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ABSTRACT

Reference point approaches for multi-objective problems rely on the definition of an achievement scalarizing
function that projects reference points onto the non-dominated solution set. In this paper, we investigate the
behaviour of reference points using a Tchebycheff metric-based scalarizing function in multi-objective pure integer
linear programming (MOILP). Since the non-dominated solutions are discrete in MOILP, there are multiple
reference points that lead to the same solution, i.e. there are indifference sets on the reference point space. We
investigate some properties of the reference points in MOILP and also the graphical representation of indifference
sets for tri-objective problems. We further investigate properties of the reference points when additional limitations
on the objective function values are introduced. Copyright # 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Reference point approaches for dealing with multi-
objective programming problems (with integer
variables or not) rely on the definition of an
achievement scalarizing function}as suggested by
Wierzbicki (1980)}by means of reference points
that may represent aspiration levels for the
objective functions. An achievement scalarizing
function projects a reference point onto the non-
dominated solution set. Tchebycheff metric-based
functions have been often used in the definition of
achievement scalarizing programs. They are used to
compute the non-dominated (efficient) solution
closest to a (non-attainable) reference point accord-
ing to a, possibly weighted, Tchebycheff metric.
Some authors have developed interactive

methods using Tchebycheff or other achievement
scalarizing functions for dealing with MOILP
problems or more general multi-objective pro-
blems that also include the integer linear case.
Such approaches consider either the variation of

the reference point, occasionally with additional
constraints on the objective function values,
or the variation of the weights in a (augmented)
weighted Tchebycheff metric keeping the reference
point constant. Examples of the former type
are the approaches from Durso (1992), Vassilev
and Narula (1993) Narula and Vassilev (1994) and
Karaivanova et al. (1995). The method of
Steuer and Choo (1983) is an example of the latter
type.
The scalarizing programs used in those inter-

active approaches are either parameterized on the
weights or on the reference point (or even on both)
and the variation of the parameters enables to
attain different non-dominated solutions. The
decision maker (DM) is required to specify the
preferences used to assign (implicitly or explicitly)
new values to the parameters. But the set of non-
dominated solutions of an MOILP problem is
discrete and there are multiple parameter values
that lead to the same solution, i.e. an indifference
set on the parameters’ space can be defined for
each solution. Usually, a method does not provide
information about these indifference sets, so the
result of a computational phase can be a solution
already known. This situation should be avoided,
namely in problems where the computational
difficulties are considerable such as in integer
programming problems.
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In this paper, we examine the indifference sets
(regions) on the reference point space. We have
centred ourselves on approaches that project
reference points onto the non-dominated set
through the optimization of a Tchebycheff-based
scalarizing program.
This study followed our previous work on the

construction of interactive reference point proce-
dures for MOILP problems. We have developed
two approaches, which differ only from a technical
point of view. The ideas that underlie these
approaches were the creation of a simple protocol
to interact with the DM}not demanding too
much information about his/her preferences}and
the reduction of the computational effort, namely
by profiting from computations previously per-
formed when producing new non-dominated solu-
tions. In the first approach (Alves and Cl!ıımaco,
1999), the scalarizing programs are solved by
cutting plane techniques. The combination of
cutting planes with the Tchebycheff metric pro-
vides a means to perform a postoptimality analysis
on the reference point, which is useful for
computing new non-dominated solutions. Unfor-
tunately, this method is limited in practice due to
the numerical difficulties caused by cutting planes.
Thus, we have further investigated a new approach
based on branch-and-bound (Alves and Cl!ıımaco,
2000) which also addresses multiobjective mixed-
integer programs. Both approaches are particu-
larly interesting to perform directional searches for
which the DM just chooses an objective function
he/she wishes to improve. Using sensitivity analy-
sis, the procedure automatically adjusts the
reference point by computing the least variation
of one component of the reference point that is
needed to ‘exit’ from the previous non-dominated
solution. This automatic tool frees the DM from
the task of adjusting the reference point, giving the
guarantee that the solution obtained is different
from the previous one, and improves the criterion
the DM has selected. A technical overview of these
approaches is given in Section 2.
The directional searches provided by our

procedures identify particular trajectories of re-
ference points that lead to the same non-domi-
nated solution. But it is clear that many other
reference points outside those trajectories
may yield the same result. We are referring to
the whole (unknown) indifference set on the
reference point space corresponding to one non-
dominated solution, which we also designate as
indifference region.

An indifference region on the reference point
space is often non-convex, and we have not been
able to establish a computationally easy procedure
to determine it fully. However, we can easily define
a convex indifference sub-region for a non-
dominated solution using just one reference point
that leads to that solution. Furthermore, if we
have already known a trajectory of reference
points leading to the same solution}a situation
that occurs during a directional search}then we
can define a larger indifference sub-region. The full
(non-convex) indifference region will be the union
of such convex sub-regions. In Section 3, we
investigate as to how a convex indifference sub-
region can be determined. We also show with an
example how to profit from the directional searches
to define larger sub-regions, and briefly report an
application that we have been studying.
Independent from using our approaches or

other interactive reference point methods, the
knowledge of indifference regions, or even sub-
regions, provides the DM with an important
insight into the MOILP problem, namely if they
can be presented graphically. This information is
relevant because

(a) it helps the DM to avoid the selection of
reference points that lead to the same solution;

(b) it gives some suggestions on the shape of the
non-dominated solution set, such as the
number of solutions and their proximity;

(c) it shows a degree of stability of each solution
in relation to the change of the reference
point.

Moreover, from a theoretical point of view, this
study of indifference regions has shown some
general properties of the reference points when
dealing with MOLIP problems.
The indifference sub-regions we examine herein

could also be used within other reference point
approaches that either employ directional search-
es}for instance, methods like Pareto Race (Kor-
honen and Wallenius, 1988), with a logic
developed for MOLP but that could be extended
to MOILP}or other approaches that use dis-
joined reference points}for instance, Durso
(1992), Karaivanova et al. (1995) and others. Most
of these approaches (including ours) consider
additional limitations on the objective function
values. The DM interactively specifies bounds for
the objective function values (reservation levels),
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which reduce the feasible region of the problem
and the non-dominated solutions that are attain-
able. Reservation levels are often used in inter-
active multi-objective approaches to guide the
search for non-dominated solutions, namely in
combination with aspiration levels (usually used as
reference points). Thus, a certain reference point
may lead to one non-dominated solution or to a
different one whether or not additional limitations
are imposed on the objective function values. We
could still define indifference regions for the non-
dominated solutions of the restricted problem. In
that case, the indifference region of each solution
would differ from the corresponding indifference
region in the original problem, because the non-
dominated solution set is only a sub-set of the
original one. But, whenever these bounds are
temporary, it is more interesting to translate that
information into the original problem in order to
have a means that provides consistent information
during the whole decision process. It is therefore
necessary to make a correspondence between the
results produced by the use of the same reference
points in restricted searches and in unrestricted
searches (i.e. in the original problem). This topic is
investigated in Section 4.
The study presented in the following sections is

oriented to tri-objective problems because the
graphical representation of the indifference regions
on the reference point space illustrates the
addressed issues better.

2. OVERVIEW OF AN INTERACTIVE
DIRECTIONAL SEARCH

Let us consider the multiple objective integer linear
program (MOILP)

max fi ¼ cix; i ¼ 1; . . . ; k

s:t: x 2 S ¼ xjAx ¼ b;x50; x integerf g

where x is an n-dimensional vector of variables, A
is an m � n matrix, b is the right-hand side (RHS)
vector and the vectors ci ði ¼ 1; . . . ; kÞ have the
coefficients of the objective functions (criteria). It
is assumed that S is bounded and ci ði ¼ 1; . . . ; kÞ
have integer components. Hence, fi ¼ cix
ði ¼ 1::: kÞ are also integer-valued for all feasible x.
Let zþ be a criterion reference point. The

scalarizing program P1ðzþÞ projects zþ onto the
(weakly) non-dominated solution set. If zþ satisfies
zþ5f for all the non-dominated points f , then the

optimal solution of P1ðzþÞ is the (weakly) non-
dominated solution closest to zþ according to the
Tchebycheff metric. Otherwise, P1ðzþÞ does not
minimize a norm but the result is also a (weakly)
non-dominated solution. Actually, this minimiza-
tion does not mean ‘coming close’ in a traditional
sense, but ‘coming close or better’ (Wierzbicki,
1998). Nevertheless, any zþ can be replaced by
another reference point zþþ which satisfies zþþ5f ,
8f non-dominated, and produces the same out-
come as zþ (further details about displacing
reference points are given in Section 3). So, we
call P1ðzþÞ a Tchebycheff scalarizing program.

min a

s:t: zþi � cix4a; i ¼ 1; . . . ; k

x 2 S

P1ðzþÞ

In order to avoid weakly non-dominated solu-
tions, which may be obtained when P1ðzþÞ admits
alternate optima, an augmented Tchebycheff
metric is considered, i.e. ‘min a’ in P1ðzþÞ is
replaced by ‘minfa� r

Pk
i¼1 cixg’. We shall denote

this scalarizing program by P2ðzþÞ, where r is a
small positive constant such that the optimal
solution of P2ðzþÞ also optimizes P1ðzþÞ.
The interactive reference point approaches that

we have developed (Alves and Cl!ıımaco, 1999,
2000) use the scalarizing program P2ðzþÞ to
compute non-dominated solutions. At each inter-
action, the DM can directly assess a new reference
point z+ that is inserted into P2ðzþÞ or just selects
an objective function, say fp, he/she wants to
improve (with respect to the previous non-domi-
nated solution). In the latter case, the reference
point is automatically adjusted by increasing the
pth component of zþ, while leaving the other
components unchanged, in order to produce new
non-dominated solutions throughout a directional
search that are more suited to the DM’s prefer-
ences. This stage involves an iterative process of
sensitivity analysis using either cutting plane
techniques (Alves and Cl!ıımaco, 1999) or branch-
and-bound techniques (Alves and Cl!ıımaco, 2000).
The iterative sensitivity analysis procedure deter-
mines %yyp50 such that the reference points between
z+ and ðzþ1 ; :::; zþp þ %yyp; :::; zþk Þ lead to the previous
non-dominated solution, but a slight increase over
%yyp leads to a different non-dominated solution
(which improves the objective fp). Only integer
reference points are used for MOILP problems
because they do not cause loss of ‘intermediate’
non-dominated solutions (proved in Alves and
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Cl!ıımaco, 1999). This means that P2ðzþÞ produces
the same non-dominated solution for every
zþ ¼ ðzþ1 ; :::; zþp þ yp; :::; zþk Þ, 04yp4%yyp, with %yyp

integer, but P2ð #zzþÞ with #zzþ ¼ ðzþ1 ; :::; zþp þ %yyp þ
1; :::; zþk Þ yields a ‘close’ but different non-domi-
nated solution.
The cutting plane approach takes advantage of

the cutting planes introduced in P2ðzþÞ for solving
P2ð #zzþÞ as the cuts remain valid for P2ð #zzþÞ in spite
of becoming weaker. In turn, the branch-and-
bound approach uses the information provided by
the branch-and-bound tree that solved P2ðzþÞ. The
tree structure and some information on the
terminal nodes, which are preserved from one
iteration to the next, are used for the sensitivity
analysis phase and to obtain the new efficient
solution that optimizes P2ð #zzþÞ. The procedure first
tries to simplify the tree if new branching is
required. This important step, which avoids an
ever-growing tree, operates by cutting branches
hence discarding parts of the tree. These branches
concern variable constraints (such as xi4Ki or
xi5Ki þ 1) that were active in the optimum of
P2ðzþÞ but are no longer active for P2ð #zzþÞ. This
process of profiting from the previous branch-and-
bound tree in the following computation phase is
effective in practice because it reduces the time
needed to compute new non-dominated solutions.

3. INDIFFERENCE REGIONS ON THE
REFERENCE POINT SPACE

It is easy to prove that the optimal solution x of
P2ðzþÞ (or P1ðzþÞ) does not change if a constant
amount is added to all the components of zþ. In
other words, all the reference points ðzþ1 þ d; zþ2 þ
d; :::; zþk þ dÞ with d 2 R lead to the same non-
dominated solution}only the a value in P�ðzþÞ
varies. Therefore, every reference point zþ 2 Rk

can be converted into another one belonging to a
hyper-plane, say Zþ

Q , defined by
Pk

i¼1 zþi ¼ Q with
Q 2 R constant. Given zþ ¼ ðzþ1 ; zþ2 ; :::; zþk Þ and Q,
zþ is converted into ðzþ1 þ %dd; zþ2 þ %dd; :::; zþk þ %ddÞ by
setting %dd ¼ ðQ �

Pk
i¼1 zþi Þ=k. Thus, the reference

point space can be represented on a ðk � 1Þ-
dimensional hyper-plane. In particular, for tri-
objective (bi-objective) problems, the reference
point space and its indifference regions (i.e. sets
of reference points that lead to the same solution)
may be graphically represented in a plane (line).
Moreover, there are ranges ½zþmini ; zþmaxi �, i ¼ 1; ::;
k such that the variation of each zþi within its

range allows one to establish the complete non-
dominated solution set. Therefore, if Q and zþmini ,
i ¼ 1; ::; k are properly defined, the representation
of the reference point space may be reduced to

%ZZ
þ
Q ¼ zþ zþi 2 ½zþmini ; zþmaxi �8i;

Xk

i¼1

zþi ¼Q

�����
( )

�Zþ
Q

where zþmaxi ¼ Q �
P

j 6¼i z
þmin
j . The values of Q

and zþmini , i ¼ 1; . . . ; k may be initially set by a
heuristic procedure (for instance, based on the
values of the pay-off table) keeping the possibility
of a further adjustment of zþmini , i ¼ 1; . . . ; k (by
decreasing their values).
Figure 1(a) shows the shape of %ZZ

þ
Q in the

tri-objective case. It is an equilateral triangle
whose projection, for example, on plane ‘zþ1 ; zþ2 ’
is the right-angled triangle of Figure 1(b). To
simplify the representation, we shall adopt the
projection on ‘zþ1 ; zþ2 ’ instead of the equilateral
triangle.
Let us turn to the discussion of some properties

connected with the behaviour of particular refer-
ence points in P2ðzþÞ or P1ðzþÞ.

Proposition 1
If an efficient solution of the MOILP problem, xa,
optimizes both P2ðzþaÞ and P2ðzþbÞ with
zþa ¼ ðzþa

1 ; :::; zþa
p ; :::; zþa

k Þ, zþb ¼ ðzþa
1 ; :::; zþa

p þ
%yyp; :::; zþa

k Þ, %yyp > 0; then xa also optimizes P2ðzþÞ
for zþ between zþa and zþb.

Since Proposition 1 is not difficult to prove, we
omit its proof here. This proposition just for-
malizes a result of the directional searches
provided by Alves and Cl!ıımaco’s approaches:
when the DM wants to improve the objective
function fp, an integer value %yyp is automatically
determined and added to the pth component of the
reference point such that %yyp also leads to the
previous efficient solution (xa), but %yyp+1 leads to a
different efficient solution (say xb). We recall that
only integer reference points are considered
because they do not constrain the search for
efficient solutions. We can, however, determine a
thinner barrier (less than 1) between reference
points corresponding to xa and those correspond-
ing to xb. It suffices to compare the objective
function value of P2(z

+), with ðzþa
1 ; :::; zþa

p þ %yyp; :::;
zþa
k Þ 4 z+ 4 ðzþa

1 ; :::; zþa
p þ %yyp þ 1; :::; zþa

k Þ, just
for xa and xb because one of them optimizes
P2(z

+).
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In the tri-objective case, when one component
of ðzþ1 ; zþ2 ; zþ3 Þ 2 Zþ

Q is increased by y, the resulting
point can be converted to Zþ

Q by subtracting y
3 from

all the components. For instance, (zþ1 þ y; zþ2 ; zþ3 )
is converted into (zþ1 þ 2

3y; zþ2 � 1
3y; zþ3 � 1

3yÞ.
Figure 2 shows the three directions (m1, m2 and
m3) we consider in the directional searches to
improve each objective function of tri-objective
problems.
Proposition 1 states that if zþa and zþb belong to

the same indifference region and a line segment

with direction m1, m2 or m3 can connect them,
then all the other points in the line segment also
belong to the same indifference region (i.e. there is
convexity in these directions).
Let us now denote by si; i ¼ 1; :::; k, the

slack variables associated with the constraints
zþi 2cix4a; i ¼ 1; . . . ; k, of P2ðzþÞ (or P1ðzþÞ).
Thus, zþi 2cix þ si ¼ a, i ¼ 1; . . . ; k.

Remark 1
Let zþa be a reference point and ðxa; aa; saÞ the
optimal solution of P2ðzþaÞ. Let J � f1; ::::; kg be
the set of active constraints that define the aa

value, i.e. aa ¼ zþa
j � cjxa, j 2 J. Therefore, sa

j ¼ 0
for every j 2 J and sa

i > 0 for every i =2 J. If one or
more components i =2 J of zþa are increased by
di4sa

i , the Tchebycheff distance ðaaÞ between the
reference point and the criterion point f a (image of
xa) does not change. Thus, this solution remains
the closest one to the modified reference point. It
follows that all the reference points ðzþa

1 þ d1; :::;
zþa
k þ dkÞ with 04di4sa

i , i ¼ 1; ::::; k belong to the
indifference region of xa.

Example
Let zþa¼ðzþa

1 ; zþa
2 ; zþa

3 Þ lead to xa with sa
1 > 0, sa

2 > 0
and sa

3 ¼ 0. The points P0 ¼ zþa, P1 ¼ ðzþa
1 þ sa

1;
zþa
2 ; zþa

3 Þ, P2 ¼ ðzþa
1 ; zþa

2 þ sa
2; zþa

3 Þ, P1;2 ¼ ðzþa
1 þ

sa
1; zþa

2 þ sa
2; zþa

3 Þ and all the points that satisfy

Figure 1. %ZZ
þ
Q for tri-objective problems and its projection on ‘zþ1 ; zþ2 ’.

Figure 2. The directions of z+ used in the directional
searches on the projection of %ZZ

þ
Q onto ‘zþ1 ; zþ2 ’.
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(zþa
1 þ d1; zþa

2 þ d2; zþa
3 ) with 04di4sa

i , i ¼ 1; 2,
belong to the indifference region of xa. A graphical
representation of these points converted to Zþ

Q and
projected onto ‘zþ1 ; zþ2 ’ is shown in Figure 3.
In tri-objective problems, each indifference

region of Zþ
Q projected onto ‘zþ1 ; zþ2 ’ is the union

of indifference sub-regions like that of Figure 3.
For each z+a, there is at least one sa

j ¼ 0 in the
optimal solution of P2(z

þa) because J is always
non-empty. When just one sa

j is zero, the indiffer-
ence sub-region is a parallelogram, but if two sa

j
are zero, the parallelogram is reduced to a line
segment and if sa

j ¼ 0 for all j ¼ 1; . . . ; 3, just one
point is represented (corresponding to P1;2 in
Figure 3).
Generally speaking, the reference point Na ¼

ðzþa
1 þ sa

1; . . . ; zþa
k þ sa

kÞ }corresponding to P1;2 in
the previous example}takes a key role in the
indifference region of xa. It has the following
properties: (i) the a optimal value of P2ðNaÞ is
given by the difference between any component of
Na and the corresponding component of the
criterion point f a (image of xa); (ii) points Na

and f a are converted into the same point on Zþ
Q ;

(iii) any indifference sub-region of reference points
that lead to xa (in the sense of Remark 1) includes
this reference point. We shall designate such
reference points by KERNELS of the indifference
regions on the reference point space.
As we have seen, one reference point zþa can be

used to state an indifference sub-region on the
reference point space corresponding to a non-
dominated solution f a (cf. Remark 1). If we know
several reference points (e.g. through a trajectory)

that lead to the same non-dominated solution f a,
then we will be able to state several indifference
sub-regions, whose union defines a larger (sub)-
region.
So, let us see a way of drawing successive

indifference sub-regions for a tri-objective problem
profiting from the directional searches described
before. Recall that a directional search aims to
search for non-dominated solutions that improve
one objective function, f1, f2 or f3, by adjusting the
reference point according to the direction m1, m2

or m3 (Figure 2), respectively. The result is a
sequence of discrete non-dominated solutions
which successively improve the selected function
and a trajectory of (continuous) reference points
that lead to each of those solutions. Applying
Remark 1 to each reference point on this
trajectory, we define successive indifference sub-
regions. As we will see, many of these indifference
sub-regions are contained in one of them. There-
fore, it is not necessary to take into account all the
reference points on the trajectory.
To illustrate these concepts, we start with an

example and then analyse the general tri-objective
case. The procedure may be used for problems
with more than three objective functions although
the graphical visualization of the indifference
regions is more difficult. In those cases, one
possibility could be the representation of cuts of
the reference point space by fixing one or more
components of the reference points.
We chose a tri-objective multiconstraint knap-

sack problem with 20 binary variables and 10
constraints and we applied the interactive
approach from Alves and Cl!ıımaco (2000) to
this problem. We started by choosing the reference
point (231, 275, 262), and a first non-dominated
solution, f H ¼(117, 162, 170), was computed.
Then we chose the first objective function (f1)
to be improved in relation to f H . The procedure
automatically updated the reference point to
(271, 275, 262) which yielded a new non-
dominated solution, f A ¼(173, 160, 109). The
reference point (271, 275, 262) is the first integer
point in the trajectory ð117þ y, 275, 262), y > 0
that is able to get away from f H . Consequently,
(270, 275, 262) is the largest integer point in this
trajectory that leads to f H . On continuing the
search through the same direction, the non-
dominated solution f B ¼ ð199, 185, 81) was
computed by considering the reference point
(354, 275, 262). The following diagram gives a
brief summary of this search.Figure 3. Example of an indifference sub-region.
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We omit here the technical details of the way
the sensitivity analysis updates the reference
point since they are not important for comput-
ing indifference sub-regions on the reference
point space. The relevant information is only
that the reference points (231þ y, 275, 262), 04y
439 lead to solution f H and the reference points
(271þ y, 275, 262), 04y482 lead to solution f A.
These reference points can be used to define
indifference sub-regions for f H and f A, respec-
tively. Note that other directional search ap-
proaches could also be used to give this kind of
information.
Let us consider just the solution f A for

illustrating the computation of indifference sub-
regions. According to Remark 1, each reference
point from (271, 275, 262) to (353, 275, 262) can
define a sub-region for f A. The first k ðk ¼ 3Þ
constraints of P2ðzþÞ, which are zþi � cix4a
ði ¼ 1; . . . ; 3Þ, are assigned the following values:
z+ is the parametric reference point (271þ y, 275,
262), 04y482, and ðc1x; c2x; c3xÞ ¼ f A ¼
ð173; 160; 109Þ. Hence, in the optimal solution of
P2ðzþÞ the constraints become 98þ y4a, 1154a,
1534a, respectively for i ¼ 1, 2, 3, with a the
minimum value that satisfies these constraints. The
set of active constraints J � f1; :::; 3g varies within
the range 04y482, occurring in the following
situations: for 04y555, J ¼ f3g and the a
optimal value is set by the third constraint
ða ¼ 153Þ, but for 555y482, J ¼ f1g and the a
optimal value is set by the first constraint
ða ¼ 98þ yÞ; for y ¼ 55, J ¼ f1; 3g. To sum up,
the slack variables vary qualitatively in the
following way:

04y555 ) s1 > 0; s2 > 0; s3 ¼ 0

y ¼ 55 ) s1 ¼ 0; s2 > 0; s3 ¼ 0

555y482 ) s1 ¼ 0; s2 > 0; s3 > 0

For 04y555 and 555y482, each reference
point enables to define a parallelogram as
an indifference sub-region; for y ¼ 55, the paralle-
logram is reduced to a line segment. Let us
first analyse the parallelograms defined for
04y455.

First part: 04y455
Let us consider the indifference sub-regions of

f A defined by the reference points (271þ y, 275,
262) with 04y455. According to Remark 1, all
the points (271þ yþ d1, 275þ d2, 262þ d3),
04y455, 04di4si (i ¼ 1; :::; 3) belong to the
indifference region of f A. The values of the slack
variables si are set by the first constraints of
P2ðzþÞ, i.e. 98þ yþ s1 ¼ a, 115þ s2 ¼ a and
153þ s3 ¼ a. The optimal value of a is 153 for
04y455, thus s1 ¼ 552y, s2 ¼ 38 and s3 ¼ 0.
Hence, for a particular y ¼ y0, the corner points
that define the indifference sub-region are:

Py0
0 : the original (271+y0, 275, 262)

Py0
1 : adding s1 (271+55, 275, 262)

Py0
2 : adding s2 (271+y0, 275+38, 262)

Py0
1;2 : adding s1 and s2 (271+55, 275+38, 262)

As stated before, a reference point z+ can be con-
verted to a plane Zþ

Q by adding ðQ �
Pk

i¼1 zþi Þ=k to
all the components of z+. This conversion enables
the representation in a plane of the indifference
sub-regions (parallelograms). Considering Q ¼ 500,
the above points are converted into the following
ones:

Py0
0 : ð168:33þ 2

3y
0; 172:33� 1

3y
0; 159:33þ 1

3y
0Þ

Py0
1 : (205, 154, 141)

Py0
2 : ð155:67þ 2

3y
0; 197:67� 1

3y
0; 146:67� 1

3y
0Þ

Py0
1;2 :(192.33, 179.33, 128.33) ðNAÞ

Now the sum of the components of each point
is equal to Q ¼ 500. The point Py0

1;2 is independent
of y0 because it is the KERNEL ðNAÞ of
the indifference region of f A. Figure 4 shows
a rough draft of the superposed parallelograms
defined by the two extreme parameter values,
y ¼ 0 and 55 (just a line segment), and
two intermediate values, y ¼ 10 and 20. From y ¼
0 to 55 the parallelograms become successively
smaller, so that the parallelogram for y ¼ 0 covers
the others. Therefore, it would be enough
to consider just the indifference sub-region
defined by the first reference point, i.e. (271, 275,
262).
Let us now analyse the parallelograms defined

by the reference points (271þ y, 275, 262) with
554y482.
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Second part: 554y482, s1 ¼ 0, s2 ¼ y� 17,
s3 ¼ y� 55:
Let us consider the variable’s change f ¼ y255.

Hence, 04f427, s1 ¼ 0, s2 ¼ fþ 38, s3 ¼ f. For
a particular f ¼ f0, the corner points that define
the indifference sub-region are:

Now the parallelograms become larger from
f ¼ 0 to 27, thus they are all covered by the last
one. The indifference sub-region defined by the last
reference point, (353, 275, 262) corresponding to
f ¼ 27, is shown in Figure 5. It is appended to the
larger indifference sub-region defined in the first
part of this analysis.
To sum up, we can state a systematic way to

define indifference sub-regions and to represent
them graphically for the tri-objective case.

(1) Let us suppose that we know one reference
point z+ that leads to the non-dominated solution
f a through the optimization of P2ðzþÞ. If only one
variable si ði ¼ 1; . . . ; 3Þ is zero in the optimal
solution of P2ðzþÞ, then a parallelogram-shaped

indifference region is defined. But if more than one
variable si is zero, the parallelogram is reduced to a
line segment or a point, respectively, for two or
three si variables equal to zero. Let us consider
that the region is a parallelogram since a line
segment or a point are particular cases of the

latter, and assume that the slack variables si

ði ¼ 1; . . . ; 3Þ satisfy sp > 0, sq > 0 and sr ¼ 0,
p; q; r 2 f1; 2; 3g, p 6¼ q 6¼ r in the optimal solution
of P2ðzþÞ. To represent the parallelogram graphi-
cally, first it is necessary to convert z+ into a point
zþþ that belongs to a plane Zþ

Q (as stated before)
and define the KERNEL Na 2 Zþ

Q . Na is the only
point belonging to the indifference region of f a for
which si ¼ 0, i ¼ 1; . . . ; 3, and it corresponds to
the conversion of f a to Zþ

Q . The parallelogram can
be drawn directly in the following way: draw z++

and the KERNEL Na; draw two lines from zþþ,
one in the direction mp and the other in the
direction mq; then, draw two lines from Na that are
parallel to each one of the lines drawn from z++.
The points z++, Na and the line intersection

P
f0

0 : the original ð326þ f0; 275; 262Þ!
conversion

Zþ
Q

ðQ¼500Þ
ð205þ 2

3f
0; 154� 1

3f
0; 141� 1

3f
0Þ

P
f0

2 : adding s2 (326þf0, 275+38þf0, 262) ð192:33þ 1
3f

0; 179:33þ 1
3f

0; 128:33� 2
3f

0Þ

P
f0

3 : adding s3 (326þf0, 275, 262þf0) ð205þ 1
3f

0; 154� 2
3f

0; 141þ 1
3f

0Þ

P
f0

2;3 : adding s2 and s3 (326þf0, 275+38þf0, 262þf0) (192.33, 179.33, 128.33) ðNAÞ

Figure 4. Draft of superposed indifference sub-regions
of f A (1st part).

Figure 5. Draft of indifference sub-regions of f A (1st
and 2nd parts).
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Copyright # 2001 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 10: 177–189 (2001)



points define the parallelogram, which is an
indifference sub-region of f a.
(2) Let us now suppose that we know a range

½zþa; zþb� of reference points, which differ in one
component (i.e. belong to one of the directions m1,
m2 or m3), that lead to the non-dominated solution
f a. If the set J of active constraints changes with-
in ½zþa; zþb�, then the range ½zþa; zþb� must be
split into sub-ranges. In that case, there is a
splitting point zþc that divides ½zþa; zþb� into ½zþa;
zþc� and ½zþc; zþb�, for which Jc ¼ Ja [ Jb. The
number of variables si ði ¼ 1; . . . ; 3Þ equal to zero
in P2ðzþcÞ (i.e. the cardinality of JcÞ is one more
than in P2ðzþÞ with zþ 2 ½zþa; zþc½[�zþc; zþb�.
Each reference point in ½zþa; zþb� allows drawing
an indifference sub-region of f a but, for each
sub-range there always exists one reference
point whose indifference sub-region covers
the others: zþa ‘covers’ ½zþa; zþc�, zþb ‘covers’
½zþc; zþb�, and one of the extreme points ðzþa or
zþbÞ ‘covers’ ½zþa; zþb� if there is no need to split
the range. Therefore, it is enough to follow the
steps in point (1) with zþa, zþb or both to draw the
larger indifference sub-region of f a defined by
½zþa; zþb�.
We recall that this procedure does not define

the whole indifference region of one solution
but only some of its convex sub-regions.
This procedure may be integrated into an inter-
active method, which implies that sub-regions are
interactively appended and presented to the DM.
The intention is not to compute all the indifference
regions on the reference point space but to help
the DM in the decision process, namely in the
selection of new reference points. However,
we have computed all the indifference regions of
the previous problem in order to give a better
illustration of the shape of these regions. They are
shown in Figure 6 in the triangle %ZZ

þ
Q defined

by Q=500 and zþmini ¼ 50 (i ¼ 1; . . . ; 3Þ. Note
that the indifference regions are, in general, non-
convex but the lines that delimit them have
particular slopes ðm1;m2 or m3Þ. This is true for
any tri-objective MOILP problem, and the exten-
sion for more than tri-objective problems is
straightforward.
The sub-regions corresponding to solutions f H

and f A determined during the directional search by
the procedure described above are delimited by a
grey borderline in Figure 6. All the KERNELS are
also marked in Figure 6. Table I presents
the values of the corresponding non-dominated
solutions.

The indifference regions on the reference point
space have already shown their potentialities in an
application under study. The application concerns
the selection of remote load control strategies in an
electric distribution network. The problem, which
involves different conflicting aspects such as
reducing peak demand, maximizing utility profits
and minimizing discomfort to consumers, has been
modelled as a tri-objective MOILP problem. It
was proposed and studied using the STEM
method by Jorge et al. (2000). The STEM method
(Benayoun et al., 1971) is an interactive method in
which the DM must specify, at each interaction,
relaxation quantities for the objectives he/she
considers satisfactory in order to improve the
remaining ones. In Jorge et al (2000), five non-
dominated solutions were computed using the
STEM method. However, besides the difficulties
of choosing the relaxation quantities, the STEM
does not give any suggestion on whether the
problem has a large number of non-dominated
solutions or not, or on the magnitude of the
differences among ‘intermediate’ solutions. In-
stead, the use of directional searches, attached to
the display of indifference (sub)regions, presents
other information on this problem. For instance,
successive solutions obtained through a directional
search sometimes have very close criterion values
but there are also ‘abrupt jumps’ that lead to very
different criterion values. We may further expect
that the non-dominated set contains a large
number of solutions, as suggested by the filled
areas in the triangle of Figure 7 for the 30 non-
dominated solutions already computed. The in-
difference (sub)regions presented in this graph also

Table I. All the non-dominated solutions of the example

f1 f2 f3

A 173 160 109

B 199 185 81

C 48 109 174

D 39 206 97

E 0 89 221

F 39 188 157

G 28 127 182

H 117 162 170

I 72 95 188

J 84 107 181

K 117 187 136

L 100 192 110

M 0 96 198
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give an idea of the stability degrees of the non-
dominated solutions with respect to the intention
of improving one criterion.

4. CONSIDERING ADDITIONAL
LIMITATIONS ON THE OBJECTIVE

FUNCTION VALUES

Throughout a search process for non-dominated
solutions, the DM may wish to impose additional
limitations (bounds) on the objective function
values. In reference point approaches, like those
we have been considering, these additional con-
straints are included in the scalarizing program
P2ðzþÞ or P1ðzþÞ. In this section we further
investigate the representation, on the original
reference point space, of indifference regions

corresponding to non-dominated solutions that
have been computed by scalarizing programs with
additional limitations on the criteria.
For simplification, let us consider that addi-

tional limitations cjx5Lj, j 2 %KK � f1; . . . ; kg are
introduced in P1ðzþÞ (instead of P2ðzþÞÞ. Let this
scalarizing program be P1ðzþ; LÞ:

min a P1(z
+, L)

s.t. zþi � cix4a; i ¼ 1; . . . ; k

c jx5Lj 8j2 %KK

x 2 S

The introduction of c jx5Lj, j 2 %KK may
restrict the non-dominated solution set that is
attainable. This means that, for a given reference

Figure 6. All the indifference regions of the example.
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point, a non-dominated solution that optimizes
P1ðzþ; LÞ may be non-optimal for P1ðzþÞ. Thus,
only some non-dominated solutions have repre-
sentation on the reference point space of the
restricted multi-objective problem and the decom-
position of this space is different from the
decomposition of the original problem. In order
to have a consistent graph that can present any
non-dominated solution of the original problem,
regardless of how it has been computed, it is
necessary first to map reference points zþ onto zþþ

such that P1ðzþ; LÞ and P1ðzþþÞ have the same
outcome.
The following lemma establishes a situation for

which the results of P1ðzþ; LÞ and P1ðzþÞ are
equal.

Lemma 1
Let ð *xx, *aaÞ be the optimal solution of P1ðzþ; LÞ for a
given z+. If zþj 5Lj þ *aa for all j 2 %KK , then ð *xx, *aaÞ
also optimizes P1ðzþÞ. (This means that the
limitations cjx5Lj, 8j 2 %KK could be dropped
because they do not constrain the result).

Proof
Suppose that at least one limitation crx5Lr,
r 2 %KK constrains the result of the scalarizing
program. This means that, although ð *xx, *aaÞ

is a feasible solution of P1ðzþÞ, it is not an
optimal solution of P1ðzþÞ. Let ð #xx, #aaÞ be
an optimal solution of P1ðzþÞ and cr #xx5Lr

obviously holds.
The constraint crx þ a5zþr in P1(z

+) imposes
that cr #xx þ #aa5zþr . Since zþr 5Lr þ *aa; then
cr #xx þ #aa5zþr 5Lr þ *aa ) cr #xx5Lr þ *aa� #aa. But
cr #xx5Lr, so, Lr þ *aa� #aa4cr #xx5Lr implying that
*aa5#aa, which contradicts the hypothesis that
ð #xx, #aaÞ optimizes P1(z

+). &

Proposition 2 states a systematic way of obtain-
ing a reference point that leads to the same solution
as the one produced by another reference point
when projected onto the non-dominated solution
set restricted by criterion bounds. The reference
points will be equal if the criterion bounds do
not constrain the outcome of P1ðzþ; LÞ}
Lemma 1}but they will be different otherwise.

Proposition 2
If ð *xx, *aaÞ optimizes P1ðzþ; LÞ, then it also optimizes
P1ðzþþÞ with zþþ

i ¼ zþi for i =2 %KK and zþþ
j ¼

maxfzþj ;Lj þ *aag for j 2 %KK.

Proof
(1) Since cj *xx5Lj , , cj *xx þ *aa5Lj þ *aa;8j 2 %KK ,

and cj *xx þ *aa5zþi ; 8i 2 f1; . . . ; kg then ð *xx, *aaÞ is a

Figure 7. Some indifference sub-regions of a problem for selection of remote load control strategies.
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feasible solution of P1ðzþþÞ. Let us suppose that it
does not optimize P1ðzþþÞ and let ð #xx, #aaÞ be its
optimal solution. Hence #aa5*aa.
(2) Also,

c j #xx þ #aa5maxfzþj ; Lj þ *aag j 2 %KK

ci #xx þ #aa5zþi i =2 %KK

(

,
cj #xx þ #aa5Lj þ *aa j 2 %KK

ci #xx þ #aa5zþi 8i 2 f1; . . . ; kg

(

ð #xx, #aaÞ cannot be feasible for P1ðzþ; LÞ because,
from (1), it would be the optimal solution of
P1ðzþ; LÞ. Therefore, there exists any r 2 %KK such
that cr #xx5Lr. But, from (2), cr #xx þ #aa5Lr þ *aa )
*aa� #aa4cr #xx � Lr50: Hence *aa5#aa which contradicts
(1) and thus the hypothesis that ð #xx, #aaÞ optimizes
P1ðzþþÞ. &

Note: Lemma 1 and Proposition 2 are still valid
for P2 provided that r is positive small enough
such that if %xx optimizes P2 then %xx optimizes P1.
Hence, Proposition 2 can be used to translate
indifference regions on the reference point space

from the restricted problem to the original
problem.

Example
Let us consider the tri-objective multiconstraint
knapsack problem addressed in Section 3 and let
us suppose that f1530 and f3585 were included to
temporarily constrain the search for non-domi-
nated solutions. Figure 8 (a) shows the indifference
regions that would be defined from the reference
point conversion established in Proposition 2. The
non-dominated solutions ‘B’, ‘E’, ‘G’ and ‘M’ do
not have representation because they do not satisfy
the additional limitations. The reference points
inside the shading areas remain unchanged by the
mapping function. Reference points outside these
areas are mapped onto the boundary following
one of the directions m1 or m3 (except those that
are mapped onto the upper vertex of the shading
area). The arrows in Figure 8(a) illustrate it. The
areas reserved to the other non-dominated solu-
tions of the original problem are kept empty in this
representation, but they could be filled if the
additional limitations were eliminated. This graph
can be compared with the graph of the Figure 8(b)

Figure 8. Indifference regions considering criterion bounds in f1 and f3: reference point space of (a) the original
problem and (b) the restricted problem.
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that shows the whole decomposition of the
reference point space of the restricted problem.
In Figure 8(b) the non-dominated solutions that
satisfy the temporary constraints fill the triangle
completely.

5. CONCLUDING REMARKS

In this paper, we have presented some properties
of the reference points in Tchebycheff scalarizing
functions for MOILP problems. We have analysed
the shape of indifference regions on the reference
point space, i.e. sets of reference points that lead to
the same non-dominated solution. Although we
could not establish a procedure for computing the
whole indifference region of a non-dominated
solution, we proposed a method of defining
sub-regions in it. We have also exploited the
decomposition of the reference point space when
additional limitations on the objective function
values are introduced.
MOILP problems with two or three objective

functions enable the graphical representation of the
indifference (sub)regions on the reference point
space. Taking advantage of the directional searches
for non-dominated solutions that we had imple-
mented before, larger indifference sub-regions may
be successively defined and appended. The graphi-
cal representation of these regions has been
included in the computational system and our
experience, namely with an application currently
under study, have shown that this feature provides
valuable information for the DM. It gives the DM
new insights into the problem helping him/her to
avoid selecting reference points that would lead to
non-dominated solutions already known.
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