
Mestrado em Engenharia Informática
Dissertação/Estágio - Relatório final 2017/2018

Source code analysis and
transformation to aid
internationalization support

João Pedro Santos Batanete
joaosb@student.dei.uc.pt
July 2018

Orientador DEI:
Ernesto Costa

Orientador WIT:
João Certo

Tutor WIT:
Carlos Mota





Acknowledgements
The present document marks the end of my tenure as Software Engi-
neering student at the University of Coimbra.

Firstly, I would like to thank both my supervisors and my tutor for all
the feedback provided and all those times you pushed me in the right
direction when I needed it. I have learned a lot from you, and I will
continue to do my best towards improving myself as a professional in
this field. I would also like to thank all the people at WIT-Software,
who were always very friendly and welcoming to me, and provided
invaluable feedback when I needed it.

I would also like to thank my parents, sister and the rest of my family
for all the support they gave me across all these years.

Lastly, I would also like to thank my girlfriend for always cheering me
up when I needed it the most and inspiring me to always try my best.





Abstract
With the widespread expansion of software markets, localization is
becoming increasingly important. There is a pronounced correlation
between application usage and availability in the home language. This
creates the need to improve localization support processes in order to
deliver applications more quickly and cost-effectively.

In order to manage textual content, one commonly used approach is
the use of key/value pairs to represent user interface text fragments
with the values for each key, and for each target idiom being stored
in a localization platform, which is used by the translating team to
create the translations.

Translators often need ”contextual” information when translating a
given key in order to provide an acceptable translation for it. In order
to achieve this, it is common to use screenshots of the application con-
text (user interface) associated with each key that appears on-screen.
The process of obtaining the associations is currently done manually,
which is very time consuming and sometimes impractical for real-world
applications where the number of keys is too large or the application’s
user interface is too complex.

The central objective of this internship is to create a tool that autom-
atizes certain portions of the process by aiding the user in obtaining
associations between the key/value pairs and the screenshots and up-
loading them to a localization platform. This is achieved by changing
application source code directly using static code analysis and trans-
formation tools. The platforms supported initially will be Android
and iOS but extensibility to other platforms is a primary goal.

Keywords
”Android”, ”iOS”, ”Static code analysis”, ”Code transformation”, ”Lo-
calization”, ”Internationalization”, ”ANTLR”, ”Key/value localiza-
tion”





Resumo
Com a expansão dos mercados de software, a localização dos produ-
tos está a tornar-se cada vez mais importante. Existe uma correlação
pronunciada entre o sucesso das aplicações e a disponibilidade destas
para o idioma local. Isto cria a necessidade de melhorar os processos
de suporte à localização para possibilitar o desenvolvimento de apli-
cações de forma mais eficiente em termos de custos e tempo.

Para gerir conteúdo textual, uma abordagem comum é a utilização de
pares chave/valor para representar os fragmentos de texto da user in-
terface, com os valores correspondentes a cada chave e a cada idioma
a serem armazenados numa plataforma de localização, que é utilizada
pela equipa de tradução para criar as traduções.

Os tradutores necessitam com frequência de informação ”contextual”
para durante o processo de tradução de uma chave, de forma a con-
seguirem disponibilizar uma tradução aceitável. Por forma a cumprir
este requisito, é comum utilizar fotografias do contexto da aplicação
(user interface) associadas com as chaves que aparecem no ecrã do dis-
positivo. O processo de obtenção das associações é, neste momento,
realizado de forma manual, o que o torna moroso e por vezes imprat-
icável para aplicações em contexto real com um número de chaves
demasiado grande, ou com uma user interface demasiado complexa.

O objetivo central deste estágio é criar uma ferramenta que automatiza
certas componentes do processo, auxiliando o utilizador na obtenção
das associações entre os pares chave/valor e as fotografias e exportando-
as para uma plataforma de localização. Isto é feito através da mod-
ificação do código fonte de forma direta utilizando ferramentas de
análise e transformação estática de código. As plataformas supor-
tadas inicialmente irão ser Android e iOS, mas a extensibilidade a
outras plataformas é um dos objetivos principais.

Palavras-chave
”Android”, ”iOS”, ”Análise estática de código”, ”Transformação de
código”, ”Localização”, ”Internationacionalização”, ”ANTLR”, ”Lo-
calização com pares chave/valor”





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Report structure . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5
2.1 Internationalization practices . . . . . . . . . . . . . . 5

2.1.1 String encoding . . . . . . . . . . . . . . . . . . 6
2.1.2 UI elements separation from source code . . . . 7
2.1.3 Key/Value approach . . . . . . . . . . . . . . . 8
2.1.4 Locale hierarchy . . . . . . . . . . . . . . . . . 8

2.2 Platform internationalization support . . . . . . . . . . 9
2.2.1 Android . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 iOS . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Localization (l10n) platforms and support tools . . . . 11
2.3.1 Pootle . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Multilizer . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 Transifex . . . . . . . . . . . . . . . . . . . . . 14
2.3.4 Text United . . . . . . . . . . . . . . . . . . . . 15
2.3.5 WIT Software solution (i18n) . . . . . . . . . . 16
2.3.6 Feature comparison and conclusions . . . . . . 16

2.4 Code analysis and transformation tools . . . . . . . . . 17
2.4.1 Parser generators . . . . . . . . . . . . . . . . . 17
2.4.2 Static analysis tools . . . . . . . . . . . . . . . 20
2.4.3 Specialized code transformation tools . . . . . . 21
2.4.4 Code transformation tool analysis . . . . . . . . 24

3 Project management 27
3.1 Software development lifecycle . . . . . . . . . . . . . . 27
3.2 First semester tasks . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Completion assessment . . . . . . . . . . . . . . 28
3.3 Second semester tasks . . . . . . . . . . . . . . . . . . 28

3.3.1 Completion assessment . . . . . . . . . . . . . . 29
3.4 Success metrics . . . . . . . . . . . . . . . . . . . . . . 29



4 Requirements 31
4.1 Functional . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Non-functional . . . . . . . . . . . . . . . . . . . . . . 33

5 Architecture 35
5.1 Transformation module . . . . . . . . . . . . . . . . . . 36

5.1.1 Generic transformations . . . . . . . . . . . . . 37
5.1.2 Platform-specific transformations . . . . . . . . 37

5.2 Modified application project . . . . . . . . . . . . . . . 38
5.3 Platform-specific libraries . . . . . . . . . . . . . . . . 38
5.4 Web module . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.1 Web interface . . . . . . . . . . . . . . . . . . . 39
5.4.2 HTTP interface . . . . . . . . . . . . . . . . . . 40
5.4.3 Persistence submodule . . . . . . . . . . . . . . 41

5.5 Export module(i18n) . . . . . . . . . . . . . . . . . . . 42
5.6 Translation platform(i18n) . . . . . . . . . . . . . . . . 43

6 Code analysis and transformation 44
6.1 Transformation patterns . . . . . . . . . . . . . . . . . 44
6.2 Android (Java) . . . . . . . . . . . . . . . . . . . . . . 46

6.2.1 Other transformations . . . . . . . . . . . . . . 46
6.3 iOS (Objective-C) . . . . . . . . . . . . . . . . . . . . . 46

6.3.1 Other transformations . . . . . . . . . . . . . . 48
6.4 String ambiguity handling . . . . . . . . . . . . . . . . 49
6.5 Prevention of repeated string reports . . . . . . . . . . 50

7 Testing and evaluation 52
7.1 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1.1 Web module . . . . . . . . . . . . . . . . . . . 52
7.1.2 Transform module . . . . . . . . . . . . . . . . 53
7.1.3 Support libraries . . . . . . . . . . . . . . . . . 57

7.2 Integration tests . . . . . . . . . . . . . . . . . . . . . 62
7.3 Usability tests . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 String coverage tests . . . . . . . . . . . . . . . . . . . 63

8 Conclusion 65
8.1 Work done . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2.1 Web module . . . . . . . . . . . . . . . . . . . 66
8.2.2 Transformation module and support libraries . 66



8.3 Final thoughts . . . . . . . . . . . . . . . . . . . . . . 66

Appendices 67

A Internship context 67

B Tests performed on the code analysis and transforma-
tion tools 68
B.1 Test performed . . . . . . . . . . . . . . . . . . . . . . 68
B.2 ANTLR procedures . . . . . . . . . . . . . . . . . . . . 68
B.3 CodeWorker procedures . . . . . . . . . . . . . . . . . 71

C Implementation details 76
C.1 Android use cases . . . . . . . . . . . . . . . . . . . . . 77
C.2 iOS use cases . . . . . . . . . . . . . . . . . . . . . . . 81

D REST API documentation 82

E First semester Gantt chart 84

F Second semester Gantt chart 85

G Weekly tasks 86
G.1 First semester . . . . . . . . . . . . . . . . . . . . . . . 86
G.2 Second semester . . . . . . . . . . . . . . . . . . . . . . 89





List of Figures
1 Character representations in different Unicode encod-

ings. [36] . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Localized resources on the .NET platform. [35] . . . . . 7
3 Example of a possible key/value correspondence. . . . 8
4 Multi-language Android Studio project values folder. [8] 10
5 Retrieving a string from Java code. [21] . . . . . . . . . 10
6 Example Xcode project translated into several idioms.

[43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 l10n support tool - Pootle. . . . . . . . . . . . . . . . . 12
8 l10n support tool - Multilizer. . . . . . . . . . . . . . . 13
9 l10n support tool - Transifex. . . . . . . . . . . . . . . 14
10 l10n support tool - Text United. . . . . . . . . . . . . . 15
11 Code analysis and transformation tool - Bison. . . . . . 18
12 Code analysis and transformation tool - ANTLR. . . . 19
13 Code analysis and transformation tool - Facebook Infer. 21
14 DMS Software Re-engineering Toolkit - company logo

(Semantic Designs). . . . . . . . . . . . . . . . . . . . . 22
15 Overall system architecture. . . . . . . . . . . . . . . . 35
16 SQLite ER diagram. . . . . . . . . . . . . . . . . . . . 42
17 Will print ”Hello and goodbye!” . . . . . . . . . . . . . 45
18 Method to be swapped by ”setText”. . . . . . . . . . . 47



List of Tables
1 Localization tool comparative analysis (relating to the

desired features). . . . . . . . . . . . . . . . . . . . . . 16
2 Code analysis and transformation tool comparison. . . 25
3 Functional requirements. . . . . . . . . . . . . . . . . . 33
4 Non-functional requirements. . . . . . . . . . . . . . . 34
5 Web module functional tests. . . . . . . . . . . . . . . 53
6 Transform module tests. . . . . . . . . . . . . . . . . . 57
7 Android library tests. . . . . . . . . . . . . . . . . . . . 60
8 iOS library tests. . . . . . . . . . . . . . . . . . . . . . 62
9 Key coverage on sample apps. . . . . . . . . . . . . . . 63
10 Swizzling for UIViewcontrollers. . . . . . . . . . . . . . 81
11 Swizzling for UIViews. . . . . . . . . . . . . . . . . . . 82
12 Swizzling for UITextViews. . . . . . . . . . . . . . . . 82



Acronyms
AST Abstract Syntax Tree
ASCII American Standard Code for Information Interchange
BNF Backus–Naur form grammar
CFG Control Flow Graph
DSL Domain Specific Language
HTTP Hypertext Transfer Protocol
IDE Integrated Development Environment
i18n Software Internationalization
l10n Software Localization
JSON JavaScript Object Notation
KVS Key/Value/Screenshot(s) association
REST Representational State Transfer
RTL Right-To-Left
UI User Interface
XML eXtensible Markup Language



Glossary

Term Definition

Abstract Syntax Tree (AST)

A tree representation of the syn-
tactic structure of code written
in a programming language with
focus on the input language’s
constructs.

Activity(Android)

An Android class which rep-
resents an application context
where the user interacts with it
(in contrast to Services, which
run in the background). [2]

Android Studio

An Integrated Development En-
vironment developed by Google.
It supports a number of pro-
gramming languages, includ-
ing C/C++, Java, Kotlin and
Python.

Backlog (Agile methodology)

A list of features or technical
tasks which the team maintains
and which, at a given moment,
are known to be necessary and
sufficient to complete a project
or a release. [42]

Category (Objective-C)

A feature of the Objective-C lan-
guage which allows adding func-
tionality to an existing class (for
example, adding new methods or
attributes).



CocoaPods

A dependency manager for Swift
and Objective-C Cocoa projects
implemented in the Xcode IDE.
It is widely used in projects for
both macOS and iOS. Unlike
Gradle, it does not come pre-
installed with Xcode and is an
open source project unrelated to
Apple. [18]

Domain Specific Language
(DSL)

Computer or programming lan-
guage specialized to a particular
application domain. [26]

Generative programming

A style of computer program-
ming that uses automated source
code creation through generic
frames, classes, prototypes, tem-
plates, aspects and code genera-
tors to improve programmer pro-
ductivity.

Gradle (Android)

An open-source build automa-
tion system and dependency
manager that facilitates the
build step of application devel-
opment. Syntax is based on the
Groovy programming language.

Integration testing
A phase of software testing
where the entire system is tested
as a group.

Internationalization (i18n)

The process of designing a soft-
ware application so that it can
be adapted to various languages
and regions without engineering
changes. [40]

JDOM2 A Java library used to analyze
and transform XML files.



Key/Value approach (localiza-
tion)

An approach to software local-
ization which consists of asso-
ciating each User Interface text
fragment with a given ”key”, and
different values for each target
language.

Key/Value/Screenshot associa-
tion(datasets)

An association between a KV
pair and one or more screenshots
from the UI. In the context of
this report, they are referred to
as ”datasets”.

Localization (l10n)

The process of adapting interna-
tionalized software for a specific
region or language by adding
locale-specific components and
translating text. [40]

l10n platform

A platform that aims to simplify
the localization process. It usu-
ally consists of a local or Inter-
net hosted web platform where
translators and developers col-
laborate in order to translate a
given application.

Machine Translation (MT)

A sub-field of computational lin-
guistics that investigates the use
of software to translate text or
speech from one language to an-
other.

Method Swizzling

A reflection technique used for
changing a method’s implemen-
tation at runtime by changing
the reference used to access the
method to a different one. [30]

Parse Tree

A tree representation of the syn-
tactic structure of code written
in a programming language with
focus on its grammar rules.



Pbxproj file

A file extension used by Xcode
to represent the structure of a
project. Information includes
files which are included in the
build, compiler flags among oth-
ers.

Podfile

A file used to manage an Xcode
project’s CocoaPods dependen-
cies. The syntax is based on the
Ruby programming language.

Reflection (programming)

The ability of a computer pro-
gram to examine, introspect,
and/or modify its own structure
and behavior at runtime. Dif-
ferent languages possess differ-
ent reflection features, with some
having almost no support for
it at all, and others allowing
the programmer to freely ana-
lyze and manipulate most of its
code structures.

Settings bundle (iOS)

A package contained inside iOS
projects which allows the appli-
cation to feature a preferences,
accessible from the iPhone de-
vice’s settings menu.

Translation Memory (localiza-
tion)

A feature that some localiza-
tion support tools have, that al-
lows them to save translations
for given text segments, in order
to use them in future projects.

Token (parsing tools)

A ”terminal” symbol of a tree
representation structure. They
are the elementary units in the
syntactic definition of source
code, and are produced during
lexical analysis. [34]



TokenStreamRewriter
An class from the ANTLR tool
used to add text after specific
parse tree nodes.

Unit testing

A phase of software testing
where each of the system’s units
of code or modules are tested in-
dividually.

View (Android)

The basic building block for UI
components in Android appli-
cations. UI components such
as buttons, textfields and View-
Groups extend from the View
class. [6]

ViewGroup (Android)

A special type of view that may
contain other views, organized in
different ways according to the
ViewGroup subclass used. [7]

Xcode

An Integrated Development En-
vironment developed by Apple
for macOS and the primary IDE
used to building applications for
Apple platforms.



1 Introduction
1.1 Motivation
In the last few decades, access to information has become increasingly
widespread. Software products are used across a multitude of different
countries and cultures. Development also has, over time, adapted.

Software is often developed for a variety of different markets. This
process is called software localization and is one of the most impor-
tant processes in software development today [40].

Localizing an application for any particular market may have a dra-
matic effect on its reception, as end-users are more likely to use the
software product if it is available their local language and dialect.

In order to facilitate the process of localizing applications, a wide ar-
ray of software internationalization practices has been established. A
common practice is the use of key/value pairs, where one key corre-
sponds to one value for each language that the target application is
being localized in. The pairs are then exported to translation plat-
forms where translators can access them.

Providing an acceptable translation requires information regarding the
application context where each key appears in the user interface. This
allows translators to consider user interface constraint limitations (for
example, a text fragment may fit inside a button in one language,
but not in another), as well as detect value ambiguities in their trans-
lation (for example, the word ”banco” in the Portuguese language
can be translated to either ”bank”, ”stool” or ”bench” in English),
among many other relevant factors. One possible approach to meet
this requirement is to associate the key/value pairs with a screenshot
of the application context they appear in. Several localization plat-
forms allow this association between screenshots and other files to the
key/values themselves.

The association process is, however, performed almost entirely manu-
ally at present. The user is required to:

• Execute the application manually.

1



• When text fragments are detected on screen, manually take the
screenshot.

• Check the keys to which the values present in the screenshot taken
are associated in the application’s key/value resource files, and
associate the screenshot with each one.

This process is particularly time-consuming and even unfeasible when
the number of keys is high or the application’s user interface reaches
a certain level of complexity.

1.2 Objectives
The central goal of the internship is to create a tool that automates
certain portions of the process of obtaining the KVS (Key/Value/Screen-
shot) associations. The tool works by modifying the target applica-
tion’s source code directly so that when the user executes the ap-
plication and traverses the User Interface, the associations between
key/value pairs and the screenshots are automatically obtained and
exported to a localization platform.

The tool implementation is divided into the following components:

• A code transformation module, which takes an application project’s
source code as input, and exports a modified version (including
the injected code fragments) integrated with the platform-specific
library which, when executed, reports the key/value pairs and the
associated screenshots.

• A set of platform-specific library modules (one module for each
supported platform) which are interfaced by the added code frag-
ments in order to obtain the KVS associations.

• An intermediate web module, which is responsible for receiving the
obtained associations from the modified application in a dataset,
giving the user the option of analysing them and exporting them
to a localization platform.

The final product was integrated with WIT Software’s i18n localiza-
tion platform, although it was left in a state where it can be extended
to other localization platforms as well, with minimal modifications

2



to the export module. The application platforms supported are iOS
(Objective-C) and Android (Java) and, likewise, the tool can be ex-
tended to other platforms and programming languages.

The internship also consolidated the author’s academic tenure, and
improved his skills and experience in software engineering, producing
a satisfactory product to both him and the company.

1.3 Report structure
Aside from the introduction, the document is comprised of the follow-
ing sections:

• State of the art: The features and shortcomings of some of the
current localization support tools and approaches are explored.
Possible code transformation tools and frameworks are also ana-
lyzed.

• Project management: Details the structure of the project done at
WIT. Describes the software development lifecycle used, as well
as the success metrics defined for the project.

• Requirements: Details the functional and non-functional require-
ments of the tool.

• Architecture: This section presents a structural analysis of the
tool, its components, and the way they interact with each other.

• Code analysis and transformation: details the approaches used to
implement the transform module and support libraries.

• Testing and evaluation: details the tests performed on the tool,
and contains an assessment of the string coverage results.

• Conclusion: Analyzes the results and work done during the intern-
ship, the challenges faced and the future work. It also contains
a more personal note by the author on how the internship pro-
gressed.

The document also contains the following appendices, which were cre-
ated to make the rest of the document more readable:

• Appendix A: The context of this document’s internship.

• Appendix B: Viability tests performed on the CodeWorker and
ANTLR tools.

3



• Appendix C: Some relevant implementation details for the tool.

• Appendix D: The web module’s REST API documentation, with
detailed descriptions of each HTTP method defined.

• Appendix E: First semester Gantt chart.

• Appendix F: Second semester Gantt chart.

• Appendix G: A detailed description of the weekly tasks and work
done on each week during the internship.

In addition, the report was submitted along with the tool’s user man-
ual as a private annex.

4



2 State of the art
In this section, an analysis is performed on the state of the art. It is in-
tended to list some of the already existing alternatives and approaches
used in the field of software localization support, and analyze their fea-
tures and shortcomings.

This section also details the research and experimentation work per-
formed on some of the current tools available for code analysis and
transformation, in order to list possible solutions for the project’s code
transformation module implementation.

2.1 Internationalization practices
This section describes some of the approaches used in software inter-
nationalization.

Software internationalization is the set of practices and methodologies
used to make software products easier to adapt (localize) to different
languages and regions. Software localization often has a broader scope
than simply translating the UI text fragments. Other factors often
need to be taken into account, including:

• Different languages may use a different language orientation to
represent text, such as right-to-left (RTL) top-to-bottom (TTB)
or left-to-right (LTR) orientation. This often means that the UI
layout itself has to be adapted to different markets. [41]

• Certain UI decisions can be appropriate for a given market’s target
audience, but inappropriate for another. For example, a given
color scheme or image may be offensive in certain cultures, or
simply not have the desired effect on the end users [45].

• The measurement units can be different in different countries and
regions. For example, while most countries in the EU adopt the
metric system, the United States of America employs different
units, like the pound for weight and the mile for distances. [27]

While the internship’s scope does not include the localization of appli-
cation elements other than textual content (translation), this section
also describes some common internationalization practices directed at
handling them.

5



2.1.1 String encoding
In computing, character encoding refers to the binary format by which
character strings are represented internally by a machine.

Traditionally, ASCII encoding was used in most software applications
up to the advent of Unicode encodings in 1987 [19]. ASCII encoding
simply uses one byte to represent each character on the string. While
this approach is often sufficient for a number of use cases, it proves
insufficient when it is necessary to support languages other than En-
glish, as one byte is often not enough to represent the full character
set of a given language.

In order to address this shortcoming, Unicode encoding is often used.
Such encoding implementations allows for the representation of a
larger set of characters by using the necessary number of bytes to rep-
resent each character. The most widely used implementation is UTF-
8, which allows up to four bytes to be used for representing a charac-
ter. The encoding also has the added advantage of being backward-
compatible with ASCII, as the characters supported by ASCII are
represented in the same format with UTF-8, requiring no conversions
between the two formats when localization is not a primary concern.

Other formats can be better suited for some use cases. For exam-
ple, UTF-16 encoding has been shown to require less space when the
text contains primarily characters not supported by ASCII (such as
Japanese or Chinese characters). While UTF-8 does support these
characters, if the text is large and space is an issue, UTF-16 can be
a consideration. However, UTF-8 remains more efficient in represent-
ing text which is predominantly made up of ASCII characters, which
is a general occurrence when processing text for a large portion of
the existing languages. On the other hand, the UTF-32 variant has
seen very little use in real-world applications due to not being space-
efficient, always requiring 4 bytes to store each character [25]. Figure
1 shows the binary representation of different characters in the three
encoding formats.

6



Figure 1: Character representations in different Unicode encodings. [36]

2.1.2 UI elements separation from source code
UI elements such as images and text should be separated from the
application source code, as well as use a different folder or storage for
each target language. Figure 2 illustrates the practice on the .NET
platform. A different resource folder is used for the English and Ital-
ian languages.

Figure 2: Localized resources on the .NET platform. [35]

Layout definitions such as the on-screen position of buttons, text input
fields and other UI elements can also vary according to the language
and should, therefore, be stored separately where possible as well.
This practice is especially important if the application is to support
languages with different text orientations, such as vertical, right-to-
left (RTL) and left-to-right (LTR).

Defining the resources separately from the source code where possi-

7



ble allows additional locales to be supported in future releases with
minimal significant source code modifications. [24]

2.1.3 Key/Value approach
When one needs to access the resources stored in the previously de-
scribed manner, a Key/Value approach is often employed. When re-
trieving a resource (string, UI element, image or other) from within
the source code, the resource’s ”key” is used to access it. Figure 3
shows an example for a key named ”cat_key”. The value is ”gato” in
the Portuguese(pt) locale, ”cat” in the English one, and ”chat” in the
french one.

The same key is mapped to different resources according to the current
locale, and therefore this approach gives access to the resources which
suit the current locale without any changes to the source code.

Figure 3: Example of a possible key/value correspondence.

2.1.4 Locale hierarchy
When developing a localized application, it is often not possible to
support every regional locale where the application is to be released.

For example, an application may be localized in Brazilian Portuguese
(pt_BR), and one may wish to release it in Portugal, where the Eu-
ropean Portuguese dialect (pt_PT) is spoken.

Assuming the resources are not available to translate the product in
the target locale, a high number of users may nevertheless be reached
if the language defaults to Brazilian Portuguese rather than using the

8



base language (usually English), due to it being more similar to the
target locale. On the other hand, if the application is not localized into
pt_BR either, the system can simply default to a base language like
English until either Portuguese dialect is supported. Other examples
of locale hierarchies include the Canadian and French dialects of the
French language and the United States and United Kingdom dialects
of English.

While users often prefer to use applications localized in their specific
regional locale, this practice nevertheless provides a means of releasing
applications for a broader audience, with the trade-off of not provid-
ing translations with the same level of appeal for users of the target
regions.

2.2 Platform internationalization support
In order to make localization less complex for developers, many plat-
forms have features aimed at facilitating the process.

This section details some of these features in the iOS and Android
platforms, which the internship focuses in. Similar features are also
present in other platforms, however.

2.2.1 Android
The Android Studio IDE allows for the creation of different resources
for each supported locale. The resources are stored in a ”res” directory
on each module of the project, which contains a specific subfolder for
each type of resource (i.e. menus, layouts, textual values, styles and
others). Each subfolder contains a different storage for each supported
locale. In particular, the values folder contains XML files with sim-
ple value definitions, such as strings, integers, and colors used in the
application. In the example illustrated in Figure 4, the project would
contain different string type resources for each of the five languages
listed, while the other resources present in the values folder would re-
main unchanged for each version.

9



Figure 4: Multi-language Android Studio project values folder. [8]

During project compilation, Android Studio creates a POJO class
named ”R”, which saves the resources in static class attributes. The
resources can then be accessed from the source code and other project
files using the key ID independently from the locale, as shown in Fig-
ure 5.

Figure 5: Retrieving a string from Java code. [21]

2.2.2 iOS
Similarly to Android Studio, Xcode also has a number of features
aimed at facilitating the localization process. The localized resources
are placed inside on different folders for each locale. The folders are
named <locale name>.lproj and contain the project’s string and other
resource files for the associated locale. The string files are stored in
Localizable string files (Figure 6). The Localizable strings files are
internally stored in .lproj folders and contain the localized strings list
of the project for each particular locale.

10



Figure 6: Example Xcode project translated into several idioms. [43]

The developers also have the option of establishing a ”Base” language,
which is used as a template during development and uses placeholder
strings in the developer’s desired language. This allows strings to be
stored separately to the layout files (.xib or .storyboard files).

While Xcode supports the definition of layout files individually for
each locale, for applications that do not require extensive modifica-
tion between locales, an auto layout feature is also available which
simplifies the process. This feature automatically adjusts the posi-
tion, size and orientation of the elements in the UI to incorporate
strings of different sizes, and even changes their orientation when the
text uses a locale with orientation other than the one used in the Base
language, such as RTL.

2.3 Localization (l10n) platforms and support tools
This section analyzes some of the present features of various local-
ization support platforms. Such tools aim to support the steps of
the translation process. One key aspect that should be mentioned is
that the internship aims mainly to provide extra functionality to ex-
isting tools, rather than replace their use or compete with them, as
no tools were found that contain features which are similar to what
the internship aims to implement. Therefore, the analysis focuses on
listing some of their notable features and shortcomings, and whether
the project could feasibly complement their use.

The desirable features for such a platform would be:
• Utilizes a key/value approach for storing keys.

11



• Allows the association of screenshots to the key/value pairs.

• Allows for additional file associations to the keys, in order to pro-
vide disambiguation info.

• Is feasible to be interfaced with from another application, in order
to export the screenshots from the tool.

Similar or related features are highlighted in bold. Other notable fea-
tures are also detailed for each particular platform. Pootle was selected
as an example of a widely used open-source platform. The other tools
were selected due to being the only tools found that supported the
attachment of files to each key.

2.3.1 Pootle

Figure 7: l10n support tool - Pootle.

Description Pootle is an open-source translation support tool that aims
to make the translation process simpler. It allows for the hosting of
the translation platform on the user’s machine or system, and mak-
ing it possible for the translating team to access them remotely or
locally. [32]

Features Some notable Pootle features include [33]:

• Allows integration with version control systems such as Git and
SVN, updating key/value resource files as needed on the projects.

• Allows access to machine translation services which, while insuffi-
cient compared to human translations, do provide useful sugges-
tions on the values of keys.

12



• Translation statistics that make it easier to track the translation
process.

• Translation memory, which provides matching translations to a
given string if it has appeared before, speeding up the translation
process.

• Translation template files, which contain the full list of key/values
in the ”original” supported language.

However, Pootle notably lacks the ability to associate files with specific
keys out of the box, which makes it unfeasible to integrate with the
internship’s tool.

2.3.2 Multilizer

Figure 8: l10n support tool - Multilizer.

Multilizer is a proprietary localization support tool. Created in 1995
by Rex Partners Oy, a Finnish technology company, it features a large
number of innovative features that make localization easier to perform.
The most notable feature is the ability to automate key/value pair
loading from a given project, not requiring the user to export them to
a platform, unlike other, similar tools. [29]

Features Some notable Multilizer features include [29]:

• Supports machine translation suggestions for translations.

• Allows for automatic scanning of keys from resource files, without
input from the user, supporting over 30 file formats. Also allows
for format conversions.

• Allows file associations to specific key/value pairs, includ-
ing screenshots.

13



• Also supports annotations to the pairs, to provide other ways of
detailing context.

• Localization templates.

• Translation memory, similar to Pootle.

• Allows for both offline translation management in a single ma-
chine, and information exchange on a platform.

• Can be interfaced from either Delphi (Pascal) or C++,
in order to export the correspondences. [28]

Assuming a license to the product is available, the localization tool
could feasibly be integrated with Multilizer, by providing the screen-
shots and contextual information automatically. This is made easier
by the fact that Multilizer supports screenshot associations out of the
box and that it can be interfaced from C++ and Delphi.

2.3.3 Transifex

Figure 9: l10n support tool - Transifex.

Transifex is a proprietary localization support tool that aids the local-
ization process not only for software but also other products, such as
video subtitles. Based on an online web platform, it features many in-
teresting features, including the possibility of associating screenshots
with key/value pairs. [39]

Features Some notable Transifex features include [39]:

• Support for screenshot association to key/value pairs.

• Allows interfacing from JavaScript, to upload key/value pairs and
other files.

• Translation Memory, similar to Pootle.

• A glossary of each key, detailing its meaning.

14



• Style guide, to give translators information regarding the com-
pany’s brand, style, voice and audience

• Team manager, allowing for roles, permissions and subteams to
be assigned to members of the translation team.

• Reporting and workflow to track current translation tasks and
progress.

• Can be interfaced through an API, compliant with REST.
[38]

As Transifex can be interfaced with and allows screenshot associa-
tions, the tool could potentially be run alongside it, assuming the
user possesses a Transifex license.

2.3.4 Text United

Figure 10: l10n support tool - Text United.

Text United is a proprietary localization support tool that allows for
both online and local hosting of content.
It contains many of the features of the aforementioned products, in-
cluding the possibility of associating screenshots to the key/value
pairs. [37]

Features Some notable Text United features include [37]:
• Supports both machine and human translation.

• Features Translation Memory.

• Allows for integration with Version Control Networks such as Bit-
bucket and Github.

• Allows for screenshot associations with key/value pairs,
as well as comments to a specific translation.

• Features a translation project management system that allows for
the creation of subteams, and the assignment of tasks and dead-
lines.

15



As it allows for screenshot association, and interfacing with its plat-
form, Text United would also benefit from the tool to automatize the
process of obtaining and uploading the screenshots.

2.3.5 WIT Software solution (i18n)
WIT Software currently has its own localization solution, a localiza-
tion web platform called i18n. This tool supports the usual key/value
approach, with the possibility of adding screenshots and other files to
each pair, for contextualization purposes.

At present, users are still required to obtain the screenshots manually,
which is a very time-consuming process.

2.3.6 Feature comparison and conclusions

Pootle Multilizer Transifex Text United i18n
License Open-source Proprietary Proprietary Proprietary Internal (WIT)

File/Screenshot associations No Yes Yes Yes Yes
Association procedure N/A Manual Manual Manual Manual
Integration feasibility No Yes Yes Yes Yes

Table 1: Localization tool comparative analysis (relating to the desired features).

After analyzing the features for each tool, the author concluded that:

• Every analyzed tool uses a key/value approach.

• Most of them do allow users to provide contextual information on
individual keys/values.

• Screenshot and file association to specific KV’s is supported, with
the exception of Pootle.

• Every tool analyzed with the association feature requires the user
to upload the screenshots himself, and obtaining the screenshots
is also done manually.

• No tools were found which performed this task automatically, even
locally.

Therefore, at present no tool was found which saves the user the task of
obtaining the screenshots for a given application and associating them
with the keys. This project focuses on complementing the screenshot
export function of these tools, by automatizing the process of obtain-
ing and associating them with the key/value pairs. While the focus

16



is placed on the WIT platform (i18n), the tool could feasibly be inte-
grated with any of the analyzed tools except for Pootle.

2.4 Code analysis and transformation tools
In this section, several code analysis and transformation tools are ex-
plored, with their features and approach being analyzed, in order to
be able to determine if they are feasible for the implementation of the
project’s code transformation module.

In order to make a proper analysis of existing technology, it must first
be specified which features are going to be to required.

The features that the tools must contain are as follows:

• Source code analysis must be supported.

• One must be able to detect source code fragments that follow a
given pattern.

• Source code transformation must be supported at the given code
patterns, or at least be feasible to implement alongside the tool.

• It must feasibly support any programming language (generic tool),
or at the very least Android (Java) and iOS (Objective-C).

• It must be feasible to extend the tool with an exporting mod-
ule/interface or incorporate it with one.

• The tool must be open-source.

In order to implement these features, three different types of tool were
considered:

1. Specialized code transformation tools.

2. Parser generators.

3. Static analysis tools.

2.4.1 Parser generators
A parser generator, or compiler-compiler, is a tool that generates a
compiler, or parser from a given lexical and syntactic definition. Most
commonly, the following definitions are required to create a parser for
a given language using such a tool:

17



• A list of tokens, usually defined using regular expressions (REGEX).

• A grammar (syntactic definition).

The generated parsers commonly create an intermediate representa-
tion of the source code, such as an AST or parse tree, which could be
used to perform code analysis and transformation tasks.

Lex/Yacc(Bison)

Figure 11: Code analysis and transformation tool - Bison.

Description and features Lex is a parser that processes tokens from pro-
gram input, using regular expressions. YACC is a tool generally used
to build compilers for existing or new programming languages that
allows C code to be executed when any syntactic rules are matched.
Lex and Yacc are both part of the Bison parser generator, which takes
the .lex and .yacc file and generates C code for the given parser.

Advantages

• Gives complete freedom regarding the definition of the data tools
to store the syntactic data. One could choose to use an AST,
parse tree or any other appropriate structure.

• Assuming the grammars are properly defined, it could feasibly be
used on any language and platform.

• Allows the transformation of the tree structure freely, either chang-
ing or adding nodes before regenerating code.

18



• Fully open-source.
• The intern has experience with the tools from the Compilers course

in his Bachelor’s degree.

Limitations

• Provides limited functionality out-of-the-box.
• Requires manual definition of the grammars for the language, or

a subset of it.
• Robust grammars are not as readily available online as ANTLR.
• Mostly superseded by similar newer alternatives, like ANTLR.

ANTLR

Figure 12: Code analysis and transformation tool - ANTLR.

Description and features ANTLR is a powerful parser generator that can
be used to read, process, execute, or translate structured text or binary
files. It is widely used in academia and industry for a multitude of
applications, including the implementation of new languages, tools
and frameworks. Since version 4.0, it internally builds a parse tree
rather than an AST. [50]

Advantages

• Very popular tool, with a large amount of documentation and code
examples available online, as well as grammars.

• It is written in Java and available from repositories such as Maven
(Java) and Pip (Python), allowing for easy integration in a project.

• Can be interfaced from other languages, such as C++ and C#.
• Allows for easier processing of specific grammar rules, using visitor

and listener class definitions, in an event-oriented paradigm.
• Also supports inline code transformations inside the grammars

themselves.

19



• Contains plugins for several IDE’s, including Eclipse, Netbeans
and IntelliJ.

• Fully open-source.

Limitations

• The generated parse tree was not designed to support transforma-
tions. The process is possible but not as intuitive as with other
tools. In order to perform the transformation, a listener/visitor
could be used to traverse the tree and make the necessary changes
with a TokenStreamRewriter. ANTLR also supports code trans-
formations by adding text directly within the grammars after the
tokens.

2.4.2 Static analysis tools
Static source analysis can be defined as the analysis of source code
without actually executing it, and detecting certain, predefined code
patterns according to a given set of rules. Many approaches for such
a tool exist, including: [44]

• Unit level: Analysis that takes place within a specific program or
subroutine.

• Technology level: Takes into account interactions between unit
programs to get a more broad view of the overall program, which
helps avoid false positives in the pattern detection.

• System level: Takes into account the interactions between unit
programs, but without being limited to one specific technology or
programming language.

Static code analysis is commonly used by IDE’s, in order to provide
useful feedback to programmers, as well as various vulnerability and
security defect detection tools.

The only static analysis tool found that supports both Objective-C
and Java, was Facebook Infer.

20



Facebook Infer

Figure 13: Code analysis and transformation tool - Facebook Infer.

Infer advantages

• Supports both Objective-C and Java.

• Fully open-source.

• Contains a multitude of features for static code analysis, including
the possibility of building custom checkers, which could be used
to find the needed code patterns.

Infer limitations

• It was primarily designed as a tool to find bugs and security vul-
nerabilities in source code, which is not the desired use case.

• Documentation and code examples are limited, particularly in the
checker’s portion.

• The checkers are written in the OCAML language, which the in-
tern has no experience in.

• Testing new checkers requires recompiling the Infer distribution
each time, making it a very-time consuming process in itself.

• The checkers use a CFG approach, and not a tree, providing less
flexibility in their manipulation.

2.4.3 Specialized code transformation tools
These tools are created for the specific purpose of modifying the source
code. Many different approaches can be used, like analyzing and
changing the AST of the code, or use a grammar combined with reg-
ular expressions to detect the necessary code patterns, and a different

21



one to define the new fragments to be injected.

In this section the analyzed tools that use this approach are detailed.

CodeWorker

CodeWorker is a versatile open-source parsing and code transforma-
tion tool designed around the principles of generative programming.
It allows for several approaches to code analysis and transformation,
including the definition of code templates, in-place code transforma-
tion and more. It uses its own DSL (Domain Specific Language), for
which it includes a built-in interpreter, and can also be interfaced from
C++, Java and .NET [49].

CodeWorker advantages

• Very versatile tool, particularly in regards to the code transfor-
mation portion.

• BNF based approach makes it relatively simple to learn [48].

• Has a built-in interpreter for executing its language-specific com-
mands, and also allows interfacing from C++, Java and .NET.

• Fully open-source.

CodeWorker limitations

• While documentation is fairly thorough, its usage is limited, mak-
ing it difficult to find code examples on the Internet.

• The project has been discontinued, and minor incompatibilities
have been reported on recent versions of Windows. [47]

DMS Software Reengineering Toolkit

Figure 14: DMS Software Re-engineering Toolkit - company logo (Semantic Designs).

22



DMS SRT is a broad set of tools for source code analysis and transfor-
mation, developed by Semantic Designs. Allows for relatively simply
source code re-engineering for a multitude of programming languages.

DMS SRT advantages

• Very versatile tool, allowing for both analysis and transformation,
supporting lexical, syntactic and semantic approaches.

• Supports Objective-C and Java, as well as a multitude of other
technologies.

• Does not require the definition of grammars or rules for the lan-
guages it supports.

DMS SRT limitations

• Proprietary software.

• Limited online documentation and source code examples.

Spoon

Spoon is an open-source library that enables the analysis and trans-
formation of Java source code. It provides a complete and fine-grained
Java metamodel where any program element (such as classes, methods,
fields, statements and expressions) can be accessed both for reading
and modification, using an event-oriented approach. It operates using
the source code’s Abstract Syntax Tree (AST).

Spoon advantages

• Very versatile tool, allowing one to easily modify the AST Nodes,
or adding new ones, and then generating the new code again.

• Code fragment context can be easily accessed, due to the pro-
gramming model used.

• Fully open-source.

Spoon limitations

• No support for Objective-C, or languages other than Java.

23



2.4.4 Code transformation tool analysis
This section analyzes the code analysis and transformation explored in
the state of the art, and attempt to choose the solution to implement
the transformation module.

Use a specialized code transformation tool This option consists of using an
already implemented tool to scan the source code, detect certain pat-
terns and make the necessary changes.

The tool would need to support, at the very least, both Java and
Objective-C, although it would be desirable to have it be extensible
to other platforms as well.

Build a new parser for each platform Such an approach would involve writ-
ing the grammar specification for a subset of the target platform’s
language, in the chosen parser generator’s grammar syntax, or other-
wise obtaining the definition for it.
While this approach would likely incur extra effort and time, it would
also provide a higher degree of flexibility. One could, for example, ob-
tain parse trees (or AST’s) for any given language, and edit its nodes
before regenerating the code, while keeping track of any needed part
of the context where the key was mentioned (such as checking if it was
called from a method that shows it on screen). Language agnosticism
would also be a non-issue.

Considered tools for this approach:

• ANTLR

• Yacc/Bison

Modify an existing static analysis tool Using this approach, the tool selected
needs to be able to analyze source code for both iOS (Objective-C)
and Android (Java). Many static analysis tools are also designed to
simply detect bugs and vulnerabilities on the source code before ex-
ecuting, and using them for this use case would require modifying
them, or adding different rules to the analyzed code fragments, such
as detecting calls to a method with the given keys.
The only such tool found that supports both languages is Facebook

24



Infer.

Table 3 shows a comparison between the relevant features of each tool.
ANTLR Bison CodeWorker DMS Toolkit Infer Spoon

Analysis Yes Hard Yes Yes Yes Yes
Transformation Yes Hard Yes Yes No Yes

Language agnostic Yes Yes Yes No(supports many) No Only Java
Extensible Yes Yes Yes No Hard Yes

Open-source Yes Yes Yes No Yes Yes

Table 2: Code analysis and transformation tool comparison.

While Spoon itself is not a viable solution for the project (due to only
supporting Java) it provides an interesting approach to analyzing and
transforming code and can be a good starting point on the architec-
ture of the Code Transformation model if the parser definition option
is chosen. The main issue would be to achieve language agnosticism.

ANTLR would be the most suitable tool for the approach, by mak-
ing code transformations (via adding tokens) within the grammars
themselves. While this approach would require the definition of the
grammar rules for each platform manually, ANTLR does have the
grammars already defined online for both Objective C and Java in
the ANTLR GitHub repository [10], and one would only need to add
support for code analysis and transformation to them.

If modifications need to be performed to languages that are not de-
fined in those grammars out of the box, ANTLR would also allows for
the definition of the grammar for the subset of the language that is
needed in order to apply the transformations.

This approach does not fully complete the necessary analysis and
transformation, as it is required to not only find where the keys are
being used but also determine if they are being shown on-screen in the
application at that point in the source code. This requires a further
syntactic analysis. In ANTLR, this is possible via using a ParseTree-
Walker and Listener class.

In light of this, the tools chosen for further testing were CodeWorker
and ANTLR, with ANTLR (Java) being chosen for the project in the
end.

25



The tests performed are detailed in Appendix B of this report, com-
plete with code samples.

26



3 Project management
This chapter describes the development lifecycle used for this project,
the tools and methodologies used to track it and finally the success
metrics defined for its successful completion.

3.1 Software development lifecycle
The choice of a development lifecycle for any particular software project
is a widely debated topic in the industry. It should take into account
several factors, particularly the nature of the software requirements.
If the requirements are set in stone from the beginning, Waterfall or
a similar method is often the correct choice. Likewise, if the require-
ments are uncertain, or bound to change, a more agile method should
be employed.

In the case of this particular project, the requirements were quite un-
certain and required extensive exploration of the platforms and their
user interface structures to determine the time needed to complete im-
plementation and other development tasks. Furthermore, at the start
of the project, the intern had limited experience with the technologies
being used, further making specific deadlines difficult to establish.
For this reason, an agile lifecycle was used. The actual method is not
defined by any of the most common agile methods but instead uses
several features of different methods. Some of these features include:

• The planning of the traditional phases of software development
such as requirements analysis, architecture definition, develop-
ment, documentation and testing were planned at a high level
at the start of the project.

• Weekly meetings were held between the intern and the tutor/su-
pervisor at WIT-Software to provide feedback on project status
and what tasks to prioritize next.

• Since estimates were difficult to perform, the project was flexible
in nature, with requirements and tasks changing according to the
progress made, as well as developments and issues encountered.

27



3.2 First semester tasks
In the first semester, the following tasks were established at the be-
ginning of the internship:

• State of the art analysis.

• Analysis of tools to support translation and code analysis and
transformation tools.

• Architecture definition.

• Exploration of sample Android applications, adding code frag-
ments manually in order to handle the process of obtaining and
exporting keys to the intermediate platform.

• Implementation of some Android code transformation features.
This feature was partially anticipated due to higher time availabil-
ity to dedicate to the internship by the author (it was originally
planned for the second semester).

• Intermediate internship documentation.

3.2.1 Completion assessment
The first semester Gantt chart is shown in Appendix E, and describes
the timeline of the work done.

All of the first semester tasks were completed successfully. While small
issues did arise during the implementation of the Android support
library (particularly with the handling of toolbar menus), they were
eventually resolved.

3.3 Second semester tasks
After an assessment on the work done during the first semester, it was
concluded that coverage had been sufficient in the Android applica-
tions tested to move forward with the project. Therefore, the tasks
established for the second semester were as follows:

• Implementation of a simple User Interface for the tool.

• Implementation of the i18n platform export module.

• Implementation of the iOS support library.

28



• Exploration of sample iOS applications implemented in Objective-
C, adding code fragments manually in order to handle the process
of obtaining and exporting keys to the intermediate platform.

• Implementation of the iOS code transformation module for Objective-
C iOS projects.

• Tool validation and improvement after assessment on WIT projects.
• Final internship documentation.

3.3.1 Completion assessment
The second semester Gantt chart is shown in Appendix E, and de-
scribes the timeline of the work done.

During this semester, most of the tasks were completed successfully.
Some notable challenges faced during this semester include:

• The author had no prior experience with iOS, Objective-C or
Swift, and very limited experience with Apple technologies in gen-
eral. Efforts were made at the beginning of the semester to get
better acquainted with the technologies.

• The disambiguation process was accessed as resulting in usability
issues traversing the UI. Therefore, a new approach had to be
devised (Appendix C.2).

• Performing code analysis and transformation procedures on Xcode
pbxproj files was very complex, mostly due to the unavailability
of official documentation on the structure of these files. Transfor-
mation patterns were established from studying files for existing
projects and from unofficial online sources.

• The web interface was accessed as having room for improvement
from an aesthetic point of view. Efforts were done to improve it.

In addition, it was expected that an assessment of the tool’s fea-
tures was performed on a WIT-Software project, but, due to time
constraints, this demonstration was only performed on open-source
projects.

3.4 Success metrics
In the interest of evaluating the success, or lack thereof, of a software
project, it is common practice to establish a list of metrics used to

29



evaluate the result.

In the case of this project, the ideal scenario can be defined as being
able to report every key correctly, for any given situation where a key
is presented in the user interface. This goal is not likely to be achieved,
as user interface components for each platform are very diverse, and
often rely on third-party libraries that cannot be realistically handled
completely by the tool (for example, due to the use of native platform
structures that cannot be detected by simply analyzing the source
code easily).

Therefore, a more realistic goal is to cover as many keys as possible, for
a given set of applications. Even if the developer is unable to obtain
every key present in the user interface with the help of this internship’s
tool, it is still better for him to only be required to take the manual
route for a small number of keys in isolated scenarios. This key cov-
erage percentage is covered in the coverage evaluation section of the
report. Keys which do not appear in the user interface, and are only
used within the code for other purposes (or not used at all) are ignored.

However, simply covering as many keys as possible is not enough, as
it is also not desirable to report keys that are not currently shown on
screen. This occurrence is known as ”false positives”, and minimizing
them as much as possible is another goal. Consequently, the number of
false positives reported on each tested application will also be tracked.
These evaluations were performed separately for each target platform,
as it is possible to have differing results in each one.

30



4 Requirements
This section lists the implementation requirements of the project. The
defined requirements are divided into the following categories:

• Web functional requirements (ID prefix: FR_WEB): refers to re-
quirements related to the features of the web module.

• Transformation module functional requirements (ID prefix: FR_TR):
refers to requirements related to the code analysis and transfor-
mation process.

• Support library functional requirements (ID prefix: FR_SL): refers
to requirements related to the features of the platform-specific
support libraries.

• Non-functional requirements (ID prefix: NFR).

The list underwent several revisions during the internship, and the
requirements shown represent the final version.

4.1 Functional

ID Description Dependencies

FR_TR_1
Receive a zipped
project from the web
interface

N/A

FR_TR_2

Read the application
name and version from
the project configura-
tion files

FR_TR_1

FR_TR_3
Read the localiz-
able strings from the
project’s string files

FR_TR_1

FR_TR_4

Remove any ambigui-
ties from the key/value
pairs, and save them in
both the project, and
the database

FR_TR_1,
FR_TR_3

31



FR_TR_5

Execute the necessary
code transformation
steps to interact with
the support library

FR_TR_1,
FR_TR_3

FR_TR_6

Make any other neces-
sary changes to inject
the support library in
the project and include
it in the build

FR_TR_1

FR_TR_7
Return the modified
application to the user
in a zipfile

FR_TR_1,
FR_TR_3,
FR_TR_4

FR_WEB_1 Display the homepage

FR_WEB_2 Send a project to be
transformed

FR_WEB_1,
FR_TR_1,
FR_TR_7

FR_WEB_3
List datasets accord-
ing to the application,
platform and version

FR_WEB_1

FR_WEB_4

Display a dataset’s
contents, including the
covered keys and the
screenshots obtained
for it

FR_WEB_1,
FR_WEB2

FR_WEB_5 Delete a dataset FR_WEB_1,
FR_WEB_2

FR_WEB_6 Login to i18n FR_WEB_1,
FR_WEB_2

FR_WEB_7

Export a dataset to
an i18n project, delet-
ing every screenshot al-
ready present

FR_WEB_1,
FR_WEB_2,
FR_WEB_6

FR_WEB_8

Export a dataset to
an i18n project, only
adding screenshots to
strings that do not
have one appended

FR_WEB_1,
FR_WEB_2,
FR_WEB_6

32



FR_WEB_9

Export a dataset to
an i18n project, adding
screenshots to every
key convered

FR_WEB_1,
FR_WEB_2,
FR_WEB_6

FR_SL_1
Obtain the appli-
cation’s name and
version at runtime

N/A

FR_SL_2
Obtain the list of local-
ized key/value pairs at
runtime

N/A

FR_SL_3

Detect localized string
occurrences in the de-
vice’s screen, according
the use cases defined

FR_SL_2

FR_SL_4

Detect whether a given
key has already been
reported in the given
context

FR_SL_1,
FR_SL_2,
FR_SL_3,

FR_SL_5

Capture screenshots
during the occurrences,
saving them in the
device’s storage

FR_SL_3

FR_SL_6

Save the key/val-
ue/screenshot associa-
tions in a JSON file in
the device’s storage

FR_SL_3,
FR_SL_4

FR_SL_7
Detect the occurrence
of the platform-specific
export trigger event

N/A

FR_SL_9

Export a dataset to the
Web Module via HTTP
in a zip file, optionally
providing the dataset
name

FR_SL_1,
FR_SL_2,
FR_SL_3

Table 3: Functional requirements.

4.2 Non-functional

33



ID Quality
attribute Description

NFR_1 Scalability

The web server should
be able to handle mul-
tiple requests at the
same time.

NFR_2 Scalability

Transformation re-
quests should be
supported for zipped
files up to at least
300MB.

NFR_3 Compatibility

The iOS support li-
brary should not re-
quire a version over 8.0
as the minimum ver-
sion.

NFR_4 Compatibility

The Android support
library should not re-
quire a version over 21
as the minimum SDK
version.

NFR_5 Compatibility

Android Gradle code
analysis and transfor-
mation should support
at least Gradle versions
2 and 3.

Table 4: Non-functional requirements.

34



5 Architecture
This section describes the architecture of the overall system where
the tool is integrated into, as well as a more detailed description of
each component and the way they interact with each other. Such a
definition is useful not only to plan ahead on what will have to be
implemented and how, but also to help any future developers under-
stand how the system works, and what steps should be taken in order
to potentially extend its features in the future. Due to the agile nature
of the project, the architecture was subject to frequent changes and
updates.

Figure 15: Overall system architecture.

Figure 15 illustrates the interactions between the components of the
system. The basic flow of actions to obtain the associations for a
particular application is the following:

• The user uploads a project through the Web interface.

• The code transformation module creates a modified version of the
project.

• The user builds and executes the modified application in its target
platform.

35



• As the user manually traverses through the application’s UI, when-
ever key/value pairs are detected on screen, the modified applica-
tion makes calls to the platform-specific library to save them in
the device’s storage.

• After the user triggers an event (defined for each platform indi-
vidually), the associations are exported to the Transfer Module
(localization tool) as a dataset.

• The user can then view the exported datasets in the export mod-
ule’s Web Interface, and export them to a supported localization
platform.

The following subsections describe the structure of the components in
detail. It should be noted that the translation platform was already
implemented before the internship, and was not a part of the work
done by the author, but rather integrated with the rest of the system.

The programming language used across most of the project was Java,
except where noted otherwise. Java was chosen due to the author’s
familiarity with the language, as well as the assessment that the
code transformation tool (ANTLR) had higher quality documentation
available for its Java API.

5.1 Transformation module
This component is responsible for modifying the application project’s
source code and any other necessary files in order to obtain the as-
sociations between screenshots and key/value pairs at runtime. The
module is divided into a platform-specific module, and a generic mod-
ule.

The transformations consist of the analysis of the source code of the
application and the addition or replacement of code fragments follow-
ing specific patterns, as well as the injection of the platform-specific
support library. The added code fragments interact with the library
in order to execute the necessary reporting steps defined in the sup-
port library section. In order for the library itself to be included in
the modified project, it is also necessary to transform the project con-
figuration and/or build files to include it.

36



In order to apply the transformations correctly, a set of pattern rules
was defined for each platform. The rules define which code portions
need to be changed and how.

The module is also responsible for retrieving the application’s name,
version and list of key/value pairs and saving them in the persistence
module’s database.
The technologies used by this module include:

• ANTLR4, for performing static code analysis and transformation
on program source code, as well as configuration and string files
when necessary.

• JDOM2, for analyzing and transforming project XML files, such
as plist files in iOS, and string resource files in Android.

5.1.1 Generic transformations
Some basic transformation operations are common for every platform
and were implemented in an abstract Java class from which the ”trans-
former” classes for each platform extend, in order to alleviate the task
of extending the tool to other platforms. These include:

• Obtaining a list of project files with a given file extension (exam-
ple: .java, .m), to which the platform-specific transformations are
applied.

• String ambiguity handling, after reading the localizable strings
from the project (platform dependant).

• Saving the application’s name, platform and version in the database,
along with the original and modified strings.

5.1.2 Platform-specific transformations
These transformations are platform-specific, and were implemented in
subclasses of the base transformer class. They are responsible for the
following tasks:

• Obtaining a list of the key/value pairs, from the project’s resource
files. Platforms often use different formats to store them, so this
will require a different implementation for each particular one.

• Analyzing and modifying the source code, inserting the neces-
sary code fragments to interact with the platform-specific library

37



and obtain the associations between the key/value pairs and the
screenshots. In order to detect the needed patterns in the source
code, ANTLR listeners were used, along with the ”ParseTree-
Walker” class. Changes were performed inside the listener def-
initions, using the ”TokenStreamRewriter” class.

• Other tasks, such as key/value modifications in the resource files to
eliminate ambiguities and changing configuration files to include
the platform’s support library.

Implementation details for each particular platform and use case are
detailed in the code analysis and transformation section.

5.2 Modified application project
This is the output of the code transformation process. This applica-
tion project contains the original application’s source code and other
project components, with the following changes:

• The platform-specific library was added to the project’s structure.

• The build and other relevant configuration files were transformed
in order to include the library in the build.

• Source code modifications were added, which interact with the
library in order to detect key/value occurrences in the UI, take
the screenshots, and export them to the intermediate interface
module.

5.3 Platform-specific libraries
The platform-specific libraries are meant to aid the process of detect-
ing key/value pairs in an application, capturing the screenshots, and
reporting the associations to the web server as a dataset. They are
accessed from the modified application through the added code frag-
ments and injected into the project build by the transform module.

The libraries are responsible for:

• Obtaining the list of key/value pairs from the project’s resource
files.

• Detecting key/value occurrences in the application’s UI.

38



• Obtaining the screenshots of each occurrence and saving associa-
tions to the key/value pairs.

• When a predefined user input event occurs, export the associations
to the tool’s HTTP interface.

• Preventing keys from being reported more than once in the same
context.

The libraries are platform-dependent. During the internship, the An-
droid and iOS libraries were implemented, with support given to the
Java and Objective-C languages.

Implementation and technology details for each library are presented
in the code analysis and transformation section.

5.4 Web module
This module is used as an intermediate interface between the modified
application, running in the target platform, and the localization web
platform. It is made up of the following components:

• A web interface that acts as the tool’s User Interface.
• An HTTP interface compliant with REST that handles requests

from both the transformed applications and the web interface.
• A persistence submodule, which saves data regarding each trans-

formed application and the association datasets obtained for it.

5.4.1 Web interface
The web interface contains the following sections:

• Home: the entry point of the interface. Contains general infor-
mation regarding tool usage and features, as well as links to the
other sections.

• Datasets: the menu where uploaded datasets can be analyzed in
detail and exported to a supported localization platform.

• Transform: the menu where the user can upload a project and
obtain the modified version.

• Help: displays a tutorial for using each of the tool’s features.
• About: displays information regarding how the author can be

reached out for support and the tool’s copyright notice.

39



The interface was implemented using plain JavaScript and HTML,
along with jQuery and Ajax calls to the HTTP interface where neces-
sary.

A more thorough description of the interface’s usage and menus, is
detailed in chapter 6 of the user manual, complete with screenshots.

5.4.2 HTTP interface
The HTTP interface handles requests from both the modified appli-
cations and the tool’s web interface, acting as the communication link
between the other modules. The following features are implemented:

• Uploading datasets from the modified applications, saving them in
the file system and storing information about them in the SQLite
database.

• Listing the datasets obtained for a particular application and ver-
sion.

• Viewing dataset key coverage and other details for a particular
dataset.

• Exporting dataset associations to a supported localization plat-
form using the platform’s export module.

• Applying transformations to a project from a supported platform,
returning the modified project.

The HTTP interface makes use of the Spark micro web framework for
Java to host the Restful services. Spark is a lightweight framework
designed to facilitate the process of hosting web services as much as
possible, requiring no set up outside of installing the framework itself
and allowing the services to be implemented with minimal boilerplate
code [22]. Unlike most web frameworks available, it supports execu-
tion without the use of a web container, using an embedded Jetty
server.

The author opted for Spark to implement the HTTP interface be-
cause the features implemented in the web portion of the tool do not
justify the use of alternatives like Java EE, which require additional
configuration steps and incur a large amount of extra implementation
overhead for small web interfaces.

40



The tool was implemented with support for hosting in both web con-
tainers like Tomcat and Wildfly (deployable WAR), or as a standalone
java application (simple JAR file), using Spark’s embedded Jetty web
server. Python scripts were created to facilitate firing up and config-
uring the server in either mode as detailed in the user manual.

A detailed description of the REST API implemented by this module
is present in Appendix D.

5.4.3 Persistence submodule
This submodule is responsible for storing and accessing the data re-
garding the applications, their versions and the datasets obtained for
each version.

A dataset contains a list of screenshots, as well as the key/value pairs
detected on each one, for a given upload.

The datasets themselves are stored in the file system, within a ”datasets”
folder in the directory where the tool is stored. Each dataset folder
contains a JSON file with the correspondences between the datasets
and the screenshots it contains, and the actual screenshots.

In order to store other information, such as the list of key/value pairs
detected in the project during the transformation process and the
location of the datasets associated with each one, an SQLite database
file was used, stored in the tool’s root folder. The entity-relationship
diagram for the database is shown in Figure 16.

41



Figure 16: SQLite ER diagram.

Each dataset is associated with a specific version and platform of a
given application. This allows the user to obtain datasets for differ-
ent versions of the same application, or various platforms and device
versions.

SQLite was chosen over alternative database engines, because it allows
the tool to be fully self-contained, not relying on client-server based
database engines like MySQL or PostgreSQL.

5.5 Export module(i18n)
The i18n export module accesses the i18n platform via HTTP calls
and requires the user to authenticate with his or her i18n credentials.
The following export modes are supported:

• Delete all screenshots from i18n for the given project before ap-
pending the ones on the selected association dataset.

• Only append screenshots to keys that do not have at least one yet.

• Append the screenshots to every key covered in the dataset.

The screenshots are appended to the corresponding key/value(the key
value is created in i18n if it does not exist). A text file containing the
original keys before the disambiguation process is also added for user
clarity.

42



5.6 Translation platform(i18n)
This web platform contains a storage of key/value pairs, and can be
accessed remotely via a REST interface. The user is able to:

• Add a key/value pair on a project, for a given language.

• Associate files to existing key/value pairs (screenshots or other-
wise).

• Delete or modify existing key/value pairs on a project, for a given
language.

This portion of the system is not part of the author’s work
during the internship.

43





6 Code analysis and transformation
This section describes the approach used to implement the features of
the transform module and the platform support libraries, along with
the challenges faced and how they were overcome.

6.1 Transformation patterns
The approach used in both of the supported platforms is quite differ-
ent, due to the nature of the programming languages and the environ-
ment. Three main code transformation patterns were used across the
project.

Reflection approach (method swizzling) The implementation of the plat-
form’s methods is changed at runtime to achieve the desired behavior
by the support library itself, and the transformation module will sim-
ply inject the library into the project and initialize it to perform the
reflection changes. This approach is the cleanest option, but is not
feasible for platforms with static programming languages, like Java,
as they do not possess the reflective features required to change code
behavior at runtime in this manner.

In order to understand the approach, one must first understand the
difference between statically and dynamically typed programming lan-
guages at handling method and function calls and definitions.

In the case of static languages like Java, C and C++, all functions and
variables are defined at compile time and cannot be changed when the
program is executed under normal circumstances.

On the other hand, dynamic languages like Python define symbols
dynamically, allowing for their redefinition at runtime. For example,
the Python code shown in Figure 17 is fully valid, and replaces a
method implementation with another. Any subsequent calls to the
method will use the replacement version, rather than the original one.

44



Figure 17: Will print ”Hello and goodbye!”

Such a programming pattern is called ”method swizzling” and is par-
ticularly useful for operations like logging or code instrumentation.

This approach was used to handle the iOS use cases.

Event driven approach Minimal code fragments are added to the applica-
tion in specific portions. The fragments call a support library function
which creates event listeners that detect whenever the screen’s textual
content changes. Whenever the listeners detect textual changes in the
UI, any keys present are reported. This approach is similar to the re-
flection one, but requires slightly more transformations to the source
code and does not allow the coverage of all use cases, as the platforms
do not support event listeners for all the instances where text will ap-
pear on screen.

This approach was used to handle most Android use cases that occur
in the main View hierarchy, such as TextViews.

Class wrappers ”Container” classes are implemented in the support li-
brary for UI structures which are usually instantiated in the source
code directly. These classes will have equivalent methods to the orig-
inal class, with the exception that when methods that show text on
screen are called, the screenshot is taken and the key is associated
with it. The transformation module is responsible for changing the
occurrences of the original classes with their ”wrapped” version. This
approach was only used as a last resource, due to being more error-

45



prone and not handling cases where the UI structures are imported
from an external library, rather than being present in the source code.

This approach was used to handle Android use cases that occur outside
the main View hierarchy, such as ”AlertDialogs” and Menus.

6.2 Android (Java)
The Java programming language is statically typed, and only has min-
imal reflection features, such as class method listing and access mod-
ifier changes (i.e. changing a private attribute or method to public).
This makes the reflection approach unfeasible, and therefore the event
driven approach was used where possible, with class wrappers han-
dling the remaining use cases covered. Event listeners were created
by inserting code fragments on Android Activity method implemen-
tations in the project’s source code.

More information about the supported Android use cases in the An-
droid platform can be found in Appendix C.1.

6.2.1 Other transformations
In order to inject the library into the project, the .aar file was copied
into the project’s root folder, and the Gradle file was transformed to
include it in the build.

Since the ANTLR grammar repository did not contain a grammar for
the Groovy language as of the writing of this report, a modified gram-
mar was created based on the Java grammar with the bare minimum
rules needed to perform the changes.

6.3 iOS (Objective-C)
In iOS, method swizzling was used for all the use cases.

Objective-C is a strict superset of the C language, with any valid
C source code also being valid in Objective-C. However, it contains
support for classes and other object-oriented features, which are im-
plemented on top of the C language using function pointers. Classes
in Objective-C can, therefore, in a general sense, be thought of as C
structs where each method is actually a function pointer member of
the struct it belongs to. This means that, while C-like functions in

46



Objective-C are statically typed (as is the case in the C language),
class method references can be swizzled in the same pattern shown
in Figure 17. This extends as far as the native iOS methods defined
in the standard iOS libraries, which can also be swapped with others
freely. [30]

Method swizzling effectively makes it possible to handle any method
defined in Objective-C (either by the standard libraries or on the appli-
cation code) as an event. For example, if one needs to detect whenever
a UITextView changes its textual contents and create a screenshot of
the new text, the following process can be performed:

• A new method, called ”setText_LOCALIZATIONHELPER” is
created for class UITextView using a category, as shown in Figure
18.

• When the class loads, the method shown is swapped by the original
”setText” method in the class using method swizzling.

• Whenever the ”setText” method is called on the source code, ”set-
Text_LOCALIZATIONHELPER” will be called instead, and the
view’s textual contents will be reported.

Figure 18: Method to be swapped by ”setText”.

In order to apply the swizzling operations to the project, the only
requirement is to inject the library and import it, effectively making
the actual source code fragments inserted by the transform module a
single library import statement to any file containing the ”main” func-
tion in the project. This approach has several advantages compared
to the ones used for Android, including:

• Less error-prone.

• Unlike code insertions, it does not run the risk of breaking code in-
tegrity when errors do occur. Incorrectly inserting code fragments
can prevent the application from compiling.

47



• Since Objective-C and Swift code use the same runtime, any
changes made to Objective-C classes will also be applied to Swift.
While the main objective of the internship is to support Objective-
C, supporting applications partially written in Swift is nonetheless
a welcome bonus.

The swizzling process was applied by implementing the ”load” method
on each class using an Objective-C category. This method is called on
the very first time the class is used by the program. This ensures that
the swizzling operations are applied to them and all their subclasses
before the first time they are used. [11]

Appendix C.3 details the method swizzling operations performed on
native iOS methods that allowed the screenshots to be obtained.

6.3.1 Other transformations
This section describes other transformations performed on iOS projects.

Support library injection In order to inject the support library into Xcode
projects, the CocoaPods dependency manager was used. CocoaPods is
a dependency manager which allows for the easier inclusion of external
libraries in an Objective-C or Swift Xcode project. It uses a file named
”Podfile”, which is created in the project’s root folder, and contains
the required libraries (pods) to include in each of the project’s targets
in a syntax based on the Ruby language. The libraries may be im-
ported from external repositories in GitHub, or locally, by providing
a relative path to their location in the file system.

Options other than CocoaPods were considered, but ultimately re-
jected:

• Injecting the library directly into the project as a static library was
abandoned due to being a less clean solution, as the pbxproj files
are very complex to analyze and transform, and were generally
only modified when strictly necessary.

• Carthage, another dependency manager for Xcode projects, was
rejected due to not allowing the inclusion of local libraries, requir-
ing them to be imported directly from GitHub. This was not an
option, as it required exposing the library’s source code to the
project, rather than the compiled version.

48



The transform module injects the library into the project by copying
it to the project’s root folder and modifying or creating the project’s
Podfile to include it. In order to make the necessary analysis to the
files, the ANTLR Ruby grammar present in the ANTLR grammar
repository was modified [10].

Settings.bundle injection In order to implement the user event which will
trigger the export process for the KVS associations detected, the ap-
plication’s Xcode settings menu was modified. This required the mod-
ification or injection of the Settings.bundle package in the project, de-
pending on whether the project already had a settings bundle. When
it is present, the process is relatively straightforward, and only implies
the modification of the Root.plist file in the bundle, which uses XML
and can be modified with JDOM to include the required settings menu
options.

However, when the project does not have a bundle already included,
transformations to the project’s pbxproj file are required to inject a
custom bundle. This process was particularly difficult due to these
files not having been designed for manual editing (and hence are quite
difficult to understand for human readers), and not being documented
by Apple online. The transformations required were mainly inferred
from observation of several file samples from open-source iOS appli-
cations and non-official documentation found online. [46]

6.4 String ambiguity handling
As mentioned in the architecture portion of the report, the key disam-
biguation process consists of changing the resource keys so that they
meet the following conditions:

• Two different keys do not have the same value.

• Modified values should have a number of characters as close to the
original value as possible(preferably the same).

This process is necessary, due to the support libraries not having any
effective means to differ between keys with the same value at runtime,
making the assessment of the correct key to report unfeasible. This
creates the need to make the key/value relationships univocal, with
one value corresponding to exactly one key and vice versa. The size

49



preservation requirement is so that the UI is not distorted due to in-
creased text length.

For this purpose, the ambiguous key values are modified during the
project transformation process by replacing the final characters with
an integer ID, incremented individually for each value. For example,
if the value ”login” occurs on two different keys, the first occurrence
will be replaced by ”logi1” and the second one by ”logi2”. The modi-
fied values are saved to the localized string files of the modified project.

The original and new key/value pairs for each application version are
also stored in the SQLite database for coverage analysis and so that
the tool can infer the original value after receiving association datasets.

Originally, the values were replaced fully by ’x’ characters and each key
was prevented from being reported more than once in the same context
by dividing it into multiple ”subkeys” (one for each occurrence of the
key in the source code). However, this approach was abandoned in
the second semester after a usability test, as fully changing the string
contents caused the UI to be overly complex to navigate. Prevention
of repeated reports for the same key was implemented on the platform
support libraries instead, as described in the next subsection.

6.5 Prevention of repeated string reports
During the process of detecting strings in the UI, it is desirable to pre-
vent the support library from obtaining multiple screenshots for the
same key in the same application context. However, it is highly desir-
able to obtain multiple screenshots for the key in different contexts,
which is a common occurrence in real-world projects, as keys tend to
be reused across the application extensively.

In order to prevent the string from being reported in the same context,
the approach used originally consisted of dividing the keys with multi-
ple occurrences in the source code into several subkeys and modifying
the values like one would for two normal ambiguous values.

However, this approach was eventually abandoned, due to requiring
the retrieval of key occurrences from the source code itself, implying
extensive code analysis in the case of iOS projects that is otherwise

50



not needed.

Instead, both support libraries were modified to verify if the key has
already been reported in the current application context before tak-
ing the screenshot and creating the association. Since both iOS and
Android represent UI contexts using a tree-like structure, this was
accomplished similarly in both libraries, by using hashes of the UI
hierarchies. The process consists of:

• Whenever a key string is detected in the UI, a hash value is ob-
tained from the string representation of the layout elements hier-
archy of the current UI context (views, buttons, toolbar menus,
etc), from the root to the leaves.

• A map is stored with the correspondence from the keys covered so
far, and the list of hash values for the contexts they were detected
in.

• Before taking the screenshot and associating with the key, the li-
brary checks if it has been reported for a context with the same
hash value, if so the key is not reported it again. Otherwise, the
hash value to the key’s hash list in the map and the key/val-
ue/screenshot association is created normally.

While the approach does lead to very occasional coverage errors (i.e.
a key being erroneously assessed as already reported for the given con-
text) due to hash collisions, this occurrence will be rare, due to the
efficiency of most string hash implementations for popular program-
ming languages at preventing collisions.

51



7 Testing and evaluation
This section contains the tests performed on the tool over the course
of the internship. It is also indicated which bugs were not fixed due
to time constraints in the internship or other factors.

7.1 Unit tests
This section details the unit tests performed on each module of the
tool. The legend for the test results is the following:

• Green: The expected behavior was achieved in all instances tested.

• Yellow: The expected behavior was achieved in the instances
tested, with some limitations.

• Red: The expected behavior was not achieved to an acceptable
level.

7.1.1 Web module
This section described the unit tests performed on the web module.
The tests were performed on the web interface and HTTP server to-
gether. It should be noted that tests for this module related to up-
loading or transforming a project are only concerned with whether it
has been uploaded successfully or whether it has been successfully re-
trieved after the transformation process occurred. Tests for the code
transformation process itself are unrelated to these tests.

Test Expected result Limitations
Upload a project
for transformation

The project is received suc-
cessfully on the server. N/A

Request transfor-
mation of the up-
loaded project

The transformed project is
returned, or an error mes-
sage is shown on screen if
the transformation process
fails.

N/A

Get list of subpro-
jects and targets
for the previously
uploaded Xcode
project

The subprojects are dis-
played correctly, and when
one is selected list the tar-
gets obtained for them.

N/A

52



Show list for a
particular applica-
tion, platform and
version

The datasets are displayed
correctly N/A

Display dataset
details

The key/values present in
the application are shown.
The button ”View screen-
shots” appears next to the
datasets for which screen-
shots have been obtained

N/A

Obtain the screen-
shots associated
with a given key,
in a given dataset

The screenshots are dis-
played correctly N/A

Export a dataset
to i18n in ”add
new” mode

All the screenshots present
in the dataset are exported
to the platform, to their cor-
responding keys.

N/A

Export a dataset
to i18n in ”delete
all” mode

All the screenshots present
in the dataset are ex-
ported to the platform and
associated with the corre-
sponding key. Previously
added screenshots have
been deleted from every
key.

N/A

Export a dataset
to i18n in ”only
without” mode

The screenshots present in
the dataset are exported to
the platform, but only to
keys without a screenshot
attached already.

N/A

Table 5: Web module functional tests.

7.1.2 Transform module
This section details the unit tests performed on the operations per-
formed by the transform module.

53



Test Expected result Limitations
Attempt to trans-
form an uploaded
Android project,
with an incorrect
relative path spec-
ified where there
is no Android
manifest

The project is deleted from
the server folder and an er-
ror message is sent to the
user.

N/A

Retrieve Android
application’s name
from the Android
manifest file

The name obtained is pack-
age name’s last qualified
name (after the last ”.”).

N/A

Retrieve the ap-
plication’s version
name from the
Gradle files, when
there no product
flavors declared
(Android)

The version names declared
on each product flavor are
also obtained.

N/A

Retrieve the ap-
plication’s version
name(s) from the
Gradle files, when
there are multiple
versions declared
in the product fla-
vors (Android)

The version names declared
on each product flavor are
obtained, as well as the one
in the default configuration.

N/A

Read the key/-
values from the
strings.xml file.
The file does
not have plurals
or string arrays
(Android)

The key/value pairs saved
in the database are the cor-
rect key/values present in
the file.

N/A

54



Read the key/-
values from the
strings.xml file.
The file has
multiple plurals
and string arrays
(Android)

The key/value pairs saved
in the database are the cor-
rect key/values present in
the file.

N/A

Disambiguate keys
and save the mod-
ified versions (An-
droid)

The modified keys are
saved to the database and
strings.xml file correctly.

N/A

Add the support
library’s aar file
as a dependency
in the Gradle file
(Android)

After the build, the library
can be accessed correctly
from the source code.

N/A

Add the im-
port statements
(Android)

The import statements
are added correctly to the
source code.

N/A

Add ”onMen-
uOpened” and
”onPostResume”
to Activity sub-
classe declara-
tions, when the
methods are over-
riden (Android)

The code snippets are
added to the end of the
methods and the project
compiles successfully.

N/A

Add ”onMen-
uOpened” and
”onPostResume”
to Activity sub-
classe declara-
tions, when the
methods are
not overriden
(Android)

The custom method decla-
rations are added to the
class declaration and the
project compiles success-
fully.

N/A

55



Replace wrapped
class identifiers
with their ”wrap-
per” version
(Android)

The class identifiers present
in the code are replaced suc-
cessfully and the applica-
tion compiles successfully.

N/A

Obtain the list of
subprojects within
the project (iOS)

A list of xcodeproj file direc-
tories is returned, except for
the ones inside the ”Pods”
folder.

N/A

Obtain targets de-
clared in a pbxproj
file (iOS)

The correct list of targets
shown when the project is
opened is returned.

N/A

Attempt to trans-
form an xcodeproj
or target which
does not exist
within the project
(iOS)

An error message is re-
turned. N/A

Attempt to
perform trans-
formations on
an xcodeproj or
target which does
not exist within
the project

An error message is re-
turned. N/A

Retrieve the ap-
plication’s short
name and version
from the Info.plist
file

The name and version
shown in the XML file are
obtained.

N/A

Add export menu
settings to the
project’s settings
bundle, if present

The export menu is shown
when the application’s set-
tings are accessed in the
iPhone device or emulator.

N/A

56



Add settings bun-
dle to the project
when it does not
have one (iOS)

The bundle is shown when
the project is opened in
Xcode, and the export menu
is shown when the applica-
tion’s settings are accessed
in the iPhone device or em-
ulator.

N/A

Add the support
library’s pod to
the Podfile, when
present (iOS)

The pod install operation is
successful, and the library
can be accessed from the
source code.

N/A

Add a Podfile to
the project when
not present, and
add the library’s
pod to it after-
wards (iOS)

The pod install operation is
successful, and the library
can be accessed from the
source code.

N/A

Add the library
import statement
(iOS)

The library is initialized
correctly during runtime,
and the swizzling operations
have been performed.

N/A

Table 6: Transform module tests.

7.1.3 Support libraries
This section describes the unit tests performed on the support li-
braries. It should be noted that tests performed on the use cases were
done on small, sample applications which were dedicated to illustrat-
ing the usage of each UI structure. These tests were not concerned
with coverage ratio, but rather to verify if the library was working
properly for sample cases and without breaking the application at
runtime.

57



Test Expected result Limitations

Read the applica-
tion’s name and
version from appli-
cation context and
package manager

The name and version ob-
tained are the same as the
ones read during the trans-
formation process.

Retrieving
the name
may fail when
environment
variables
like $PROD-
UCT_NAME
are used in
naming.

Read the list of
strings, string-
arrays and plurals
by performing
reflection on the
generated R class

The key/value pairs ob-
tained are the same as dur-
ing the transformation pro-
cess.

N/A

Apply listener to a
TextView

The string is detected in the
view, when the view’s tex-
tual contents change

N/A

Apply listener to a
ViewPager

The strings are detected in
the view and its children,
when the page is changed

N/A

Apply listener to a
TabLayout

The strings are detected in
the view and its children,
when the tab is changed

N/A

Apply listener to a
ScrollView

The strings are detected in
the view, when the device’s
screen is scrolled as they ap-
pear on screen

N/A

Create a Toast
wrapper class
instance with
sample text, in-
stantiate it and
call ”show”

The Toast is shown nor-
mally, and the string con-
tained is detected. The
screenshot taken displays
the structure after it is fully
rendered.

N/A

58



Create a Snackbar
wrapper class in-
stance with sam-
ple text, instan-
tiate it and call
”show”

The Snackbar is shown nor-
mally, and the string con-
tained is detected. The
screenshot taken displays
the structure after it is fully
rendered.

N/A

Create an AlertDi-
alog wrapper class
instance with sev-
eral inner buttons
and textfields and
call ”show”

The dialog is shown nor-
mally, and the strings con-
tained are detected. The
screenshot taken displays
the structure after it is fully
rendered.

N/A

Take a screenshot
for a list of key/-
values

The screenshot is saved to
the filesystem, and the as-
sociation is added to an in-
memory HashMap correctly

N/A

Save the associa-
tions to the de-
vice’s filesystem

The associations are shown
correctly in the JSON file in
the folder

N/A

Zip and upload
the folder with the
associations, with
a given dataset
name. HTTP
server is online

An error message is shown
in the Android Studio logs N/A

Trigger the export
event with a given
dataset name.
HTTP server is
online. Dataset
with given name
already exists for
the current appli-
cation/version

An error message is shown
in the Android Studio logs N/A

59



Trigger the export
event with a given
dataset name.
HTTP server is
offline. Dataset
with given name
already exists for
the current appli-
cation/version

An error message is shown
in the Android Studio logs N/A

Check the list of
keys present in a
view, when the
view is not, or
only partially, on
screen. View is
not a ViewGroup

The string contents are ig-
nored N/A

Obtain keys
present in a
View hierarchy
(ViewGroup)

The view is traversed
through for keys, if it is at
least partially visible.

N/A

Table 7: Android library tests.

Test Expected result Limitations

Read the applica-
tion’s name and
version

The name and version ob-
tained are the same as the
ones read during the trans-
formation process.

N/A

Read the list of
strings from the
Localizable strings
file

The key/value pairs ob-
tained are the same as dur-
ing the transformation pro-
cess.

N/A

Swizzle a method
from a given class

The new implementation
for the method is used in-
stead.

N/A

60



Take a screenshot
for a list of key/-
values

The screenshot is saved to
the filesystem, and the as-
sociation is added to an in-
memory map correctly

N/A

Save the associa-
tions to the de-
vice’s filesystem

The associations are shown
correctly in the JSON file in
the folder

N/A

Trigger the export
event with a given
dataset name.
HTTP server is
online.

The folder is zipped and
sent to the server. The
dataset is received success-
fully by the server.

N/A

Trigger the export
event with a given
dataset name.
HTTP server is
online. Dataset
with given name
already exists for
the current appli-
cation/version

An error message is shown
in the Xcode logs N/A

Trigger the export
event with a given
dataset name.
HTTP server is
offline. Dataset
with given name
already exists for
the current appli-
cation/version

An error message is shown
in the Xcode logs N/A

Get the list of
keys present in a
view, when the
view is currently
”tracked” and
fully visible

Return the text present in
the view, and all of its chil-
dren.

N/A

61



Get the list of keys
present in a view,
when the view is
not, or only par-
tially, on screen
and is currently
tracked.

The view’s own string con-
tents are ignored, but its
children are still checked for
keys recursively.

When a view
is partially
obstructed
by another,
the keys will
erroneously
be detected
as visible.

Get the list of
keys present in a
view, when the
view is not cur-
rently ”tracked”

The view’s textual contents
are ignored.

Table 8: iOS library tests.

7.2 Integration tests
Integration tests were performed on the tool to make sure the com-
plete system was working properly. In order to achieve this, the web
module was hosted on a cloud-based emulated machine and the fol-
lowing process was performed for two Android and two iOS sample
applications:

1. Transform the project in the web interface

2. Traverse the UI of the modified application, obtaining a partial
list of the associations.

3. Upload the associations to the server as a dataset.

4. View the dataset in the web interface, checking if the obtained
screenshots are shown properly.

5. Upload the dataset to i18n.

Whenever unforeseen errors were detected during the process, they
were fixed. The applications used for the test are the same as the ones
mentioned in the String coverage tests section.

7.3 Usability tests
During the second semester, two usability tests were performed on
sample WIT-Software projects. The following improvements were

62



made as a result:

• Ambiguity handling was modified to make it less intrusive, as
described in the Code transformation section.

• When transforming iOS projects, the user may select the xcode-
proj file and the target to be transformed. The web interface lists
them in a drop-down list before the transformation process.

• The transformation process was too slow due to the need to parse
the entire project’s source files with ANTLR. A heuristic was
added to prevent the parsing of the files when not necessary on
iOS projects, which consists of skipping the files which do not
contain the ”main” key word when searching for Objective-C files
which contain a ”main” function declaration declaration.

7.4 String coverage tests
In order to assess the tool’s efficacy at obtaining the associations, cov-
erage tests were performed on sample Android and iOS applications
projects. The tests consisted of transforming the projects and execut-
ing the modified applications while keeping track of the ratio of the
number of associations obtained by the number of associations tested
(that is, the number of keys that actually appeared on the screen dur-
ing the tests). False positives where keys were reported even though
they were not present on screen were also tracked and analyzed.

For each platform, two applications were selected for this assessment,
one representing a small-scale, proof of concept application to test ba-
sic use cases, and a larger, real-world application that more accurately
represents the tool’s performance at fulfilling its purpose in real sce-
narios. The results obtained are listed in Table 9.

Application TODO-MVP [21] Leafpic [23] News-App [20] Wikipedia-iOS [43]
Type proof of concept real-world proof of concept real-world

Platform Android Android iOS iOS
Keys tested 22 161 15 100

Keys obtained 20 155 15 98
Coverage ratio 90% 96% 100% 98%
False positives 0 2 0 8

Table 9: Key coverage on sample apps.

63



Analysis The coverage results for both platforms is acceptable, al-
though the number of false positives is somewhat high. In Android,
this is due to the tools menus, which are a difficult use case to handle
properly.

The false positives in iOS were mainly due to partially obstructed
views, which are common in scrollable menus. Assessing visibility of
the text correctly in these cases is unfeasible, as it would require the
library to check for overlaps in all the view combinations of each ap-
plication context, leading to performance issues. This was deemed as
an acceptable limitation of the tool, however.

64





8 Conclusion
This section assesses the work done across the internship and the re-
sults obtained, as well as future work that can be added to the project
in the future. It also contains a personal note by the author about his
experience during the internship.

8.1 Work done
At the beginning of the internship, the author was given a degree of
flexibility in the scope of implemented features due to the uncertain
nature of the project and his lack of experience. The priorities were
the implementation of the Android modules and the export module,
with the implementation of the iOS and web modules being dependant
on the time remaining after finishing work on Android.

At the end of the internship, the implemented features include the
Android and iOS transform modules and support libraries, the web
module (back-end and front-end) and the export module for i18n. In
addition, partial support is present for iOS projects implemented in
Swift, only requiring the user to create the bridging header and im-
porting the library. After many of the weekly meetings, various new
features were proposed over the course of the second semester, includ-
ing support for datasets, more robust library injection in the projects
and integration with the WIT cloud. Most of them were implemented
in time.

One predicted task that was notably not completed was the demon-
stration of the tool’s functionalities in a WIT-Software project. This
was due to time constraints and unforeseen mishaps by the author,
which prevented a proper demonstration from being completed. The
tool’s features were nevertheless demonstrated on real-world applica-
tions.

In conclusion, the author considers that the project’s overall results
were positive. That being said, improvements can be made to existing
features, as described in the future work section.

65



8.2 Future work
This section details additional features which can be added to the tool
in the future, as well as possible improvements to existing features.

8.2.1 Web module
The web module’s web interface was not the focal point of the in-
ternship, and therefore its design and functionality still have room for
improvements. Depending on the changes made, it may be justifiable
to use a more robust JavaScript library, such as React or AngularJS.

On the server side, adding sessions and user accounts would be a con-
sideration, along with permissions to access datasets for each project.

8.2.2 Transformation module and support libraries
The transformation module was designed to be extensible to other
platforms. Some considerations would include web (HTML/JavaScript)
and the Unity game engine.

The module may be extended to give support to more programming
languages in the already supported platforms, such as Swift on iOS
and Kotlin on Android. Additional use cases may be handled, such as
text drawn with Canvas in Android.

In the case of iOS specifically, the transformations performed to pbx-
proj files were particularly complex, and depend on the version of
Xcode the project was built on. This section could be improved with
further exploration to make sure it works properly on other versions.

The support libraries could be modified so that the position of the key
in the screenshot is highlighted, for example by circling the text field
with a colored rectangle before capturing the screenshot. This feature
would make the screenshots more user-friendly to the translation team.

8.3 Final thoughts
This section will describe the author’s thoughts on the internship. As
it is mainly a personal subject, it is presented in the first person and
in a somewhat informal tone.

66



First of all, from a technical standpoint, this internship has been over-
whelmingly productive to me. I came into content to a very large set
of technologies and development patterns, some of which I had very
limited or no experience with before the internship began. This very
broad set of IT topics and subfields includes:

• Android and iOS development.

• Static code analysis and transformation.

• Compilers, parsers and regular expressions.

• RESTful web services.

• Localization and Internationalization approaches and practices.

• Various other technologies, such as XML, JSON, SQLite, JavaScript
and others.

I have also been involved in a real-world project that makes use of
agile project management and planning practices, which, as an entry
level worker in this field, provides invaluable working experience.

On a more personal level, I have thoroughly enjoyed the project. My
tutor, supervisor and everyone else at WIT Software, along with my
university supervisor, have proven to be extremely helpful and avail-
able to provide feedback when needed, and have done their very best
to make the internship as a whole a positive experience to me, and
the project itself has also been very interesting and enjoyable.

67





Appendices

A Internship context
This internship took place at WIT Software, S.A. (WIT), “a software
company that creates advanced solutions and white-label products for
the mobile telecommunications industry” [51], in the context of the
author’s Master’s Degree in Software Engineering at the University of
Coimbra.

Project Manager João Certo from WIT and Professor Ernesto Costa
from the Department of Informatics Engineering at University of Coim-
bra supervised the internship. Lead Software Engineer Carlos Mota
from WIT acted as the tutor.

The present document reflects the work done by the intern/author
during the internship.





B Tests performed on the code analysis
and transformation tools

In this section, a simple viability test was performed on some of the
tools described in the state of the art, in order to evaluate the feasi-
bility of using them in the present use case.

B.1 Test performed
The test consisted of performing small analysis and transformation
tasks on a sample android studio application Java source file.
The idea of the test will be to change a file declaring an activity
subclass to report the window keys when the activity either resumes
or starts. This can be accomplished by adding the code fragment
to the ”onPostResume” override method, before the final bracket, as
shown in Figure 19.

Figure 19: onPostResume method call added.

If the method is not implemented in the given class, it needs to be
implemented first. In that case, the following code snippet is added
at the end of the class, before the final bracket (Figure 20):

Figure 20: onPostResume method snippet added.

While this is a relatively simple example, the transformation actually
solves a lot of the use cases covered in Android by itself, as after the
call to ”reportWindowKeys”, the localization library will implement
listeners to do most of the work. [2]

B.2 ANTLR procedures
Note: For this test, the ANTLR Eclipse plugin was used. [9] The
ANTLR GitHub repository contains ANTLR definitions (.g4 files) for
the grammars of several languages, including Java. [10]

68



ANTLR (Python) The same test was performed for the ANTLR Python
API, since Python tends to be a less verbose language than Java, and
the author has a personal preference for the language. The API has
much the same features as Java, and the implementation procedures
were quite similar. The author found, however, that the Python API
has a considerably less thorough documentation, and code examples
tend to be harder to find online. Therefore, this option ended up being
discarded.

Steps taken

1. The Java ANTLR grammar was obtained from the ANTLR gram-
mar repository. Upon saving it on the .g4 file, the full Java code
necessary for the parser was generated by the eclipse plugin as
well as the abstract class ”JavaBaseListener”.

2. The class ”ActivityResumeListener” was created. This class ex-
tends ”JavaBaseListener” and overrides the method ”enterClass-
Declaration” which is called whenever the ”TreeWalker” enters a
Java class declaration (defined in the grammar file).

Figure 21: Handling a class declaration node.

3. Firstly, one checks if the class extends either an ”Activity” or an
”AppCompatActivity”. In order to accomplish this, the first child
node after ”extends” is traversed and its text contents are check.
If the ”extends” node does not exist it is also not an activity
subclass.

69



Figure 22: Checking if a class declaration extends an activity.

4. The next step consists of searching for the ”onPostResume” method
declaration. In order to do this, another listener (”OnPostRe-
sumeListener”) is used to walk the class declaration subtree to
search for methods with the ”Identifier” child node equal to ”on-
PostResume”.
This listener ignores any method declaration with depth above 4
plus the parent class declaration node, in order to skip callback
function declarations inside the class method’s statements. When
it finds a method call ”onPostResume”, it adds the code snippet
to the ending, and sets an inner attribute to true.

70



Figure 23: Listener to search for method ”onPostResume”

5. The ”parent” listener (”ActivityResumeListener”) will check if the
method was found in the class body via that attribute, and simply
return if it does. Otherwise, it adds the full method at the end of
the class declaration.

B.3 CodeWorker procedures
The CodeWorker C++ source files were compiled in a Linux Envi-
ronment. From that point, the test was performed using the Code-
Worker interpreter, by running a CW script that took as arguments
the directory of the input and output files. This could also have been
accomplished done via the CW C++ API. [48]

A CodeWorker transformation rule was applied to the source file. This
operates by simply parsing the file using a simple grammar, and mak-
ing changes when certain patterns are found.

Steps taken by the rule

1. Start by creating auxiliary grammar rules. Define one rule for an
activity class header, one for generic blocks of code placed between
brackets and one for the ”onPostResume” method header.

71



Figure 24: CodeWorker auxiliary grammars.

2. Define a grammar rule for the case where the activity has the
”onPostResume” method defined. The rule is shown below.

72



Figure 25: CodeWorker grammar for class with onPostResume.

3. Define the rule for the case where the class does not have the
method implemented (meaning that it the transformation must
insert it at the end of the class).

Figure 26: CodeWorker grammar for class without onPostResume.

4. Define the main rule, which recognizes both of the previous cases,
and also skips the rest of the source file (imports, etc).

73



Figure 27: CodeWorker main grammar rule.

Test analysis While both tools accomplish the given task, they both
appear to have their own merits. While CodeWorker makes it easier
to handle the transformations themselves at specific portions of the
code, it also requires one to define the necessary grammars for the
task. ANTLR also has this requirement, but since its use is much
more widespread, and the ANTLR GitHub repository itself already
contains grammars for most popular programming languages (as well
as many that are less popular), it will often not be necessary to create
the grammars manually. It does, however, take time to study the
structure of the grammars in order to perform more complex tasks.
Furthermore, CodeWorker seems to be more error-prone when there
is a need to handle more complex transformations, as one essen-
tially needs to take into account every possible scenario when han-
dling traversing the source code. For example, strings need to be
skipped over to avoid the possibility of the code searched fragment
being present inside the string.

ANTLR, on the other hand, already has the grammars defined for
most languages, and one needs only to process the event of reaching
the desired language structure required (expressions, statements,...).
It also allows for a more trivial sense of context, as parse tree travers-
ing allows the pinpoint of the current class, method and or/statement
context, and go back and forth in it as necessary. The main drawback
is that ANTLR was not designed for code transformations, and the
process of inserting code snippets requires one to insert plaintext into
a parse tree that is otherwise comprised of well defined tokens, which
is less than ideal, but does solve the problem.

In the end, ANTLR (Java) was selected purely due to more thorough
and easily accessible documentation (noticed during the tests), and the

74



author being more acquainted with the Java programming language,
compared to the CodeWorker DSL.

75



C Implementation details
This section details some of the implementation details of the code
transformation module, which makes use of the ANTLR Java API.

ParseTreeWalker For each source file obtained by the generic subcom-
ponent, a ”ParseTree” object is obtained, using the ANTLR grammar
defined for that particular platform. The ”ParseTreeWalker” class tra-
verses the source code’s parse tree, obtained with ANTLR. It takes a
Listener parameter, which will be applied to the given Parse Tree. It
is applied iteratively to each listener defined for the platform.

ANTLR listeners

ANTLR listeners trigger when a given ANTLR grammar rule occur-
rence has been found (such as expressions, statements and method
calls) in the given parse tree. Inside the listener method definitions,
the tree can be traversed freely. By traversing the tree to the current
node’s parent, child or sibling nodes, information about the the con-
text where the listener was triggered can be inferred. This allows one
to obtain more contextual information about the point in the code
where the listener was triggered, as needed for the particular transfor-
mation case. For example, one can pinpoint the name of the method
called in a method call, and the parameters used in it. It is also pos-
sible to obtain the code present in the node in plaintext format, also
allowing for lexical analysis (using regular expressions).

The listeners allow for the detection of source code that follows specific
syntactic and lexical patterns, in order to pinpoint parts that need to
be modified in order to accomplish the necessary calls to the platform-
specific library.

TokenStreamRewriter

The ANTLR ”TokenStreamRewriter” class was used to perform the
actual code transformations. This class injects the code fragments in
plaintext before, instead or after a given ANTLR grammar definition.
It is called inside the listeners, as needed to perform the required
transformation for a particular use case in the current platform.
The ANTLR portion of Appendix B illustrates this implementation
pattern, complete with code samples.

76



C.1 Android use cases
This section lists the use cases covered by the Android support library
and describes the approach used for each one. The use cases were ex-
plored by modifying existing Android applications manually in the
first semester of the internship and then later automatized through
code transformations.

General case A method (”getVisibleKeysFromView”) was implemented
in the library, which obtains the total visible keys within a view, op-
erating on its children recursively if needed (i.e. generic ViewGroup
instances). Whenever a text field or other view that may contain text
is found, all the keys contained within are reported. Non-visible views
will be ignored. This method is always called using an asynchronous
task, to prevent extra overhead to the UI thread and affect the re-
sponsiveness of the application. the ”post” method of the view is also
used, to ensure that it is only called when it is already constructed.

Before reporting any possible keys of the view, or its children, a check
is performed on the view’s on-screen visibility. For this purpose, the
getVisibility() and getShown() methods often report false positives, so
it is also checked if the view’s rectangular area is being displayed on
the screen currently.

Figure 28: getVisibleKeysFromView signature and visibility checks.

Creating or resuming an activity When an activity subclass is entered,
every key present in the root view of the current window is reported
(including all child views). In order to accomplish this, at the end
of the ”onPostResume” method, the modified code will report every

77



key present in the current activity’s window decor view. Initially, the
method call simply used the activity’s layout view. However, this is
not a completely valid solution, as this view can be changed either
in the ”onCreate” method, or when the activity is resumed. Using
”onPostResume” it is also ensured that the method is only called after
the entire view tree is constructed (no null fields), as well as taking
into account any changes made from the base layout.

Figure 29: Code added to onPostResume.

Changing a TextView’s textual contents Whenever the text contents of a
text view change, the new values must be reported. In order to achieve
this, a ”TextWatcher” event listener was added to the view. This event
listener will trigger every time the textual contents of the view change,
and will report the new text fragments. [4]

ViewPagers and TabLayouts The ”getVisibleKeysFromView” method, upon
finding a ”TabLayout” or ”ViewPager” view, only reports the cur-
rently active child tab/page. In addition, to handle page changes, it
uses the ”addOnPageChangeListener”/”addOnTabSelectedListener” meth-
ods to add listeners that report the keys on the new tab/page.

78



Figure 30: Code fragment that handles ViewPagers.

Dialogs, Snackbars and Toasts These structures present a challenge, as
they are not considered as views and accessing their internal com-
ponents from the outside is not trivial. For example, AlertDialogs
require one to use an ”AlertDialogBuilder”, initialize the components
and proceed to build the actual dialog. As for Snackbars and Toasts,
while it may seem that one only needs to check for the show() method
call, it is not as trivial as it may seem. This is mainly due to the fact
that one could instantiate the objects on completely unrelated meth-
ods, or even different files, before calling the show() method.

While tracking the variable reference would be possible by implement-
ing a symbol table, this approach would be very difficult to implement
and error-prone, while also requiring one to change the grammar files
to support semantic actions, hindering their portability across lan-
guages and platforms.

Therefore, in order to handle these cases, ”wrapper classes” were used.
These classes will emulate the behavior of the original ones, with the
exception that, when methods that show text on screen are called, the
support library will be used to report the keys present in the given
component’s view hierarchy. The wrapper classes are included in the
Android support library, and original class references are replaced by
them using ANTLR listeners. [5] [3]

79



Figure 31: Example of a ”wrapper” class definition for Snackbars.

Menus Menus presented a difficult challenge as well, for many reasons:
• Similar to Dialogs, Snackbars and Toasts they are not View sub-

classes.
• Their presentation views are usually displayed in a different Win-

dow instance, so they do not appear in the Activity’s decoration
view hierarchy. Therefore, simply taking a screenshot of the ac-
tivity’s decorview Bitmap will not display the menu components.

• Detecting when a menu finished its open/close animations is not
trivial. If the animation has not finished when the screenshot is
taken, the menu may not be shown correctly.

As a workaround to the issues mentioned the following procedures
were used:

• A method call was added to the onMenuOpened method of each
activity in the original application using ANTLR (method was
generated if it was not present).

• The menu’s textual components were obtained and reported in
the aforementioned method call.

• A one-second sleep() call was used to wait for the menu’s anima-
tion to finish. While this is not an optimal or universal solution,
it serves nonetheless as a workaround for most cases.

• The MediaProjection class was used to take screenshots of the
entire screen rather than just of the Activity’s DecorView, in order
to display menu components correctly in the screenshot.



80



C.2 iOS use cases
This section lists the use cases covered by the iOS support library and
details the approach used for each one. The use cases were handled
by performing swizzling operations on native iOS classes. It should be
noted that the methods swizzled apply not only to the class itself, but
also any classes extend from it. So, for example, calls to ”setText” on
any view extending from UITextView will trigger the report process.

UIViewController In iOS, UIViewController objects are responsible for
managing the view hierarchy, changing it according to user interaction
and other events. They are mostly comparable to Android Activities,
with the main difference being that in Android only one Activity can
be active at a time, whereas in iOS it is very common to have mul-
tiple UIViewControllers active at the same time. Each controller is
associated with a ”root” view in a hierarchy (which may itself be a
part of another hierarchy, managed by a different controller) and is re-
sponsible for handling events related to that particular view as well as
its children, including when the view appears and disappears from the
screen. [15] Since it is only desirable to track UI changes on views with
their view controller active, swizzling on the UIViewController class
was directed at marking views as ”tracked” or ”untracked”. Untracked
views are disregarded during the reporting process. The swizzling op-
erations performed on the UIViewController class are detailed in Table
10.

Method name Method description Changes applied

viewDidAppear

Called after the root view
associated with the view
controller appears on the
screen. [16]

When called, reports the
controller’s title string
along with every visible
view in the hierarchy.
Also sets every view in it
as ”tracked”.

viewWillDisappear

Called before the root
view associated with the
view controller disappears
from the screen. [17]

When called, sets all the
views in the hierarchy as
”untracked”.

Table 10: Swizzling for UIViewcontrollers.

UIView UIView is the class from which all the native interface element
classes extend in iOS (similar to the View class in Android). The
swizzling operations performed on this class are therefore meant to

81



handle method calls which require string reports regardless of the type
of view object. The swizzled methods are detailed in Table 11:

Method name Method description Changes applied

didMoveToWindow

Called whenever a view
moves to a new window.
This can occur, for exam-
ple, when the user scrolls
the interface or the view’s
UIViewController is first
created. [14]

When called, the view’s
own textual contents are
reported if the view is a
TextView or UILabel and
is fully visible. Its children
are recursively checked for
visibility and reported if
visible.

setHidden

Called when the view’s
visibility property changes
from visible to invisible
or from invisible to visi-
ble, either through a di-
rect source code call or
other means. This can oc-
cur, for example, when the
user scrolls the interface
or the view’s UIViewCon-
troller is first created.

When called, the view’s
own textual contents are
reported if the view is a
TextView or UILabel and
is fully visible. Its children
are recursively checked for
visibility and reported if
visible.

Table 11: Swizzling for UIViews.

It should be noted that in iOS every object that extends from UIView
may have child views, unlike Android where only Views extending
from the ViewGroup class contain them.

UITextView and UILabel These classes are used to represent text fields
in iOS, similarly to the TextView class in Android [13] [12]. Only the
”setText” method was swapped in these classes, as shown in Table 12.

Method name Method description Changes applied

setText
Called in the source code
to change the textual con-
tents of the view.

When called, the view’s
new textual contents are
reported, if the view is
fully visible.

Table 12: Swizzling for UITextViews.

82



D REST API documentation
This section describes the HTTP methods that make up the Web
Module’s REST API, including their parameters and responses.

POST /uploadassociations
Description:
Receives a dataset of key/value/screenshot associations from a modi-
fied application.

Parameters:

Name Located In Description Required Type

zipfile body

Zip file containing
the screenshots and
a JSON file with
the associations
between the keys,
their values and a
list of the screen-
shots obtained for
them.

YES binary

dataset_name body Name chosen for
the dataset YES string

Responses:

Code 204

Empty r e spons e



POST /submit
Description:
Uploads a project.

Parameters:

Name Located In Description Required Type

project body

Zip file containing
the screenshots and
a JSON file with
the associations

YES binary

platform body The platform of the
uploaded project YES string

Responses:

Code 204

Empty r e spons e

Code 200

Content : Xcodeproj paths / t a r g e t s on each one , i f
the p r o j e c t i s f o r iOS
Example :
{

”/ pro j 1 / pro j 1 . xcodepro j ” : [
” targetA ” ,
” targetB ”

] ,

”/ p ro j 2 / pro j 2 . xcodepro j ” : [
” targetA ” ,
” targetB ”

]
}



POST /transform
Description:
Transforms the last uploaded project by the client IP and returns the
modified version.

Parameters:

Name Located In Description Required Type

platform body The platform of the
uploaded project YES string

Responses:

Code 201

Content : Zip f i l e with the mod i f i ed p r o j e c t



GET /getdatasets
Description:
Returns a list of created datasets for the given application, platform
and version and the number of keys covered by it.

Parameters:

Name Located In Description Required Type

version query The name of the ap-
plication version YES string

platform query The name of the
platform YES string

application query The name of the ap-
plication YES string

Responses:

Code 200

Content : The l i s t o f d a t a s e t s and the number o f
keys covered by each one
{

” ds1 ” : {
” id ” : ”1” ,
” o c c u r r e n c e s \ _covered ” : ”123”

}
,

” ds2 ” : {
” id ” : ”2” ,
” o c c u r r e n c e s \ _covered ” : ”1234”

}
}



GET /styles.css
Description:
Returns the CSS style sheet defined for the web interface.

Parameters:
None.

Responses:

Code 200

Content : The CSS s t y l e sh e e t d e f i n e d f o r the web
i n t e r f a c e .



GET /index.html
Description:
Returns the home page HTML.

Parameters:
None.

Responses:

Code 200

Content : The home page HTML



GET /help.html
Description:
Returns the help page HTML.

Parameters:
None.

Responses:

Code 200

Content : The he lp page HTML



GET /transform.html
Description:
Returns the transform page HTML.

Parameters:
None.

Responses:

Code 200

Content : The t rans fo rm page HTML



GET /about.html
Description:
Returns the about page HTML.

Parameters:
None.

Responses:

Code 200

Content : The about page HTML



GET /datasets.html
Description:
Returns the datasets web page HTML.

Parameters:
None.

Responses:

Code 200

Content : The d a t a s e t s menu HTML page .



DELETE /deletedataset
Description:
Deletes the dataset with the given ID from the database and the file
system.

Parameters:

Name Located In Description Required Type

datasetid query The id of the
dataset YES integer

Responses:

Code 204

Empty r e spons e



GET /datasetdetails.html
Description:
Returns the dataset details web page for the dataset with the given
ID.

Parameters:

Name Located In Description Required Type

datasetid query
The ID of the de-
sired dataset in the
database.

YES integer

Responses:

Code 200

Content : HTML o f the da ta s e t d e t a i l s page , f o r
the g iven da ta s e t



POST /logini18n
Description:
Logs into the i18n platform using the provided credentials and returns
the list of i18n projects that the user has access to.

Parameters:

Name Located In Description Required Type

password body The user’s i18n
password YES string

username body The user’s i18n
username YES string

Responses:

Code 200

Content : The l i s t o f i18n p r o j e c t s that the use r
has a c c e s s to
Example :
[

” group1 ” ,
” group2 ”

]



POST /exporti18n
Description:
Exports a dataset into the i18n platform to the given group, using the
given export mode

Parameters:

Name Located In Description Required Type

group body
The i18n group to
export the dataset
to.

YES string

mode body

The export mode
selected by the
user(delete_all,
add_new or
only_without)

YES string

datasetid body The dataset’s ID in
the database YES integer

Responses:

Code 204

Empty r e spons e

83



E First semester Gantt chart

84





F Second semester Gantt chart

85





G Weekly tasks
This section describes the work done on each week during the in-
ternship. The section was updated according to developments and
conclusions on each week.

G.1 First semester
Week 1: 19/9/2017 - 20/9/2017
Developments and conclusions: The author received an introduc-
tion to the internship structure and objectives. He began researching
the state of the art online.

Week 2: 20/9/2017 - 25/9/2017
Developments and conclusions: The author performed research
about localization and localization support with his tutor and super-
visor, for contextualization purposes. The results were documented.

Week 3: 25/9/2017 - 3/10/2017
Developments and conclusions: No tools were found that sup-
port the automation of screenshot association, although most could
potentially be integrated with it, aside from Pootle. Results were
documented.

Week 4: 3/10/2017 - 9/10/2017
Developments and conclusions: The tools FBInfer, ANTLR and
Codeworker were analyzed summarily. FBInfer was deemed inappro-
priate for the project, due to not supporting code transformations out
of the box, and the author not having experience with functional pro-
gramming, required to modify the tool’s source code.

Week 5: 9/10/2017 - 16/10/2017
Developments and conclusions: Some basic Android key report-
ing use cases were analyzed and handled manually, including Toasts,
Snackbars and AlertDialogs. AlertDialogs were concluded to be a dif-
ficult use case to handle with code transformations. For this purpose,

86



a simple Android login template was modified to test the use cases
(LoginActivity).

Week 6: 16/10/2017 - 23/10/2017
Developments and conclusions: A possible approach to report No-
tifications was explored. Screenshot and key/value association storage
were implemented in the Android library. At this point, a more com-
plex sample application was used (TODO MVP [21]), in order to test
use cases in a more hands-on context. After attempting to detect keys
in this application, a new one was chosen(Plaid [31]).

Week 7: 23/10/2017 - 31/10/2017
Developments and conclusions: Menus were detected as a par-
ticularly difficult use case to handle, due to not being a part of the
normal View hierarchy. This week was mostly dedicated to preparing
the first internship presentation at WIT Software.

Week 8: 1/11/2017 - 7/11/2017
Developments and conclusions: As it was concluded that the pre-
sentation slides could be improved, the author was given feedback and
updated them accordingly this week, in preparation for the interme-
diate presentation at DEI.

Week 9: 7/11/2017 - 14/11/2017
Developments and conclusions: The architecture was defined for
the overall system where the tool will be integrated. It was clarified
that an intermediate web interface was necessary between the platform
and i18n, as the platform may not have Internet access. The interface
will be executed in the implementation machine(computer). A key
ambiguity module was implemented, which modifies the strings.xml
resource files in order to prevent value ambiguities.

Week 10: 14/11/2017 - 20/11/2017
Developments and conclusions: Some simple code transformation
tasks were implemented using both ANTLR (Java) and CodeWorker.

87



The extensive test presented in Appendix A was performed on both
tools. It was concluded that the ANTLR solution was more appro-
priate, due to being more extensible and maintained and the author’s
more extensive experience with the Java programming language.

Week 11: 20/11/2017 - 2/12/2017
Developments and conclusions: The same test was performed on
the ANTLR Python API. It was concluded that the API did not have
the same amount of support and documentation as the Java one, and
did not offer many advantages over it and was therefore disregarded.
Work was started on code transformations for real applications.

Week 12: 2/12/2017 - 10/12/2017
Developments and conclusions: Code transformations were im-
plemented for the basic functionalities that could be supported by
adding the ”onPostResume” code fragment. The Android library’s
export module was implemented, along with the REST interface’s
method to receive the files. A simple debug web page was created
to keep track of reported keys and their associated screenshots. The
Java Spark micro web framework [22] was chosen due to its simplicity,
and the project’s use case not justifying the use of more powerful tools.

Week 13: 10/12/2017 - 18/12/2017
Developments and conclusions: AlertDialogs, Snackbar and Toast
handling with code transformations was explored. Wrapper classes
were implemented as a working solution, and the Code Transforma-
tion module was modified to replace class references.

Week 14: 18/12/2017 - 27/12/2017
Developments and conclusions: During the weekly meeting, it was
concluded that keys that appear in the source code more than once
can cause issues in coverage assessment, as they require the reporting
of a given key more than once to achieve full coverage. A solution was
implemented which divided these keys into multiple ”subkeys” and re-
placed the key references across the source code. An issue was found

88



in the handling of menus, which prevented them from appearing in
screenshots properly.

Week 15: 27/12/2017 - 2/1/2018
Developments and conclusions: A working solution was imple-
mented for handling menus, using the ”MediaProjection” library and
screenshots of the whole screen.

Week 16: 2/1/2018 - 5/1/2018
Developments and conclusions: This week was spent testing the
tool for multiple applications, and registering key coverage achieved
so far.

Week 17: 5/1/2018 - 15/1/2018
Developments and conclusions: This week was dedicated to writ-
ing the intermediate report.

Week 18: 15/1/2018 - 22/1/2018
Developments and conclusions: This week was dedicated to fin-
ishing the intermediate report and reviewing it, along with the WIT
tutor and supervisor, and the DEI supervisor.

Week 19: 22/1/2018 - 29/1/2018
Developments and conclusions: During this week, some final re-
visions were made to the intermediate report and work on the tool’s
export module for the i18n platform was started.

G.2 Second semester
Week 20: 12/2/2018 - 19/2/2018
Developments and conclusions: The i18n export module was fin-
ished and a basic web UI was created using HTML and JavaScript.
Some of the revisions mentioned during the intermediate presenta-
tion were made to the internship report. Exploration of sample iOS

89



projects was also started.

Week 21: 19/2/2018 - 26/2/2018
Developments and conclusions: During the weekly meeting, it
was decided that the i18n export module should have three export
modes defined and that multiple association datasets should be stored
for each application and platform (more details in the Architecture
section of the report). The module was changed to incorporate the
export modes and work was started on the persistence submodule to
store and manage the datasets in an SQLite database.

Week 22: 26/2/2018 - 5/3/2018
Developments and conclusions: Work was finished on the per-
sistence submodule. The iOS export module was started using the
Alamofire library [1] in Swift.

Week 23: 5/3/2018 - 12/3/2018
Developments and conclusions: The export module was finished,
along with the screenshot capture iOS submodule. Wrapper classes
were studied as a possible approach for the implementation of the code
transformations in iOS.

Week 24: 12/3/2018 - 19/3/2018
Developments and conclusions: The iOS settings bundle was de-
fined as the entry point for the iOS user event that triggers the as-
sociations export action. The user action was implemented and more
iOS use cases were analyzed.

Week 25: 19/3/2018 - 26/3/2018
Developments and conclusions: After a meeting with an iOS de-
veloper from WIT, it was concluded that method swizzling was a bet-
ter approach for handling transformations in iOS, due to being less
error-prone and covering more cases. The author began exploring the
mechanism. During this week, the tool was also tested on a WIT

90



Android project. Bugs were reported and fixed and it was concluded
that a better approach needed to be used to handle ambiguities, due
to the current approach being too disruptive when traversing the UI.

Week 26: 2/4/2018 - 9/4/2018
Developments and conclusions: During the weekly meeting, ap-
proaches were discussed to handle key ambiguities in a less intrusive
way. It was decided that value-based ambiguities would be solved by
changing only the final characters in each string. After experimenting
with various approaches, it was decided keys with multiple occurrences
would be handled by checking if they were already reported in the cur-
rent UI context, using a hash algorithm on the view hierarchy.

Week 27: 9/4/2018 - 16/4/2018
Developments and conclusions: Swizzling operations were experi-
mented with in the Wikipedia iOS app. The library was converted to
a CocoaPod for easier injection in the projects.

Week 28: 16/4/2018 - 23/4/2018
Developments and conclusions: The swizzling operations required
to handle the explored use cases were defined. Podfile transformations
were implemented by modifying a Ruby grammar from the ANTLR
grammar repository. Work was started on the injection of a custom
settings bundle package in the projects to handle the iOS user event.

Week 29: 23/4/2018 - 30/4/2018
Developments and conclusions: An ANTLR grammar was cre-
ated to perform transformations on Xcode pbxproj files, in order to
include the settings bundle package. The iOS transformation module
was tested on other apps.

Week 30: 30/4/2018 - 7/5/2018
Developments and conclusions: During this week, the author

91



made some revisions on the internship report. Key coverage was ac-
cessed on the Wikipedia iOS application to evaluate progress at that
point. It was concluded that only views which were partially ob-
structed by others were not being handled properly.

Week 31: 7/5/2018 - 14/5/2018
Developments and conclusions: During the meeting, it was con-
cluded that the datasets should be associated with individual applica-
tion versions on the same platform. The web module was changed to
incorporate the changes, and the Gradle file code analysis was changed
to be able to read versions across multiple product flavors.

Week 32: 14/5/2018 - 21/5/2018
Developments and conclusions: During the meeting, it was de-
cided that the web module should be able to run in a web container
(the tool only ran using the embedded Jetty server from Spark at this
point) and on a WIT-Software cloud. Changes were made to the web
module to incorporate the changes.

Week 33: 21/5/2018 - 28/5/2018
Developments and conclusions: The cloud was set up with the
tool’s dependencies. Various Python scripts were created to export
the application in both standalone mode and in a container (tested on
Wildfly). Minor usability fixes were done on the web interface. Work
was started on the tool’s configuration and usage manual.

Week 34: 28/5/2018 - 4/6/2018
Developments and conclusions: The help menu was added to the
web interface. The manual was finished, including small changes to
reflect interface updates. During the meeting, it was decided that the
tool would be assessed and undergo changes with the assistance of
Software Engineer Duarte Costa from WIT.

92



Week 35: 4/6/2018 - 11/6/2018
Developments and conclusions: During this week, small usability
issues were fixed in the web interface, and the tool was tested on a
WIT iOS project. Errors were found and fixed.in the Podfile transfor-
mations.

Week 36: 11/6/2018 - 18/6/2018
Developments and conclusions: During this week, it was decided
that the tool should make it possible to list and select Xcode proj
files and targets within the submitted project before the transforma-
tion process, which required the implementation of additional pbxproj
code analysis steps. The week was also spent working on the intern-
ship report.

Week 37: 18/6/2018 - 25/6/2018
Developments and conclusions: This week was mostly spent work-
ing on the report, with the additional fixing of some errors in the iOS
transform module.

Week 37: 18/6/2018 - 25/6/2018
Developments and conclusions: This week was mostly spent work-
ing on the report.

93





References
[1] Alamofire - github repository. https://github.com/Alamofire/

Alamofire.
Accessed: 24/06/2018.

[2] Android documentation - activity. https://developer.
android.com/reference/android/app/Activity.html.
Accessed: 29/9/2017.

[3] Android documentation - snackbar. https://developer.
android.com/reference/android/support/design/widget/
Snackbar.html.
Accessed: 11/12/2017.

[4] Android documentation - textwatchers. https://developer.
android.com/reference/android/text/TextWatcher.html.
Accessed: 17/11/2017.

[5] Android documentation - toast. https://developer.android.
com/reference/android/widget/Toast.html.
Accessed: 11/12/2017.

[6] Android documentation - view. https://developer.android.
com/reference/android/view/View.html.
Accessed: 3/10/2017.

[7] Android documentation - viewgroup. https://developer.
android.com/reference/android/view/ViewGroup.html.
Accessed: 3/10/2017.

[8] Android multi-language app. https:
//www.androidhive.info/2014/07/
android-building-multi-language-supported-app/.
Accessed: 28/3/2018.

[9] Antlr eclipse plugin repository and tutorial. https://github.
com/antlr4ide/antlr4ide.
Accessed: 10/11/2017.

[10] Antlr grammars github repository. https://github.com/antlr/
grammars-v4.
Accessed: 11/10/2017.

94

https://github.com/Alamofire/Alamofire
https://github.com/Alamofire/Alamofire
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/support/design/widget/Snackbar.html
https://developer.android.com/reference/android/support/design/widget/Snackbar.html
https://developer.android.com/reference/android/support/design/widget/Snackbar.html
https://developer.android.com/reference/android/text/TextWatcher.html
https://developer.android.com/reference/android/text/TextWatcher.html
https://developer.android.com/reference/android/widget/Toast.html
https://developer.android.com/reference/android/widget/Toast.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/View.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://developer.android.com/reference/android/view/ViewGroup.html
https://www.androidhive.info/2014/07/android-building-multi-language-supported-app/
https://www.androidhive.info/2014/07/android-building-multi-language-supported-app/
https://www.androidhive.info/2014/07/android-building-multi-language-supported-app/
https://github.com/antlr4ide/antlr4ide
https://github.com/antlr4ide/antlr4ide
https://github.com/antlr/grammars-v4
https://github.com/antlr/grammars-v4


[11] Apple documentation - nsobject load() method. https:
//developer.apple.com/documentation/objectivec/
nsobject/1418815-load?language=objc.
Accessed: 24/06/2018.

[12] Apple documentation - uilabel class. https://developer.
apple.com/documentation/uikit/uilabel?changes=_2.
Accessed: 24/06/2018.

[13] Apple documentation - uitextview class. https://developer.
apple.com/documentation/uikit/uitextview.
Accessed: 24/06/2018.

[14] Apple documentation - uiview didmovetowindow method.
https://developer.apple.com/documentation/uikit/
uiview/1622527-didmovetowindow.
Accessed: 24/06/2018.

[15] Apple documentation - uiviewcontroller class. https:
//developer.apple.com/documentation/uikit/
uiviewcontroller.
Accessed: 24/06/2018.

[16] Apple documentation - uiviewcontroller viewdidappear method.
https://developer.apple.com/documentation/uikit/
uiviewcontroller/1621423-viewdidappear.
Accessed: 24/06/2018.

[17] Apple documentation - uiviewcontroller viewwilldisappear
method. https://developer.apple.com/documentation/
uikit/uiviewcontroller/1621485-viewwilldisappear.
Accessed: 24/06/2018.

[18] Cocoapods website. https://cocoapods.org/.
Accessed: 24/06/2018.

[19] Early Years of Unicode. https://www.unicode.org/history/
earlyyears.html.
Accessed: 5/6/2018.

[20] Github - news application sample app for ios. https://github.
com/yavuz/News-Application.
Accessed: 2/04/2018.

95

https://developer.apple.com/documentation/objectivec/nsobject/1418815-load?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/1418815-load?language=objc
https://developer.apple.com/documentation/objectivec/nsobject/1418815-load?language=objc
https://developer.apple.com/documentation/uikit/uilabel?changes=_2
https://developer.apple.com/documentation/uikit/uilabel?changes=_2
https://developer.apple.com/documentation/uikit/uitextview
https://developer.apple.com/documentation/uikit/uitextview
https://developer.apple.com/documentation/uikit/uiview/1622527-didmovetowindow
https://developer.apple.com/documentation/uikit/uiview/1622527-didmovetowindow
https://developer.apple.com/documentation/uikit/uiviewcontroller
https://developer.apple.com/documentation/uikit/uiviewcontroller
https://developer.apple.com/documentation/uikit/uiviewcontroller
https://developer.apple.com/documentation/uikit/uiviewcontroller/1621423-viewdidappear
https://developer.apple.com/documentation/uikit/uiviewcontroller/1621423-viewdidappear
https://developer.apple.com/documentation/uikit/uiviewcontroller/1621485-viewwilldisappear
https://developer.apple.com/documentation/uikit/uiviewcontroller/1621485-viewwilldisappear
https://cocoapods.org/
https://www.unicode.org/history/earlyyears.html
https://www.unicode.org/history/earlyyears.html
https://github.com/yavuz/News-Application
https://github.com/yavuz/News-Application


[21] googlesamples/android-architecture. https://github.com/
googlesamples/android-architecture/tree/todo-mvp/.
Accessed: 3/10/2017.

[22] Java spark homepage. http://sparkjava.com/.
Accessed: 8/12/2017.

[23] Leafpic github repository. https://github.com/HoraApps/
LeafPic.
Accessed: 27/12/2017.

[24] Localizing with resources. https://developer.android.com/
guide/topics/resources/localization.html.
Accessed: 15/2/2018.

[25] Maroun bassam - must know: Unicode and character sets: Ascii,
unicode and utf-8. http://marounbassam.blogspot.com/2016/
02/must-know-unicode-and-character-sets.html?spref=
tw.
Accessed: 19/2/2018.

[26] Microsoft developer network - about domain specific languages.
https://msdn.microsoft.com/en-us/library/bb126278.
aspx.
Accessed: 2/1/2018.

[27] Microsoft docs - units of measurement. https:
//docs.microsoft.com/en-us/globalization/locale/
units-of-measurement.
Accessed: 1/2/2018.

[28] Multilizer - delphi and c++builder. http://help.multilizer.
com/devzone/delphi-cbuilder/.
Accessed: 25/9/2017.

[29] Multilizer - features. http://www2.multilizer.com/
features/.
Accessed: 22/9/2017.

[30] NShipster - Method Swizzling. http://nshipster.com/
method-swizzling/.
Accessed: 5/6/2018.

[31] Plaid application repository. https://github.com/
nickbutcher/plaid.
Accessed: 18/10/2017.

96

https://github.com/googlesamples/android-architecture/tree/todo-mvp/
https://github.com/googlesamples/android-architecture/tree/todo-mvp/
http://sparkjava.com/
https://github.com/HoraApps/LeafPic
https://github.com/HoraApps/LeafPic
https://developer.android.com/guide/topics/resources/localization.html
https://developer.android.com/guide/topics/resources/localization.html
http://marounbassam.blogspot.com/2016/02/must-know-unicode-and-character-sets.html?spref=tw
http://marounbassam.blogspot.com/2016/02/must-know-unicode-and-character-sets.html?spref=tw
http://marounbassam.blogspot.com/2016/02/must-know-unicode-and-character-sets.html?spref=tw
https://msdn.microsoft.com/en-us/library/bb126278.aspx
https://msdn.microsoft.com/en-us/library/bb126278.aspx
https://docs.microsoft.com/en-us/globalization/locale/units-of-measurement
https://docs.microsoft.com/en-us/globalization/locale/units-of-measurement
https://docs.microsoft.com/en-us/globalization/locale/units-of-measurement
http://help.multilizer.com/devzone/delphi-cbuilder/
http://help.multilizer.com/devzone/delphi-cbuilder/
http://www2.multilizer.com/features/
http://www2.multilizer.com/features/
http://nshipster.com/method-swizzling/
http://nshipster.com/method-swizzling/
https://github.com/nickbutcher/plaid
https://github.com/nickbutcher/plaid


[32] Pootle documentation. http://docs.translatehouse.org/
projects/pootle/en/stable-2.8.x/.
Accessed: 21/9/2017.

[33] Pootle features. http://docs.translatehouse.org/projects/
pootle/en/stable-2.8.x/features/index.html.
Accessed: 21/9/2017.

[34] Quick starter on parser grammars - no past experience required.
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/
pages/2687210/Quick+Starter+on+Parser+Grammars+-+No+
Past+Experience+Required.
Accessed: 2/1/2018.

[35] A simple approach to access localized resources in windows store
apps. https://marcominerva.wordpress.com/2013/02/09/
a-simple-class-to-access-localized-resources-in-windows-store-apps/.

Accessed: 16/2/2018.

[36] Stack Overflow post by user INgeek about UTF character
encodings. https://stackoverflow.com/questions/2241348/
what-is-unicode-utf-8-utf-16#answer-41708331.
Accessed: 5/6/2018.

[37] Text united - features. https://www.textunited.com/
software-localization/.
Accessed: 25/9/2017.

[38] Transifex - api. https://docs.transifex.com/api/
introduction.
Accessed: 25/9/2017.

[39] Transifex - features. https://www.transifex.com/features/.
Accessed: 25/9/2017.

[40] W3C - Localization vs Internationalization. https://www.w3.
org/International/questions/qa-i18n.
Accessed: 17/06/2018.

[41] W3C - Script direction and languages. https://www.w3.org/
International/questions/qa-scripts.
Accessed: 1/2/2018.

97

http://docs.translatehouse.org/projects/pootle/en/stable-2.8.x/
http://docs.translatehouse.org/projects/pootle/en/stable-2.8.x/
http://docs.translatehouse.org/projects/pootle/en/stable-2.8.x/features/index.html
http://docs.translatehouse.org/projects/pootle/en/stable-2.8.x/features/index.html
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687210/Quick+Starter+on+Parser+Grammars+-+No+Past+Experience+Required
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687210/Quick+Starter+on+Parser+Grammars+-+No+Past+Experience+Required
https://theantlrguy.atlassian.net/wiki/spaces/ANTLR3/pages/2687210/Quick+Starter+on+Parser+Grammars+-+No+Past+Experience+Required
https://marcominerva.wordpress.com/2013/02/09/a-simple-class-to-access-localized-resources-in-windows-store-apps/
https://marcominerva.wordpress.com/2013/02/09/a-simple-class-to-access-localized-resources-in-windows-store-apps/
https://stackoverflow.com/questions/2241348/what-is-unicode-utf-8-utf-16#answer-41708331
https://stackoverflow.com/questions/2241348/what-is-unicode-utf-8-utf-16#answer-41708331
https://www.textunited.com/software-localization/
https://www.textunited.com/software-localization/
https://docs.transifex.com/api/introduction
https://docs.transifex.com/api/introduction
https://www.transifex.com/features/
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-i18n
https://www.w3.org/International/questions/qa-scripts
https://www.w3.org/International/questions/qa-scripts


[42] What is a backlog? | agile alliance. https:
//www.agilealliance.org/glossary/backlog/#q=
~(filters~(postType~(~'page~'post~'aa_book~'aa_
event_session~'aa_experience_report~'aa_glossary~'
aa_research_paper~'aa_video)~tags~(~'backlog)
)~searchTerm~'~sort~false~sortDirection~'asc~page~1).
Accessed: 10/1/2017.

[43] Wikipedia ios app github. https://github.com/wikimedia/
wikipedia-ios.
Accessed: 17/06/2018.

[44] Wichmann B.A., Canning A.A., Clutterbuck D.L., Winsborrow
L.A., Ward N.J., and Marsh D.W.R. Industrial perspective on
static analysis. Software Engineering Journal ( Volume: 10, Issue:
2, pp 69 - 75, March 1995 ).
Accessed: 20/9/2017.

[45] Carrie Cousins. Color and cultural design considera-
tions. https://www.webdesignerdepot.com/2012/06/
color-and-cultural-design-considerations/.
Accessed: 1/2/2018.

[46] Laurent Etiemble. Monobjc - xcode project file format. http:
//www.monobjc.net/xcode-project-file-format.html.
Accessed: 2/05/2018.

[47] Cedric Lemaire. Codeworker discontinued. http://www.
codeworker.org/download-codeworker.
Accessed: 22/10/2017.

[48] Cedric Lemaire. Codeworker tutorial. http://codeworker.
free.fr/tutorials/DesignSpecificModeling/tutorial.
html.
Accessed: 22/10/2017.

[49] Cedric Lemaire. A universal parsing tool & a source code gener-
ator. http://codeworker.free.fr/.
Accessed: 22/10/2017.

[50] Terrence Parr. About the antlr parser generator. http://www.
antlr.org/about.html.
Accessed: 11/10/2017.

98

https://www.agilealliance.org/glossary/backlog/#q=~(filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'backlog))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/backlog/#q=~(filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'backlog))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/backlog/#q=~(filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'backlog))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/backlog/#q=~(filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'backlog))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/backlog/#q=~(filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'backlog))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://www.agilealliance.org/glossary/backlog/#q=~(filters~(postType~(~'page~'post~'aa_book~'aa_event_session~'aa_experience_report~'aa_glossary~'aa_research_paper~'aa_video)~tags~(~'backlog))~searchTerm~'~sort~false~sortDirection~'asc~page~1)
https://github.com/wikimedia/wikipedia-ios
https://github.com/wikimedia/wikipedia-ios
https://www.webdesignerdepot.com/2012/06/color-and-cultural-design-considerations/
https://www.webdesignerdepot.com/2012/06/color-and-cultural-design-considerations/
http://www.monobjc.net/xcode-project-file-format.html
http://www.monobjc.net/xcode-project-file-format.html
http://www.codeworker.org/download-codeworker
http://www.codeworker.org/download-codeworker
http://codeworker.free.fr/tutorials/DesignSpecificModeling/tutorial.html
http://codeworker.free.fr/tutorials/DesignSpecificModeling/tutorial.html
http://codeworker.free.fr/tutorials/DesignSpecificModeling/tutorial.html
http://codeworker.free.fr/
http://www.antlr.org/about.html
http://www.antlr.org/about.html


[51] WIT Software. Why wit.
https://www.wit-software.com/company/why-wit/, 2015.
Accessed: 13/11/2017.

99

https://www.wit-software.com/company/why-wit/

	Introduction
	Motivation
	Objectives
	Report structure

	State of the art
	Internationalization practices
	String encoding
	UI elements separation from source code
	Key/Value approach
	Locale hierarchy

	Platform internationalization support
	Android
	iOS

	Localization (l10n) platforms and support tools
	Pootle
	Description
	Features

	Multilizer
	Features

	Transifex
	Features

	Text United
	Features

	WIT Software solution (i18n)
	Feature comparison and conclusions

	Code analysis and transformation tools
	Parser generators
	Description and features
	Advantages
	Limitations
	Description and features
	Advantages
	Limitations

	Static analysis tools
	Infer advantages
	Infer limitations

	Specialized code transformation tools
	CodeWorker advantages
	CodeWorker limitations
	DMS SRT advantages
	DMS SRT limitations
	Spoon advantages
	Spoon limitations

	Code transformation tool analysis
	Use a specialized code transformation tool
	Build a new parser for each platform
	Modify an existing static analysis tool



	Project management
	Software development lifecycle
	First semester tasks
	Completion assessment

	Second semester tasks
	Completion assessment

	Success metrics

	Requirements
	Functional
	Non-functional

	Architecture
	Transformation module
	Generic transformations
	Platform-specific transformations

	Modified application project
	Platform-specific libraries
	Web module
	Web interface
	HTTP interface
	Persistence submodule

	Export module(i18n)
	Translation platform(i18n)

	Code analysis and transformation
	Transformation patterns
	Reflection approach (method swizzling)
	Event driven approach
	Class wrappers


	Android (Java)
	Other transformations

	iOS (Objective-C)
	Other transformations
	Support library injection
	Settings.bundle injection


	String ambiguity handling
	Prevention of repeated string reports

	Testing and evaluation
	Unit tests
	Web module
	Transform module
	Support libraries

	Integration tests
	Usability tests
	String coverage tests
	Analysis


	Conclusion
	Work done
	Future work
	Web module
	Transformation module and support libraries

	Final thoughts

	Appendices
	Internship context
	Tests performed on the code analysis and transformation tools
	Test performed
	ANTLR procedures
	ANTLR (Python)
	Steps taken


	CodeWorker procedures
	Steps taken by the rule
	Test analysis



	Implementation details
	ParseTreeWalker
	ANTLR listeners
	TokenStreamRewriter


	Android use cases
	General case
	Creating or resuming an activity
	Changing a TextView's textual contents
	ViewPagers and TabLayouts
	Dialogs, Snackbars and Toasts
	Menus


	iOS use cases
	UIViewController
	UIView
	UITextView and UILabel



	REST API documentation
	First semester Gantt chart
	Second semester Gantt chart
	Weekly tasks
	First semester
	Week 1: 19/9/2017 - 20/9/2017
	Week 2: 20/9/2017 - 25/9/2017
	Week 3: 25/9/2017 - 3/10/2017
	Week 4: 3/10/2017 - 9/10/2017
	Week 5: 9/10/2017 - 16/10/2017
	Week 6: 16/10/2017 - 23/10/2017
	Week 7: 23/10/2017 - 31/10/2017
	Week 8: 1/11/2017 - 7/11/2017
	Week 9: 7/11/2017 - 14/11/2017
	Week 10: 14/11/2017 - 20/11/2017
	Week 11: 20/11/2017 - 2/12/2017
	Week 12: 2/12/2017 - 10/12/2017
	Week 13: 10/12/2017 - 18/12/2017
	Week 14: 18/12/2017 - 27/12/2017
	Week 15: 27/12/2017 - 2/1/2018
	Week 16: 2/1/2018 - 5/1/2018
	Week 17: 5/1/2018 - 15/1/2018
	Week 18: 15/1/2018 - 22/1/2018
	Week 19: 22/1/2018 - 29/1/2018


	Second semester
	Week 20: 12/2/2018 - 19/2/2018
	Week 21: 19/2/2018 - 26/2/2018
	Week 22: 26/2/2018 - 5/3/2018
	Week 23: 5/3/2018 - 12/3/2018
	Week 24: 12/3/2018 - 19/3/2018
	Week 25: 19/3/2018 - 26/3/2018
	Week 26: 2/4/2018 - 9/4/2018
	Week 27: 9/4/2018 - 16/4/2018
	Week 28: 16/4/2018 - 23/4/2018
	Week 29: 23/4/2018 - 30/4/2018
	Week 30: 30/4/2018 - 7/5/2018
	Week 31: 7/5/2018 - 14/5/2018
	Week 32: 14/5/2018 - 21/5/2018
	Week 33: 21/5/2018 - 28/5/2018
	Week 34: 28/5/2018 - 4/6/2018
	Week 35: 4/6/2018 - 11/6/2018
	Week 36: 11/6/2018 - 18/6/2018
	Week 37: 18/6/2018 - 25/6/2018
	Week 37: 18/6/2018 - 25/6/2018




