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Abstract

A few years ago the Automatic Identification System (AIS) was introduced

as the international communication standard for vessels with the propose

of improving maritime safety, but nowadays it is used for more proposes

mainly because its data has the potential of mapping with detail the en-

tire maritime traffic of an area. One of this new proposes is assisting law

enforcement in detecting abnormal behaviors through movement analysis of

the vessels. Because of that, several scientific works addressing AIS data

have been published based on machine learning and data visualization ap-

proaches, in distinct areas such as trajectory mining, traffic visualization and

anomaly detection. However, considering this last area, only machine learn-

ing approaches have been proposed, while the data visualization works tend

to be focused on representing the vessel’s traffic without any consideration

for the anomalous behaviors. Therefore, this thesis is focused in developing

visualization strategies that are able to identify these behaviors, with the

assistance of data analysis, and in testing them with AIS data from the Por-

tuguese maritime zone. These strategies were implemented on a platform

and they include approaches for a general analysis of the data and for de-

tecting specific types of anomalous behaviors. The validation, made through

case studies, showed that the approaches are effective and can be used as a

support tool for the domain experts.

Keywords
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sualization, Trajectory Mining, Anomaly Detection, Data Visualization, Data
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Resumo

Há poucos anos atrás o Sistema de Identificação Automática (AIS) foi definido

como o standard internacional para a comunicação entre navios com o ob-

jetivo de melhorar a segurança maŕıtima, mas hoje em dia é utilizado para

muitos mais fins porque os seus dados têm o potencial de conseguirem mapear

todo o tráfego maŕıtimo de uma determinada zona. Um desses fins é ajudar

as autoridades a detetarem comportamentos anómalos através da análise dos

movimentos dos navios. Desta forma, vários trabalhos cient́ıficos relaciona-

dos com dados do AIS têm sido publicados, apresentando abordagens de

aprendizagem computacional e de visualização de informação, em áreas tão

distintas como a extração de trajetórias, visualização de tráfego e deteção de

anomalias. No entanto, considerando esta última área, apenas abordagens de

aprendizagem computacional foram propostas, enquanto os trabalhos na área

da visualização de informação tendem a propor representações do tráfego dos

navios sem qualquer destaque aos comportamentos anómalos. Assim sendo,

a presente tese tem como objetivo o desenvolvimento de estratégias de visu-

alização capazes de identificar comportamentos anómalos, com a assistência

de técnicas de análise de dados, e o teste dessas estratégias com dados AIS

da zona maŕıtima Portuguesa. Estas estratégias foram implementadas numa

plataforma e incluem abordagens para uma análise geral dos dados e para

a deteção de tipos espećıficos de comportamentos anómalos. A validação,

feita através de casos de estudo, mostrou que as abordagens funcionam e

que podem ser utilizadas como ferramenta de suporte aos peritos da área.

Palavras-Chave

Sistema de Identificação Automática, Território Maŕıtimo Português, Visu-

alização de Tráfego, Extração de Trajetórias, Deteção de Anomalias, Visu-

alização de Informação, Análise de Dados
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Chapter 1

Introduction

The Automatic Identification System (AIS) is an international standard for communication

between vessels and terrestrial stations developed to improve maritime safety. It achieves

this goal by helping vessels avoiding collisions and by assisting Vessel Traffic Services

(VTS) in the control of the vessels sailing near the coast and specific ports (Tetreault,

2005). AIS equipment transmits periodical messages to other vessels and to terrestrial

stations that are within its range through very high frequencies. These messages contain

static information from a vessel like the antenna position, the Maritime Mobile Satellite

Identity (MMSI) number, the vessel name and type, the International Maritime Organiza-

tion (IMO) number, among other attributes. They also contain dynamic information like

the current position of the vessel (in the form of a latitude and longitude), the time-stamp

of the transmission, the Speed Over Ground (SOG), the Course Over Ground (COG),

among other attributes (Bošnjak et al., 2012).

This system was initially developed for military usage but was later adopted by the IMO

for civil traffic. This organization is responsible for the international maritime traffic

regulations and in 2004 made the AIS system mandatory for vessels with a volume of

300GT1 or more operating in international waters, for vessels with a volume of 500GT

or more operating in local waters and for all passenger vessels (Bošnjak et al., 2012).

AIS messages are transmitted through very high frequency between vessels and terrestrial

stations, which are controlled by the VTS. However, when considering the distances on

the sea, a vessel may be in a position to far from other vessel or a station, and in those

scenarios the messages would not be received by these parties of interest. To fix this

issue, the AIS equipment installed in each vessel is able of repeating the messages received

from other vessels, serving as a middleman on the transmission protocol. This scenario

is presented on Figure 1.1 where, for example, the messages from A would not reach D

without B working as the middleman.

AIS data contains all the necessary information for mapping the trajectories followed by

each vessel and the general maritime traffic of any sea, and for that reason it has been the

1Gross Tonnage is a unit for measuring the volume of a vessel internal spaces.
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Chapter 1

Figure 1.1: Example of how the AIS works.

target of several studies that try to apply statistical and data mining techniques to it. The

majority of these studies are focused particularly in traffic analysis and forecasting (Maz-

zarella et al. (2015), Sang et al. (2016)), pollution control (Busler et al. (2015), Liu et al.

(2015)), fusion of different maritime data sources (Xu et al. (2015), Yang et al. (2013))

or identification of vessels’ anomalous behaviors (Handayani et al. (2013), Soleimani et al.

(2015)). Concerning the data visualization field (the central theme of this thesis), pub-

lished works have been focused in new representations of the traffic situation from specific

areas of interest (Willems et al. (2009), Gao and Shiotani (2013), Chen et al. (2016)), with

minor or none emphasis on anomalous behaviors, which constitutes a direction yet to be

explored.

1.1 Contextualization

Portugal has one of the biggest coastlines in Europe and an exclusive economic zone with

1.727.408 km2 of extension (Jacobs, 2016). This makes the Portuguese sea a mandatory

passage point not only for a huge number of vessels that transport cargo between countries

but also for fishing vessels that operate in the same waters. Considering the described

scenario, with so many vessels in such a big maritime area the existence of illegal activities

tends to be very high if a rigorous control is not enforced. The Portuguese navy is respon-

sible for this control and, among other tools, uses a software developed in a partnership

with the company Critical Software, called Oversee 2, to perform this control. This tool

works with AIS data that is periodically received by aggregating the reported positions

into trajectories and allowing a simple visualization of the maritime traffic in the area of

2Available at https://oversee.criticalsoftware.com/en/home
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interest. The data is presented to the navy operators in a way that they are able to control

the coastline in real time. With this approach the navy is able to detect problems very

quickly and act accordingly. Oversee helps the navy particularly in three fields: search

and rescue, law enforcement and environment protection (Software, 2017).

Focusing on the law enforcement field, detecting abnormal patterns in the vessels tra-

jectories is a major feature to detect illegal behavior. Currently this is a grey area in

the Oversee software. Critical Software has been working in several machine learning

approaches to implement this feature, but none has reached production. Regarding the

anomalous behaviors, there are a set of common ones that were identified by the domain

experts, which are:

• Drifting, which could be an indicator of a failure that was not reported;

• Sailing in low speed, which could also be an indicator of a failure. If maintained for

a long time, this could even be an indicator of illegal fishing if the vessel is of the

fishing type and is on a forbidden zone3;

• A vessel sailing in a different trajectory from the expected one, which could be an

indicator of an illegal action;

• Fishing vessels stopping or sailing in low speed on a zone where fishing is forbidden,

which could be an indicator of illegal fishing;

• Two vessels sailing very close to each other, which could be an indicator that an

illegal trade is happening;

• Two vessels crossing trajectories, especially if one of them goes from Portugal to the

intersection zone and comes back after a short period of time, which could be an

indicator that this vessel went to the zone to pick up some illegal goods left by the

other one.

Although some machine learning approaches have been introduced to address this problem,

there is still work to be done in this area. Besides, new approaches and scientific fields

can be explored, like the data visualization one.

1.2 Research Goals

The main goal of this thesis was to study and develop data visualization approaches,

assisted by data analysis techniques, to detect anomalous behaviors, on the Portuguese

maritime area, using AIS data. These approaches were implemented on a visualization

platform that can be used by a domain expert. Having in mind this main goal, the

following intermediate goals were defined:

3According to the Portuguese laws it is illegal to fish in the first 6 nautical miles of the sea and in
specific zones after that point.
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• Study state-of-the-art concepts and models of data visualization and data mining

techniques, specially in the context of AIS, including (but not limited to) trajectory

mining, traffic visualization and anomaly detection;

• Define and implement the visualization choices and data processing tasks, which are

necessary for an analysis of the data without focusing on any type of anomalous

behaviors;

• Define and implement the visualization and data analysis strategies to address each

category of anomalous behaviors, exploring the 2D and 3D plane;

• Test and validate the implemented strategies.

1.3 Work Plan

For each semester of this work, the considered tasks and respective scheduling are presented

through gantt charts on the Figures 1.2 and 1.3 for the 1st and 2nd semester, respectively.

For each task the expected effort and schedule are represented with grey bars, and the

real values are represented with blue bars.

Regarding the 2nd semester, the gantt chart presents some deviations between the ex-

pected and the real time spent with each task. These deviations are justified by an

additional effort related with the implementation tasks. The platform, with the respective

visual strategies and data analysis, was implemented from the scratch and several prob-

lems that were not expected arose, which required more effort to be fixed. The necessary

adjustments were made to the remaining tasks in order to finish the thesis within the

required time.

In order to properly manage the time spent on each task, an agile methodology was used

during the 2nd semester. The usage of this type of methodology improved the control of

the time spent in each task, ensuring that even small deviations were detected in an early

stage, which allowed the application of corrective measures without consequences (or with

minimal ones) in the results of the thesis. Also, the iterative and incremental approach

followed by agile methodologies allowed a more constant validation of the work developed,

which was important to understand gradually if the selected approach for each task of the

work was presenting the expected results.
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4w1) Study of Data Streams (Real)
2w2) Study of Machine Learning Background Knowledge (Expected)
1w3) Study of Machine Learning Background Knowledge (Real)
2w4) Study of Data Visualization Background Knowledge (Expected)
2w5) Study of Data Visualization Background Knowledge (Real)
2w6) Study of Trajectory Mining Related Work (Expected)
2w7) Study of Trajectory Mining Related Work (Real)
2w8) Study of Traffic Visualization Related Work (Expected)
2w9) Study of Traffic Visualization Related Work (Real)
2w10) Study of Anomaly Detection Related Work (Expected)
1w11) Study of Anomaly Detection Related Work (Real)
2w12) AIS Data Collection and Processing (Expected)
1w13) AIS Data Collection and Processing (Real)
2w14) Initial Visualization Experiment (Expected)
1w15) Initial Visualization Experiment (Real)
3w16) Writing of the Intermediate Dissertation (Expected)
3w17) Writing of the Intermediate Dissertation (Real)

Title Effort Sep 2017 Oct 2017 Nov 2017 Dec 2017 Jan 2018

Figure 1.2: Expected and real work plan of the 1st semester.
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C
h
ap

ter
1

2w1.1) Definition (Expected)
2w1.2) Definition (Real)
3w1.3) Implementation (Expected)
4w1.4) Implementation (Real)

6w1) Global Visualization Concepts and Data Processing Tasks 

5w2.1) Definition (Expected)
4w2.2) Definition (Real)
5w2.3) Implementation (Expected)
6w2.4) Implementation (Real)

10w2) Visualization and Data Analysis Strategies for the Anomalous Behaviors

2w3) Test and Validate the Implemented Strategies (Expected)
2w4) Test and Validate the Implemented Strategies (Real)

1,5w5) Write Scientific Articles (Expected)
1w6) Write Scientific Articles (Real)

2,5w7) Write the Final Dissertation (Expected)
> 2w8) Write the Final Dissertation (Real)

Title Effort Feb 2018 Mar 2018 Apr 2018 May 2018 Jun 2018

Figure 1.3: Expected and real work plan of the 2nd semester.
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1.4 Research Contributions

From the work presented on this thesis, two major research contributions were made:

• Ricardo Cardoso Pereira, Pedro Henriques Abreu e Penousal Machado. A Sur-

vey of AIS Data Analysis Techniques: Trajectory Mining, Traffic Visualization and

Anomaly Detection (2018). IEEE Transactions on Intelligent Transportation Sys-

tems (the article is awaiting review);

• Ricardo Cardoso Pereira, Pedro Henriques Abreu e Penousal Machado. AIS Inter-

sections Analysis Through Data Visualization: a Visual Search Approach Using a

Magnified Fish-Eye Lens (2018). Seventeenth International Symposium on Intelli-

gent Data Analysis (IDA 2018) (the article is awaiting review).

1.5 Document Structure

The remaining of this document is organized in the following way:

• Background knowledge, where the theoretical foundations necessary for this thesis

are exposed, namely the necessary fundamentals of data mining (section 2.1) and

data visualization (section 2.2);

• Related work, where some of the recent work published in the fields approached by

this thesis are introduced, which are trajectory mining (section 3.1), traffic visual-

ization (section 3.2) and anomaly detection in vessels traffic (section 3.3), and finally

some future directions are identified (section 3.4);

• Visualization and implementation choices, where all the base concepts for the visual-

ization and for the data processing aspects, that are necessary for a general analysis

and for the platform to function, are defined;

• Anomalous behavior analysis, where the data visualization strategies, assisted by

data analysis, developed to analyze and detect the different categories of anomalous

behaviors are defined. This chapter also includes the explorations made of the 3D

plane to emphasize the time variable;

• Validation of the implemented strategies through three case studies of real scenarios;

• Conclusions, where an evaluation of the past and future work is presented.
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Chapter 2

Background Knowledge

This section presents the theoretical foundations of the fields of study approached by this

thesis. These fields are data mining process (section 2.1) and data visualization (section

2.2).

2.1 Data Mining

Knowledge Discovery in Databases (KDD) (Fayyad et al., 1996) is a process focused on

the development of techniques and methods to extract knowledge from data. This process

mainly tries to map raw data, that usually is to voluminous to be processed in its original

condition, into models capable of approximating a representation of the entire data.

The KDD is an iterative process and requires several steps, some of them that depend on

user made decisions (Fayyad et al., 1996):

• The first one is to understand the domain of the data that is being treated, usually

studying all the background knowledge of this domain, and to identify the goals that

the expected outcome of the process is trying to achieve;

• The second one is to select a dataset containing all the necessary variables and

records where the process is going to be applied;

• The third one is to clean and preprocess the data, where the more common operations

are noise removal, defining how to model and treat noise, deciding what to do with

missing data fields and deciding how to deal with time-sequence data;

• The fourth one is to reduce and project data, through operations like feature selec-

tion and feature extraction, where the most relevant features to represent the data

and achieve the goals are identified and filtered, reducing the dimensionality of the

dataset;

• The fifth one is to map the goals of the first step to data-mining methods (classifi-

cation, clustering, regression, an others);
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• The sixth one is to make an exploratory analysis and define a hypothesis to test,

which in fact is the selection of the specific data mining algorithms to be applied,

with the respective parameter tuning (when required), taking in consideration that

the selected algorithms must create a model that fulfills the expected goals;

• The seventh is to apply the data mining algorithms in order to search and identify

the hidden patterns of interest in the data;

• The eighth is to interpret the results obtained from the previous step, very often

through the visualization of the extracted patterns and models, and to decide if the

results are satisfying or if the steps should be repeated with different decisions in

between to achieve different (and eventually better) results;

• The ninth and final one is to apply the discovered knowledge, using it directly or

integrating it in another system, or even simply publishing it to be used by parties

of interest.

The basic flow of the described process is shown in Figure 2.1. To be notice that iteration

can happen in between any of the steps until the outcome of the step is the expected one.

Figure 2.1: KDD process (Fayyad et al., 1996).

Focusing on the data mining step, and particularly on the more important available meth-

ods, they can be assigned to two different categories related with the expected goals. These

two categories are prediction and description. Prediction is the action of predict unknown

of future values for specific variables using all or some of the available variables and data.

Description is the action of discovering interpretable patterns from the existing data. It

is common to find models that fit in both categories because sometimes both actions are

required to achieve specific goals.

To achieve prediction and description several data mining methods exist that can be

grouped in a few approaches. The more important approaches are described below (Fayyad

10
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et al., 1996). Notice that for demonstration proposes a simple graphic example from

Fayyad et al. (1996) was used, where each point represents a person who has received a

loan from a bank, being the horizontal axis the incoming and the vertical axis the debt of

each person. Also, the x’s represent people who failed their payments and the o’s people

who are in compliance with their obligations. Enumerating the approaches:

• Classification, which consists in creating a function that is able to classify a given

data record into a specific class from an existing set. This type of approach fits into

the prediction category because is trying to predict a type (label) for a data item

based on known information. An example of a classification can be seen in Figure

2.2, where people are divided into two classes (bad status and good status). Notice

that the obtained classification model does not fit perfectly all the points because a

single linear boundary is not enough for the dispersion of the given example;

Figure 2.2: Classification example (Fayyad et al., 1996).

• Regression, which consists in creating a function that is able to map a data record

into a real number variable. The process is actually very similar to classification,

being the major different the output of the method because classification method’s

output is a class from a predefined set and regression method’s output is a real

number. This approach also fits into the prediction category because it is trying to

predict a number for a data item. An example of a regression can be seen in Figure

2.3, where a simple linear regression is presented by fitting the total debt as a linear

function of the income. To be notice that the fitting does not model the data very

well because the correlation between the two variables is very weak;

• Clustering, which consists in identifying a finite set of categories (commonly called

clusters) that are able to describe the data. Each category should contain data

records with some level of similarity in specific features. Depending on the used

algorithms, categories can be mutually exclusive or overlapped. This approach fits
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Figure 2.3: Regression example (Fayyad et al., 1996).

into the description category because it is trying to describe (find) data records with

similar features into categories. An example of clustering can be seen in Figure 2.4,

where all the people are clustered into 3 categories (overlapping is allowed and some

people belong to more than one cluster). Notice that the original labels (x and o)

where replace by +.

Figure 2.4: Clustering example (Fayyad et al., 1996).

Focusing on clustering, there are 3 types of algorithms that use this approach, namely

(Ester et al., 1996):

• Partitioning algorithms, where k clusters are created (k is typically a given param-

eter) and each cluster is commonly represented by its gravity center of by an object
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close to its center. Each new object is assigned to the closest cluster, which normally

requires that each cluster representation is updated after a new assignment;

• Hierarchical algorithms, where the clusters are build as a hierarchy commonly rep-

resented by a tree, and two types of approach for the hierarchy exist:

– Agglomerative approach, where each object starts in its own cluster (each one is

a leave of the tree) and the clusters are merged while going up in the hierarchy

until arriving at the root node;

– Divisive approach, where all objects start in one cluster (the root node of the

tree) and new clusters are created by splitting the existing one(s) going down

in the hierarchy until arriving at the leaves nodes.

This type of algorithms require a termination condition to define when to stop merg-

ing or devising, which normally is a minimum distance between all the clusters, but

the number of clusters is not a required parameter;

• Density-based algorithms, where each cluster represents an area with a higher density

of objects compared to others, which means that each cluster is created by deter-

mining some kind of distance between objects and grouping the ones where this

distance is small. This type of algorithm does not require the number of clusters as

a parameter.

Density-based clustering has been highly used in different contexts and the most common

algorithm that follows this approach is the Density Based Spatial Clustering of Appli-

cations with Noise (DBSCAN). Given a set of points (for this algorithm each object is

treated as a point in the space), this algorithm starts by labeling each of the points into

one of three categories (Ester et al., 1996):

• Core point, meaning that this point has a set of points within a given distance called

Eps (this distance is a parameter of the algorithm) and the cardinality of this set is

greater than a given threshold called MinPts (this threshold is also a parameter of

the algorithm). Notice that the points in this set are said to be in the neighborhood

of the core point and are density-reachable from it (but the opposite may not be

true). Also, the distance function commonly used is the Euclidean distance, but any

function is supported;

• Border point, meaning that this point did not meet the criteria for becoming a core

point but is in the neighborhood of at least one core point;

• Noise point, meaning that this point did not meet the criteria for becoming neither

a core or border point.

Then, the algorithm picks a random core point and creates a cluster containing all the

core and border points in its neighborhood and, for each core point in this neighborhood,
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it expands the cluster by doing the same described process in a recursive way. A core

point can only be ”expanded” once and the algorithm stops when all the core points were

”expanded”, returning the discovered clusters.

This algorithm has the advantages of not requiring the number of clusters to be passed as a

parameter, but the required parameters (Eps and MinPts) are very sensitive, which means

that minor variations on these values can generate very different results. The authors of

the algorithm (Ester et al., 1996) proposed the usage of a k-distance graph to estimate

the better values for these parameters, but many approaches can be used to perform this

fine tuning.

Figure 2.5 presents a simple example that illustrates all the algorithm process described

above.

Figure 2.5: DBSCAN algorithm example (Lutins, 2017).

Regarding the sensitivity problems of the DBSCAN parameters, a new approach called

Hierarchical Density Based Spatial Clustering of Applications with Noise (HDBSCAN)

(Campello et al., 2013) was introduced. The idea of this algorithm is to use an hierarchical

approach to find the clusters with a higher density, using a strategy similar to the DBSCAN

for the density evaluation but varying different epsilon values, which removes the epsilon

from the parameters list and also allows the creation of clusters with different densities. It

then uses the MinPts parameter (the only required) to mark and merge the clusters that

do not have this minimum size into their parents, and uses this information to calculate the

stability of each final cluster. The final cluster extraction to flat mode uses this stability to

decide which clusters to keep from the hierarchy between the parent and the descendants.

In order to evaluate the quality of the clusters obtained from any clustering algorithm

several metrics exist, one being the Silhouette Coefficient (Rousseeuw, 1987). This metric

indicates the cohesion of a point to its cluster by measuring how well it fits when compared

to the remaining points of the same cluster and to the 2nd closest one. The resulting value

is between [−1, 1], where 1 indicates that the position fits perfectly into the cluster and -1
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the opposite. Considering x1 as the average distance between point p and the remaining

ones from its cluster and x2 as the average distance between the same point and the ones

from the 2nd closest cluster, the formula to calculate the coefficient is the one presented

on Equation 2.1. To evaluate an entire cluster through this metric the average coefficient

from all points that are within it is considered.

SCp =
x2 − x1

max(x1, x2)
(2.1)

2.2 Data Visualization

Delivering information for the masses is not always an easy task. People are used to com-

municate with words, but words are not an efficient way of presenting big quantities of

data. To understand the meaning of data a visual representation of the information is re-

quired, otherwise people will not understand the message. In this section the principles of

information visualization introduced by Jacques Bertin are presented (section 2.2.1), but

also some of the more important principles of Edward Tufte are introduced (section 2.2.2).

These authors are two of the main references in this field, being their principles the foun-

dations of data visualization. The general principles of interactive visualization are also

presented (section 2.2.3) and, finally, the common approaches for validating visualizations

are described (section 2.2.4).

2.2.1 Jacques Bertin’s Principles

Jacques Bertin was a French cartographer and one of the first researchers to work on this

field. He proposed through is book ”Semiology of Graphics” (Bertin, 1983) a set of visual

(or retinal) variables that combined together are able to present information in an intuitive

way. These variables can be represented in a normal two-dimensional plane through the

visual marks, which are points, lines and areas. Points can only represent a location on

the plane because they don’t have length or area. Lines can represent connections and

trajectories because they have length but don’t have area. Areas can represent anything

on the plane that has a measurable size. Bertin introduces the following 7 visual variables:

• Position, which reflects a change on the location of the mark on the plane through

the increase or decrease of the x or y values;

• Size, which reflects a change in the height or area of a mark, or eventually on the

number of repetitions of a mark;

• Value, which reflects a change of the color steps from white to black;

• Texture, which reflects a change in the fineness or coarseness of an area, originating

a new pattern associated with a different value;
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• Color, which reflects a change on the hue of a mark associated with a new value;

• Orientation, which reflects a change on the alignment of a mark from vertical to

horizontal;

• Shape, which reflects a change on the actual representation of a mark.

Each of these variables have a level associated depending on the type of information that

each one is able to represent. Bertin defines 4 main characteristics that each variable

may or may not have, being these characteristics what defines the variable level. A visual

variable can be:

• Selective, which is the ability to immediately identify all the marks that belong to

the same category of the given variable;

• Associative, which is the ability to immediately group all the marks that are somehow

distinguished (associated) by the given variable;

• Ordered, which is the ability to assign an immediate and universal order to the

values of the given variable;

• Quantitative, which is the ability to assign a numerical value to the ”distance”

between to values of the given variable.

Bertin also introduces a fifth characteristic, the length, that defines the number of possible

values that a visual variable can take. In several scenarios this characteristic has no value

because there are an infinite number of values for a variable. An example could be a shape

variable, that theoretically can assume an infinite number of forms.

The level of each visual variable is presented in Figure 2.6. The variables are displayed as

rows and the characteristics as columns, and for each valid characteristic of each variable

is presented an example in the respective cell. The position variable is not displayed

because it is considered a special variable, meaning that it is always used and is valid for

all characteristics.

The main conclusions about the valid characteristics of each visual variable are:

• The association characteristic is valid for all variables, but for size and value it has

the opposite effect, which means that these variables are dissociative;

• The selection characteristic is valid only for size, value, texture, color and orientation

(for the last one it is only valid when the visual mark is a point or a line);

• The order characteristic is valid only for size, value and texture;

• The quantity characteristic is valid only for size.
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Figure 2.6: Levels of the visual variables (Bertin, 1983).

Bertin also introduces the concept of ”imposition” as the utilization of the plane and

divides this utilization into 4 groups: diagrams, networks, maps and symbols.

Diagrams are created when correspondences in the plane can be established between all

the values (Bertin calls them divisions) of one component and all the values of another

component (Bertin introduces component as a variation concept, which means some con-
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cept where the values change over time). An example is a simple scenario were for each

date a correspondent price exists, and the representation of these correspondences creates

a diagram. The example is presented in Figure 2.7.

Figure 2.7: Examples of diagrams (Bertin, 1983).

Networks are created when correspondences in the plane can be established between all the

values of the same component. An example is a conversation between several individuals,

where the component is the different individuals. Some possible networks for this example

are presented in Figure 2.8.

Figure 2.8: Examples of networks (Bertin, 1983).

Maps are created when the correspondences in the plane can be established in the same

way as a network, but can be presented according to a geographic order. An example

is a representation of the highways of an area where the correspondences are established

between several locations distributed in a geographic order. The example is presented in

Figure 2.9.

Symbols are created when the correspondence is not established in the plane, but instead is

established with the reader through the universal meaning of the presented element. Some

examples are universal signs associated with road traffic, agriculture, geology, industry,

among others. Some of these examples are presented in Figure 2.10.

These groups of imposition can be drawn in the plane according to a specific arrangement

or according to a construction that can be rectilinear, circular, orthogonal or polar. This

is called the type of imposition. Examples of arrangements and constructions of each

type for each group of imposition are presented in Figure 2.11. The groups are displayed
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Figure 2.9: Example of a map (Bertin, 1983).

Figure 2.10: Examples of symbols (Bertin, 1983).

as rows and the types as columns, and in each cell one or more examples of the type of

imposition applied to the group is presented. An empty cell means that the type of that

column does not apply to the respective group.

2.2.2 Edward Tufte’s Principles

Edward Tufte, one of the major contributors for this field after Bertin, introduced several

principles in his book ”The Visual Display of Quantitative Information” (Tufte, 1986) with

the propose of improving the quality of graphics that represent data. Quoting two of these

principles ”The representation of numbers, as physically measured on the surface of the

graphic itself, should be directly proportional to the numerical quantities represented.” and

”Clear, detailed, and thorough labeling should be used to defeat graphical distortion and

ambiguity. Write out explanations of the data on the graphic itself. Label important events

in the data.”. Considering the first principle, Tufte introduces a simple measure called

Lie Factor which is calculated with the formula Lie Factor = size of effect shown in graphic
size of effect in data .

When applying the Lie Factor to a graphic, if the value is equal to 1 then the graphic

is representing the numerical quantities in a proportional way, but if the value is less

than 0.95 or greater than 1.05 then the representation is distorting the real values. Tufte

presents the example from Figure 2.12, a graphic published by the New York Times in
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Figure 2.11: Groups and types of imposition (Bertin, 1983).

1978 where a series of fuel economy standards to be met by automobile manufactures

are presented, starting with 18 miles per gallon in 1978 and moving step by step until

27.5 miles per gallon in 1985. Looking to the values in percentage, from 1978 to 1985 an

increase of 53% is presented, and this is considered the size of the effect in the data. To

obtain the size of the effect in the graphic the relative length of the two lines associated

with the two years is calculated, which results in a value of 783%. Calculating the Lie

Factor with these two values a value of 14.8 is obtained. This is clearly a factor too

big, which means the data is represented in a disproportional and deceitful way. A much

simpler graphic that displays the same data but with a good lie factor is present in Figure

2.13.

Another major principle from Tufte is ”Above all else show the data.”. This means that

a graphic should use the majority of its space and ink to effectively display data. To test

this principle a measure called Data-ink ratio is introduced, which is calculated with the

formula Data-ink ratio = data-ink
total ink used to print the graphic . This is actually a simple ratio that
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Figure 2.12: Example of a graphic with a high Lie Factor (Tufte, 1986).

Figure 2.13: Example of a graphic with a good Lie Factor (Tufte, 1986).

measures in an objective way how much of the graphic can be erased without losing data

information. An ideal graphic would have a data-ink ratio of 1, which means that the entire

graphic is filled with non-redundant information. Sometimes a ratio of 1 is impossible to

achieve, mainly because some visual elements auxiliary to the data are required to make

the graphic comprehensible. The most common example is the grid. A lot of graphics

require a grid for scale proposes and it can not be deleted. But also a lot of times this grid

is a powerful source of distraction to the reader. Tufte calls this phenomenon the chart

junk, and it is everything that distracts the reader from the real message of the graphic.

All the chart junk should be deleted or, at least, minimized. Considering the grid, when
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it is not possible to eliminate it then some simple actions can help a lot, like reducing

the thickness of the grid lines and using the color grey instead of black for those lines.

The example of Figure 2.14 shows a graphic with a lot of chart junk. The same example

is presented in Figure 2.15 with the junk problem fixed through the application of the

actions mentioned above.

Figure 2.14: Example of a graphic with a lot of chart junk (Tufte, 1986).

Figure 2.15: Example of a graphic with the chart junk problem fixed (Tufte, 1986).

Within the visual concepts proposed by Tufte, one that is widely used in modern visu-

alization is the small multiples. He describes this concept as series of images where all
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variables values are indexed by the changes from a specific variable through the sequence.

In terms of looks Tufte compares this concept to a set of frames from a movie, because

they are in fact a set of sequential images. The presented example, visible on Figure 2.16,

shows the average distribution of the reactive hydrocarbon emissions from 23 hours of Los

Angeles. To display the levels of emissions the visual variable color is used through a scale.

The independent variable that changes over the multiples is the hour of the day.

Figure 2.16: Example of small multiples (Tufte, 1986).

2.2.3 Interactive Visualization

With the digital era and the massification of the computer some new concepts appeared

in the context of data visualization, namely the concept of interactive visualization. Until

there, data was always displayed in a static way, typically through images. But with the

computer a new kind of interaction was available, which allowed the creation of more
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dynamic ways of displaying the data. This dynamic is obtained through the interaction

of the user that effectively adjusts the visualization to his needs.

One of the novelties introduced with interactive visualization was a new visual variable,

the motion (Ward et al., 2010). Motion is actually a variable that is always associated

with one of the other variables because it simply introduces a way to display changes over

time on the values of the other variable. Typically these changes can be obtained through

variations of the speed or direction, being these variations what triggers the idea of motion

to the user and also the change of values in the other variable.

Another novelty is the ability that the user has to modify the visualization when inter-

acting with it. Therefore, several types of interaction techniques (also called interaction

operators) have been introduced (Ward et al., 2010), namely:

• Navigation, which gives the user the possibility of changing the position of the camera

and also scaling the content displayed in the screen through rotations, zooming, and

other actions;

• Selection, which gives the user the possibility of selecting a specific object, group of

objects or area with the propose of highlighting it/them or execute some operation;

• Filtering, which gives the user the possibility of reducing the information displayed

by removing data records or dimensions (or eventually, both);

• Reconfiguring, which gives the user the possibility of changing the graphical map-

pings of the data (i.e., the visual variables used for each attribute or dimension of

the data), which in fact means that different visualizations can be applied to the

same data;

• Encoding, which gives the user the possibility of changing the used visual variables

to explore different features;

• Connecting, which gives the user the possibility of creating links between related

content;

• Abstracting/Elaborating, which gives the user the possibility of changing the level

of detail of the visualization.

It is common to combine and apply several of the mentioned techniques at once, creating

a hybrid approach that fulfills the interaction requirements for the respective context.

An example of a filtering operation is presented in Figure 2.17, where some data records

and dimensions are removed, which gives special focus to a part of the data more important

to the user.
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Figure 2.17: Example of a filtering operation by removing data records and dimensions
(Ward et al., 2010). The original visualization is presented in the right image and the
filtered visualization in the left image.

2.2.4 Visualization Validation

Most of the data mining approaches produce results that can be submitted to different

types of metrics, and these metrics give numeric results that can be compared objectively

through a mathematical analysis. The results produced by a visualization are graphical

and not suitable for the same type of metrics. Therefore, this type of mathematical analysis

can not be applied on this context. A survey produced by Seriai et al. (2014) analyzed

this problematic and concluded that 78.16% of the articles included on their study used

case studies to validate visualizations. These case studies are a qualitative analysis and

follow into two approaches: the exemplification of scenarios where the visualization does

what it is supposed to do, proving that it works; human-computer interaction studies

with real users where their feedback is analyzed. The first approach is more focused on

proving that the visualization is in fact a solution to the problem that it tried to solve.

The second approach is more focused on evaluating the usability and the interaction of

the visualization through quantitative measures (ask the user to do some task an measure

the necessary time to do it) or qualitative ones (questionnaires or interviews). Therefore,

depending on the type of tasks that the users have to do, it may in fact just evaluate the

”user features” of the visualization and not its effectiveness. The survey also states that

16.09% of the analyzed articles use experiments with statistical tests, but these are in fact

case studies used as hypothesis. The remaining 5,75% are interviews to the users, which

are again a human-computer interaction strategy but less focused on specific tasks and

more focused on generic aspects of the visualization and its contexts.
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2.3 Conclusion

From the concepts described on this background knowledge, the following conclusions can

be drawn:

• DBSCAN is the more common algorithm for density-based clustering;

• HDBSCAN is a DBSCAN extension that automatically chooses the Eps parameter;

• The Silhouette Coefficient metric is a very common evaluation approach for cluster-

ing algorithms and it is based on the clusters cohesion;

• Jacques Bertin’s principles introduce the fundamental concepts of the visualization

field, like the visual variables definition and its levels;

• Edward Tufte’s principles propose concepts that are able to improve visualizations,

like the data-ink ratio to reduce the chart junk problem and the small multiples

strategy;

• The interactive visualization concepts are mandatory to develop modern computa-

tional visualizations;

• The case studies have proved to be a good approach to validate visualizations.

For these reasons the concepts presented above were used in the developed work.
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Related Work

This section presents some of the recent work published in the fields approached by this

thesis, which are trajectory mining (section 3.1), traffic visualization (section 3.2) and

anomaly detection in vessels traffic (section 3.3). For each of these subjects an extensive

search of highly cited and/or recently published papers was made, being the summary of

these papers the content of this section. In the end some future directions of work are

identified (section 3.4).

3.1 Trajectory Mining

Mazimpaka and Timpf (2016) introduce in their survey the concept of trajectory as a set

of points where each point is represented by a spatial location (typically a latitude and a

longitude for GPS-based data, but other sources are used, like GSM-based data), the time-

stamp at which the point occurred and, eventually, other informative data related with the

point and its context. The survey proposes a division of the trajectory mining methods in

two categories, primary and secondary methods. Primary methods try to categorized the

trajectories, while secondary methods try to analyze the trajectories based on the results

of the primary methods. The authors enforce that the data must be pre-processed before

the mining techniques are applied through tasks like data cleaning, trajectory compres-

sion, map matching and trajectory segmentation. Primary methods fall in two common

types of machine learning algorithms, clustering and classification. Clustering algorithms,

being part of the unsupervised learning algorithms, have the advantage of not requiring

labeled data. The article gives a special focus to algorithms like the ST-DBSCAN (Birant

and Kut, 2007) and T-OPTICS (Nanni and Pedreschi, 2006), which are an extension of

the well known clustering algorithms Density Based Spatial Clustering of Applications

with Noise (DBSCAN) (Ester et al., 1996) and OPTICS (Kriegel et al., 2011), respec-

tively. The TraClus clustering algorithm (Lee et al., 2007), which operates on sections of

trajectories instead of the entire trajectories, is another important alternative mentioned

in the article. In terms of classification the article mentions that the classic algorithms
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are used for trajectory mining, and gives some examples of algorithms that were already

tested, like decisions trees and support vector machines (SVMs). The TraClass frame-

work (Lee et al., 2008b) is also presented in this context, but it actually uses clustering

in a first step and a SVM in a second step. Secondary methods fall in three types, being

these pattern mining, outlier detection and prediction. Pattern mining tries to discover

movement patterns in trajectories and is subdivided in three categories. One is repetitive

pattern mining, which tries to discover patterns that are repeated periodically in several

trajectories, and the authors give special focus to the Periodica algorithm (Li et al., 2010)

for this purpose. Another one is frequent pattern mining, which tries to discover routes

that are frequently followed in the trajectories based on time and location, and the article

presents T-Patterns as one of the best ways to represent these routes. The last one is

group pattern mining, which tries to discover patterns that several objects follow together

as a group, and typically is applied through density-based clustering, where the result

patterns can be of three types: flock, which consists of a group of objects that are seen

together in several consecutive time-stamps inside a circular area; convoy, which is similar

to flock but the circular area is relaxed to a neighborhood area found by density-based

clustering algorithm; and swarm, which is similar to convoy but relaxes the need for con-

secutive time-stamps to just a minimum number of time-stamps where the objects must

be seen together, consecutive or not. Outlier detection tries to discover trajectories that

do not comply with the expected routes, which requires previous knowledge of what is

the expected behavior. The authors present several algorithms for this method, like the

TRAOD algorithm (Lee et al., 2008a), the iBAT anomaly detection framework (Zhang

et al., 2011), and in general algorithms that apply distance measurement between trajec-

tories or two-label classifiers for trajectories classification as normal/abnormal. Prediction

tries to discover the future location of objects based on already seen trajectories of them,

which is out of the scope of this thesis. The survey also concludes that, with the increasing

usage of location-aware devices, trajectory mining has become a very attractive research

topic with a lot of problems to be explored. Moreover, it identifies one of the current

trends in movement data analysis that needs to be explored with trajectories in a near

future that is to relate the movement to its context, creating the concept of context-aware

mining of trajectories.

Cazzanti and Pallotta (2015) introduce in their survey a distinction between trajectory

mining approaches for Automatic Identification System (AIS) data, namely point-based

approaches, where complete independence is assumed between the spatial points (in the

AIS context, between messages), and trajectory-based approaches, where each object tra-

jectory is first estimated (in the AIS context, the vessels trajectories are estimated from

the spatio-temporal distribution of the messages stream) and the algorithms work with the

estimated trajectories. The first approach has several benefits in terms of performance

but has the drawback of not accounting for important correlations between the spatial

locations (points) of the vessel through the time, which is the main benefit of the sec-

ond approach. For the point-based approaches the survey appoints some other articles

that applied kernel density estimation (KDE) and association rule mining, and for the
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trajectory-based approaches it gives a special focus on the Traffic Route Extraction and

Anomaly Detection (TREAD) algorithm (later presented in this section), being this one

the reference for this approach. The article also discusses the applicability of the TREAD

algorithm in discovering and detecting vessel stationary areas, and includes an experimen-

tal part with AIS data from the Persian Gulf, collected between February 3 and May 7 of

2013, which refers to 12051 vessels. The results show that the main stationary areas were

detected but no quality assessment was provided.

Sang et al. (2012) introduce an approach based on interpolation for restoring missing

points from AIS trajectories, and presents an experiment where three mathematical models

are tested and compared. The existence of missing points is very common with AIS

data because the period of transmission is different for each vessel since it depends on

its geographical position and speed. The three models used in the experiment are all

piecewise-defined, which means that they are composed by several small functions that

together form the final function. The first one is a linear interpolation, which means that

it can only map data in a straight line format. The second one is a cubic interpolation,

and for that reason it is able of mapping data with a curve format. The third and

final one is a cubic spline interpolation, which is very similar to the last one but uses a

spline approach, meaning that it can use lower-degree polynomials in the different small

functions, choosing the degrees that are more suitable for achieving a final function with

the maximum smoothness. The three models were tested with data from an unknown

location collected on January 10 of 2012. The results show that all methods are able of

mapping correctly trajectories when the vessel does not change its direction, but when

the vessel makes a turn and the trajectory takes the form of a curve the cubic spline

interpolation is the method that maps the data more accurately. The article from Zhang

et al. (2017) presents a similar study but uses AIS data from a specific vessel collected

on October 10 of 2016 from Wuhan in China. The results were coherent with the ones

mentioned before, but the authors claim that the cubic spline method only performs well

when no more than five points are missing from the trajectory.

Pallotta et al. (2013b) introduce a new algorithm called Traffic Route Extraction and

Anomaly Detection (TREAD), which is able of discovering, in a unsupervised and incre-

mental way, waypoint objects that can be stationary, entry or exit points, and cluster

these waypoint objects into routes through an incremental DBSCAN algorithm. With the

routes extracted, simple anomaly detection based on deviation of the normality is applied,

using historical data and a minimum threshold. The algorithm was applied to AIS data

from the North Adriatic Sea collected between March 1 and May 15 of 2012 and to AIS

data in the proximity of the Strait of Gibraltar collected over two months. The results

show that the main routes that were expected based on previous knowledge of the nau-

tical charts where in fact detected, but some other not known or expected routes where

also detected. In terms of the anomaly detection approach, it was tested with a specific

vessel that was located in the Port of Livorno, in the Ligurian Sea area, an the anomalous

behavior was successfully detected. The authors applied the same algorithm in another

article (Pallotta et al., 2013a) with AIS data from the Northern Tyrrhenian Sea collected

29



Chapter 3

between January 1 and February 20 of 2013, an used the concept of entropy to evaluate

the results considering that a route with a higher entropy was more likely to be correct

than others with a lower value, and some examples of routes with an entropy over 0.95

were presented.

Hadzagic et al. (2013) introduce the usage of the R software for data mining proposes

trying explicitly to answer several questions, being one the identification of all vessels

that go from port A to port B in a time period T. To perform this task first the authors

created a grid that covered the region of interest, because this is a very simple and fast

way of computing the distances between port’s and vessel’s locations, considering that

each vessel and port position is associated with a cell of the grid and if a vessel visited a

cell associated with a port then it visited the port. Secondly, the association rule mining

algorithm APRIORI was applied. This algorithm identifies frequent items on a dataset

and extends them to groups, considering only as valid the groups that appear frequently

in the dataset. These groups are then derived to association rules which are able to map

the trends of the data. The approach was tested with AIS data from an area limited by

latitude between 35oN and 53oN and longitude between 80oW and 48oW (an area between

the Atlantic coast of Newfoundland, Labrador in Canada and Virginia in USA) collected

between 3 and 10 of November of 2011, containing 93000 positions. The results present

some rules with a very good lift value (between 1 and 10), but no rational is presented for

the quality of these results.

Liu and Chen (2013) propose a new method to recreated vessels’ routes from AIS incom-

plete data. The concept of incomplete data in this paper is actually normal AIS data

but, considering that a vessel can spend a lot of time without communicating the current

position, huge gaps can exist between two consecutive collected positions. The authors

introduce a new algorithm capable of creating new simulated points to fill these gaps.

The new points are created based on a calculated distance that takes in consideration

the direction of the vessel and this process is executed in a loop until the gap is filled in.

The authors experimented the technique with AIS data from north of Australia collected

between May 13 and October 7 of 2012, recreating the routes from 4 specific vessels. The

results show that the created positions of the vessels adjusted well to the routes, with the

exception of when the inference was made at turning corners.

Gonzalez et al. (2014) introduce two methods for the extraction of vessels lanes (called ship

lanes), the first one based on point clustering and the second one on segment clustering.

The point clustering approach detects entry, exit and turning points, groups them based

on density and connects the clusters with common trajectories to create the final paths.

The segment clustering approach partitions the vessels trajectories by the turning points,

clusters these segments with a density based approach and calculates the final path with

the adjustment of regressions. These methods were experimented with data from an area

around Algarve (Portugal) collected from 1 week, with approximately 28000 points. The

results show that both methods detected the main vessels lanes of the area, but the segment

clustering approach gives paths with more breaks in between.
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Sun et al. (2015) introduce an extension of the DBSCAN algorithm particularly for tra-

jectory clustering and proposes a few steps of data preparation on AIS data, like cleaning

the data with noise and re-sampling the data to periods of 15 minutes. The algorithm was

experimented with AIS data from an unknown location, collected between November and

December, with 506884 points. The sum of squared errors is proposed has an evaluation

criteria of the work but the results only show that some trajectories are found and no

rational is presented for the quality of those results.

Wu et al. (2015) introduce an hierarchical approach based on fusion to detect trajecto-

ries and stopping points. First the positions from the same vessel are aggregated into

sub-trajectories by computing the angle of every two consecutive points and a new sub-

trajectory is detected when the difference of the maximum angle value and the minimum

angle value is greater than a threshold (defined as 30 in the article). Secondly, the sub-

trajectories are aggregated into route segments and stops. To perform such task, the

authors observed through the data that when a vessel is moored or anchored the length

of the sub-trajectories is typically under 30 meters and the angles are above 60o, and

based on this info they estimate the degree of membership of each sub-trajectory to a so

called stopped state. If this degree is above a given threshold (0.2 in this context) it is

considered a stop. The remaining sub-trajectories are aggregated in route segments. The

authors experimented their approach with AIS data from the coast of China of one specific

vessel, using 32176 records collected between 2 and 11 of September of 2013. The initial

data was aggregated into 1297 sub-trajectories and these ones were aggregated into 250

route segments and 16 stops. The authors compared the results with a combination of the

algorithms CB-SMoT and DB-SMoT and say that the proposed one is more precise, but

no proves besides a visual comparison are presented to justify this affirmation.

Liu (2015) introduces a new trajectory clustering algorithm that is an extension of the

DBSCAN algorithm called Density-Based Spatial Clustering of Applications with Noise

considering Speed and Direction (DBSCANSD). This extension uses the exact same ap-

proach of the DBSCAN but when it is looking for neighbors it also considers the Course

Over Ground (COG) and the Speed Over Ground (SOG), being that two points are con-

sidered neighbors if the distance between them is less than a given radius and their Course

Over Ground (COG) and Speed Over Ground (SOG) absolute differences are less than a

given threshold for each of them. There for, the algorithm also requires these thresholds

as an input, which in fact are the maximum direction variance (COG) and the maximum

speed variance (SOG). The author also proposes a technique to reduce the number of

elements in the cluster, called Gravity Vectors, where the cluster is partitioned into a grid

(the grid split criteria is defined by the domain knowledge or multiple experiments) and

for each cell the average of the COG, SOG, latitude and longitude values and the median

distance are calculated, merging these values into a gravity vector. This means that each

cluster will have as many gravity vectors as grid cells. The author also addresses the detec-

tion of stopping areas through the usage of the normal DBSCAN without any extension.

The algorithms were tested with AIS data from the strait of Juan de Fuca and the Los

Angeles Long Beach, collected between November 1 and December 31 of 2012, containing
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67850 and 327694 points respectively. In both sources the main trajectories and stopping

areas that were expected accordingly to the navigation rules defined for both areas were

in fact found. The article from Yan et al. (2016) followed the exact same approach and

experimented it with two weeks of AIS data from the Singapore strait that includes over

4000 vessels of different types and 340000 points. The results also look promising but no

point of comparison is provided.

Zhang et al. (2016) introduce a technique to detect and simplify trajectories from AIS

data through an adaptation of the Douglas-Peucker algorithm. This algorithm creates

line segments that approximate the original points (in this case, the original positions

of the vessels) by comparing the distance between the existing line segments and each

original point with a given threshold, and when the distance between the line and one

or more points is higher than the threshold a new segment is created that connects to

that point. This process is executed in a loop until no distances higher than the given

threshold exist. The technique was experimented with AIS data collected between 2 and 12

of July of 2011 from the Qiongzhou Strait AIS base station, considering the trajectories

from 962 vessels created with 5902840 points. The results were compared through a

visual approach and also by measuring traffic flow statistics, namely the number of vessels

crossing specific areas and their average length and speed. The visual approach show

that the generated trajectories match the original ones with just a few representative

points. The traffic flow statistics measured with the original and simplified data show

minor differences in the values, with a maximum difference of 8 for the number of vessels.

Based on the same approach, the article from Li et al. (2016) introduces the usage of

a density visualization for comparing the original trajectories with the ones compressed

with the Douglas-Peucker algorithm with the propose of discovering an ideal threshold

that provides a good representation of the original routes with a high reduction of the

necessary points. The authors experimented the approach with data from the Wuhan

section of the Yangtze River containing 29015 points and 187 vessels, and obtained the

best results with a threshold of 2.5∗10−6, producing a compression rate of 44.84% without

losing the characteristics of the original trajectory.

Dobrkovic et al. (2016) introduce a new approach to detect trajectory patterns using a

genetic algorithm. Each gene of the chromosome is composed by a latitude, a longitude

and a radius and the algorithm tries to maximize a fitness function that sums the number

of vessel points inside each geographical circle generated by each gene. To improve the

genetic algorithm the authors also propose the application of several features, with major

emphasis on the usage of a quad tree structure to store all the points subdivided in

smaller regions, which makes the queries to these points must faster because only the

points adjacent to the circle of the gene under test are considered. The extracted routes

are direct graphs that have as nodes the circles obtained from the best chromosome given

by the genetic algorithm. This method was experimented with data from two Dutch

provinces (South Holland and Overijssel) and the extracted routes were compared with a

map of rivers and canals of them. The results show that the extracted patterns match the

main water routes.
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Lei et al. (2016) propose a new route extraction method called Maritime Traffic Route

Discovery (MTRD) that is able to extract routes from AIS data. It starts by mining fre-

quent regions through the creation of a grid that maps the trajectory data and classifying

each cell (region) as frequent if the number of trajectories that cross that cell is higher

than a given threshold. These regions are then converted to frequent patterns through the

application of the Prefixspan algorithm (Han et al., 2001) and these patterns are summa-

rized by eliminating the ones that are included in another pattern and by concatenating

the ones that have similarities in the beginning or the end parts. Finally the routes are

extracted from the patterns by calculating the average direction and position of each cell.

The method was experimented with an AIS dataset of an unknown location that covered

20639 trajectories and 21202212 positions. The results were analyzed in terms of average

coverage rate and, with variations between 200 and 400 for the number of necessary se-

quence patterns, this rate is up to 76%, which is a good indicator of the effectiveness of

the method.

A summary of the related work analyzed in the trajectory mining context is presented on

Table 3.1.
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Table 3.1: Summary of trajectory mining related work.

Publication Goals AIS Data Strategy Evaluation Metrics Results

Sang et al. (2012)
Restore vessel’s trajec-

tories

Unknown location data

collected on January 10

of 2012

Piecewise Linear, Cubic

and Cubic Spline Inter-

polation

Visual analysis

Piecewise Cubic Spline

Interpolation is the

method that better

models trajectories with

a curve format

Pallotta et al. (2013b)
Extract main vessels’

routes

North Adriatic Sea

data collected between

March 1 and May 15 of

2012; Strait of Gibral-

tar data collected over

two months

Traffic Route Extrac-

tion and Anomaly De-

tection (TREAD)

Visual comparison
Main routes are coherent

with the nautical charts

Pallotta et al. (2013a)
Extract main vessels’

routes

Northern Tyrrhenian

Sea data collected

between January 1 and

February 20 of 2013

Traffic Route Extrac-

tion and Anomaly De-

tection (TREAD)

Route entropy
Some routes with an en-

tropy over 0.95

Hadzagic et al. (2013)

Identify vessels that go

from port A to port B

in a time period T

Data of an area be-

tween the Atlantic

coast of Newfoundland

in Canada and Vir-

ginia in USA, collected

between 3 and 10

of November of 2011,

containing 93000 points

Association rule min-

ing with APRIORI al-

gorithm

Lift
Rules with high lift val-

ues between 1 and 10

Continues in next page.
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Continued from previous page.

Publication Goals AIS Data Strategy Evaluation Metrics Results

Liu and Chen (2013)

Complete trajectories

with gaps between the

points

North of Australia data

collected between May

13 and October 7 of

2012

Trajectory interpola-

tion based on position,

COG and SOG

Visual comparison

No quality assessment;

The generated points ad-

justed well to the trajec-

tories

Gonzalez et al. (2014)
Extract vessels’ routes

and lanes

Algarve (Portugal)

data, collected over one

week and containing

28000 points

Density-based cluster-

ing over points and seg-

ments

Visual analysis

No quality assessment;

Segment clustering gives

routes with more breaks

Sun et al. (2015)

Extract maritime

routes from spatio-

temporal data

Unknown location

data, collected between

November and Decem-

ber and containing

506884 points

Density Based Spatial

Clustering of Applica-

tions with Noise (DB-

SCAN)

Sum of squared errors

No quality assessment;

Some trajectories were

found

Wu et al. (2015)

Extract vessels’ tra-

jectories and stopping

points

Coast of China data for

one specific vessel, col-

lected between 2 and 11

of September of 2013

and containing 32176

points

Hierarchical fusion

of points and sub-

trajectories

Visual comparison
Precision outperforms

similar algorithms

Continues in next page.
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Continued from previous page.

Publication Goals AIS Data Strategy Evaluation Metrics Results

Liu (2015)

Extract vessels’ tra-

jectories and stopping

points

Strait of Juan de Fuca

and the Los Angeles

Long Beach data, col-

lected between Novem-

ber 1 and December 31

of 2012 and contain-

ing 67850 and 327694

points, respectively

Density-Based Spatial

Clustering of Applica-

tions with Noise consid-

ering Speed and Direc-

tion (DBSCANSD)

Visual comparison
Trajectories are coherent

with the navigation rules

Yan et al. (2016)

Extract vessels’ tra-

jectories and stopping

points

Singapore strait data,

collected over two

weeks and containing

340000 points for more

than 4000 vessels

Density Based Spatial

Clustering of Applica-

tions with Noise (DB-

SCAN)

Visual analysis

No quality assessment;

Some trajectories are

presented visually

Zhang et al. (2016)
Detect and simplify tra-

jectories

Qiongzhou Strait data,

collected between 2 and

12 of July of 2011

and containing 5902840

points for 962 vessels

Douglas-Peucker algo-

rithm

Visual comparison;

Comparison of the

number of vessels

crossing specific ar-

eas and their average

length and speed

Visually the simplified

and the original trajec-

tories match; The sta-

tistical values are almost

equal, with a maximum

difference of 8 for the

number of vessels

Continues in next page.

36



R
elated

W
ork

Continued from previous page.

Publication Goals AIS Data Strategy Evaluation Metrics Results

Li et al. (2016)

Simplify trajectories

and find an ideal

threshold for the

compression

Wuhan section of

the Yangtze River data

containing 29015 points

for 187 vessels

Douglas-Peucker algo-

rithm; Density visual-

ization

Visual density compar-

ison

With a threshold of 2.5 ∗
10−6 a compression rate

of 44.84% is obtained

without losing the char-

acteristics of the original

trajectory

Dobrkovic et al.

(2016)
Extract vessels’ routes

Dutch provinces South

Holland and Overijssel

data

Genetic algorithm Visual comparison

The trajectories match

the map of rivers and

canals of the provinces

Lei et al. (2016) Extract vessels’ routes

Unknown location data

containing 21202212

points

Maritime Traffic Route

Discovery (MTRD)
Average coverage rate

With variations between

200 and 400 for the num-

ber of necessary sequence

patterns, the rate is up

to 76%

Zhang et al. (2017)
Restore vessel’s trajec-

tories

Wuhan (China) data

collected on October 10

of 2016

Piecewise Cubic Her-

mite and Spline Inter-

polation

Accuracy; Visual anal-

ysis

Piecewise Cubic Spline

Interpolation is the

method that better re-

stores trajectories; The

method only performs

well when the number of

missing points is below 5
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In conclusion, the following key aspects can be described:

• A lot of work exists in the trajectory mining field, but when considering only AIS

data the quantity of available work is considerable reduced, possibly because AIS

data is difficult to obtain;

• With the exception of one more common trend, the authors follow very different

approaches in their work, from simple frequency analyses to rule mining and genetic

computing approaches;

• The only recognized trend in the field is the usage of density-based clustering, par-

ticularly the DBSCAN algorithm and extensions of it;

• Concerning the techniques’ evaluation, there is no global metric followed by the

authors but a lot works rely on visual comparison.

Focusing on the reasons why density-based clustering is a trend in the field, if we look at

the sea as a big space with no physical barriers we can conclude that a vessel can follow any

trajectory. This does not happen because some traffic corridors are defined for the vessels

to sail. Therefore the vessels must sail on those corridors, which in fact means that the

majority of the vessels follow the same trajectories (at least if they are in compliance with

the law). With this rational we can conclude that some areas of the sea have the majority

of the traffic, and therefore these areas have a much higher density of vessels sailing on

them. Density-based clustering serves this exact propose, detecting and describing areas

(clusters) where the traffic (density) of vessels (points) is much higher. The reasons why

DBSCAN is the more common are not only because it is the more known and used density

cluster algorithm but also because it supports any distance function, which in the case of

the AIS data gives the possibility of including in this distance calculation other (possibly)

important attributes, like the COG and the SOG.

3.2 Traffic Visualization

Riveiro and Falkman (2009) introduce a visualization model that is able to present the

normal behavior of vessels through the density probability of each combination of the more

relevant kinematic values (SOG, COG, heading, latitude and latitude), using a grid of 6x6

where each column and row represent one of the kinematic values. The model allows the

visualization of the density probability of each pair of kinematic values in a 3D scatter

plot by selecting two columns of the same row. After the selection, three scatter plots are

presented with the expected information, each one with a different scale and perspective.

A 2D plot is also presented showing only the kinematic values and the dangerous zones,

that are specific areas of the plot where the values are considered anomalous by one or

more rules defined by expert’s knowledge. Notice that the density probabilities mentioned

above are obtained through a probability density function created from the application of
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the methods Self Organizing Maps (SOMs) and Gaussian Mixture Models (GMMs). The

visualization model was experimented with AIS data from the Swedish coast, collected

from 17 days of January and containing 3.5 million points and 600 vessels per day. The

first 5 days of data were used to train the methods that create the probability density

function. The results look promising but no quality justification is provided for them.

The visualization model of this experiment is presented in Figure 3.1.

Figure 3.1: Visualization model of the experiment from the article of Riveiro and Falkman
(2009).

Willems et al. (2009) introduce a new kernel density method based on the speed of the

vessels that is able to measure the contribution of each vessel in each point of the map

over time, being this contribution modeled with a convolution. In terms of visualization

these densities are displayed through continuous or discrete color mappings, and to get

both an overview and a detail view of the data two densities are calculated for each vessel,

one with a larger kernel for the overview and the other one with a smaller kernel for the

detail view, being both displayed in the same area simultaneously but applying a different

shading to the density of the larger kernel. The method was experimented with AIS

data from the port of Rotterdam in the Netherlands and the entire Dutch coast. The

results show that, comparing with other density approaches that do not take the speed

into account, this method highlights some of the speed patterns, specially vessels that are

moving slower than expected. This comparison is presented in Figure 3.2. Notice that the

Douglas-Peucker algorithm was applied to the AIS data in order to reduce the number of

points necessary for the representation of each trajectory.

Jiacai et al. (2012) introduce a new data visualization model that divides the region of

interest into a grid and calculates an index of maritime traffic situation for each cell of the

grid. This index combines three features that are the rate of encounter, the rate of turn

and the vessel acceleration. Each of these features is multiplied by a weight (in the study

all features have the same weight, therefore 1
3), and the final value of the index is the

sum of the values. A region (cell of the grid) with a higher index has a more complicated

and danger traffic situation than a region with a lower index, but no threshold values are

39



Chapter 3

Figure 3.2: Density visualization comparasion with and without speed (right and left
images, respectively) from the article of Willems et al. (2009).

proposed in the article. The method was experimented with two AIS datasets from the

Chinese ports of Xiamen Bay and MeiZhou Wan, containing the first one 865295 points

and 649942 vessels and the second one 1669 points and 1546 vessels. The index values

were displayed in the Electronic Chart Display and Information System. The results show

that 4 areas in Xiamen Bay and 3 areas in MeiZhou Wan were identified as potentially

more danger. The visualization from this last area is present in Figure 3.3.

Figure 3.3: Index visualization of the MeiZhou Wan area from the article of Jiacai et al.
(2012). The 3 potentially danger areas are identified on the map.

Gao and Shiotani (2013) propose 2D and 3D views more suitable for the presentation

of AIS data. The views are introduced through several case studies, all of them using

AIS data collected from the Osaka Bay, located east of the Seto Inland Sea in Japan, on

March 7 of 2012 and containing 333 vessels. In the 2D approach, the authors divided the

area of interest in a grid with cells of 5x5 kms and calculated the number of vessels that

crossed each cell. These values are then used to create a visual density distribution of

the vessels in the area through a color gradient. This 2D approach is presented in Figure

3.4. Considering that the AIS data may be transmitted over different periods for different

vessels there is the risk of calculating wrong density values because of the missing positions
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from the vessels. To solve this problem the position data of each vessel is interpolated

in a per-second basis. In the 3D approach, the authors created a simulation where a

specific container vessel was followed in a 3D map containing detailed information about

the surrounding environment like water depth and other vessels. This view creates a very

trustful representation of the environment were the vessel is sailing and can even integrate

other AIS data (e.g., the direction of travel). This 3D approach is presented in Figure 3.5.

Figure 3.4: 2D density visualization from the article of Gao and Shiotani (2013) for two
hours of the day. High and low densities are represented by red and white, respectively.

Figure 3.5: 3D visualization from the article of Gao and Shiotani (2013). The vessel being
followed is in the green circle.

Fiorini et al. (2016) introduce a pipeline of actions to go from raw AIS data to a proper

visualization of the vessels routes. This pipeline follows a sequential process starting with

raw data being aggregated and reduced in terms of number of attributes (only location,

time-stamp and kinematic information is kept) and in terms of proximity (if several points

are within the same location only a representative one is kept). The resulting points are

then aggregated into segments using a format that is ready for geographical visualization

and that is compliant with the specifications of the Open Geospatial Consortium. Finally,

the generated trajectories are then presented in a interactive web-like page with several

types of filtering, like selecting specific routes or attributes. The described pipeline is
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presented in Figure 3.6 with the sequence of actions. The approach was experimented

with a large AIS dataset with over 90 millions rows from the entire world collected in

October of 2015. To perform all the steps of the pipeline only open-source tools were

used, namely PostGIS 1 for the raw AIS data aggregation and reduction, GeoServer 2 for

the points’ aggregation into segments in the desired format and OpenLayers 3 to present

the trajectories in a web-like page. The resulting application allows for a fast and complete

exploitation of the trajectories with the possibility of querying specific routes or attributes.

Figure 3.6: Pipeline of actions from the article of Fiorini et al. (2016).

Chen et al. (2016) introduce the concepts of direct and summary visualization in the con-

text of AIS data. In a direct visualization approach the data is displayed as is without any

kind of previous processing, which can perform well with small quantities of data but when

this quantity increases the analysis can become very difficult. In a summary visualization

approach the displayed data is an abstract representation obtained from the original data,

which is more suitable for big data contexts and for patterns representation. In this second

approach the authors give special emphases in density-based representations like the heat

map, and propose an extension of the heat map concept for the AIS context that works

with relative values instead of absolute values like the basic heat maps, which is required

to ensure a bigger continuity in the density representation. This extension also divides

the region to be presented in cells and calculates the heat contribution value of each pixel

point by summing the distances of that point to the vessels and, after that, calculates the

relative heat by normalizing the value with the minimum and maximum heat contribution

values of the region. This approach can also be applied to kinematic information like the

velocity. Both the direct and the summary approaches were experimented with data from

the Wuhan Yangtze River, collected between 11 and 17 of August of 2015 and containing

167865 points. The results from the direct visualization show that the general trends of

the patterns are displayed but the view is very confuse and a lot of data is overlapped,

and the results from the summary visualization show that the relevant patterns are prop-

erly displayed through dense, high-speed and extreme slow-down areas. These results are

presented in Figure 3.7.

1Available at https://postgis.net/
2Available at http://geoserver.org/
3Available at https://openlayers.org/
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Figure 3.7: Direct visualization (left) and summary visualization (right) of the experiment
from the article of Chen et al. (2016).

A summary of the related work analyzed in the traffic visualization context is presented

on Table 3.2.
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Table 3.2: Summary of traffic visualization related work.

Publication Goals AIS Data Strategy Evaluation Metrics Results

Riveiro and Falkman

(2009)

Interactively visualize

vessels’ normal behav-

ior

Swedish coast data, col-

lected from 17 days of

January and containing

3.5 million points and

600 vessels per day

Interactive visualiza-

tion with connecting

technique

Visual analysis No quality assessment

Willems et al. (2009)
Visualize vessels’

movements

Port of Rotterdam in

the Netherlands and

Dutch coast data

Density-based visual-

ization
Visual analysis

No quality assessment;

Taking speed into account

highlights speed patterns

Jiacai et al. (2012)
Visualize maritime

traffic situation

Chinese ports of Xia-

men Bay and MeiZhou

Wan data, containing

the first one 865295

points and 649942 ves-

sels and the second one

1669 points and 1546

vessels

Index calculation for

each cell of a grid map-

ping of the area

Visual analysis

4 areas in Xiamen Bay and

3 areas in MeiZhou Wan

were identified as poten-

tially danger

Gao and Shiotani

(2013)

Visualize AIS data in

2D and 3D

Osaka Bay data col-

lected on March 7 of

2012 and containing

333 vessels

2D density-based visu-

alizations; 3D modeling
Visual analysis

2D visualization provides

traffic density evaluation;

3D visualization provides

a trustful representation

of the environment

Continues in next page.
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Continued from previous page.

Publication Goals AIS Data Strategy Evaluation Metrics Results

Fiorini et al. (2016)

Create an interactive

visualization for mar-

itime traffic

Data from all over

the world, collected in

October of 2015 and

containing 90 million

points

Data aggregation and

reduction; Interactive

web-like geographical

visualization

Visual analysis

An application that allows

the visualization and ex-

ploitation of maritime tra-

jectories with interactive

techniques

Chen et al. (2016)
Visualize maritime

trajectories

Wuhan Yangtze River

data, collected between

11 and 17 of August

of 2015 and containing

167865 points

Direct visualization;

Summary visualization

through density (heat

map)

Visual analysis

Direct visualization has

overlapping issues; Sum-

mary visualization shows

the relevant patterns

displayed through dense,

high-speed and extreme

slow-down areas45
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In conclusion, the following key aspects can be described:

• A lot of work exists for the traffic visualization field but for the AIS data context

the quantity of work available is once again very reduced, possibly because of the

same reason as in trajectory mining;

• With the exception of one paper that explores the three-dimensional plane, the

remaining ones explore the two-dimensional plane through the usage of maps divided

into grids and explore the usage of visual variables to display information on each

cell;

• The general trend of the works is to display the traffic information through density-

based visualizations, using visual variables like the value to show different densities;

• Concerning the techniques’ evaluation, all the works are evaluated through visual

analysis.

Focusing on the reasons why density-based visualizations is a trend in the field, an area

with more traffic is in fact where more vessels sail frequently. Therefore, this concept

of frequency can easily be transformed into a density. From a visualization perspective,

density is actually a very good way of displaying different frequencies because it introduces

the concept of an ordered gradient, which is highly informative when displayed through

the right visual variables (in this case, the ones that are able to displayed order).

3.3 Anomaly Detection

Tu et al. (2017) present in their survey anomaly detection algorithms based on trajectory

mining, and distinguishes the vessels anomalies in three types: position anomalies, where

the vessel is located in a forbidden or unexpected position; speed anomalies, where the

vessel speed is above or below the normal speed; and time anomalies, where the vessel is

sailing during a period that was not expected. Focusing on the first two types of anomalies,

the survey also categorizes the anomaly detection algorithms in two types: geographical

model based methods, where the models are built for a specific area and trained with local

data from that area; and parametrical model based methods, where the built models are

independent of the areas. For the first type the survey presents some example models

like the Normalcy Box (Rhodes et al., 2005), the Fuzzy ARTMAP (FAM) (Bomberger

et al., 2006), the Holst model (Laxhammar, 2008) and the Potential Field Method (PFM)

(Osekowska et al., 2015), and for the second type it also presents some examples like the

Trajectory Cluster Modeling, the Gaussian Process and Bayesian Networks. The survey

concludes that the geographical methods are more intuitive but usually do not make use

of all the available information, while the parametrical methods are less intuitive but can

easily include all information of expert knowledge.
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Handayani et al. (2013) introduce the usage of support vector machines (SVMs) for

anomaly detection in trajectories. SVMs are supervised classification models that can

be trained with labeled nonlinear data and are able to map this data into an higher di-

mensional feature space using a kernel function. When presented with new data, based

on the previous training, SVMs are able to classify this new data with known labels. The

raw AIS data is not labeled and in order to create the training set labeling of part the

data is required. Therefore the authors propose the cleaning and splitting of the data by

trajectories, and these resulting routes are displayed to a domain expert that classifies

them as normal or abnormal. The training set is then created with part of the trajectories

of each type. The article also proposes the interpolation of the positions in a 3 minutes

interval to avoid gaps. The method was experimented with AIS data from Port Klang,

collected between July and September of 2013 and containing 9845 points. Three different

divisions of the data into training and testing sets were experimented, with the respective

percentages of 60-40, 70-30 and 80-20. Also, each of these experiments was executed with

and without interpolation of the data. The results show that the best combination is

the division of 70%-30% for the training and testing sets using interpolated data, which

resulted in 99.81% of accuracy.

Mazzarella et al. (2014) introduce a process to discover fishing areas that can easily be

applied to anomaly detection, namely the detection of fishing activities in illegal areas. The

process starts by cleaning the data, removing reported positions for the same Maritime

Mobile Satellite Identity (MMSI) that are very close to each other, and by aggregating the

positions of the same vessels in trajectories. Then an algorithm to cluster positions of a

vessel where fishing behavior is probable is applied to each trajectory. This algorithm takes

in consideration if the COG variation between two points is greater then a given threshold

and if the SOG is between a given interval. Also, a cluster is only considered valid if it has

a minimum of points and if its duration time interval is between given thresholds. Finally

the DBSCAN algorithm is applied to obtain the fishing areas from the fishing points (this

step is not relevant for anomaly detection proposes). The entire process was experimented

with AIS data from the Icelandic waters, collected between January 1 and January 31 of

2014 and containing 1055 vessels. The results were compared with trajectories followed by

a specific fishing vessel and the fishing points and areas detected by the process matched

with the ones where the vessel actually fished.

Mascaro et al. (2014) introduce an anomaly detection approach using bayesian networks

(BNs) that are able to measure how probable is the occurrence of a given trajectory.

Based on these probabilities, and considering that they are usually very low, an anomaly

score is created from each probability applying the expression − log2 (x), being x the

probability. In order to create the bayesian networks the software CaMML was used.

CaMML uses a stochastic search and a score approach to create causal BNs from training

data. The authors propose two learning approaches for the models generation. One

is to take advantage of the fact that the trajectories have a time series format, which

allows the creation of dynamic bayesian networks where the attributes change over time

for each trajectory. The other is to obtain a summary of each trajectory and create
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static bayesian networks with it. Both approaches were experimented with AIS data from

the NSW coast of the Sydney port collected between May 1 and July 31 of 2009. The

raw AIS data (near 9.2 million of positions for 544 vessels) was divided into trajectories

based on the MMSI and transmission gaps bigger than 6 hours, and to ensure an equal

distribution of the trajectories the data was interpolated with intervals of 10 seconds.

Then, to effectively test the anomaly detection, several anomalies were injected in the data

by three approaches, namely changing the vessel type, splicing trajectories together and

adding random anomalous trajectories. The change of vessel type produced an increase

on the anomaly scores, with a positive detection around 87.2% in the time series model

and 69.4% in the summary model. Considering the spliced trajectories, 70 random ones

originated by vessels of the same type and another 70 from vessels with different types were

altered, and the summary model responded well increasing the anomaly score from 89 to

115.4 and 121.3 respectively for each of the 70 trajectories mentioned above, while the time

series model responded badly with a decrease in the scores to 45.6 and 48.9 respectively.

Injecting random anomalous trajectories resulted in different results from both models

because they detected well trajectories with close interactions, with an increase of 49.1

and 30.1 in the scores from a base of 90.8 and 45.7 for the summary and the time series

model respectively, but the time series model detected very short trajectories better with

an increase of 17 in the score compared with only 4.7 for the summary model, and this

last one detected the unusual stops better increasing the score by 28.3 compared with

an increase of only 2.9 for the time series model. In average the score always increased

after the injection, which proves that the anomaly detection works as expected, and in

general the summary model outperformed the time series model. The authors also suggest

a combined usage of both models to complement their strengths.

Osekowska et al. (2015) introduce a novel method called Seafaring Transportation Anomaly

Detection (STRAND) based on the potential fields theory where the idea is that when a

vessel passes in a position it assigns a charge to that position. Then, for each position

the total charge is calculated by summing the local charges assigned by the vessels. This

means that a location has a higher potential when more vessels visit it. The anomaly

detection is then made through a binary classification, such that a vessel position is con-

sidered as (possible) anomalous if the potential of this position is below a given threshold.

The confirmation of the vessel position as anomalous is made explicitly by a human op-

erator through an information visualization platform platform that presents the locations

potential in the form of a heat-map. The method was experimented with AIS data from

the Piast Canal and the Gdansk bay area, collected over 20 days and containing 2263 ves-

sels. The results show that the traffic patterns created for each area match the expected

routes and the anomaly detection accuracy was calculated using the real values of the

datasets and using altered values of speed and course. The results show that the method

detected more anomalies with the altered values, which is a good indicator for the quality

of the algorithm.

Liu (2015) introduces a new anomaly detection method based on distances. It starts by

devising the AIS dataset in two, one with the stopping points an the other one with the
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moving points, using a threshold of 0.5 knots for the SOG value as the division crite-

ria. Then, based on the results obtained from the DBSCANSD algorithm that are the

stopping points and the gravity vectors, the proposed algorithm calculates the absolute

division distance for each of the new stopping points and the relative and cosine division

distances for each of the new moving points. When the minimum of the absolute and rela-

tive distances are above a given threshold or the maximum of the cosine distance is below

a given threshold (depending on the type of the point) the point is labeled as abnormal.

These three thresholds can be estimated through several experiments until the more suit-

able ones are found. The method was experimented with an AIS dataset from the strait

of Juan de Fuca, collected between November 1 and December 31 of 2012 and containing

67850 points, that was previously labeled by a domain expert. The used thresholds were

97.290 for the absolute distance, 5.938 for the relative distance and 0.485 for the cosine

distance. The results show an overall accuracy of 90.49% on the anomalies detection.

Soleimani et al. (2015) introduce a new anomaly detection framework that is able to

calculate an abnormality score for each trajectory. The method starts by devising the

region of interest into a fixed resolution grid and setting each cell of the grid with the

value 1 if at least one vessel crosses the cell or 0 if no vessels cross it. Then, for each

trajectory, the well known A* algorithm is applied in order to extract the shortest possible

path for each one, using the created grid to build a graph corresponding to the optimal

trajectory. These optimal trajectories are considered the normal behavior. Therefore, for

each of these trajectories and also for the real ones four features are extracted, namely

the trajectory length, the area under the curve of the trajectory and the gradients of the

trajectory with respect to latitude and longitude. These features are then normalized with

the length of the optimal trajectory, being this step required to make the features’ values

scale-independent. The abnormality score is then calculated by adding all the differences

between the optimal path’s features and the real trajectories’ features and normalizing all

the units of the features to meters. This score is actually a measure of the deviation of

the real trajectories from the optimal trajectories, based on the four discussed features.

A score of 0 means that the trajectories are coincident, a score greater than 0 means that

the real trajectory actually outperforms the optimal one, and a score less than 0 means

that the trajectory may be anomalous, being the level of abnormality the absolute value

of the score. The framework was experimented with AIS data from the North Pacific

region collected between June and August of 2013 from the exactEarth database and for

evaluation proposes 100 trajectories were randomly selected and labeled by an expert.

The results show that for the 100 labeled trajectories the framework accuracy was 94%.

A summary of the related work analyzed in the anomaly detection context is presented

on Table 3.3.
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Table 3.3: Summary of anomaly detection related work.

Publication Goals AIS Data Strategy Evaluation Metrics Results

Handayani et al.

(2013)

Detect anomalies in

trajectories

Port Klang data, col-

lected between July and

September of 2013 and

containing 9845 points

Support Vector Ma-

chines (SVMs)
Accuracy

An accuracy of 99.81%

with a division of 70%-

30% for the training and

testing sets

Mazzarella et al.

(2014)

Discover areas with

fishing activities

Icelandic waters data,

collected between Jan-

uary 1 and January 31

of 2014 and containing

1055 vessels

Rules with speed and

course thresholds; DB-

SCAN

Visual comparison

The detected fishing activ-

ities for a specific vessel

match the real ones

Mascaro et al. (2014)
Detect vessel’s abnor-

mal trajectories

NSW coast of the Syd-

ney port data, collected

between May 1 and

July 31 of 2009 and

containing 9.2 million

points and 544 vessels

Bayesian Networks

(BNs)

Difference between

the abnormality scores

when injecting anoma-

lies

Summary model (static

network) presented bet-

ter scores in all injected

anomalies except in the

altered the vessel types,

when compared with the

time series model (dy-

namic network)

Osekowska et al.

(2015)

Detect vessels with

abnormal positions

Piast Canal and

Gdansk bay area data

containing 2263 vessels

Seafaring Transporta-

tion Anomaly Detec-

tion (STRAND)

Number of anomalies

detected

Injecting anomalies like

invalid values of speed and

course increases the num-

ber of detected anomalies

Continues in next page.
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Publication Goals AIS Data Strategy Evaluation Metrics Results

Liu (2015)
Detect vessels with

abnormal positions

Strait of Juan de Fuca

data, collected between

November 1 and De-

cember 31 of 2012 and

containing 67850 points

Distance calculation

Accuracy compared

with a dataset labeled

by a domain expert

Overall accuracy of

90.49%

Soleimani et al. (2015)
Detect abnormal tra-

jectories

North Pacific region

data collected between

June and August of

2013

A* algorithm
Abnormality scores;

Accuracy

For 100 labeled trajec-

tories the abnormality

scores were obtained with

an accuracy of 94%
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In conclusion, the following key aspects can be described:

• There is no trend in the field besides the fact that some works use classification

methods, which means that different works follow different approaches;

• In terms of results, some works opt for displaying the result as a probability of

abnormality and others as a binary classification (normal or abnormal);

• The majority of the works do not use a single algorithm or method to define a

behavior as anomalous, but instead use a pipeline of steps (some of them simple

preprocessing tasks, others application of specific algorithms) to achieve the results;

• The works that presented objective accuracy results actually show very promising

values, typically above 90%.

3.4 Future Directions

Based on the related work presented above, the following directions could be explored in

this thesis:

• In the trajectory mining context, considering that the trend is the usage of density-

based clustering, this is a direction to take in consideration with the following ap-

proaches:

– Direct application of published algorithms like TREAD or DBSCANSD;

– Extend one of the studied algorithms (the more obvious ones are the DBSCAN

or DBSCANSD) an consider other attributes in the distance function used by

the algorithm.

• In the traffic visualization context, considering that the trend is the usage of density-

based visualizations, this is a direction to explore, particularly by studying the pos-

sibility of including more AIS attributes in the density calculation;

• Also in the traffic visualization context, exploitation of 3D visualizations is a direc-

tion that makes sense considering that with more dimensions on the plane more data

attributes can be represented and, also, the visualizations can become more realistic;

• In the anomaly detection context, the usage of abnormality scores or probabilities

instead of binary classifications makes more sense when considering an integration

of this information in a data visualization context, because it gives the possibility

of exploring more information when using the right visual variables, and for that

reason this is a direction to explore. Also, the possibility of this score/probability

include information from more AIS attributes is something to take in consideration;
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• Also in the anomaly detection context, considering that the quantity of labeled

AIS data is very limited because this information requires a domain expert to label

the data manually, some semi-supervised learning approaches could be considered,

particularly with classification because some of the works prove that classification

methods produce good results.
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Chapter 4

Visualization and Implementation

Choices

Considering the different abnormal behaviors previously mentioned on chapter 1, distinct

approaches were developed for detecting each one. However, there are several implemen-

tation and visualization aspects of the developed platform that are common for all the

approaches. These aspects are detailed in this section.

4.1 Dataset Characterization

On the basis of the developed platform was a proprietary dataset, supplied by the Critical

Software company 1, that contains 2852679 real Automatic Identification System (AIS)

messages from the Portuguese maritime zone, corresponding to 20 days of data (between

February 22 and March 12 of 2012). The AIS positions and static information from the

vessels were stored in messages through a compact format used for transmission. This

format needed to be processed and converted into a human readable format. Therefore, a

tool for this propose was developed in Java and it uses a public library called AisLib 2 to

process the messages and create POJOs (Plain Old Java Objects) with their information.

This library already implements the necessary decoding operations of the messages, and

that is the main reason for its usage. The data was then extracted from the POJOs and

written to CSV files.

To enlarge the dataset some other sources of AIS data were considered, namely:

• The MarineTraffic web site 3, which offers a Graphical User Interface (GUI) with

AIS data on real time and has a proprietary RESTful Application Programming

Interface (API) where the data from the web GUI is obtained. However, this API

uses also proprietary and non-standard parameters to obtain the data for a specific

1Available at https://www.criticalsoftware.com
2Available at https://github.com/dma-ais/AisLib
3Available at https://www.marinetraffic.com/
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area (possibly to avoid that external entities can obtain that information, considering

that they offer premium paid services), and for this reason this source was ignored;

• The VT Explorer RESTful API 4, which offers the AIS data through a web service

with the possibility of filtering the data request by area. However, this is a paid

service and for that reason this source was ignored;

• The AISHub RESTful API 5, which offers the same as the VT Explorer RESTful API

but is free. However, to register in this service an AIS data feed needs to be supplied,

because the service lives from this exchange of data between users. Considering that

there was no feed to supply, a request was made to the service administrators asking

for access without supplying any feed because the collected data was going to be

used in an academic context. The administrators of the service created a temporary

account that was active until January 31 of 2018.

Therefore, a new data collection tool was developed in Java to collect data from the

AISHub RESTful API each minute (the web service blocks accesses more frequent than

once per minute) and store the returned data. No additional processing was required

as the data was already retrieved in the required format. Notice that only data from

the Portuguese maritime zone was being collected. However, when the collection process

ended, the data was analyzed and the conclusion was that it contained only positions from

specific and small areas near some ports. Considering the high level of incompleteness,

the data was discarded and only the original dataset supplied by the Critical Software

company was used.

The AIS system has several types of messages for different proposes, but the dataset

contained only two types: the ones with the reported positions and the ones with static

information from the vessels. The remaining messages that were not available are not

important for this usage context of the data, because the majority are related with aspects

of the AIS communication protocol and not with the vessels. Regarding the messages with

the positions, a CSV file was created that stores the following fields:

• Maritime Mobile Satellite Identity (MMSI) - the vessel unique identifier within the

AIS communication system;

• Timestamp - the date and time of the position on the UNIX epoch time format;

• Longitude - the longitude of the position in decimal degrees;

• Latitude - the latitude of the position in decimal degrees;

• Speed Over Ground (SOG) - the speed of the vessel, in knots, considering the wind

and current forces;

• Course Over Ground (COG) - the direction of the vessel, in degrees.

4Available at http://www.vtexplorer.com/
5Available at http://www.aishub.net/
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Regarding the static messages, a different CSV file was created that stores the following

fields:

• MMSI - has the same meaning as the one described above, and it is used to correlated

the positions to the static information;

• Name - the name of vessel defined by the maritime operators (sometimes this field

is empty or contains invalid information);

• Type - an integer representing the type of the vessel. There are 9 base types,

represented by the first digit of the integer, and they are:

1. Reserved

2. Wing In Ground

3. Special Category

4. High-Speed Craft

5. Special Category

6. Passenger

7. Cargo

8. Tanker

9. Other

Notice that the used library has a set of useful features, particularly one called message

filters, that are a way of introducing conditions on the data processing mechanism, and

when a AIS message does not meet those conditions it is ignored. Therefore, a location fil-

ter was used with the propose of ignoring any messages outside of the Portuguese maritime

zone.

As stated before, the extracted data was collected between February 22 and March 12 of

2012. It contains positions for the 9 types of vessels available but with very unbalanced

quantities for each type, being the statistics presented on Table 4.1.

Table 4.1: Number and percentage of positions by vessel type.

Vessel Type # Positions % Positions

Reserved 11327 0,40%

Wing In Ground 7707 0,27%

Special Category 129394 4,54%

High-Speed Craft 50283 1,76%

Special Category 233405 8,18%

Passenger 123210 4,32%

Continues in next page.
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Continued from previous page.

Vessel Type # Positions % Positions

Cargo 1495404 52,42%

Tanker 611904 21,45%

Other 190045 6,66%

Analyzing the trajectories of the vessels, the following statistics can also be obtained:

• The dataset contains a total of 9394 trajectories;

• The average duration of a trajectory is 1.5 days;

• The average number of trajectories by day is 1085.

4.2 Visual Variables

AIS data contains different features that need to be visualized simultaneously, which re-

quires the definition of specific visual variables for these features in order to display them.

For the developed visual platform, the following variables were considered:

• The position is used to represent the latitude and longitude coordinates of each

vessel. This requires a projection that converts the original geographic coordinates

to cartesian ones (described in section 4.3);

• The color is used to identify the type of vessels, creating an associative effect. As

Figure 4.1 shows, the following colors are used for each type:

– Light blue is for general and unspecified vessels (commonly called reserved);

– Red is for wing in ground, search and rescue vessels;

– Green is for a series of special vessels like fishing ones, tugs, dredgers, military

operations, sailing, among others;

– Purple is for high-speed craft vessels;

– Orange is for another series of special vessels like law enforcement ones, anti-

pollution, medical transport, among others;

– Yellow is for all types of passenger vessels;

– Dark blue is for all types of cargo vessels;

– Pink is for all types of tanker vessels;

– Cyan is for all types of vessels that were not mentioned previously.

This color palette was chosen in compliance with two restrictions: the hue values

of each color could not be confused with any of the remaining ones and the levels
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of saturation and brightness needed to be balanced between all the colors, in order

to avoid the idea that some types of vessels are more important than others. For

the remaining components of the platform (controls, map, and others), grey colors,

with different levels of intensity on the spectrum that goes from white to black, were

used;

Figure 4.1: Color palette for vessel type representation.

• The value (lightness) is used to emphasize the areas where the vessels navigate more

often. Each position is drawn with an opacity between 0.05 and 0.5 (the value

is adjustable through a slider but the default is 0.05), and when several positions

overlap their color is added and the opacity increases, which creates the notion that

the density of traffic is higher in those positions. An example of this concept is

visible in Figure 4.2, where one can see that the majority of the traffic is created by

cargo and tanker vessels and passes through the two main corridors of the Portuguese

maritime area.

Figure 4.2: Usage example of the visual variable value.

• The motion, combined with other variables, is used to represent the trajectories of

the vessels over time through animation. This approach is described with detail on

section 4.5, but the effect caused in each of the used variables is the following:

– The position changes according to the geographic position of the vessel on the

respective time frame;
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– The orientation is inferred as a consequence of the position changes over the

time frames;

– The value is used to display the speed of the vessels over time through different

levels of the color black.

• The shape is not used for differentiation proposes because it would not be perceptible

when several vessels overlap on the same position. Therefore a constant shape of an

ellipse is used to represent the positions;

• The size is constant between all the positions because otherwise it would create

the notion that some positions are more important than others. The circle of each

position has a radius of 2 pixels, that is increased to 7 pixels in the animation mode.

• The texture is not used for any propose.

4.3 Navigation

Each AIS position has several features and is represented geographically by a longitude

and latitude. These values are the ones that dictate where in the screen is the visual mark

of the respective position going to appear. However, the visual mark position is defined

through a pair of values (x, y) on the cartesian system, which requires a conversion between

the original pair (longitude, latitude) to these final values. Several projection models are

available for this propose, but one of the most used is the Mercator projection (Maling,

2013). This projection is cylindrical and conformal, which means that the Earth angles

are preserved in the generated positions, and, because of that, it presents a low level of

distortion (in general) that increases in positions far from the equator (Maling, 2013). The

more important interactive maps platforms, like Google Maps 6 and OpenStreetMap 7,

use a variant of this projection called Spherical Mercator projection (or Web Mercator),

which assumes that the Earth is spherical instead on ellipsoidal, mainly due to calculations

simplification. For these reasons, this projection was used to convert the geographical

coordinates into cartesian ones.

Another important aspect of this projection is that it allows an easy integration of the

zoom concept, which is a mandatory feature to navigate on the AIS data. The zoom level

is defined by an integer that is multiplied by the cartesian coordinates. This approach

is simple but requires an adjustment of the positions. When the zoom increases the

generated cartesian coordinates are too big to fit the screen and need to be shifted back

to the display area. Therefore, when the zoom changes, the amount of shifting required

needs to be recalculated. This adjustment is made by selecting the first position on the

map, calculating the distance between the position before and after the zoom update, and

adding that distance to the required shifting. These shifting values are also used for screen

navigation in terms of moving to the left, right, up and down. When a movement is made

6Available at https://www.google.com/maps
7Available at https://www.openstreetmap.org
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in any of these directions the shift values are adjusted 100 pixels. For example, when a

left movement is made the horizontal shift is incremented 100 units. The zoom in, zoom

out and movement actions can be performed through buttons or keyboard shortcuts.

Considering that the AIS positions are displayed in a 2D plane, its important to con-

textualize the data regarding its location on Earth. This can be achieved by displaying

points of interest that are geographical recognized by the general population. Therefore,

the boundaries of Portugal, Spain and Africa are presented and the respective shapes are

filled with a dark grey color, which indicates that these areas are land. These boundaries

were obtained as polygons on the shapefile format from the GADM 8 and GeoTech 9

websites. Shapelines are a common way to represent geographic data as points, lines and

polygons, and are widely used by systems that deal with this type of data. However, to

integrate these boundaries into the developed platform they needed to be represented as a

set of geographical positions with a longitude and latitude. Therefore, a tool called QGIS
10 was used to import the shapefiles, convert the polygons to a set of points representative

of the shape and save them into CSV files. These files are then loaded to the platform and

the same projection, zoom and movement strategies described above are applied to these

positions. This approach is shown in Figure 4.3. No more areas were considered because

the target of the platform is the Portuguese maritime zone.

Figure 4.3: Portugal, Spain and Africa boundaries for data contextualization.

Each position drawn on the screen is often part of a line of points from the same vessel.

This line represents a trajectory of that vessel and shows the entire route followed by it

8Available at https://gadm.org/maps.html
9Available at http://techcenter.jefferson.kctcs.edu/data

10Available at https://www.qgis.org
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during the selected time period. Several analysis and operations are done at this level and,

for that reason, an approach for selecting trajectories was developed. When a visible point

is selected through a mouse click, it is converted back to a latitude and longitude. Based

on these values, each antecedent and subsequent position of the same vessel are analyzed

and if the time gap between each of them and the selected point is below a given threshold

(by default 30 minutes, a value obtained through experimentation) they are considered

part of the trajectory. This process is repeated for the remaining positions of the vessel in

both directions and stops on the first point where the time gap is above the threshold. In

terms of visualization, the selected trajectory is displayed as before but an additional black

line connecting all of its points is drawn. However, the remaining points are faded out by

changing their color to dark grey with the general level of opacity. Notice that multiple

trajectories can be selected simultaneously. An example of multiple selected trajectories

is presented on Figure 4.4, where 3 cargo and 3 tanker trajectories are selected while the

remaining are faded out.

Figure 4.4: An example of several selected trajectories.

4.4 Data Filters

Depending on the goal of the analysis made to the data, there is a need to ignore and

remove from the screen unnecessary data. To fulfill this need several data filters were

implemented that cover the more important features of AIS positions. These filters are:

• A date range selector, which allows the selection of the start and end date for the

displayed data. The default range is the first day with data;

• A hour range selector, which allows the selection of the start and end hours, within

the previously selected dates, for the displayed data. The default range is the entire

day (24 hours);
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• A multiple selector for the vessels types, which allows the selection of the ones that

are displayed on the screen. By default all types are visible;

• A slider for the minimum number of points by vessel, which ensures that vessels with

less reported positions than the defined value, within the date and time period in

analysis, are not displayed. The default value is 0, making the filter inactive;

• A slider for the maximum time gap between points of the same vessels, used to define

the time gap required for the trajectories selection approach described on section 4.3.

The default value is 30 minutes.

Figure 4.5 presents the controls of the data filters described above. After the adjustment

of the controls, the new filters are applied explicitly. The two small arrow buttons on the

top allow a navigation on the data, day by day, and their effect is applied immediately.

Figure 4.5: The controls of the data filters.

4.5 Trajectories Animation

Visualizing the vessels trajectories with a static approach has several limitations regarding

the amount of features that can be displayed. Considering the visual variables already

described, in a static environment only the positions of the vessel and its type can be
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displayed. This means that two very important features for behavior analysis are ignored:

the speed and the direction. To present these two features the motion variable, com-

bined with the position and the orientation, was introduced and implemented through an

animation approach that allows the visualization of the vessels moving over time.

For the animation to be performed, the period in analysis is divided into 15 minutes

frames. This interval was defined because it includes more than one position by vessel

(often 2 to 4 positions), which allows a better understanding of the trajectories evolution

in terms of direction. Each frame contains the vessels positions from its time interval and

the ones from the previous frames, and is displayed a quarter of a second after the previous

one, creating the desired motion effect. Each vessel position is drawn through an ellipse

with a radius of 7 pixels and using the color pallet already presented. The positions from

the current time interval are drawn with an opacity of 100% but the ones that are from

previous frames are drawn black with an opacity of only 7.5%. This creates a trace effect

that allows the perception of how the vessels are moving over time without losing track of

their position in the current frame.

The vessels new positions and directions changes are automatically displayed through the

animation as a consequence of the motion effect. The points added in each frame are

enough to understand the direction of a vessel because these new points will change the

orientation of the trajectory. However, the speed attribute requires further efforts to be

visible. An approach was developed where the speed is represented by the accumulative

opacity of the vessels trace over time. Assuming that a vessel reports its positions in a fixed

period of time (for instance, each 5 minutes), if this vessel is moving slowly the reported

positions will be very close to each other, or even the same if it is stopped. However, if the

vessel is moving fast these positions will be far from each other. When all the positions are

drawn at the same time on the trace of the vessel, the ones that are overlaid will generate

a higher opacity because their individual colors are blended. This means that the areas of

the trajectories where the transparency of the trace is lower are the ones where the vessels

are moving slower, because more points were overlaid for this effect to happen. On the

contrary, a trace with a higher transparency corresponds to a vessel moving faster.

As stated before, the speed visualization approach only works if the time-span between

each position of a vessel is fixed, which is a problem because the AIS communication

periods are not consistent. To fix this issue a cubic spline interpolation is applied to

every trajectory to generate the missing positions. As stated in the literature (Sang et al.,

2012, Zhang et al., 2017), this type of interpolation is the one that adjusts better to the

reconstruction of AIS trajectories, offering just some limitations in the presence of very

tight curves. This interpolation creates a piecewise function, which means that it defines

several small sub-intervals through the domain of x and has an individual polynomial of

degree 3 for each one. This aspect is important to make the final function more smooth and

better suitable for curves. The interpolation is made individually for the latitude and the

longitude, being these variables the output y of the generated functions and the timestamp

in seconds the input x. The polynomial coefficients of both functions are calculated with
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all the AIS positions of the respective vessel. Each of these positions is then compared

with the one immediately after and, if the time gap between them is over 5 minutes,

new positions are generated through the interpolated functions, with intervals of also 5

minutes, until the gap is filled. This 5 minutes period was supported by existent works

from the literature. Figure 4.6 shows an example of an animation with 4 vessels sailing

with different speeds. It is visible that the tanker vessel (the pink one) in the middle is

sailing with a low speed, maintaining a route in a very small area, while the other 2 tankers

sailed faster. The cargo (dark blue one) started slow but increased the speed roughly in

the middle of the trajectory.

Figure 4.6: An example of an animation with vessels sailing with different speeds.

The animation can be considered a video that is rendered on the fly. Therefore, the

common video controls are presented, namely a play/pause button and a time bar to

navigate on the frames.

4.6 Analytics

When considering the AIS data displayed, there are some statistics that are helpful for

analysis proposes but can not be easily integrated in a visual scheme. For that reason,

this statistics are calculated and presented as text through a toggle button. The more

important ones are:

• Number of trajectories;

• Number of vessels;

• Mean trajectory time of all vessels;

• Number of trajectories by vessel type;
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• Number of vessels by type.

Figure 4.7 shows an example of the statistics described above for the first day of data.

Figure 4.7: An example of the statistics for the first day of data.

These statistics take in consideration only the vessels and respective positions that are

displayed on screen, which means that they need to be updated each time the data filters

change. To avoid an impact on the performance of the platform, and considering that this

information is typically secondary for the analysis, this update is made on the background

through a different thread. During the update time, a message of loading is presented on

the same place of the statistics.

Other information that sometimes may be helpful is the details of the selected trajectories.

As described before, the selected trajectories have a visual demarcation from the remaining

positions, but the visual representation is only able to present some of the features from

the data. Therefore, when a trajectory is selected, the following information is presented

after the general statistics:

• MMSI of the vessel;

• Name of the vessel (this information is inserted manually by an operator and can be

wrong or incomplete in some cases);

• General type of the vessel, followed by the complete type identification;

• Start date and time of the trajectory;

• Start day of the week of the trajectory;

• End date and time of the trajectory;
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• End day of the week of the trajectory;

• Number of reported positions that constitute the trajectory.

In the scenario where several trajectories are selected, only the information from the last

one is displayed.

Finally, a measure tool, that is able to calculate the line distance between two positions

on the map, was also included in the platform. When the tool is enabled, the first point of

the line is fixed through a mouse click. After that, by moving the mouse the final point of

the line is adjusted and the distance is recalculated. To fix the final point another mouse

click on the wanted position is required. The line distance is calculated and presented in

two ways:

• Using the Haversine formula, which is able to calculate the real distance in kilometers

from two geographical positions defined by the longitude and latitude values;

• Using the Euclidean formula, which calculates the distance between the two (x, y)

points of the screen considering an Euclidean space.

The usage of these distances, particularly the Haversine one, may be useful to understand

the real distance between two positions or events of interest, considering that the notion

of proportion between the projected points and the real positions may sometimes be lost.

Figure 4.8 shows an usage example of this tool.

(a) Distance values. (b) Line on the screen.

Figure 4.8: An example of the line distance tool.

4.7 Rendering Optimizations

AIS positions are reported by each vessel very frequently11 and, when analyzing the data of

several days from an entire maritime area, performance issues arise because of the quantity

of data that needs to be processed. The developed platform and respective visualization

strategies were implemented with the graphics API Processing 3 and suffered from these

11Depending on the type of the vessel, its speed and course, the period may vary between 2 seconds and
3 minutes, assuming that all messages are sent and received.
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performance issues in several occasions. Effective measures to solve these issues were

implemented and the more important ones are:

• A double buffering approach with cache to avoid multiple drawing of the same data.

The used graphics API already implements a double buffering mechanism but it

only avoids screen flickering, because the API forces each shape to be drawn in

each new frame. This default behavior does not work well when big quantities of

shapes are drawn simultaneously because the amount of time needed for the process

to be completed creates a lag effect that eventually freezes the application. To fix

this issue the complete drawing process is made in background through a different

thread. The result is saved in a ”virtual image” that has the same width and length

of the screen and holds the color for each rendered pixel. The resulting image is then

swapped with the main one that is currently being displayed by the graphics API

in the screen. This swapping process is synchronized with a mutex in order to avoid

the usage of the main image for reading proposes while it is being updated. This

approach fixes the issue because the main image is kept in cache an displayed as-is

on each new frame by the graphics API, which removes the lag effect and consequent

freeze problem. Also, the background thread is only executed when the data to be

displayed changes (a new data filter is applied, a zoom action is performed, etc.),

which avoids unnecessary renderings of the same data;

• A partial load of the AIS data through daily chunks and a time window of 1 day,

in order to avoid large periods of time spent by the data load and filtering tasks.

With all the dataset on a CSV file, a script was developed in Python to divide it

into daily chunks where each new CSV file contains the entire data for a specific

day. The implemented approach on the platform takes advantage of these chunks by

loading only the ones needed for the date and time period defined through the data

filter, with the addition of 1 day both before and after the period. This addition is

important because the platform favors a daily analysis of the data, for performance

reasons and also because an analysis made with date from more than 1 day may be

negatively influenced by the fact that the date is only visible through the animation

and, eventually, by some visual clutter. Therefore, if the data of the day x is being

displayed, the most probable days to be analyzed next are the x+ 1 or x− 1. With

the loading of 1 day before and after the current period, the data from these two

days is already in the memory, and the loading task is therefore skipped for these

scenarios. This will increase the update speed because only the rendering actions

are required for these cases. When these actions terminate and the data is being

displayed, the loading task for the new period that includes the new additional days

starts executing on the background;

• A caching mechanism by different types of rendering, which avoids the execution of

partial tasks of the rendering process that are unnecessary. When a new rendering of

the data is required, depending on the action that originated it, different intermediate

tasks may be necessary:
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– When the data filters change a complete render (type 1) is necessary, and this

process consists on filtering the data, projecting the pair (longitude, latitude)

of each position to the respective cartesian coordinates (x, y) and drawing the

shapes of these positions on the new image;

– When a change in the zoom of the map occurs only the projection and drawing

steps are required (type 2), because no changes on the filtered data occurred;

– When a movement on map occurs or any other action that does not change

the level of zoom and the data filters (i.e. toggling the visibility of a specific

component), only the drawing step is required (type 3) because there are no

changes on the filtered data and neither on the positions. As described before,

the movement updates are made through a horizontal and vertical shift that

are not dependent of the map projection.

Therefore, these 3 scenarios were implemented and when a new render is required

the type must be specified. The first render is always the type 1, and a state is saved

with the filtered positions and the projected points. When another type 1 render

occurs this state is updated, but if a type 2 is executed only the projected points

are. This ensures that the cached state is always up to date. Considering that the

majority of the renderings are from the type 3, this approach has a good impact on

the performance of the platform;

• A caching mechanism for the rendered frames of the animation of trajectories, avoid-

ing multiple and unnecessary renderings of the same frames. The animation works

in loop mode, which means that it restarts after the last frame. Consequently each

frame may be displayed more than once, depending on the number of times that the

animation is repeated. To avoid multiple rendering of the same data, each frame is

rendered once and saved for future usage. This behavior is also applied when the

visible frame is chosen by the time bar control;

• A point reduction approach for the map boundaries, in order to optimize the drawing

time of these shapes without loosing quality. Each of the map boundaries extracted

from the shapefiles is composed by a big quantity of points in order to create the

shape of the polygon as accurately as possible. However, this makes the drawing

process slower because of the high number of vertexes that the shapes contain. To

avoid this problem the Douglas–Peucker algorithm is applied to all the boundaries

points with the propose of reducing them for the minimum quantity that is able

to represent the shapes accurately. Before the application of the algorithm, all

boundaries combined in a total of 554101 points, and after the reduction this number

was reduced to just 5642, which is approximately 1% of the original quantity. This

process reduced the drawing time without compromising the original shapes;

• Regarding the developed 3D strategies (described on section 5.3), an approach to

reuse the shapes was implemented to avoid performance issues that caused a lag

effect. Each position on the 3D plane is represented through a sphere, and the
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creation of 3D shapes its a particularly heavy task because they are composed by

more vertexes when compared with 2D shapes. With this issue, the creation of

multiple spheres (one for each visible position) was creating a lag effect on the

screen. To fix this problem only 9 spheres are created in the beginning of the

rendering process, each one filled with the color associated with a vessel type. Then,

to draw a position, the sphere with the color that matched the type of the vessel that

reported it was selected, translated to the correct coordinates and drawn. The lag

effect was fixed with this reuse approach and the rendering time was also improved.

4.8 Interface Evolution

The focus of the developed platform are the visualization strategies, but without a good

user experience it may be difficult to exploit such strategies. The platform was developed

in Java using the graphics API Processing 3 for the visualization components. The initial

approach was to use a library called ControlP512 for the GUI controls and the color palette

was obtained from the ColorBrewer13 web site. The remaining options were kept with the

default values. A print screen of the platform on this initial state is presented on Figure

4.9.

Figure 4.9: Initial interface.

As the print screen shows, the interface had several problems. The following ones were

addressed:

12Available at http://www.sojamo.de/libraries/controlP5
13Available at http://colorbrewer2.org
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• The initial color palette created a dependency effect between the different vessels

types. For example, the passenger vessels looked like a sub-type of the cargo vessels.

The palette was updated to the one already presented on section 4.2 and this issue

was solved. In this new palette an effort was also made to use colors distinguishable

with low levels of opacity;

• All the controls were shifted to the top-left of the screen because it is the first area

where the user looks;

• To gain more screen space for the visualization itself, the button bar that contains

the main features of the platform is always visible but the remaining controls can

be collapsed through a button placed on right-bottom corner of their section. These

controls are mainly associated to the data filters and the user needs to work with

them less often;

• The collapsible area contains the base data filters but, when an option that contains

additional filters is activated, this area stops showing the base controls and instead

shows the ones associated with the option until it is deactivated;

• The ControlP5 library suffered an extensive refactoring in order to improve its design

and also too add missing features that were important to the platform, like adjustable

labels according to the control value;

• The text input controls were abolished and replaced by more user-friendly ones like

sliders and ranges;

• The cursors were updated for the controls and, instead of having a general pointer

for everything, the clickable controls have a hand cursor and the sliders have a double

arrow;

• The type of letter was replace by the monospaced Office Code Pro14;

• The icons for the actions of the button bar were updated to more suggestive ones;

• On the map, the areas of land were distinguished by being colored with a dark grey.

The changes described above resulted on the final interface displayed on Figure 4.10. The

different areas of the platform are marked with rectangles using the same colors as the ones

from the initial interface, in order to allow an easier visual comparison between them. One

can see that in the final interface not only the design is improved but the disposition of

the controls is more user-friendly, the visualization itself gained more space for the visual

marks, the land is clearly distinguishable from the sea and the controls in general are less

error-prone.

14Available at https://github.com/nathco/Office-Code-Pro
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Figure 4.10: Final version of the interface.

4.9 Implementation

The implementation of the entire system was made with Java and Python using the

architecture presented on Figure 4.11. Python was used for all the major data processing

tasks, while Java was used for the platform itself and for some specific data related tasks,

like processing the raw AIS messages, and also for some machine learning tasks, like the

Density Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm.

Figure 4.11: General architecture of the implementation.

Regarding the development in Java, it was mainly divided into two components: one re-

sponsible for the visual strategies and rendering, and another one containing all the data

processing logic. The more important classes implemented for both components are de-
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scribed on Figures 4.12 and 4.13, respectively. These images present a brief description for

each class and groups them by context. Figure 4.14 presents the usage relation between

the classes through arrows that show the direction. The combined effort of this imple-

mentation resulted on more than 16500 lines of code. As stated before, the used graphics

API was the Processing 315 with both the P3D and the JAVA2D render. The first one

is based on OpenGL and the last one is a proprietary implementation of the Processing

Foundation. Besides the implementation effort already presented, the following libraries

were used for very specific features:

• An implementation of the Graham’s Scan algorithm (Graham, 1972) in Java16;

• An implementation of the ray casting algorithm (Haines, 1994) in Java17;

• An implementation of the Douglas–Peucker algorithm in Java18;

• PeasyCam, a Processing 3 library to control the 3D camera using the mouse19.

Also, an implementation of the DBSCAN algorithm20 was used as a starting point for the

necessary implementation, but suffered major changes like the adaption of the code to

use custom classes and the addition of new density-reachable metrics with the necessary

distances.

Regarding the developed Python scripts, 30 scripts were implemented with a combined

effort of more than 3900 lines of code. These scripts can be grouped into the following

categories:

• Data processing tasks - 11 scripts;

• Machine learning and related tasks - 8 scripts;

• Statistical tasks - 11 scripts.

15Available at https://processing.org
16Available at https://github.com/bkiers/GrahamScan
17Available at https://github.com/sromku/polygon-contains-point
18Available at https://github.com/LukaszWiktor/series-reducer
19Available at https://github.com/jdf/peasycam
20Available at https://github.com/chrfrantz/DBSCAN

73

https://processing.org
https://github.com/bkiers/GrahamScan
https://github.com/sromku/polygon-contains-point
https://github.com/LukaszWiktor/series-reducer
https://github.com/jdf/peasycam
https://github.com/chrfrantz/DBSCAN


C
h
ap

ter
4

Figure 4.12: More important classes implemented on the AIS Viz Platform.
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Figure 4.13: More important classes implemented on the data processing logic component.
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Figure 4.14: Usage relation between the more important classes of both components.
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Anomalous Behavior Analysis

The propose of the developed platform was to detect anomalous behaviors that were pre-

viously identified by domain experts. These behaviors were grouped into three categories:

• Intersections, where are included all the behaviors related with intersections between

vessels;

• Speed outliers, which includes the behaviors related with vessels sailing at an abnor-

mal speed;

• Forbidden fishing, which is a subcategory of the previous one that also includes the

behaviors related with fishing vessels sailing in areas where fishing is forbidden.

Different visualization strategies, assisted by data processing tasks, statistics and other

techniques, were developed for each of these categories. The following sections 5.1 and 5.2

describe these strategies. Finally, the section 5.3 presents the explorations made of the

3D plane to include the representation of the time evolution.

5.1 Intersections Based Behaviors

The proposed approach for intersections’ analysis, presented on Figure 5.1, is composed

by data processing tasks that extract the vessels intersections from raw Automatic Identi-

fication System (AIS) data, a visual search technique that uses a magnified fish-eye lens,

a visual categorization of abnormality in high density areas and an analysis of repeated

intersections over time. Each of these components of the approach are described in the

following subsections.

5.1.1 Data Processing Tasks

Regarding the extraction of the intersections, the first necessary task is to remove the

duplicated positions of each vessel. These duplicates can occur when vessels are stopped

77



Chapter 5

Figure 5.1: Proposed approach for intersections’ analysis.

and keep reporting their positions or by malfunctions on the AIS communication system.

Therefore, this is an important step because repeated AIS positions will lead to the detec-

tion of multiple intersections that in reality correspond to just a single one. For this task

the Algorithm 1 was developed. The approach is to isolate the positions of each vessel

and detect the ones that are within a minimum time and distance gaps, being these ones

the so-called repeated. The time gap is calculated by the absolute difference between the

time-stamps of both positions, which are in the UNIX Epoch time format. To calculate

the distance between the same positions, considering that it is between two locations on

Earth, the Haversine formula is used. This algorithm requires as parameters the minimum

time and distance gap, and these values were obtained through experimentation being 15

seconds and 1 meter, respectively. The implementation was made in Python with a mul-

tithread environment to allow the processing of several days of data simultaneously.

The second and most important task is to detect and extract each intersection between

different vessels. For this propose the Algorithm 2 was developed, and it also requires

as parameters the minimum time and distance gaps. The approach considers that an

intersection occurs when two positions of different vessels have a time and distance gaps

below the minimum values passed as parameters. Both gaps are calculated using the

same approach as in the Algorithm 1, that was presented above. The values for the

parameters were also obtained through experimentation and they are 30 minutes and 1

kilometer, respectively. The implementation was also made in Python with a multithread

environment, but several optimizations of the implementation were required. The initial

approach was to implement the algorithm using the common iterative process with loops.

However, the algorithm had major performance issues related with the amount of data

that was being processed. To fix this issue the loops were ”converted” to a vectorized

approach, where the data was put into matrices, the time and distance gaps between the

positions were calculated through common vector operations and the intersections were

filtered from the results. This implementation has the exact same logic of the Algorithm 2

but revealed to run much faster. This algorithm does not take in account the direction of

the intersection, considering intersections A to B and B to A as different, when they are

actually the same. The algorithm could deal with this issue but that would have impact

on its performance and, for that reason, the issue is fixed in a third task. A new algorithm
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Algorithm 1 Remove the duplicated positions of every vessel in each day

1: function removeDuplicatedPositions(data, minTimeGap, minDistanceGap)
2: for each day of data do
3: aisPositionsToKeep← {}
4: for each vessel of the current day do
5: aisPositionsByV essel← {}
6: for each AIS position (nP ) of the current vessel do
7: foundEqualPosition← false
8: for each saved position (sP ) in aisPositionsByV essel do
9: if abs(nP.T imestamp− sP.T imestamp) < minTimeGap then

10: distance← haversine distance between nP and sP
11: if distance < minDistanceGap then
12: foundEqualPosition← true
13: break the current for loop
14: end if
15: end if
16: end for
17: if ¬foundEqualPosition then
18: aisPositionsByV essel← aisPositionsByV essel + nP
19: end if
20: end for
21: aisPositionsToKeep← aisPositionsToKeep+ aisPositionsByV essel
22: end for
23: Save aisPositionsToKeep in a CSV file
24: end for
25: end function

Algorithm 2 Extract intersections between different vessels in each day

1: function extractIntersections(data, minTimeGap, minDistanceGap)
2: for each day of data do
3: dataToCompare ← positions of the current day + positions of the day be-

fore within [midnight, midnight - minTimeGap] + positions of the day after within
[midnight, midnight + minTimeGap]

4: intersections← {}
5: for each AIS position (cP ) of the current day do
6: for each AIS position (oP ) in dataToCompare do
7: if cP.MMSI 6= oP.MMSI then
8: timeGap← abs(cP.T imestamp− oP.T imestamp)
9: if timeGap < minT imeGap then

10: distance← haversine distance between cP and oP
11: if distance < minDistanceGap then
12: newIntersection← {cP, oP, timeGap, distance}
13: intersections← intersections+ newIntersection
14: end if
15: end if
16: end if
17: end for
18: end for
19: Save intersections in a CSV file
20: end for
21: end function
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iterates over the intersections, transforms them into sets and calculates a hash for each

one. Considering that the set has no concept of order, the hash of the related intersections

that have different directions will be the same. Finally the algorithm removes intersections

with duplicated hashes, keeping just the first one.

With the application of these tasks in the presented order, the intersections for each day

of raw AIS data will be extracted and saved in new CSV files.

5.1.2 Visual Search Through a Magnified Fish-Eye Lens

The extracted intersections are presented on the platform through black ellipses with a

radius of 5 pixels and 75% of opacity. With all the AIS positions displayed in the same

screen space it can become difficult to detect the intersections and even more difficult to

analyze each one individually. Therefore a necessary step is to create the means that will

allow and efficient search and focus of specific intersections. For this goal the usage of a

fish-eye lens (Bettonvil, 2005) was considered. This type of lens applies a convex effect to

the image, creating the illusion that it has the shape of a sphere, an effect commonly called

barrel distortion. With this effect the center of the image becomes the focus, with the

distortion from the sides being exaggerated with the increasing distance from the center.

Consequently, the center of the image becomes more zoomed, with the cost of losing

some resolution. When combining this type of lens with the movement of the mouse, it

is possible to focus on specific AIS positions and intersections, and more easily search

for points of interest. Different distortions with specific characteristics can be applied

with a fish-eye lens through different mapping functions. The most popular ones are the

equidistant, equisolid, orthographic and stereographic (Bettonvil, 2005).

Generalizing for any given image, the implementation of the fish-eye effect on the platform

can be summarized in the following steps:

1. Each pixel position is normalized on a range between [−rx, rx], being rx the width

radius of the fish-eye lens. The ry for the height radius is calculated from rx by

keeping the original image aspect ratio. This transformation is necessary for a correct

conversion of the values into polar coordinates, with the center of the image becoming

(x, y) = (0, 0).

2. Each normalized pixel position is then converted from cartesian coordinates to polar

coordinates, first by calculating the distance with the formula on Equation 5.1, and

then by calculating the angle of the direction using the formula on Equation 5.2.

This last calculation takes in consideration the focal length fl, which defines the

angle of view and the zoom of the lens, and uses the tan−1 function directly because

the focal length is always greater than 0 (fl > 0).

Rp =
√
x2
p + y2

p (5.1)
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θ = tan−1

(
Rp

fl

)
(5.2)

3. The mapping function that defines the distortion of each pixel position by calculating

its new radial position is then applied. The formulas for the most popular mapping

functions are displayed on Equations 5.3 to 5.6.

Rf = fl ∗ θ , for the equidistant mapping (5.3)

Rf = 2fl ∗ tan

(
θ

2

)
, for the stereographic mapping (5.4)

Rf = fl ∗ sin(θ) , for the orthographic mapping (5.5)

Rf = 2fl ∗ sin

(
θ

2

)
, for the equisolid mapping (5.6)

4. The new position of each pixel (xf , yf ) is calculated from the original normalized

position (xp, yp) by distorting it with the new distance from the center, using the

formulas on Equations 5.7 and 5.8.

xf =

 xp ∗
(

Rf

Rp

)
Rf ≥ 0

0 Rf < 0

(5.7)

yf =

 yp ∗
(

Rf

Rp

)
Rf ≥ 0

0 Rf < 0

(5.8)

5. The new pixels positions are then denormalized to the original interval values com-

prehended between [0, width] for x and [0, height] for y;

6. The resulting positions are real-valued and when they are used directly in the new

image some gaps are created where no pixel values exist. This happens because the

distortion applided to the original image created new positions that did not exist

before. To fix this issue a pixel interpolation strategy needs to be applied. For this

approach the 9-point interpolation scheme (Altera, 2008) was used because it offers

a good computation performance, which is important considering that the fish-eye

effect will be applied in real time, without significant losses of quality.

As described in the previous steps, two parameters are required for the fish-eye effect to be

applied: the focal length and the width radius of the lens. Both parameters are correlated

and their values were obtained through experimentation.

Regarding the usage of the fish-eye effect on the platform, before the implementation a

mapping function must be chosen from the four that were described. An experiment was
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conducted where the four functions were applied to the same image with two different

focal length values: an intermediate value that only gives some zoom to the center of the

image (fl = 4) and an exaggerated value that increases a lot the zoom to the center of the

image and distorts the boundaries more (fl = 2). The resulting comparison is presented

on Figure 5.2. Based on this experimentation the orthographic mapping was chosen,

mainly because it is the one that better distorts the boundaries of the image trough a

more exaggerated curvature, which gives more focus and zoom to the center. Notice that

on the examples with fl = 2 ((c), (e), (g) and (i)), the zoom was much higher and the

pixel interpolation method was unable to fill in all the missing gaps, which created the

”black pixels” visible on the images.

(a) Normal rectilinear projection.

(b) Equidistant projection with fl = 4. (c) Equidistant projection with fl = 2.

(d) Stereographic projection with fl = 4. (e) Stereographic projection with fl = 2.

Figure 5.2: Comparison between different mapping functions for the fish-eye effect using
different focal length values and rx = 5 for all the examples.
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(f) Orthographic projection with fl = 4. (g) Orthographic projection with fl = 2.

(h) Equisolid projection with fl = 4. (i) Equisolid projection with fl = 2.

Figure 5.2: Comparison between different mapping functions for the fish-eye effect using
different focal length values and rx = 5 for all the examples. (cont.)

With the mapping function decided, the remaining parameters were tuned through ex-

perimentation and the chosen values were fl = 3 and rx = 5. The fish-eye effect is only

applied to a specific area of interest, which is the area of the map that is going to be

analyzed. This area is defined by the mouse position (mousex,mouseY ) and by a radius

mouser that will define a circle around that position. To this specific circle the fish-eye

effect is applied as described above. An example of this behavior is presented on Figure

5.3, with the original area displayed on the left and the same area with the fish-eye effect

on the right.

The application of the fish-eye lens is a powerful way to focus and zoom on a specific area,

but the level of magnification may not be enough for an efficient analysis. Increasing the

zoom only by changing the focal length will lead to the ”black pixel” problem presented on

images (c), (e), (g) and (i) of Figure 5.2, and moreover this growth is limited. Therefore

the proposed approach combines the fish-eye effect with levels of magnification. The

key concept is to render the area of the map in analysis n times, where each time the

level of zoom is increased by a scalar zoomg (similarly to the general zoom approach).

The maximum number of levels can be predefined or it can be adjusted while the zoom

increases, with this last strategy having a performance cost. Assuming that zoomc is the

initial zoom of the area that corresponds to the level n = 0, the zoom of each n level is
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(a) Original area in analysis. (b) Same area with the fish-eye effect.

Figure 5.3: Example of the fish-eye effect applied and the intersections identified.

calculated using the formula on Equation 5.9.

zooml = zoomc + (n ∗ zoomg) (5.9)

An important aspect of this method is that the magnification effect needs to be applied to

the center of the area in analysis, otherwise this area would start to change. To ensure this

aspect the cartesian coordinates of each position in each level need to be shifted according

to a point of reference from the base level (n = 0). This point of reference (xrb, yrb) is the

AIS position that has the minimum euclidean distance between the fixed mouse position

(mousex,mousey) and itself. Considering a point (xp, yp) on any given level and the point

of reference (xrl, yrl) on the same level, the shift formulas are the ones on Equations 5.10

and 5.11. These formulas also have an adjustment between the point of reference in the

base level and the mouse position because this point may not be exactly in the center of

the area.

xnew = (xp − xrl + (xrb −mousex) +mouser) (5.10)

ynew = (yp − yrl + (yrb −mousey) +mouser) (5.11)

To navigate between the levels of magnification the area in analysis must be first fixed

through a mouse click and, after that, two controls to change the zoom will appear. Each

time the zoom level is updated, a new magnified image is applied to the fish-eye lens. This

behavior is presented on Figure 5.4, displaying the desired effect on image (a) with the

default magnification and the same effect on image (b) with the 3rd level of zoom.

When the area in analysis is fixed the intersections inside it are presented individually

on a details lens located on the top-right corner of the screen. This details lens has the

same level of zoom used on the fish-eye lens and allows the analysis of each intersection

individually without the visual clutter. Figure 5.5 shows on image (a) all the intersections

through the fish-eye lens and on image (b) one of the intersections isolated through the

detail lens.
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(a) Default magnification. (b) 3rd level of zoom.

Figure 5.4: Example of the fish-eye lens with different levels of magnification.

(a) All the intersections. (b) Specific intersection on the detail lens.

Figure 5.5: Example of the detail lens usage.

The intersections can be changed using two controls displayed next to the zoom ones. The

analysis made to each one can be a static observation of the trajectories involved on the

intersection (which are presented through the detail lens), an overtime analysis (described

on the following subsection) or an animation of the trajectories (as described on section

4.5). This last one may offer a problem when the two vessels are from the same type: the

collision of the colors can create difficulties on identifying the positions of each vessel. To

fix this issue, a sub-palette of colors was created from the one presented on section 4.2.

For each type of vessel two new colors were created based on the original one, a lighter

and darker one. In the scenarios where two vessels of the same type are displayed on the

animation, these two colors are used instead of the original one. This approach is also

used for the detail lens of the intersections, with the addition of the positions also being

connected with a black line, as the image (b) of Figure 5.5 shows. The sub-palette created

is presented on Figure 5.6. Each original color is on the middle row while the lighter and
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darker colors are displayed on the top and bottom rows, respectively.

Figure 5.6: Color sub-palette for the representation of two vessels of the same type.

In order to complement the search mechanism, two additional filters were created specif-

ically for this context. One allows the isolation of the intersections by two main areas

using the following options:

• Near Coast, which only displays intersections close to the coast line (within 25

kilometers of it);

• High Sea, which only displays intersections far from the coast line (at least 25 kilo-

meters from it).

For this filter to work each position was classified has being near or far from the coast.

This classification process was made offline to avoid performance issues. A Python script

compared each position with the boundaries of the countries and if the position was within

25 kilometers of any coast point it was considered near the coast. The other filter is a

high frequency threshold of intersections between vessels. It defines a minimum number

of intersections that two vessels had to made in the past for their intersections to be dis-

played. With this filter it is possible to isolate and detect suspicious behaviors related

with vessels that intersect frequently. Similarly to the previous filter, the number of inter-

sections between each pair of existing vessels was calculated offline to avoid performance

issues with the filter. A Python script was used to create a hash map structure with all

the combinations of two vessels and it executed a counting process by iterating over the

intersections.

5.1.3 High Density Areas with an Abnormality Level

The visual search mechanism already described is important to identify and isolate inter-

sections for individual analysis, but when a big quantity of intersections exist within the

visible data it may be difficult to decide where to start the search. With this issue in

mind, an approach to identify areas of particular interest was developed. The approach

can be described in the following steps, also presented on Figure 5.7:
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1. Identify the areas, for each day, where the quantity of intersections is higher;

2. Understand if those areas are constant over the days;

3. Define more common areas over the days as less probable of having abnormal be-

haviors and less common areas more probable;

4. Visualize the areas and identify the abnormality levels.

Figure 5.7: Proposed steps to identify areas of intersections with particular interest.

Regarding the first step, areas with an higher quantity of intersections can be seen as

clusters with an higher density. Therefore, a density-based clustering strategy was used to

extract these areas from the data. Density Based Spatial Clustering of Applications with

Noise (DBSCAN) has been used extensively with AIS data, for different proposes, and had

shown good results, which made it the most obvious choice for the algorithm to be used.

However, this algorithm requires the minimum number of points by clusters (MinPts)

and the distance between each point and its neighbors (ε), and this last one is not easy

to estimate because there are zones of the map where the distance between the vessels

positions is supposed to be lower (i.e. near the ports) and zones where it is supposed

to be higher (i.e. high sea corridors). For this reason the Hierarchical Density Based

Spatial Clustering of Applications with Noise (HDBSCAN) was also considered, because

it uses an approach where the ε value is not required as a parameter and the clusters can

have different densities. Both algorithms were experimented with different configurations

of the parameters to allow a more effective choice of clusters. Regarding the values of

MinPts, it was observed by visual analysis that, without the exception of ports, there

were no considerable areas with more than 100 intersections. Therefore, this value was

used as a maximum and the MinPts was experimented with four values: 25, 50, 75 and

100. Regarding the values of ε for the DBSCAN, a maximum of 750 meters was defined

and the parameter was experimented with three values: 250, 500 and 750 meters. Notice

that the algorithms were applied individually for each chunk of AIS data because each one

has the positions for a single day. To choose the better algorithm and configuration the

silhouette coefficient was applied to the retrieved clusters, using an euclidean distance for

the calculations. The coefficient results are presented on Tables A.1 to A.4 of Appendix

A.1, each one containing the results by chunk for one of the four MinPts values (25, 50,

75 and 100, respectively). The number of clusters extracted by each of the configurations

are presented on Tables A.5 to A.8 of Appendix A.2, being the average values presented
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on Table A.9 from the same Appendix. For the final decision the average and the standard

deviation of all the chunks for the resulting coefficients was considered. Table 5.1 shows

that the HDBSCAN with MinPts = 75 was the configuration that presented an higher

silhouette coefficient average for all the chunks with a low standard deviation. Therefore,

this was the chosen configuration for the clusters extraction.

Table 5.1: Silhouette coefficients averages for density-based

clustering algorithms.

Algorithm Average Std. Deviation

HDBSCAN MinPts = 25 0.304 0.142

HDBSCAN MinPts = 50 0.458 0.092

HDBSCAN MinPts = 75 0.525 0.084

HDBSCAN MinPts = 100 0.507 0.081

DBSCAN MinPts = 25 and ε = 250 0.291 0.079

DBSCAN MinPts = 25 and ε = 500 0.431 0.124

DBSCAN MinPts = 25 and ε = 750 0.499 0.070

DBSCAN MinPts = 50 and ε = 250 0.230 0.101

DBSCAN MinPts = 50 and ε = 500 0.435 0.066

DBSCAN MinPts = 50 and ε = 750 0.431 0.116

DBSCAN MinPts = 75 and ε = 250 0.155 0.122

DBSCAN MinPts = 75 and ε = 500 0.407 0.072

DBSCAN MinPts = 75 and ε = 750 0.473 0.077

DBSCAN MinPts = 100 and ε = 250 0.093 0.095

DBSCAN MinPts = 100 and ε = 500 0.384 0.076

DBSCAN MinPts = 100 and ε = 750 0.442 0.064

Regarding the second step, the key idea was to associate a frequency to each cluster of

each day. To calculate this frequency (Fc) the formula on Equation 5.12 was proposed.

Fc =
Number of days where the cluster (partially) exists

Total number of days
(5.12)

Considering the necessary parameters for the formula above, the total number of days

with AIS data is a known value, but the number of days where each cluster exists needs to

be calculated. For this propose the Algorithm 3 was developed. This algorithm receives

a cluster from a day, the clusters of the remaining days (the day from the passed cluster

is not included) and an overlap threshold (between 0 and 1). The key idea is to evaluate

if the cluster appears on other days by calculating the area of intersection between it and

each of the remaining clusters. This area is then converted to a percentage by dividing it

with the area of the cluster in analysis, and if this percentage is greater than the threshold

(given as a parameter) it is considered that the cluster appears on the day of the other

one. The overlap threshold is important in this analysis because it is highly unlikely that
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two clusters have the exact same shape, which would be necessary for a degree of 100%

of overlap. Moreover, the goal is to identify if an area that has an high density in one

day also has in other days, and for that reason a total overlap is not required as the same

area may be within a cluster with a bigger or smaller area on others days, depending of

its cohesion. For these reasons, the value of this threshold was defined as 50%.

Algorithm 3 Calculate the number of days where a cluster exists

1: function calculateNumberDaysClusterExists(cluster, clustersOtherDays,
overlapThreshold)

2: numberOfDays← 0
3: baseClusterArea← area of the cluster
4: for each day of clustersOtherDays do
5: for each otherCluster of the day do
6: intersectionClusters← cluster ∩ otherCluster
7: overlapArea← area of the intersectionClusters
8: overlapPercentage← overlapArea/baseClusterArea
9: if overlapPercentage >= overlapThreshold then

10: numberOfDays← numberOfDays+ 1
11: break the current for loop
12: end if
13: end for
14: end for
15: end function

Notice that the Algorithm 3 could use the overlap of each individual point from the clusters

for the overlap calculations (which was actually the first approach), but the required

time for the algorithm to compute was unfeasible. Therefore, the area from the clusters

was considered for the overlap calculations, but calculate this area is not an immediate

operation. The first approach was to consider the cluster as rectangle, calculate the

maximum and minimum values of its points regarding both the x and y axis, and finally

use the formula for the rectangle area. However, the results were very inflated (frequencies

achieved values of 100% often) mainly because the error of the area was to high. For

example, if a cluster contains the majority of its points near its centroid but a single one is

far from it, the area would consider that point as the maximum or minimum (depending

on the plane quadrant) and the resulting value would be inflated wrongly. An example

illustrating this problem is presented on Figure 5.8.

The second approach was to consider a circle shape for the cluster, and consisted on

calculating its centroid and finding the point that had the biggest Haversine distance from

it. This distance was used as the radius of the circle, and the formula for the circle area

was finally used. This approach revealed the same problems as the first one and was

discarded, as the example on Figure 5.9 shows.

The third and final approach was to extract the convex hull1 of the clusters points using

the Graham’s Scan algorithm (Graham, 1972). The shape of the convex hull adapts much

1Given a set of points X, the convex hull is the minimum set of these points that create a convex
polygon containing all entries of X.
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(10, 3.3)

(2.4, 1)

(1, 5.6)

(2.8, 8)

Figure 5.8: Example of the problem, raised by the usage of a rectangle to represent the
cluster, when calculating its area.

Centroid = (2.2, 4.4)

(5.1, 8.7)

Figure 5.9: Example of the problem, raised by the usage of a circle to represent the cluster,
when calculating its area.

better to the cluster because it considers all the boundaries and is able to represent them

without restrictions (being an irregular polygon, it can assume any convex shape). An

example of a convex hull is presented on Figure 5.10.

With the cluster represented as a convex polygon, and considering that the coordinates

from the vertices are known, the formula presented on Equation 5.13 can be used to

calculate its area.

Acp =
1

2

n−1∑
k=0

(
xk ∗ yk+1 − yk ∗ xk+1

)
(5.13)

For example, the area of the polygon presented on Figure 5.10 is 30.78 (see Equation 5.14).
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(1.6, 3.1)

(1.4, 5.8)

(5.5, 7.6)

(9.1, 5.2)

(7.9, 3.1)

(3.6, 1.3)

Figure 5.10: Example of a convex hull.

Acp =
1

2
∗
(

(5.5 ∗ 5.8 + 1.4 ∗ 3.1 + 1.6 ∗ 1.3 + 3.6 ∗ 3.1 + 7.9 ∗ 5.2 + 9.1 ∗ 7.6)−

(7.6 ∗ 1.4 + 5.8 ∗ 1.6 + 3.1 ∗ 3.6 + 1.3 ∗ 7.9 + 3.1 ∗ 9.1 + 5.2 ∗ 5.5)

)
⇔ Acp =

1

2
∗
(

159.72− 98.16

)
⇔ Acp =

61.56

2

⇔ Acp = 30.78

(5.14)

This approach had a cost on the performance (mainly because of the extraction of the

convex hulls), but the results were more accurate as the clusters were better represented

by the convex polygons.

With the frequency of each cluster calculated, the third step was addressed by associating

less common clusters as more likely to include abnormal behaviors. This concept has

been used in other studies and relies on the fact that an area where an higher density of

intersections is often found should be considered less probable of being abnormal when

compared to one where this higher density happens as an exception. Therefore, the level

of abnormality of each cluster was calculated based on the frequency using the formula on

Equation 5.15. This is level is still normalized between 0 and 1, and can also be seen as a

percentage.

ALc = 1− Fc (5.15)

Finally, addressing the fourth step, to visualize these clusters the convex hulls are drawn

on the platform and the visual variable color was used for the representation of the abnor-
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mality levels. These levels were discretized into four intervals, namely [0, 0.25[, [0.25, 0.50[,

[0.50, 0.75[ and [0.75, 1]. A gradient of the color red was created with four levels, each one

for a specific interval, and being the 1st level the lower and the 4th level the higher. The

strongest red is for the last interval and the lightest red is for the first interval. The

gradient is presented on Figure 5.11. The convex hull drawn for each cluster is filled with

the color that matches its interval of abnormality.

Figure 5.11: Color palette for the representation of the abnormality levels.

Figure 5.12 shows an example with two of these areas drawn on the platform. The one

from the left has a lower level of abnormality when compared to the one on the right.

Figure 5.12: An example with two abnormal areas drawn on the platform.

5.1.4 Overtime Analysis with Small Multiples

When analyzing an intersection with the propose of detecting abnormal behavior, an

important aspect is the frequency that it occurs. For a domain expert, the frequency or

the existence of recurrent patterns may be useful for confirming or discarding suspicious

behaviors. In order to compare the trajectories in different periods a small multiples

strategy was used because it allows the comparison of multiples views by varying a specific

attribute of the data. The vessels involved in a specific intersection are selected and

their trajectories are displayed through small multiples with different granularities. The

first scale uses a monthly granularity and displays a grid of 3 by 4 cells where each one

displays the trajectories of the vessels in a month (the year in analysis is the same of the
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intersection). Months where no data exists for these vessels are filled in with grey. Figure

5.13 shows an example of this scale for a set of selected trajectories within February and

March of 2012. Then, by clicking on a specific month, a drill-down on the granularity

Figure 5.13: An example of the small multiples approach with the monthly granularity.

will occur and a second scale will be displayed where all the days of that month are

presented with the respective trajectories in them, or filled with grey if there are no

reported positions. This scale displays a grid with 7 columns, each one corresponding to

a day of the week (starting on Sunday), which allows an easier pattern correlation (for

instance, intersections that happen on the same day of the week or only on weekends).

The number of lines depends of the selected month. Figure 5.14 shows an example for this

granularity for a set of selected trajectories between 21 and 23 of February of 2012.

Figure 5.14: An example of the small multiples approach with the daily granularity.

Finally, if a specific day with data is clicked then the animation of the involved trajectories

starts automatically playing. This small multiples strategy is available for individual

intersections through a button next to the fish-eye lens, but can also be applied to a set

of selected trajectories (similarly to the animation).

5.2 Speed Outlier Behaviors

The different types of vessels sail on the sea with an average speed that, in normal scenarios,

should not have big variations. This means that vessels sailing too slow or too fast can be
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classified has having a suspicious (and eventually abnormal) behavior. Besides, several of

the identified illegal activities are commonly associated with a reduction of the involved

vessels speed (i.e., fishing in illegal areas). Therefore, an approach to detected vessels with

speed values that can be considered outliers was developed.

An initial study of the statistical distribution followed by the speed variable of each type

of vessel was conducted. For this study only valid speed values (below or equal to 100

knots) and values of moving vessels (greater or equal to 0.5 knots) were considered. The

goal was to understand if these variables followed a normal distribution. If this condition

was verified the detection of outliers could be achieved by detecting which values had a

probability density situated on the extremes ends of the Gaussian curve. However, as

Figure 5.15 shows, the variable does not follow a normal distribution for any of the types

of vessels. The ones that are closer to follow this distribution are the cargo and taker

vessels (images (h) and (i)), but an initial peak near the 0 value on the x axis makes it

not normal. Therefore, this approach was discarded.

Based on the previous results, a non-parametric approach was followed using a Gaussian

Kernel Density Estimation (KDE), which is a strategy to estimate the Probability Density

Function (PDF) of a variable using its known data and without assuming a predefined

distribution (Parzen, 1962). The estimated PDF for each vessel type is also presented

on Figure 5.15. The results show that the functions fit the data distributions, and this

approach was the adopted one. Therefore, the strategy defined to classify a speed value

of a vessel as too slow, normal or too fast was the following:

1. Through a Python script, estimate the PDF of the speed variable for each vessel

type using a Gaussian KDE;

2. Discretize each PDF into 0.5 intervals regarding the x axis (the speed itself), and

save the associated y values for each of these intervals;

3. Define a PDF threshold to each vessel type where values below it would be considered

as outliers;

4. On the platform, a filter was created to display only the positions of the vessels that

have a low or high speed, or that are stopped (this last one does no use the described

strategy, an considers any position with a speed below 0.5 knots as the vessel being

stopped). For the low and high speed filter the steps are:

(a) Round the speed value to its closest 0.5 interval (i.e., a value of 10.3 would be

rounded to 10.5 and a value of 9.1 to 9);

(b) Obtain the PDF result for the rounded speed value from the previously dis-

cretized list of the corresponding vessel type;

(c) Evaluate if the PDF value is below the threshold for that vessel type. If it is

below, classify the position as low or high by verifying if its speed is less or

greater than the average value for that vessel type, respectively.
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Within the described strategy a particularly difficult task is to find the ideal threshold

for the PDF of each vessel type. The ideal threshold would have to be sufficiently high

to include all PDF values that are small but without including the peaks of the function

where the normal values reside. Considering that the functions are never monotonic and

include several times the two described situations, one can see the smaller PDF values as

local minima and the peaks as local maxima. Therefore, the formula on Equation 5.16

was defined to calculate the threshold of each PDF.

Tpdf = Local Minima ∪ Local Maxima (5.16)

The calculated thresholds for each PDF function are also presented on Figure 5.15.

(a) Not defined vessels. (b) Reserved vessels.

(c) Wing in ground vessels. (d) Fishing and special category vessels.

Figure 5.15: Distribution of the speed variable from each type of vessel.
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(e) High-speed vessels. (f) Special category vessels.

(g) Passenger vessels. (h) Cargo vessels.

(i) Tanker vessels. (j) Other types of vessels.

Figure 5.15: Distribution of the speed variable from each type of vessel. (cont.)

With the general problem of detecting speed outliers solved, there was a particular scenario

that was not considered in the described approach. For the special case of the fishing

vessels, to detect the particular abnormal behavior of illegal fishing not only the speed of

the vessel must be considered but also its location. As the image (d) from Figure 5.15, is

actually normal to see fishing vessels sailing in a low speed when they are fishing. So, to

detect this abnormal behavior, a further constraint was necessary to take in consideration:
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the area where the vessel is sailing in a low speed. Therefore, a new filter was added to

the platform for this propose. The illegal areas are defined through concave or convex

polygons that are loaded to the system, each one being identified by its vertices. When

the filter is active, only the positions of the fishing vessels that are inside these polygons

are displayed. To verify if a point is inside of one of the polygons an implementation of the

ray casting algorithm (Haines, 1994) was used. Figure 5.16 shows an example of fishing

vessels sailing inside an illegal fishing area (this area is fictional).

Figure 5.16: An example of fishing vessels sailing inside an illegal fishing area.

Regarding the generalization of these approaches, the strategy to detect speed outliers can

be applied to any dataset of AIS data, from any maritime area, just by recalculating the

PDF for each vessel type and the respective thresholds. The strategy to detect vessels

fishing in illegal areas can also be generalized, with the restriction that the areas must

be define through polygons. This means that, for example, if the area is defined by a

non-polygon (i.e., a circle) then its representation must be the polygon which has that

non-polygon inscribed.

5.3 3D Explorations for Time Evolution

The two-dimensional visualization of the AIS data has natural restrictions when consider-

ing the amount of information that can be displayed simultaneously. Only when the motion

variable is introduced more information can be displayed on a 2D plane. In geographical

systems, the two-dimensional point (x, y) is commonly use to represent the position of an
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object and, as described on section 4.2, the developed platform follows the same approach.

However, in a three-dimensional plane each point is represented by three values (x, y, z),

which gives the possibility of displaying more information simultaneously. Therefore, some

attempts of exploring the 3D plane were developed, with particular emphasis on using the

new available variable to introduce the time information of the positions. The key ideas

were to understand the evolution of specific vessels over the time and also to understand

patterns related with this variable.

Four 3D projections were developed individually with the following proposes:

• Use (x, y, z) to display the AIS positions with Earth’s curvature through an ECEF

projection (Leick et al., 2015);

• Use (x, y) for the normal 2D projection and the z axis to represent the date of the

positions;

• Similar to the previous one, but using the z axis to represent the timestamp of the

positions. The intersections between trajectories are simultaneously displayed;

• Use (x, y) for representing the timestamp of the positions through a 24h clock format

and the z axis to represent each different vessel.

Notice that to use these 3D projections the trajectories from the vessels in analysis need

to be previously selected. Besides, all the data from these vessels (without date and time

restrictions) is considered and displayed. Finally, the 3D axes are always displayed on the

origin with the x axis painted red, the y axis green and the z axis blue.

Regarding the first approach, it was a direct usage of the ECEF projection, which can

be seen as an equivalent of the Spherical Mercator projection for the 3D plane, that is

able to represent the Earth’s curvature. Although no time information is included in this

projection, it was used for testing the 3D environment components that are presented

later in this section. Besides the longitude and latitude of each position, this projection

also requires as a parameter the radius of the sphere that is used for mapping the Earth’s

curvature. In order to keep the proportions as real as possible, the Earth radius (approxi-

mately 6371 kilometers) was used. Figure 5.17 shows an example of this approach, applied

to 4 different vessels, in two different perspectives. All the trajectories of these vessels are

displayed simultaneously and it seems like they all overlap. However, the trajectories of

each vessel occurred in different days, and this projection is agnostic to the time variable.

The images also show that the vessels have similar routes over the time and that the cyan

vessel has several gaps in its reported positions.

The second approach uses the Spherical Mercator projection for displaying the positions

through the x and y variables, as if the plane was 2D. However, the z axis is used to display

the date of each position by applying an offset of 30 units to each date. This means that,

for example, a position of the first day of data will have z = 0 ∗ 30 = 0 and a position

of the third day of data will have z = 2 ∗ 30 = 60. This offset between dates allows the
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Figure 5.17: ECEF projection of 4 different vessels. Each image corresponds to the same
data with different perspectives.

perception of which vessels sail more and less often. To calculate the z value in a generic

way only the date part of the UNIX epoch timestamp must be considered (the time part is

cleared with zeros), and, assuming Datefirst as the date of the first position, the formula

from Equation 5.17 is used. The formula assumes the positions were previously sorted by

date.

z =

(
Datecurrent −Datefirst

86400

)
∗ 30 (5.17)

Figure 5.18 shows an example of this approach, applied to 4 different vessels, in two

different perspectives. The images show that only from specific perspectives the difference

between the dates of the trajectories are noticeable. However, the time variable is already

considered by this projection in a discretized way and, for the perspectives where the

different dates are visible, the trajectories no longer overlap.

The third approach is very similar to the second one but the z axis is used to display the

complete timestamp of each position. A range of 20 units is used to represent each hour and

the necessary offsets are calculated to achieve the correct z value for each timestamp. This

approach does not allow an explicit distinction between the dates of positions but creates

a continuity effect that allows a more intuitive analysis of the evolution of the vessels over

the time. To calculate the z value in a generic way the UNIX epoch timestamp is divided

in two parts, one that contains only the date and other that contains only the time, and,

assuming Datefirst as the date of the first position, the formula from Equation 5.18 is

used.

z =

((
Datecurrent −Datefirst

86400

)
∗ 480 +

(
Timecurrent

3600

)
∗ 20

)
(5.18)
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Figure 5.18: Projection using z axis to represent the date, applied to 4 different vessels.
Each image corresponds to the same data with different perspectives.

In this approach another important aspect is that the intersections between positions are

displayed through black spheres. These intersections only consider the spatial component

of the positions and are calculated in real time by comparing the positions between each

other. An intersection occurs when a point has a linear distance smaller or equal to 2, in

all the axes, when compared to another point from a different vessel. Figure 5.19 shows

an example of this approach, applied to 4 different vessels, in two different perspectives.

The images show that this projection displays the time variable in a continuous way,

and that is the reason why it can also be used to detect intersections. However, from

specific perspectives some false intersections may appear, and that is why the real ones

are represented through a black sphere. In this case, only two of the vessels trajectories

have an intersection and it is visible on both perspectives.

Figure 5.19: Projection using z axis to represent the time, applied to 4 different vessels.
Each image corresponds to the same data with different perspectives.
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The fourth and last approach is very different from the previous ones and is totally focused

on a time analysis. The key idea is to represent the positions in a 24 hour clock two

understand the periods of the days when the vessels sail. The dates of the positions are

represented by the radius of the clock, meaning that when the date increases the radius

also increases, with an offset of 50 units by day. With the x and y variables used for

the described propose, the z axis is used to represent the different vessels. Each vessel is

associated with an integer index between 0 and n (number of vessels), and for each one an

offset of 30 units is applied, which creates a clear separation between them. To calculate

the x and y values the radius and the angle of the clock position are first calculated using

the formulas on Equations 5.19 and 5.20, respectively.

radius =

(
Datecurrent −Datefirst

86400

)
∗ 50 (5.19)

angle = toRadians

((
Timecurrent

3600

)
∗
(

360

24

))
(5.20)

The values of x and y are then calculated using the formulas to convert polar coordinates

to cartesian coordinates, as Equations 5.21 and 5.22 show. The z value is calculated by

applying the offset to the vessel based on its index, as Equation 5.23 shows.

x = radius ∗ cos(angle) (5.21)

y = radius ∗ sin(angle) (5.22)

z = V esselindex ∗ 30 (5.23)

Figure 5.20 shows an example of this approach, applied to 4 different vessels, in two

different perspectives. The images show that this projection clearly identifies the different

trajectories by situating them simultaneously on the specific date and time when they

occurred. However, the identification of the different vessels is only possible from some

perspectives and the geographical location of the positions is not represented.

Regarding all the approaches, the following environment configurations were also imple-

mented:

• A set of mouse based operations to control the camera like performing translations,

rotations, pan and zoom, which allows the exploitation of the 3D visualizations from

different perspectives;

• The visualizations are centered on the origin to allow an easier contextualization

with the axes. This is achieved by calculating the middle value for each axis from
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Figure 5.20: Projection representing the positions through a 24 hour clock shape. Each
image corresponds to the same data with different perspectives.

all the points and offsetting each one by those individual values.

All the 3D strategies presented similar problems that require further analysis:

• Its very difficult to contextualize the points in their real positions on Earth. Although

this aspect was not the target of the approaches, this contextualization is always

important from the analysis perspective;

• The navigation on the 3D plane is difficult and, sometimes, unnatural. Besides,

the usage of rotations to view the points from different perspectives aggravates the

problem described on the previous point;

• Certain information is only visible from specific perspectives. For example, on the

4th projection the different vessels can only be seen through a specific rotation of

the y axis.

Although 3D approaches can display more information through more variables, the prob-

lems described above allow the conclusion that the navigation and contextualization of

such visualizations is much more difficult and can make them unfeasible.
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Case Studies

In order to validate the developed visualization approaches for the detection of anomalous

behaviors, three case studies were conducted. These cases illustrate different scenarios

where the detection would not be possible without a visual approach. The studies cover

intersections scenarios, one with the speed outlier filter.

6.1 Hidden Intersection

There are specific areas of the sea where the vessels are supposed to sail, the so-called mar-

itime corridors. The density of the traffic in these areas is much higher when comparing

to others. Figure 6.1 displays several Automatic Identification System (AIS) trajectories

from vessels that sailed through the main corridor of the Portuguese maritime area on

February 22 of 2012. Apparently, the marked area contains only cargo vessels (the dark

Figure 6.1: Visualization of several AIS trajectories.

blue ones) and a fishing vessel (the green one). When analyzing the fishing vessel, its ap-

pears that it may eventually intersect with several cargos. However, when the intersections
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are activated and the fish-eye lens is applied on the black square area, with at least one

level of zoom, an unexpected intersection is revealed. Figure 6.2 shows this intersection

on the fish-eye lens (image (a)) and on the detail lens (image (b)).

(a) Magnified fish-eye lens. (b) Intersection isolated through the detail lens.

Figure 6.2: Identification and individual analysis of the intersection.

The intersection between the fishing and the passengers vessel (the yellow one) was hidden

in the visual clutter created by the trajectories of the remaining vessels. Without the

usage of the magnified fish-eye lens it would be very difficult to detect and analyze this

intersection. After the isolation of the involved trajectories the animation was used for a

more detailed analysis, as Figure 6.3 shows.

(a) Trajectories before the intersection. (b) Trajectories after the intersection.

Figure 6.3: Animation of the trajectories from the intersection.

The displayed frames on Figure 6.3 show the current positions of the vessels with 100%

opacity and the past positions with only 10%, creating the trace effect. Using the in-

terpolation method already explained, the animation shows that the fishing vessel moves
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slower, particularly in the beginning of the trajectory when it is leaving the coast.

When applying the small multiples strategy one can conclude that the vessels did not

intersect again. Figure 6.4 shows that both vessels intersect only once on February.

Figure 6.4: The small multiples approach for this intersection with the monthly granularity.

6.2 Fishing Vessels Intersections

Fishing vessels can be particularly hard to analyze considering that their trajectories are

very irregular when comparing, for example, with cargos or tankers. Figure 6.5 displays

AIS trajectories from March 10 of 2012. Notice that the vessel types filter was used to

remove the cargos and tankers from the screen.

Figure 6.5: Visualization of AIS trajectories.

The area marked by the black square on the Figure 6.5 appears to contain a trajectory

from a fishing vessel. However, when the intersections feature is enabled it shows that there

are more than one trajectory from fishing vessels in that area and, more importantly, they

intersect in several points. Moreover, the area is considered to have a high density of

intersections and the red color indicates that the level of abnormality is the 3rd (out of

4). Figure 6.6 shows these intersections and the high density area.
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Figure 6.6: Intersections and high density area of the fishing trajectories.

When the fish-eye lens is applied on the area the intersections are isolated through the

detail lens. Figure 6.7 shows all intersections on the fish-eye lens (image(a)) and only the

first intersection on the detail lens (image (b)). Notice that, being the two vessels from

the same type, they are represented by a lighter and darker green colors.

(a) Magnified fish-eye lens. (b) First intersection on the detail lens.

Figure 6.7: Detection and isolation of the first intersection.

The animation of trajectories was applied to the intersection and, as Figure 6.8 shows, one

of the vessels is always following the other. This pattern could be an important aspect

to confirm or discard the behavior as suspicious. The speed of the vessels is more or less

constant with the exception of some turning points where it decreases.

The application of the small multiples strategy also reveals that these vessels sailed on the

same area every one of the 20 days of the available data, as Figure 6.9 shows.
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(a) 1st frame. (b) 2nd frame. (c) 3rd frame.

Figure 6.8: Three frames of the animation from the isolated intersection.

(a) Last days of February.

(b) First days of March.

Figure 6.9: The small multiples approach, with the daily granularity, for the intersection
trajectories.

6.3 Low Speed Intersections

The low speed filter is able to isolate the vessels that are sailing below the average speed of

their type. When this filter is applied to the data from March 11 of 2012, a few intersections

are detected near the north of Portugal, as Figure 6.10 shows. These intersections are also

within an area of high density with the 3rd level of abnormality.

The first intersection between tankers is isolated by applying the fish-eye lens to it, as

Figure 6.11 shows, and the trajectory followed by one of the tankers (the darker one) is

suspicious because it was on left side and reduced the speed just to cross the trajectory of

the other vessel, intersecting it.
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Figure 6.10: Visualization of low speed AIS trajectories.

(a) Magnified fish-eye lens. (b) First intersection isolated on the detail lens.

Figure 6.11: Identification and isolation of the first intersection with low speed.

The usage of the animation also revealed that the suspicious vessel started reducing the

speed very late when compared to the other one, suggesting it was made on propose, as

Figure 6.12 shows. Image (a) shows the small curve made by the suspicious vessel and the

moment where both intersect, and image (b) shows that after the intersection both follow

different directions.
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(a) Trajectories before the intersection. (b) Trajectories after the intersection.

Figure 6.12: Animation of the trajectories from the intersection.
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Chapter 7

Conclusions and Future Work

The AIS was originally implemented for assisting in maritime safety but its data is nowa-

days used for numerous proposes related with maritime traffic analysis. One of this pro-

poses is the identification of specific abnormal behaviors with the goal of helping law

enforcement authorities in detecting and responding to those actions. This thesis ex-

ploits the usage of data visualization techniques, assisted by data analysis, to achieve the

exposed propose. Several visualization approaches were defined to address different cate-

gories of anomalous behaviors, being all implemented on a platform and validated through

case studies. The 1st semester was mainly focused on studying the necessary background

knowledge and related work for the thesis, and the 2nd semester was focused on the defi-

nition, implementation and validation of the visual strategies and data analysis tasks that

are used for the different types of behaviors.

Considering the goals proposed for the thesis, one can consider that they were fully

achieved. The developed platform implements visualization approaches to address all

the types of anomalous behaviors that were initially identified by the domain experts.

Moreover, the developed work originated two research articles that were submitted to a

conference and a journal, and are both waiting review.

Regarding the work it-self, this thesis shows that the usage of visualization approaches

on the AIS context can provide a good decision support system to help operators detect

anomalous behaviors. The implemented strategies have presented good results for each of

the anomalous categories addressed, as the case studies show.

In terms of future work, an obvious step is to test the developed strategies with real

domain experts and evaluate them. Extending the categories of anomalous behaviors that

are supported by the platform and improving its interaction and usability would also be

important directions.
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Appendix A

Density-Based Clustering Results

A.1 Silhouette Coefficient Results

Table A.1: Silhouette coefficients for density-based clustering

algorithms with MinPts = 25.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

1 0.472 0.376 0.511 0.557

2 0.280 0.201 0.554 0.365

3 0.329 0.183 0.475 0.351

4 0.267 0.241 0.285 0.523

5 0.087 0.175 0.494 0.481

6 0.430 0.359 0.508 0.550

7 0.522 0.199 0.368 0.508

8 0.460 0.355 0.452 0.513

9 0.050 0.425 0.578 0.582

10 0.419 0.212 0.532 0.506

11 0.351 0.256 0.459 0.503

12 0.294 0.305 0.432 0.519

13 0.404 0.407 0.549 0.509

14 0.197 0.256 0.368 0.551

15 0.177 0.304 0.559 0.469

16 0.208 0.366 0.538 0.463

17 0.241 0.247 0.303 0.656

18 0.335 0.266 0.194 0.439

19 0.076 0.289 0.174 0.426

20 0.485 0.396 0.295 0.514
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Density-Based Clustering Results

Table A.2: Silhouette coefficients for density-based clustering

algorithms with MinPts = 50.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

1 0.500 0.253 0.457 0.515

2 0.586 0.296 0.495 0.535

3 0.591 0.033 0.440 0.512

4 0.325 0.154 0.520 0.281

5 0.334 0.109 0.385 0.502

6 0.378 0.320 0.441 0.386

7 0.563 0.021 0.298 0.403

8 0.477 0.135 0.430 0.491

9 0.505 0.339 0.515 0.592

10 0.477 0.310 0.439 0.533

11 0.460 0.304 0.461 0.148

12 0.473 0.287 0.359 0.480

13 0.464 0.347 0.435 0.529

14 0.261 0.251 0.481 0.347

15 0.478 0.211 0.498 0.383

16 0.514 0.299 0.523 0.598

17 0.420 0.285 0.410 0.309

18 0.403 0.139 0.347 0.393

19 0.372 0.181 0.317 0.370

20 0.583 0.326 0.443 0.315

Table A.3: Silhouette coefficients for density-based clustering

algorithms with MinPts = 75.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

1 0.610 0.123 0.399 0.502

2 0.605 0.182 0.421 0.503

3 0.604 -0.032 0.403 0.502

4 0.348 0.116 0.501 0.530

5 0.553 0.023 0.443 0.452

6 0.401 0.218 0.458 0.504

7 0.607 -0.171 0.191 0.263

Continues in next page.
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Continued from previous page.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

8 0.531 -0.006 0.407 0.452

9 0.572 0.277 0.474 0.512

10 0.507 0.234 0.444 0.501

11 0.550 0.267 0.446 0.406

12 0.506 0.189 0.399 0.463

13 0.515 0.254 0.435 0.507

14 0.490 0.197 0.384 0.488

15 0.501 0.243 0.410 0.511

16 0.633 0.315 0.478 0.584

17 0.556 0.188 0.351 0.295

18 0.480 0.119 0.323 0.529

19 0.339 0.117 0.308 0.445

20 0.590 0.247 0.470 0.516

Table A.4: Silhouette coefficients for density-based clustering

algorithms with MinPts = 100.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

1 0.613 -0.023 0.339 0.456

2 0.500 0.102 0.377 0.472

3 0.563 0.059 0.353 0.453

4 0.348 0.055 0.473 0.513

5 0.320 -0.047 0.389 0.436

6 0.397 0.159 0.425 0.502

7 0.518 -0.156 0.152 0.243

8 0.448 -0.009 0.358 0.438

9 0.549 0.172 0.465 0.517

10 0.550 0.163 0.430 0.432

11 0.465 0.199 0.435 0.440

12 0.469 0.119 0.395 0.371

13 0.531 0.193 0.445 0.477

14 0.477 0.098 0.300 0.458

15 0.558 0.169 0.382 0.479

16 0.612 0.203 0.465 0.438

Continues in next page.
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Continued from previous page.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

17 0.565 0.124 0.390 0.462

18 0.589 0.049 0.365 0.440

19 0.502 0.061 0.287 0.327

20 0.568 0.166 0.449 0.484

A.2 Number of Extracted Clusters

Table A.5: Number of clusters extracted from density-based

clustering algorithms with MinPts = 25.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

1 52 29 29 27

2 70 35 33 33

3 58 30 27 24

4 79 33 31 29

5 112 34 35 29

6 93 50 43 38

7 29 17 23 19

8 40 20 26 24

9 133 39 38 33

10 77 38 40 36

11 88 38 36 31

12 97 34 38 34

13 97 39 37 35

14 107 45 39 35

15 97 39 37 35

16 88 39 39 34

17 94 47 36 33

18 74 32 27 26

19 78 29 30 29

20 71 40 42 37
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Table A.6: Number of clusters extracted from density-based

clustering algorithms with MinPts = 50.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

1 20 17 19 16

2 27 21 21 19

3 29 21 20 17

4 38 23 19 19

5 39 22 23 21

6 46 33 26 25

7 18 7 14 12

8 18 12 14 15

9 37 27 25 23

10 43 23 27 22

11 34 19 21 20

12 35 22 18 18

13 42 30 26 24

14 46 28 23 22

15 40 27 25 22

16 39 31 31 28

17 39 30 33 24

18 39 24 22 20

19 31 21 23 19

20 34 27 24 23

Table A.7: Number of clusters extracted from density-based

clustering algorithms with MinPts = 75.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

1 17 16 17 16

2 17 16 17 15

3 18 14 17 16

4 26 20 17 17

5 26 22 19 21

6 36 21 22 19

7 15 4 6 7

Continues in next page.
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Continued from previous page.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

8 14 7 9 9

9 23 20 20 20

10 27 23 21 23

11 23 18 17 16

12 26 20 19 16

13 31 21 21 20

14 29 19 22 19

15 32 21 24 21

16 28 24 24 21

17 25 19 22 22

18 23 16 20 17

19 29 16 16 17

20 28 22 23 22

Table A.8: Number of clusters extracted from density-based

clustering algorithms with MinPts = 100.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

1 16 11 15 14

2 19 15 15 13

3 16 12 16 14

4 23 15 16 14

5 24 19 16 14

6 30 15 21 18

7 9 3 5 7

8 12 6 10 9

9 20 19 18 17

10 23 20 20 22

11 20 19 15 14

12 22 18 16 16

13 27 17 18 19

14 23 15 20 16

15 20 16 18 16

16 23 17 20 19

Continues in next page.
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Continued from previous page.

DBSCAN
Chunk HDBSCAN

ε = 250 ε = 500 ε = 750

17 20 17 18 18

18 18 13 18 17

19 21 14 15 16

20 22 19 19 18

Table A.9: Average number of clusters extracted from

density-based clustering algorithms.

Algorithm Average Std. Deviation

HDBSCAN 25 81.700 24.671

HDBSCAN 50 34.700 8.511

HDBSCAN 75 24.650 5.941

HDBSCAN 100 20.400 4.751

DBSCAN 25 250 35.350 8.061

DBSCAN 25 500 34.300 5.723

DBSCAN 25 750 31.050 5.042

DBSCAN 50 250 23.250 6.398

DBSCAN 50 500 22.700 4.824

DBSCAN 50 750 20.450 3.762

DBSCAN 75 250 17.950 5.042

DBSCAN 75 500 18.650 4.580

DBSCAN 75 750 17.700 4.118

DBSCAN 100 250 15.000 4.389

DBSCAN 100 500 16.450 3.692

DBSCAN 100 750 15.550 3.426
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