
Master’s Degree in Informatics Engineering
Thesis
Final Report

Elastic Microservices Platform

Designing a Platform for Implementing Microservices-based Elastic
Systems for Deployment in Cloud Environments

Fábio de Carvalho Ribeiro
fdcr@student.dei.uc.pt

Supervisor:

Prof. Filipe João Boavida Mendonça Machado de Araújo

Co-Supervisors:

Prof. Rui Pedro Pinto de Carvalho e Paiva
Prof. António Jorge Silva Cardoso

September 3, 2018

Abstract

The decision to use the cloud is appealing because it is
usually associated with lowered costs and simplified deployment
and management. A Platform as a Service (PaaS) provides
such services by allowing users to develop, run and manage
their applications without the need to build and maintain their
own infrastructure.

Ensuring that the user’s applications are able to automat-
ically and elastically scale, requires some additional configu-
ration. The existing platforms that provide such services are
proprietary and rely on user-made rules to achieve their elastic
and scaling capabilities. They do not perform an automatic
analysis that provides a global vision over the applications to
the user.

Our platform aims to provide automatic and elastic scal-
ing of deployed applications. In the future, with tracing and
a scheduling algorithm, we will achieve an automatic analy-
sis that provides a global vision over the applications to the
users. To experiment our approach, an open source platform
for implementing microservices-based systems for deployment
in cloud environments was designed and implemented. This
platform achieves great scaling capabilities and allows users to
deploy and manage their applications in a simple way.

Keywords

Microservices, Cloud, Scalability, Elasticity, Tracing.

i

Resumo

A decisão de utilizar a cloud é apelativa porque está habit-
ualmente associada a custos reduzidos e a uma simplificação
de instalação e manutenção. Uma Plataforma como Serviço
(PaaS) fornece tais serviços permitindo os utilizadores desen-
volverem, correrem e gerirem as suas aplicações sem a necessi-
dade de construir e manter a sua própria infraestrutura.

Certificar que as aplicações dos utilizadores permitem es-
calar elasticamente e automaticamente, requer alguma con-
figuração adicional. As plataformas existentes que fornecem
tais serviços são proprietárias e baseiam-se em regras feitas pe-
los utilizadores para alcançarem as suas capacidades elásticas
e escaláveis. Elas não realizam uma análise automatica que
fornece uma visão global sobre os microserviços ao utilizador.

A nossa plataforma visa fornecer uma escalabilidade elástica
e automatica às aplicações instaladas. No futuro, com tracing
e um algoritmo de decisão, iremos alcançar uma análise au-
tomática que irá fornecer uma visão global sobre as aplicações
para os utilizadores. Para testar a nossa abordagem, uma
plataforma open source para implementação de sistemas basea-
dos em microserviços para instalação em ambientes de cloud foi
projetada e implementada. Esta plataforma alcança elevadas
capacidades de escalabilidade e permite aos utilizador fazerem
a instalação e gestão das suas aplicações de uma maneira sim-
ples.

Palavras-Chave

Microserviços, Cloud, Escalabilidade, Elasticidade, Trac-
ing.

iii

Acknowledgements

This thesis would not have been possible without the help and contributions of a special
group of people.

I would like to first thank the supervisor of this thesis, Professor Filipe Araújo. He
was of the most importance in the work developed. His knowledge, help and guidance
throughout the entire journey were necessary for the success of this thesis. Eng. Jaime
Correia, was also crucial for the success of this thesis. He was always willing to help,
offering his vast knowledge and ideas to improve the work performed. I would like to
thank him for all his help and contributions to this thesis. Prof. Rui Paiva and Prof.
Jorge Cardoso were also important for the development of this work and deserve proper
mention. Their help during the meetings performed to evaluate the state of the project
was appreciated. I am also thankful to my colleagues Fábio Pina, Bruno Lopes and Artur
Pedroso for their contributions during the meetings.

I would like to express my profound gratitude to my parents. I would not me able to
successfully complete this thesis without their support and advices during my academic
course. They gave me the chance to have a higher education and for that I am truly
thankful for them. To all my friends and family, thank you for all the support that was
provided to me during this journey.

Finally, I would like thank my girlfriend, Ingrid Oliveira, for always believing and
encouraging me, even in the hardest times.

v

This work was carried out under the project PTDC/EEI-ESS/1189/2014 — Data
Science for Non-Programmers, supported by COMPETE 2020, Portugal 2020-POCI, UE-
FEDER and FCT.

vii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 1

1.3 Results . 2

1.4 Work Plan . 3

1.5 Collaborators . 6

1.6 Document Scope . 6

2 Background 9

2.1 Concepts . 9

2.1.1 Microservices . 9

2.1.2 Scalability . 11

2.1.3 Elasticity . 12

2.2 Technologies . 12

2.2.1 Docker . 12

2.2.2 Kubernetes . 14

2.2.3 Amazon EC2 . 15

2.2.4 AWS Elastic Beanstalk . 16

2.2.5 Amazon Elastic Container Service 16

3 Architecture Description 19

3.1 Requirements . 19

3.1.1 Functional Requirements . 20

3.1.2 Quality Attributes . 21

3.2 Proposed Architecture . 24

3.2.1 Context Diagram . 24

3.2.2 Containers Diagram . 25

3.2.3 Components Diagram . 27

3.2.4 Chosen technologies . 28

4 Implementation 31

4.1 Microservices Application . 31

4.1.1 Original Project . 31

4.1.2 Architecture . 32

4.1.3 Users Microservice . 33

4.1.4 Songs Microservice . 33

4.1.5 Playlists Microservice . 33

4.1.6 Main App Gateway . 34

4.1.7 Running everything on containers 34

4.2 EMP CLI . 35

4.3 EMP Server . 37

ix

Chapter 0

4.3.1 EMP Server Module . 38
4.3.2 Cluster Manager Module . 39
4.3.3 Kubernetes Controller Module . 39

4.4 Scheduler . 39
4.5 Container and Cluster Manager . 40

4.5.1 Kubernetes in Bare Metal . 41
4.5.2 Kubernetes in GKE . 42

4.6 Microservices Application Instrumentation 45
4.7 EMP Detailed Overview . 47
4.8 EMP Service Requirements Specification . 48

5 Experiments 51

6 Conclusion 53

x

List of Figures

1.1 Gantt Chart for the First Semester . 4
1.2 Kanban board for the second semester . 4
1.3 Gantt chart for the second semester . 5

2.1 Monoliths and Microservices[34] . 10
2.2 Monoliths and Microservices Database Organization[34] 10
2.3 Docker Container Diagram[4] . 12
2.4 Docker’s Architecture[4] . 13
2.5 Auto Scaling Group Illustration[27] . 15
2.6 Elastic Beanstalk Workflow[28] . 16
2.7 Amazon ECS Basic Components[25] . 17

3.1 EMP Context Diagram (C1) . 24
3.2 EMP Containers Diagram (C2) . 25
3.3 EMP Components Diagram (C3) . 27
3.4 Kubernetes Pod Startup Latency[39] . 29
3.5 Kubernetes API Call Latencies - 5000 Node Cluster[39] 30

4.1 Microservices Application Architecture . 32
4.2 EMP CLI Overview . 35
4.3 EMP Control API Overview . 37
4.4 EMP Server Files . 38
4.5 EMP Kubernetes Overview . 44
4.6 EMP custom decorator usage example . 46
4.7 EMP Detailed Overview . 47

xi

List of Tables

3.1 Utility Tree . 22

xiii

Acronyms

CLI Command Line Interface. 2, 16, 35, 38, 44, 48, 51–54

DEI Department of Informatics Engineering. 5, 40–42

EMP Elastic Microservices Platform. 1–3, 5, 6, 19–26, 28, 31, 35, 37–46, 48, 51–54

gcloud Google Cloud Shell. 43

GKE Google Kubernetes Engine. x, 5, 6, 42–44, 52

PaaS Platform as a Service. i

SLA’s Service Level Agreements. 15

UUID Universally Unique Identifier. 39

xv

Chapter 1

Introduction

This document presents the Master Thesis in Informatics Engineering, of the stu-
dent Fábio de Carvalho Ribeiro during the school year of 2017/2018, taking place in the
Department of Informatics Engineering of the University of Coimbra

1.1 Motivation

The existing platforms that allow users to deploy and scale their applications in the
cloud, such as Amazon’s EC2 or Beanstalk, are proprietary and rely on user made rules to
achieve their elastic and scaling capabilities. They do not perform an automatic analysis
that provides a global vision over the applications to the users. Since there is no automatic
analysis, users must specify rules for their applications to scale according to those. Each
application is treated independently and this can affect their scaling capabilities. A simple
example to illustrate this is as it follows: Imagine there is a service A and B running, in
which A depends on B. If service B starts to have some problems it will impact service A’s
performance. Current market solutions are not able to automatically detect that service
A is getting slower due to service B. In this case, allocating the proper resources to service
B would increase the performance of both services but such conclusions are not possible
without a global vision over the applications.

1.2 Objectives

To solve the issues mentioned in section 1.1, and to fill the market’s gap, an open-
source platform for implementing microservices-based systems for deployment in cloud
environments is going to be designed and implemented. This platform will offer a global
vision over the entire application, providing an automatic elastic scaling over the sev-
eral microservices that compose that application through enough tracing and a decision
algorithm. Tracing is a sophisticated use of logging that can monitor information regard-
ing a program execution. The platform will take into account workload metrics, such as
throughput, latency or availability and provide automatic elastic scaling without the need
for specific user made rules. After an application is deployed, the user no longer needs to
worry about its scaling needs because the platform will take care of that automatically.

A global vision over the applications that are running inside the Elastic Microservices
Platform (EMP) will be provided to the users and management decisions will be done

1

Chapter 1

taking that into account. Tracing capabilities are necessary to have that global vision over
the applications. This traces will be used by a decision algorithm that will be responsible
for making resource allocation decisions. This decision algorithm is important because it
is responsible for the system’s elasticity by scaling according to accurate traces that model
the system’s performance. This algorithm will have the applications tracing information
as input, analyzing it and decide the need to scale up or down an application based on its
information.

The main goal of this thesis is to design and implement an entire open source plat-
form that is capable of achieving great scaling capabilities without user made rules. This
work will be used by Eng. Jaime Correia for his doctoral program, so the entire system
implemented must be as functional as possible. The only component that will not be
implemented is the Scheduler Algorithm which will be Eng. Jaime Correia doing it. The
platform implemented should achieve great scaling capabilities and allow users to deploy
and manage their application in a simple way. After the user deploys an application,
the platform will make sure it stays running and allow end users to consume them. The
Scheduler component that Eng. Jaime Correia will develop will be responsible to auto-
matically analyze the applications tracing information and perform a decision on whether
it is necessary to scale up or down a specific application. This means that the EMP must
be prepared to receive such commands although the Scheduler component will be imple-
mented later. In the end, the EMP must be fully functional and allow a simple integration
with the future development of the Scheduler component.

It is necessary to specify a set of requirements that users must satisfy in order to achieve
elastic scalability automatically. It is also necessary to abstract the infrastructure and
resources and have well defined interfaces to achieve a high level of modularity regarding
the tracing component and the decision algorithm. This allows for the possibility to swap
components if necessary.

After the implementation, it is necessary to test, optimize and validate the system
to achieve a better performance and efficiency. To do so, a testing system has to be
implemented to perform quality tests that can be later used for its validation.

1.3 Results

The work performed in this thesis satisfies the objectives that were proposed. In the
end, an open-source platform for implementing microservices-based systems for deploy-
ment in cloud environments was designed and implemented.

The EMP has a Command Line Interface (CLI) for users to deploy and manage their
applications. This CLI communicates directly with the EMP server component which is
responsible for all the logic to operate a Kubernetes cluster and to store the platforms
state. This Kubernetes cluster is where all the users applications will be running and is
responsible to both manage them and to manage the infrastructure resources. The users
applications that are instrumented, send their traces over Kafka, that is running inside
Kubernetes. There is a Zipkin server also running inside the Kubernetes cluster that is
responsible to collect those traces from Kafka and to present them to users in its UI.

This platform achieves great scalability and was designed and implemented to be highly
modular. In case a user is using our open source platform and wants to change Kubernetes
as a Container and Cluster Manager for something like Mesos, he can do it in a simple
way without the need to change the entire system. This also allows Eng. Jaime Correia

2

Introduction

to easily integrate his Scheduler component to the EMP once it is implemented.

Many simple tests that assure the correct platform behavior and ensure that it is
ready for Eng. Jaime Correia to use for his work were performed. It is safe to say
that the objectives proposed for this thesis were met and the work performed was a
success. Although the Scheduler component that provides an automatic analysis over the
applications and is responsible for an elastic scalability is not yet implemented, all the
implementation necessary for its integration and correct operation is complete.

1.4 Work Plan

In this section, the work performed in the first and second semesters will be presented.

Since this is an investigation project, it was necessary to perform exploratory work and
there is not a specific development methodology implemented. Instead, meetings every two
weeks were done to discuss and analyze the work performed. The meetings were attended
by myself, professor Filipe Araújo and Eng. Jaime Correia. I would also participate in
another meeting in the same week with professors Filipe Araújo, Rui Paiva and Jorge
Cardoso, my colleagues Fábio Pina, Bruno Lopes and Artur Pedroso and also doctoral
student Eng. Jaime Correia. All these meetings were helpful because it was possible
to share ideas and solutions together. New deadlines were always proposed in order to
progress in the work developed. In the end, although there was no specific software
development methodology implemented, these meetings were more than enough to guide
this thesis and to assign the work that needed to be done every two weeks, allowing for a
productive and high quality work done.

In Figure 1.1 the Gantt chart illustrating the work schedule performed in the first
semester is presented. It started in the middle of September when the project was pre-
sented and some core topics were discussed. After the project contextualization, it was
now time to start researching some core concepts that would be discussed and used in
the work performed. While doing the background search, it was necessary to implement
a microservices system that would be used for testing the platform once it was built in
the second semester. This microservices system development was very time consuming
because the need to adapt a monolithic system into a microservices one presented a lot
of problems and several bugs from the original project were fixed. Detailed information
about the microservices system development is presented in section 4.1.

Once the microservices system was finished, I could now focus on background research
of concepts and technologies that were going to be used. At the same time, requirements
gathering was being done.

After the functional requirements and quality attributes elicitation, the first architec-
ture diagrams were designed. This architecture work took a lot of time to complete because
it was also necessary to be constantly looking into which technologies could possibly satisfy
the system requirements.

At the end of December, once the architecture was defined and detailed, it was time
to start writing the intermediate report that had to be delivered in the end of January.

3

Chapter 1

Figure 1.1: Gantt Chart for the First Semester

In the second semester, the meetings were performed every two weeks with Prof. Filipe
Araújo, Prof. Rui Paiva, Prof. Jorge Cardoso, my colleagues Fábio Pina, Bruno Lopes and
Artur Pedroso and also doctoral student Eng. Jaime Correia. For this semester, a detailed
planning was necessary. A kanban board with user stories and simple tasks was created
as it is possible to see in figure 1.2. If a given task was dependent on another or if it took
more than one days to complete, a tag was assigned to it. This kaban board was useful
because I could now have an overall picture of the entire project and what was left to do.
By dragging a card to the “Doing” pile, I could focus on a task at a time. Throughout the
semester, some task needed to be discarded and others needed to be implemented again
in a different way. With a kanban board was easier to keep track of the tasks completed,
the tasks that were discarded and those that were still not implemented.

Figure 1.2: Kanban board for the second semester

In figure 1.3 a detailed gantt chart that was used to complement the kanban board is
presented. This gantt chart and kanban board were created in the beginning of the second
semester and were updated whenever it was necessary.

4

Introduction

Figure 1.3: Gantt chart for the second semester

Implementing the Control API and a Client CLI was the first big step for this project.
The next step was to deploy minikube which is a local installation for kubernetes to test
the Client CLI and the Control API. After minikube was working properly, I started to
explore Helm that is helpful for deploying kafka and a tracing system easier. This is when
I saw minikube limitations and decided to use a real kubernetes cluster.

To meet the requirements for a real kubernetes cluster, a request for the needed re-
sources was made to Department of Informatics Engineering (DEI). When the resources
were available, a fresh installation of kubernetes in bare metal was made which was very
time consuming. Kubernetes installation on bare metal is not very well documented and
there is a need to configure so many things for it to work. In the end, this bare metal
installation in the DEI cluster was aborted. After all the configurations, for the kubernetes
cluster to allow its application to be reached from outside of its own network, specific con-
figuration was necessary. This configuration required the DEI helpdesk to make a range of
IP’s available for my cluster to automatically assign using a custom load balancer which
proved to be dificult to achieve because of the configurations necessary and the availability
of DEI helpdesk. The solution found was to use Google Kubernetes Engine (GKE).

Installing and configuring kubernetes proved to be very time consuming and caused
the delay of this thesis. With GKE, it was necessary to learn their CLI and configure a
kubernetes cluster from scratch.

The deployment of kafka and the tracing system (zipkin) was also time consuming
because they needed special requirements to work in a kubernetes environment. A custom
zipkin container was implemented for it to work in my kubernetes cluster.

The microservices songs application that implemented, was now instrumented using a
python library called py zipkin. The way that it was instrumented follows the OpenTracing
standard. For this library to work the way I wanted, I needed to implement a custom
decorator that I could use to trace all my requests from the microservices songs application.
This instrumentation took some time because the library that was used had a bug that
I reported and was fixed by its development team and also because I had to develop a
custom decorator for it to work the way I need it to. After this instrumentation, local tests
were performed to test the flow of the traces. I configured and used kafka and zipkin on my
local machine and did some tests to see if the traces would be sent from the microservices
songs application to kafka and see if zipkin would be able to collect those traces from kafka
and show them in its UI.

For ease of deployment, a script to deploy and configure kubernetes on GKE was made.
This script is able to create, deploy and configure a kubernetes cluster for the EMP, which

5

Chapter 1

will also deploy and configure kafka and zipkin inside kubernetes. After the entire cluster is
working on GKE, a configuration on the Control API was required for it to communicate
directly with the cluster. After all this, a simple test deploying the microservices songs
application in the EMP was made and worked.

To be able to show the EMP working, a simple algorithm was implemented that is
responsible to decide if there is a need to launch or stop an instance of a specific application.

To check if the EMP is working properly and performs well, some tests were made and
its results collected and analyzed.

In the end, the final report was then written to better detail and explain the entire
work performed during this master thesis.

1.5 Collaborators

The main persons involved in this project, which contributed in a valuable way, will
be mentioned in this section.

Every two weeks a meeting was held to see the evolution of this project and to discuss
future work. All the members that attended the meetings sharing their ideas and opinions
that helped this project were: Professors Filipe Araújo, Rui Paiva and Jorge Cardoso,
Doctoral student Eng. Jaime Correia and Master’s students Bruno Lopes, Fábio Pina and
Artur Pedroso.

Professor Filipe Araújo, the supervisor of this thesis, contributed with his knowledge,
help and guidance throughout the entire project duration.

Eng. Jaime Correia, currently attending a doctoral program, always contributed with
his knowledge and ideas that helped improve the work performed. He helped solving some
problems that I encountered and also helped planning this project tasks. After this thesis
is completed, he will be responsible to develop a scheduling algorithm. This algorithm will
receive traces from the platform, analyze them automatically and issue control commands
regarding the need to shut down or launch new application instances.

Fábio Pina, currently attending a Master’s degree in Informatics Engineering, also
contributed for this project. He was responsible to update the microservices system, that
I originally developed, from Python 2.7 to Python 3.6. He also added new features and
improved the overall quality and structure of the entire application. This microservices
application is used for testing purposes to validate the platform.

1.6 Document Scope

The present document is organized as follows:

Chapter 2 contains most of the researched topics. It starts by explaining some core
concepts needed to understand the work performed in this thesis and it also presents
several technologies that were researched that could possibly be used for the EMP.

In chapter 3 the architecture of the EMP is presented. It starts with the functional
requirements and quality attributes, then the different architecture diagrams and its expla-
nation are covered and finally the reasons behind some technologies choices are presented.

6

Introduction

Chapter 4 contains all the implementation details, showing all the difficulties and chal-
lenges encountered and how they were handled. It starts by explaining the Microservices
Application, section 4.1, that is used for testing purposes and all the changes it suffered.
The Control API that is responsible for the interaction between the user and the con-
tainer and cluster manager, is presented in section ??. The container and cluster manager
is then presented in section 4.5, where the approach to its configuration and deployment
steps are analyzed and discussed in detail. Finally, in section ??, the tracing component
responsible for collecting traces from the applications running inside the container and
cluster manager is presented.

In chapter 6, the conclusions for this thesis are presented. Some tests were performed
and will be presented in this section in detail.

7

Chapter 2

Background

In this chapter, the research that was done covering the main topics considered for this
work is going to be presented.

The first section, 2.1, contains all the major concepts required to better understand
the work performed. In the second section, 2.2, the most important technologies that
could be used in this work are presented, giving an overview regarding their architecture
and how they work.

2.1 Concepts

There are some core concepts that are necessary to explain in some detail, in order to
understand the work performed in this thesis. These concepts are going to be presented
in this section.

2.1.1 Microservices

The microservices architecture pattern is becoming more popular. The reason behind
it, is that microservices offer a lot of advantages over monolithic applications, and there-
fore, people are starting to adopt more the microservices approach when building a new
system.

Unlike monolithic style, microservice architectural style “is an approach to developing
a single application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API”[34].

Monolithic applications are usually simple to develop, test and deploy. In the begin-
nings of a project, they are also simple to scale by running multiple instances behind a load
balancer[38]. However, as it starts to grow, the scaling of a monolithic application is going
to bring a lot of problems. The application will become complex and hard to understand
since its code base will become huge. Developers will not be able to understand the entire
code, and therefore implementing new features or fixing bugs will be tremendously time
consuming. The time needed to deploy the application will increase and any change made
will cause the application to be rebuilt and re-deployed making the process even more
time consuming. Adopting new frameworks or languages is also very time consuming and
hard especially if the monolithic application is large. It would be necessary to change the
entire application, making it harder to start using a newer and better technology.[38]

9

Chapter 2

Microservices can solve many of the problems mentioned above and will now be ana-
lyzed in detail.

Each service, in a microservices architecture, will have a specific functionality or fea-
tures, making it easier to scale by replicating only the needed services, unlike a monolithic
application, as it is possible to see in Figure 2.1.

Figure 2.1: Monoliths and Microservices[34]

Figure 2.2, shows a visual representation of a decentralized data management of mi-
croservices against a single database monolith application.

Figure 2.2: Monoliths and Microservices Database Organization[34]

10

Background

Services are exposed using API’s, “the two protocols used most commonly are HTTP
request-response with resource API’s and lightweight messaging”[34]. They need to be
as decoupled as possible, and because of that, a database schema for each service type is
necessary. This allows for each service to use a database technology that better suits their
needs, achieving a better performance.

Since the microservices architecture pattern relies on a set of services instead of a single
monolithic application, the complexity of each component is less, making them easier to
understand, deploy and develop individually. Developers do not need to understand the
entire application, instead they just need to focus on the service they are working on,
being able to implement new features and fix bugs easier and faster than they would in
a monolithic application. Different services can be implemented using different languages
or frameworks. Since they have an API specified for communication, the technologies
used do not matter. This provides more options when building a new service regarding
the technologies or frameworks to use, allowing developers to choose the ones they feel
is the best for that situation. It is to note that in a microservices architecture, changes
that could cause errors after deployment are easily managed than they are on monolithic
applications, since it is possible to isolate the cause (specific service) and then rollback
the changes done and fix the problem.[38]

Microservices architecture certainly is good but it also has drawbacks. Since microser-
vices usually use partitioned databases, tasks that need to update several databases are
hard to do. In a monolithic application that would not be a problem since it would be
done in a single transaction, but in microservices, an eventual consistency approach has
to be implemented[34]. In a microservices application, since it is a distributed system,
things like slow requests or an unavailable service must be dealt with, increasing complex-
ity. In case there are services that present dependencies to others, testings and changes
that are necessary to perform might be harder, since it will involve all of them. Deploying
will also be a lot more complex, comparing to a monolithic application, because in a mi-
croservices architecture there will be more components that needs to be deployed, scaled
and monitored. In order to scale, microservices deployment should be as automatic as
possible.[38]

“The golden rule: can you make a change to a service and deploy it by itself without
changing anything else?”[36, p. 3] If the answer is yes then the microservices architecture
is on the right path.

2.1.2 Scalability

Scalability is the “capability of a system, network or process to handle a growing
amount of work, or its potential to be enlarged in order to accommodate that growth”[33].
There are two different types of scalability, Scale Vertically/Scale Up and Scale Horizon-
tally/Scale Down.

The first one, is when there is an upgrade into a more powerful machine. For example,
adding more resources like CPU power to a single node in the system. The second one is
when a new node is added to the system. In a cloud environment, this could mean to just
add a new instance of an application running in a virtual machine and then redistribute
the load across all the nodes.[21][33]

11

Chapter 2

2.1.3 Elasticity

“Elasticity is the degree to which a system is able to adapt to workload changes by
provisioning and deprovisioning resources in an autonomic manner, such that at each
point in time the available resources match the current demand as closely as possible”[37].
In a cloud infrastructure, it involves creating containers or virtual machines to match
the current demand in real-time. While scalability is the systems capability of handling
increasing amounts of work, using more resources, elasticity takes into account the time
factor, by matching resources according to the demands in a specific time [33][37].

Elasticity in a systems brings a lot of advantages regarding the resources used. It is
popular in the could since users will only pay for what they use on an elastic system. If
suddenly there is a spike in workload, an elastic and scalable system should be able to
provide resources to match the current demands. Once they are not needed anymore,
because the workload decreased, the system should be able to detect that and stop using
unnecessary resources providing a more efficient use of resources overall[33].

2.2 Technologies

The main technologies that were researched for this work are going to be presented in
this section. They will be analyzed in detail to provide a good overview of their capabilities.

2.2.1 Docker

“Docker is an open platform for developing, shipping, and running applications”[4]. It
is based on Linux containers and is open-source. Although containers are not a new thing,
Docker became popular due to several advantages:

Docker is easy to use. By packaging an application in a container, it offers the ability to
developers to build and run their application faster. It is possible to do so in the developers
own laptop for example, in a private or public cloud or even on bare metal. A container
is a loosely isolated environment and it is possible to run many of them simultaneously in
a single host, as it can be seen in Figure 2.3.[32]

Figure 2.3: Docker Container Diagram[4]

12

Background

Docker containers are lightweight and fast. While Docker containers can be built and
run in seconds, Virtual Machines take a lot more time since they need to boot the entire
operating system.[32]

Docker Hub, is a place to store public images created by the community and is also
possible to retrieve them. It is really simple to just pull an image available and use it with
slightly or no modifications at all.[32]

Modularity and scalability potential is also crucial. With Docker, it is simple to break
down an application into individual containers and connect those containers together.
This makes applications easier to scale and achieve a high level of modularity since it is
possible to just launch more containers of a specific application component according to
the current needs.[32]

In Figure 2.4, Docker’s architecture is presented.

Figure 2.4: Docker’s Architecture[4]

Docker uses a client-server architecture. Docker daemon component is responsible
for building, running and managing Docker containers. The Client communicates with
Docker daemon using REST API. It is to note that Docker Client and Docker Daemon
can run on different host machines. Docker Registry is where docker stores its images. By
default, Docker is configured to look for images in Docker Hub but it can be configured
to use a private registry.[32]

Regarding Docker objects, an Image “is a read-only template with instructions for cre-
ating a Docker container”[4]. It is possible to create images or use those already published
in a registry by others. A Docker file is needed in order to create and run an image. Each
instruction in a Docker file creates a layer in the image and when a change is made, only
the layers that are affected are rebuilt. This is one of the reasons Docker is so fast and
lightweight when compared to virtual machines for example. “A container is a runnable
instance of an image”[4]. The container has everything the applications needs to run. It
has the operating system, application code, system tools, system libraries and more. It
is possible to create a new image based on a containers current state. “Services allow to
scale containers across multiple Docker daemons, which all work together as a swarm with

13

Chapter 2

multiple managers and workers”[4]. It is possible to define a desired state in which that
will be maintained as much as possible.[4][32]

2.2.2 Kubernetes

“Kubernetes is an open-source platform designed to automate deploying, scaling, and
operating application containers”[29]. Kubernetes is useful for microservices applications
since it groups containers that compose an application into logical units for easier man-
agement. Using containers brings a lot of advantages when developing an application but
once the size of the entire application increases, a framework for managing all these con-
tainers is necessary. Kubernetes is able to schedule and run application containers either
on physical or virtual machines. [29][35]

Regarding its architecture, Kubernetes needs at least 1 Master Node and can have mul-
tiple Nodes. Master Nodes make all the global decisions about the cluster (scheduling for
example), they also detect and respond to cluster events and are responsible for exposing
the API. It is to note that these Master Nodes can run on any Node of the cluster.[35]

Each Node runs at least one container, like Docker for example with a node agent
that communicates with the Master Node. Each Node will also have and run components
responsible for logging, monitoring and service discovery. It is also possible to add optional
add-ons. These Nodes can be either virtual machines or bare metal servers.[35]

A Pod, is Kubernetes core management unit. It can have one or more containers
running inside it. Usually it has only one container but if they are tightly coupled for
some reason, they can both run inside the same Pod, sharing resources like mounted
volumes for example. If it is necessary to scale an application component, it can be done
by adding or removing Pod’s according to the current needs. It is to note that when a
Pod fails, they are never brought back, instead Kubernetes will take care of the problem
by creating a new Pod.[35]

“Replica sets deliver the required scale and availability by maintaining a pre-defined
set of pods at all times”[35]. Services are used to expose Pods to internal or external
consumers.

Kubernetes has a huge scaling capability. Not only can it scale Pods whenever is
necessary, these scalling capabilities can take full advantage if stateless Pods are used.[35]

Kubernetes is able to provide availability regarding the infrastructure and at the ap-
plication level. Each Kubernetes cluster component can be configured to achieve high
availability. It supports several distributed file system to ensure that data is persisted
even when something unexpected happens. It is also possible to configure a minimum
number of Pods in which Kubernetes will try to maintain those Pods running. In case any
of them crashes for some reason, Kubernetes has a built-in health checks that are able to
detect that and then a new Pod is launched to reach the configured state.[29][35]

When comparing Kubernetes to Docker Swarm, Kubernetes has more advantages than
drawbacks. Kubernetes has auto scaling based on CPU utilization, which on Docker
Swarm would need to be done manually. Docker Swarm has limited functionality and
fault tolerance when compared to Kubernetes. While Docker Swarm needs to use third
party logging and monitoring tools, Kubernetes has those built in. Overall Kubernetes is
a more complete platform offering more features and the ability to tweak and customize
a lot more things than Docker Swarm does. Also, Kubernetes is a more mature solution
and more popular than Docker Swarm. However, Kubernetes has also drawbacks. It is

14

Background

much harder to install and configure than Docker Swarm, has a steeper learning curve,
and it is incompatible with Docker CLI and Docker Compose[16] tools.

2.2.3 Amazon EC2

Amazon Elastic Compute Cloud (Amazon EC2) is a webservice that provides virtual
machines in the cloud. Such machines offer storage and compute power for users to use
them as they wish. Amazon provides different EC2 instance types that differ in CPU,
memory and storage to better suit each users needs. They charge users only for the
resources that were used. This is very appealing for users because they do not have
to build and maintain their own infrastructure when they can use Amazon’s services to
develop, run and maintain their applications. To access and manage Amazon EC2, they
provide a Management Console or the user can use their AWS Command Line Interface
(CLI).[26][1]

Amazon EC2 also provides users with the ability to choose from different Operating
Systems, different storage options that better satisfy each users needs, control over the
security of each instance and much more. It is to note that they also provide the ability
to migrate an existing application into EC2 and their Service Level Agreements (SLA’s)
guarantee at least 99.95% uptime.[1]

Amazon EC2 also allows users to declare conditions for their applications to automat-
ically scale with AWS Auto Scaling. These collections of EC2 instances are called Auto
Scaling groups. User-made rules are necessary to declare the minimum and maximum
number of instances each Auto Scaling group has, so they would not go below or above
that specified number. It is also possible to declare a desired capacity and the AWS Auto
Scaling will ensure that number of instances are running.

“For example, the following Auto Scaling group has a minimum size of 1 instance, a
desired capacity of 2 instances, and a maximum size of 4 instances. The scaling policies
that you define adjust the number of instances, within your minimum and maximum
number of instances, based on the criteria that you specify.”[27]

Figure 2.5: Auto Scaling Group Illustration[27]

15

Chapter 2

2.2.4 AWS Elastic Beanstalk

AWS Elastic Beanstalk allows users to develop and scale their applications in a simple
way. Users will not have to manage their applications resources because Elastic Beanstalk
does that automatically. Users will only need to perform some prerequisites for their appli-
cations to work with Elastic Beanstalk. It supports several languages and configurations
for each language. Elastic Beanstalk will use AWS resources like Amazon EC2 instances
to run the users applications.[28]

Elastic Beanstalk is able to automatically perform health monitoring on applications,
scale, load balancing and provide storage. Although it can do all of this automatically,
users have control over their applications resources and can access and change them if
they so desire.[28]

The first step to use AWS Beanstalk is to create and application and then upload
it. Elastic Beanstalk will then launch and environment, creating and configuring the
AWS needed resources. Users are able to manage their environment once it is launched
successfully. In figure 2.6, the Elastic Beanstalk workflow is presented.[28]

Figure 2.6: Elastic Beanstalk Workflow[28]

It is possible to access all kinds of information about the application that was deployed
through their API, AWS Command Line Interface (CLI) or Management Console. AWS
Elastic Beanstalk is a simple service that allows users to deploy their applications without
worrying about managing and configuring the necessary infrastructure resources.[28]

It is to note that with AWS Elastic Beanstalk, the user can only set hard memory
limits in container definitions. This means that the user either sets more memory than
what they need or try to fit all the containers in one instance. AWS Elastic Beanstalk
provides a more primitive scheduler but in return users get the ease of use. Users are
not “able to independently schedule a replicated set of queue workers on the cluster”[5]
because all cluster instances must run the same set of containers.[5]

2.2.5 Amazon Elastic Container Service

“Amazon Elastic Container Service (Amazon ECS) is a highly scalable, high-performance
container orchestration service that supports Docker containers and allows you to easily
run and scale containerized applications on AWS”[2]. It is a cluster of EC2 machines
that allows users to run their containerized applications inside those virtual machine
instances.[25]

We can compare it to Kubernetes or Docker Swarm for example. Amazon ECS allows
users to deploy their containerized applications without the need to install, configure and

16

Background

manage a container orchestration software. They handle the scaling of the cluster and
the scheduling of the containers inside the virtual machines. To manage the applications
and to see detailed information about them, simple API calls or the AWS Management
Console is used.[2][25]

In figure 2.7 Amazon ECS basic components are presented.

Figure 2.7: Amazon ECS Basic Components[25]

The cluster manager is responsible for managing the platforms state and to coordinate
the cluster operations. This cluster manager is the core component of Amazon ECS. There
are several schedulers that are decoupled from the cluster manager to allow users to build
their own if they so desire. With Amazon ECS Container Agent that is running inside
every machine, Amazon ECS is able to manage the EC2 instances that are running inside
the cluster.[25]

To manage and coordinate the entire cluster, it is necessary to store data that keeps the
platforms state updated. This data is very useful to know what are the available resources
or occupied, to see how many instances are running and what containers they have and
much more. Storing the platforms state is necessary to be able to manage and coordinate
the cluster. In case of Amazon ECS, they use a key/value store. This key/value store
is robust, reliable and scalable because it is distributed, achieving a higher availability
and durability. Since the key/value store is distributed, it is now necessary to handle
concurrency and ensure the data is consistent. This increases complexity of development
and Amazon ECS achieves concurrency control by “using one of Amazon’s core distributed
systems primitives: a Paxos-based transactional journal based data store that keeps a
record of every change made to a data entry”[25]. Amazon ECS is able to achieve optimistic
concurrency when storing the cluster state information. “This architecture affords Amazon
ECS high availability, low latency, and high throughput because the data store is never
pessimistically locked”[25]. The cluster manager allows users to access the key/value store,
that contains cluster state information, through the API. Users are able to use a set of
commands to retrieve the desired information in a structured manner.[25]

17

Chapter 3

Architecture Description

This chapter contains all the information regarding the architecture of the Elastic
Microservices Platform (EMP) that is going to be developed and is the main focus of this
thesis.

In section 3.1 the requirements for the platform are going to be presented such as
functional requirements in section 3.1.1 and also the quality attributes in section 3.1.2.
The proposed architecture and all its design details are going to be discussed and analyzed
in section 3.2, including the technologies that are going to be used to develop the EMP
and the reasons behind it.

Before defining the functional requirements and the quality attributes, it was necessary
to have a solid idea of what it was needed to implement to achieve the objectives proposed.
Several concepts and technologies were researched to have a better understanding and ideas
on how to develop our own platform.

To develop the EMP, several components needed to be implemented and connected
together. A system to manage both deployed applications and the infrastructure resources
was necessary. Such system must be able to achieve high scalability and provide features
to manage the users applications. It is also necessary that this system has a way to pro-
vide access to the applications that are running inside it. To control this system, a core
component must be implemented that handles all the logic regarding the management
operations of the users applications. The control system is also responsible to receive
requests from the developers and from a scheduler algorithm component to manage the
deployed application. For the developers to be able to use the EMP and execute the oper-
ations necessary to satisfy their needs, some kind of User Interface must be implemented.
This UI would communicate directly with the control system to manage the applications.
The scheduler algorithm would be responsible to analyze the deployed applications and
perform a decision based on that analysis. Such decision would be sent to the control sys-
tem that would then execute the necessary operations into the applications management
system.

3.1 Requirements

The requirements are very important when designing an architecture. They can have
a great impact in the final architecture and because of that they are going to be presented
before the proposed architecture for the EMP.

19

Chapter 3

The functional requirements are listed in subsection 3.1.1 and the quality attributes
are presented in subsection 3.1.2.

3.1.1 Functional Requirements

After the contextualization of the problem and the definition of the objectives that are
necessary to achieve, the functional requirements became more clear to identify and are
presented below:

1) Account Management

This task’s objective is to provide users the ability to create and login into their
accounts in order to use the EMP.

• REQ-1: Allow users to create and account in the EMP. (High priority)

• REQ-2: Allow users to login and use their EMP accounts. (High priority)

Each account will be linked to their deployed applications so it’s easier to check which
application belong to which user and perform the corresponding operations.

1) Deploy Application

This task’s objective is to allow the users of the EMP (Developers) to deploy their
applications in a way that makes them elastic and scalable.

• REQ-3: Allow users to deploy new applications in the EMP. (High priority)

• REQ-4: Guide and assist users during their application deployment to comply with
EMP requirements. (High priority)

• REQ-5: Allow users to declare the quality metrics their application must meet.
(High priority)

• REQ-6: Allow users to declare the resources each container of their application must
have (CPU and memory). (Low priority)

It is important to note that when deploying applications, the platform will guide the
developers to comply with the requirements needed to achieve elasticity and scalability.

2) Consume Application

This task’s objective is to make the applications deployed inside the EMP available to
the outside world for the end users to consume.

• REQ-7: Allow users to connect to the applications that are running in the platform.
(High priority)

It is necessary to provide a gateway API for the end users to connect to the applications
desired.

3) Manage Application

This task’s objective is to allow users (Developers) to manage their applications once
they are deployed inside the EMP.

20

Architecture Description

• REQ-8: Support runtime changes such as update quality metrics to allow developers
for a better control over their product and in this way, provide a better quality
service. (High priority)

• REQ-9: Allow users to see detailed information about their applications. (High
priority)

• REQ-10: Option to stop an application that is running. (High priority)

• REQ-11: Option to start an application that is stopped in the platform. (High
priority)

• REQ-12: Option to completely remove an application that was deployed in the EMP
system. (High priority)

• REQ-13: Allow users to list all their deployed applications and see their general
details. (High priority)

• REQ-14: Allow users to see their applications tracing information. (Medium prior-
ity)

It is to note that it the user decides to shut down their entire application or specific
instances that the databases of those corresponding instances should remain intact.

4) Scheduler

This task’s objective is to provide elasticity to the system with the help of traces and
a decision algorithm responsible for launching or shutting down instances of applications
depending on the traces provided.

• REQ-15: Automatic analysis of tracing information regarding the workload of the
applications that are running in the EMP. (Low priority)

• REQ-16: Automatic decision regarding the need to launch or to shut down instances
of an application by analyzing its traces. (Low priority)

Since the scheduler is not the main focus of this thesis, because it will be Eng. Jaime
Correia developing it in the future, their tasks priority is low.

3.1.2 Quality Attributes

When designing an application, quality attributes must be taken into account seriously
because they will often impact the architecture, some more than others. That is why the
quality attributes that were defined for the EMP are represented in a Utility tree in the
table 3.1, ordered by their priority.

21

Chapter 3

Table 3.1: Utility Tree

Quality
Attributes

Attribute
Refinement

ASR

Scalability Able to support a
large quantity of
applications

The platform needs to be able to grow into a
very large size (At least 4000 nodes) and the
scaling between the system capacity (number of
applications running) and the number of nodes
needs to be linear. (H, H)

Elasticity Platform able to
perform well with
increasing load

When the platform load increases, it needs to re-
spond accordingly by launching a new instance
of the application and distribute the load in a
way that the impact in performance is very low.
It is necessary to increase and decrease the re-
sources used in order to achieve an elastic system
and also to be an efficient one. (H, H)

Maintainability Modular system The platform needs to be designed and imple-
mented in a way that some components can be
replaced making it modular. (H, H)

Performance
Fast to deploy
new instances

The platform needs to be fast at launching new
instances of applications, making them available
in less than 15 seconds. (M, H)

Low API call la-
tency

The platforms API calls need to be executed in
less than 3 seconds to achieve a good perfor-
mance (M, H)

Availability System up and
running

The platform needs to be available as much as
possible providing a functional system to deploy
and to consume the applications above 99.99 %
of the time. (H, H)

Reliability System working
properly

The applications that are running in the plat-
form need to behave as expected. In case any of
them crashes for some reason, the system should
be able to recover by launching a new instance of
the application making it operational once again
(M, H)

The quality attributes presented in the table 3.1 are the ones that were considered the
most important for the success of the EMP system and are now going to be analyzed in
greater detail. It is to note that the quality attributes present a notation system in which
(L = Low, M = Medium, H = High). The first letter in this notation that is used represents
the impact that quality attribute has in the architecture. The second letter represents the
importance and value that this quality attribute represents for the business.

The most important quality attribute for the EMP system is scalability. It is really
important that the system is able to grow into a very large size (above 4000 nodes) and
the scaling between the number of applications running and the number of nodes needs to
be linear. To achieve such scaling capabilities, the Container and Cluster Manager needs
to be implemented with a technology that supports such demands and presents a good

22

Architecture Description

performance. This allows users to be sure that if their applications starts to grow, the
EMP system will be able to provide enough resources and stability for it to continue to
run normally and to withstand a large amount of workload. This quality attribute is also
connected to the ability of the system to be able to distribute the workload accordingly
by load balancing it, providing a good performance of the users applications despite their
scaling.

The second most important quality attribute is elasticity. This attribute is crucial
for the EMP system because it allows users to only pay for what they spend. The EMP
system will take care of analyzing the workload of the users applications and deciding if
it is necessary to launch a new instance if the load is growing or to shutdown instances in
case the load lowers and it is no longer necessary to have those instances up and running.
This essentially means that the resources used by the users applications will only be as
much as necessary according to the demand in a current time frame. Users will not have to
worry about allocating resources in real time because the system does that for them. They
do not have to buy their own infrastructures because it would be more expensive than
using the EMP system. If a user had its own infrastructure, in times where the workload
was low, they would not be using their infrastructures to the full potential so they would
be wasting resources. In the EMP system that does not happen because it automatically
detects the need to launch or shut down instances according to the workload of the users
applications in real time.

Maintainability comes in third position of the most important quality attributes. It
is necessary that the system is modular allowing to replace a component with another.
For example, if it was necessary to replace the scheduling algorithm component with a
different one, that needs to be possible and without having impact in the other architecture
components. By planning and designing a good architecture it is possible to achieve a
modular system regarding some components, like that scheduling algorithm component
for example.

Performance comes next in the most important quality attributes because the system
needs to have a nice performance in terms of the time that takes to launch new instances
when needed, otherwise the users would not want to use this platform. It is really im-
portant that the system takes at most 15 seconds to launch a new instance of a users
application that is running in the EMP system because it needs to respond accordingly to
the increase or decrease in workload of the application. It is necessary to find a solution
that allows such performance despite the fact that it also needs to allow for great scala-
bility and elasticity potential. It is also very important that the EMP API calls have a
low latency, of at maximum 3 seconds, to be responsive and considered to have a good
performance.

Availability comes in fifth place in the most important quality attributes ranking. The
EMP system needs to be available for at least 99.99% of the time making it a highly
available system. To achieve such availability, we can replicate the EMP server and the
Container and Cluster Manager as much as necessary. Users will want to deploy their
applications in a system which they can get some guaranties about its availability. It has
to be available as much as possible so that the users applications deployed in the EMP are
also as available as possible. It is to note that the users can also specify the availability
of their applications when they are deploying them or change that value in runtime and
the EMP system must be able to meet those requirements.

Finally, the last quality attribute of the most important ones is reliability. To achieve
a better service quality, the platform needs to be able to recover from application crashes.
When an application that is running properly crashes, the platform must be able to detect

23

Chapter 3

that automatically and launch a new instance of that application, providing in that way a
better quality service not only for the end users but also for the developers because they
will also appreciate that the platform does this for them.

3.2 Proposed Architecture

The architecture of the EMP was designed following the Simon Brown’s C4 Model[30][31].
This approach in designing an architecture consists in drawing diagrams at different levels
of abstraction (C1 - Context, C2 - Containers, C3 - Components and C4 - Classes). The
focus will be in the first three diagrams. The context diagram is presented in section
3.2.1, the containers diagram is presented in section 3.2.2 and the components diagram is
in section 3.2.3.

3.2.1 Context Diagram

The context diagram is useful as a starting point when designing an architecture. It
is a way to look at the big picture and realize how to the main system will interact with
its users and other systems.

Control API

Allows to deploy new applications in a
way to achieve elastic scalability making
them available for the end users

Developers

Gateway API

Deploy/Manage
Applications

End
Users

Consume
Applications

Infrastructure

Uses

Elastic Microservices Platform (EMP)

Figure 3.1: EMP Context Diagram (C1)

In Figure 3.1, it is possible to observe the platform’s context diagram (C1). The

24

Architecture Description

EMP system will have two type of users, developers who will deploy their microservices
applications into the platform, and consumers/end users who will consume the applications
that are running in the platform. Both types of users are represented in the diagram, and
they need different access points to the EMP. The developers will perform their actions
by using a Control API which is responsible to control and interact with the EMP. The
end users will connect to the applications running inside the platform via a Gateway
API. There will also be an Infrastructure in which the EMP will be installed on and also
manages it.

3.2.2 Containers Diagram

After the context diagram was done, it was possible to start thinking about high-level
technologies and how the containers will communicate with each other. An extensive
research on possible technologies that could be used was made, taking into account that
it was necessary to satisfy all the requirements presented in 3.1. It was now possible to
decide which technologies are going to be used in the EMP.

It is to note that the decisions regarding why certain technologies were chosen over
others were presented and analyzed in section 3.2.4.

Communicates with the Container and
Cluster Manager
Schedules and manages application
Able to deploy new applications

Manages infrastructure resources
Schedules and manages containers
Load balancing of services and pods
Exposes services to outside usage

Persists data from the applications

Persistent Storage (GKE Persistent Disk)

Control API (Flask)

Container and Cluster Manager (Kubernetes)

Stores and Reads Data

Schedule and Manage
Applications

Gateway
API

Figure 3.2: EMP Containers Diagram (C2)

In Figure 3.2, the platforms containers diagram is presented (C2), with the technologies
used in each container. There are three major containers:

25

Chapter 3

• Control API

– The Control API is responsible to communicate with the Container and Cluster
Manager, scheduling and managing applications, and allows users (developers)
to deploy applications in the platform. This Control API can be a web server
developed in python, using Flask [6] framework and an OpenAPI Specification
(Swagger)[15]. It would be possible to scale this as needed, depending on the
amount of users (developers) that would be using the EMP.

• Container and Cluster Manager

– The Container and Cluster Manager will be responsible to manage the entire
infrastructure, to load balance the services that are running in the platform,
scheduling and managing the containers. It is also responsible to expose the
services running to the outside world, providing a Gateway API for the end
users to access it and to be able to consume the applications. The technology
chosen for the Container and Cluster Manager was Kubernetes[29]. It uses the
Persistent Storage to store and read information of the applications that are
running in containers. Kubernetes is an excellent choice for this Container and
Cluster Manager and was explained in better detail in section ??.

• Persistent Storage

– The Persistent Storage will be responsible to persist data from the application
that are running inside Kubernetes. This persistent storage is going to be used
if the users want their applications data to be persisted. The technology chosen
for the Persistent Storage is Google Compute Engine (GCE) Persistent Disk [9].

To satisfy the maintainability quality attribute and the functional requirements of the
tasks Deploy Application and Manage Application, the EMP needs to have a Control API
that sits between the users (developers) and Kubernetes. The fact that the Persistent
Storage is also exterior to Kubernetes, makes the system more modular because it is
possible to swap these components. Elasticy is achieved because the Control API will be
responsible to schedule and manage the applications that are running inside Kubernetes,
launching or shutting down instances according to the current workloads. The Gateway
API is represented because an access point to the applications that are running inside
Kubernetes for the end users to consume is needed (REQ-7).

By choosing Kubernetes to be the Container and Cluster Manager, the quality at-
tributes of scalability, performance, availability and reliability are satisfied. All these
details of Kubernetes were discussed and analyzed in detail in section ??.

26

Architecture Description

3.2.3 Components Diagram

After the context and containers diagrams done, it is time to do the components
one. The components diagram is a zoom in of the containers diagram, showing how each
container is divided into components, what each component is and how do they interact.
This is the last diagram that is going to be analyzed since the class diagram (C4) will not
be covered.

Playlists
DB

Container and Cluster Manager
(Kubernetes)

Service
Load Balancer

Load Balancer

Microservices Application

Pod Pod Pod

Songs MS
Container

Playlists
MS

Container
Users MS
Container

Aggregator
MS

Container

Pod

Load Balancer

Tracing App

Pod
Tracing

Container

Songs
DB

Tracing
DB

Service

Service

Persistent Storage
(GKE Persistent Disk)

Scheduler

Control API (Flask)

Schedules

Users
DB

Data
Volume

Data
Volume

Persistence Persistence Persistence Persistence

Authentication
MS

Container

Pod

Figure 3.3: EMP Components Diagram (C3)

In Figure 3.3, the components diagram (C3) is presented. This diagram shows a lot

27

Chapter 3

more detail than the other two and allows to see all the internal components.

• Control API

– The Control API, as described in the previous diagram, will be implemented
in python and Flask framework will be used. It has a Scheduler component
that will be responsible to schedule and manage the applications instances
by launching or shutting down applications based on the traces received from
the Tracing App. As mentioned earlier, the Control API also allows users
(developers) to deploy their microservices applications into the platform and
manage them.

• Container and Cluster Manager

– The Container and Cluster Manager, in this case will be Kubernetes, has a
lot of important components. Kubernetes is able to load balance workload
among each Service, using for example Nginx [14], using that component called
Service Load Balancer. Another important component is the Tracing App. This
component will be responsible to collect traces from all the applications inside
Kubernetes and feed them to the Scheduler that is inside the Control API
(REQ-14 and REQ-15 are satisfied). The Tracing App will also store all the
traces in a persistent database inside the Persistent Storage. Kubernetes will
have many services, for example the Microservices Application, running and
inside each service there will be a Load Balancer to make sure the workload is
distributed properly. Each Service can have many Pods in which the containers
run inside them. This allows a better scaling because it is possible to launch
new Pods to match the current demands for the application.

• Persistent Storage

– The Persistent Storage is a distributed data storage that has several Data Vol-
umes to store the users applications data. When a Pod dies, the data is lost,
that is why a Persistent Storage was necessary in order to persist the applica-
tions data even when a Pod, container or Service goes down.

For the EMP system to be more modular, the Control API will be running in a different
machine from Kubernetes allowing it to be replaced easily if needed.

3.2.4 Chosen technologies

Extensive research for technologies that were able to satisfy the functional requirements
and the quality attributes the platform needed to achieve, was performed. The chosen
technologies are going to be presented in this section.

It was necessary to decide which programming language and frameworks to use to
develop the Control API. The language that was decided to use is python due to its
simplicity in coding and its easy with the right tools. I also had experience with this
language making it an obvious choice for me.

For the web server development, Flask [6] or Django could be chosen. Flask is a really
powerful and easy to use web framework and since I already had experience using it, I
chose it over Django. OpenAPI Specification (Swagger)[15] is going to be used to describe
the API.

28

Architecture Description

For the Persistent Storage, Google Compute Engine (GCE) Persistent Disk were cho-
sen.

Both Kubernetes[29] and Docker (Docker Swarm)[24] were good choices for the Con-
tainer and Cluster Manager. The reasons behind choosing Kubernetes as a Container
and Cluster Manager were not only influenced by the aspects detailed in section 2.2.2,
but also its ability to satisfy most of the quality attributes mentioned in section 3.1.2.
Kubernetes is able scale up to 5000 nodes[39], satisfying in this way the most important
quality attribute for the system. In terms of performance, Kubernetes (v1.6) is able to
satisfy both quality attribute refinement. It is fast to deploy instances, since “99% of pods
and their containers (with pre-pulled images) start within 5s”[39] as it is possible to see
in Figure 3.4. Kubernetes API is very responsive because “99% of all API calls return in
less than 1s”[39] as it is possible to see in Figure 3.5. It is to note that this information
and graphics that were extracted from a website[39], really shows the performance and
scalability potential Kubernetes has. The reliability quality attribute is also satisfied with
Kubernetes since it has an automatic mechanism that detects if any Pod crashed (health
checks), and makes sure to launch a new instance returning the system into a consistent
state. Regarding the availability quality attribute, Kubernetes is also able to satisfy it, by
having more Master Nodes running, providing an availability as high as intended. Since
Kubernetes will be running on several machines, each Master Node can run on a different
machine providing a higher availability. It is also necessary to replicate components such
has storage and the API Server.

Since Kubernetes has advantages over Docker Swarm and is able to satisfy the quality
attributes that are related to the Container and Cluster Manager, it makes perfect sense
to choose it over Docker Swarm.

Figure 3.4: Kubernetes Pod Startup Latency[39]

29

Chapter 3

Figure 3.5: Kubernetes API Call Latencies - 5000 Node Cluster[39]

30

Chapter 4

Implementation

In this chapter a detailed description of the implemented components in the final
platform of this thesis is going to be presented.

In section 4.1 the microservices application developed, that is going to be used to per-
form tests in the final platform, is going to be described in detail regarding its architecture
and how I implemented it.

4.1 Microservices Application

In order to perform better tests in the EMP that is going to be developed, a mi-
croservices system was implemented to serve as a real example of an application that a
user could deploy in this platform. This microservices system was based on a monolithic
project that I developed in the course of Service Engineering, alongside with the student
Fábio Figueiredo Pina, in the school year of 2016/2017. Much work needed to be done to
turn this monolithic into microservices and some new features were added.

4.1.1 Original Project

The monolithic project was implemented in python 2.7 using the Flask [6] framework,
Swagger for the REST API specification, SQLAlchemy [22] as an Object Relational Mapper
and React[19] for its user interface. The goal was to develop a web application to manage
several users and their music playlists in which they could add or remove songs available
in the platform.

This application had three distinct layers:

• CRUD

– A single database to store information about the users, songs and playlists.

• Business

– Responsible to interact with the database and provides a REST interface to
the outside. This layer had also an Open API specification for the client and
server interaction called Swagger.

• Presentation

31

Chapter 4

– This is the presentation layer for web browsers developed in React and com-
municates with the Business layer.

4.1.2 Architecture

The microservices application that was based in the monolithic project described above
is composed by 3 small microservices (User, Songs and Playlists) and a Main App that
has the user interface developed in React and acts as a gateway for the requests to the
microservices. Its architecture is shown in Figure 4.1 to better demonstrate how all the
components communicate. It is to note that the microservices never communicate with
each other directly. However there are certain operations that require information that is
present in a different microservice. In that case, the microservice that needs that informa-
tion will send a request for the gateway to request that data to the other microservice. One
example of such operation is when it is necessary to show all the information about the
songs that are present in a playlist. A request for the Playlists Microservice is made to get
all its information about which songs it has, then that response arrives in the Main App
which then makes another request to the Songs Microservice containing all the songs ID’s
that are present in the playlist to get all their songs information from the database. This
ensures that isolation needed for the microservices, which is crucial to better scalability,
is not possible with a monolithic application.

Figure 4.1: Microservices Application Architecture

It took a lot of work to break down the monolithic example into a microservices
one, and a lot of problems were encountered. Some of the problems were due to lack of
experience in using some tools or frameworks to develop the final microservices example
such as Flask-JWT [7], PyJWT [17] and Docker [4] in general. It was also necessary to
create three databases, one for the Users, one for the Songs and one for the Playlists. This
took some time because in the original project, there was a single database containing all
the tables that had relations to each other, making it harder to isolate each microservices
information.

32

Implementation

4.1.3 Users Microservice

This microservice is responsible to handle all the requests that are related to a given
user. For the authentication part of the microservices application, json web tokens were
used. Since Flask-Login[8] presented a lot of problems and faults in the original project,
Flask-JWT was used to solve all of that. By sending the encoded authorization token in
the headers request is possible to easily check if a user is logged in or not, if the token
has already expired or if the user has permissions to make such request by decoding and
validating the token.

This microservice features are:

• Create, Update and Delete a user

• Get a specific user information

• Check if a user exists

4.1.4 Songs Microservice

This microservice is responsible to handle all requests that are related to songs. Unlike
the Users Microservice, it was not possible to check the user authentication using Flask-
JWT because it was necessary to implement 3 default functions for that to work and those
functions needed to read the user object from the database, which was only possible in
the Users Microservice. Since all the microservices are isolated and do not communicate
to each other and they also do not have access to each others databases, instead of using
Flask-JWT, PyJWT python library was used instead. With PyJWT it was possible to
decode the token that was sent in the heads of the request without the need to read the
user object from the database. The only drawback from this solution is that in the Main
App gateway, when a request was made for either the Songs or Playlists microservice, the
word “JWT” needed to be appended at the start of the token for it to work properly when
decoding in those microservices that implemented the PyJWT instead of the Flask-JWT.

This microservice features are:

• Create, Update and Delete a song

• Get a specific song

• Get songs that satisfy a given search criteria

• Get all the songs of a user

4.1.5 Playlists Microservice

This microservice is responsible to handle all the requests that are related to playlists.
This microservice presents the same problem that was stated in 4.1.4 regarding the au-
thentication verification problem and the solution implemented was also the same.

This microservice features are:

• Create, Update and Delete a playlist

33

Chapter 4

• Add/Remove a song to a playlist

• Get a specific playlist

• Get all the songs from a playlist

• Get all the playlists of a user

4.1.6 Main App Gateway

This component is responsible to redirect all the requests to the correct microservice,
in the end it acts as a gateway. A gateway connects two different components and is
responsible to manage and redirect the traffic between the two. It is also in Main App
Gateway that the user interface that was developed in React is present. This is where the
core of the applications logic is and when it is necessary to use information from more than
one microservice to fulfill the users request, this component handles all that is necessary to
achieve that. Python “requests” library was used to make the HTTP requests necessary
to the microservices. The interface was developed using Bootstrap and React. It is to note
that the user will need connect to this Main App Gateway in order to see the interface
and perform the actions desired. It is also possible to access the microservices without the
user interface implemented since they were developed in a way that makes that possible.

4.1.7 Running everything on containers

After the application was successfully divided into microservices and was running prop-
erly, it was time to make everything run on containers. It was necessary to research the
options available and Docker was chosen for its popularity and several features. To begin
with, a “Dockerfile” for each microservice was written, specifying which port is available,
which dependencies is docker going to install in the container with “requirements.txt”
file. This file was generated for each microservice with all its dependencies and also the
environment variables.

Once each microservice was built it was time to run the container and the app. After
that was successful, the next step was to publish those images into the docker repository
for further use.

After all the images were published into docker repositories, it was time to find a
way to make everything run in a fast and simple way. The solution for that was Docker
Compose[16]. To actually put everything running properly in Docker Compose was a bit
challenging because it was necessary to research and learn how to do it. The environment
variable mentioned earlier are important for this step because it allows the application
to run properly when docker launches a container for example of the database and links
it in runtime with the other containers that are running the microservices. When a
microservice needs to access the database, it will know the container’s IP address and
successfully connect to it because an environment variable will be used by docker when
the database container launches. It is to note that the database is an official image of
MariaDB [12] and is also running on a docker container.

Docker Compose makes it simple once it is all well defined because with the help of
one command in the terminal console, the application is up and running smoothly.

34

Implementation

4.2 EMP CLI

The implementation performed during the second semester, started with this EMP
CLI. This CLI is responsible for the interaction between the developers and the EMP
Server. It is a command line interface that allows users to execute tasks, guiding them in
a way that it compatible with the EMP system.

A simple illustration on how the CLI fits among the other components can be seen in
figure 4.2

Developer EMP CLI

EMP Server
Uses

Issues
Commands

Figure 4.2: EMP CLI Overview

I needed to find a tool that allowed me to build this CLI, and so I searched on the
internet for something that would meet my requirements. I found a Python package called
Click [3] that allowed me to build a command line interface. There were more tools similar
to Click but this one looked simpler and had a better documentation which impacted my
decision to choose it.

The first step I took to develop my CLI was to define all the options that the CLI would
have, what parameters they should receive, and what kind of response each command
would return. After all the options were defined I started by doing a simple implementation
that would just execute the command line interface commands and print a sample response.

At this point, I needed to have a simple implementation of the EMP Server to be able
to test my CLI while finishing its implementation. To do so, I described the entire REST
API for my application using the Swagger Online Editor[23] and following the OpenAPI
Specification[15]. The resulting yaml file contains all the REST endpoints defined as well
as their input and output response types. This is useful because we can validate a request
or a response based on its type before it is executed. After the REST API was described,
I used Swagger Online Editor to generate the client and server stubs for python language
with Flask framework. Once that step was completed, I was now able to integrate the
generated client code with my CLI and test it with the simple generated server. This
allowed to me to finish the entire CLI while testing its connection to the server.

The commands that are available in the EMP CLI are:

• emp create account

– Creates a new user account based on the username and password provided. This
command requires a “username” and a “password”. The functional requirement
REQ-1 is satisfied.

35

Chapter 4

• emp deploy FILE

– Deploys an application in the platform. This command requires a path to a
file. This input file must be in json format and contain the following fields:

∗ name - Name of the application.

∗ docker image - Docker image for the application to be deployed.

∗ stateless - If the application is stateless set it to “true”. Otherwise set it
to “false”.

∗ port - Port number desired for the application to run.

∗ envs - Array of environments variables that must contain the following
elements: “name” (environment variable name) and “value” (value for that
environment variable)

∗ quality metrics - Contains an array of the following elements: “metric”
(metric name) and “values” (valued for that metric).

The functional requirements REQ-3, REQ-4 and REQ-5 are satisfied.

• emp info ID

– Returns all information about a specific application in the platform. This com-
mand requires an “id” of a specific application as an argument. The functional
requirement REQ-9 is satisfied.

• emp list

– Returns all information about all applications of the current user in the plat-
form. The functional requirement REQ-13 is satisfied.

• emp login

– Authenticates a user by validating its username and password. This command
requires a “username” and a “password”. The functional requirement REQ-2
is satisfied.

• emp remove ID

– Removes an application from the platform. This command requires an “id” of
a specific application as an argument. The functional requirement REQ-12 is
satisfied.

• emp start ID

– Starts an application that is stopped in the platform. This command requires
an “id” of a specific application as an argument. The functional requirement
REQ-11 is satisfied.

• emp stop ID

– Stops an application that is running in the platform. This command requires
an “id” of a specific application as an argument. The functional requirement
REQ-10 is satisfied.

• emp tracing ID

– Returns a link containing traces of a specific application. This command re-
quires an “id” of a specific application as an argument. The functional require-
ment REQ-14 is satisfied.

36

Implementation

• emp update metrics ID METRIC VALUES

– Updates the application quality metrics. This command requires an “id” of
a specific application as an argument, the “name” of the quality metric to
update and the “values” for that metric in the form of a string. The functional
requirement REQ-8 is satisfied.

4.3 EMP Server

The Control API is responsible for all the logic necessary to operate the entire EMP
system. We can divide it into two main components:

• EMP Server

• Scheduler

The EMP Server can be seen as the core component of the EMP. It is responsible
to interact, control and maintain Kubernetes. It is to note that before implementing
this component, careful planning was made to ensure that the platform could meet the
requirements that were specified, namely the modularity one.

In figure 4.3, and overview of the main interactions of the EMP Server is presented.

EMP Server

Control API

Scheduler

Issues
Commands

Kubernetes

Collects
TracesControls

Redis DB
Uses

EMP CLI

Issues
Commands

Figure 4.3: EMP Control API Overview

37

Chapter 4

When starting to develop the EMP Server, the first step was to generate the python
flask server from the REST API specification that I implemented. The EMP Server has
three main code files, called modules that were structured in such way to achieve a higher
level of modularity. Those three modules are:

• emp server

• cluster manager

• kubernetes controller

In figure 4.4, an overview of the EMP server modules is presented.

emp_server

cluster_manager

kubernetes_controller

EMP SERVER

Implements

Figure 4.4: EMP Server Files

4.3.1 EMP Server Module

The emp server module is where all the requests coming from the EMP CLI or the
Scheduler component, will be processed and executed. As we can see in figure 4.3, the
EMP Server component uses a Redis[20] database. It is in this file that all the opera-
tions involving using Redis were implemented. This database is where all the information
regarding the platform is stored in order to check and validate the platform’s state and
requests made. Redis is a very fast database that works as a key-value, like an hash map,
and is able to store more complex data structures. It is open source and was chosen due
to its simplicity and performance. The information stored on Redis is structured in this
way:

• A hashmap for the users information, storing details about their username and
password.

• A hashmap taht keeps each user’s applications information regarding their general
details and state in the platform.

38

Implementation

It is to note that each application has an Universally Unique Identifier (UUID) that
was generated and assigned to identify and keep track of each application. Since this
Redis database is always updated, when the user requests any information, there is no
need to execute a command directly to the Kubernetes cluster overloading it. Instead,
the information will be retrieved from the Redis database, unless it is really necessary to
access the Kubernetes cluster for some reason.

4.3.2 Cluster Manager Module

The cluster manager module is almost like a python interface. It is a class that has
methods which will throw a NotImplementedError in the descendent classes if that method
is not implemented. This is a useful way to define all the methods a given class must
implement in order to work with the EMP system. For example, in my case I developed
the KubernetesController class that implements all the methods in the ClusterManager
and handles all the Kubernetes interactions. If for some reason it is necessary to replace
Kubernetes as a Container and Cluster Manager for something like Mesos, it is possible
and simple to do. All that is needed to implement is the specific class for Mesos that
follows the cluster manager “interface” and it works. This is an important aspect since
the platform will be open source and users will be able to use it and replace components
if they desire, in a simple way.

4.3.3 Kubernetes Controller Module

The kubernetes controller module, as it was said above, implements all the methods
specified in the cluster manager for the platform to successfully work with Kubernetes as
its Container and Cluster Manager. It is to note that this kubernetes controller module
was implemented after Kubernetes was installed and configured in order to test and better
implement the necessary operations. To implement the kubernetes controller module,
kubernetes-client[11] for python was used. It was difficult to determine which Kubernetes
API endpoints I needed to use because the documentation is not clear on what each of
them does.

To better control and scale a given application, I needed to deploy an application as a
Kubernetes deployment and not a stand alone application. That way I can easily control
the number of instances a given Kubernetes deployment must have which is very useful for
this system. Upon creating a deployment of a given application, I will also need to create
a Kubernetes service, if the user so desires, to expose that application to the outside world.
Without a service, an application or deployment that is running inside Kubernetes cannot
be accessed outside the Kubernetes network. It took some time to have these features
working because the documentation lacks a detailed explanation on each command.

4.4 Scheduler

The Scheduler, is a small component that belongs to the Control API. This is where the
automatic decision on scaling elastically the applications that are running on Kubernetes
happens. It collects the application traces from Kafka, that is deployed inside Kubernetes
and automatically analyzes them. After such analysis, a decision about the need to scale
up or down a specific application is made and a command is issued to the EMP Server.

39

Chapter 4

It is important to note that this small component will be implemented by Eng. Jaime
Correia. This is the only component that is not yet implemented. The platform is prepared
to receive the Scheduler commands from outside, using REST, making it fully functional
and ready to use. The impact caused by this component not being implemented yet, is
the platform not being able to automatically analyze and scale the applications based on
their tracing information. However, the platform is able to execute all the commands
mentioned in 4.2. Although it does not scale automatically yet, that specific command
is already implemented and can be executed manually. The same commands that the
Scheduler might send the EMP Server to execute can be sent manually, making the entire
platform completed with exception of the Scheduler that will be Eng. Jaime Correia
implementing it.

4.5 Container and Cluster Manager

Since I chose Kubernetes to be the Container and Cluster Manager, I needed to install
and configure it. This proved to be the hardest and the most time consuming task of them
all. There was a lot of struggle to achieve the resources necessary from helpdesk of the
Department of Informatics Engineering (DEI) to have a Kubernetes cluster. Since they
took some time to make the resources available, I started by experimenting Kubernetes
on my local machine using minikube.

Minikube is a simple and local installation of Kubernetes with just one node, that
is really useful for testing and learning purposes. While I was using minikube, I also
used Helm[10] to simplify the deployment of applications that were necessary for the
EMP. Helm is a package manager for Kubernetes and instead of having to configure and
deploy by myself an entire application such as Kafka, Helm does it all automatically. The
goal was to have the deployed application’s traces sent over to Kafka that was running
inside Kubernetes and have the tracing system collect them and present them in their
UI. That is why I looked into Helm, because I would need to deploy Kafka and a tracing
system inside my Kubernetes cluster, and Helm does it easily. This is where the problems
began. Kubernetes is really hard to debug and it takes a huge amount of time to read the
documentation necessary to find a solution for a given problem. I tried to deploy Kafka
and tracing systems Jaeger and Zipkin using Helm but I was not successful. I later found
out the problem was due to not having enough resources on my personal computer. I had
to postpone the Kubernetes installation because DEI’s helpdesk was taking too long to
make the resources necessary available. In the mean time I was working on other parts of
the project. I read both Zipkin and Jaeger documentations and saw their available clients
for instrumentations and decided to go with Zipkin. Jaeger is not really compatible with
python 3 and since the microservices application was rebuilt using python 3, I would have
some problems when instrumenting it to support tracing. That made my choice clear and
simple to just use Zipkin and a community instrumentation for python that I found called
py zipkin[18].

Eventually they provided some resources for a cluster and I could finally start trying to
install and configure Kubernetes on bare metal. Unfortunately installing and configuring
Kubernetes on bare metal proved to be very hard and time consuming, resulting in a
decision to use Google Cloud to deploy the Kubernetes cluster.

Kubernetes documentation focus more on deploying it on the cloud such as Amazon
or Google cloud instead of installing it on a custom cluster. All that happened during
the Kubernetes installation on bare metal is presented in section 4.5.1 and all the details

40

Implementation

regarding the Kubernetes installation on Google Cloud is presented in section 4.5.2.

4.5.1 Kubernetes in Bare Metal

Once DEI’s helpdesk provided access and the resources necessary for creating a custom
cluster, I started to install and configure Kubernetes. It took a lot of hard work to
understand how to install Kubernetes.

At first, the idea was for me and Fábio Pina to install Kubernetes on DEI’s cluster
together, since he would also need and benefit from it. We tried to install it by creating
three machines with Fedora as their operating system. One of the machines was the Master
Node and the other two were the Workers. We followed a tutorial that we found online
and used the Kubernetes documentation to help. We were unable to install Kubernetes.
After that, while I was working on the EMP server implementation, Fábio Pina tried to
install Kubernetes alone during a week and was also unsuccessful. He then decided that
for his thesis, instead of using Kubernetes he would use Docker Swarm.

I tried to postpone the Kubernetes installation as much as I could because it was
delaying my thesis but I reached a point where I really had to install and configure it
in order to move forward with my work. This time I followed several different tutorials
while using Kubernetes documentation and was finally able to install it on three machines.
Those machines had Ubuntu operating system installed, and were part of my Kubernetes
cluster. One of the machines was the master node and the other two were the workers.
To test my Kubernetes installation I tried to deploy a simple application and see if that
would work on my custom cluster. At this point, everything seemed fine but a lot more
problems were coming into my way.

After the Kubernetes cluster was up and running, I installed Helm so I could deploy
both Kafka and Zipkin. I was hoping that installing Helm and using it to deploy both
Kafka and Zipkin would be simple but instead it was really hard and very time consuming.
After Helm was successfully installed into my custom Kubernetes cluster, I followed the
instructions to deploy Kafka and Zipkin but they both did not work. It is really hard
to debug why specific a Pod or Service is not running inside Kubernetes because their
Helm charts had a lot of configurations. In this case, the problem was that the resources
were not enough, so more nodes were added to the Kubernetes cluster and their RAM
and CPU cores increased. After that problem was taken care, both Kafka and Zipkin
were not working properly. Since this was a bare metal installation of Kubernetes, it
was necessary to declare a Storage Class so Kubernetes knows where it can store the
applications persistent data. In Google Cloud, this is done automatically, since they have
a default Storage Class that uses Google’s Persistent Disks to store the data. To solve
this problem I had to learn how to create a Kubernetes Storage Class by reading their
documentation and understanding how it works alongside Kubernetes Persistent Volumes
and Persistent Volume Claims. I thought I could use each Kubernetes node own storage to
persist my data but instead, I choose to build a NFS server. A NFS server is a distributed
file system, so each Kubernetes node could write and read from that NFS server, so the
data would be available for all the nodes.

Implementing a NFS server and configure it so each Kubernetes node is able to read
and write from it was my next step. Once the NFS server was working, it was time to
test if the Kubernetes nodes were able to use it. To do so, I connected via SSH to a
worker node on Kubernetes and tried to create a file in that NFS server and access it from
a different node. It still did not work because I had to make some adjustments to the

41

Chapter 4

Kubernetes Storage Class to use the NFS server. I could now create a file and access it
from a differentKubernetes node, meaning the NFS server was working. I tried to deploy
Kafka and Zipkin but they still did not work. I saw in the documentation that I would
needed to manually create a Persistent Volume. With this, Kafka application was now
working properly but Zipkin server still was not. I later found out that for that specific
Helm chart of Zipkin, I had to manually define its Persistent Volume Claim. A Persistent
Volume is a piece of storage in the cluster while a Persistent Volume Claim is a request
that is made for that storage. The Helm chart for Zipkin was not able to automatically
create a Persistent Volume Claim unlike Kafka, so I had to do it manually. At this moment
I finally had both Kafka and Zipkin server working as expected.

It was now time to start implementing and testing the EMP Server interactions with
Kubernetes as it was mentioned in 4.3. To access the Kubernetes cluster, a CLI called
kubectl is required. This CLI must be configured to have permissions to access a given
cluster. So in order to access the Kubernetes cluster from the EMP Server using the
python API, I needed to provide it with a configurations file. After successfully accessing
the Kubernetes cluster using the EMP Server, I could finally start testing and implement-
ing its kubernetes controller module. This implementation was hard since I had to learn
everything by myself using Kubernetes documentation and when that documentation was
missing, I had to do it by trial and error. One important aspect about deploying appli-
cations inside the Kubernetes cluster, is that the applications will end up in the default
namespace by default. Instead of having all the applications inside the same namespace,
for each user I create a unique namespace based on their username. This way, each user will
have their applications running inside their own namespace, achieving a better platform
organization.

When everything seemed to be going well, I found the biggest problem regarding this
Kubernetes installation on bare metal. To be able to access an application outside the
Kubernetes network, it is necessary to expose an application using a Kubernetes service.
When I tried to deploy an application early on and see if it worked on the Kubernetes
installation, I actually accessed it while inside a node, so I was accessing it inside its own
network. To solve this issue, I tried many different solutions. It was really hard to find
something useful on their documentation regarding my problem. Their documentation
is really good when it comes to deploying Kubernetes on the cloud such as Amazon’s or
Google’s, but when it comes to bare metal Kubernetes installation, they do not provide
a detailed guidance. I read their documentation, searched on the internet for solutions
and tried many of those with no success, until I joined their Slack chat room. There I
was told that since I was using Kubernetes on bare metal and not the cloud, I had to
install a network load balancer like MetalLB [13], and have a static IP range being routed
to it using BGP. I needed to ask DEI’s helpdesk to give me a static IP range and that
would be something that either they would refuse or take too much time to fulfill my
request because they were currently having a lot of technical problems. For that reason
and because I would also need to configure this whole network and my knowledge on the
subject is limited, I decided that the best solution was to install and configure Kubernetes
on Google Cloud. The installation and configuration needed to deploy Kubernetes on
Google Kubernetes Engine (GKE) is presented in section 4.5.2.

4.5.2 Kubernetes in GKE

Although deploying Kubernetes in bare metal was not possible, it allowed me to learn
a lot more about and how it works in its low level. I gained a lot of knowledge that I would
not be able to if I just deployed Kubernetes on GKE. This knowledge and experience that

42

Implementation

I got from deploying Kubernetes in bare metal, was really useful when deploying it on
GKE. I also encountered some problems while using GKE but in the end it was a really
good decision to use it for my Kubernetes cluster deployment.

Unlike the Kubernetes bare metal deployment, in GKE I was able to use their UI for
some of the simple tasks which really accelerated the installation process. I knew that I
would need to delete my Kubernetes cluster on GKE several times and deploy it again,
so to make this process faster, I wrote a script. Instead of using the GKE UI, I had to
learn how to use their CLI called Google Cloud Shell (gcloud). With gcloud I was able
to deploy and configure my Kubernetes cluster by executing terminal commands. After
learning and getting used to gcloud, I wrote the script that would deploy my Kubernetes
cluster on GKE automatically.

Once I had the Kubernetes cluster deployed and configured on GKE, I installed Helm
and tried to deploy both Kafka and Zipkin charts. Both applications did not work but since
I already had some experience using Kubernetes, I was able to detect that the problem was
due to the storage provisioning. This time I had to learn how to use the Default Storage
Class and how to create a Volume on Google Cloud. After reading the documentation,
I was able to create a Volume and activate Kubernetes automatic storage provisioning.
Kafka was now working but Zipkin still did not. I even tried to manually create a Persistent
Volume Claim to assign the existing Persistent Volume to Zipkin but that did not work
either.

Zipkin’s Helm chart was very complex and had a lot of configurations in its yaml
file that I did not understand. I tried to use different approaches to deploy it, tried
different configurations and charts but was still unsuccessful. I also tried to change Zipkin’s
deployment file and customize it, using different ways to change the existing configuration.

This was taking too much time, and I needed to make a decision. Instead of using an
existing chart to deploy Zipkin inside Kubernetes, I created my own Zipkin Kubernetes
deployment file. I started by creating a docker container with Zipkin server in it and test
it locally on my machine. After that step was complete and after creating my custom
Zipkin docker image, I began to write its Kubernetes deployment file. The Zipkin charts
that I tried to deploy did not work because there was a database pod that was causing
an error and was not able to be up and running. Since I was building my custom Zipkin
deployment file, I chose to deploy it without its own database because I was really getting
so delayed by all the problems that I encountered. Finally I was able to successfully deploy
Zipkin on my Kubernetes cluster and was ready to move on to the next step.

It was now time to start instrumenting the microservices application so it would serve
as an example on how the EMP would handle a deployed application that had now tracing
capabilities. This would reflect a real user deploying his instrumented application in order
for it to scale and be analyzed by the EMP automatically. All the instrumentation process
and all the changes that were made before that, are presented in detail in section 4.6.

After the microservices application was instrumented, it was time to test it on the EMP.
When deploying this application, a set of environment variables need to be injected, so
this applications knows the address of the Kafka application to send its traces. To be able
to access the application from outside the Kubernetes network, it is necessary to create
a service. Google Cloud assigns an external IP for each service that is running inside
the Kubernetes cluster. With a service, end users are now able to consume the deployed
application via its IP address.

Since the application is instrumented, each request and operation generates a trace,

43

Chapter 4

which is sent to Kafka. The Zipkin server will consume those traces from Kafka and present
them in a user friendly interface. For this entire flow to work, additional work regarding
the Zipkin and Kafka configuration was required. In Zipkin’s UI, it is possible to see the
order of the requests, what microservices or functions were used and how much time each
request took to complete. This information can also be consulted by the developers since
there a option for that in the EMP CLI, satisfying the functional requirement REQ-14.

It was necessary to reconfigure the EMP server access permissions to the Kubernetes
cluster because I was now using GKE. Once that was taken care of, I ran some simple
tests to check if everything was working as expected, by deploying applications using the
EMP CLI and see if they would be up and running inside Kubernetes. At this point, small
improvements in every component were made to ensure a more mature and complete work.

In figure 4.5, a Kubernetes deployment on GKE overview is presented.

Kubernetes

Kafka

Zipkin

Collects
Traces

Users Applications Sends
Traces

Persistent Storage (GKE Persistent Disks)

Persists Data Persists Data

Figure 4.5: EMP Kubernetes Overview

As it was mentioned above, inside theKubernetes cluster I deployed Kafka and Zipkin
as part of the Infrastructure operations. The instrumented users applications will send
traces to Kafka that will store them in the GKE Persistent Disks and Zipkin server will
collect them and present that information in its UI that is available to the developers. If
the users applications need persistent storage, they will use GKE Persistent Disks.

44

Implementation

4.6 Microservices Application Instrumentation

To be able to fully test the EMP system, I needed to instrument an application that
I could use to deploy inside Kubernetes and that it would send traces over to Kafka.

Fábio Pina also needed a microservices application for his work, so he took the one that
I implemented and described in section 4.1 and improved it. He upgraded the application
from python 2 to python 3. Since the application had its authentication inside the User’s
microservice, he created a new microservice just to handle the authentication operations.
He also created a new microservice called Aggregator, that would just make multiple
request to the others microservices so the application flow is more complex for testing
purposes. Finally he also improved the overall application structure.

Instead of using the application that I originally developed, I used Fábio Pina’s version
that was upgraded from mine. Since I chose to use Zipkin, I needed to find a Zipkin python
library to instrument my application. The library that I chose to use is called py zipkin[18].
This library was chosen because it appeared simple to use and already had an example on
how to use Kafka as the transport layer. The goal was to be able to trace the applications
information and send them over Kafka.

When I started the microservices application instrumentation, I had a Zipkin server
running on my local machine for testing purposes. I did not start immediately using
Kafka because that would add another complex component for the development. Instead
I used HTTP as a transport layer and sent the traces directly to Zipkin server to see if
the application requests were being traced successfully. This allowed me to quickly test
if things were working or not and improved the development speed overall. It is to note
that after an update, this library had a bug which I reported on their Github page and
was later fixed.

A trace has one or more spans and each span has information regarding each requests
such as what was the time the request started and ended, the microservice name, the
function that was executed and more information if necessary. After I implemented the
instrumentation on one of the microservices, I ran some tests and thought that everything
was working as expected. Once I instrumented another microservice and ran some tests
regarding requests made from one microservice to another, I saw that when that happens,
the tracing information is not properly shown in Zipkin’s UI. If for example a microservice
A does a request to microservice B, there needs to be one trace that has at least two
spans. One span describing the A request and another span that is descendant of the first,
describing the request of B. Instead, I would get two different traces with one span each,
which means that the library was not doing the operations correctly.

This py zipkin library is not an official library, it is a community implementation and it
barely has any documentation. I contacted directly one of the contributors and explained
my problem and ways of thinking. He told me that in most cases their library is used
to trace website pages, in which the trace begins at the index.html and the pages that
follow will be descendants of that span. Since I was not able to use py zipkin library
in the way it was implemented to solve my problem, I decided to implement a custom
decorator myself. Based on py zipkin, I implemented a custom decorator that it would
take those conditions into account. This implementation was challenging since I never did
a decorator by myself and because I was using a library that had almost no documentation
to read and understand. To be able to implement the custom decorator, I had to make
some questions to that py zipkin contributor so I could understand how I could manipulate
their implementation and adapt to my own. After some hard work, I was able to implement

45

Chapter 4

a custom decorator that would automatically detect if a trace has began and if so, it would
generate a span that is descendant of that trace instead of creating an entirely new one.
If there was no trace created before that request, a new trace would be started from that
point forward. It is to note that in the event of a trace has already started and a request
is made to another microservice, there is a need to generate some http headers and pass
some information regarding the parent span for the tracing information to remain correct.

My custom decorator was hard to implement but very simple to use. An example on
how to use it is presented in figure 4.6.

Figure 4.6: EMP custom decorator usage example

The decorator just needs to be declared above the python function, and some param-
eters are passed to it. The service name is the name of the microservice that identifies it.
The span name is to identify what was the function that was executed and in this case I
use the name of the file and the function name. The port is the port number on which
that microservice is running. It is to note that optional parameters can also be passed
to the emp custom decorator and also some annotations. The emp custom decorator uses
the py zipkin decorator as its core but with some changes that allows for a more complex
usage. The instrumentation on this microservices application follows the OpenTracing
standard. This standard dictates some rules regarding the naming of the annotations that
will be present in the trace. It is to note that all applications needs to be instrumented
following the OpenTracing standard in order for the automatic analysis and scaling of the
EMP system to work.

46

Implementation

4.7 EMP Detailed Overview

EMP Server

Control API

Scheduler

Issues
Commands

Collects
TracesControls

Redis DB
Uses

Kubernetes

Kafka

Zipkin

Collects
Traces

Users Applications Sends
Traces

Persistent Storage (GKE Persistent Disks)

Persists Data

EMP CLI

Developers

Uses

Issues
Commands

Gateway
API

End Users

Consume
Applications

Persists
Data

Figure 4.7: EMP Detailed Overview

47

Chapter 4

In figure 4.7, a detailed overview over the entire EMP is presented. The developers
will use the EMP CLI to interact with the platform, executing the tasks they desire by
communicating with the EMP Server.

The Control API handles all the logic part that makes the EMP system work and it
is mainly compose by two distinct components. The Scheduler will collect traces directly
from Kafka, that is running inside Kubernetes, and will automatically analyze and perform
a decision based on them. This decision will then be passed to the EMP Server that will
execute the necessary operations on Kubernetes to scale up or down a given application
and register that change on Redis database. The Redis database, keeps the information
necessary for the EMP to work properly, keeping track of the users applications that are
deployed in the platform.

The Kubernetes cluster handles the management of all the deployed applications, en-
sures they stay running by performing health checks and allows end users to consume those
applications by its gateway, satisfying the functional requirement REQ-7. Inside the Ku-
bernetes cluster, the instrumented user applications will send their traces to Kafka, which
will store them in the Persistent Storage, and then Zipkin will consume them to present
them in its UI. If the users applications need to store data, they can use the Persistent
Storage to do so.

In the end, the EMP only misses the Scheduler component implementation. Although
at its current state the EMP does not automatically analyzes traces and scales the users
applications, which is the Scheduler’s job, everything else is implemented and working
as expected. As it was already mentioned, Eng. Jaime Correia will be responsible to
implement this Scheduler component in the future since it will be very complex and was
not the main focus of this thesis.

4.8 EMP Service Requirements Specification

Applications deployed in the EMP need a set of requirements to be elastically and
automatically scalable.

Every application a user wants to deploy needs to be instrumented, which means that
it has to have a tracing implementation. The requirements that the applications and their
tracing implementation must meet are:

• The tracing implementation must follow OpenTracing standard.

• Every function that is directly connected to a REST request must be instrumented.
The rest of the application functions instrumentation is optional since the EMP is
able to elastically and automatically scale the applications without that supplemen-
tary information.

• Each span’s service name must match this criteria: username/application name.
For example, if the username of the user is fcribeiro and the application that will be
deployed is called songs ms, then the span’s service name must be fcribeiro/songs ms.

• The application must be prepared to receive a environment variable called KAFKAAD-
DRESS. This environment variable will contain the Kafka Address to which the ap-
plication must send its spans. The user has the responsibility to ensure the spans will
be sent over Kafka using the address given from the KAFKAADDRESS environment
variable.

48

Implementation

• The application must be containerized.

49

Chapter 5

Experiments

In this chapter, a detailed description of the tests performed on the EMP is presented.
Testing the EMP is required to find and correct some errors that could have gone unno-
ticed. While testing, it is possible to notice something that could be improved, making
the overall platform more robust and polished.

It is to note that during the implementation of every component of the EMP, informal
tests were done for validation. After the EMP implementation, I started testing the EMP
CLI and the EMP server interactions. The initial tests were made to see how the EMP
CLI would handle all the commands that were executed. I tested every command available
in the EMP CLI to see if the requests were made correctly to the EMP server and if that
requests was carrying the correct information. I also tried to send invalid requests such as
trying to deploy an application without specifying its name to see what was the outcome.
Since I wrote a REST API specification with the object models necessary and generated
the python client and server using swagger, both EMP CLI and the EMP server would not
allow invalid requests or responses. They already had a parameter check to prevent those
invalid requests or responses from executing. The next step was to test the EMP server.
Using the EMP CLI, I tested how the EMP server would behave. I started by analyzing if
the information that was necessary to store in the Redis database was correct. Depending
on the command executed, the stored information in the Redis database would suffer some
changes. To validate the proper execution of such commands, several informal tests were
performed and the information stored in the Redis database was analyzed. After the EMP
CLI and its interactions with the EMP server successfully passed all the tests, I began to
test the Kubernetes cluster and its interactions with the EMP server.

The Kubernetes cluster is a very important component for the EMP and because of
that, careful testing was done to validate it and to ensure its correct behavior. I started by
deploying an application that was instrumented, into the EMP. Once the application was
up and running inside Kubernetes, I could now start testing all the available operations for
the users to manage their applications. From deploying and application and stopping it, to
starting it again and removing it completely from the platform, all operations were working
as expected. Informal tests were also made regarding the ambient variable injection that
was necessary to perform when an application is deployed inside Kubernetes. Users may
specify ambient variables they wish their application has and that was also tested. Several
tests were made to ensure a deployed application is running inside the Kubernetes cluster
by making requests to it. This also validates the correct behavior of the operation that
exposes the application to the network outside of Kubernetes, assigning an IP to it. To
see if the effect each operation had in the Kubernetes cluster, I used kubectl which is a

51

Chapter 5

CLI to access and manage the Kubernetes cluster. Inside Kubernetes, Kafka and Zipkin
are running to provide the necessary flow the traces from the application need. To test
the platforms tracing capabilities, after the instrumented application was deployed, some
requests were made to that application in order to generate traces. After the traces were
generated from the requests to the application, I accessed Zipkin’s UI to see if it was able
to collect them from Kafka. I could see the traces in Zipkin’s UI and this means that I was
able to successfully inject the KAFKA Address necessary for the application to send its
traces to Kafka and that Zipkin was able to collect them from it. In order to test the future
Scheduler component interaction with Kafka, I implemented a standalone application that
would just collect the traces that were present in Kafka. The test was successful as I was
able to validate that both Zipkin and the future Scheduler implementation would be able
to collect traces from Kafka at the same time. I also tested scaling up and down a deployed
application and this operation worked as expected. Finally, I tested the script I wrote to
deploy Kubernetes in GKE and it passed the tests.

The Scheduler component, as it was already mentioned, will be responsible to auto-
matically analyze the applications tracing information and to issue commands to the EMP
server to scale a specific application. The EMP will achieve an automatic and elastic scal-
ing capabilities once this Scheduler component is implemented. Since this component will
be implemented in the future by Eng. Jaime Correia, to simplify its necessary integration
with the EMP and to able to test how the Scheduler would impact the EMP, a REST
endpoint was created. This endpoint receives a REST request that will carry informa-
tion regarding a specific application and how many instances of that application must be
running. For example, if application A has two instances running in the EMP and the
Scheduler component decides that it needs five instances to be able to manage its current
load, a REST request is made to that EMP server endpoint with that information. The
EMP server will then retrieve the necessary information from the Redis database, and
execute the proper commands to the Kubernetes cluster to make five available replicas of
application A running. Although the Scheduler component is not yet implement, since
the REST endpoint and all the logic operation are, it is possible to simulate and test the
Scheduler commands. To test this, I deployed an application in the EMP and started to
make requests for that REST endpoint to scale up the application. I also sent requests
to shutdown some instances of that application and all the tests were successful. The
Scheduler component is not yet implemented but all the logic and operations regarding
the EMP are working as expected and ready for its integration.

Finally, the entire EMP system was tested as a whole. I performed several tests that
would simulate a real user. I started by deploying an application, consulting its information
and trying to access it from the external assigned IP. I tested all the commands once again
and I also simulated several Scheduler component requests to its specific REST endpoint
to scale up or down a specific application. Once all the tests passed, it is safe to assume
that the EMP is validated and working as expected.

52

Chapter 6

Conclusion

In this document, the design and implementation of an open source platform for imple-
menting microservices-based systems for deployment in cloud environments was presented.
The final architecture of the EMP is very similar to the one that was proposed and pre-
sented in section 3.2. This shows that careful planning was done regarding the EMP
proposed architecture. This entire platform was conceived and implemented to achieve
high modularity. It is possible to swap the components if necessary, according to the users
desire. This also makes the integration of the Scheduler component that Eng. Jaime
Correia will have to do very simple. This platform supports deployment of applications
with tracing capabilities and handles all the tracing flow necessary for a future automatic
analysis.

With the tests that were made, it is possible to validate that all the commands that
are available in the EMP CLI work as expected. It is also possible to prove that once the
Scheduler component is implemented, the platform will be able to perform the operations
required to ensure elastic scalability automatically.

This work shows that it is possible to implement an open source platform that achieves
great scaling capabilities. This platform allows users to deploy and manage their applica-
tions in a simple way, without the need to manage their own infrastructure. They do not
have to manage the resources for their applications, load balancing or scaling. The EMP
also provides users with the ability to see detailed information about their applications
and a set of useful commands to manage and deploy new ones.

Although it is not the main goal, users will also be able use the EMP for testing
purposes. They can deploy and make changes to the EMP system to test a cloud platform
implementation since it will be open source. With this open source platform and the way
it was designed and implemented, it is easier to replace some components with other ones
if the users so desire. This provides users with a platform for testing purposes in cloud
environments that can be modified according to their needs.

In the future, a wide variety of improvements on this work can be accomplished. The
main component to be implemented in the future is the Sheduler. As it was already stated,
this work will be used by Eng. Jaime Correia and he will be the one implementing such
Scheduler component that is responsible for the automatic and elastic scaling capabilities.
Another improvement that can be done is to deploy a Zipkin server with its own storage
component, which the current deployment does not have.

Some new interesting features can be added, providing a richer and better user expe-
rience. Some of those new features could be:

53

Chapter 6

• Add auto complete features to the EMP CLI for ease of use. This feature could
really improve the user experience making the CLI feel more polished and smoother.

• Fulfill functional requirement REQ-6 that allows users to declare the resources each
container of their application must have (CPU and memory). This would provide
users with a greater control over their application resources allocation.

• Select and decide new interesting information or statistics regarding the users appli-
cations to present them.

• Allow the user to set maximum and minimum limits regarding the number of in-
stances that can be running at the same time of a specific application.

• A dashboard could be implemented to show important information and statistics
about the applications to the users. When a user deploys an application, the EMP
will scale it whenever it is necessary, so instead of consulting its details and statistics
using the CLI, a dashboard would be an interesting choice. This would certainly be
appealing for users to be able to view important information and statistics regarding
their deployed applications in the EMP in a dashboard.

In the end, an open source platform for implementing microservices-based systems for
deployment in cloud environments was designed, implemented, tested and validated. In
its current state, the EMP is able to achieve great scaling capabilities, provide users with
several management options, present important information regarding their applications
and it is simple to use. The objectives that were proposed were met and this platform
is ready to be used by Eng. Jaime Correia for his future work. Once he develops the
Scheduler component and integrates it with the EMP, an automatic analysis over the
applications and an elastic scalability will be achieved.

54

References

[1] Amazon elastic compute cloud features explained.
https://searchaws.techtarget.com/feature/Amazon-Elastic-Compute-

Cloud-features-explained. Accessed: 07/02/2018.

[2] Amazon elastic container service.
https://aws.amazon.com/ecs/?nc1=h_ls. Accessed: 09/02/2018.

[3] Click documentation.
http://click.pocoo.org/5/. Accessed: 15/02/2018.

[4] Docker overview.
https://docs.docker.com/engine/docker-overview/. Accessed: 07/10/2017.

[5] Elastic beanstalk vs. ecs vs. kubernetes.
https://fortyft.com/posts/elastic-beanstalk-vs-ecs-vs-kubernetes/. Ac-
cessed: 09/02/2018.

[6] Flask documentation.
http://flask.pocoo.org/. Accessed: 02/10/2017.

[7] Flask-jwt documentation.
https://pythonhosted.org/Flask-JWT/. Accessed: 02/10/2017.

[8] Flask-login documentation.
https://flask-login.readthedocs.io/en/latest/. Accessed: 02/10/2017.

[9] Google compute engine persistent disk documentation.
https://cloud.google.com/compute/docs/disks/. Accessed: 14/08/2018.

[10] Helm documentation.
https://docs.helm.sh/. Accessed: 20/02/2018.

[11] Kubernetes python client documentation.
https://github.com/kubernetes-client/python/tree/master/kubernetes. Ac-
cessed: 10/04/2018.

[12] Mariadb documentation.
https://mariadb.com/kb/en/library/documentation/. Accessed: 02/10/2017.

[13] Metallb documentation.
https://metallb.universe.tf/. Accessed: 05/04/2018.

[14] Nginx web page.
https://www.nginx.com/. Accessed: 13/10/2017.

[15] Openapi specification.
https://swagger.io/specification/. Accessed: 02/10/2017.

55

https://searchaws.techtarget.com/feature/Amazon-Elastic-Compute-Cloud-features-explained
https://searchaws.techtarget.com/feature/Amazon-Elastic-Compute-Cloud-features-explained
https://aws.amazon.com/ecs/?nc1=h_ls
http://click.pocoo.org/5/
https://docs.docker.com/engine/docker-overview/
https://fortyft.com/posts/elastic-beanstalk-vs-ecs-vs-kubernetes/
http://flask.pocoo.org/
https://pythonhosted.org/Flask-JWT/
https://flask-login.readthedocs.io/en/latest/
https://cloud.google.com/compute/docs/disks/
https://docs.helm.sh/
https://github.com/kubernetes-client/python/tree/master/kubernetes
https://mariadb.com/kb/en/library/documentation/
https://metallb.universe.tf/
https://www.nginx.com/
https://swagger.io/specification/

References 6

[16] Overview of docker compose.
https://docs.docker.com/compose/overview/. Accessed: 07/10/2017.

[17] Pyjwt documentation.
https://pypi.python.org/pypi/PyJWT/1.4.0. Accessed: 02/10/2017.

[18] Py zipkin github page.
https://github.com/Yelp/py_zipkin. Accessed: 20/04/2018.

[19] React documentation.
https://reactjs.org/docs/getting-started.html. Accessed: 02/10/2017.

[20] Redis documentation.
https://redis.io/documentation. Accessed: 12/03/2018.

[21] Software design - scalability (scale up—out).
https://gerardnico.com/wiki/code/design/scalability. Accessed:
03/10/2017.

[22] Sqlalchemy documentation.
http://docs.sqlalchemy.org/en/latest/. Accessed: 02/10/2017.

[23] Swagger editor.
https://editor.swagger.io/. Accessed: 02/10/2017.

[24] Swarm mode overview.
https://docs.docker.com/engine/swarm/. Accessed: 07/10/2017.

[25] Under the hood of amazon ec2 container service.
https://www.allthingsdistributed.com/2015/07/under-the-hood-of-the-

amazon-ec2-container-service.html. Accessed: 07/02/2018.

[26] What is amazon ec2?
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html. Ac-
cessed: 07/02/2018.

[27] What is amazon ec2 auto scaling?
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-

ec2-auto-scaling.html. Accessed: 07/02/2018.

[28] What is aws elastic beanstalk?
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html.
Accessed: 07/02/2018.

[29] What is kubernetes.
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. Ac-
cessed: 13/10/2017.

[30] Simon Brown. C4 model poster.
http://www.codingthearchitecture.com/2014/08/24/c4_model_poster.html,
August 2014. Accessed: 27/10/2017.

[31] Simon Brown. Software Architecture for Developers - Volume 2, Visualise, document
and explore your software architecture. Ebook, 2017.

[32] Preethi Kasireddy. A beginner-friendly introduction to containers, vms and docker.
https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-

containers-vms-and-docker-79a9e3e119b, March 2016. Accessed: 07/10/2017.

56

https://docs.docker.com/compose/overview/
https://pypi.python.org/pypi/PyJWT/1.4.0
https://github.com/Yelp/py_zipkin
https://reactjs.org/docs/getting-started.html
https://redis.io/documentation
https://gerardnico.com/wiki/code/design/scalability
http://docs.sqlalchemy.org/en/latest/
https://editor.swagger.io/
https://docs.docker.com/engine/swarm/
https://www.allthingsdistributed.com/2015/07/under-the-hood-of-the-amazon-ec2-container-service.html
https://www.allthingsdistributed.com/2015/07/under-the-hood-of-the-amazon-ec2-container-service.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/concepts.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/Welcome.html
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
http://www.codingthearchitecture.com/2014/08/24/c4_model_poster.html
https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b
https://medium.freecodecamp.org/a-beginner-friendly-introduction-to-containers-vms-and-docker-79a9e3e119b

References

[33] Esther Levine. What’s the difference between elasticity and scalability in cloud
computing.
https://www.stratoscale.com/blog/cloud/difference-between-elasticity-

and-scalability-in-cloud-computing/. Accessed: 03/10/2017.

[34] James Lewis Martin Fowler. Microservices.
https://martinfowler.com/articles/microservices.html, March 2014. Ac-
cessed: 27/09/2017.

[35] Janakiram MSV. Kubernetes: An overview.
https://thenewstack.io/kubernetes-an-overview/, November 2016. Accessed:
15/10/2017.

[36] Sam Newman. Building Microservices. 2015.

[37] Ralf Reussner Nikolas Roman Herbst, Samuel Kounev. Elasticity in cloud computing:
What it is, and what it is not.
https://sdqweb.ipd.kit.edu/publications/pdfs/HeKoRe2013-ICAC-

Elasticity.pdf. Accessed: 03/10/2017.

[38] Chris Richardson. Introduction to microservices.
https://www.nginx.com/blog/introduction-to-microservices/, May 2015. Ac-
cessed: 27/09/2017.

[39] Wojciech Tyczynski. Scalability updates in kubernetes 1.6: 5,000 node and 150,000
pod clusters.
http://blog.kubernetes.io/2017/03/scalability-updates-in-kubernetes-

1.6.html, March 2017. Accessed:13/10/2017.

57

https://www.stratoscale.com/blog/cloud/difference-between-elasticity-and-scalability-in-cloud-computing/
https://www.stratoscale.com/blog/cloud/difference-between-elasticity-and-scalability-in-cloud-computing/
https://martinfowler.com/articles/microservices.html
https://thenewstack.io/kubernetes-an-overview/
https://sdqweb.ipd.kit.edu/publications/pdfs/HeKoRe2013-ICAC-Elasticity.pdf
https://sdqweb.ipd.kit.edu/publications/pdfs/HeKoRe2013-ICAC-Elasticity.pdf
https://www.nginx.com/blog/introduction-to-microservices/
http://blog.kubernetes.io/2017/03/scalability-updates-in-kubernetes-1.6.html
http://blog.kubernetes.io/2017/03/scalability-updates-in-kubernetes-1.6.html

	Introduction
	Motivation
	Objectives
	Results
	Work Plan
	Collaborators
	Document Scope

	Background
	Concepts
	Microservices
	Scalability
	Elasticity

	Technologies
	Docker
	Kubernetes
	Amazon EC2
	AWS Elastic Beanstalk
	Amazon Elastic Container Service

	Architecture Description
	Requirements
	Functional Requirements
	Quality Attributes

	Proposed Architecture
	Context Diagram
	Containers Diagram
	Components Diagram
	Chosen technologies

	Implementation
	Microservices Application
	Original Project
	Architecture
	Users Microservice
	Songs Microservice
	Playlists Microservice
	Main App Gateway
	Running everything on containers

	EMP CLI
	EMP Server
	EMP Server Module
	Cluster Manager Module
	Kubernetes Controller Module

	Scheduler
	Container and Cluster Manager
	Kubernetes in Bare Metal
	Kubernetes in gke

	Microservices Application Instrumentation
	EMP Detailed Overview
	EMP Service Requirements Specification

	Experiments
	Conclusion

