [f] for [v] has a lower weight; an edit distance where 

the substitution weights are based on the phonetic confusion matrix from the output of the 

phonetic recognizer on the training set (LevBigram3 and LevPL3), following the suggestion 

of Yilmaz et al. (2014). For example, if the recognizer often detects [ɔ] for reference [o], 

this substitution will have lower cost.  

Since it is expected that these two phonetic decoding approaches will have differing 

outputs, additional features are defined by combining the two edit distances, either by the 

sum or product of the values, for the three types of distances (LevSum1, LevSum2, 

LevSum3, LevProd1, LevProd2 and LevProd3). 

 

Figure 3.13: Example of the constrained phonetic lattice (PL) built for the word azul [ɐzul] 

(blue).  

 



 

 

Chapter 3. Automatic Detection of Disfluencies 

56 

 

Metrics from LLR-spotter: Based on the best spotted segment obtained in LLR-

spotter, the detected number of frames (Nframes) and the LLR area (Area) are also included 

as features. Area is mostly used for normalizing LLR and is computed by summing the 

difference of LLR to the best LLR, frame by frame from the beginning to end of the best 

spotted segment (Veiga et al., 2014).  

Difficulty and OLD20: Metrics of word difficulty. It is expected that harder or unusual 

words are more likely to be mispronounced. The difficulty of the word based on dubious 

and harder pronunciation rules as described in section 2.1 is considered with and without 

accounting for word length (Diff1 and Diff2). Additionally, the OLD20 metric of the word 

is considered, which is the mean Levenshtein distance of the word to its 20 closest 

orthographic neighbors from a large lexicon (Yarkoni et al., 2008), which may indicate a 

degree of unfamiliarity. As examples: the word ˈpratoˈ has an OLD20 of 1.45 due to 11 

neighbors of distance 1 and 9 neighbors of distance 2; the word ˈpintalegretaˈ has an OLD20 

of 5.75 due to 7 neighbors of distance 5, 11 neighbors of distance 6 and 2 neighbors of 

distance 7.  

Word length: Additional features include the number of phones of the closest allowable 

pronunciation (Nphones), its number of graphemes (Ngraph) and number of syllables 

(Nsylls). 

LLR normalizations and interactions: Several normalizations and interactions of 

LLR-spotter with other features are considered, by division or product, represented as, e.g., 

LLR-s/Nframes or LLR-s*LevBigram1. 

3.4.2 Multi-feature Models 

The goal of this stage is to classify whether a word is mispronounced or not and 

mispronunciations were defined as the positive class and correct pronunciations as the 

negative class. Therefore, the task is considered as a problem of binary classification. If only 

one feature is analyzed, its values will correspond to the discriminant for which detection 

error trade-off (DET) curves can be constructed, by using each discriminant value as a 

threshold for decision. For models that combine several features, it is preferred that new 

continuous values are outputted, as the new discriminants, and not a binary decision. 
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Although continuous outputs could be interpreted as degrees of correctness of 

pronunciations, this interpretation is not explored here. 

To combine the information of several features, aiming to improve the classification of 

mispronunciations, the following models taking multiple inputs are investigated: 

 Logistic regression (Logit). A logistic regression model for a binomial distribution, 

a case of generalized linear regression, was trained through maximum likelihood 

estimation. The logistic function (3.1) gives response probabilities by the linear 

combination of predictive features. 
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  (3.1) 

In (3.1), ŷ  is the predicted output, ranging between 0 and 1, corresponding to the 

probability of the sample being in the mispronounced class based on a linear 

combination of features where x  is the feature vector, a  is the coefficient vector 

(weights) of the input features and b  is the intercept (bias) term. 

 Neural networks (NNs). Networks were built with one hidden layer with variable 

number of neurons and one output, trained with Levenberg-Marquadt 

backpropagation (Hagan and Menhaj, 1994) and optimizing cross-entropy. The 

transfer function for the hidden neurons is the hyperbolic tangent sigmoid and at 

the output layer a logistic sigmoid function is used, providing output between 0 and 

1. 

 Support vector machines (SVMs). SVMs for binary classification were trained with 

a second order polynomial kernel, C parameter of 0.1 and an automatic heuristic 

kernel scale. To obtain continuous values, the considered output is not the binary 

decision but the classification score, which is the distance of the input vector to the 

decision boundary.  

The hyperparameters for NNs and SVMs were chosen empirically. To avoid over-fitting 

to the training set, an alternative to using the entire set of features is analyzed. Stepwise 

feature selection is applied (Draper and Smith, 1998), through two approaches: adding 



 

 

Chapter 3. Automatic Detection of Disfluencies 

58 

 

features step by step when no features are included (Step-add) and removing features step 

by step when all features are included (Step-remove). For Step-add, the feature that 

minimizes deviance17 when a logistic regression is applied was selected. However, a feature 

is only added if the decrease in deviance is statistically significant according to a chi-square 

test (p < 0.05). Similarly, for Step-remove, features are removed if, with their presence, the 

increase in deviance has a p > 0.10. This usually leads to different features being selected 

by the two approaches, with a logistic regression applied at the end. NN and SVM are again 

analyzed by using only the selected features as input (NN-step and SVM-step). 

3.4.3 Results 

Given candidate word segments with information about start and end times and 

corresponding prompt word label, an automatic classifier decides whether the word was 

mispronounced (positive class, 1) or not (negative class, 0). Using continuous values for 

predictions or probabilities of belonging to a class each output value can be used as a 

threshold for decision and derive DET curves. 

Two sources of candidate segments will be analyzed: manual segmentation from the 

manual transcription and automatic segmentation from the syllable-based automatic 

decoding. It is expected that manual segmentations provide the best results and the clearest 

analysis of which features are important to classify mispronunciations. With automatic 

segmentation, some misalignments with the ground truth (manual segmentation) are to be 

expected. However, there must be an overlap of alignment in order for them to be considered 

a match. 

Two groupings for mispronounced classes will be analyzed: 

 SUB: only severe mispronunciations (SUB) as the positive class, without 

considering slight mispronunciations (PHO), since the latter are usually harder to 

detect. 

 SUB+PHO: all mispronunciations as the positive class; 

                                                 
17 Deviance can be computed by the sum of unit deviances given for a binomial distribution by 

  2 log( / ) (1 )log (1 ) / (1 )y y y y      with observation y  and prediction    (Song, 2007). 
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To compare classifications, given continuous output values for candidates, false alarm 

and miss rates will be analyzed. Since positive samples (mispronunciations) occur much 

less frequently than negative ones (correct words), the maximum accuracy measure would 

often relate to very low false alarm rates but with miss rates higher than 50%. Other 

measures such as F-score do not take into account the number of true positives. To target 

more interesting operating points, it is proposed to combine false alarm rate (FA) and miss 

rate in a weighted cost metric (3.2), where minimal cost is better. 

 1 2Cost w FA w Miss      (3.2) 

In (3.2), 1w  is the weight given to false alarms and 2w  is the weight of misses. If the 

weights were identical, the minimal cost would usually fall on an equal error rate. However, 

if more weight is given to false alarms, the optimal point will move towards fewer false 

alarms. It was decided to target a point that would not reach miss rates higher than 50% on 

the best results, but usually falls around 5% false alarm rate, achieved by defining 1w  as 1 

and 2w  as 0.33. 

The point of minimum cost in the training set will define the decision threshold to apply 

to test data. For all the considered groupings (manual and automatic segments, SUB and 

SUB+PHO as classes), two separate analyses of classifier model training and testing will be 

done: 

 Cross-validation over the training set (CV-train). A 5-fold cross-validation is done 

using the training data used for acoustic models. The results are obtained by 

aggregating the outputs on the test data in each fold. 

 Test. Predictions on the test set are made by training a model over the entire training 

set. 

For models that depend on random initialization (NN weights and SVM automatic 

heuristic kernel scale), results will be of the model of minimum cost over 10 runs on training 

data. 



 

 

Chapter 3. Automatic Detection of Disfluencies 

60 

 

Table 3.4 summarizes the results of the obtained cost metric when using only the 

individual features for classification of the SUB+PHO class. Features that are not shown, 

such as difficulty and number of phones, provide comparatively very poor results 

individually. Further normalizations and interactions provide either similar or slightly worse 

results compared to the displayed ones. The full table of results of individual features can 

be found in Annex III.  

LLR-spotter proves to be the best performing feature, with a significant improvement 

over the similar LLR-ali metric, where the initial alignment is used, even for the manual 

segmentation. The effect of selecting multiple thresholds of feature values to classify 

candidates as mispronounced or can be analyzed by plotting DET curves. The comparison 

of the DET curves of LLR-spotter and LLR-ali is shown in Figure 3.14, where the 

improvement of LLR-spotter is clear. Figure 3.15 shows the DET curves of the next best 3 

features (barring normalizations of LLR-spotter) – min-GOP, sumBadPhnProb and 

LevSum1 – showing different performances on varying false alarm rates. However, it is 

interesting to note that they achieve similar performances, given their separate origins.  

LevPL1, the Levenshtein distance by using the constrained phonetic lattices (PL), 

provides a better cost metric than the bigram one (LevBigram1), with their combination 

proving successful (LevSum1). Analyzing the phone error rate (PER) for the two phone 

Table 3.4: Cost results for the classification of SUB+PHO class vs. correct words, using 

individual features. 

 CV-train Test 

Feature Manual Auto Manual Auto 

LLR-spotter 0.136 0.141 0.157 0.163 

LLR-ali 0.171 0.191 0.187 0.192 

min-GOP 0.194 0.200 0.234 0.233 

mean-GOP 0.246 0.251 0.276 0.273 

maxBadPhnProb 0.280 0.248 0.288 0.276 

sumBadPhnProb 0.232 0.231 0.241 0.247 

LevBigram1 0.248 0.247 0.263 0.262 

LevPL1 0.227 0.235 0.242 0.252 

LevSum1 0.199 0.206 0.212 0.221 

LLR-s/Nphones 0.156 0.168 0.187 0.190 

LLR-s*LevBigram1 0.159 0.162 0.179 0.185 

LLR-s*LevPL1 0.179 0.194 0.203 0.208 
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decoding systems over candidate segments (manual transcription), for correct words and for 

mispronunciations, as shown in Table 3.5, provides an interesting insight. As expected, the 

constrained phonetic lattice results in a low PER for correct words, since the sequence of 

correct pronunciation is much more probable. On the other hand, for mispronunciations, the 

 

Figure 3.14: DET of LLR-spotter and LLR-ali as solo classification features, for SUB+PHO 

on CV-train, using automatic segmentation. 

 

Figure 3.15: DET of min-GOP, sumBadPhnProb and LevSum1 as solo classification 

features, for SUB+PHO on CV-train, using automatic segmentation. 
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PER is higher using phone lattices since it has less freedom to recognize mispronounced 

phones. For the bigram, the higher PER on mispronunciations than correct words may 

reflect some problems of the manual transcription, as it is often hard to decide which 

sequence of phones was uttered in mispronunciations. 

Table 3.5: Phone error rates (PER) of the two phone decoding approaches. 

Phone decoding model PER % correct word PER % mispronunciations PER % all 

Bigram 22.81 36.03 24.12 

Phonetic lattice 2.57 41.46 6.41 

 

Returning to classification results, the DET curves of LevBigram1, LevPL1 and 

LevSum1 (their sum) are shown in Figure 3.16. As can be seen, LevPL1 performs worse at 

finding all mispronunciations, never going below 43% miss rate (with a threshold of 

distance 1, where the next lower one would be 0, for 100% false alarm and 0% miss). 

However, LevPL1 seems better for lower false alarms and the combination of both features 

clearly provides improved results. 

 

Figure 3.16: DET of Levenshtein edit distance features, for the classification of the SUB 

class, on the test set.  

Comparing the use of manual segmentation versus automatic segmentation, the 

automatic one does result in slightly worse, albeit close, results, as shown in Figure 3.17. 

For a 5% false alarm rate, a 33.51% miss rate is obtained by LLR-spotter from manual 

segmentation, versus a 35.32% miss rate using automatic segmentation. 
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Figure 3.17: DET of LLR-spotter for the SUB+PHO classification on the test set by using 

manual or auto segmentations. 

Table 3.6 summarizes the results of using the multi-feature models described in section 

3.4.2, with the goal of combining the information of several features to improve 

classification. NN-step and SVM-step represent the use of the selected features by the best 

feature selection method for the same conditions (either Step-add or Step-remove). In 

addition to the cost obtained by the optimal thresholds from training, miss rates for the same 

5% false alarm rate are indicated, although the operating points for the given costs vary 

slightly from 4% to 6% false alarm rate.   

Table 3.6: Cost and miss rates at a 5% false alarm for the classification of SUB+PHO class 

vs. correct words, using multi-feature models (LLR-spotter included for comparison). 

 CV-train Test 

 Manual Auto Manual Auto 

Classification Model Cost Miss Cost Miss Cost Miss Cost Miss 

LLR-spotter 0.136 27.17 0.141 29.23 0.157 34.03 0.163 35.58 

Logit-all 0.121 22.67 0.137 27.34 0.137 29.61 0.154 33.51 

Step-add 0.120 22.35 0.136 27.26 0.141 29.61 0.150 33.25 

Step-remove 0.121 22.59 0.136 27.22 0.140 29.87 0.153 33.51 

NN 0.119 21.87 0.132 25.89 0.136 27.79 0.144 30.13 

NN-step 0.116 21.35 0.133 26.17 0.140 28.83 0.144 32.47 

SVM 0.117 22.03 0.130 25.29 0.139 29.35 0.142 29.35 

SVM-step 0.118 21.63 0.130 25.53 0.139 30.65 0.152 33.77 
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A significant improvement was obtained by considering multiple features, and the best 

classifiers vary from neural networks to SVMs, with similar results. For the manual 

segmentation, neural networks provided better results, and using feature selection was 

greatly helpful for CV-train. For the other cases, stepwise feature selection was not helpful 

and the best results for automatic segmentation were obtained with SVMs. For the same 5% 

false alarm rates, the improvement of miss rate relative to the best individual feature (LLR-

spotter) are 22% and 13% in CV-train (manual: 27.17% to 21.35%; auto: 29.23% to 25.29%) 

and 18% on the test set (manual: 34.03% to 27.79 %; auto: 35.58% to 29.35%). 

Even if stepwise feature selection was only helpful for manual segmentation, analyzing 

which features are consistently selected may give an insight into the most relevant ones. For 

the Step-add feature selection, these are the features that are consistently selected for all the 

folds of cross-validation on the training set, for SUB+PHO: 

 LLR-spotter; 

 LLR-ali; 

 mean-GOP; 

 maxBadPhoneProb; 

 LevDistPL1 or LevDistPL3; 

 1 combination of Levensthein distances - either LevSum3 or LevProd3; 

 1 normalization of LLR-spotter - LLR-s/Nchars, LLR-s/Nframes or LLR-s/Area; 

 1 interaction of LLR-spotter with phone lattice distance - LLR-s*LevPL1 or LLR-

s*LevPL3. 

 Area (LLR area from the spotting approach).  

Most of the designed features prove to be relevant and apparently carry complementary 

information that enhances mispronunciation classification. Curiously, LLR-ali was always 

selected, even though it performs worse than LLR-spotter. It may be useful for cases where 

something extra is said at the beginning or end of words (for example, adding a plural suffix) 

and where by using the spotting approach on these segments, a correct pronunciation is 

found (LLR-spotter would hurt the classification), whereas the original segmentation 

encompassed the mispronunciation. Furthermore, mean-GOP and maxBadPhoneProb were 
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chosen over min-GOP and sumBadPhoneProb. Effectively, even if min-GOP and 

sumBadPhoneProb are better individually (in minimum cost and in the stepwise criterion of 

deviance), after the first step when LLR-spotter is added to the stepwise model, mean-GOP 

and maxBadPhoneProb would provide better results if added. This is due to these two 

selected features having less correlation or sharing less information with LLR-spotter and 

other important features, and helping the model with alternative information.  

To further analyze the improvement of using multi-feature models over LLR-spotter, 

Figure 3.18 and Figure 3.19 show the DET curves comparing the use of the individual LLR-

 

Figure 3.18: DET curves of LLR-spotter and multi-feature neural network using manual 

(left) and automatic (right) segmentations, for SUB+PHO CV-train classification. 

 

Figure 3.19: DET curves of LLR-spotter and multi-feature neural network using manual 

(left) and automatic (right) segmentations, for SUB+PHO test classification. 
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spotter feature versus a multi-feature model, in this case, the neural network using all 

features. It is apparent that the improvement from multiple features to only one feature from 

using manual annotation is larger than using automatic annotation, although there was still 

an improvement for the latter.  

The results analyzed so far are for the broad class of mispronunciations (SUB+PHO). 

However, small mispronunciations (PHO) are especially difficult to detect, due to slight 

changes in one phoneme. Lowering this challenging aspect, Table 3.7 shows the results of 

classification of only the severe mispronunciation class (SUB) vs. correct words. Clear 

improvements were obtained for all stages, although, there was less improvement than other 

cases for CV-train using automatic segmentation. For the test set, automatic segmentation 

approaches the performance of manual segmentation. Results were still very similar for 

neural networks and SVMs. The same observations are shown by the DET curves of multi-

feature models vs. LLR-spotter, depicted in Figure 3.20 and Figure 3.21 for CV-train and 

test, respectively.  

Overall, be it only LLR-spotter or a multi-feature model, it can be observed from the 

edges of the DET curves that there are cases of mispronunciation that are hardly detected, 

only with very high false alarm rates. There are also cases of correct word pronunciations 

that easily result in false alarms. Most of these, where the manual annotator did not indicate 

mispronunciation, were found to be due to two factors: noise simultaneous with speech and 

Table 3.7: Cost and miss rates at a 5% false alarm for the classification of SUB class vs. 

correct words, using multi-feature models (LLR-spotter included for comparison). 

 CV-train Test 

 Manual Auto Manual Auto 

Classification Model Cost Miss Cost Miss Cost Miss Cost Miss 

LLR-spotter 0.113 21.01 0.121 23.08 0.114 21.43 0.119 23.38 

Logit-all 0.098 15.96 0.117 21.27 0.092 16.88 0.107 18.83 

Step-add 0.098 15.81 0.121 22.78 0.090 16.23 0.106 19.48 

Step-remove 0.099 16.27 0.118 21.49 0.093 16.88 0.106 19.48 

NN 0.095 15.06 0.112 20.06 0.091 13.64 0.090 13.64 

NN-step 0.094 14.76 0.113 20.21 0.091 14.29 0.093 14.29 

SVM 0.094 15.06 0.110 19.31 0.088 13.64 0.089 13.64 

SVM-step 0.094 14.46 0.112 19.76 0.088 13.64 0.095 14.94 
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words with low vocal effort (whispering). Words with a low vocal effort often occur at the 

end of sentence with the final syllables of the word appearing unvoiced. It was attempted to 

add as features the word position in the sentence and a binary feature for being the last word, 

but they were never helpful.  

There are two further main problems to tackle. The first is that the output of the phonetic 

recognizer is prone to errors, otherwise the match of the recognized phones to reference 

pronunciation would suffice. This was addressed by including several features that 

compensate for misrecognitions in some fashion (e.g., probability of mismatched phones 

 

Figure 3.20: DET curves of LLR-spotter and multi-feature neural network using manual 

(left) and automatic (right) segmentations, for SUB CV-train classification. 

 

Figure 3.21: DET curves of LLR-spotter and multi-feature neural network using manual 

(left) and automatic (right) segmentations, for SUB test classification. 
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and Levenshtein distance from a constrained phone decoding where the ideal sequence is 

highly probable). Nevertheless, by improving the accuracy of the phonetic recognizer, better 

results can be expected. The second problem is the subjective manual annotation of correct 

words and mispronunciations, where many cases are dubious for different manual 

annotators. Fixing annotator errors could have an effect on results but the methodology itself 

might not change. Not much can be done from an automatic perspective other than 

improving the reference by combining the opinions of multiple annotators. 

The output of the methodology described in this chapter are automatic annotations of 

utterances of children reading, denoting extra content and correctly or incorrectly 

pronounced words. Extensions were marked if speech phones had a length higher than 0.60 

seconds (empirically decided threshold). From this, several features can be extracted 

pertaining either to reading speed, disfluency rates or silence rates, which will be used to 

evaluate reading performance. 
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Although measuring correct words per minute can be an acceptable way to evaluate a child’s 

reading, there may be other factors or specific problems that characterize the child’s 

performance. Computing a score based on features from sentence reading tasks and 

pseudoword reading tasks can hopefully give an improved overall assessment of reading 

performance. Furthermore, there may other advantages to using a reading level: it can 

quickly provide a general overview of the literacy of the child and also allow that their 

evolution of reading proficiency be quickly observed from continued measurements. 

Previous works that focused on obtaining a reading performance or literacy level for 

children used individual word reading tasks as basis. 

Duchateau et al. (2007) evaluated a child’s reading ability by the number of correctly 

read words divided by time spent (same as correct words per minute) and show agreement 

to human evaluation with Cohen’s Kappa (Cohen, 1960) above 0.6 when considering 5 

performance classes. 

Black et al. (2011) aimed to automatically provide a high-level literacy score. Eleven 

human evaluators of different backgrounds (linguistics, engineering, speech research) rated 

children’s performance in individual word reading tasks with scores from 1 to 7. Using 

automatically extracted features and a selection of features based on pronunciation, fluency 

and speech rate, a Pearson correlation of 0.946 was achieved to predict mean evaluator’s 

scores. 

                                                        

Automatic Assessment of Reading Level 



 

 

Chapter 4. Automatic Assessment of Reading Level 

70 

 

For the work on the LetsRead data, a reading performance score was proposed as a 0 to 

5 level based loosely on grades 1 to 4. The general idea was that each grade would have an 

expected performance at the end of the school year and that there should be a score for lower 

than 1st grade level (zero) and a score for higher than 4th grade level (five). Therefore, the 

guidelines for the reading score were defined as: 

 0 – lower than expected at the end of the first grade. 

 1 – as expected at the end of the first grade. 

 2 – as expected at the end of the second grade. 

 3 – as expected at the end of the third grade. 

 4 – as expected at the end of the fourth grade. 

 5 – higher than expected at the end of the fourth grade. 

To analyze and automatically estimate the reading performance of the children of the 

LetsRead database, a ground truth of reading level is necessary. Although an assessment by 

speech or linguistic experts could be valid as done in Black et al. (2011), it was decided to 

get the opinion of elementary school teachers, since they are the ones that should accompany 

the children’s evaluation and probably have more insight about reading level. Having this 

ground truth, regression models were trained based on several features extracted from child 

utterances, while comparing the use of manual and automatic annotations. Although the 

score guidelines of 0-5 are discrete, the average of teacher’s opinions will be continuous 

values, as well as the predicted scores which will also be continuous.  

4.1 Ground truth 

In order to obtain a professional assessment for reading ability in children, elementary 

school teachers were asked to listen to utterances of reading tasks of children and provide a 

score for overall performance. This was achieved through a targeted crowdsourcing effort 

in Portugal, by closed divulgation through school groups ('agrupamentos escolares’) of a 

website where teacher registration was needed18. A total of 151 people registered for 

evaluation, 109 completed the task, but only the first 100 to fully complete the task were 

                                                 
18 http://lsi.co.it.pt/spl/letsread (only available in Portuguese) 

http://lsi.co.it.pt/spl/letsread
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considered to compile the ground truth. A sample screenshot of the website developed for 

this purpose is shown in Figure 4.1, during the evaluation stage. 

Each evaluator, after listening to 5 sentences and 5 pseudowords of a child, decided on 

a performance score between 0 and 5, based on the defined guidelines. These opinions will 

be used as a ground truth with which the automatically computed scores should be well 

correlated. A total of 150 children from the collected dataset were evaluated, 43 from the 

first grade, 40 from the second grade, 35 from the third grade and 32 from the fourth grade. 

It was aimed that each evaluator should not spend more than 30 minutes on the requested 

task and it was necessary to balance this time limit with how many raters a child could be 

evaluated by. In the LetsRead corpus each child reads 20 sentences and 10 pseudowords. 

Initial tests for the rater effort showed that listening to only 5 sentences and 5 pseudowords 

is enough to provide an overall performance score, with the score rarely changing if more 

 

Figure 4.1: Screenshot of the website for child reading level evaluation by teachers, during 

an evaluation. 
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utterances are listened to. This assumption allowed to realistically aim for each child to be 

evaluated by at least 5 teachers. In the end, an average of 10 teachers evaluated each child. 

Ten groups of evaluators evaluated different sets of 15 children (for a total of 150 

children), with each group having an average of 10 evaluators (7 minimum, 13 maximum), 

for a total of 100 evaluators. The number varies as the collection process was affected by 

some allocated evaluators not finishing evaluations (not counted here). Therefore, although 

results may be shown for all evaluators, calculations of evaluator performance are done 

separately for each group. Each child was assessed by at least 7 evaluators. Figure 4.2 shows 

histograms per child of scores given by evaluators. Each column corresponds to a group of 

15 children evaluated by the same group of evaluators.  

 

Figure 4.2: Histograms of reading performance score given by evaluators (x-axis) and 

evaluator count (y-axis) for 150 children (1 graph per child). 
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4.1.1 Evaluating evaluators 

To measure agreement between evaluators, the Pearson’s correlation of the 15 scores given 

by an evaluator to the 15 scores of another evaluator who assessed the same children can be 

computed, repeating for all evaluators of the same group. This pairwise correlation reflects 

the agreement between evaluators and can be used to identify ‘bad’ evaluators. For a group 

of 10 evaluators, there would be 9 values per evaluator. The mean of these 9 values for each 

evaluator describes their overall agreement with the group, shown in Figure 4.3. 

 

Figure 4.3: Mean pairwise correlations by evaluator, sorted from lowest to highest 

There is one clear outlier with an average correlation of 0.413; this evaluator should be 

removed. It can be argued that the next 6 with low correlations also stand out, and the 

evaluators below 0.65 correlation should probably be removed for computing the ground 

truth. A problem is that some of them belong to the same group and by removing the worst 

of them, the others’ average can improve and be higher than the threshold. Additionally, the 

pairwise correlations of all other evaluators must also be computed again. By removing the 

worst evaluators iteratively until none below 0.650 are kept, only 5 are eliminated. 

As an alternative to pairwise correlation, the correlation of an evaluator’s 15 scores with 

the 15 mean scores averaged from the other evaluators of the same group may be used 

(named as correlation to the mean). It gives higher values than the pairwise correlation but 

conclusions are similar. The final values for the two metrics are shown in Table 4.1. 



 

 

Chapter 4. Automatic Assessment of Reading Level 

74 

 

Table 4.1: Final overall mean and standard deviation values of evaluator pairwise 

correlation and correlation to the mean of other evaluators. 

Correlation Mean ± S.D. Maximum Minimum 

Pairwise 0.796 ± 0.060 0.885 0.657 

To the mean 0.874 ± 0.069 0.967 0.679 

 

4.1.2 Normalizing scores 

As an alternative to using a mean score for a child from the raw values given by teachers, 

applying a z-normalization (z-norm) per evaluator, as in (4.1), can remove certain biases. 

These effects for an evaluator can be: i) constantly giving lower scores than the average 

ones; ii) constantly giving higher scores than the average ones; iii) constantly giving scores 

near the minimum and maximum; or iv) constantly giving scores near the middle. 

 '
x

x





   (4.1) 

The z-norm for each evaluator changes their scores ( x ) by subtracting the mean of their 

15 scores (  ) and dividing by the standard deviation of the 15 scores ( ). This results in  

values with zero mean and unitary standard deviation. Since these values do not fall in the 

intended scale of 0-5, they need to be reconstructed. This is done by multiplying by the 

overall standard deviation of all scores (1500) and adding the overall mean. This method is 

an alternative to scaling the minimum and maximum to 0 and 5 and can provide values 

slightly lower than 0 or higher than 5.  

A pairwise correlation analysis would provide similar results to using non-normalized 

scores, since the changes are linear and correlation is linear. The same evaluators are 

removed. Figure 4.4 compares the final scores obtained using z-norm to the ones from a 

simple mean of raw scores, and small changes can be observed. The mean of differences are 

0.062 ± 0.057, with a maximum difference of 0.329 (a score of 0.273 becoming -0.057 after 

normalization). The standard deviation of a child’s scores (the scores given by teachers for 

a child) lowers from an average 0.719 to 0.549 with normalization, showing that scores are 

more consistent than before. The mean of the transformed scores per child is the value taken 

as ground truth of reading performance score.  
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4.2 Features 

There should be several sources of information that teachers consider when deciding about 

overall reading aloud performance. Different types of features will be explored here, 

analyzing their performance individually in predicting performance score, and using a 

combination of them to train regression models. Two distinct sources for feature extraction 

will be considered: transcriptions with manual annotation (where all types of disfluencies 

are marked) and automatic transcriptions (where only mispronunciations, false starts, 

repetitions, intra-word pauses and extensions are marked). Although using manual 

annotation may provide the purest analysis of which features matter for reading performance 

evaluation, it is automatic feature annotation that is needed to build a practical system for 

performance evaluation. 

The full set of considered features are described in Table 4.2. The same features are 

extracted from sentence reading tasks and pseudoword reading tasks separately, doubling 

the number of features shown. Features can be split into four groups:  

 Reading speed features (1-6);  

 Silence related features (7-9); 

 Rates of disfluencies (10-22);  

 

Figure 4.4: Mean of raw evaluator scores vs. mean of z-normalized scores. 
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 Task-specific information (23-26).  

Since there are a couple disfluency types that were not targeted in the automatic methods 

(deletions and insertions), features that depend on these disfluencies are only computed and 

analyzed for the manual annotation. From this point onwards, since features 1-26 repeat for 

sentences and pseudowords, sentence features will be addressed with the prefix ‘s’ and 

pseudoword features with the prefix ‘p’ (e.g., s1, s25, p1, p25). 

Table 4.2: Enumeration of features for reading performance. These are extracted separately 

for sentence tasks and pseudoword tasks, leading to 52 features. Those with an asterisk are 

not computed for the automatic methods. 

Group Feat # Abbreviation Description 

1 

1 WPM Words per minute (original prompt words over duration) 

2 CWPM Correct Words Per Minute 

3 SyllsPM Syllables per Minute (original prompt syllables) 

4 CSPM Correct Syllables per Minute 

5 CharsPM Characters per Minute (original prompt words’ characters) 

6 CCPM Correct Characters per Minute 

2 

7 SILrate Rate of Silence (Total Silence / Total time) 

8 SILini Average Initial Silence time before first word 

9 SILiniRate Initial Silence time / Total Time 

3 

10 SUBrate Rate of SUB (number of SUB events / number of Words) 

11 PHOrate Rate of PHO (number of PHO events / number of Words) 

12 PRErate Rate of PRE (number of PRE events / number of Words) 

13 REPrate Rate of REP (number of REP events / number of Words) 

14 PAUrate Rate of PAU (number of PAU events / number of Words) 

15 DELrate * Rate of DEL (number of DEL events / number of Words) 

16 EXTrate Rate of EXT (number of EXT events / number of Words) 

17 INSrate * Rate of INS (number of INS events / number of Words) 

18 MispR Rate of SUB+PHO (Mispronunciations) 

19 ExtraR Rate of PRE+REP (Extra segment disfluencies) 

20 SlowR Rate of PAU+EXT (Slow reading disfluencies) 

21 FastR * Rate of DEL+INS (Fast reading disfluencies) 

22 DisfR Rate of Disfluencies (sum of all events / number of Words) 

4 

23 nSylls Total number of syllables (original prompt syllables) 

24 nChars Total number of characters (original prompt characters) 

25 Diff1 Difficulty 1 – Pronunciation rules without counting length 

26 Diff2 Difficulty 2 – Original difficulty index (rules and length) 
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An additional feature – Grade – that describes the school grade level each child is 

enrolled in (1 to 4) will also be considered. However, since a final application may not want 

to require knowledge of a child’s grade level, models that do not use this feature should be 

built. Evaluators did not have grade information, although it is foreseeable that it will have 

some correlation to given scores, as average performance increases per grade (as previously 

observed for reading speed).  

Some of the considered features are clearly very similar to each other, and some 

interesting conclusions may be drawn from analyzing their pairwise linear correlations. 

Given that this analysis results in a 53 by 53 symmetric matrix (which would be hard to 

present), these are the main observations for features obtained from manual annotation: 

 Features s1-6 (reading speed) are highly correlated between each other (> 0.95). 

 From p1-6, p5 is the most correlated with s1-6 (always ≈ 0.8), which is also the 

highest correlation between sentence and pseudoword features. 

 Rate of silence in sentences (s7) is inversely correlated to reading speed s1-6 (≈ -

0.69). 

 Rate of disfluencies is significantly correlated with non-disfluency-related reading 

speed, e.g.: s1 and s22 with -0.71; p1 and p22 with -0.61. 

 As expected, Grade is significantly correlated with task information s23-26 (0.80 < 

𝜌 < 0.84) and with reading speed: s1-6 (0.67 < 𝜌 < 0.72); p1-6 (0.45 < 𝜌 < 0.52). 

Since some of these features provide similar information, it is foreseeable that between 

highly correlated features such as s1-6, one of them will be sufficient to predict reading 

performance. The next step in feature analysis will be to determine how each of them 

individually is able to predict ground truth scores. 

4.3 Individual feature performance 

The simplest way of fitting a feature to ground truth scores is by applying a linear 

transformation as in (4.2), trained by a linear regression (LR) model that minimizes the sum 

of squared errors (least squares). 



 

 

Chapter 4. Automatic Assessment of Reading Level 

78 

 

 ˆ Ty a x b    (4.2) 

In equation (4.2), ŷ  is the predicted output, x  is the observation, a  is the coefficient 

(weight) of the input and b  is the intercept (bias) term. For a multi-feature regression, a  

is a vector of weights and x  is a vector of observation values of multiple features. To 

evaluate the fit of predicted scores to the ground truth, two metrics will be considered: 

Pearson’s correlation coefficient (   or Corr) and root mean squared error (RMSE), as 

described by equations (4.3) and (4.4). In both equations, ˆ
iy  is the predicted output for a 

child, iy  is the reference score (ground truth given by the mean of normalized scores of 

teachers), ŷ  and y  are the mean scores for predicted outputs and ground truth and n  is 

the number of children/scores analyzed ( 150n   in this case). 
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To train and test regression models, a leave-one-out cross-validation with 150 folds will 

be considered, where 149 samples are used to train a model and 1 is left out for testing, until 

every sample is used in testing. The 150 resulting test values are aggregated from the 

different folds to compute Corr and RMSE. Although it is cumbersome to train 150 models, 

it is the best way to avoid dependence on different randomizations of folds that would lead 

to different average results.  

Table 4.3 shows the performance of each feature if used individually to train a linear 

model. For comparison purposes, random performance leads to a correlation coefficient of 

0 and RMSE of about 1.9. None of the strong correlation values are negative since any 

negatively correlated features are transformed with the linear model with a negative 

coefficient 𝑎. The correlation absolute value would be similar for the untransformed values, 

and features that have original negative correlations are silence rates (7-9) and disfluency 

rates (10-22). 
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The best overall feature for both manual and automatic methods is s6: correct characters 

per minute in sentences (CCPM). A correlation of 0.94 for the manual feature indicates that 

this metric by itself can be a very good predictor of overall reading performance, proving 

that evaluators focus mostly on reading speed. Features based only on the number of 

disfluencies over the number of words (such as s22 – DisfR), although presenting a 

correlation around 0.7 for sentences, do not perform as well as reading speed, which shows 

that reading speed is of higher importance. Other reading speed metrics that do not depend 

Table 4.3: Performance of linear regression models predicting ground truth scores using 

individual features (average of leave-one-out cross-validation).  

 Sentences Pseudowords 

  Manual Auto  Manual Auto 

Feat. Abbr. Corr RMSE Corr RMSE Feat. Corr RMSE Corr RMSE 

s1 WPM 0.919 0.459 0.917 0.463 p1 0.744 0.776 0.744 0.776 

s2 CWPM 0.928 0.434 0.923 0.447 p2 0.674 0.858 0.670 0.863 

s3 SyllsPM 0.927 0.435 0.926 0.439 p3 0.764 0.750 0.760 0.755 

s4 CSPM 0.938 0.402 0.930 0.429 p4 0.684 0.848 0.684 0.848 

s5 CharsPM 0.931 0.424 0.930 0.428 p5 0.805 0.689 0.803 0.693 

s6 CCPM 0.940 0.397 0.931 0.425 p6 0.703 0.827 0.691 0.840 

s7 SILrate 0.647 0.885 0.736 0.787 p7 0.324 1.099 0.397 1.067 

s8 SILini 0.347 1.091 0.480 1.019 p8 -0.157 1.176 -0.130 1.176 

s9 SILiniRate 0.283 1.115 0.231 1.132 p9 -0.073 1.173 0.005 1.169 

s10 SUBrate 0.376 1.105 0.615 0.916 p10 0.397 1.066 0.494 1.011 

s11 PHOrate 0.394 1.073 N/A N/A p11 0.031 1.167 N/A N/A 

s12 PRErate 0.547 0.973 0.577 0.951 p12 0.131 1.156 0.217 1.135 

s13 REPrate 0.190 1.142 0.378 1.076 p13 -0.008 1.170 0.010 1.170 

s14 PAUrate 0.457 1.036 0.328 1.098 p14 0.124 1.156 -0.172 1.192 

s15 DELrate -0.037 1.172 N/A N/A p15 0.109 1.164 N/A N/A 

s16 EXTrate 0.350 1.092 0.381 1.073 p16 0.174 1.145 0.189 1.135 

s17 INSrate 0.234 1.130 N/A N/A p17 -0.051 1.173 N/A N/A 

s18 MispR 0.525 0.991 0.615 0.916 p18 0.389 1.070 0.494 1.011 

s19 ExtraR 0.498 1.008 0.555 0.968 p19 0.139 1.154 0.236 1.130 

s20 SlowR 0.540 0.978 0.328 1.098 p20 0.247 1.127 -0.172 1.192 

s21 FastR 0.171 1.146 N/A N/A p21 0.092 1.160 N/A N/A 

s22 DisfR 0.663 0.872 0.683 0.850 p22 0.490 1.013 0,530 0,985 

s23 nSylls 0.456 1.034 0.456 1.034 p23 0.147 1.151 0.147 1.151 

s24 nChars 0.483 1.018 0.483 1.018 p24 0.361 1.084 0.361 1.084 

s25 Diff1 0.493 1.011 0.493 1.011 p25 0.464 1.029 0.464 1.029 

s26 Diff2 0.491 1.012 0.491 1.012 p26 0.462 1.031 0.462 1.031 
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on disfluencies (s1, s3 and s5) perform well but slightly worse than their counterparts using 

correctly read units. The opposite is observed for pseudoword features, with the non-

disfluency-dependent reading speed features having significantly better performance, where 

the best one was p5: characters per minute of the original prompt (CharsPM). This may be 

due to poor performances in the pseudoword task, where values of 0 correct words per 

minute can be found, and the time it took to read them conveys more information than the 

number of correct readings. Figure 4.5 shows the relation between ground truth scores and 

the best features for sentences and pseudoword tasks, for the manual case, where there is 

evidence of a linear fit, especially for s6. 

It must be emphasized that the results obtained with features 1, 3 and 5 (words, syllables 

and characters per minute) could be dependent on the conditions of the data. In the LetsRead 

dataset, it is typical that reading tasks are completed even if a lot of mistakes are made. It is 

very rare that a sentence is not finished and pseudoword lists are always completely 

attempted, which leads to these reading speed metrics, which only take into account the 

original prompt without considering if there are disfluencies, to have a certain significance 

for reading speed. If this were not the case, features 2, 4 and 6 (correct words, syllables and 

characters per minute) would be clearly preferable, since unfinished attempts or nonsense 

attempts would severely influence them. In a live application, these types of attempts should 

be expected. Additionally, there may be other cases where reading speed or correct 

words/characters per minute are not enough to characterize reading performance. For 

 

Figure 4.5: Ground truth scores vs. the best sentence feature (s6, left) and the best 

pseudoword feature (p5, right) from manual annotation features, with respective linear fits. 
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example, a very fast reader who often repeats words or gives a lot of false alarms but ends 

up pronouncing words correctly could have the same CWPM value as a reader with normal 

speed who reads without disfluencies. Even for incomplete attempts, CWPM could be of 

normal value, since it does not take into account the deleted words. For these cases, the 

features based on the relative number of disfluencies (e.g., s22 and p22) could be of help.   

For the automatic features, the same conclusions apply, although s6 performs slightly 

worse than its manual equivalent. Unexpectedly, the performances of disfluency-dependent 

reading speed features (s2, s4 and s6) also fall closer to non-disfluency ones (s1, s3 and s5) 

probably due to certain disfluency detection errors, which may lead to the conclusion that it 

is not necessary to detect disfluencies. However, if the data presented more nonsense 

attempts, the results could be different. 

Using the Grade feature for a linear regression model gives a positive weight, 0.647 

Correlation and 0.886 RMSE, showing that scores increase per grade on average. Although 

the best feature – CCPM in sentences – already aggregates a lot of information (total reading 

time, length of tasks, length of words, correctly pronounced words), it is expected that 

combining the information of several of them will further approach the ratings by teachers. 

4.4 Multi-feature Models 

To combine multiple features in predictive models, several regression models are explored: 

multi-feature linear regression (LR), Gaussian process regression (GPR), and neural 

networks with one linear output. Several feature selection methods are also explored. One 

of the main problems to be tackled is overfitting, since a linear regression considering all 

the defined features will be strictly optimized for the training sets, with no regards for 

generalization. The selection of the most relevant features can be a way to minimize 

overfitting as well as using other regression methods such as GPR. 

Gaussian process regression builds kernel-based probabilistic models to infer 

continuous values and is especially useful to avoid overfitting (Rasmussen and Williams, 

2006). GPR brings together several concepts: Bayesian, kernelized, non-parametric, non-

linear and modelling uncertainty. Since it is probabilistic, confidence intervals on a provided 
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score are calculated, exemplified by Figure 4.6. GPR models were trained with a squared 

exponential kernel as the covariance function. 

 

Figure 4.6: Theoretical example of Gaussian process regression (GPR) model with 

prediction confidence interval.  

A simple neural network for regression was used with one hidden layer followed by a 

linear unit, providing linear outputs in the evaluation’s range. Since the amount of data for 

training is low (149 samples maximum), the best results were obtained using only a single 

perceptron in the hidden layer. The networks were trained with Bayesian regularization to 

improve generalization (MacKay, 1992). 

Stepwise regression can decide which features to include or remove iteratively for a 

regression model (Draper and Smith, 1998). Two stepwise approaches that start with no 

features included are explored: only adding features (add, forward or sequential) and 

bidirectional where features can be added and later removed (add+remove). The criterion to 

add a feature at each step is selecting the one that minimizes the sum of squared errors (SSE) 

when a linear regression is applied. However, a feature is only added if the decrease in SSE 

is statistically significant with a p-value of an F-statistic test lower than 0.05. Similarly, a 

feature can be removed at a certain step if its contribution to lowering SSE at this stage is 

not statistically significant. The trained linear regression is considered and also take the 

selected features to train GPR and NN models. 
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Another regression method that can be used for feature selection is the least absolute 

shrinkage and selection operator (LASSO), a regularization technique applied here for a 

regularized least-squares regression (Tibshirani, 1996). LASSO minimizes SSE but adds 

constraints to the sum of absolute values of coefficients of features, usually producing many 

weight coefficients equal to zero, usually for highly-correlated features. It produces a 

solution for a linear transformation but can also be a feature selection procedure (by 

selecting the features with weights different from zero), after which LR, GPR and NN can 

be applied. 

Principal component analysis (PCA) is also explored to transform features into a set of 

linearly independent ones (Jolliffe, 2002). By applying this transformation to the entire set 

of features, it is hoped that the newly created features, especially the ones that explain most 

of the variance of the data, can be useful for regression. PCA is applied to the entire set of 

features and the ones that explain 95% of the variance are selected to train LR and GPR. 

Additionally, bidirectional stepwise regression is applied to the entire set of new features. 

Using the stepwise algorithm for different cross-validation folds may result in different 

selections of features, with some being selected in several or all folds. With this knowledge, 

an analysis is done for results of pre-selecting the most common features given by the 

stepwise folds and then running LR or GPR using only those features. Although this feature 

selection depends on all the cross-validation folds using stepwise selection, the actual 

models trained (with a new leave one out cross-validation) do not depend on the left-out test 

values. These selections can be different for manual and automatic features. However, for 

manual features, the stepwise algorithm using leave-one-out folds selected the same four 

features 100% of the time, unlike with automatic features, where variations did occur. So, 

for the manual case, the following selected features are from a stepwise algorithm that 

allows the addition of features with an increased p-value for the F-test (0.15), now with 

variations occurring to which features are selected in each fold. The selections made are of 

features that were chosen in stepwise manner for at least a certain percentage of the folds: 

80% (Sel80%), 40% (Sel40%) and 5% (Sel5%). 

Table 4.4 summarizes the results of all the multi-feature models explored when 

considering manual or automatic transcriptions, with leave-one-out cross-validation. The 
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first models are of the best individual feature (s6 – CCPM) and the selection of the best 

feature of sentences (s6) and the best of pseudowords (p5 – CPM). For manual features, NN 

proved to be the best model after a stepwise feature selection and the improvement to only 

using the best features is clearer in RMSE. Results were slightly worse with automatic 

features and, contrarily, the best results are without feature selection and the best model was 

GPR.  

Table 4.4: Performance of multi-feature models on manual and automatic features (with test 

values after leave-one-out cross-validation). 

Manual Features Automatic Features 

Model Corr RMSE Model Corr RMSE 

LR (s6) 0.940 0.397 LR (s6) 0.931 0.425 

LR (s6,p5) 0.943 0.386 LR (s6,p5) 0.933 0.419 

GPR (s6,p5) 0.948 0.371 GPR (s6,p5) 0.938 0.403 

LR all 0.926 0.442 LR all 0.931 0.426 

GPR all 0.947 0.375 GPR all 0.943 0.388 

NN all 0.938 0.403 NN all 0.939 0.399 

Stepwise add + LR 0.947 0.373 Stepwise add + LR 0.919 0.458 

Stepwise add+remove + LR 0.947 0.373 Stepwise add+remove + LR 0.919 0.458 

Stepwise add + GPR 0.949 0.367 Stepwise add + GPR 0.932 0.422 

Stepwise add + NN 0.952 0.357 Stepwise add + NN 0.925 0.442 

LASSO 0.944 0.387 LASSO 0.932 0.423 

LASSO + LR 0.942 0.392 LASSO + LR 0.932 0.421 

LASSO + GPR 0.942 0.392 LASSO + GPR 0.939 0.400 

LASSO + NN 0.948 0.357 LASSO + NN 0.935 0.411 

PCA 95% + LR 0.917 0.465 PCA 95% + LR 0.916 0.467 

PCA 95% + GPR 0.931 0.423 PCA 95% + GPR 0.927 0.436 

PCA all + Stepwise + LR 0.909 0.488 PCA all + Stepwise + LR 0.938 0.404 

PCA all + Stepwise + GPR 0.939 0.401 PCA all + Stepwise + GPR 0.936 0.408 

LR Sel80% (s6,21;p1,25) 0.947 0.373 LR Sel80% (s3,6) 0.937 0.407 

LR Sel40% (s6,21;p1,2,25) 0.947 0.373 LR Sel40% (s3,6,21;p22,25) 0.940 0.398 

LR Sel5% 

(s1,6,18,21;p1,2,5,6,25) 
0.946 0.377 

LR Sel5% 

(s3,4,5,6,21;p1,4,19,22,25) 
0.937 0.405 

GPR Sel80% (s6,21;p1,25) 0.949 0.367 GPR Sel80% (s3,6) 0.940 0.397 

GPR Sel40% (s6,21;p1,2,25) 0.949 0.366 GPR Sel40% (s3,6;p22,25) 0.940 0.398 

GPR Sel5% 

(s1,6,18,21;p1,2,5,6,25) 
0.947 0.373 

GPR Sel5% 

(s3,4,5,6;p1,4,19,22,25) 
0.944 0.384 
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The most notable observation is that GPR proved to be superior to LR at every stage, 

demonstrating its generalization capabilities. Successful feature selections only improved 

results slightly compared to using GPR over all features, which is already very robust to 

noise. The improvement of using multiple features instead of only s6 (CCPM) stands out 

more clearly in RMSE, going from 0.397 to 0.366 with manual features and from 0.425 to 

0.384 with automatic features. Although using manual features provided the best overall 

results, the best automatic features model only presents a relative 0.5% lower correlation 

and 5% higher RMSE than the best manual model. 

No features were removed during bidirectional stepwise regression. For LASSO, 

although it shows good performance, it never provided the best results. Applying PCA to 

the entire feature matrix provided worse results, although it shows better performance than 

stepwise selection over raw features in the automatic methods. 

Analyzing the features commonly chosen by stepwise regression, the >40% selection 

provided slightly better results for manual annotation, with the selected features being: 

 For all: CCPM (s6) and p25 (Diff1 – difficulty based on pronunciation rules only); 

 For manual annotation: FastR (s21 – rate of deletions+insertions) and pseudo WPM 

(p1) and pseudo CWPM (p2); 

 For automatic annotation: Sent SyllsPM (s3) and pseudo DisfR (p22). 

This shows that reading speed of both sentences and pseudowords was relevant, as well 

as the difficulty of pseudowords based on dubious and infrequent pronunciation rules. The 

combined rate of deletions and insertions was also chosen for the manual annotation, with 

a negative weight, meaning that although these disfluencies are more common in higher 

grades, they are often given by fast speakers and this term might appear as a regulatory term 

to lower their scores that would otherwise be high. For the automatically obtained features 

selected from stepwise regression, reading speed of pseudowords was not chosen very often, 

although p22 (DisfR – rate of all disfluencies) does appear in the >40% selection. 

Nevertheless, the best model was obtained from the features appearing in more than 5% of 

the folds, which includes: reading speeds of both sentences and pseudowords (s3-6, p1 and 

p4), p19 (ExtraR – rate of false-starts+repetitions), p22 (DisfR – rate of all disfluencies) and 
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p25 (Diff1 – difficulty based on pronunciation rules only). There are three common features 

with the manual analysis (s6, p1 and p25) with the rates of disfluencies being the additions 

that stand out. Since the automatic annotation does not detect deletions and insertions, 

feature s21 (ExtraR) could not be selected for the automatic analysis. 

Figure 4.7 shows the predicted scores of the best model for automatic features – GPR 

Sel5% – with their corresponding Ground truth scores, as well as a 95% confidence interval 

given by the probabilistic GPR model. It can be seen that the GPR model fits most of the 

reference scores inside its 95% confidence interval, excluding some outliers.  

Figure 4.8 displays the reference ground truth scores with the predictions of the best 

model for automatic features (same as above), including the standard deviation (std) of the 

scores given by teachers for each child (the mean of those values results in the reference 

score for that child). This deviation, with an average of 0.549, reflects the evaluator 

uncertainty associated with scoring each child. The RMSE of the predicted scores by the 

model (0.384) is lower than evaluator standard deviation, and most predictions fall inside 

the deviation interval (again, with some outliers). 

 

Figure 4.7: Per child reference scores (Ground truth) and predicted scores by the best 

performing Gaussian Process Regression (GPR) model using automatic features, including 

a 95% confidence interval of the GPR. 
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Overall, since metrics based on both sentence reading and pseudowords reading tasks 

were used by the best performing models, it may be concluded that teachers gave their 

overall impression based on both tasks. Although reading speed features were the most 

important factors for reading ability assessment, detecting disfluencies proves to be of 

relevance as well, even for rates of specific types of disfluencies, which are different features 

than when they are considered to compute correct words/syllables/characters per minute. 

The difficulty of the tasks given is also an important factor to take into account when 

predicting reading performance and is possibly a normalizing factor. It is reflected in the 

selection of the difficulty of the pseudowords for both manual and automatic feature models 

and, indirectly, in the increase in performance obtained when using correct characters per 

minute instead of correct words per minute, since the length of words may be a measure of 

difficulty. 

4.5 Additional results 

The results reported in the previous subsections were published in (Proença et al., 2017b, 

2017c). The automatic transcription used to extract features resulted from the decoding 

lattice without back-transitions described in section 3.3.1, which was not the best 

 

Figure 4.8: Per child predicted scores by the best-performing Gaussian process regression 

(GPR) model using automatic features and reference scores (Ground truth) including the 

standard deviation (std) interval of the opinion of teachers for each child. 
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performing one for segmentation. Thus, results will now be analyzed when syllable-based 

decoding is used to get an automatic transcription as basis for features of reading 

performance. 

Table 4.5 summarizes the results of using certain individual features to estimate reading 

performance. There is an improvement of the newest automatic annotation over the previous 

one for reading speed metrics and, surprisingly, s6 and p5 achieved practically the same 

performance as manual annotation. 

Table 4.5: Correlation results of linear regression models predicting ground truth scores 

using individual features (average of leave-one-out cross-validation). AutoNew uses 

automatic segmentation from a syllable decoding strategy.  

Feat. Abbr. Manual Auto AutoNew Feat. Manual Auto AutoNew 

s1 WPM 0.919 0.917 0.917 p1 0.744 0.744 0.745 

s2 CWPM 0.928 0.923 0.928 p2 0.674 0.670 0.668 

s3 SyllsPM 0.927 0.926 0.926 p3 0.764 0.760 0.761 

s4 CSPM 0.938 0.930 0.936 p4 0.684 0.684 0.675 

s5 CharsPM 0.931 0.930 0.930 p5 0.805 0.803 0.805 

s6 CCPM 0.940 0.931 0.939 p6 0.703 0.691 0.685 

s18 MispR 0.525 0.615 0.562 p18 0.389 0.494 0.438 

s19 ExtraR 0.498 0.555 0.539 p19 0.139 0.236 0.227 

s20 SlowR 0.540 0.328 0.459 p20 0.247 -0.172 0.062 

s21 FastR 0.171 N/A N/A p21 0.092 N/A N/A 

s22 DisfR 0.663 0.683 0.649 p22 0.490 0.530 0.500 

 

Using multiple features in regression models, Table 4.7 summarizes the obtained 

results. Although the best automatic models did not get the same performance as manual 

annotation, there was still a slight improvement over previous automatic annotation 

attempts. Notably, stepwise feature selection models were more successful, although the 

best results were not obtained for them as was the case of manual annotation. Without 

feature selection, results were very close to or better than manual annotation for the 

considered models.  
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There are also interesting individual features that were not included initially: phones per 

minute (PhonesPM), correct phones per minute (CPhonesPM) and OLD20. As expected, 

the features based on phones have a very similar behavior as the ones based on 

characters/graphemes, although they perform slightly worse for pseudowords. OLD20 has 

worse performance than the other difficulty metrics, especially for pseudowords. When 

redoing multi-feature models, phones per minute is now often additionally selected during 

stepwise feature selection. The best result (Gaussian process regression using all features) 

improved from 0.946 to 0.947 correlation and from 0.378 to 0.374 RMSE, with the inclusion 

of these features. These results are presented in Table 4.6.  

Table 4.7: Performance of multi-feature models on manual and automatic features (with test 

values after leave-one-out cross-validation). 

 Manual Auto AutoNew 

Model Corr RMSE Corr RMSE Corr RMSE 

LR (s6) 0.940 0.397 0.931 0.425 0.939 0.398 

LR (s6,p5) 0.943 0.386 0.933 0.419 0.941 0.393 

LR all 0.926 0.442 0.931 0.426 0.935 0.413 

GPR all 0.947 0.375 0.943 0.388 0.946 0.378 

NN all 0.938 0.403 0.939 0.399 0.940 0.398 

Stepwise add + LR 0.947 0.373 0.919 0.458 0.938 0.404 

Stepwise add + GPR 0.949 0.367 0.932 0.422 0.943 0.386 

Stepwise add + NN 0.952 0.357 0.925 0.442 0.941 0.393 

 

Table 4.6: Performance of individual features and multi-feature Gaussian process regression 

from automatic segmentation using a syllable-based strategy (with test values after leave-

one-out cross-validation). 

Task Feat. Corr RMSE 

Sentences 

PhonesPM 0.930 0.426 

CPhonesPM 0.939 0.400 

OLD20 0.483 1.018 

Pseudowords 

PhonesPM 0.748 0.770 

CPhonesPM 0.684 0.847 

OLD20 0.251 1.125 

All GPR 0.947 0.374 
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4.6 Live Applications 

There were two main applications of the developed work at the time of writing:  

 A demo website to browse LetsRead data and check automatic live results of 

annotation and performance score.  

 A prototype website that teachers can use to give reading tasks to students and 

check their performance results. 

4.6.1 Demo 

The demo application19, reported in Proença et al. (2016e, 2016c), quickly allows to check 

the results of the proposed methods on children from the Letsread database. The audio is 

pre-recorded but, in the current iteration, the results are not pre-computed. A simulation of 

live audio input is done at the server level and utterances are automatically annotated, along 

with a calculation of performance metrics and reading score. A snapshot of the demo is 

presented in Figure 4.9. Specifically, for the demo: 

 From the Ground truth by teachers of overall reading performance, the same 

utterances of 150 children can be selected and heard. 

 The current sentence is shown in a large font, simulating an application where a 

child would have to read it live. 

 Along with the audio signal, an automatic annotation is processed and presented 

where extra content and problematic words are detected. 

 Statistics of correct words and overall score are computed per sentence and 

accumulated and re-computed as more utterances of that child are heard. 

 The mean of overall performance score given by teachers (0-5) and standard 

deviations are presented. 

                                                 
19 The LetsRead demo: http://hades.co.it.pt:9000/index_en.html – A short video with an overview of the project and 

of the demo can be found at: http://lsi.co.it.pt/spl/letsread/Letsread_demo.mp4  

http://hades.co.it.pt:9000/index_en.html
http://lsi.co.it.pt/spl/letsread/Letsread_demo.mp4
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 Finally, the computed and accumulated scores are graphically displayed and 

compared to the ground truth. 

 

Figure 4.9: Snapshot of the LetsRead demo application. 

Node.js (Tilkov and Vinoski, 2010) is used for the server-side environment, with the 

audio processing and decoding being implemented in a C++ addon. This implementation 

has certain differences to the reported methodology, since Kaldi was not used. Only the long 

temporal context neural network that outputs phone posteriors is used, both as input for 

segmentation (syllable-based decoding) and for word likelihood estimation. This includes 

an implementation of temporal patterns (TRAPS) and of a Viterbi decoder. The grammars 

used for segmentation are the syllable-based lattices, automatically built for a given prompt. 

Taking as input the audio and prompt text of an utterance, the audio is parameterized and 

passed through the network where posterior probabilities are obtained. Then, syllable-based 

decoding is applied over the posteriors to get word segmentation/candidates and false-starts. 

For each candidate, its allowable pronunciations and co-articulations according to 

neighboring context are obtained and a log-likelihood ratio through a spotting approach 

(LLR-spotter) is computed for each candidate, considering all its allowable pronunciations. 
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Candidates are classified as mispronounced or not depending on a threshold of LLR-spotter 

values. 

In the demo, after an utterance is selected by the web user, the server processes it and 

replies with a word-level segmentation with mispronunciation classification and marking 

extra content to be displayed along with the audio signal.  

4.6.2 Prototype website for teachers 

The prototype application20 was a collaborative effort and was already the reported work of 

a master’s student thesis (Almeida, 2018). The website is still a work in progress but it is 

the ideal application of the developed methodology. The platform is targeted for teachers, 

where each has a closed workspace where they mostly can: 

 Add children to their list of students; 

 Assign reading tasks to children, as depicted in Figure 4.10; 

 Ask children to read the assigned task (requires a microphone input), as depicted in 

Figure 4.11. The audio for each utterance reading attempt is recorded and sent to 

the server, where annotation and performance are asynchronously computed; 

 Visualize the results of all past reading tasks, with an interface similar to the 

LetsRead demo, where each utterance can be analyzed. The entire track record of 

the performance of reading tasks for the same child can be observed.  

The development framework is similar to the demo application: node.js and the same 

C++ addon for audio processing and decoding. However, there are a lot more server-side 

details such as Express to serve dynamic webpages and database management. On the client-

side during reading tasks, Web-audio API (Adenot et al., 2013) is used to extract 

microphone data, sending an utterance’s full audio packet at the end of the utterance’s 

reading attempt. No streaming is applied since getting the results for an utterance is not a 

time-sensitive issue (analysis of results can only done afterwards by the teacher). The 

computation of automatic annotation and reading performance is asynchronous. 

                                                 
20 LetsRead prototype website: https://letsread.co.it.pt/ – The website is only available in Portuguese.  

https://letsread.co.it.pt/
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Figure 4.10: Snapshot of the LetsRead prototype website, during the assignment of a task. 

 

 

Figure 4.11: Snapshot of the LetsRead prototype website, during a reading task. 
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Since acoustic models were trained using only the LetsRead data, one of the main 

possible improvements is to make the application’s acoustic models more robust to different 

acoustic conditions, which are now uncontrolled. 

Furthermore, not all the methods explored for multiple feature combinations on either 

mispronunciation classification or reading performance score estimation were applied, due 

to time constraints. However, the best segmentation strategy of syllable-based decoding was 

applied. For mispronunciation classification, only the best feature – LRR-spotter – is used 

to decide if a word is correctly pronounced or not and, for reading score, a linear model of 

correct characters per minute of sentences and pseudowords is used. One could argue that 

the increase of real-time factor of processing multiple additional features and employing 

more complicated classification and regression models to achieve slightly improved results 

would not be worth it. However, this would probably not be an issue for the performance of 

the prototype application since results can only be consulted by the teacher after a child 

finishes a reading task, and not immediately after, so there is ample time for computation.  
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5.1 Final remarks 

The initial objectives proposed for this work were fulfilled, given than a solution was 

proposed and tested to automatically evaluate the reading ability of European Portuguese 

elementary school children. The final output is a prototype application that showcases the 

use of the developed methods. 

A dataset was carefully designed and collected and several types of reading disfluencies 

were identified. The average performance of children was shown to increase with grade 

level on both sentence and pseudoword tasks, although there is a high variation within a 

grade level. Some of the most common disfluencies were targeted for automatic detection: 

false starts, repetitions, and mispronunciations. Some of the most common reading 

disfluencies were targeted for automatic detection: false starts, repetitions, and 

mispronunciations. Using task-specific lattices based on the prompt’s syllables, it was 

possible to detect almost 90% of disfluency events that result in extra segments, with a false 

alarm rate lower than 1%. Detecting mispronunciations proved to be much more challenging 

and, by using likelihood measures from the output of a neural network built towards 

phoneme recognition, in conjunction with phoneme sequence recognition features, more 

than 70% of mispronunciations were correctly identified with a 5% false alarm rate.  

                                                        

Conclusions 
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Regression models were trained to automatically predict reading performance scores 

and, although it is undeniable that correct words per minute read in sentences is already a 

very good measure for what teachers believe the reading level of a child to be, certain 

features were found to be effective in getting automatic scoring closer to the ground truth. 

Specifically, features relating to the performance in pseudoword tasks and the difficulty of 

these tasks were helpful when using either manually or automatically obtained features. 

Even if all disfluencies were not correctly identified with the automatic methods, the 

performance of models using features from the automatic annotation to predict overall 

reading score fell close to the performance based on manual annotation. Since metrics based 

on both sentence reading and pseudowords reading tasks were usually chosen during feature 

selection, it may be concluded that teachers gave their overall ratings based on both tasks. 

Still, there are several limitations to be aware of. One is that no examples of reading 

individual words were collected, which are contemplated by curricular goals and are a 

separate task from the reading of sentences and pseudowords. Therefore, no direct 

comparisons were done with other works targeting reading level which used individual word 

reading.  

Also, there was a large variety of different material in the tasks’ prompts. This can be 

advantageous to build acoustic models and have sparse examples, but on the other hand 

proved to limit the consideration of specific reading error patterns and extrapolation of word 

difficulty. Therefore, recognition of mispronunciations was targeted in a general way 

through products of phonetic recognition. In fact, detecting mispronunciations proved to be 

the most challenging aspect of the developed work. The use of a log-likelihood ratio of ideal 

pronunciation versus free-phone-loop in a word-spotting fashion (LLR-spotter) proved 

successful in dealing with alignment problems of word candidate segmentations. If the 

trained phonetic recognizer were fully reliable, the recognition of the uttered phone 

sequence would suffice to realize if a word was mispronounced. However, that is not the 

case and most of the features proposed to be used in multi-feature models are included to 

both balance alignment problems and phonetic recognition imperfections. 

Another limitation of the analyzed results is that only the LetsRead data was used to 

train and test acoustic models, decoding strategies, mispronunciation classification and 
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reading level estimation. Since the data presents very similar acoustic conditions 

throughout, it is foreseeable that the trained acoustic models may not have the same 

performance for use-cases of different types of microphones, distances to microphone and 

acoustic environments. The data also has very consistent reading task attempts, where 

practically every prompt was read to the end (with varying success of pronunciation and 

taking a long amount of time if necessary). This lead to the fact that excluding the possibility 

of word deletions during segmentation presented better performance, which would not be 

the case if a lot of incomplete attempts were found. This may also indicate that the 

optimization of feature combinations (on all models) is highly adapted to the LetsRead data 

and not necessarily optimum for all applications. 

There are also certain obvious aspects of a correct reading that were not automatically 

analyzed, especially those related to a correct prosody: the correct rhythm and pausing for 

a sentence’s punctuation; and correct intonation. However, as previously stated, the 

obtained correlation of 0.95 to the opinion of teachers for reading level where only duration 

metrics relate to prosody, indicate that reading speed and correct reading speed are the most 

important aspects that a teacher considers to evaluate reading performance (correct prosody 

could, however, be directly correlated to higher reading speeds in the data). Focusing on 

reading speed and disfluency rates allowed the focus on using speech decoding and speech 

recognition paradigms to achieve the results. 

As a final thought, these may be the three main challenges when trying to build a speech 

application for children: acoustic models, which need to be specifically tailored for children; 

different behaviors for speaking attempts or reading ability, which are reflected in numerous 

disfluencies or content extraneous to the task that an automatic system should consider; and 

the higher possibility of being uncooperative or not follow the application’s instructions, 

which are probably interface issues. The LetsRead prototype does not really address the 

problem of maximizing the appeal and allure of the interface, since the reading task is 

usually done under adult supervision. But this should be a significant issue if a child’s 

independence is targeted, especially the case for automatic reading tutors.  
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5.2 Future work 

The predicted scores of overall reading performance fell mostly inside the standard 

deviation of human evaluation, although some outliers are found. Similarly, there are some 

ground truth scores that are outside the 95% confidence interval of the best GPR model. 

Further work needs to investigate which factors that were considered by teachers but not by 

the analyzed features lead to these outlier scores. 

For technical enhancements, there are clearly matters to pursue: dealing with utterances 

with low vocal effort and improving phonetic recognition models. Speaker adaptation might 

also be useful at all stages, including adjusting phonetic recognition to individual reading 

speeds. The features considered for mispronunciation classification or reading score 

estimation may also have interactions (products, divisions) or transformations (squared, 

exponential, logarithm) which provide increased performance and should be investigated in 

more depth. 

The results of this work should also be investigated on additional child data, not 

collected in an identical way as the LetsRead data. In fact, to achieve true robustness and 

readiness for a live application, additional child data from a variety of acoustic conditions 

should be acquired, preferably dozens or even hundreds of hours to be able to build deep 

neural networks for recognition. The web platform for teachers could be a source for new 

speech data. The platform would also benefit from applying all the best methods developed 

for word classification and score estimation using multiple features, with an increase of 

performance expected from the results of the investigated methods. 

There is also the interesting possibility of exploring the use of the developed 

methodology on other languages, specifically English which has more interest for the 

research community and where more direct comparisons of achieved results can be done. 

Moreover, it could be interesting to analyze how well the techniques would behave for 

second language learning or older children. Applying the proposed methods to children 

older than 10 years would probably mean that new acoustic models would have to be built 

due to severe changes in the children’s voices. Additionally, the frequency of disfluent 

events (such as intra-word pauses) could be different, which would mean that the 
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probabilities in models should be adjusted and that the features relevant for classification 

might even change. It is also a possibility to move from reading performance evaluation to 

reading tutoring, which would share several aspects of the methodology. The real-time 

factor of providing an automatic analysis of uttered speech would now become an important 

issue. 
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Annex I. Reading task samples 

Four reading tasks are presented on the following pages, one for each grade (1st-4th), used 

in the LetsRead database collection. Notice the use of larger sentences and harder 

vocabulary for the fourth grade exercise. On the final collection stages, five lists for each 

grade were iterated.  
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1st grade reading task (1 of 5): 

- Pôs o fato de banho e foi para a praia correr. 

- Os dias ficaram mais quentes e o patinho animou-se. 

- A tia dá um funil azul ao Daniel e um anel à Joana. 

- Para, escuta e olha. 

- Com essa voz, acordavas-me a mim e aos meninos de noite! 

- O soldado da farda azul passa pelo Rafael. 

- Como esquecer o azul do mar? 

- O gafanhoto também é conhecido por saltão. 

- Correu para casa, porque se tinha esquecido das luvas. 

- O patinho escondeu-se numa cabana onde morava uma velha. 

- Como te chamas? 

- Deixei o esconderijo e corri para a varanda do fundo. 

- Não, não é contigo que vou subir ao altar. 

- Não pode ser! 

- Eu conheço um lobo com bom coração. 

- A Fátima foi de mota até à vila de Fafe. 

- A Lena chegou a casa, da escola, com sede e um pouco de fome. 

- Seria possível? 

- Eu tenho dois papás! 

- Quem quer casar com a Carochinha, que é formosa e bonitinha? 

- solsi 

- ambafa 

- mapos 

- jusmes 

- tutuvos 

- tica 

- feinocos 

- vorapo 

- jodas 

- omendos 

##################################### 
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2nd grade reading task (1 of 5): 

- Ele ficou feliz e deu ao petiz um casaco com capuz. 

- A maré estava muito baixa e a manhã estava linda. 

- Sob a luz azul da lua, a cidade parecia suspensa no ar. 

- O menino encontrou o vento do norte. 

- Um galo andava à procura de bichinhos ou migalhas para comer. 

- Pedro e Inês queriam-se bem, mas desencontraram-se durante a vida inteira. 

- Queres saber? 

- Nem todas as serpentes do mundo me podem fazer mal. 

- -Porquê? - perguntaram os outros todos com grande espanto. 

- O homem tocou-o com as esporas mas ele continuou imóvel e hirto. 

- Sorriu de contente, olhou em volta e viu milhões de gotinhas como ela boiarem no mar. 

- Domingo era o grande dia! 

- Que mulher tão rabugenta! 

- Certo dia, quando estava a varrer a cozinha, encontrou uma moeda de cinco réis. 

- Há muito tempo, uma Carochinha, muito vaidosa, decidiu que queria casar. 

- De facto, seguindo esses rastos, depressa chegou ao destino. 

- A avó Rita ouvia rádio na rua e viu o rato. 

- Era uma vez um gato maltês. 

- Não estava habituada a meninos e aos seus doces passos de algodão. 

- Como teria acontecido? 

- sainispa 

- gocam 

- beino 

- nefenso 

- baver 

- vesbo 

- guira 

- anor 

- clapas 

- condato 

##################################### 
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3rd grade reading task (1 of 5): 

- A Dinamarca fica no norte da Europa. 

- O que é que tem trinta e dois moinhos a moer, uma vassoura a varrer e a pá a acartar? 

- O João Ratão estava orgulhoso mas também muito nervoso. 

- Parecia que as ondas iam cercar a casa e que o mar ia devorar o mundo. 

- Os bancos do jardim, estrategicamente colocados sob a copa das árvores, estavam 

vazios. 

- Lembra-me o senhor Joaquim, o meu amigo do Alentejo. 

- Para além das intermináveis costas nuas e vazias, sem árvores, surgiram as primeiras 

palmeiras. 

- Assim, amassou alguns pêssegos. 

- Nos jardins há gladíolos e começa a estar mais calor. 

- Trocaram juras de amor eterno e, no fim, choveu. 

- O Sol parece mover-se no céu, do amanhecer até ao anoitecer, mas essa ilusão é causada 

pela rotação da Terra. 

- O rato chegou-se ao velho pinheiro, e sem pedir licença, resolveu subir e apanhar 

pinhões. 

- A Sara vai pintar um quadro. 

- Era conhecida pela Casa do Ramalhete, ou simplesmente o Ramalhete. 

- Pachorrenta como é de seu natural, a tartaruga abanou a cabeça, encolheu-se na casca, 

voltou a esticar-se. 

- A quantidade de água potável disponível no nosso planeta é «uma gota no oceano». 

- Ficou exausto, o meu soldado! 

- Onde foste? 

- A menina descobre o mundo, protegida por uma mãe que responde às suas dúvidas e que 

se deslumbra com as respostas. 

- Gastei todas as minhas flechas, bati com a cabeça numa árvore e voltei ao palácio com 

um miserável ouriço. 

- resder 

- trinos 

- rasol 

- nicha 

- pesvis 

- fravis 

- bragos 

- oidos 

- carto 

- anasgar 

##################################### 
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4th grade reading task (1 of 5): 

- Um dia ele estatelou-se! 

- Todas as luzes se apagaram à sua passagem e um manto muito grande, negro, de cetim, 

foi cobrindo a pouco e pouco o mundo inteiro. 

- Diz o rato, que está no buraquinho, que está pronto para ser o padrinho. 

- O Sol é uma enorme bola de gás quente, que se formou a partir de uma nuvem de gás e de 

pó que flutuava no espaço. 

- Os guardas da fronteira prenderam os ladrões e levaram-nos à presença do rei. 

- Vede que fresca fonte rega as flores, que lágrimas são a água e o nome Amores! 

- O caçador sentiu que o ar lhe faltava, que as mãos lhe tremiam, e uma espécie de alegria 

muito grande. 

- Eram três os Reis Magos. 

- ˈO romance da raposaˈ de Aquilino Ribeiro conta a história da Salta-Pocinhas. 

- Oriana espreitou pela janela que não tinha vidro. 

- Todos os meses, ela recebia uma longa carta, ou melhor, uma autêntica viagem dentro de 

um envelope selado. 

- O rapaz estava condenado a carregar desde a nascença um nariz do tamanho de um 

chouriço e que, aos poucos, transforma a sua desgraça em graça. 

- Ele nunca pôde voltar à sua cidade natal. 

- Os mochos, as corujas e os guardas-noturnos queriam sair para o trabalho. 

- Olhando para o seu antiquíssimo fato de trabalho, metade feito de estrelas, metade de 

escuros trapos, ela resolveu por uma vez ficar na cama. 

- Ele contava histórias de lobos e ursos, e eu contava histórias de gnomos e anões. 

- Até as árvores tinham agora uma nova roupagem. 

- Mas isto é difícil! 

- O pinheiro dava o néctar das suas flores às abelhas e a sua sombra às giestas que cresciam 

à sua volta. 

- Ela conta que é irmã dos leões, que viveu na selva e que odeia ir ao jardim zoológico, 

onde estão presos todos os seus primos e familiares. 

- tucha 

- bolminar 

- trinas 

- hurascar 

- solmi 

- impencas 

- deivinfes 

- ulfes 

- soche 

- fentido 

##################################### 
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Annex II. Phonetic alphabet 

Phonetic transcriptions in this document are shown in IPA. However, a subset of SAMPA 

is used on transcriptions of the LetsRead database. Table A.1 describes the used symbols 

with word examples. Stress marks are included before the stressed vowel, not before the 

syllable. 

Table A.1: SAMPA and IPA phonetic alphabets for European Portuguese, with examples 

and special considerations for extensions and pauses. 

 SAMPA IPA Example (orthographic, SAMPA, IPA) 

1 a a amar, [6m"ar], [ɐmˈaɾ] 

2 6 ɐ camada, [k6m"ad6], [kɐmˈadɐ] 

3 @ ə semente, [s@m"e~t@], [səmˈẽtə] 

4 e e letra, [l"etr6], [lˈetɾɐ] 

5 E ɛ metro, [m"Etru], [mˈɛtɾu] 

6 i i livru, [l"ivru], [lˈivɾu] 

7 j j pai, [p"aj], [pˈaj] 

8 o o como, [k"omu], [kˈomu] 

9 O ɔ comes, [k"Om@S], [kˈɔməʃ] 

10 u u comer, [kum"er], [kumˈeɾ] 

11 w w pau, [p"aw], [pˈaw] 

12 6~ ɐ̃ canto, [k"6~tu], [kˈɐ̃tu] 

13 e~ ẽ quente, [k"e~t@], [kˈẽtə] 

14 i~ ĩ cinto, [s"i~tu], [sˈĩtu] 

15 o~ õ conto, [k"o~tu], [kˈõtu] 

16 u~ ũ assunto, [6s"u~tu], [ɐsˈũtu] 

17 j~ j ̃ tem, [t"6~j~], [tˈɐ̃j]̃ 

18 w~ w̃ não, [n"6~w~], [nˈɐ̃w̃] 

19 p p pato, [p"atu], [pˈatu] 

20 t t sapato, [s6p"atu], [sɐpˈatu] 

21 k k casa, [k"az6], [kˈazɐ] 

22 b b barco, [b"arku], [bˈaɾku] 

23 d d dado, [d"adu], [dˈadu] 

24 g ɡ galinha, [g6l"iJ6], [ɡɐlˈiɲɐ] 

25 s s assim, [6s"i~], [ɐsˈĩ] 

26 S ʃ achar, [6S"ar], [ɐʃˈaɾ] 

27 f f faca, [f"ak6], [fˈakɐ] 

28 z z zeloso, [z@l"ozu], [zəlˈozu] 

29 Z ʒ jóia, [Z"Oj6], [ʒˈɔjɐ] 

30 v v velocidade, [v@lusid"ad@], [vəlusidˈadə] 

31 m m military, [milit"ar], [militˈaɾ] 

32 n n banana, [b6n"6n6], [bɐnˈɐnɐ] 
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33 J ɲ banho, [b"6Ju], [bˈɐɲu] 

34 l l lima, [l"im6], [lˈimɐ] 

35 L ʎ talho, [t"aLu], [tˈaʎu] 

36 r ɾ caro, [k"aru], [kˈaɾu] 

37 R ʀ carro, [k"aRu], [kˈaʀu] 

38 : ː vowel extension 

39 ...  pause 
 

Annex III. Results of mispronunciation classification 

Table A.2: Cost and miss rates at a 5% false alarm for the classification of SUB+PHO class 

vs. correct words, using individual features. 

 CV-train Test 

 Manual Auto Manual Auto 

Feature Cost Miss Cost Miss Cost Miss Cost Miss 

LLR-spotter 0.136 27.17 0.141 29.23 0.157 34.03 0.163 35.58 

LLR-ali 0.171 38.32 0.191 45.04 0.187 44.94 0.192 48.05 

min-GOP 0.194 48.23 0.200 50.82 0.234 65.45 0.233 63.90 

mean-GOP 0.246 64.53 0.251 67.48 0.276 74.81 0.273 74.29 

maxBadPhnProb 0.280 78.25 0.248 64.63 0.288 75.32 0.276 71.17 

sumBadPhnProb 0.232 56.62 0.231 56.88 0.241 60.00 0.247 63.12 

LevBigram1 0.248 65.29 0.247 61.98 0.263 71.43 0.262 71.69 

LevBigram2 0.249 67.17 0.249 66.48 0.261 65.71 0.259 67.01 

LevBigram3 0.248 64.85 0.247 64.71 0.257 65.19 0.258 66.23 

LevPL1 0.227 54.65 0.235 57.33 0.242 66.75 0.252 70.91 

LevPL2 0.227 56.70 0.235 59.78 0.243 67.01 0.253 58.96 

LevPL3 0.227 57.70 0.235 60.98 0.242 66.75 0.252 62.34 

LevSum1 0.199 47.87 0.206 52.51 0.212 50.39 0.221 53.77 

LevSum2 0.201 49.48 0.209 52.63 0.214 51.43 0.222 54.29 

LevSum3 0.199 48.19 0.206 51.02 0.206 50.39 0.218 53.25 

LevProd1 0.196 48.35 0.211 54.15 0.224 56.10 0.228 55.58 

LevProd2 0.199 48.35 0.211 54.15 0.227 57.14 0.230 58.18 

LevProd3 0.196 48.31 0.210 54.11 0.225 56.36 0.229 57.92 

LLR-s/Nphones 0.156 34.35 0.168 37.01 0.187 44.16 0.190 45.45 

LLR-s*LevBigram1 0.159 35.11 0.162 36.25 0.179 40.52 0.185 42.60 

LLR-s*LevPL1 0.179 48.68 0.194 53.71 0.203 52.73 0.208 56.36 

Nframes 0.302 79.61 0.302 79.89 0.305 80.26 0.302 80.78 

Area 0.319 87.84 0.319 88.32 0.315 88.05 0.314 88.57 

Diff1 0.315 84.91 0.316 84.99 0.322 89.35 0.322 89.35 

Diff2 0.313 83.55 0.314 83.70 0.322 87.27 0.322 87.27 

OLD20 0.283 72.59 0.284 72.98 0.294 75.84 0.294 75.84 

Nphones 0.300 78.81 0.301 78.92 0.298 73.51 0.299 73.77 

Ngraph 0.309 80.06 0.309 80.13 0.307 77.14 0.307 77.14 

Nsylls 0.316 84.11 0.316 84.87 0.312 76.88 0.312 76.88 
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