

capa.pdf

capa.pdf

João Pedro Simões Lopes

Online Failure Prediction in Containerized Environments

Dissertation Report
Master in Informatics Engineering

advised by Professor Dr. Nuno Antunes
and presented to the Department Informatics Engineering

of the Faculty of Sciences and Technology of the University of Coimbra

September 2018

Master in Informatics Engineering

Dissertation

Online Failure Prediction in
Containerized Environments

Author:

João Pedro Simões Lopes
jplopes@student.dei.uc.pt

Supervisor:

Prof. Dr. Nuno Antunes
DEI–UC

Jury:

Prof. Dr. Maŕılia Curado
DEI–UC

Prof. Dr. Mário Rela
DEI–UC

Date: 3rd September, 2018

This work is within the software engineering specialization area and was carried out in
the Software and Systems Engineering (SSE) Group of the Centre for Informatics and
Systems of the University of Coimbra (CISUC).

This work was partially supported by the project ATMOSPHERE, funded by the Brazilian
Ministry of Science, Technology and Innovation (51119 - MCTI/RNP 4th Coordinated
Call) and by the European Commission under the Cooperation Programme, H2020 grant
agreement no 777154.

It is also partially supported by the project METRICS (POCI-01-0145-FEDER-032504),
funded by the Portuguese Foundation for Science and Technology (FCT) through Pro-
grama Operacional Competitividade e Internacionalização - COMPETE 2020.

This work has been supervised by Professor Nuno Manuel dos Santos Antunes, Assistant
Professor at the Department of Informatics Engineering of the Faculty of Sciences and
Technology of the University of Coimbra.

i

This page is intentionally left blank.

Acknowledgements

I would like to express my gratitude to Prof. Nuno Antunes for his helpful guidance and
for all the support which help to complete this work.

I would like to thank Gonçalo Pereira and his advisors Prof. Henrique Madeira and Prof.
Raúl Barbosa for allowing the use of the fault injection tool BugTor in this work.

I would also like to thank João R. Campos for allowing the use of the machine learning
tool Propheticus in this work.

I would also like to thank my colleagues and friends for all the support.

I would like to express my deep gratitude to my family for their support and patience,
which always believed in me and made this all possible.

iii

This page is intentionally left blank.

Abstract

Online Failure Prediction is very promising, as if it is possible to fore-
see the occurrence of failures, their consequences can be avoided or
mitigated. Training prediction models requires failure-related data,
which is scarce. Fault Injection has been used to create this data
as the system evolves and to select an adequate Failure Prediction
approach. However, existing approaches are hard to apply in prac-
tice: systems are very complex with undefined boundaries,
and the models created are very sensitive to changes in the
system. Containers promise isolation, stability across executions and
boundaries defined by nature. Micro-service applications based in
containers have the adequate characteristics to make Online Failure
Prediction applicable.

The objective of this work is to assess the feasibility of using On-
line Failure Prediction in containerized micro-services-based
applications, contributing to the applicability of the technique in
this domain. For this, we started by analyzing di↵erent alternatives
to monitor container-related metrics. It is possible to gather several
metrics in a non-intrusive way, although these metrics di↵er from the
ones used in past Online Failure Prediction experiments. A Docker
setup with di↵erent hardware configurations was used to understand
which of these metrics are relevant, and how they vary across similar
executions in di↵erent setups. Next, Fault Injection was used to pro-
duce failure data in container’s environment, for training purposes.
Finally, we evaluated how e↵ective the chosen Failure Prediction ap-
proach was in failures originated by the injected faults. The results
show that it is possible to generate failure data, although data across
di↵erent setups diverge significantly. They also show that the failure
predictions approach are not e↵ective when the configurations and
parameters are not carefully selected for the application domain.

Keywords

Containers, Monitoring container variables, Online failure prediction,
OS-level virtualization, Software fault injection.

v

This page is intentionally left blank.

Resumo

A previsão de avarias durante a execução é uma técnica promissora
pois prevê a ocorrência de falhas, evitando ou mitigando as suas
consequências. Treinar modelos de previsão necessita de dados de
falhas, os quais são escassos. A injeção de falhas foi usada para criar
esses dados à medida que o sistema evolui e para selecionar uma
abordagem de previsão de avarias adequada. Contudo, as aborda-
gens existentes são dif́ıceis de aplicar na prática: os sistemas são
complexos com limites indefinidos e os modelos criados são
senśıveis às mudanças no sistema. Os contentores prometem iso-
lamento, estabilidade e os limites são definidos pela sua natureza.
As aplicações de micro-serviços baseadas em contentores possuem as
caracteŕısticas para tornar a previsão de avarias durante a execução
aplicável.

O objetivo deste trabalho é avaliar a viabilidade de usar previsão
de avarias durante a execução em aplicações de micro-ser-
viços baseadas em contentores, contribuindo para a sua aplica-
bilidade neste domı́nio. Para isso, começámos por analisar alterna-
tivas para monitorizar métricas dos contentores. É posśıvel recolher
métricas não intrusivamente, embora estas sejam diferentes das us-
adas em experiências anteriores de previsão de avarias durante a ex-
ecução. Uma configuração de Docker com diferentes configurações de
hardware foi usada para entender quais dessas métricas são relevantes
e como elas variam em execuções similares. Em seguida, usámos
injeção de falhas para produzir dados de falhas nos contentores, com
o fim de treinar. Finalmente, avaliámos a eficácia da abordagem de
previsão de avarias escolhida em avarias originadas pelas falhas inje-
tadas. Os resultados mostram que é posśıvel gerar dados de avarias,
embora os dados em diferentes configurações divirjam significativa-
mente. Eles também mostram que a abordagem de previsão de falhas
não é eficaz quando as configurações e os parâmetros não são cuida-
dosamente selecionados para o domı́nio da aplicação.

Palavras-Chave

Contentores, Injeção de falhas de software, Monitorização de variáveis
dos contentores, Previsão de avarias durante a execução, Virtual-
ização ao ńıvel do SO.

vii

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Research Contributions . 3
1.2 Document Structure . 4

2 Background and Related Work 5
2.1 Dependable Systems . 5
2.2 Failure Prediction . 7

2.2.1 Online Failure Prediction . 7
2.2.2 Evaluation of Failure Prediction . 9
2.2.3 Fault Injection . 10
2.2.4 Machine Learning . 13

2.3 Containers . 17
2.3.1 Docker . 17
2.3.2 Monitoring Tools . 19

3 Online Failure Prediction in Containers 23
3.1 Monitoring Container Variables . 26
3.2 Understand the Variation of Variables across Setups 31
3.3 Using Fault Injection to Generate Failure Data 31
3.4 Evaluation of Failure Prediction Algorithms 33

4 Data Generation and Analysis 35
4.1 Metrics Variation Analysis . 35
4.2 Using Fault Injection to Generate Failure Data 40

4.2.1 Fault Generation . 40
4.2.2 Fault Selection . 41
4.2.3 Fault Injection . 44

5 Experimental Campaign on Containers Failure Prediction 47
5.1 Data Selection . 47
5.2 Failure Prediction Setup . 49
5.3 Results and Discussion . 52

6 Conclusions and Future work 57

References 59

A Faults Generated per Application 66

ix

This page is intentionally left blank.

Acronyms

DEI Department of Informatics Engineering. 32, 33

FI Fault Injection. 2, 3, 5, 10, 24, 25, 31, 32, 35, 40–42, 44, 45, 47–49, 58

FIR Fault Injection Runs. 47

FP Failure Prediction. 1–5, 7, 9, 10, 24, 25, 33, 34, 39, 47, 48, 52–55, 57, 58

IT Information Technology. 21

ML Machine Learning. 3, 13–17, 33, 47, 50, 51, 53

OFP Online Failure Prediction. 1, 2, 5, 7, 8, 23, 24, 57

OS Operating System. 1, 11, 12, 17, 19, 21, 27, 29, 35

RAM Random Access Memory. 17

RBF Radial Basis Function. 49–52

RFE Recursive Feature Elimination. 14, 33, 49, 52

ROC Receiver Operating Characteristics. xiii, 10, 16, 51, 53

SMOTE Synthetic Minority Over-sampling Technique. 14, 33, 49–51

SoS Systems of Systems. 1

SVM Support Vector Machine. xiii, 15, 33, 34, 49–52, 55, 57

SWFI Software Fault Injection. 3

UC University of Coimbra. 12, 32, 33

UI User Interface. 21

VM Virtual Machine. xiii, 1, 17, 55

xi

This page is intentionally left blank.

List of Figures

2.1 The chain of dependability threats (from [13]). 6
2.2 The dependability and security tree (from [13]). 6
2.3 Time relations in Online Failure Prediction (adapted from [15]). 8
2.4 A training example of SVM with kernel given by '((a, b)) = (a, b, a2 + b2)

(from [45]). 15
2.5 Bias and variance in dart-throwing (from [48]). 16
2.6 Comparison between a container (left) and a Virtual Machine (VM) (right)

(adapted from [4]). 17

3.1 Overview of the research approach defined for this work. 24
3.2 Intersection between metric sets from Irrera & Vieira [1], cAdvisor and

Docker API. 28
3.3 Intersection between metric sets from Irrera & Vieira [1], Docker API and

Sysdig. 29
3.4 Intersection between metric sets from Irrera & Vieira [1], cAdvisor and

Sysdig. 30

4.1 Overview of the experiment phases and workload submitted to the Docker
container. 37

4.2 Plot of fprintf data with more occurrences from NGINX Server when it
starts running. 42

4.3 Plot of fprintf data with more occurrences from NGINX Server for each
HTTP request. 43

4.4 Plot of fprintf data with more occurrences from Apache httpd Server
when it starts running. 43

4.5 Plot of fprintf data with more occurrences from Apache httpd Server for
each HTTP request. 44

5.1 Examples of confusion matrices obtained using Support Vector Machine
(SVM) for (�tl= 50, �tp= 30) and failure mode Hang. 50

5.2 Examples of confusion matrices obtained using SVM for (�tl= 50, �tp= 30)
and failure mode Abort. 51

5.3 Examples of confusion matrices obtained using SVM for (�tl= 50, �tp= 30)
and failure mode Repeated Abort. 51

5.4 Receiver Operating Characteristics (ROC) curves corresponding to each
failure mode using the selected parameters. 53

5.5 Precision/Recall curves corresponding to each failure mode using the se-
lected parameters. 54

5.6 Classification results for (�tl = 40, �tp = 20, A2, window = 3s). 56

xiii

This page is intentionally left blank.

List of Tables

2.1 Contingency table (adapted from [15]) . 9
2.2 BugTor fault emulation operators (adapted from [9]). 12

3.1 Comparison of the monitoring tools about their container specificity, Docker
support, and license attributes. 26

3.2 Comparison of the monitoring tools about their intrusiveness and metrics. . 27
3.3 Metrics used in the Irrera & Vieira [1]. 28
3.4 Intersection between the metric sets from Irrera & Vieira [1] and the mon-

itoring tools. 30

4.1 Hardware and Software specifications of the machines used in this work. . . 35
4.2 Example of the U statistic and p-value calculated by applying the Mann-

Whitney U test to the Apache httpd golden runs variables. 38
4.3 Example of the U statistic and p-value calculated by applying the Mann-

Whitney U test to the NGINX golden runs variables. 39
4.4 Summary of p-values obtained by applying the Mann-Whitney U test for

each variable from Apache httpd server and NGINX server scenarios. 39
4.5 Summary of total generated patches, selected and total C files for Apache

HTTP Server, NGINX Server and PostgreSQL. 40
4.6 Fault types generated by BugTor [9] and their incidence taking into account

the field data study from [86]. 42
4.7 Summary of the failures detected in the Fault Injection campaign in the

Apache HTTP Server and NGINX Server scenarios. 45

5.1 Number of Fault Injection runs selected for Failure Prediction in Apache
HTTP Server and NGINX Server. 48

5.2 Variables discarded per variable group. 49
5.3 Parameters of the Failure Prediction campaign. 52
5.4 F-measure values obtained for each set of �tl and �tp. 55

A.1 Faults generated for each C code file from Apache httpd server source folder. 66
A.2 Faults generated for each C code file from NGINX core source folder. . . . 67
A.3 Faults generated for each C code file from NGINX events source folder. . . 68
A.4 Faults generated for each C code file from NGINX http source folder. . . . 68
A.5 Faults generated for each C code file from PostgreSQL backend source folder. 69
A.6 Faults generated for each C code file from PostgreSQL bin source folder. . . 70

xv

This page is intentionally left blank.

Chapter 1

Introduction

Failure Prediction (FP) is a very enticing proposition, as it would be very beneficial to
avoid or mitigate the consequences of failures if we were able to foresee their occurrence
with enough time to act. In practice, this technique only predicts failures using past
failure data, where its main limitation is that it does not use any information about the
system’s current state [1]. Online Failure Prediction (OFP) aims at overcoming these
limitations. The term “online” means that this technique can predict failures based in the
information about the system’s current state [2]. Thus, OFP methods monitor the target
system at runtime, using both past failure and present data, where the present data is
composed by the target system’s current state information [2]. This technique allows the
mitigation or avoidance of the consequences of the failures that occur in a given system.

OFP is hard to be implemented and is not applicable to complex systems in
practice. It is known also that systems change and their complexity increases over time,
and failures are likely to occur. Additionaly, the number of lines of code is increasing a
lot and the systems have started to use external services to interact with other systems.
Nowadays, we even have Systems of Systems (SoS), which consist in “large-scale inte-
grated systems which are heterogeneous and independently operable on their own, but
are networked together for a common goal” [3], being that they are systems with a high
complexity. Virtual Machines (VMs) are a possible solution to improve the Online Failure
Prediction’s applicability, however they are not the ideal solution because their system’s
boundaries are unclear, VMs are a heavy virtualization solution and can also be very
complex systems [4].

On the other end of the spectrum, containers are lightweight systems which have high
portability and stability in the application context, isolation and have well-defined bound-
aries [4]. Thus, they provide an uniform context to the applications when executing in
di↵erent Operating Systems (OSes) and hardware configurations, isolating the applications
from their surroundings [4]. Containers are widely spread, as in the case of cloud environ-
ments. Their characteristics and composition allow them to be simple and easy to manage
and replicate. Containers and VMs are identical at resource isolation and allocation-
benefit levels, however the containers virtualize the OS (OS-level virtualization) while the
VMs virtualize the hardware [4].

Containerized applications based on micro-services have the necessary and ad-
equate characteristics to make Online Failure Prediction applicable in practice,
because they are highly flexible and scalable [5]. Since Docker’s release, users have started
to massively adopt and use containers [6]. Thus, it would be possible to predict failures
more simply in this kind of systems and applications, which could alert the user about

1

Chapter 1

upcoming failures or even avoid them, maintaining the continuous delivery of the expected
service without deviation.

Additionally, it would be useful if every user and company could be able to predict failures
in a straightforward way, by taking into account the current state of the system as well
as past failure data collected during the runtime. This way, it could be more precise in
alerting the users when the OFP algorithm detects that something is going wrong, i.e. the
behavior of the system is not the expected. Then, the system would be able to understand
and detect when a given failure will occur, making it possible to mitigate the consequences
from its occurrence at the present time.

In order to speed up the process of obtaining failure data to train and evaluate
the Failure Prediction models, Fault Injection (FI) can be used. This is a well-
known technique which has the goal of inserting faults in a given system to simulate the
e↵ect of real faults [7]. FI allows accelerating the training and validation of the models,
thus avoiding taking weeks or even months. This training is necessary because it will
allow to perform a more accurate failure prediction, since it already learned the required
data and information in order to predict if a given failure is about to arise. Additionally,
the number of false positives and false negatives associated with the application of FP
algorithms will be lower, which means more rigorous and precise results.

The process of monitoring containers is challenging, not only because of the high portabil-
ity of this virtual environment, but also due to the ability to run micro-service applications
using a large number of containers, numbering tens or hundreds [8]. Thus, it is necessary
to carefully choose the metrics that will be used in order to monitor containerized appli-
cations. Additionally, a monitoring tool will be chosen in order to collect that information
from the containers. This way, it will be possible to get sensible and important information
about the execution of this type of systems.

Therefore, the main goal of this work is to evaluate the feasibility of the appli-
cation of online failure prediction in containerized environments, Docker specifi-
cally, trying to improve this way the applicability of this technique to containers. In order
to perform this assessment, it is necessary to fulfill the following specific objectives:

• Analyze and select which variables can be extracted and monitored from Docker
containers. Determine a strategy in order to monitor those variables from the con-
tainers and make an intersection between them and the metrics already used in past
experiments.

• Study the type of variations of the monitored variables when implementing the
Docker setup into di↵erent supporting systems and hardware configurations, thus
performing a small experimentation for each one.

• Select, analyze and adapt fault injection methods in order to produce failure data
based on the injection of faults into the containers. Then, it is necessary to un-
derstand how the injected faults interfere with the variables extracted from the
containers.

• Select, examine and determine which failure prediction methods perform better when
predicting the failures caused by the injected faults.

The goals previously described are sequential, which means that each one of them in-
fluences the following ones. Thus, it is essential to make sure that they are completely
achieved in order to avoid a chain of problems between the objectives.

2

Introduction

Then, after all the previous objectives are achieved, the remaining step is to verify if the
results obtained from predicting failures demonstrate if it is feasible to use this type of
technique. Thus, if it is possible, it will be necessary to present and describe the observed
advantages and disadvantages associated with the application of the failure prediction.
Otherwise, an explanation about the reasons and problems that make the application of
this method impractical in something that presents such a dynamic nature.

It is important to understand that researching new algorithms for Failure Prediction
was outside of the scope of this work. However, we believe that the work developed
addressed challenging objectives.

1.1 Research Contributions

The most important research contributions from this work are the following:

• A technique was developed to gather variables in a non-intrusive way from
the Docker container using for this a containerized setup and a monitoring
tool. A comparison of monitoring tools was performed to determine which one was
less intrusive, had native Docker support, was container specific, had an open source
license, and what metrics it could collect from containers. The monitoring tool that
best fit at these five characteristics was Docker SDK for Python.

• An analysis of the Docker behavior containers in distinct environments.
This was necessary to study the type of variations of the monitored variables collected
by running the Docker setup in di↵erent configured systems. Two di↵erent systems
were used to gather the variables and an adequate statistical test, Mann-Whitney
U test, was applied to compare the variables from both systems. It was verified
that more than half of the total number of variables collected seem to have di↵erent
distributions.

• An approach to adapt a Fault Injection (FI) technique to the experi-
ment, where faults generated by this technique were injected into the
applications. The impact of those faults was studied and understood in order to
verify how they a↵ect the variables gathered from the containers. The Software
Fault Injection (SWFI) tool BugTor [9] was used in order to generate the faults
which will be injected later into the containers. Also, we created an approach that
attempts to increase the representativeness of the faults by selecting those that
were activated more times when the Docker container starts. Five di↵erent failure
modes following a classification based on and adapted fromCRASH Scale [10] were
identified when analyzing the data generated by the induced faults. Each injection
process lasts at most around four minutes.

• An approach to use Failure Prediction (FP) techniques with the objective
of predicting the induced failures by training and testing a FP model.
The focus here was to assess the technique’s capacity and e↵ectiveness in predicting
the failures produced by the injected faults. The Machine Learning (ML) tool
Propheticus [11] was used to perform the FP experiments. We also created an
approach to select the prediction parameters and data balancing techniques to be
used in the experiments. A comparison was performed between the results obtained
and the results from Irrera & Vieira [1],

3

Chapter 1

1.2 Document Structure

The remainder of this document is organized as follows.

Chapter 2 presents an overview about dependable systems, online failure prediction,
fault injection, machine learning and containers.

Chapter 3 presents and describes the main approach designed to achieve the goals of this
work, as also the selection process of the monitoring tool. This chapter also describes the
approach followed to study the type of the variables variations, the approach followed to
create failure data, and the approach followed to evaluate FP methods.

Chapter 4 presents the processes of generation of failure and non-failure data. The first
is generated by using fault injection. It also describes the process conducted to compare
the variables across di↵erent systems.

Chapter 5 describes the failure prediction experimental campaign performed after select-
ing the appropriate data. The failure prediction results are also presented and discussed
in this chapter.

Finally, Chapter 6 presents the main conclusions of this work and future work.

4

Chapter 2

Background and Related Work

This chapter is organized as follows. Section 2.1 presents the key concepts as far as the
dependability is concerned, while Section 2.2 gives an overview of the background and
related work on Failure Prediction (FP) as well as Online Failure Prediction (OFP), how
can FP be evaluated, why Fault Injection (FI) is used and the main concepts related to
Machine Learning. Finally, Section 2.3 presents an overview about containers, the Docker
container platform and tools for monitoring containers variables.

2.1 Dependable Systems

Nowadays, computer systems are present in most tasks, business, services, and places,
making people all around the world more and more dependent of them. This leads to the
questioning of the limits of computing system’s dependability as stated in [12]. This way, if
a “nation-wide computer-caused failure” occurs, it can lead to catastrophic consequences
such as economics variances and endangering human lives [12].

According to [12], the behavior of a system is composed by the service that it delivers,
being noticeable by its users. On the other hand, a user is the other system that interacts
with the computer system, which can be human or a machine.

Computer systems present an unpredictable behavior when they grow in size and com-
plexity, leading to the possibility of not performing as planned. Thus, it becomes almost
impossible to achieve all benefits that these systems aim to provide, leading to the detri-
ment of the service [1].

Correct service is defined as the expected service that a system must deliver [13]. How-
ever, when the observed service is not the same as the expected one, it can be concluded
that a service failure occurred [13]. The deviation of the service is named error, and
if it propagates, it will originate a failure. Nevertheless, it can be identified and handled
by the system or it may not proliferate, becoming a latent error, wherein the system will
present the correct behavior during the observation time [1]. Lastly, an error is caused by
an internal or external fault to the system, i.e. it can be originated from another system
where a failure occurred. A fault does not always cause an error, becoming dormant and
not influencing the behaviour of the system. There are several types of faults, which are
listed and specified in [13]. The fault-error-failure chain is summarized in Figure 2.1.

5

Chapter 2

Figure 2.1: The chain of dependability threats (from [13]).

A definition of dependability is presented in [13], where it is defined as the capability of
delivering a credible or trusted service knowing that the reliance of a system in another
gives information about how each system’s dependability influences the other. Accord-
ing to [13] and Figure 2.2, the decomposition of dependability comprises the following
attributes, which influence it:

• Availability – the capability of a system to always be accessible when it is necessary,
delivering the correct service.

• Reliability – a system’s ability to keep providing the correct service.

• Safety – states that the system must not cause catastrophic consequences for its
users, and the surrounding environment.

• Integrity – a system’s ability to tolerate unauthorized modification attempts.

• Maintainability – the capability of a system that is able to undergo through
changes and repairs.

Figure 2.2: The dependability and security tree (from [13]).

According to [13] and to Figure 2.2, several means to achieve all the attributes that
integrate dependability were matured over the last decades, which are arranged across
four groups:

• Fault prevention – means which have the goal of keeping faults from occurring
or being introduced into the system in order to attain a system with the possible
minimum number of faults.

• Fault tolerance – means to prevent the system from failing when faults arise,
making the system tolerant to them. This way, the system keeps providing the
expected service even in the presence of faults.

• Fault removal – means which aim at decreasing the number of faults and mitigating
the possible associated consequences that emerge from them.

6

Background and Related Work

• Fault forecasting – means which are necessary for measuring and evaluating the
current and future number of faults and what consequences may arise when those
faults occur.

Therefore, Failure Prediction can fit in fault forecasting because as it predicts failures based
in past data, it can help to forecast fault occurrence in a system as each failure is strictly
related to a given fault. On the other hand, predicting failures can also be associated
with fault tolerance. In order for a system to have the capability of tolerating faults, it is
necessary to learn and understand which failures can be originated from the occurrence of
faults. This way, FP can assist it because it can foresee failures using previous information
collected from a system.

2.2 Failure Prediction

Failure Prediction (FP) is the technique that is able to predict failures based on past
failure data [1, 14]. Its main limitation is that it only predicts taking into account past
failure data, using no information about the system’s current state. A solution that solves
this limitation is presented in Subsection 2.2.1, which is called Online Failure Prediction.

This section is organized as follows: a general overview of Online Failure Prediction
is described in Subsection 2.2.1; an approach based in the contingency table from [15],
which is summarized in Table 2.1, in order to evaluate FP algorithms, is presented in
Subsection 2.2.2; and, lastly, Subsection 2.2.3 gives an overview about Fault Injection.

2.2.1 Online Failure Prediction

Online Failure Prediction (OFP) can be seen as the current stage of the evolution of
Failure Prediction. “Online” means that this technique allows the prediction of failures
using the system’s current state [2]. Thus, OFP methods use information about the present
(current state of the system), where they monitor the target system at runtime [2].

The taxonomy for Online Failure Prediction methods is presented in [15] and [2], where it
is stated that these methods are based on:

• Symptoms Monitoring which has the objective of monitoring side-e↵ects of errors
which are named symptoms. The system’s variables and parameters are monitored
in order to detect strange system behavior. Techniques based in time series anal-
ysis and function approximation are used to monitor symptoms from a system. A
large number of FP methods apply this technique, such as Multivariate State Es-
timation Technique (MSET) [16] and The Universal Basis Functions (UBF) [17].
According to [16], MSET consists in estimating the current system state by previ-
ously learning from the system states relations that occur between the parameters
used to characterize each one of them. It is used vectors to define the states of the
system, where it is the user that select them [16]. Lastly, UBF is based in Radial
Basis Function (RBF), as stated in [17]. RBF is “a nonlinear data driven modeling
technique” [17]. The authors from [17] claim that “RBF networks are one of the pri-
mary tools for interpolating multidimensional scattered data and are arguably one
of the most popular methods for nonlinear regression”. The di↵erence between the
Universal Basis Function (UBF) and Radial Basis Function (RBF) technique resides
in the use of the G function: UBF uses a “flexible function (i.e. not necessarily

7

Chapter 2

Gaussian) to adapt to specifics of the data space” [17] while RBF uses a “nonlinear
transformation function” [17].

• Undetected Errors Auditing which consists in determining and identifying un-
detected errors trough the achievement of an audit. According to the authors of [2],
it seems that there are no works related to this technique.

• Detected Errors Reporting which consists in writing reports to logs when an
error is detected. Techniques based in statistical tests, classifiers and pattern recog-
nition are used to report detected errors from a system. The Dispersion Frame
Technique (DFT) [18] is an example of a method that is based on this category.

• Failures Tracking which is summarized as the process that uses tracking mecha-
nisms to detect when a failure occurs. It is noted that tracking is frequently external
to the system. Techniques based in co-occurrence and probability distribution esti-
mation are used in order to track failures from a system. An example of a method
that applies this technique is presented in [19].

It is important to note that Fault Testing is not considered for Online Failure Prediction
because it consists in testing a specific part of the system. It is not necessary that the
involved part is used by the system [2]. Thus, fault testing is a technique that aims
at identifying faults through testing a given system. As OFP uses information about the
system’s current stage, it does not make sense to test a specific part of the system, because
testing does not apply to the term “online”.

Figure 2.3 presents the time relations in a task of Online Failure Prediction, where [15]:

• �td represents the time interval between the past data gathered and the present
time t.

• �tl, named lead-time, represents the interval of time where it is possible to predict
the failure after present time t.

• �tw, called minimal warning time, represents the time interval while it is possible
to conduct preventive actions.

• �tp, named prediction period, represents the interval of time where the prediction is
valid.

Figure 2.3: Time relations in Online Failure Prediction (adapted from [15]).

According to [15], the probability of correctly predicting a failure increases if the time
interval �tp increases. However, if �tp increases too much, it will considerably reduce
the accuracy of knowing when a failure will occur because it has more time to take into
account. When analyzing Figure 2.3, it can be seen that the lead-time �tl cannot be
shorter than minimal warning time �tw, because it is necessary to have su�cient time to

8

Background and Related Work

mitigate the consequences of the predicted failure or to completely avoid it [15]. Therefore,
it is necessary to wisely choose the parameters from Figure 2.3 in order to obtain the best
results when predicting failures.

Current approaches of Online Failure Prediction have already a large body of research,
however they are yet to be applied in practice in systems such as containerized micro-
service applications [20].

2.2.2 Evaluation of Failure Prediction

Failure Prediction (FP) algorithms need to be evaluated in order to select the one that fits
better at predicting failures in a given context. Thus, in order to perform this selection,
the definition and comparison of figures of merit are required [15].

Therefore, in order to conduct a more precise and rigorous prediction, it is necessary to
forecast the maximum number of failures and to get the minimum number of false positives
and false negatives [15]. When predicting failures, an algorithm can obtain the following
possible results [15], which are summarized in Table 2.1:

• True positive (TP) which is defined as a true predicted failure, whose failure
warning was correct.

• False positive (FP) which consists in detecting a failure that was not actually a
failure, being a false alarm.

• False negative (FN) which is summarized as a failure that was not predicted as a
failure, and no failure warning was raised.

• True negative (TN) which consists in not detecting a non-failure, which is correct.

Table 2.1: Contingency table (adapted from [15])

Failure No Failure
Failure

Predicted
True Positive

(TP)
False Positive

(FP)
Positives
(POS)

No Failure
Predicted

False Negative
(FN)

True Negative
(TN)

Negatives
(NEG)

Failures
(F)

No Failures
(NF)

Total
(N)

This way, as stated in [15] and from observing Table 2.1, the total number of positives
(POS) is obtained through the sum of the true positives and the false positives, while the
total number of negatives (NEG) is obtained through the sum of the false negatives and
the true negatives. Similarly, the total number of failures (F) is the sum of TP and FN,
and the total number of no failures (NF) is the sum of the FP with the TN. A given
instance of the contingency table is named confusion matrix [21].

The Failure Prediction algorithms have a binary result when predicting if some failure
occurred or not. When they predict a failure, the result is one, and otherwise it is zero.
When deciding if a given failure occurred, a threshold is used [1, 21]. If the result is
above the threshold, the algorithm will classify it as a failure, where the result is equal
to one. If it is below, it will classify it as a no failure, with the result being equal to

9

Chapter 2

zero. According to [1, 21], varying the threshold has a direct impact in the accuracy and
performance of the FP algorithm.

There are several metrics or figures of merit listed in [15], such as Precision and Recall,
and these two specific metrics can be used in a method named Precision/Recall Curve.
This method uses the above-mentioned threshold to decide if a failure is truly a failure.
This value needs to be prudently chosen, because a lower value will increase the probability
of detecting false positives, while a higher value will increase the probability of detecting
false negatives [15]. Additionally, there is another method very popular called Receiver
Operating Characteristics (ROC) [15], which is explained in subsection 2.2.4.

It is important to evaluate Failure Prediction algorithms in order to choose the one that
obtains the best results when measuring the proportions between the true positives and
the true negatives, and the false positives and the false negatives. It is clear that the best
possible result is to classify all as TP and all non-failures as TN, having no FN and FP.

2.2.3 Fault Injection

According to [7], Fault Injection (FI) is defined as the technique that injects faults into
a system in order to simulate the behavior of real faults and their impact. Thus, it can
be considered as an acceleration technique which allows gathering fault and failure data
faster, without needing to wait weeks or even months.

Prototype-based FI is the technique which aims at evaluating a system without it being
necessary to have any premises about its design [22]. The goals of this technique, which
are presented in [22], are the following ones:

• Determine existing barriers or obstacles which are jeopardizing the system’s depend-
ability.

• Understand and analyze the system behavior when faults are injected into it.

• Learn how well-developed and matured are the system capabilities in order to detect
the errors caused by the injected faults, and to recover from failures originated by
the propagated errors (fault-error-failure chain).

• Assess how e↵ective and e�cient are the fault tolerance mechanisms when detecting
the injected faults.

The faults can be injected into a system at software or hardware level. This technique
only analyzes emulated faults , and cannot provide dependability measures, as explained
in [22].

Hardware Fault Injection is described as the technique that inserts faults in the sys-
tem’s hardware using additional hardware, as stated in [22]. It is divided in two categories
named hardware fault injection with contact and hardware fault injection without contact.
Examples of tools that inject faults at hardware level are FIST [23] (Fault Injection System
for Study of Transient Fault E↵ect) and MESSALINE [7].

On the other hand, Software Fault Injection consists in introducing faults into a system
at the software level [22]. Thus, the techniques based in this method are used with the
purpose of injecting faults in applications without requiring expensive hardware, avoiding
the associated costs [22]. Additionally, it is hard to inject faults into applications and

10

Background and Related Work

Operating Systems (OSes) using hardware fault injection techniques. Introducing faults
into applications only requires inserting the fault injector into the application or into a
layer between the application and the OS [22]. Nevertheless, inserting faults into the OS
is more di�cult, because it is hard to add a layer between the OS and the machine to
implant the fault injector [22]. This technique has become very popular over the past two
decades.

However, every technique has its drawbacks and software fault injection techniques are
no exception. According to [22], these techniques have the following shortcomings:

• They only inject faults where accessible by software.

• They may perturb the workload if not well designed.

• They can be unsuccessful “to capture error behavior, like propagation” [22]. Thus,
software fault injection techniques work better with long latency faults than short
latency faults. Furthermore, in order to resolve the above problem, a hybrid approach
should be used, which consists in a combination of “the versatility of software fault
injection and the accuracy of hardware monitoring” [22]. Nevertheless, hardware
monitoring can be expensive and reduce the flexibility associated to this approach,
as it limits the “observation points and data storage size” [22].

Software injection techniques can be categorized in two groups according to the time that
the faults are injected, as stated in [22]. The first category is named compile-time
injection, which consists in inserting faults at compile-time, i.e. before the application is
loaded and executed [22]. Thus, faults are injected into the source code of the application.
Once the application executes, the faults will be activated [22]. This way, compile-time
injection methods do not disturb the target application while it is executing, and are
known for being easy to implement. However, they cannot introduce faults while the
target application executes [22].

Runtime Injection is how the other category is called. According to [22], it consists in
injecting faults during the execution of the target application, and it requires some type
of mechanism in order “to trigger fault injection”. These mechanisms can be the following
ones [22]:

• Time-out which consists in introducing a fault when a software or hardware timer
expires. It is a simple method and does not need to modify the target application.
This method generates unpredictable e↵ects to the application, because it works
based on time and not based on “specific events or system state” [22].

• Exception/trap which is described as injecting faults when a specific event arises.
The “exception” is related to hardware, while “trap” is related to software, where
they “transfer control to the fault injector” [22].

• Code insertion which is summarized as the insertion of instructions or code into
the target application, as the name suggests. This method injects faults while the
application executes and inserts new code into the application, while not changing
the already existing code [22].

Finally, examples of tools that use software fault injection are Ferrari (Fault and Error
Automatic Real-Time Injection) [24], Ftape (Fault Tolerance and Performance Evalua-
tor) [25], Xception [26] and BugTor [9].

11

Chapter 2

Ferrari is a software fault injection tool, from 1992, which aims of using “software traps
to inject CPU, memory and bus faults” [22]. This tool is composed by: “the initializer
and activator, the user information, the fault-error injector, and the data collector and
analyzer” [22].

Ftape is another example of a software fault injection tool, from 1995, which consists in
a combination of workload generator and a fault injector, as stated in [25]. The workload
generator includes a workload activity measurement tool. Through this combination, it
is possible to “inject faults under high stress conditions based on workload activity” [25].
As this tool has a workload generator and a workload activity measurement tool, the
authors from [25] claim that this aspect is the di↵erentiator from other tools. Also, this
functionality allows the injection of faults taking into account workload measurements [25].

Xception was developed in University of Coimbra in 1998, which aims at injecting more
realistic software faults by using the information provided by the advanced debugging
and modern processors features as the performance monitoring features [26]. The authors
from [26] claim that the faults produced by this software fault injection and monitoring
tool are injected with very low interference. Also, Xception does not alter the application
when injecting faults to it. Lastly, as presented in [26], this tool does not use or rely in
any OS service, because it works at the exception handler level. This way, all processes
from the target system can be altered through the consequences produced by the faults
introduced in the system [26].

BugTor was also developed in the University of Coimbra (UC) [9], in 2016. According
to [9], this software fault injection tool generates software faults based in real faults made
by programmers. The faults created by this tool are injected at the source code level.
Also, it is important to note that those real faults, that can be emulated, are grouped
in fault emulation operators, which in turn are listed in Table 2.2, as stated in [9]. Each
operator has restrictions and is related to certain locations of the code, as presented in [9].

Table 2.2: BugTor fault emulation operators (adapted from [9]).

Operators Description

MFC Missing function call
MIA Missing if construct around statements
MIEB Missing if construct plus statements plus else before statements
MIFS Missing if construct and surrounded statements
MLAC Missing and sub-expr. in logical expression used in branch condition
MLOC Missing or sub-expr. in logical expression used in branch condition
MLPA Missing localized part of the algorithm
MVAE Missing variable assignment with an expression
MVAV Missing variable assignment with a value
MVIV Missing variable initialization with a value
WAEP Wrong arithmetic expression in parameters of function call
WPFV Wrong variable used in parameter of function call
WVAV Wrong value assigned to a variable

Lastly, there is also a recent hybrid approach named HSFI (Hybrid Software Fault Injec-
tion) [27]. By utilizing this hybrid software fault injection tool, it is possible to enable
and disable the injected faults at the binary level, without being necessary to rebuild the
code [27]. This way, the needed time to rebuild is shortened, allowing the HSFI to scale
for applications with large code files [27]. It is also possible to use information about the
context at the source level to inject the faults, as stated in [27]. The faults injected by

12

Background and Related Work

HSFI produce two versions of the code: the original code and the one with the code sec-
tions modified according to the fault injected. Thus, as presented in [27], each fault has a
corresponding marker that will be noticed by the tool binary pass in order to decide which
version corresponds to each code sections. Therefore, it is not necessary to rebuild the
application because each injected fault has its marker, thus allowing easily its activation
or deactivation [27].

2.2.4 Machine Learning

As stated in [28] in 1959, Machine Learning (ML) consists in the process where a computer
behaves according to what it has learned as if it was an animal or a human being. In other
words, ML is “about designing algorithms that allow a computer to learn” [29]. This way,
ML already has some decades of research, not being a new subject. However, it is becoming
very popular in the last years.

The algorithms from Machine Learning follow a classification taking into account what is
the purpose of each algorithm [29]. There are six common classifications according to [29]:

• Supervised learning – a function or a classifier is created by the algorithm with
the goal of mapping a given input to a requested output. Classification algorithms
are an example of this.

• Unsupervised learning – a group of the inputs is modeled by the algorithm,
because there are not any corresponding labeled examples.

• Semi-supervised learning – as the name implies, this classification is composed
by the combination of the last two. This way, it is necessary to create a function or
a classifier from the junction of the labeled and unlabeled inputs.

• Reinforcement learning – the action of the algorithm is controlled by a rule that
was previously learned by the algorithm in order to act to a given observation of the
environment. This way, the algorithm is leaded by the environment observations.

• Transduction – the output prediction is performed without the creation of a func-
tion or a classifier as in the case of supervised learning. It just tries to predict them
based in the training inputs and outputs.

• Learning to learn – only previous knowledge or experience is used by the the
algorithm to learn.

In order to get better results in Machine Learning, it is extremely important to take into
account the data that will be used [30]. Then, if the data that will be used to train a
supervised ML algorithm is not previously and properly treated, it will train the algorithm
or classifier incorrectly [30]. This way, it is necessary to take into consideration and verify
if the data has noise and repetitious or/and insignificant information [30]. It is stated
in [30] that there is a relation between the performance of a supervised algorithm and the
data pre-processing. If the latter is performed wrongly, it will substantially decrease the
performance [30].

When pre-processing of the data is considered, the following processes can help to achieve
it [30]:

13

Chapter 2

• Data cleaning – if the data presents too much noise, it is necessary to reduce it
dealing with the outliers [31]. To reduce the noise, it can use clustering and regression
methods. On the other hand, if there are missing values from the data [32], it is
required to handle them using a process from [33], as the case of Most Common
Feature Value, Mean Substitution and Regression or Classification Methods.

• Data transformation – it can be achieved by performing the Normalization of
the data, i.e. decreasing the di↵erence between the maximum and minimum values
observed in each feature. There are two methods most commonly used to normalize
the features: min-max normalization and z-score normalization.

• Feature extraction – the extraction of the features is performed by combining
them, where the combinations correspond to the new features that will be used [34].
The feature extraction methods can be supervised or unsupervised, being the un-
supervised method Principal Component Analysis (PCA) [35] and the supervised
method Linear Discriminant Analysis (LDA) [36] the most used [34].

• Feature selection – the irrelevant and redundant features need to be determined
and removed from the data in order to increase the performance and the e↵ective-
ness of the ML algorithms. Feature selection methods can be classified into two
main classifications [37]: filter and wrapper. In the case of filter methods, a score
will be assigned to each feature, where this score is statistically calculated through
comparing the features. Mutual Information [38] and High Correlation Filter [35]
are examples of filter methods.

In the case of wrapper methods, cross-validation is used in order to verify if a given
feature is irrelevant or redundant. So, if after a given feature is removed and the
result using cross-validation is worse, it could mean that the removed feature is
not irrelevant neither redundant. Therefore, when the performance is considered,
wrapper methods can be very slow an time consuming because making iteratively
various combinations of the features. Recursive Feature Elimination (RFE) [39] is
an example of wrapper methods.

• Instance selection – in order to reduce space and time complexities from the ML
process, it is necessary to reduce the set of instances that will be used to predict [40].
This set of instances needs to have equal or better results, i.e. it needs to predict
with equal or higher accuracy than the original set [40]. This way, the data used
is reduced which increases the performance of the Machine Learning algorithms,
through using one of the following data reduction approaches based on the selection
of instances[40]: Active Learning, Boosting, Prototype Selection and Sampling. Also,
it is stated in [40] that over-fitting can occasionally be prevented by selecting a
smaller number of instances.

On the other hand, Random Oversampling and Random Undersampling techniques
can be used to handle imbalanced data [41]. As presented in [41], the first consists
in the replication of random minority classes, and the latter is composed by the
removal of random majority classes. Both attempt to adjust the data in order to
decrease the discrepancy between the majority and minority classes [41].

Synthetic Minority Over-sampling Technique (SMOTE) is a known oversampling
technique, which di↵ers from Random Oversampling because synthetic examples of
the minority classes are generated, instead of being replicated [42].

According to [29], there are many algorithms types related to supervised Machine
Learning, where many of them are classification algorithms: Linear Classifiers such

14

Background and Related Work

as Logical Regression, Näıve Bayes Classifier, Perceptron and Support Vector
Machine, Quadratic Classifiers, K-Means Clustering, Boosting, Decision Tree
and Random Forest, Neural Networks and Bayesian Networks.

The Support Vector Machine (SVM) uses an N-dimensional hyper plane which divides
the data into two categories in order to classify them [29, 43]. This way, the SVM is a
binary classifier. The SVM uses a kernel function with the goal of assigning a given point
to a decision surface, as presented in [44]. Radial Basis Function, Polynomial, Sigmoidal
and Linear kernels are examples of common kernel functions used in SVMs [44]. Also, the
SVM can predict non-linear data using the Kernel Trick, and it is possible to use SVMs for
regression problems too [44]. Figure 2.4 presents an example of a SVM with a polynomial
kernel.

Figure 2.4: A training example of SVM with kernel given by '((a, b)) = (a, b, a2 + b2)
(from [45]).

The evaluation of a ML algorithm is important to assess if it is predicting correctly or
wrongly. Besides analyzing the number of correct and incorrect predictions, there are
also other alternatives such as examining the temporal and space complexities of the ML
algorithm [46]. It is important to note that a Machine Learning algorithm can predict with
high correctness in a given dataset and low correctness in another [34]. This demonstrates
the No Free Lunch Theorem [47]. Therefore, the evaluation of an algorithm always
depends on the data used to train it.

Commonly, the dataset is separated in two di↵erent parts: the training and validation
datasets. The first is used to train the algorithm by fitting the model and the latter is
used for validation of the model [34]. Also, it is important to mention that this division
is performed only for testing purposes [34].

Nevertheless, some problems can arise by dividing wrongly the dataset. The most com-
mon is over-fitting which happens when a classifier is randomly predicting or making
generalizations, because the data used was not su�cient and/or contained noise, leading
the classifier to “hallucinating” [48]. Under-fitting is another issue which consists in the
opposite of over-fitting [48].

Bias and variance are related to the generalization error [49]. Figure 2.5 presents the
decomposition of the generalization error into bias and variance in the context of the dart-
throwing example [48]. Bias consists in frequently acquiring information the same wrong
way, and variance occurs when the model learns in a random way instead of the correct
way [48]. Usually, over-fitting is related with variance and under-fitting with bias.

15

Chapter 2

Figure 2.5: Bias and variance in dart-throwing (from [48]).

It is necessary to assess the performance of a ML algorithm, where it can be achieved by
using classification performance metrics such as [34]:

• Confusion Matrix – is used when the Machine Learning algorithm is only pre-
dicting between two classes. It is an instance of a contingency table. The correct
predictions are labeled as True Positive (TP) and False Positive (FP) and the
incorrect predictions as False Positive (FP) and False Negative (FN), where
all are already defined in subsection 2.2.2.

• Class Confusion Matrix – is applicable when the ML algorithm is predicting more
than two classes. It allows to visualize how a given class was predicted, i.e. how
many times it was predicted as itself and as another class. This way, it is possible
to verify, for example, which classes are repeatedly confused.

• Receiver Operating Characteristics (ROC) – consists in the combination of
the TP and FP rates obtained by using di↵erent thresholds, as stated in [34].

• Precision – is calculated by dividing the number of TP by the sum of TP and FP
for a given class. The closer the precision is to 1, the number of FP will be lower,
tending to zero. However, it is important to note that the number of FN is not took
into account.

• Recall – is obtained by dividing the number of TP by the sum of TP and FN for a
given class. However, this metric does not consider the number of FP for that class.
A recall corresponding to 1 means that there were not any FN, i.e. all samples from
that class were predicted correctly.

Accuracy, F-Score, Sensitivity and Specificity are other examples of classification
performance metrics.

Finally, to compare Machine Learning algorithms, it is necessary to perform statistical
tests, where the null hypothesis is composed by if the algorithms have the equal perfor-
mances, i.e. if the error rate is the same [34]. The null hypothesis is necessary because
it cannot be proved, an it needs to be rejected by collecting the necessary evidence [50].
However, rejecting the null hypothesis does not mean that the experimental hypothesis
will be proved, where it can be a type I error [50]. There is also another error named
type II which consists is confirming that the null hypothesis is correct.

16

Background and Related Work

As presented in [34], to compare the performance of two ML classification algorithms, a
statistical test such as McNemar’s Test and K -Fold Cross-Validated Paired t Test
can be used to achieve it.

2.3 Containers

According to [4], containers are “package software into standardized units for devel-
opment, shipment and deployment”, wherein they can be considered as an alternative to
Virtual Machines (VMs). A diagram with the comparison between the container archi-
tecture and the VM architecture is presented in Figure 2.6. A container has the following
particular characteristics: it has all the necessary dependencies to execute, it does not
need additional software in order to run, and it is very lightweight because it shares the
OS kernel which leads to requiring less Random Access Memory (RAM) when compared
to VMs. A container also isolates applications from their boundaries, wherein these can
have the same behavior when the container is executing across di↵erent systems.

The containers originated in 1979 with the development of chroot as presented in [6]. In
2000, the FreeBSD Jails was launched. One year later, the Linux-VServer appeared
and some years later, a project named Linux Containers also known as LXC [51]. However,
more recently, users have started to massively use and adopt containers with the release
of Docker in 2013 [6].

When comparing containers with virtual machines, which is present in Figure 2.6, it is clear
that there are some similarities and di↵erences between them. “Containers and virtual
machines have similar resource isolation and allocation benefits, but function di↵erently
because containers virtualize the operating system instead of hardware” [4]. It is known
that a VM tends to be more slow and heavy because it includes a full copy of the OS,
i.e. an additional layer in relation to the containers who share the same OS kernel, as
already mentioned [4]. This way, a container can boot and execute faster, and it has more
portability, while occupying less space in disk than a VM.

Figure 2.6: Comparison between a container (left) and a VM (right) (adapted from [4]).

2.3.1 Docker

It is known that Docker is one of the companies that has contributed the most to the
container area, being the leader of the container movement. Docker claims that it is the
only container platform provider that ensures the addressing of each application in the
hybrid cloud [8]. An overview of hybrid cloud is present in [8], where it explains that

17

Chapter 2

hybrid clouds require smooth portability of applications, which is accomplished through
the container isolation that is provided. Thus, the applications become portable to any
context or type of systems, which ends up with the problem of applications portability.

Docker was launched on March the thirteenth, 2013, being a recent technology. It features
a functional API, called Docker API, which is very helpful in managing containers and
containerized applications.

This way, Docker is a container virtualization platform [52] that claims to provide to the
users [8]:

• Agility – the process of software development and distribution is very quick;

• Portability – the deployed applications can execute in any infrastructure;

• Security – the deployed applications are secured by using appropriate security mech-
anisms;

• Cost savings – users can save costs due to the optimization of the underlying
infrastructure resources.

Therefore, the process of placing applications into containers increases the security, porta-
bility, agility and leads to cost savings as previously presented [8]. Currently, Docker
containers support applications developed for Windows and Linux, and they allege that
their containers follow open standards and are secured due to the provided container
isolation, as stated in [4].

The union file system is the expression used by kernel developers for the copy-on-write
model, being one of the technologies which Docker depends on, according to [52]. An
image, as specified in “Docker language”, is where a container is built, being a file system
wherein one of its layers is dedicated for the dependencies, as the case of libraries, needed
for the application to execute, and also the code and any package if used [52]. Thus, the
result of building a container is a lightweight packaged software that only contains the
necessary dependencies in order to execute the application. This way, it is like a “read-
only file system with multiple layers” [52]. A Docker container can use cache too, making,
in addition to the lightweight property, the process of rebuilding faster, as declared in [52].
This cache property can be visualized as the recycling and reusing of the layers in the file
system of the container [52].

According to [52], Docker depends on two parts of the Linux kernel: namespaces and
control groups or cgroups. The first one is assigned by the kernel with the purpose of
containing everything necessary for the creation of a container. A namespace isolates the
processes, preventing them from knowing the existence of other process namespaces exter-
nal to it. The second part is named cgroups and it is dedicated to the containers resource’s
supervision and management. It makes it possible to change the assigned resources of a
container as the user wants [52].

Micro-services applications can be developed for Docker containers because of their
light-weight characteristic [8]. So, it can easily create a single application made up of many
containers. This way, according to [8], the process of creating, deploying, maintaining and
managing applications based in micro-services can be simplified using containers.

Docker also allows the communication between hosts through Docker Swarm. It works
like a “swarm of wasp”. This way, Docker hosts can interact with other hosts. However, it

18

Background and Related Work

can have some implications in scalability and redundancy, being challenging for companies
that want to implement this communication between di↵erent Docker hosts [52].

LXC (Linux Containers) and rkt are examples of Docker alternatives, being the latter
the most important current competitor of Docker [53].

As stated in [54], the users can create and run multiple Linux containers by using the
OS-level virtualization technology named LXC. Each container can execute a simple ap-
plication or emulate something more complex: a host [54]. LXC features its own API,
which helps the users manage their containers [55]. Also, the goal of Linux Containers is
to emulate an environment similar to a standard Linux installation with the di↵erence of
not requiring its own kernel [55]. As presented in [54], Docker is seen as “an extension
of LXC’s capabilities”. This way, Docker containers do not feature any OS [54]. Lastly,
Docker has the following features that are not present in LXC [54]:

• The deployed applications are portable, which mean that they can be transferred
and installed onto any machine with Docker installed.

• Docker can track the versions of a container, analyzing which di↵erences are present
between the versions, committing and/or rolling back the versions.

• Docker allows the reuse of Docker images (building and running) through di↵erent
machines.

• Docker features a store [56] where various ready containers, plugins and Docker
editions are available to be downloaded by the users.

On the other hand, rkt “features a pod-native approach, a pluggable execution envi-
ronment, and a well-defined surface area that makes it ideal for integration with other
systems”, as presented in [57]. It uses pods which consist in one or multiple applications
that are running in a context that is shared between them [57]. Also, rkt’s standard con-
tainer format is up-to-date and open source [57]. Nevertheless, it is stated in [57] that
Docker container images (and not only) can be run with rkt. Last, but not the least, it
is claimed that rkt is a very secure approach for the containers area, as it is stated in its
slogan “A Security-minded Container Engine” from [57].

Therefore, there are some di↵erences between Docker and its alternative, rkt, which are
the following [53]:

• Docker is less secure when compared with rkt, as the latter was created taking into
account the security flaws from Docker.

• Docker does not use an open source container format as the case of rkt.

• rkt is a more recent container technology, where its version 1.0 was released in
February 2016, around three years after Docker 1.0 release.

• rkt does not feature and o↵er so many third party integrations as the case of Docker,
being available on rkt’s GitHub [58].

2.3.2 Monitoring Tools

In order to collect variables from the containers, it is necessary to have a tool that allows
the achievement of this process. These variables correspond to the metrics that will be

19

Chapter 2

used to monitor the containerized applications with the objective of gathering important
information to be used to predict failures

The container’s monitoring can be performed by using a monitoring tool or platform.
Currently, there are many options available on the Internet, where a significant number
of them are premium as the case of CoScale, Dynatrace, and New Relic. It is important
to note that due to financial constraints, the premium monitoring tools will not be used
nor tested in this work. However, they will be specifically analyzed in order to highlight
which extra features they have, and which make them premium.

On the other hand, there are some open source monitoring tools such as cAdvisor, Met-
ricbeat, Nagios, Sensu and Sysdig, wherein the analysis conducted by this work will fall
on these tools with open source licenses.

It is also possible to use the Docker API as well the Docker Engine SDK available in
Go and Python to obtain container metrics [59]. The first one is used to interact with the
Docker daemon or Docker Engine API, being a RESTful API with an HTTP client. The
second one aims at making the process of building and scaling Docker applications faster
and easier [59]. It is as simple as using a stream function that exposes container metrics
each second.

cAdvisor, or Container Advisor, is an open source monitoring tool developed by Google,
in Go (or golang) programming language, which has the objective of collecting data about
the resource usage and performance of containers [60]. It aims at aggregating, exporting,
gathering and processing stats from containers. cAdvisor features Docker support and
it states that it should support others container types. This monitoring tool is able
to keep the exported collected metrics, wherein it can be composed by statistical data
like histograms of resources usage [60]. Lastly, cAdvisor features a RESTful API that
allows the obtainment of container stats, as well as a client developed in Go programming
language.

CoScale is a premium monitoring tool with Docker certification, and features an SDK
developed in Java programming language under the 3-clause BSD license. It claims that
it goes further about Docker monitoring, being capable of recognizing services within
containers [61]. This monitoring tool also claims that it has low overhead associated to
container metrics gathering. As explained in [61], CoScale is a non-intrusive monitoring
tool with minimal overhead as it uses lightweight agents to collect metrics and events from
containers. It has the feature of detecting irregularities and inconsistencies that come from
containers, as well the feature of full stack monitoring, i.e. capability to collect stats from
both outside and inside of a container. Finally, CoScale presents that it is also possible
for the users to create their own metrics, according to their needs [61].

Dynatrace is a premium monitoring tool that states it is very simple to monitor Docker
containers because of its detecting ability when a container is created [62]. Since it claims
that it monitors containerized applications and services without interfering with the im-
ages, it can be seen that it has very low intrusiveness in the containers. Dynatrace features
a Docker agent under the MIT license. As explained in [62], Dynatrace can monitor appli-
cations based in micro-services because it was developed considering the dynamic environ-
ments associated with the container platforms. This monitoring also features the capacity
of scaling when it detects new containers, being suitable for container orchestration and
clustering [62]. Therefore, Dynatrace is great for monitoring micro-services because this
kind of services tends to use a large number of containers. Lastly, it is also a certified
Docker partner like the previous monitoring tool.

20

Background and Related Work

Metricbeat, from elastic, is written in Go programming language and in a summarized
way, it consists in an open source shipper that collects metrics and dispatches them to
Elasticsearch or Logstash [63], both also from elastic. It can gather system-level stats
and it is container compatible. The process of monitoring Docker containers is performed
through accessing and reading cgroups from Docker. Thus, the Docker API can be accessed
in a straightforward way without the need to ask for any kind of authorization [63]. In
order to store and process data, Metricbeat can ship the collected metrics to Elasticsearch,
where the latter consists in “a distributed, RESTful search and analytics engine” as stated
in [64], which features several client libraries written in di↵erent programming languages.
Last but not least, it is important to note that the Docker module from Metricbeat is
currently available as a beta version [65].

Nagios is an open source monitoring system whose goal is to deal with problems that arise
from Information Technology (IT) infrastructures and systems [66]. This is a monitoring
tool that has several features besides monitoring network, system metrics and applications,
being able to launch alerts when it detects problems, to report the occurred problems,
notifications and events, to perform maintenance and to predict when the failures will
occur in order to avoid them while upgrading obsolete systems [66]. The main focuses of
Nagios are infrastructure, network, services and systems. However, it is crucial to note
that this monitoring tool does not directly support Docker, requiring a third-party plugin
which can be found in Nagios Exchange [67].

New Relic is the last premium monitoring solution theoretically addressed by this work.
It claims that it provides a complete monitoring for Docker containers and containerized
applications [68]. This monitoring tool features deep visibility in containerized environ-
ments, which are known for their dynamic nature. It can also give a perception of the
total cost of a Docker container to improve the business results.

Sensu is an open source monitoring framework that states it can easily collect and display
metrics by providing a customizable platform [69]. It can detect if the systems which it is
monitoring are working as expected or are having problems while executing, through the
implementation of service checks. Sensu owns a RESTful JSON API that allows the access
to the gathered metrics, featuring a key/value store. According to [69], this monitoring
platform can also send alerts or notifications, and is both compatible with centralized and
distributed monitoring. Sensu also has the ability to use external data through metric
stats shipment [69]. Finally, to monitor Docker containers it is necessary to use a plugin,
just like Nagios. However, this plugin provides native Docker support for gathering metrics
from containers [70].

Sysdig is an open source monitoring tool that provides native support not only for Docker
containers, but also for all the others Linux containers [71]. It claims that it o↵ers deep
system visibility, allowing the analysis of a system’s and container’s behavior. According
to [71], this monitoring solution is compared to a system composed by strace, tcpdump,
htop, iftop, isof and Wireshark. It also features User Interface (UI), named csysdig, that
can be customized as desired [71]. So, Sysdig works at Linux kernel from OS level, which
can belong to a physical or virtual machine. This way, it is possible to gather OS events
which will be analyzed and filtered in order to find useful data for the container and system
monitoring [71]. Additionally, Sysdig can execute as a container in order to collect metrics
from containers.

Then, after presenting each one of the nine monitoring tools, the following can be sum-
marized:

• All monitoring tools are container specific except Nagios and Sensu.

21

Chapter 2

• There are two monitoring tools that do not feature native Docker support, which
are Nagios and Sensu.

• CoScale, Dynatrace and New Relic feature a premium license.

22

Chapter 3

Online Failure Prediction in

Containers

The main goal of this Master Dissertation is the assessment of the feasibility of applying
online failure prediction to containerized applications based on micro-services. Thus, this
work aims at supporting the improvement of the applicability of online failure prediction
techniques in containers.

Also, it is known that the implementation of Online Failure Prediction (OFP) is di�cult,
even for containerized micro-services-based applications. In order to perform this assess-
ment, it requires the fulfillment of four more specific goals already previously described
(section 1), being in a summarized way the following ones: selection and analysis of the
variables that can be monitored from containers, gathering of results from the observed
behaviors when submitted to various environments, generation of failure data by injecting
software faults into the setup and comparing the collected results in order to determine
the e↵ect of the injected faults in the experiment, and lastly, evaluation of the e↵ective-
ness of the chosen failure prediction algorithms. The approach followed in this work is
summarized in Figure 3.1.

In order to achieve the first specific objective, it is necessary to use a containerized
setup based in Docker and a monitoring tool. Thus, it is possible to divide this goal in
two parts. The first one comprises the selection of the monitoring tool that fits best the
following attributes or characteristics:

• Container specificity, i.e. if the monitoring tool features some functionality or prop-
erty that are only specific to containers.

• Docker support, i.e. if the monitoring solution has native or o�cial Docker support,
or if it needs to use a third-party plugin, or, lastly, it does not feature any type of
support.

• License which it can be open source, freeware and premium.

• Intrusiveness associated with the collection of metrics from the Docker containers.
In other words, how much each monitoring tool interferes with the execution of the
containerized application when gathering data from it.

• Number and relevance of the metrics that each monitoring solution is able to gather
from containers.

23

Chapter 3

Figure 3.1: Overview of the research approach defined for this work.

The process of monitoring solution selection will be divided in two distinct parts in order to
make the monitoring tools comparison easier. Firstly, a comparison between the first three
attributes will be performed with the goal of discarding tools. Then, another comparison
will be made considering the remaining attributes and monitoring tools. Lastly, after all
the comparisons are completed, the tools that got the best results will be selected.

This work aims at using the metrics from Irrera & Vieira [1] as a basis for further compar-
isons with the container’s metrics. Additionally, we will use the Fault Injection (FI) tools
and OFP methods employed in Irrera & Vieira [1]. Adding, improving or formulating new
concepts or algorithms to the Failure Prediction (FP) and FI domains is outside of the
scope of this work.

Next, the second part of this monitoring tool selection is understood by a rigorous and
accurate intersection between the selected monitoring tools metrics and the metrics used
in the work presented in [1]. It is important to note that the monitoring solution which
presents a better intersection between its metrics and the two hundred and thirty-three
used in Irrera & Vieira [1] will be chosen to be used in this work. Finally, we can move
on to the next goal.

The second specific objective is fundamental to assess the type of the variations of the
metrics that can result from executing the Docker setup in various system configurations.
This is relevant to understand how containers behave when executing in di↵erent environ-

24

Online Failure Prediction in Containers

ments, i.e. if they have identical behavior. It can be further subdivided into the following
three goals:

• Set up various systems with distinct supporting systems and hardware configura-
tions. Then, configure the Docker setup in each one.

• Development and selection of di↵erent containerized applications that will run inside
a container in the Docker setup previously defined and configured.

• Analyze which variations occur between all the metrics collected from the containers
running in each configuration, doing so a comparison.

After all the previous sub goals are achieved, arises the third specific goal, which will
allow the understanding of how the fault injection techniques will influence the gathered
metrics from containers. It consists in the following particular goals:

• Select and adapt fault injection techniques into the experimental setup with the
purpose of generating failure data in the containers.

• Study in which way the injected faults a↵ect the collected metrics from containers,
understanding how the containers behave in the presence of their injection.

• Compare the results in order to determine which fault injection tool fits better in
the configured Docker setup.

This way, this objective intends to produce failure data through the injection of faults
that will be used by failure prediction methods to train their models.

Lastly, the fourth and last specific goal is very important and crucial to verify how the
online failure prediction methods perform when applied to containerized environments. It
can be divided in two sub-objectives:

• Select and adapt online failure prediction methods to the Docker setup in order to
predict the failures originated by the induced faults.

• Compare how the online failure prediction methods perform and how e↵ective they
are at predicting the failures.

After all four specific goals are accomplished, we can conclude if it is feasible to use online
failure prediction in containerized environments, accomplishing this way the main goal of
this work.

The following subsections details the key points of this approach. An analysis and com-
parison of monitoring tools variables to select the tool to be used in this work is performed
in Section 3.1. A comparison between the variables collected from containers running in
di↵erent setups is accomplished by using an appropriate statistical test in Section 3.2. The
failure data is created by using a FI tool, and a failure modes classification was proposed
in Section 3.3. The FP experimental campaign and the results obtained are presented and
discussed in Section 3.4.

25

Chapter 3

3.1 Monitoring Container Variables

As presented in Section 2.3.2, the selected monitoring tools that will be analyzed and
compared in this work are cAdvisor, Metricbeat, Nagios, Sensu and Sysdig. A simple
implementation of the Docker SDK, which communicates with the Docker API, will also
be used. It is important to note that these monitoring tools were selected through a
meticulous process selection, where the ones that best suited our purposes were chosen.
There are more premium monitoring solutions such as Datadog [72], Sematext [73] and
Pingdom [74] which could be also introduced in Chapter 2. They feature an open source
Docker agent. However, it is required to have a specific key which can only be obtainable
by creating a paid account.

Following the approach described in Section 3, the monitoring solution selection starts with
the analysis of the container specificity, Docker support and license. These characteristics
are listed and summarized for each monitoring tool in Table 3.1.

Table 3.1: Comparison of the monitoring tools about their container specificity, Docker
support, and license attributes.

Monitoring Tool Container Specific Docker Support License

cAdvisor Yes Native Open source
Docker SDK for Python Yes Native Open source

Metricbeat Yes Native (beta) Open source
Nagios No Third-party plugin Open source
Sensu No Native via plugin Open source
Sysdig Yes Native Open source
CoScale Yes Native Premium

Dynatrace Yes Native Premium
New Relic Yes Native Premium

As far as these characteristics are concerned, we can identify two main di↵erences between
the analyzed monitoring solutions. As already explained in Section 3, the premium tools
are only listed in Table 3.1 as a curiosity. One of the significant di↵erences that can be
identified is the reduced number of monitoring tools that are not container specific: Nagios
and Sensu. The other di↵erence is determined by verifying that the previous identified
monitoring tools do not support Docker directly too, requiring a plugin to it. However, all
the other monitoring solutions analyzed feature native Docker support. Finally, we can
also state that the tools are divided across two main groups: one is composed by the open
source solutions an the other one with the premium ones. So, we can conclude that the
tools from both groups look similar when considering their license property.

Since the first part of the monitoring solutions comparison is completed, we are able to
discard the following tools:

• Nagios and Sensu because they are not container specific, i.e. they do not feature
any functionality designed for the containers, and it is required to use a plugin in
order to have Docker support. In the case of Sensu, the Docker support is native
when using that plugin [70].

• CoScale, Dynatrace and New Relic because they are premium monitoring tools. So,
it is necessary to pay for an account which is impossible due to financial constraints.

26

Online Failure Prediction in Containers

• Metricbeat only because its Docker module is available as a beta version and we
seek more-stable tools.

This way, we can proceed to the next step after discarding the previous six tools. Another
comparison will need to be carried out in order to select the monitoring solutions that
fit better for this work. This step corresponds to the second part of the monitoring tool
selection, as already explained in the approach presented in Section 3. The associated
intrusiveness, and the metrics that can be extracted from containers by applying the
tools, will be used to perform this comparison. Table 3.2 gathers the information from
the remaining monitoring solutions related to these two characteristics.

Table 3.2: Comparison of the monitoring tools about their intrusiveness and metrics.

Monitoring Tool Intrusiveness Metrics

cAdvisor None 97

Docker SDK for Python None 155

Sysdig None 86

As far as intrusiveness and metrics are concerned, we can only identify di↵erences between
the number of variables that can be extracted from containers with the application of
each monitoring tool. The presented number of metrics is based on a previous performed
analysis of the relevance of each metric in the container’s context. The Docker SDK for

Python, which interacts with the Docker API, is the tool that can extract more metrics
from containers. On the other hand, Sysdig is the one that can monitor less metrics,
being not far from cAdvisor. Thus, at this moment, we can state that Sysdig is the
monitoring tool between the three analyzed that is more likely to be discarded. However,
it is still possible that Sysdig can have more metrics correlated with the two hundred and
thirty-three from [1] than the other tools.

When the intrusiveness of the monitoring solutions is considered, we verified that all the
three were not intrusive. Firstly, cAdvisor is a monitoring tool that gathers most of the
metrics from cgroup’s tree, which leads to not needing to interact with the containers.
Next, the Docker SDK for Python communicates with the Docker Engine API in order
to get metrics from Docker containers. The Docker API is a RESTful API and features
an HTTP client that allows communication through HTTP requests. This API features a
method that allows to stream the container’s metrics in each second. This way, the Docker
SDK is not intrusive because it is a functionality of Docker. Lastly, Sysdig executes at
Linux kernel where it collects and filters Operating System (OS) events. As it does not
need to interact with the containers in order to gather metrics, it is not intrusive when it
is monitoring.

Therefore, a further more detailed metrics analysis will be carried out in the next subsec-
tion, in order to understand which tool fits better in this work.

In order to select the monitoring tool that fits best in this work, the selection process
needs to be rigorous. Thus, it is necessary to analyze the metrics gathered by each one
of the three solutions summarized in Table 3.2, performing a meticulous and accurate
intersection between them and the metrics used in the PhD Thesis Fault Injection for
Online Failure Prediction Assessment and Improvement from Irrera & Vieira [1]. Those
metrics are combined across fourteen di↵erent groups, which are listed in Table 3.3.

A prior analysis was conducted in order to study a possible intersection between the
previous metrics and the ones gathered from containers using a monitoring tool. We have

27

Chapter 3

Table 3.3: Metrics used in the Irrera & Vieira [1].

Object Name Total

.NET CLR Exceptions 5
.NET CLR LocksAndThreads 10

Cache 27
Job Object Details 27

Job Object 13
Logical Disk 23
Memory 29
Objects 6

Paging File 2
Physical Disk 21

Process 27
Processor 15
System 16
Thread 12

confirmed that there is some metric types that or could not be applied to the container’s
context as the case of the .NET CLR, or that cannot be extracted from containers such as
Job Object and Paging File. It was also verified that there are not metrics for both
Logical and Physical Disk. Thus, we decided to combine these two types in only one
named Disk, which had twenty-one metrics repeated. However, the initial number of two
hundred and thirty-three will be used in the next comparisons that will be conducted in
order to analyze the metrics gathered by these three monitoring solutions.

Figure 3.2 shows a Venn diagram which presents the results from comparing the two
hundred and thirty-three metrics from [1] with the one hundred and fifty-five metrics that
can be collected using the Docker API and with the ninety-seven metrics that cAdvisor
can gather.

Figure 3.2: Intersection between metric sets from Irrera & Vieira [1], cAdvisor and Docker

API.

28

Online Failure Prediction in Containers

When analyzing Figure 3.2, we can state that there is a low number of identical metrics
between all the three lists, being only thirteen. On the other hand, we can verify that
seventy-two percent of the cAdvisor’s metrics are identical to the ones from the Docker

API. Thus, we are able to conclude that these two tools are not very di↵erent between
each other. Additionally, we verified that the cAdvisor metrics types and the Docker

API metrics types are within the same groups which are five, as we can see in Table 3.4.
Finally, seven distinct metrics groups with a total of one hundred and two metrics do not
have any correspondence with the two monitoring solutions used in this comparison.

A intersection between the metric sets present in [1], the eighty-six metrics that Sysdig
can monitor from containers and, lastly, the one hundred and fifty-five from Docker API,
was carried out and the results are shown as a Venn diagram in Figure 3.3.

Figure 3.3: Intersection between metric sets from Irrera & Vieira [1], Docker API and
Sysdig.

As Sysdig is a monitoring tool that provides deep system visibility by gathering and
filtering OS events, by executing at Linux kernel, which leads to a bigger concentration of
the gathered metrics along the following groups: System, Process and Thread. On the
other hand, the metrics monitored by the other solutions, cAdvisor and Docker API, are
more concentrated in groups such as Disk, Memory and Processor. Thus, the low number
of identical metrics between Sysdig and the Docker API is understandable, as they focus
in di↵erent types of metrics in order to monitor containers. The same reason can be
appointed for the intersection between all the three metrics lists analyzed in Figure 3.3,
concentrating only six identical variables. These observations are identified in Table 3.4.

Furthermore, we found out that six di↵erent groups with a total of ninety variables have
not any correspondence when considering Sysdig and Docker API. It is also important to
note that Sysdig has twelve metrics in common with the two hundred and thirty-three used
in [1]. Therefore, we can conclude that the Docker API features a bigger correspondence,
being seventeen di↵erent variables.

Finally, Figure 3.4 presents, also in a Venn diagram, how much identical are the metrics
collect with Sysdig and cAdvisor, and with the ones used in the PhD Thesis “Fault
Injection for Online Failure Prediction Assessment and Improvement” [1]. In order to ac-
complish it, a comparison of the variables that could be monitored by these two monitoring

29

Chapter 3

solutions was performed.

Figure 3.4: Intersection between metric sets from Irrera & Vieira [1], cAdvisor and
Sysdig.

When analyzing Figure 3.4, we can state that the presented results are not very di↵erent
from the ones summarized in Figure 3.3. As cAdvisor and the Docker API present a big
intersection percentage between them, it can be a potential reason to explain the identical
results when comparing these two monitoring tools with Sysdig. As far as the intersection
of the three metrics lists presented in Figure 3.4 is concerned, a total of two metrics is
common to all, being less eleven than in Figure 3.2 and less four than in Figure 3.3.

However, when considering the equivalence between the gathered metrics using Sysdig

and cAdvisor, we verify that is only less two than in the previous comparison presented in
Figure 3.3. Thus, following this perspective, we can conclude that cAdvisor and Sysdig

metrics have a better intersection than the Docker API and Sysdig metrics, because
cAdvisor is equivalent to have approximately sixty-three percent of the Docker API met-
rics. Finally, as in the case of Figure 3.3, there are also six distinct groups with a total of
ninety metrics, which have no intersection with the considered monitoring solutions.

Table 3.4: Intersection between the metric sets from Irrera & Vieira [1] and the monitoring
tools.

Object Name Irrera & Vieira [1] cAdvisor Docker API Sysdig

Cache 27 0 0 0
Disk 23 7 7 1
Job Object Details 27 0 0 0
Job Object 13 0 0 0
Memory 29 3 3 0
Objects 6 0 0 0
Paging File 2 0 0 0
Process 27 1 3 5
Processor 15 3 3 2
System 16 1 1 2
Thread 12 0 0 2

Total 212 15 17 12

30

Online Failure Prediction in Containers

Therefore, we can conclude that the monitoring tool that obtained the best results was
the Docker SDK for Python, which gathers metrics using the Docker API. This way, it
will be the tool that will be used in the remaining parts of this work. It is important to
note that the gathered results from the comparisons are summarized in Table 3.4.

As the monitoring tool is already chosen, we can state this specific goal as accomplished.
Thus, we can move on to the next step of this work, which consists in performing experi-
ments composed by executing a Docker setup across various system configurations.

3.2 Understand the Variation of Variables across Setups

In order to analyze and study the Docker containers behaviour when running in di↵er-
ent system configurations, it was necessary to perform experiments in di↵erent system
configurations for the selected applications. This way, it was required to collect the data
generated by running runs without any fault injected which are called golden runs.

The second and third specific objectives can be simultaneously done, so the FI tool was
already selected which is presented in Section 3.3. The selection of the FI tool implies
the use of applications which are developed in the targeted programming language, in this
case the C programming language. Those applications will run inside Docker containers
in order to perform the experiments to get failure data.

Then, after doing some research to find out which applications could be the best options
to use in this work, we verified that the Apache HTTP Server (Apache httpd) [75],
NGINX Server [76] and PostgreSQL [77] were the best candidates. The applications
will run separately inside a Docker container. It is important to note that all the mentioned
applications have the Core code developed using the C programming language.

We performed the experiments which are detailed in Section 4.1 and the variables were
collected considering all scenarios: two applications and two system configurations, also
presented in Section 4.1.

Lastly, it was necessary to use a statistical test to compare the variables gathered from
the di↵erent systems configurations running each application inside a container. As
the gathered variables were not continuous, independent, their distribution was not
known (non-parametric) and were collected from two di↵erent systems, the Mann-
Whitney U test [78] could be used. The comparison between the runs from each scenario
was also performed in Section 4.1.

In the Mann-Whitney U test, the null hypothesis, H0, states that both x and y samples
have the same distribution. On the other hand, the alternative hypothesis, H1, states
the opposite, i.e. x and y samples have di↵erent distributions.

After understanding which variations occur between the variables gathered from di↵erent
system configurations, we needed to move to the next objective which is composed by
generating failure data using Fault Injection (FI).

3.3 Using Fault Injection to Generate Failure Data

The Fault Injection (FI) tools that were considered for this work were HSFI [27] and
BugTor [9], both already presented in 2.2.3. Nevertheless, as the focus of this work is the
use of applications which allow an easy integration of microservices, and as we already have

31

Chapter 3

some experience with the BugTor fault injection tool, this tool looks more promising for
the available time to perform the generation of failure data. We also have took into account
that BugTor was developed in a Master Dissertation by Gonçalo Pereira at Department
of Informatics Engineering (DEI), University of Coimbra (UC) [9]. This way, as we can
only use one fault injection tool to generate failure data due to time constraints, we have
chosen the BugTor to perform the fault injection in this work.

Section 4.2.1 presents the work performed to produce the faults by using the FI tool. After
generating all the patches that contain the faults to be injected into the applications, it
was necessary to select those that were more representative, i.e. the faults that were
more activated when running the experiments. The selection of the faults is described in
Section 4.2.2.

When all FI experiments were performed, we analyzed all the runs to identify which
failures occurred. This part of the work is presented and described in Section 4.2.3. In
order to identify the failures, we wrote the following failure modes classification based on
and adapted from the CRASH Scale from [10]:

• Catastrophic/Crash: The Docker container stops running before the expected
time, because the application that was running inside it crashed.

• Restart/Hang: When the system does not answer any request and/or wrongly
answers all requests after a certain time instant.

• Abort: When a request that was performed to the application that is running inside
the container and returned an error, or did not give the expected output, or, lastly,
a timeout occurred (ten seconds).

• Repeated Abort: When many aborts happen during a certain time interval.

• Hindering/Delay: When a request lasts more time than the usual, passing a given
threshold.

We have also created the following detection approach which is used in Section 4.2.3 in
order to detect each failure:

• Catastrophic/Crash: The Bash script that is generating the workload, already
mentioned in Section 4.1, it takes at least thirty-three minutes, corresponding re-
spectively to one thousand, nine hundred and eighty seconds. When this script
detects that it has already reached the expected time, always waits for the last re-
quests made. This way, this can take up to two additional minutes at most, totaling
thirty-five minutes. So, if the container stops running before reaching the thirty-three
minutes, we can state that occurred a crash of the application that is executing in-
side the container. On the other hand, to verify if the application crashed during the
additional time, we need to analyze the logs from the application that are persisted
using a Docker volume. Finally, the time stamp corresponding the time instant the
application crashes will be classified as a crash.

• Restart/Hang: It is necessary to verify if, at a certain time instant, all the requests
made to the application failed. It should be noted that the time instant above
referred must be at least thirty seconds from the end of the run. In order to analyze
if a request failed, we need to confirm the output obtained from it. If there is not
an output corresponding to that request or the output is di↵erent from the original

32

Online Failure Prediction in Containers

one, we can assert that that request failed. This way, we only need to verify if all
requests performed after a certain time instant failed, and if so, we need to classify
the first request time stamp as a hang.

• Abort: To find out if any request failed, we need to compare the number of correct
outputs, i.e. outputs that are equal to the original ones, with the number of requests
made to the application. So, if the number of correct outputs is less than the total
number of requests, we can state that there were requests that failed. All these
requests are classified as aborts.

• Repeated Abort (RA): If many aborts occur in a given time frame, all will be
classified as repeated abort (RA). It requires at least three consecutive aborts in
which they must be separated by a maximum interval of two seconds between them.
It is important to note that the time frame can be the entire run, being di↵erent
from a hang, because there are successful requests between and/or after the ones
that failed.

• Hindering/Delay: A log file with some discriminated times is created for each re-
quest performed. Those times are presented in the workload script in Section 4.1.
So, a threshold of twice the sum of the average of the golden runs’ requests times
and corresponding standard deviation was set for each application and machine,
totaling four distinct thresholds. Thus, every requests that lasted longer than the
corresponding threshold will be classified as hindering/delay.

Therefore, we can move on to next step of this work as all the data was generated. The
last objective consists in selecting the appropriate data to be used in the Failure Prediction
(FP) experimental campaign, as also the prediction parameters and methods for feature
selection and data balancing.

3.4 Evaluation of Failure Prediction Algorithms

As all the non-failure and failure data was generated, we could start this part of the
work by selecting the appropriate data to be used to train and test the Failure
Prediction (FP) model. We also needed to verify which failure modes from the initial
five would be used in order to predict. Then, the approach followed for the data and
failure modes selection is described in Section 5.1.

Once the data and features are chosen, we selected sets of parameters and Machine Learn-
ing (ML) techniques and we performed some experiments to chose the parameter combi-
nation with best results. In order to perform the FP experiments, we used the ML tool
Propheticus [11] developed by João Campos, a PhD student at DEI, UC. This tool is still
under development, but already does what is necessary for this work. The datasets need
to follow a specific model in order to be used in the tool. Filtering by feature value, nor-
malizing data, balancing data (random oversampler, random undersampler and Synthetic
Minority Over-sampling Technique (SMOTE)) and reducing the dimensionality (correla-
tion, F-Score, Recursive Feature Elimination (RFE) and variance) are examples of how
this tool can process data. This part of the work is also described in Section 5.1. This ML
tool can also analyze the data through, for example, class distribution, feature box plot,
feature correlation plot and descriptive analysis. Lastly, it has clustering and classification
algorithms to process the datasets. Decision Tree, Gaussian Process, Logistic Regression,
Neural Network, Random Forests and Support Vector Machine (SVM) are examples of
the classification algorithms that can be used.

33

Chapter 3

After selecting the data, we performed the FP experimental campaign using the SVM
supervised classifier and all the parameters and techniques chosen in Section 5.1. The
experimental campaign is detailed in Section 5.3. The results are also presented in Sec-
tion 5.3, where they are analyzed and discussed.

Lastly, it is important to note that a comparison of the results with is performed Ir-
rera & Vieira [1] to evaluate the e↵ectiveness of the configuration chosen for this
work.

34

Chapter 4

Data Generation and Analysis

This chapter presents all the work performed related to the generation of both failure and
non-failure data, where the first is created by using a Fault Injection (FI) tool and the
second by running golden runs. This chapter is organized in three sections. Section 4.1
presents the system configurations used in this work and the setup created to run the
experiments. A comparison between the variables collected from the containers running
in the system configurations is also performed and described in this section. Section 4.2.1
describes the process conducted to produce failure data using for that a FI tool. This
section is organized in three subsections. Section 4.2.1 presents how the faults were created
for each application by using the FI tool. Section 4.2.2 describes the approach followed to
select the faults taking into account their representativeness. Finally, Section 2.2.3 presents
the process of generation failure data by injecting the faults. The process composed by
the detection of the failures following a failure modes classification that was created in
Section 3.3 is also describes in this section.

4.1 Metrics Variation Analysis

In order to perform the experiments, two machines were used whose specifications are
listed in Table 4.1. The selection process of the applications that will run inside the
containers took into account which programming languages the selected fault injection
tool was able to inject faults.

Table 4.1: Hardware and Software specifications of the machines used in this work.

Specification Machine I Machine II

CPU Intel(R) Xeon(R) CPU E5506 @
2.13GHz

Intel(R) Core(TM) i3-4330 CPU
@ 3.50GHz

RAM 12GB 16GB
OS Ubuntu 16.04 Ubuntu 16.04
HDD 4x459GB 294GB
SSD - 110GB

As presented in Section 3.2, the best candidates to be used as applications in this work
are Apache httpd, NGINX Server and PostgreSQL.

In order to allow HTTP requests, a static website template called Elements was selected
from [79] and will be hosted in each web server (Apache HTTP Server and NGINX Server),
allowing HTTP requests to its HTML pages.

35

Chapter 4

As far as Docker is concerned, the same version will be installed and used, 17.12.0-ce, in
both machines from Table 4.1. The containers will be built on top of Debian 9-slim [80], a
lightweight version of Debian 9 (Stretch) which allows a faster download and installation.
So, we coded the following Dockerfiles for building the following Docker images:

• To install all server dependencies and configure the Apache httpd or the NGINX
Server. The goal is to avoid spending time, as these actions are always the same
for each run. Then, it can be seen as the configuration Docker image for each
application.

• To replace the code with the one with the fault injected and install the server (Apache
httpd or NGINX Server), using the corresponding configuration Docker image.

Also, it is necessary to install the monitoring tool in each machine from Table 4.1, in
order to gather the variables from the containers. A Python script was developed using
and adapting the Docker SDK for Python from [81]. This script collects the metrics from
containers, using a function from the SDK that streams them, and stores them into a
SQLite database.

Lastly, the following Bash scripts were developed to organize and facilitate the execution
of the experiments:

• The main script iterates over all the selected patches which contain faults, and for
each run it applies the patch, builds and runs the container, launches a new process
running the Python script already explained in Section 4.1 in order to monitor
the container, runs the workload script and, finally, when the workload finishes, it
removes the patch. This script is summarized in Figure 4.1.

• The workload script that submits HTTP requests to the container using the curl
command, saving errors, outputs and times into logs. The time variables displayed
by the curl command are the following, as presented in [82]:

– time appconnect – “The time, in seconds, it took from the start until the
SSL/SSH/etc connect/handshake to the remote host was completed”.

– time connect – “The time, in seconds, it took from the start until the TCP
connect to the remote host (or proxy) was completed”.

– time namelookup – “The time, in seconds, it took from the start until the
name resolving was completed”.

– time pretransfer – “The time, in seconds, it took from the start until the file
transfer was just about to begin. This includes all pre-transfer commands and
negotiations that are specific to the particular protocol(s) involved”.

– time redirect – “The time, in seconds, it took for all redirection steps includ-
ing name lookup, connect, pretransfer and transfer before the final transaction
was started. time redirect shows the complete execution time for multiple
redirections”.

– time starttransfer – “The time, in seconds, it took from the start until the
first byte was just about to be transferred”.

– time total – “The total time, in seconds, that the full operation lasted”.

After analyzing them, we decided to not count the time namelookup, because the
name resolving is not influenced by the application that runs inside the Docker
container.

36

Data Generation and Analysis

This script consists in seven phases. It begins with single requests to random HTML
pages, from the static website, during three minutes, where each request is made
between one and three seconds after the previous one. It stops and waits for five
minutes, then it continues to perform between two and fifteen parallel requests during
also five minutes. At this stage, it will repeat the pause and the parallel requests
mentioned above. Then it will pause again during five minutes and lastly, it will
make between twenty and thirty parallel requests to the container.

This script is summarized in Figure 4.1 and has a duration of at least thirty-three
minutes. It is important to note that all requests have ten seconds of timeout, i.e.
they will wait at least ten seconds for the application response, and otherwise, an
error is returned.

• The di↵ script verifies the output of all requests submitted to the container. In
order to do that verification, it uses the diff command between each request’s
output and the corresponding HTML page hosted in the application that is running
inside the container.

Figure 4.1: Overview of the experiment phases and workload submitted to the Docker
container.

Thus, taking into account the duration of each phase from the experiment, we can conclude
that each run lasts at most thirty-seven minutes, where each run corresponds to the
injection of one fault.

Nevertheless, it is also necessary to generate non-failure data to train the failure prediction
models. This way, we decided to run ten golden runs for each scenario, where each
scenario corresponds to an application: Apache httpd, NGINX Server and PostgreSQL.
Each golden run will execute use the scripts and the times already established. The only
di↵erence resides in the fault injection that will be not necessary for the golden runs case.

The same seed value was took into account and was used in the golden runs and in the
fault injection runs (FIR), because Bash scripting uses pseudorandom generators. This
way, the same sequence of random numbers was used for the time between requests and
for the HTML page requested by a given request.

After running ten golden runs for each application, we could perform a comparison between
the gathered variables from the runs from each machine. We needed to use a statistical
test to perform this comparison. As already presented and described in Section 3.2, the
Mann-Whitney U test [78] was used because the variables were not continuous, inde-
pendent, non-parametric and were collected from di↵erent systems. This way, we

37

Chapter 4

used this statistical test in each variable of the one hundred and forty-nine non string type
metrics collected by the monitoring tool Docker SDK for Python, from both machines.

In order to apply the Mann-Whitney U test, we used the Python package mannwhitneyu

from SciPy [83]. It is important to note that we defined the alternative hypothesis as two-
sided or two-tailed to calculate the p-value, so the mean of the x samples was lesser or
greater than the y samples. This way, if the p-value calculated was lesser than five percent
we could rejected the null hypothesis for the corresponding variable.

Table 4.2 presents seventeen example variables from the one hundred and forty-nine vari-
ables collected when running Apache httpd server, and the corresponding U statistic and
p-value obtained from using the Python package [83] mentioned above. The package raises
an error when all x and y samples are identical, i.e. all values from both samples are equal.
The variables corresponding to this case were marked with “-”.

Table 4.2: Example of the U statistic and p-value calculated by applying the Mann-
Whitney U test to the Apache httpd golden runs variables.

Variable U statistic p-value

BLKIO service bytes recursive read major - -
BLKIO service bytes recursive read minor 0 0
BLKIO service bytes recursive read value 63318179.0 0
BLKIO merged recursive read major - -
BLKIO merged recursive read minor 0 0
BLKIO merged recursive read value 206618178.0 2.36e�24

CPU total usage 309064315.0 0
System CPU usage 411133372.0 0
CPU throttling data periods - -
Memory usage 169108405.0 4.65e�210

Memory active file 129739788.5 0
Memory cache 163924174.0 1.27e�273

Memory dirty 205788782.5 0.84
Memory pgfault 407496779.5 0
Network eth0 rx bytes 218164177.0 1.17e�26

Network eth0 rx packets 194301478.5 1.21e�21

Network eth0 rx dropped - -

When the p-value is zero, it means that all values from one sample are greater than the
values from the another sample, or the opposite. Lastly, when the p-value is lesser than
five percent means that there is enough evidence to reject the null hypothesis H0 for a
given variable, otherwise the null hypothesis cannot be rejected.

On the other hand, Table 4.3 also presents the same seventeen example variables and the
corresponding U statistic U and p-value obtained by using the same Python package from
SciPy [83], in which the variables were gathered by running the NGINX Server inside a
Docker container.

Finally, Table 4.4 presents a summary of all p-values obtained for each variable from both
scenarios: Apache httpd and NGINX servers. As far as the variables collected in the
Apache httpd scenario are concerned, we concluded by viewing the values presented in
Table 4.4 that about forty-four percent of the variables have equal distributions in both
machines against about fifty-three percent that have di↵erent distributions. Only four
variables in a total of one hundred and forty-nine did not allow the rejection of the null
hypothesis because their p-value is greater than five percent.

38

Data Generation and Analysis

Table 4.3: Example of the U statistic and p-value calculated by applying the Mann-
Whitney U test to the NGINX golden runs variables.

Variable U statistic p-value

BLKIO service bytes recursive read major - -
BLKIO service bytes recursive read minor 31783367.5 0
BLKIO service bytes recursive read value 138428228.5 0
BLKIO merged recursive read major - -
BLKIO merged recursive read minor 31783367.5 0
BLKIO merged recursive read value - -
CPU total usage 279527082.0 0
System CPU usage 397464030.0 0
CPU throttling data periods - -
Memory usage 279386552.5 0
Memory active file 144942577.5 0
Memory cache 157691680.5 2.19e�279

Memory dirty 198393211.5 0.76
Memory pgfault 187386846.5 5.49e�23

Network eth0 rx bytes 218164177.0 5.17e�49

Network eth0 rx packets 194301478.5 1.28e�48

Network eth0 rx dropped - -

Table 4.4: Summary of p-values obtained by applying the Mann-Whitney U test for each
variable from Apache httpd server and NGINX server scenarios.

p-value Apache httpd server NGINX server

- 66 51
< 0.05 79 95
� 0.05 4 3

By continuing to analyze Table 4.4, the NGINX Server scenario presented more discrepant
values than the Apache httpd scenario, where about thirty-four percent of the variables
had equal values in both machines which leads to the conclusion that they have the same
distribution. In contrast, about sixty-four percent of the total one hundred and forty-
nine variables presented di↵erent distributions in both machines as their corresponding
p-value is lesser than five percent. Lastly, the null hypothesis was not rejected in only
three variables, as we can see in Table 4.4.

Therefore, we can conclude by analyzing the data collected from the Apache httpd and
NGINX Server golden runs, that more than half of the total number of variables collected
from both machines (one hundred and forty-nine) seem to have di↵erent distributions.
This way, we needed to take it into account, because the values of these variables seem to
highly depend on the machine where the Docker container is running.

As the comparison of variables gathered from di↵erent systems is finished, we can move
on to the next specific goal which consists in applying a fault injection tool to generate
failure data to be used later in the failure prediction, to train and test Failure Prediction
(FP) models.

39

Chapter 4

4.2 Using Fault Injection to Generate Failure Data

4.2.1 Fault Generation

As stated in 3.3, BugTor, currently hosted in ucx.dei.uc.pt [84], was the selected fault
injection tool for this work. It is of simple use, being only necessary to upload the appli-
cations code and to run the tool in each code file in order to generate the patches which
contain the fault that will be injected later. It is important to note that this tool formats
the code files, and generates the patches considering them.

We started to generate all patches for a selection of C code files from Apache httpd,
NGINX and PostgreSQL source code using the selected FI tool. The selection of code files
was performed taking into account a prior analysis from which folders and files could be
more interesting:

• In the case of Apache, we used most of all C files from its Server folder. Files from
mpm/mpmt os2, mpm/netware and mpm/winnt folders were not considered.

• In the case of NGINX, all C files from its core, events and http folders were selected.
In the latter two, the C files from modules were not considered.

• In the case of PostgreSQL, we considered all the C files inside lib and nodes folder
and main C file from backend folder. Moreover, all files from bin folder were also
chosen.

A summary of all generated patches is presented in Table 4.5. We can observe that
the number of C files is not so much di↵erent when comparing Apache with NGINX.
However, PostgreSQL has approximately four times more C files than Apache httpd and
six times more than NGINX. Nevertheless, the number of selected C files does not follow
a proportion for all applications, fifteen percent of Apache files were selected, thirty-seven
percent for NGINX and only nine percent for PostgreSQL. As already mentioned, the
selection approach takes into account the files that seemed more interesting to inject
faults. Then, Apache httpd Server is the application with less selected files and generated
patches, and on the other hand, PostgreSQL is the one with more selected files and created
patches.

Table 4.5: Summary of total generated patches, selected and total C files for Apache HTTP
Server, NGINX Server and PostgreSQL.

Application Patches Selected C Files Total C Files

Apache httpd 8266 42 276
NGINX 35885 73 199
PostgreSQL 53057 109 1204

The software fault injection tool BugTor generates patch files for a given code file written
in C programming language, as stated in [9]. Each patch file contains a modification for
a portion of the original code, which corresponds to a fault. In order to inject the fault,
we only need to apply the patch to the original code. As stated above, this tool is hosted
in ucx.dei.uc.pt [84] and requires a registered account in order to use it. Then, we
uploaded the source files presented in Appendix A: Table A.1 as Apache HTTP Server
is concerned, in Tables A.2, A.3 and A.4 in the case of NGINX Server, and, lastly, in
Tables A.5 and A.6 as PostgreSQL is concerned.

40

Data Generation and Analysis

4.2.2 Fault Selection

The selected Fault Injection (FI) tool, BugTor, has some known limitations with code that
contains macros, as presented in [9]. As various code files from Apache HTTP Server and
NGINX Server present conditional compilation, this arises as a problem. This way, the
tool creates patches with errors when the code presents macros in places other than the
beginning of the code. In order to fix this problem, it was necessary to identify and set a
strategy. In [9], two ways are suggested to deal with this problem:

• Using the command gcc -e file to solve the macros. However, as most of the files
from Apache HTTP, NGINX Server and PostgreSQL have dozens of dependencies,
it will be very di�cult to get it to work.

• Analyzing separately each file and select the most important parts or functions.
However, we wanted to submit the whole files to the tool and then study and select
which patches were the best for this work.

So, the best approach we have identified consisted in doing a prior analysis about which
functions execute when these applications start and when they receive and process HTTP
requests. In order to reduce complexity and due to time constraints, we needed to select
less applications in order to save some time. From this moment, we will only consider
Apache HTTP Server and NGINX Server, leaving PostgreSQL for future work.

In order to try to increase the representativeness of the faults, i.e, injecting faults
in parts of the code that execute one or more times in the situations described above,
we needed to do a statistical analysis to choose the files and patches which were more
representative. Then, we added a fprintf to the beginning of each function of the files.
Every time a function executes, it will add a line with the corresponding file and function
identifiers to a text file inside the Docker container, which is persisted by using a Docker
volume. Therefore, the C code files were selected using a profiling technique for both
applications.

Figure 4.2 and Figure 4.3 present the twenty-three functions that were executed the most.
These results were obtained by following the fprintf approach described above. We will
give more importance to the results associated with the performed HTTP requests, which
some of them are presented in Table 4.3, because we want to minimize the possibility of
the containers crashing at the beginning of their execution. Thus, we can have more data
monitored from the containers as they will last longer.

On the other hand, Figure 4.4 and Figure 4.5 also present the twenty-six fprintf that
had more occurrences, however those are related to Apache httpd Server.

After analyzing which functions and code files run more times when the application starts
running or receives requests, we selected eleven C code files and twenty patches for each
file. The best candidates for the Apache httpd Server were the following C code files:
config.c, core.c, core filter.c, event.c, fdqueue.c, log.c, main.c, protocol.c, re-
quest.c, scoreboard.c and util filter.c. On the other hand, the best candidates for
the NGINX Server were the following eleven files: nginx.c, ngx array.c, ngx buf.c,
ngx connection.c, ngx hash.c, ngx list.c, ngx open file cache.c, ngx palloc.c, n-
gx rbtree.c, ngx string.c and ngx times.c.

Therefore, we will use a total of two hundred and twenty di↵erent patches in this work for
each application. The patches selection took into account the following approach:

41

Chapter 4

Figure 4.2: Plot of fprintf data with more occurrences from NGINX Server when it
starts running.

• Verify the lines where the function starts and ends in the code file that was previously
formatted by the FI tool.

• Find all the patches that contain modifications between the lines mentioned above.

• Lastly, choose the twenty patches that look more suitable and interesting for this
experiment. A profiling technique was also used. So, the patches were carefully se-
lected following the distribution presented in Table 4.6 whenever possible. Table 4.6
presents the software faults types generated by BugTor [9] for the systems under
testing: Apache httpd Server and NGINX Server, based in field data study [85].
To track if a given fault is activated, we added a fprintf with an identifier to all
patches.

Due to time restrictions, it was required to select the best candidate faults to be
injected later in the experiments.

Table 4.6: Fault types generated by BugTor [9] and their incidence taking into account
the field data study from [86].

Fault Type Incidence (%)

Missing if around statements (MIA) 4.32 %
Missing if construct plus statements plus else before statements (MIEB) 3.20 %
Missing if construct plus statements (MIFS) 9.96 %
Missing AND sub-expr in expression used as branch condition (MLAC) 7.89 %
Missing Or sub-expr in expression used as branch condition (MLOC) 4.70 %
Missing small and localized part of the algorithm (MLPA) 1.32 %
Wrong variable used in parameter of function call (WPFV) 1.50 %

Total 32.89 %

When the patches selection was completed, it was necessary to generate those patches by
modifying the original file accordingly to each patch and using the diff command between

42

Data Generation and Analysis

Figure 4.3: Plot of fprintf data with more occurrences from NGINX Server for each
HTTP request.

the modified file and the original one. So, this action was performed both for Apache httpd
and NGINX two hundred and twenty times, totalling four hundred and forty patches. It
is important to note that it was a very exhausting and time consuming task.

Figure 4.4: Plot of fprintf data with more occurrences from Apache httpd Server when
it starts running.

43

Chapter 4

Figure 4.5: Plot of fprintf data with more occurrences from Apache httpd Server for
each HTTP request.

4.2.3 Fault Injection

As all the patches that will be used in the experiments are already created and chosen, we
can start doing the FI experiments. As stated above, we will inject a fault in each run.
Therefore, our experiments consist in two hundred and twenty runs for Apache httpd
Server and for NGINX Server, as we decided to select eleven files in both applications
and twenty patches in each file.

Each run should last at most thirty-seven minutes, as presented in Figure 4.1. This way, as
already stated in Subsection 2.3.2, the selected monitoring tool, Docker SDK for Python

gathers variables from the containers every second, there will be at least one thousand,
nine hundred and eighty samples per run.

After running all the experiments in both machines presented in Table 4.1, we analyzed
which failures occurred in each run. These failures follow a failure modes classification
which is listed and described in Section 3.3. It is important to note that the failure modes
classification was based on and adapted from the CRASH scale from [10]. We have
also established a detection approach to detect if a given failure occurred. This detection
approach is described in Section 3.3.

Afterwards, everything was ready to perform the Fault Injection campaign, consisting of
the injection of two hundred and twenty faults in two di↵erent applications, Apache httpd
and NGINX servers, replicating this campaign in two di↵erent machines. This way, the
total number of runs is eight hundred and eighty, where each one can execute at most
about thirty-three minutes, not counting the build time of the container. So, it will take
about twenty-nine thousand and forty minutes to finish, which is equivalent to more than
twenty days.

A summary of the results gathered from the FI campaign are presented in Table 4.7. More
than one failure type can occur in a certain Fault Injection run (FIR) except the Hang and

44

Data Generation and Analysis

the Crash, because we only consider the samples until the instant a hang has occurred.
For every scenario ten golden runs (GR) and two hundred and twenty FI runs (FIR) were
performed, as already mentioned in this section.

Table 4.7: Summary of the failures detected in the Fault Injection campaign in the Apache
HTTP Server and NGINX Server scenarios.

Application Machine GR FIR
Failures

Hang Crash RA Abort Delay Total

Apache httpd
I 10 220 28 10 14 46 58 156
II 10 220 28 10 14 46 125 223

NGINX Server
I 10 220 24 28 12 57 25 146
II 10 220 25 28 14 56 95 218

When analyzing the results presented in Table 4.7, it can be verified that the average
occurrence of failures was approximately one failure per run in the case of both applications
running in Machine II. On the other hand, the number of failures detected in Machine I
was lower which in turn is related with the number of runs where delays occurred. This
turns out to be a bad result when compared with the results from Machine II.

As the failure data was already generated, collected and classified, we can move on to the
next specific goal, which consists in selecting and submitting the adequate data to a failure
prediction algorithm and evaluate how e↵ective it is at predicting the failures generated
by the faults injected.

45

This page is intentionally left blank.

Chapter 5

Experimental Campaign on

Containers Failure Prediction

To evaluate the e↵ectiveness of the existing failure prediction algorithms in containers
environment, we devised an experimental campaign. The goal was to understand how
well these algorithms fared in this context, and to understand if the results they obtained
were aligned with the ones obtained in other domains.

First, it was necessary to select the data by analyzing the Fault Injection Runs (FIR)
for each failure mode and selecting the ones that are more suitable for this part of the
work. This way, the failure modes consisted in the ones presented and identified in the
selected FIR. Then, we needed to verify which variables have more information for training
and testing the Failure Prediction (FP) model, discarding the remaining variables.

After the data selection is performed, it was necessary to configure the Failure Prediction
(FP) setup by choosing a supervised machine learning algorithm to classify the samples.
We used the Machine Learning (ML) tool Propheticus [11] to perform all the FP experi-
ments necessary for this work. This way, it was required to select the prediction parameters
for the FP algorithm and ML techniques for feature selection and data balancing of the
datasets.

Finally, the results were obtained by running the Failure Prediction (FP) experiments
and then analyzed and discussed. A comparison was performed with the results from
Irrera & Vieira [1] in order to assess how e↵ective was the chosen FP configuration and
algorithm.

5.1 Data Selection

In the supervised learning, the first step resides in analyzing and treating the data, being
one of the most important steps. If this step is performed incorrectly, it will influence the
future results because it will wrongly train the algorithms or classifiers.

We chose the supervised learning because the goal is to use classification algorithms, where
all samples are labeled with non-failure or with one failure mode (Crash, Hang, Abort,
Repeated Abort, Delay). As presented in Subsection 2.2.4, the goal of supervised learning
is the creation of a classifier through the mapping of the input into a requested output.

This way, we started by verifying which Fault Injection (FI) runs were the best candidates

47

Chapter 5

to be used in FP. In order to achieve this, we decided to not use runs where all requests
failed, because there is non-failure initial data to train the model. Also, we will not use
runs where no failure was detected, as this does not indicate with absolute certainty that
no failure occurred. Lastly, the runs that the application crashed at the first request will
not be considered too. The number of runs that will be used for predicting is presented
in Table 5.1, for both applications scenarios: Apache httpd and NGINX Server.

As all the crashes occurred at the first request, these are not valid Crash data to train
and test the models so, we decided to discard the failure mode Crash from this part
of the work. This can be directly related to the representativity and complexity of the
applications selected, i.e. in other applications it could be possible to detect crashes later
in the execution of the runs.

Also, we verified that the way we are detecting the failure mode Delay is not totally
“accurate”, because it can be detected in golden runs too. In order to reduce the underlying
complexity and the time required to run the Failure Prediction experiments, we decided
to discard this failure mode too, because it was the one with more occurrences.

Therefore, the failure modes that will be used in this part of the work are Abort, Hang
and Repeated Abort.

Table 5.1: Number of Fault Injection runs selected for Failure Prediction in Apache HTTP
Server and NGINX Server.

Application Machine FIR FIR selected (%)

Apache httpd
I 220 14 (6.36 %)
II 220 93 (42.27 %)

NGINX Server
I 220 12 (5.45 %)
II 220 56 (25.45 %)

Analyzing Table 5.1, we can observe that the Fault Injection runs (FIR) selected from
Machine I are much less than the ones from Machine II. This is directly related with the
number of runs where at least a Delay was detected, with many more being observed on
the Machine II.

We have also performed an analysis of the collected variables. We observed that many of
them are incrementers or accumulators, which is confirmed by the metrics documentation
from Docker [87]. This may become a problem as they can influence the model to make
false predictions, because the model can associate the increase of a metric value to a given
failure, which could be wrong. As stated in [88], the illegitimate usage of data can be
considered data leakage. We decided also to discard some variables that are always equal
to zero and others that present information like the number of CPUs available.

Therefore, we decided to discard those variables, having the direct advantage of decreasing
the time complexity. Table 5.2 presents the total number of metrics and the number of
discarded metrics per Docker metrics’ groups. From now on, we will consider only eighty-
seven variables from the initial one hundred and forty-nine.

However, there is a problem when collecting all BLKIO variables in the Apache httpd
scenario. It happened in some golden runs (GR), four in Machine I and one in Machine
II, and also in some FI runs, one in Machine I and thirty-five in Machine II. All or most
of the corresponding values are equal to -1 in those runs. In order to resolve this problem,
one of the following approaches may be used:

48

Experimental Campaign on Containers Failure Prediction

Table 5.2: Variables discarded per variable group.

Variables Group # Variables # Discarded Variables (%)

Block I/O 96 32 (33.3 %)
CPU 9 9 (100 %)

Memory 34 11 (32.4 %)
Network 8 8 (100 %)
Other 2 2 (100 %)

Total 149 62 (41.6 %)

• Discard those runs, which means that there will remain thirteen FIR from Machine
I and fifty-eight from Machine II, as we can see in Table 5.2;

• Discard all block I/O variables from all golden and FI runs, leading to a decrease
of the total number of eighty-seven variables to only twenty-three, as presented in
Table 5.2;

• Keep the runs and all block I/O variables, as this problem can occur at any time
when collecting these metrics, so the model will be more prepared to handle this
when it occurs.

As the first and second approaches greatly reduce the information available for training
the model, we decided to keep the runs and all block I/O variables. Thus, we will be
training the model with errors that can arise in the variables stated when monitoring the
containers, being in this way more realistic.

5.2 Failure Prediction Setup

Due to time restrictions, we decided to only use the Support Vector Machine (SVM)
as the supervised machine learning algorithm. We started by coding in Python program-
ming language using useful libraries and packages from scikit-learn [89] to perform small
experiments and to learn more how it works. Then we used the tool Propheticus as already
stated in Section 3.4.

In order to select the parameters which seem to be the best or the most appropriate for
the SVM, we performed some small experiments with the FI data and feature and instance
selection techniques, the kernel [90] and the kernel coe�cient (�) [90].

As the time available was less and less, we did those small experiments only in one random
combination of �tl (lead-time) and (prediction period), fifty and thirty seconds respec-
tively. Thus, four di↵erent kernels were tested: Linear, Polynomial, Radial Basis Function
(RBF) and Sigmoid. For each kernel, small experiments were performed in order to get
the best data balancing techniques (Random Oversampling, Random Undersampling, Syn-
thetic Minority Over-sampling Technique (SMOTE)) or otherwise, none of them, and also,
the best value for the (�) parameter. It is noteworthy that each kernel has its own pa-
rameters, where can be equal to the parameters of other kernel. For example, as stated
in [90], Polynomial kernel has a parameter named degree, and the kernel coe�cient (�) is
for RBF, Polynomial and Sigmoid kernels.

Due to time restrictions, we could not test for di↵erent feature selection methods and
di↵erent values for the C parameter [90]. This way, we decided to use the Recursive

49

Chapter 5

Feature Elimination (RFE) and variance methods for feature selection and the default
value for the C parameter (C = 1.0) as presented in [90].

As stated in [90], it is important to note that the the time complexity associated with
the fit of the model to the training data is greater than the quadratic complexity. So, it
will take a lot of time for larger datasets containing more than ten thousand samples, as
presented in [90].

The average number of samples in the four datasets generated through fault injection is
approximately thirty-five thousand, seven hundred and ninety-eight samples. The average
number of samples was calculated taking into account only the runs related with the three
failure modes already mentioned in Subsection 5.1 (Abort, Hang and Repeated Abort),
and all the golden runs. Therefore, only one dataset from the initial four was used, being
the one generated in the NGINX Server and Machine I scenario.

The Support Vector Machine (SVM) is a binary supervised classifier [43], so the experi-
ments will performed separately for each failure mode, even being possible to make mul-
ticlass classification with SVM. Figure 5.1 presents two examples of confusion matrices
obtained for di↵erent configurations and for the failure mode Hang, while Figure 5.2 for
the failure mode Abort, and lastly, Figure 5.3 for the failure mode Repeated Abort. These
figures were created using the ML tool.

(a) Parameters: RBF kernel and � =
0.1, Random Oversampling and Ran-
dom Undersampling.

(b) Parameters: RBF kernel and � =0

auto0, Random Undersampling.

Figure 5.1: Examples of confusion matrices obtained using SVM for (�tl= 50, �tp= 30)
and failure mode Hang.

After analyzing the results, a tie was verified between the following parameter combina-
tions:

• SVM with RBF kernel and � = 0.1, Random Oversampling and Random Undersam-
pling for Instance selection;

• SVM with RBF kernel and � = 0.1, Random Undersampling and SMOTE for In-
stance selection;

Both combinations obtained the best results, taking into account the approach described
above. The first will be used from now on, being summarized in Table 5.3, and the reason
for this selection is due to the latter having the SMOTE for instance selection, which
can add some overhead as it creates synthetic examples of the minority classes [42]. The

50

Experimental Campaign on Containers Failure Prediction

(a) Parameters: RBF kernel and � =
0.1, Random Oversampling and Ran-
dom Undersampling.

(b) Parameters: Polynomial kernel and
degree = 2, Random Oversampling and
SMOTE.

Figure 5.2: Examples of confusion matrices obtained using SVM for (�tl= 50, �tp= 30)
and failure mode Abort.

(a) Parameters: RBF kernel and � =
0.1, Random Oversampling and Ran-
dom Undersampling.

(b) Parameters: RBF kernel and � =
0.1, Random Undersampling.

Figure 5.3: Examples of confusion matrices obtained using SVM for (�tl= 50, �tp= 30)
and failure mode Repeated Abort.

confusion matrices corresponding to the selected parameters are presented in Figure 5.1a
for Hang, in Figure 5.2a for Abort, and lastly, in Figure 5.3a for Repeated Abort (RA).

Figure 5.4 presents the Receiver Operating Characteristics (ROC) curves obtained for
each failure mode using the selected parameter combination with the dataset created
in the NGINX Server and Machine I scenario. The Receiver Operating Characteristics
(ROC) curves were also created using the Machine Learning (ML) tool. When analyzing
Figure 5.4, it can be seen that the average area under the curve when considering the failure
mode Hang is 0.99 (Figure 5.4b) which is a good result, and in the case of other two failure
modes, the average areas are not bad, being 0.91 (Figure 5.4a) and 0.88 (Figure 5.4c).

Nevertheless, when analyzing Figure 5.5, which presents the Precision/Recall curves cre-
ated using the ML tool, we can verify that the precision is low for all the three failure
modes. In the case of the Hang, Figure 5.5b, the precision can be equal to 1.0, however
the corresponding recall is low.

On the other hand, the other kernels did not obtain interesting results, having confused

51

Chapter 5

Table 5.3: Parameters of the Failure Prediction campaign.

Parameter Values

Failure Modes Hang, Abort, Repeated Abort
Supervised Classifiers SVM (kernel=RBF, � = 0.1, C = 1.0)
�tl (lead-time) 10, 20, 30, 40, 50 seconds
�tl (prediction period) 10, 15, 20 seconds
Sliding Window 3 seconds
Feature Selection RFE, Variance
Instance Selection Random Oversampling, Random Undersampling
Results Validation 5-fold cross-validation

the failure data with the non-failure data, performing a bad classification. There are cases
that all or almost all samples are classified as a failure or as control (non-failure). This
can be explained by the weak parameters selection which can lead to over-fitting or under-
fitting. However, the RBF kernel was the one with better results taking into account the
parameters and techniques chosen.

For the Failure Prediction campaign we will consider only �tl (lead-time) and �tp (predic-
tion period), leaving aside �tw (minimal warning time) in order to reduce the complexity
of this task. The set of values that will be used for �tl and for �tp are presented in Ta-
ble 5.3, which consist in the nine �tl and �tp pairs with best F-Measure results presented
in Table 5.5 (b) from Case Study: Benchmarking di↵erent failure prediction models, from
the PhD Thesis Fault Injection for Online Failure Prediction Assessment and Improve-
ment from Irrera & Vieira [1]. Thus, a comparison between the results obtained and the
results from Irrera & Vieira [1] will be performed in order to access if the SVM with the
selected parameters predicts well the failures induced by the faults injected.

Lastly, to validate the results, we will use the k-fold cross-validation with five folds, i.e.
dividing the samples into five equal size subsets and then, using each one at a time for
validation and the others for training. The final result will be composed by the average of
the five results.

As all the parameters necessary to conduct the Failure Prediction experimental campaign
are listed in Table 5.3, we are able to move to the last step of this work, which is composed
by gathering the results to verify the e↵ectiveness of the selected Machine Learning algo-
rithm with the parameter combination from Table 5.3. As already discussed, the results
will be compared with the results from Irrera & Vieira [1].

5.3 Results and Discussion

In order to perform the Failure Prediction (FP) experiments, it was necessary to execute,
for each pair of �tl (lead-time) and �tp (prediction period) and for each failure mode,
presented in Table 5.3, 30 runs to be able to draw conclusions and to generalize. The
Machine Learning tool uses a di↵erent seed in each run to generate random values when
necessary, for example, SVM needs it when shu✏ing the data [90].

Also, we needed to repeat it for each dataset created by generating failure and non-failure
data, as already described in Chapter 4: Apache httpd Machine I (A1) and Apache
Machine II (A2), NGINX Server Machine I (N1) and NGINX Server Machine II (N2).
And also considering and not considering the sliding window. Thus, three thousand, two

52

Experimental Campaign on Containers Failure Prediction

(a) Failure mode Abort. (b) Failure mode Hang

(c) Failure mode Repeated Abort (RA)

Figure 5.4: ROC curves corresponding to each failure mode using the selected parameters.

hundred and forty runs were performed using the classifier and configuration parameters
from Table 5.3.

For the sliding window of three seconds, only the failure mode Hang will be considered,
due to time constraints. This way, it was also necessary to execute one thousand and
eighty additional runs.

The results obtained from running all the FP experiments are presented in Table 5.4. The
F-measure can also be named as F-score, and consists in the harmonic mean of precision
and recall as stated in [91]. When this measure is close to 1, it means that both precision
and recall are very high, i.e. close to 1 too. Nevertheless, when the precision and/or the
recall are closer to 0, it will lead to the F-measure be close to 0. The precision and the
recall were already introduced in Subsection 2.2.4

When analyzing Table 5.4, we verified that most of the values obtained for this measure
are very low, which may reveal a rather weak prediction with the selected parameters.
We also verified that there is only one very similar F-measure value when comparing with
Irrera & Vieira [1], being the one from Table 5.4d, (�tl=40, �tp=20) and dataset A2.
The corresponding F-measure value from Irrera & Vieira [1] is 0.963. Figure 5.6 presents
the corresponding Confusion Matrix, ROC Curve and Precision-Recall Curve and
was created by using the ML tool. Taking into account the results from all the thirty runs,
the number of True Positives (TP) is 84038, False Positives (FP) is 142, False Negatives
(FN) is 9 and the number of True Positives (TP) is 1191. These values reveal that the
failure prediction model was very accurate at classifying the non-failures and the failures.

53

Chapter 5

(a) Failure mode Abort. (b) Failure mode Hang

(c) Failure mode Repeated Abort (RA)

Figure 5.5: Precision/Recall curves corresponding to each failure mode using the selected
parameters.

The dataset A2 from Table 5.4d is the one with overall better results when comparing
with all the F-score valures obtained, as all the corresponding F-measure values are higher
than 0.8. We can also conclude by analyzing Table 5.4 that the same dataset is the one
with best results in all scenarios. This, in turn, may be highly related with the selection
of this dataset to test and choose the parameters to be used in this work.

Therefore, the F-measure results obtained are very weak. Nevertheless, the number of
samples with failure data is very low when compared to the number of samples with non-
failure data (control data). This way, even if the percentage of false positives is very low,
its number can be much larger than the number of true positives, leading to a low precision
which in turn leads to a low F-score. This situation was observed frequently along the
pairs of �tl and �tp and the datasets.

This way, if the proportions of samples containing failure and non-failure were more bal-
anced, the results could be more satisfactory. However, changing the proportions can
lead to completely di↵erent results when the FP model predicts, because the datasets
information can be very divergent.

It is important to note that the Failure Prediction (FP) results obtained in this work
can only reveal that the parameters and data balancing methods chosen were not the
most adequate. As already stated, we could not test for several prediction parameter
combinations due to time constraints.

The proportions of samples containing failure data and samples containing non-failure data

54

Experimental Campaign on Containers Failure Prediction

Table 5.4: F-measure values obtained for each set of �tl and �tp.

�tl �tp
Datasets

A1 A2 N1 N2

10 20 0.274 0.685 0.443 0.399
20 20 0.245 0.649 0.517 0.377
30 15 0.327 0.622 0.427 0.374
30 20 0.255 0.607 0.456 0.334
40 15 0.272 0.603 0.425 0.384
40 20 0.255 0.577 0.437 0.325
50 10 0.327 0.571 0.396 0.379
50 15 0.258 0.574 0.431 0.343
50 20 0.259 0.557 0.455 0.294

(a) Failure mode Abort, no sliding
window

�tl �tp
Datasets

A1 A2 N1 N2

10 20 0.030 0.702 0.012 0.055
20 20 0.020 0.712 0.009 0.057
30 15 0.032 0.706 0.007 0.036
30 20 0.049 0.683 0.008 0.061
40 15 0.014 0.664 0.004 0.027
40 20 0.013 0.821 0.010 0.041
50 10 0.006 0.733 0.006 0.011
50 15 0.010 0.670 0.012 0.027
50 20 0.014 0.824 0.018 0.031

(b) Failure mode Hang, no sliding
window

�tl �tp
Datasets

A1 A2 N1 N2

10 20 0.152 0.551 0.354 0.630
20 20 0.138 0.529 0.359 0.605
30 15 0.131 0.494 0.341 0.582
30 20 0.140 0.523 0.356 0.590
40 15 0.134 0.484 0.344 0.562
40 20 0.147 0.507 0.359 0.570
50 10 0.095 0.406 0.323 0.535
50 15 0.120 0.454 0.346 0.543
50 20 0.130 0.503 0.363 0.540

(c) Failure mode Repeated Abort
(RA), no sliding window

�tl �tp
Datasets

A1 A2 N1 N2

10 20 0.035 0.836 0.012 0.050
20 20 0.030 0.824 0.008 0.078
30 15 0.027 0.854 0.005 0.090
30 20 0.026 0.852 0.009 0.122
40 15 0.053 0.825 0.008 0.036
40 20 0.011 0.940 0.009 0.045
50 10 0.005 0.855 0.011 0.031
50 15 0.009 0.842 0.007 0.041
50 20 0.037 0.907 0.017 0.028

(d) Failure mode Hang, sliding win-
dow 3s

turned out as a problem. As the Support Vector Machine (SVM) is a binary classifier, we
have separated the failures which increased the proportion of non-failure data per dataset.

Therefore, the comparison of the results with the results from Irrera & Vieira [1] reveal
that most of the results are bad. Only one F-measure value was very identical. Although
it is very unlikely, the chosen supervised learning classifier, SVM, may work for Virtual
Machines (VMs) and not to Docker containers. In order to evaluate this, it is necessary to
test with di↵erent parameter combinations, and also, with other Failure Prediction (FP)
methods as already stated.

55

Chapter 5

(a) Confusion Matrix. (b) ROC Curve

(c) Precision-Recall Curve

Figure 5.6: Classification results for (�tl = 40, �tp = 20, A2, window = 3s).

56

Chapter 6

Conclusions and Future work

This work has the main objective of assessing the feasibility of applying Online Failure
Prediction (OFP) to containerized micro-services-based applications. These applications
have the necessary characteristics to make OFP methods applicable in practice.

For this, it was necessary to select monitoring solutions to be able to collect metrics from
those applications, with minimum intrusiveness. The comparison performed between the
monitoring tools revealed that Docker SKD for Python was the tool with better results
when considering the relevance and quantity of the metrics compared with past work on
Online Failure Prediction (OFP). However, the vast majority of the metrics are quite
di↵erent from the ones traditionally used.

A representative setup was defined in order to make the comparison of the types of the
monitored variables variations across two di↵erent system configurations. The comparison
was accomplished by using the statistical test Mann-Whitney U test. The results obtained
from the comparison revealed that more than half of the monitored variables seem to have
di↵erent distribution.

Fault injection was used to generate representative failure data to be used for training
and testing failure prediction models. An approach was conducted with the objective
of increasing the representativeness of the faults used in this work, thus increasing the
probability of faults being activated more often. A failure modes classification was created
to classify five di↵erent failure modes.

A Failure Prediction (FP) experimental campaign was performed using the supervised
learning classifier Support Vector Machine (SVM), and the prediction parameters and
data balancing techniques selected by following an approach which attempted to choose
the best parameter set. In order to assess how e↵ective the Failure Prediction (FP) method
was when predicting the failures caused by the injected faults. The results show that the
prediction parameters and the data balancing methods were not the most appropriate.
Also, the number of samples containing non-failure data was very large when compared
with the number of failures to predict. This turned out as a problem even having a very
low rate of false positives, because the number of false positives will tend to be much
bigger than the number of true positives.

Therefore, the chosen Failure Prediction (FP) approach revealed a satisfactory e↵ective-
ness when predicting the failures. Nevertheless, the proportion of samples containing
failures and non-failures in combination with a not very suitable parameters selection, led
to the observed results.

57

Chapter 6

Future work includes applying these methodologies to micro-service based applications,
replacing the web application used in this study. Injecting fault in applications with
di↵erent representativeness and complexity may lead to di↵erent failure modes detected.

It also includes broadening the application of fault injection techniques to several tools,
comparing them, to mitigate the impact that the tool may have in the generated data.
The impact of those faults must be studied and understood in order to compare these
techniques and to choose the one with the best results.

The Failure Prediction (FP) experiments were performed using only one FP method with
the objective of predicting the induced failures. Other FP methods could be used to allow
the comparison of their capacity and e↵ectiveness when predicting failures.

Finally, we plan to complete and submit a scientific publication containing the results
obtained from the Fault Injection (FI) and Failure Prediction (FP) experiments.

58

References

[1] Ivano Irrera. Fault Injection for Online Failure Prediction Assessment and Improve-
ment. PhD thesis, 2016.

[2] Felix Salfner and Miroslaw Malek. Architecting dependable systems with proactive
fault management. Architecting dependable systems VII, pages 171–200, 2010.

[3] M. Jamshidi. Systems of Systems Engineering: Principles and Applications. CRC
Press, 2017.

[4] Docker Inc. What is a Container. https://www.docker.com/what-container. Ac-
cessed: 2017-12-28.

[5] Marcelo Amaral, Jorda Polo, David Carrera, Iqbal Mohomed, Merve Unuvar, and
Malgorzata Steinder. Performance evaluation of microservices architectures using
containers. In Network Computing and Applications (NCA), 2015 IEEE 14th Inter-
national Symposium on, pages 27–34. IEEE, 2015.

[6] Imesh Gunaratne. The Evolution of Linux Containers and Their Future - DZone
Cloud. https://dzone.com/articles/evolution-of-linux-containers-future.
Accessed: 2018-01-18.

[7] J. Arlat, Y. Crouzet, and J. C. Laprie. Fault injection for dependability validation of
fault-tolerant computing systems. In [1989] The Nineteenth International Symposium
on Fault-Tolerant Computing. Digest of Papers, pages 348–355, 1989.

[8] Docker Inc. What is Docker? https://www.docker.com/what-docker. Accessed:
2017-12-30.

[9] Goncalo Silva Pereira. Evaluating the robustness of the Cloud. In Evaluating the
robustness of the Cloud, 2016.

[10] Philip Koopman, Kobey Devale, and John Devale. Interface Robustness Testing:
Experience and Lessons Learned from the Ballista Project, chapter 11, pages 201–
226. Wiley-Blackwell, 2008.

[11] João R. Campos. Tools - Propheticus. http://joaodecampos.com, 2018. Accessed:
2018-09-02.

[12] Jean-Claude Laprie. Dependable computing: Concepts, limits, challenges. In Special
Issue of the 25th International Symposium On Fault-Tolerant Computing, pages 42–
54, 1995.

[13] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts
and taxonomy of dependable and secure computing. IEEE transactions on dependable
and secure computing, 1(1):11–33, 2004.

59

https://www.docker.com/what-container
https://dzone.com/articles/evolution-of-linux-containers-future
https://www.docker.com/what-docker
http://joaodecampos.com

Chapter 6

[14] Fares A Nassar and Dorothy M Andrews. A methodology for analysis of failure pre-
diction data. Center for Reliable Computing, Computer Systems Laboratory, Depts.
of Electrical Engineering and Computer Science, Stanford University, 1985.

[15] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure prediction
methods. ACM Computing Surveys (CSUR), 42(3):10, 2010.

[16] Ralph M Singer, Kenny C Gross, James P Herzog, Ronald W King, and Stephen
Wegerich. Model-based nuclear power plant monitoring and fault detection: The-
oretical foundations. Technical report, Argonne National Lab., IL (United States),
1997.

[17] Guenther Ho↵man and Miroslaw Malek. Call availability prediction in a telecommu-
nication system: A data driven empirical approach. In Reliable Distributed Systems,
2006. SRDS’06. 25th IEEE Symposium on, pages 83–95. IEEE, 2006.

[18] Ting-Ting Yao Lin. Design and evaluation of an on-line predictive diagnostic system.
1988.

[19] Tadashi Dohi, Katerina Goseva-Popstojanova, and Kishor S Trivedi. Analysis of
software cost models with rejuvenation. In High Assurance Systems Engineering,
2000, Fifth IEEE International Symposim on. HASE 2000, pages 25–34. IEEE, 2000.

[20] Tim Zwietasch. Online failure prediction for microservice architectures. Master’s
thesis, 2017.

[21] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, In-
formedness, Markedness and Correlation. 2011.

[22] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools.
Computer, 30(4):75–82, 1997.

[23] U. Gunneflo, J. Karlsson, and J. Torin. Evaluation of error detection schemes us-
ing fault injection by heavy-ion radiation. In [1989] The Nineteenth International
Symposium on Fault-Tolerant Computing. Digest of Papers, pages 340–347, 1989.

[24] Ghani A Kanawati, Nasser A Kanawati, and Jacob A Abraham. Ferrari: A tool for
the validation of system dependability properties. In FTCS, pages 336–344, 1992.

[25] Timothy K. Tsai and Ravishankar K. Iyer. Measuring fault tolerance with the ftape
fault injection tool. In Heinz Beilner and Falko Bause, editors, Quantitative Evalu-
ation of Computing and Communication Systems, pages 26–40, Berlin, Heidelberg,
1995. Springer Berlin Heidelberg.

[26] Joao Carreira, Henrique Madeira, João Gabriel Silva, et al. Xception: Software fault
injection and monitoring in processor functional units. Dependable Computing and
Fault Tolerant Systems, 10:245–266, 1998.

[27] E. v d Kouwe and A. S. Tanenbaum. HSFI: Accurate Fault Injection Scalable to
Large Code Bases. In 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), pages 144–155, 2016.

[28] A. L. Samuel. Some Studies in Machine Learning Using the Game of Checkers. IBM
Journal of Research and Development, 3(3):210–229, 1959.

[29] Taiwo Oladipupo Ayodele. Types of machine learning algorithms. In New advances
in machine learning. InTech, 2010.

60

References

[30] SB Kotsiantis, D Kanellopoulos, and PE Pintelas. Data preprocessing for supervised
leaning. International Journal of Computer Science, 1(2):111–117, 2006.

[31] Charu C. Aggarwal. Outlier Analysis. In Data Mining, pages 237–263. Springer,
Cham, 2015.

[32] Jerzy W Grzymala-Busse and Ming Hu. A comparison of several approaches to
missing attribute values in data mining. In International Conference on Rough Sets
and Current Trends in Computing, pages 378–385. Springer, 2000.

[33] Kamakshi Lakshminarayan, Steven A Harp, and Tariq Samad. Imputation of missing
data in industrial databases. Applied intelligence, 11(3):259–275, 1999.

[34] Ethem Alpaydin. Introduction to machine learning. MIT press, 2009.

[35] Rosaria Silipo, Iris Adae, Aaron Hart, and Michael Berthold. Seven techniques for
dimensionality reduction. White Paper by KNIME. com AG, pages 1–21, 2014.

[36] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduc-
tion to statistical learning, volume 112. Springer, 2013.

[37] Pat Langley et al. Selection of relevant features in machine learning. In Proceedings
of the AAAI Fall symposium on relevance, volume 184, pages 245–271, 1994.

[38] Muhammad Aliyu Sulaiman and Jane Labadin. Feature selection based on mutual
information. In IT in Asia (CITA), 2015 9th International Conference on, pages 1–6.
IEEE, 2015.

[39] Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene se-
lection for cancer classification using support vector machines. Machine learning,
46(1-3):389–422, 2002.

[40] Jose Ramon Cano, Francisco Herrera, and Manuel Lozano. Strategies for Scaling Up
Evolutionary Instance Reduction Algorithms for Data Mining, pages 21–39. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005.

[41] Bee Wah Yap, Khatijahhusna Abd Rani, Hezlin Aryani Abd Rahman, Simon Fong,
Zuraida Khairudin, and Nik Nik Abdullah. An application of oversampling, under-
sampling, bagging and boosting in handling imbalanced datasets. In Proceedings of
the First International Conference on Advanced Data and Information Engineering
(DaEng-2013), pages 13–22. Springer, 2014.

[42] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelligence
research, 16:321–357, 2002.

[43] Luis Gonzalez, Cecilio Angulo, Francisco Velasco, and Andreu Catala. Unified dual
for bi-class svm approaches. Pattern Recognition, 38(10):1772–1774, 2005.

[44] Armin Shmilovici. Support vector machines. In Data mining and knowledge discovery
handbook, pages 231–247. Springer, 2009.

[45] Shiyu Ji. A training example of svm with kernel given by '((a, b)) = (a, b, a2 +
b2). https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:

Kernel_trick_idea.svg. Accessed: 2018-08-15.

[46] Peter D Turney. Types of cost in inductive concept learning. arXiv preprint
cs/0212034, 2002.

61

https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:Kernel_trick_idea.svg
https://en.wikipedia.org/wiki/Support_vector_machine#/media/File:Kernel_trick_idea.svg

Chapter 6

[47] David H Wolpert, William G Macready, et al. No free lunch theorems for search.
Technical report, Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[48] Pedro Domingos. A few useful things to know about machine learning. Communica-
tions of the ACM, 55(10):78–87, 2012.

[49] Pedro Domingos. A unified bias-variance decomposition. In Proceedings of 17th
International Conference on Machine Learning, pages 231–238, 2000.

[50] Andy Field. Discovering statistics using IBM SPSS statistics. sage, 2013.

[51] thildred. The History of Containers. https://rhelblog.redhat.com/2015/08/28/
the-history-of-containers/. Accessed: 2018-01-08.

[52] C. Anderson. Docker [Software engineering]. IEEE Software, 32(3):102–c3, 2015.

[53] UpGuard. Docker vs CoreOS Rkt. https://www.upguard.com/articles/

docker-vs-coreos. Accessed: 2018-08-09.

[54] UpGuard. Docker vs LXC. https://www.upguard.com/articles/docker-vs-lxc.
Accessed: 2018-08-09.

[55] Canonical Ltd. Linux Containers - LXC - Introduction. https://linuxcontainers.
org/lxc/introduction. Accessed: 2018-08-09.

[56] Docker Inc. Docker Store. https://store.docker.com. Accessed: 2018-08-09.

[57] CoreOS. rkt, a security-minded, standards-based container engine. https://coreos.
com/rkt. Accessed: 2018-08-09.

[58] CoreOS. CoreOS. https://github.com/coreos. Accessed: 2018-08-12.

[59] Docker Inc. Develop with Docker Engine SDKs and API. https://docs.docker.

com/develop/sdk/. Accessed: 2017-12-31.

[60] Google. cAdvisor: Analyzes resource usage and performance characteristics of running
containers. https://github.com/google/cadvisor. Accessed: 2018-01-02.

[61] CoScale. Docker Monitoring. https://www.coscale.com/docker-monitoring. Ac-
cessed: 2018-01-02.

[62] Dynatrace. Docker Monitoring. https://www.dynatrace.com/technologies/

cloud-and-microservices/docker-monitoring/index-language.html. Accessed:
2018-01-03.

[63] elastic. Metricbeat. https://www.elastic.co/products/beats/metricbeat. Ac-
cessed: 2018-01-04.

[64] elastic. Elasticsearch. https://www.elastic.co/products/elasticsearch. Ac-
cessed: 2018-01-04.

[65] elastic. Docker module | Metricbeat Reference [6.1] | Elastic. https://www.elastic.
co/guide/en/beats/metricbeat/6.1/metricbeat-module-docker.html. Ac-
cessed: 2018-01-04.

[66] Nagios. Nagios Overview. Nagios.org. https://www.nagios.org/about/overview/.
Accessed: 2018-01-03.

62

https://rhelblog.redhat.com/2015/08/28/the-history-of-containers/
https://rhelblog.redhat.com/2015/08/28/the-history-of-containers/
https://www.upguard.com/articles/docker-vs-coreos
https://www.upguard.com/articles/docker-vs-coreos
https://www.upguard.com/articles/docker-vs-lxc
https://linuxcontainers.org/lxc/introduction
https://linuxcontainers.org/lxc/introduction
https://store.docker.com
https://coreos.com/rkt
https://coreos.com/rkt
https://github.com/coreos
https://docs.docker.com/develop/sdk/
https://docs.docker.com/develop/sdk/
https://github.com/google/cadvisor
https://www.coscale.com/docker-monitoring
https://www.dynatrace.com/technologies/cloud-and-microservices/docker-monitoring/index-language.html
https://www.dynatrace.com/technologies/cloud-and-microservices/docker-monitoring/index-language.html
https://www.elastic.co/products/beats/metricbeat
https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/beats/metricbeat/6.1/metricbeat-module-docker.html
https://www.elastic.co/guide/en/beats/metricbeat/6.1/metricbeat-module-docker.html
https://www.nagios.org/about/overview/

References

[67] timdaman. Check Docker - Nagios Exchange. https://goo.gl/yAFWKT. Accessed:
2018-01-03.

[68] New Relic. New Relic: New Relic Docker Monitoring. https://newrelic.com/

partner/docker. Accessed: 2018-01-03.

[69] Sensu. Sensu | Monitoring Platform. https://sensuapp.org/features. Accessed:
2018-01-03.

[70] Sensu. sensu-plugins-docker: This plugin provides native Docker instrumentation
for monitoring and metrics collection, including: container status, container num-
ber, and container metrics via ‘docker ps‘. https://github.com/sensu-plugins/

sensu-plugins-docker. Accessed: 2018-01-03.

[71] Sysdig. Container Troubleshooting and Linux Visibility | Sysdig. https://www.

sysdig.org/wiki/sysdig-overview/. Accessed: 2018-01-03.

[72] Datadog. Getting Started with Datadog. https://docs.datadoghq.com/

integrations/docker_daemon/. Accessed: 2018-01-09.

[73] Sematext. Docker Monitoring & Logging. https://sematext.com/docker/. Ac-
cessed: 2018-01-09.

[74] Pingdom. Docker Monitor ˜ Pingdom Server Monitor. http://server-monitor.

pingdom.com/plugin_urls/19761-docker-monitor. Accessed: 2018-01-09.

[75] Apache Software Foundation. Welcome! - The Apache HTTP Server Project. https:
//httpd.apache.org. Accessed: 2018-08-20.

[76] Inc NGINX. NGINX | High Performance Load Balancer, Web Server, & Reverse
Proxy. https://www.nginx.com. Accessed: 2018-08-20.

[77] PostgreSQL Global Development Group. PostgreSQL: The world’s most advanced
open source database. https://www.postgresql.org. Accessed: 2018-08-20.

[78] Henry B Mann and Donald R Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical statistics,
pages 50–60, 1947.

[79] Html5webtemplates.co.uk. Html5 Webtemplate Elements. https://www.

html5webtemplates.co.uk/templates/elements. Accessed: 2018-07-10.

[80] Docker Inc. debian - Docker Store. https://store.docker.com/images/debian.
Accessed: 2018-07-14.

[81] Docker Inc. Docker SDK for Python — Docker SDK for Python 2.0 documentation.
https://docker-py.readthedocs.io/en/stable. Accessed: 2018-07-14.

[82] curl. curl - How To Use. https://curl.haxx.se/docs/manpage.html. Accessed:
2018-08-21.

[83] SciPy. scipy.stats.mannwhitneyu — SciPy v1.1.0 Reference Guide.
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.

mannwhitneyu.html#scipy.stats.mannwhitneyu. Accessed: 2018-08-19.

[84] ucXception. Software Faults | ucXception. https://ucxception.dei.uc.pt/index.
php/software-faults. Accessed: 2018-07-14.

63

https://goo.gl/yAFWKT
https://newrelic.com/partner/docker
https://newrelic.com/partner/docker
https://sensuapp.org/features
https://github.com/sensu-plugins/sensu-plugins-docker
https://github.com/sensu-plugins/sensu-plugins-docker
https://www.sysdig.org/wiki/sysdig-overview/
https://www.sysdig.org/wiki/sysdig-overview/
https://docs.datadoghq.com/integrations/docker_daemon/
https://docs.datadoghq.com/integrations/docker_daemon/
https://sematext.com/docker/
http://server-monitor.pingdom.com/plugin_urls/19761-docker-monitor
http://server-monitor.pingdom.com/plugin_urls/19761-docker-monitor
https://httpd.apache.org
https://httpd.apache.org
https://www.nginx.com
https://www.postgresql.org
https://www.html5webtemplates.co.uk/templates/elements
https://www.html5webtemplates.co.uk/templates/elements
https://store.docker.com/images/debian
https://docker-py.readthedocs.io/en/stable
https://curl.haxx.se/docs/manpage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html#scipy.stats.mannwhitneyu
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html#scipy.stats.mannwhitneyu
https://ucxception.dei.uc.pt/index.php/software-faults
https://ucxception.dei.uc.pt/index.php/software-faults

Chapter 6

[85] J. A. Duraes and H. S. Madeira. Emulation of Software Faults: A Field Data Study
and a Practical Approach. IEEE Transactions on Software Engineering, 32(11):849–
867, 2006.

[86] J. Duraes and H. Madeira. Definition of software fault emulation operators: a field
data study. In 2003 International Conference on Dependable Systems and Networks,
2003. Proceedings., pages 105–114, 2003.

[87] Docker Inc. Runtime metrics | Docker Documentation. https://docs.docker.com/
config/containers/runmetrics. Accessed: 2018-08-22.

[88] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. Leakage in
data mining: Formulation, detection, and avoidance. ACM Transactions on Knowl-
edge Discovery from Data (TKDD), 6(4):15, 2012.

[89] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[90] scikit learn. sklearn.svm.SVC — scikit-learn 0.19.2 documentation. http:

//scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#

sklearn.svm.SVC. Accessed: 2018-08-31.

[91] Yutaka Sasaki et al. The truth of the f-measure. Teach Tutor mater, 1(5):1–5, 2007.

64

https://docs.docker.com/config/containers/runmetrics
https://docs.docker.com/config/containers/runmetrics
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

Appendices

65

Appendix A

Faults Generated per Application

Table A.1: Faults generated for each C code file from Apache httpd server source folder.

C Code File Patches

util buildmark.c 0
config.c 434
util connection.c 0
core.c 1385
core filters.c 228
eoc bucket.c 1
eor bucket.c 13
error bucket.c 3
gen test char.c 28
listen.c 83
log.c 341
main.c 474
mpm/event/event.c 1207
mpm/event/fdqueue.c 189
mpm/prefork/prefork.c 512
mpm/worker/fdqueue.c 146
mpm/worker/worker.c 609
mpm common.c 105
mpm unix.c 121
protocol.c 442
provider.c 1
request.c 209
scoreboard.c 54
util.c 188
util cfgtree.c 9
util charset.c 0
util cookies.c 15
util debug.c 0
util ebcdic.c 0
util expr eval.c 312
util expr parse.c 264
util expr scan.c 550
util fcgi.c 0
util filter.c 83
util md5.c 0
util mutex.c 11
util pcre.c 0
util regex.c 0

66

Faults Generated per Application

C Code File Patches

util script.c 71
util time.c 9
util xml.c 0
vhost.c 169

Total 8266

Table A.2: Faults generated for each C code file from NGINX core source folder.

C Code File Patches

nginx.c 457
ngx array.c 24
ngx buf.c 147
ngx conf file.c 670
ngx connection.c 384
ngx cpuinfo.c 0
ngx crc32.c 10
ngx crypt.c 0
ngx cycle.c 707
ngx file.c 439
ngx hash.c 422
ngx inet.c 373
ngx list.c 26
ngx log.c 168
ngx md5.c 968
ngx module.c 74
ngx murmurhash.c 46
ngx open file cache.c 527
ngx output chain.c 257
ngx palloc.c 130
ngx parse.c 242
ngx parse time.c 127
util proxy protocol.c 115
util queue.c 20
util radix tree.c 127
util rbtree.c 181
util regex.c 87
util resolver.c 2478
util rwlock.c 0
util sha1.c 2157
util shmtx.c 18
ngx slab.c 544
ngx spinlock.c 0
ngx string.c 752
ngx syslog.c 134
ngx thread pool.c 256
ngx times.c 292

Total 13359

67

Chapter A

Table A.3: Faults generated for each C code file from NGINX events source folder.

C Code File Patches

ngx event.c 421
ngx event accept.c 384
ngx event connect.c 131
ngx event openssl.c 1972
ngx event stapling.c 0
ngx event pipe.c 435
ngx event posted.c 9
ngx event timer.c 39

Total 4535

Table A.4: Faults generated for each C code file from NGINX http source folder.

C Code File Patches

ngx http.c 869
ngx http copy filter module.c 62
ngx http core module.c 2091
ngx http file cache.c 1798
ngx http header filter module.c 269
ngx http parse.c 1217
ngx http postpone filter module.c 41
ngx http request.c 1567
ngx http request body.c 601
ngx http script.c 748
ngx http special response.c 301
v2/ngx http upstream.c 2307
v2/ngx http upstream round robin.c 635
v2/ngx http v2.c 2446
v2/ngx http v2 filter module.c 1289
v2/ngx http v2 hu↵ decode.c 11
v2/ngx http v2 hu↵ encode.c 52
v2/ngx http v2 module.c 147
v2/ngx http v2 table.c 156
v2/ngx http variables.c 1238
v2/ngx http write filter module.c 146

Total 17991

68

Faults Generated per Application

Table A.5: Faults generated for each C code file from PostgreSQL backend source folder.

C Code File Patches

lib/binaryheap.c 70
lib/bipartite match.c 56
lib/dshash.c 295
lib/hyperloglog.c 30
lib/ilist.c 4
lib/knapsack.c 39
lib/pairingheap.c 77
lib/rbtree.c 203
lib/stringinfo.c 60
main.c 231
nodes/bitmapset.c 216
nodes/copyfuncs.c 4279
nodes/equalfuncs.c 2001
nodes/extensible.c 19
nodes/list.c 346
nodes/makefuncs.c 286
nodes/nodeFuncs.c 1569
nodes/nodes.c 0
nodes/outfuncs.c 1196
nodes/params.c 112
nodes/print.c 198
nodes/read.c 119
nodes/readfuncs.c 7093
nodes/tidbitmap.c 468
nodes/value.c 4

Total 18971

69

Chapter A

Table A.6: Faults generated for each C code file from PostgreSQL bin source folder.

C Code File Patches

initdb/findtimezone.c 188
initdv/initdb.c 1424
pg archivecleanup.c 120
pg basebackup/pg basebackup.c 947
pg basebackup/pg receivewal.c 395
pg basebackup/pg recvlogical.c 597
pg basebackup/receivelog.c 376
pg basebackup/streamutil.c 238
pg walmethods.c 323
pg config.c 126
pg controldata.c 297
pg ctl.c 653
pg dump/common.c 722
pg dump/compress io.c 39
pg dump/dumputils.c 306
pg dump/parallel.c 303
pg dump/pg backup archiver.c 1779
pg dump/pg backup custom.c 252
pg dump/pg backup db.c 253
pg dump/pg backup directory.c 270
pg dump/pg backup null.c 70
pg dump/pg backup tar.c 452
pg dump/pg backup utils.c 23
pg dump/pg dump.c 3466
pg dump/pg dump sort.c 506
pg dump/pg dumpall.c 947
pg dump/pg restore.c 466
pg resetwal.c 923
pg rewind/copy fetch.c 46
pg rewind/datapagemap.c 25
pg rewind/fetch.c 3
pg rewind/file ops.c 95
pg rewind/filemap.c 264
pg rewind/libpq fetch.c 218
pg rewind/logging.c 36
pg rewind/parsexlog.c 88
pg rewind/pg rewind.c 375
pg rewind/timeline.c 73
pg test fsync.c 206
pg test timing.c 74
pg upgrade/check.c 449
pg upgrade/controldata.c 462
pg upgrade/dump.c 48
pg upgrade/exec.c 104
pg upgrade/file.c 109
pg upgrade/function.c 65
pg upgrade/info.c 301
pg upgrade/option.c 239
pg upgrade/parallel.c 21
pg upgrade/pg upgrade.c 318
pg upgrade/relfilenode.c 45
pg upgrade/server.c 106
pg upgrade/tablespace.c 21
pg upgrade/util.c 54
pg upgrade/version.c 115
pg waldump/compat.c 6

70

Faults Generated per Application

C Code File Patches

pg waldump/waldump.c 370
pg waldump/rmgrdesc.c 0
pgbench.c 2373
pgevent.c 17
psql/command.c 1246
psql/common.c 812
psql/conditional.c 21
psql/copy.c 233
psql/crosstabview.c 272
psql/describe.c 2921
psql/help.c 1016
psql/input.c 19
psql/large obj.c 121
psql/mainloop.c 309
psql/prompt.c 124
psql/startup.c 567
psql/stringutils.c 97
psql/tab-complete.c 923
psql/variables.c 124
scripts/clusterdb.c 202
scripts/common.c 198
scripts/createdb.c 231
scripts/createuser.c 308
scripts/dropdb.c 152
scripts/dropuser.c 133
scripts/pg isready.c 158
scripts/reindexdb.c 282
scripts/vacuumdb.c 430

Total 34086

71

On
lin

e
Fa
ilu

re
Pr
ed
ict

ion
 in

 C
on

tai
ne
riz

ed
 E

nv
iro

nm
en

ts
Joã

o
Pe

dr
o

Sim
õe
s L

op
es

U
N

IV
ER

SI
TY

 O
F

C
O

IM
B

R
A

	Introduction
	Research Contributions
	Document Structure

	Background and Related Work
	Dependable Systems
	Failure Prediction
	Online Failure Prediction
	Evaluation of Failure Prediction
	Fault Injection
	Machine Learning

	Containers
	Docker
	Monitoring Tools

	Online Failure Prediction in Containers
	Monitoring Container Variables
	Understand the Variation of Variables across Setups
	Using Fault Injection to Generate Failure Data
	Evaluation of Failure Prediction Algorithms

	Data Generation and Analysis
	Metrics Variation Analysis
	Using Fault Injection to Generate Failure Data
	Fault Generation
	Fault Selection
	Fault Injection

	Experimental Campaign on Containers Failure Prediction
	Data Selection
	Failure Prediction Setup
	Results and Discussion

	Conclusions and Future work
	References
	Faults Generated per Application

