

Filipe Manuel Marques Quintas

Laser-based Localization Methods for Mobile Robots:

a SLAM Perspective

Dissertação de Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Coimbra, Setembro, 2017

University of Coimbra

Faculty of Sciences and Technology

Department of Electrical and Computer Engineering

Laser-based Localization Methods for

Mobile Robots: a SLAM Perspective

Filipe Manuel Marques Quintas

A dissertation presented for the degree of

Master of Science in Electrical and Computer Engineering

Coimbra, 2017

Localization Methods for Mobile

Robots using Laser Data:

a SLAM Perspective

Supervisor:

Prof. Doutor Urbano José Carreira Nunes

Co-Supervisor:

Master Lúıs Garrote

Jury:

Prof. Doutor Paulo Jorge Carvalho Menezes

Prof.a Doutora Ana Cristina Barata Pires Lopes

Prof. Doutor Urbano José Carreira Nunes

A dissertation submitted in partial satisfaction of the requirements for the degree

of Master of Science in Electrical and Computer Engineering

Coimbra, 2017

Acknowledgements

First of all, I would like to thank Prof. Urbano Nunes for all the conditions and

help provided during not just this dissertation, but also during the whole master’s

degree. I must also thank all my ISR laboratory colleagues for helping every time

I needed during this work, specially to Lúıs Garrote which advised me during the

entire work and without which it would not be possible to complete this dissertation.

I’m grateful to the support provided by the project P2020 AGVPOSYS (Automated-

Guided-Vehicle with innovative indoor positioning system for the factory of the fu-

ture; co-funded by FEDER, through programs PT2020 and Centro 2020), in co-

promotion between Active Space Technologies and University of Coimbra, project

in which this dissertation was inserted, and also to ISR-UC for giving me the con-

ditions to make this dissertation possible.

This journey would certainly be impossible without the support of my parents

who I specially thank for always being there and giving me everything i needed to

reach this point, my sister who has always looked out for me and lead me into the

right direction, my girlfriend who I had the luck to have by my side during this

journey and my friends who have been with me the whole time. This is just the

endpoint of a long journey, so it is impossible to thank by words to all these persons

that have been with me since the beginning. I can only hope i still get this support

for what’s to come.

For those who helped me completing this dissertation, those who have been there

for me all the time, those who had the patient to always support me and those who

I was happy to come across in this journey: thank you!

i

Abstract

A robot navigation system is composed of two essential modules: localization and

mapping. Localization consists on tracking the robot’s pose (position and orienta-

tion) in a known environment, while mapping is focused on building a map of the

environment. Although there have been many techniques of Simultaneous Local-

ization and Mapping (SLAM) developed over the last years, these modules can be

analysed independently. This dissertation focuses on the localization module.

One of the technologies that has been emerging over the last century is the use of

Automated Guide Vehicles (AGVs) for industrial purposes (pick up and move ma-

terials around a warehouse). These vehicles are usually guided by wires in the floor,

magnetic tapes or laser. Even though using wires or magnetic tapes may be more

reliable, laser navigation does not require the application of any material on the en-

vironment which constitutes a more versatile solution. This dissertation focuses on

developing a robot’s localization system using only laser data. This is accomplished

using a scan matching algorithm (Iterative Closest Point) to match a map built

from environment natural features (essentially corners) with a known map of the

environment. An algorithm to extract corners is developed, which is later compared

with already validated feature extraction methods available in OpenSLAM. Lastly,

the developed algorithm is applied in the framework of the HectorSLAM method in

order to give the localization technique more reliability and robustness.

Keywords: SLAM, Localization, Mapping, AGV, Scan Matching, the HectorSLAM.

iii

Resumo

O sistema de navegação de um robot é constitúıdo por dois módulos essenciais:

localização e mapeamento. A localização consiste em determinar a pose do robot

(posição e orientação) num ambiente previamente conhecido, enquanto que o ma-

peamento foca-se na construção de um mapa do ambiente. Embora existam várias

técnicas de SLAM (localização e mapeamento em simultâneo), estes dois módulos

podem ser analizados independentemente. Esta dissertação foca-se essencialmente

no sistema de localização do robot.

Uma das tecnologias que tem estado emergente nos últimos anos é o uso de AGVs

(véıculos que se deslocam sem ação humana direta) em ambientes industriais, prin-

cipalmente para deslocar objetos. Este tipo de véıculos é, geralmente, mobilizado

usando fios no chão, fita magnética ou laser. Embora o seguimento com fios ou

fita magnética possa ser mais fiável, a navegação por laser dispensa o uso de ma-

teriais adicionais no ambiente, o que constitui uma solução mais versátil. Esta dis-

sertação foca-se em desenvolver um sistema de localização que usa apenas as leituras

do laser. Isto é conseguido utilizando um algoritmo de Scan Matching, que faz a

correspondência entre um mapa de features naturais (essencialmente cantos) e um

mapa previamente conhecido do ambiente. É desenvolvido um algoritmo de extração

de cantos que é posteriormente comparado com outros já validados dispońıveis no

OpenSLAM. Finalmente, este algoritmo desenvolvido é utilizado em conjunto com

o HectorSLAM com o propósito de aumentar a fiabilidade e robustez do sistema de

localização.

Palavras-chave: SLAM, Localização, Mapeamento, AGV, Scan Matching, the

HectorSLAM.

v

“The important thing is to never stop questioning.”

Albert Einstein

vii

Contents

Acknowledgments i

Abstract iii

Resumo v

List of Acronyms xi

List of Figures xiii

List of Tables xiv

1 Introduction 1

1.1 Context and Motivation . 3

1.2 Objectives . 3

1.3 Outline of the dissertation . 4

2 State of Art 7

2.1 Segmentation and Primitive Extraction 7

2.1.1 Segmentation . 8

2.1.2 Geometrical Primitive Extraction 9

2.2 Map Representations . 12

2.3 Localization: Scan matching algorithms 13

2.3.1 Iterative Closest Point . 16

2.4 Simultaneous Localization and Mapping 19

2.4.1 Gmapping . 19

2.4.2 HectorSLAM . 20

ix

3 Developed Methods 23

3.1 Segmentation and Primitive Extraction 24

3.2 Scan Matching . 28

3.3 Applying Corner Features in the HectorSLAM 31

3.3.1 Preprocessing . 31

3.3.2 Mapping . 33

4 Experimental Results 35

4.1 Validation Platform . 35

4.2 Workspace Description . 37

4.3 Primitive Extraction . 38

4.4 ICP Algorithm . 42

4.4.1 Small scenario with no movement 43

4.4.2 Small scenario with rotation movement 45

4.4.3 Full room scenario . 47

4.5 Applying Corner Features to the HectorSLAM 51

5 Conclusion and Future Work 55

A Background and Datasets 57

A.1 Robot Operating System . 57

A.1.1 System Design . 57

A.1.2 File System . 58

A.1.3 Nomenclature . 59

A.2 Dataset Extraction . 60

Bibliography 67

x

List of Acronyms

AGV Automated Guided Vehicle

AMCL Augmented Monte Carlo Localization

FALKO Fast Adaptive Laser Keypoint Orientation-invariant

FLIRT Fast Laser Interest Region Transform

FT Feature Tracking

ICL Iterative Closest Line

ICP Iterative Closest Point

ISR Institute of Systems and Robotics

LIDAR Laser Interferometry Detection and Ranging

MCL Monte Carlo Localization

PF Particle Filter

PSM Polar Scan Matching

RANSAC RANdom SAmple Consensus

RMSE Root-Mean-Square Error

ROS Robot Operating System

SD Standart Deviation

SLAM Simultaneous Localization and Mapping

xi

List of Figures

1.1 Two different approaches for AGVs localization system. 2

1.2 Generic pipeline for a localization method based on scan matching. . 4

2.1 Geometric representation of both PDBS approaches to find the value

of Dthd, described below [27]. 9

2.2 Most commonly used map representations. 12

2.3 Occupancy grid and topological map representations. 13

2.4 Outline of a localization algorithm based on scan matching (* laser

scan k − 1 already has its coordinates converted). 15

2.5 HectorSLAM system overview (from [19]). 20

3.1 Pipeline of the developed algorithm based on scan matching with ICP. 23

3.2 Splitting a segment using Douglas-Peucker algorithm. 25

3.3 Main modules of the HectorSLAM: preprocessing module highlighted

in red was modified to integrate corner features extracted from laser

range data. 31

3.4 Main modules of the HectorSLAM: mapping module highlighted in

red was modified to use an a priori map. 33

3.5 Caption for LOF . 33

4.1 Robot structure used during tests. 35

4.2 Overview of actions performed on the validation platform. 37

4.3 Panoramic photo of the test room used during experiments. 37

4.4 Two different scenarios used during localization tests. 38

4.5 Number of segments generated in terms of distance threshold Dthd. . 39

4.6 Laser scan data segmented with different values of Dthd. 40

4.7 Douglas-Peucker algorithm results for different values of threshold ε. . 40

xii

4.8 Number of segments generated in terms of threshold ε. 41

4.9 Corner detection after applying LSF and line intersection. 42

4.10 Robot’s position error for small scenario with no movement (1). . . . 43

4.11 Robot’s position error for small scenario with no movement (2). . . . 44

4.12 Robot’s position error for small scenario with rotation movement (1). 46

4.13 Robot’s position error for small scenario with rotation movement (1). 47

4.14 Elliptical path performed without obstacles in it using both extracted

features and full laser scan approaches. 48

4.15 Elliptical path performed without obstacles in it using both extracted

features and full laser scan approaches. 50

4.16 Elliptical path performed with dynamic obstacles in it using full laser

scan. 51

4.17 Position estimation for elliptical path in both normal and dynamic

scenarios. 53

4.18 Two possible situations that can mislead localization algorithm. . . . 53

A.1 ROS basic communication structure. 59

A.2 Dataset extraction scheme. 60

A.3 LaserScan message format [1]. 61

xiii

List of Tables

2.1 Advantages and disadvantages of grid-based and topological approaches

based on [37]. 14

4.1 Hokuyo’s UTM-30LX laser main specifications. 36

4.2 Computation times with different approaches of segmentation. 41

4.3 Error analysis for small scenario with no movement. 45

4.4 Angular error analysis for smal scenario with no movement. 45

4.5 Error analysis for small scenario with rotation movement. 46

4.6 Error analysis for full room (position 1). 48

4.7 Angular error analysis for full room (position 1). 49

4.8 Error analysis for full room (position 2). 49

4.9 Angular error analysis for full room (position 2). 49

4.10 Initialization parameters used in FALKO’s extractor. 52

xiv

Chapter 1

Introduction

Robotic systems are now widely used for industrial purposes. Although they were

initially designed to perform dangerous or unsuitable duties for human workers,

nowadays they are used to perform large scale repetitive actions, such as welding,

packing or moving materials. Material transportation in a large scale industry can

either be done by having an automatic warehouse system or by using automatic

guided vehicles (AGVs). Regarding AGVs localization systems, there are many

solutions based on different sensors, where the most deployed solutions are based on

magnetic tape tracking or laser triangulation using artificial landmarks (beacons).

Magnetic tape tracking consists in using a sensor on the robot to follow a line on

the floor (Figure 1.1a) and is one of the most used navigation systems in industry.

The large use of magnetic-based guidance comes from its simplicity and low price.

However, this technology is not flexible, since a modification of the robot’s path

demands a modification on the floor tapes topology as well. For this reason, this

approach does not adapt well when frequent changes occur in the environment’s

layout. This flexibility problem can be solved with the use of laser triangulation. In

this case, a laser is used to detect artificial landmarks spread around the environment

(Fig. 1.1b) and estimate a robust and precise robot’s localization. This comes with

an increased cost from the laser used and the installation of the artificial landmarks.

Alongside with these solutions, it is usually installed a security laser, to avoid the

collision with objects that cross the robot’s pathway. This dissertation reports the

main results on the development of a laser-based localization system for an AGV,

as it will be described shortly.

1

(a) Magnetic tape tracking.1 (b) Laser triangulation.2

Figure 1.1: Two different approaches for AGVs localization system.

A robot localization system is designed to give a reliable and robust estimation of

its position and orientation, using data gathered from its sensors. This localization

is very important when used on industrial environments, because there is a high

demand for quality and most solutions are still very conservative. This happens

because a failure in localization can be extremely problematic, as it not only can

break the production levels of an industry, as can also compromise human safety,

even with the use of a safety laser. The main goal of this dissertation is to develop

a robust localization system based only on laser scan data, using natural landmarks

instead of the application of artificial ones. A first algorithm will be developed to

extract natural features from the environment (corners) and estimate the robot’s

pose using a scan matching method (Iterative Closest Point). Afterwards, this

algorithm will be evaluated on different scenarios to test its robustness. Lastly, it

will be implemented along side with the HectorSLAM with the purpose of trying to

improve its performance.

This chapter is an introductory chapter, presenting the context and motivation in

which this dissertation was done, the main goals of it and a brief overview on how

it is organized and what should be expected from the other chapters.

1http://www.thefabricator.com/product/materialshandling/

agv-designed-for-tight-turns-narrow-aisle-material-handling
2http://uk.rs-online.com/web/generalDisplay.html?id=infozone&file=automation/

safety-agvs

2

http://www.thefabricator.com/product/materialshandling/agv-designed-for-tight-turns-narrow-aisle-material-handling
http://www.thefabricator.com/product/materialshandling/agv-designed-for-tight-turns-narrow-aisle-material-handling
http://uk.rs-online.com/web/generalDisplay.html?id=infozone&file=automation/safety-agvs
http://uk.rs-online.com/web/generalDisplay.html?id=infozone&file=automation/safety-agvs

1.1 Context and Motivation

The use of “intelligent” robots has been increasing over the past years, either

for industrial purposes or not. With the increasing application of robots in highly

complex contexts, it is crucial that their navigation systems are as reliable and

robust as possible. There has been a great development over the years to turn AGVs

localization methods more flexible without increasing their pose estimation error.

Laser-based localization is a potential approach for industrial AGVs applications.

There has been a great evolution of localization methods, most of them relying

on multimodal sensory data. Usually, a navigation system receives data from many

sensors, such as laser scanners, wheel encoders (used for odometry) and/or inertial

sensors (IMU). It is an interesting challenge to develop a localization system based

only on laser data due to the fact that it does not require additional sensors in-

stalled on the robot’s platform and does not either require any materials applied

to the environment, such as beacons or magnetic tape. This work is inserted in

the project P2020 AGVPOSYS (Automated-Guided-Vehicle with innovative indoor

positioning system for the factory of the future), in co-promotion between Active

Space Technologies and University of Coimbra, which mainly consists in developing

an AGV localization system using laser-based techniques.

1.2 Objectives

As stated before, most of localization systems use data from many sensors, such

as laser range-finder, wheels’ encoders or inertial sensors. The main purpose of

this dissertation is to developed an algorithm which is able to perform a robust

localization using only laser data. The first goal of this work is to evaluate its

performance amongst other algorithms already validated in literature. After that,

the developed method will be used along side with an available SLAM algorithm

(HectorSLAM) with the purpose of trying to give a contribution to this algorithm.

Summing up, the main goals of this dissertation:

• The first objective is to develop a feature (corners) extraction algorithm based

on laser scan data gathered to build a map, using line segmentation and in-

tersection methods;

3

Laser
Primitive

Extraction
Scan Matching

Transformation

& Re-Iteration

Map

Figure 1.2: Generic pipeline for a localization method based on scan matching.

• After that, pose estimation is done using a scan matching algorithm (ICP,

Iterative Closest Point), using the previous map and a known feature map

from the environment;

• Finally, the algorithm developed will be used alongside the HectorSLAM in

order to evaluate if it is able to enhance the SLAM method.

Before starting to analyse the state of art of this dissertation and also to better

understand the outline of it, Fig. 1.2 presents the generic pipeline of a localization

algorithm based on scan matching, which is the core of this dissertation. As it can

be seen, the first two main goals of this dissertation are focused on the second and

third block of this diagram, respectively. It will now be seen where each of this

diagram blocks fit in the outline of the dissertation.

1.3 Outline of the dissertation

Chapter 2 (State of Art)

This chapter gives a brief overview over the existing methods in literature con-

cerning indoor localization. It is focused on methods that are used in the developed

algorithm and on methods used in this dissertation to compare results with it. Two

SLAM techniques openly available in ROS (Robot Operating System), GMapping

and the HectorSLAM, are presented with the last one being more focused as it will

be explored ahead on this work.

Chapter 3 (Developed Methods)

Chapter 4 presents the algorithms designed and developed on this dissertation.

For each algorithm, a detailed description is given and samples of the developed

4

source code are also presented. It is divided in three main sections: segmentation

and natural features (corners) extraction (second block of Fig. 1.2); scan matching

with ICP algorithm (third and fourth block of Fig. 1.2); finally, a localization

method consisting on the HectorSLAM approach integrating the corners extraction

developed algorithm.

Chapter 4 (Experimental Results)

In this chapter, an analysis about the results obtained is done. Both results from

developed algorithms and algorithms already available in literature are presented

and compared. Different scenarios are tested to have a better evaluation of the

developed algorithm’s behaviour. Once this dissertation focuses on localization,

most of the results presented concern the position error of the robot within different

positions around the environment.

Chapter 5 (Conclusion and Future Work)

The main conclusions are drawn in this chapter are presented, both concerning the

development of a feature extraction algorithm and its application in the framework

of the HectorSLAM. Lastly, a few directions will be given for future research in order

to improve the work developed in this dissertation.

5

Chapter 2

State of Art

This dissertation consists in two major parts: the first one focused on segmen-

tation and primitive extraction, which enables the construction of a feature map

based on extracted primitives (corners); the second one concerns on mobile robots

localization, i.e. estimate the robot’s pose using scan matching.

Since segmentation and primitive extraction are the major parts of this disser-

tation, it is important to present some of the most commonly used techniques.

Section 2.1 describes the most used algorithms in this area.

It is also important to give a brief overview of some of the existing localization

methods before discussing the solution proposed in this dissertation. The two major

issues about localization are how to represent the sensory data gathered by the

robot and how to estimate the robot’s pose using that data and internal maps.

Section 2.2 presents some of the most commonly used environment representations

and Section 2.3 presents an overview of some localization methods. Section 2.4

gives a brief introduction to SLAM and presents two well-known SLAM approaches:

Gmapping and the HectorSLAM.

2.1 Segmentation and Primitive Extraction

Segmentation is the first step after laser data acquisition and consists on identify-

ing and separating sets of segments of the laser data extracted from the environment.

Primitive extraction is used to provide more detailed information about the envi-

ronment and its particularly useful to build a feature map of it. Both of these

7

techniques will now be briefly analysed with the purpose of giving a better context

to the work developed in this dissertation.

Before starting to explore both segmentation and feature extraction methods,

it is important to give a brief overview of the laser scan, in order to understand

the nomenclature used ahead. A range scan is a list of points corresponding to

the intersection of a laser beam with objects in the robot’s environment within

a constant angle increment. Considering a full 270o scan of n measurements, each

laser scan point P is defined by a radial (r) and angular (θ) components. Each point

i (i = 1, ..., n) is then defined by the polar coordinates (ri, θi), where θi is usually

calculated using the angular increment ∆θ given by laser scan specifications. This

polar coordinates can afterwards be converted into cartesian ones:

xi = ri · cos(θmin + (i− 1) ·∆θ)

yi = ri · sin(θmin + (i− 1) ·∆θ)
(1)

2.1.1 Segmentation

Segmentation methods can be subdivided into two categories [28]: Point-distance-

based (PDBS) and Kalman Filter-based (KFBS) segmentation methods. A method

for segmentation based on Kalman Filter (KF) is described in [7] and will not be

explored here since this type of method is not used during this dissertation.

Point-Distance-Based Methods (PDBS)

This type of methods use the euclidean distance between consecutive laser points

and a distance threshold to form the condition to detect breakpoints. If D(ri, ri+1) <

Dthd then points are in the same segment, else the segment is separated, where

D(ri, ri+1) =
√
r2i + r2i+1 − 2riri+1cos∆θ

As for the distance threshold Dthd, different approaches can be done, as described

in [28]. One of the most known approaches [11], uses

Dthd = C0 + C1 min{ri, ri+1}

where C1 =
√

2(1− cos∆θ) = D(ri, ri+1)/ri and C0 is a constant parameter used

for noise reduction. Based on this approach, [33] introduces a new parameter β with

8

26 CAPÍTULO 3. SEGMENTAÇÃO

Pn+1

Objecto
β

rn

rn+1

Pn

Pn+1

rn+1

rn

C0

C1.rminP

d

= rmin

Pn

∆θ
∆θ

∆θ/2

Figura 3.2: Representação geométrica comum a alguns métodos do tipo SBDE

a seguinte expressão:

Dthd = |ri + ri+1| · Ce (3.6)

onde Ce é uma constante obtida empiricamente. Outro método tipo SBDE aqui apresen-

tado, proposto por (Borges & Aldon, 2004), tem a representação geométrica ilustrada na

Figura 3.3. De acordo com esta representação, este método contempla os seguintes passos:

• Define-se uma linha “virtual”que passa pelo ponto-laser pn−1;

• A linha “virtual”faz um ângulo (λ) com a direcção do varrimento (θn−1);

• O ângulo λ é uma variável livre, definida com valor da ordem dos 10o;

• A variável ∆θ é a resolução angular do sensor.

Neste método a distância limiar é calculada por:

Dthd = ri ·
sin(∆θ)

sin(λ−∆θ)
+ σr (3.7)

Figure 2.1: Geometric representation of both PDBS approaches to find the value of

Dthd, described below [27].

the purpose of removing the dependence of segmentation from the distance between

LRF and the objects. The threshold is then given by:

Dthd = C0 +
C1 ·min{ri, ri+1}

cot(β) · (cos(∆θ/2))− sin(∆θ/2)

Figure 2.1 shows a geometric representation with these variables for each of the

methods describes above.

Another method widely used for segmentation (and also line extraction) is the

Iterative End-Point Fit (IEPF) [14]. This is a recursive algorithm that starts by

defining a line between the first and last points of a set of points. After that, the

point with the maximum distance to that line is detected and if that distance is

bigger than a threshold ε, then the segment is divided into two segments. This

algorithm, also known as Ramer-Douglas-Peucker algorithm [30] [13], is widely used

in robotics to segment laser range data and will be explored later on this dissertation.

2.1.2 Geometrical Primitive Extraction

As pointed in [28], geometrical primitive extraction can be divided into two tech-

niques: clustering (e.g. Hough-based approaches) and least-squares methods. Since

this dissertation only uses the second one, only that type of methods will be anal-

ysed. In this subsection, it will also be given a brief overview of two interest point

extractors: Fast Laser Interest Region Transform (FLIRT) and Fast Adaptive Laser

Keypoint Orientation-invariant (FALKO), both based on primitive extraction and

9

which is used in later sections in this dissertation.

Primitives extracted can either be lines, circles or ellipses, which can be defined

by the following equation:

ax2 + bxy + cy2 + 2dx+ 2ey + f = 0 , (2)

where a and c are different from zero. From this equation, the geometrical primitives

can be defined:

• Line: a = b = c = 0 ;

• Circle: a = c and b = 0 ;

• Ellipse: (b2 − ac) < 0 .

In this dissertation only line extraction is considered since most of the experimen-

tal test rooms used can be uniquely represented by lines, and for that reason this is

the type of extraction that will be analysed now.

Linear Regression Method

From equation (2), a specific line equation can be defined as 2dx + 2ey + f = 0,

or in a more generic form:

y = mx+ b

One of the most known methods for line extraction is the linear regression method

(LRM). Following the notation in [40], line parameters m and b can be obtained

from:

m =
Sxy · n− SxSy
Sxx · n− S2

xx

and b =
Sy −m.Sx

n

where, considering a set of points (1), the regression parameters can be defined as

follows:

Sx =
n∑
i=1

xi, Sy =
n∑
i=1

yi, Sxx =
n∑
i=1

x2i , Syy =
n∑
i=1

y2i , Sxy =
n∑
i=1

xiyi

Even though there are many feature extraction techniques in literature [22],

this dissertation focused on two feature extraction methods openly available in

OpenSLAM [35]. Since they were used as comparison to the developed algorithms,

they will now be analysed in more detail in order to understand its utilization later.

10

Fast Laser Interest Region Transform

In [39], Tipaldi and Arras propose a fast interest region extractor for 2D range

data. FLIRT library [35] has four different multi-scale detectors: one range-based

detector, two normal-based detectors and one curvature-based detector, which are

going to be briefly described.

The range-based detector finds interest points using a blob detector on the raw

range data gathered by the 2D laser scanner. A blob is a region of 2D laser data in

which some properties are approximately constant. This detector was inspired by

the SIFT features proposed in [23].

Both normal-based detectors use a local approximation of the normal direction at

each laser point, instead of the raw range data, which results in what can be defined

as normal signal. The normal direction at each point is estimated by least squares

fitting of a group of measurements around that point. These normal-based detectors

distinguish themselves with the fact that one responds to edges in the normal signal

and the other responds to blobs, in a similar way as the range-based detector.

Finally, the curvature-based detector which uses the range data from laser scan

to define a curve in Cartesian space. This detector does not fit very well in an

environment with planar geometric features (absence of curves) and so it is not

useful in office-like indoor environments.

Fast Adaptive Laser Keypoint Orientation-invariant

Two keypoint extractors from laser scan data for robot localization and mapping

are introduced in [18]: FALKO and OC (Orthogonal Corner). These two algo-

rithms were developed to detect interest points like those defining corners. While

FALKO uses a neighbourhood region and an efficient corner extraction algorithm,

OC exploits the orthogonal alignment of points.

In case of office-like environments composed by walls and objects, Orthogonal

Corner Detector obtains keypoints from the intersection of orthogonal line pairs.

This algorithm is based on Hough Transform. It finds a dominant direction θ̄ using

an Orthogonal Hough Spectrum [18] and once it is found, all the scan points are

rotated by −θ̄ and tested as candidate keypoints. New sets of points are calculated

based on these rotated points and corners are then defined using those sets.

11

Similar to OC keypoints, in FALKO a set of candidate keypoints is also defined.

This set of points is divided in two subsets and these subsets are analysed in order

to reduce candidate points. After that, a quantized orientation is calculated for each

point of those subsets and a distance function between this quantized orientations

is obtained. Corners are then found based on that distance function.

2.2 Map Representations

Map Representations

Metric Topological

Grid Feature

Figure 2.2: Most commonly used map representations.

There are many ways to represent the information we have about the environment.

This section focuses on two distinct map representations [37]: topological and metric,

which can be distinguished in grid-based and feature-based maps (Fig. 2.2).

In feature-based maps, the world is represented by geometric features, such as

points and lines. Instead of building a map based on features, grid maps (Fig. 2.3a)

represent environments by evenly-spaced cells, i.e. the world is divided into a grid.

Each cell characterizes a small area of the world and contains the probability of

that area being occupied. Topological approaches represent robot environments

by graphs. Nodes in the graph correspond to places of importance, such as distinct

places or landmarks. The nodes are connected by edges if there is a direct connection

between them, as shown in Fig. 2.3b.

Occupancy grids are the most used type of metric maps, in particular 2D occu-

pancy grids. In these maps, the environment is represented by a matrix of cells, each

cell with a value attached that represents the belief of that cell being occupied. Not

12

(a) Occupancy grid.1 (b) Topological map.2

Figure 2.3: Occupancy grid and topological map representations.

only occupied, but unknown and free space are also represented. Since the geometry

of a grid corresponds directly to the geometry of the environment, metric maps are

usually easy to build and maintain even in large environments. However, due to

the fact that, in most cases, the resolution of the grid has to be fine enough to get

all the details, these maps may require large amounts of memory and computation

time.

Unlike grid-based approaches, topological maps work better in large scale environ-

ments, where there are more landmarks. The compactness of topological represen-

tations allows fast trajectory planning and these approaches usually recover better

from errors than grid-based maps because these maps require a constant monitor-

ization and compensation. However, as stated in [37], topological approaches may

have difficulties in distinguishing places that look alike because the model is based

on landmarks or distinct sensory features. Both representations have strengths and

weaknesses, which are summarized in Table 2.1.

2.3 Localization: Scan matching algorithms

Localization is one of the biggest problems in robotics, because nearly all robotic

tasks require the robot to know its position and the position of the objects that it

manipulates. Mobile robot localization consists in determinating the pose of a robot

relative to a given map of the environment, usually known as the ground truth map.

1http://robotang.co.nz/projects/robotics/custom-player-plugins/
2http://slideplayer.com/slide/4975998/

13

http://robotang.co.nz/projects/robotics/custom-player-plugins/
http://slideplayer.com/slide/4975998/

Metric Topological

A
d
v
a
n
ta
g
e
s Easy to build, represent and maintain Do not require exact robot’s position

Recognition of places is non-ambiguous Allow fast trajectory planning

No explicit model needed to handle information Less complex and more compact

D
is
a
d
v
a
n
ta
g
e
s

Memory problems (space-consuming) Recognition of places often ambiguous

Highly susceptible to odometry errors Harder to maintain consistency in larger environments

High computational cost May fail to recognize geometrically nearby places

Table 2.1: Advantages and disadvantages of grid-based and topological approaches

based on [37].

According to [38], localization can be seen as a problem of coordinate transfor-

mation. The map of the environment has a global coordinate system and the robot

has its own local coordinate system. The purpose of localization is to establish a

correspondence between both coordinate systems, allowing the robot to know its

position in the environment. This process is easy if the robot’s pose is known, which

can be sensed directly from a pose measuring sensor, such as an inertial or odomet-

ric sensor. However, most robots do not possess this kind of sensor (at least not

noise-free). Therefore, the pose has to be estimated from data gathered by other

sensors, as stated in [38].

One possible way to do localization is to use laser scan matching [12]. In laser

scan matching, the position and orientation of the robot are estimated based on

the transformation between the current laser scan (or map) and a reference scan.

Figure 2.4 shows the outline of a localization algorithm based on scan matching.

Scan matching tries to find the best alignment between a current laser scan k and

a previous scan k − 1 (or a known reference map of the environment). Because the

laser data is expressed in polar coordinates, a preprocessing module has to convert

these coordinates into cartesian coordinates, resulting in a 2D point cloud. The

result of scan matching will be a transformation composed by a rotation matrix R

and a translation vector t, which can be applied to update the current robot’s pose

estimation. This transformation is also be applied in a post-processing module to

rectify the laser scan so this can be used as an input for the scan matching algorithm.

14

Figure 2.4: Outline of a localization algorithm based on scan matching (* laser scan

k − 1 already has its coordinates converted).

Even though this process might seem easy at first, aligning two scans perfectly

to find the exact robot’s pose might be impossible. According to [24], there exist

two types of problems between laser scans. The first one concerns the existence

of small differences between the laser scan and the real environment, which result

from random sensing noise and can produce a cumulative error through the robot’s

movement. The second type of difference is caused by occlusion, i.e. areas seen in

some scans might not be seen in others.

There are many scan matching algorithms in the literature [26] [20]. One of the

most applied algorithms is the Iterative Closest Point (ICP), initially proposed in

[6], in which two point clouds are matched based on the Euclidean distance between

each point of those clouds. Many approaches derived from ICP, such as Iterative

Closest Line (ICL) proposed in [10]. This algorithm matches each point to the two

closest points in the reference point cloud and uses the line defined by those points

to calculate the transformation between the two point clouds. In [24], a variant of

ICP algorithm is proposed. In addition to choosing the closest point on the current

scan [6], an additional point with the same distance from the origin as the reference

point matched is also chosen, allowing a more accurate estimation of rotation and

translation between scans. The big disadvantage of all these methods is the high

computational cost which results from the search of point correspondences done

15

in each iteration. The Polar Scan Matching (PSM) approach introduced in [12]

uses the laser scanner’s polar coordinate system to avoid an expensive search for

corresponding points.

2.3.1 Iterative Closest Point

Iterative Closest Point algorithm is an algorithm implemented to minimize the

euclidean distance between two point clouds. Following [6] notation, a data shape

P is registered (moved) to be in best alignment with a model shape X. In this

dissertation, the data shape P will be the data gathered by laser range-finder and

the model shape X will be the known map of the environment.

As stated before, there are many variants of the ICP algorithm. One of the

most robust registration methods is weighting of point-pairs [31]. In this method,

matched points are assigned with a weight based on the distance between them, i.e.

lower weights are assigned to pairs with greater point-to-point distance. In [4] a

re-weighted least squares method is proposed, in which the weighting of point-pairs

is obtained from a M-estimation criterion. This was one of the algorithms used in

this dissertation and so a more detailed overview will now be given.

The algorithm starts with two sets of points: a set of n data points {pi}ni=1 relative

to the laser scan, that will be designated by P and a set of m model points relative

to the reference map, designated by X, both ∈ R2. The distance metric d between

an individual data point p and a model shape X will be denoted as

d(p,X) = min
y∈X
||p− y|| .

A robust M-estimate of the rigid body transformation between the two sets of points

using a robust criterion function % : R→ [0,∞[is obtained by solving

min
R,t

f(R, t) ,

where

f(R, t) =
n∑
i=1

%(d(Rpi + t,X)) ,

and R is the rotation matrix and t the translation vector that form the rigid body

transformation between data point set P and model point set X.

16

The purpose of a robust criterion function % is to reduce undesired influence of

data with significant errors on the estimation. Three different criterion functions

are used in [4]: Huber’s function %Hu, Cauchy’s function %Ca and Tukey’s bi-weight

function %Tu. Even though they are all robust, these criterion functions have different

characteristics and their use might depend on the characteristics of the point clouds

used. Tukey’s bi-weight criterion offers the best protection against undesired data

(outliers). Cauchy’s criterion has also a good protection against the influence of this

points. Huber’s criterion does not completely ignore outliers, but it is still a robust

option. These three criterion functions are the following:

Huber’s criterion function: %Hu(r) =

1

2
r2 if |r| ≤ kHu

kHu|r| −
k2Hu

2
if |r| > kHu

Cauchy’s criterion function: %Ca(r) =
k2Ca
2

log

[
1 +

(
r

kCa
)

)2
]

Tukey’s bi-weight criterion function: %Tu(r) =

k2Tu
6

1−

(
1− r2

k2Tu

)3
 if |r| ≤ kTu

kHu|r| −
k2Hu

2
if |r| > kTu

where r is the distance between a an individual point p and a model shape X

(d(p,X)) and the parameter k is chosen so that the asymptotic variance

V (ψ, F) =

∫
ψ2dF

(
∫
ψ′dF)2

is close to one, given an assumption of normal distribution N (0, 1) for r and a

probability density function F of the normal distribution N (0, 1) [5].

A new criterion function was introduced in [5], the Welsch’s criterion function.

This function has a better protection against outliers than Cauchy’s function and

can be defined as:

Welsch’s criterion function: %We(r) =
k2We

2
log

1 +

(
r2

k2We

)

)
Defining Ψ(r) as the derivative of %(r), Ψ(r) = %′(r), a weight function w is

17

defined as

w(r) =

Ψ(r)

r
if r 6= 0

lim
r→0

Ψ(r)

r
if r = 0

It is now possible to define the weight functions of the criterion functions:

Huber’s weight function: wHu(r) =

1 if |r| ≤ kHu

kHu
|r|

if |r| > kHu

Cauchy’s weight function: wCa(r) =
1

1 +

(
r

kCa

)2

Tukey’s bi-weight weight function: wTu(r) =

(

1− r2

k2Tu

)2

if |r| ≤ kTu

0 if |r| > kTu

Welsch’s weight function: wWe(r) = exp

(
− r2

k2We

)

From the weight functions and the point clouds provided to this algorithm, it

is possible to calculate the rotation matrix and translation vector using a singular

value decomposition. First, a variable C is defined as

C =
1

ŵ

n∑
i=1

[
wipiy

T
i

]
− p̄ȳT ∈ R2 ,

where

ŵ =
n∑
i=1

wi , p̄ =
1

ŵ

n∑
i=1

wipi , ȳ =
1

ŵ

n∑
i=1

wiyi

The rotation matrix R is then found using a SVD decomposition of C, i.e. C=UΣVT .

From this decomposition, R can be obtained fromR =VUT (orR =-VUT if det(VUT <0)).

Once the rotation matrix R has been obtained, the translation vector t is easily cal-

culated from t = ȳ − R · p̄. The transformation obtained is then updated through

ICP iterations.

18

2.4 Simultaneous Localization and Mapping

Simultaneous Localization and Mapping (SLAM) is the process by which a mobile

robot can build and update a map of the environment and, simultaneously, use the

generated map to compute its location [2] [9]. A pioneer approach of SLAM [21] uses

an Extended Kalman Filter (EKF) to match geometric beacons (natural environment

features that can be successively observed) with a known map, which originated the

first SLAM algorithm EKF-SLAM. In [25] a FastSLAM algorithm is introduced.

This algorithm applied a particle filter fusion approach aiming to provide faster and

more accurate results in comparison with previous SLAM algorithms.

There are many SLAM techniques openly available in ROS. An evaluation of

the most commonly used techniques was done in [32], where the HectorSLAM and

GMapping have shown good experimental performance. This dissertation focuses

on the HectorSLAM, since we are primarily interested in a solution using only laser

range data. However, a brief description of Gmapping is also done in order to make

this dissertation more complete.

2.4.1 Gmapping

Gmapping is a laser-based SLAM algorithm as described in [16]. This algorithm is

based on an improved Rao-Blackwellized particle filter and an adaptive re-sampling.

A normal particle filter increases its complexity as the environment increases as well

because more particles are needed to estimate the robot’s localization. The key idea

behind Rao-Blackwellized approach is to marginalize out a subset of the state space,

which can be handled in a more efficient way by using a Gaussian representation.

Let xt be the robot’s position at time t, zt the observation measurements and

ut the odometry measurements obtained by the mobile robot. Using this notation,

p(zt|xt,m) represents the probability of a particular measurement if the robot’s pose

and the environment map m are known. As stated in [16] “for each particle i the

parameters µ
(i)
t and Σ

(i)
t are determined individually for K sampled points {xj} in a

interval L(i)”. The Gaussian parameters are estimated as follows [16]:

µ
(i)
t =

1

η(i)
·
K∑
j=1

xj · p(zt|m(i)
t−1, xj) · p(xj|x

(i)
t−1, ut−1)

19

Σ
(i)
t =

1

η(i)
·
K∑
j=1

p(zt|m(i)
t−1, xj) · p(xj|x

(i)
t−1, ut−1) · (xj − µ

(i)
t)(xj − µ(i)

t)T

where K is the number of sampled points and η(i) is a normalization factor. Using

this distribution, the importance weights are computed as follows:

w
(i)
t = w

(i)
t−1 ·

K∑
j=1

p(zt|m(i)
t−1, xj) · p(xj|x

(i)
t−1, ut−1) = w

(i)
t−1 · η(i)

An important aspect of a particle filter is the re-sampling process, in which low

weight samples are usually replaced by samples having a high weight. Because re-

sampling is a critical step, it is important to find a good criterion for deciding when

to perform the re-sampling step. For details see Algorithm 1 - Improved RBPF for

Map Learning [16].

2.4.2 HectorSLAM

Figure 2.5: HectorSLAM system overview (from [19]).

The other main SLAM algorithm available in ROS is the HectorSLAM [19]. This

SLAM method combines a 2D SLAM system based on scan matching with a 3D

navigation system based on an inertial measurement unit (Fig. 2.5). This SLAM

algorithm does not require wheels encoders which allows a larger use of it and a

good solution for systems that do not use odometric information.

20

As it can be seen in Fig. 2.5, the 2D SLAM system is based on scan matching. As

described in [19], the purpose of this scan matching is to find the rigid transformation

ξ = (px, py, ψ)T that minimizes

ξ∗ = argmin
ξ

n∑
i=1

[
1−M(Si(ξ))

]2
where Si(ξ) are the coordinates of scan endpoints si = (si,x, si,y)

T and M(Si(ξ))

returns the map value at the coordinates given by Si(ξ). To solve this minimization

problem, the following Gauss-Newton equation is used:

∆ξ = H−1
n∑
i=1

[
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]T [
1−M(Si(ξ))

]
with

H =

[
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]T [
∇M(Si(ξ))

∂Si(ξ)

∂ξ

]
Gradient based approaches have the risk of getting stuck in local minima. To avoid

these situations, a multi-resolution map representation is used in the HectorSLAM

[19]. Different maps are kept in memory and simultaneously updated using the pose

estimates generated by the alignment process. This procedure ensures that the map

is always consistent and the computational effort remains low.

21

Chapter 3

Developed Methods

For a first localization approach, the Iterative Correspondence Point (ICP) al-

gorithm was used. The implementation of this algorithm in this work consists in

four main stages: first, laser scan data is gathered and preprocessed; after that, a

primitive feature extraction algorithm is used to extract corners; these corners are

used along the environment measured corners in the ICP algorithm; finally, trans-

formation matrix returned by ICP is used to estimate the robot’s position over time.

Fig. 3.1 represents the flow of the process. All the algorithms presented were imple-

mented and tested in Matlab and will now be analysed.

Figure 3.1: Pipeline of the developed algorithm based on scan matching with ICP.

23

3.1 Segmentation and Primitive Extraction

In order to extract primitives, i.e. corners and lines, laser scan data has to first

be segmented. After that, a line fitting algorithm can be applied to turn segments

into lines and, at last, corners can be extracted from the intersection between those

lines.

A first approach for segmentation was implemented using a Point-Distance-based

method (PDBS), as described in [28]. The Euclidean distance between two consec-

utive scanned points can be obtained from:

D(ri, ri+1) =
√
r2i + r2i+1 − 2riri+1cos∆α

where ri and ri+1 are the laser measurements of frames i and i+ 1, respectively, and

∆α is the sensor angular resolution. For each pair of consecutive scanned points,

if D(ri, ri+1) < Dthd then points i and i + 1 are in the same segment, else they are

in separate segments. Dthd is the threshold condition, which is sensitive to the test

scenario. Algorithm 1 summarizes how segmentation was implemented.

Algorithm 1: Algorithm for laser scan data segmentation

1 m: number of laser scan frames

2 n: number of readings in each frame

3 for i = 1 to m do

4 for j = 1 to n− 1 do

5 D(j) =
√
r2j + r2j+1 − 2rjrj+1cos∆α

6 end

7 Segment k ← x(i, j), y(i, j)

8 if D(j) > Dthd then

9 k ← k + 1

10 else

11 k ← k

12 end

13 end

As it will be seen ahead, using Algorithm 1 by itself, does not give the desired

results because it works based on the distance between two consecutive points of

the laser scan data. This happens due to the fact that some segments may contain

interest points like corners which will result in a poor corner extraction after a line

24

fitting algorithm is applied. To overcome this problem, the Ramer-Douglas-Peucker

algorithm [30] [13] was used on these segments (containing interest points) with the

purpose of breaking them and improving the result of a line fitting algorithm and

therefore the result of corner extraction.

The Ramer-Douglas-Peucker, or just Douglas-Peucker (DP) algorithm, is an algo-

rithm for reducing the number of points in a curve that is approximated by a series

of points. As already stated, some segments that result from the initial segmenta-

tion algorithm (Algorithm 1) can still be split. For the purpose of this work, the

Douglas-Peucker algorithm was initially used to split those segments, as shown in

Fig. 3.2.

Figure 3.2: Splitting a segment using Douglas-Peucker algorithm.

Douglas-Peucker algorithm takes on a list of points (segment) and a user-defined

parameter ε. As shown in Fig. 3.2, a line is drawn between the first and last point

of the segment and then the perpendicular distance between each point and the line

is calculated from

d(P0, P1, P2) =
|(y2 − y1) · x0 − (x2 − x1) · y0 + x2 · y1 − y2 · x1|√

(y2 − y1)2 + (x2 − x1)2
,

where P1(x1, y1) and P2(x2, y2) are the points that form the line and P0(x0, y0) is

the point used to calculate the distance to the line. If that distance is greater than

threshold ε, the original segment is split into two. The algorithm is recursively

applied. Algorithm 2 shows how Douglas-Peucker was implemented. The input

of this algorithm is a 3 × n list of points, where the first two rows of this list

are, respectively, the x and y coordinates and the third row is the index of those

coordinates.

After segmentation is done, a line fitting algorithm was implemented. The main

purpose of this procedure was to convert segments into lines so that corners could

25

Algorithm 2: Ramer-Douglas-Peucker algorithm used for line segmentation
Data: List of 3× n Points & regulation parameter ε

1 for i = 2 to n− 1 do

2 d = perpendicularDistance(Point i, Line(Point 1, Point n)) // Perpendicular

distance between Point i and line formed by first and last points of

input

3 if d > dmax then

4 idx = i ; // save point index

5 dmax = d ; // save new max distance

6 end

// If max distance is greater than epsilon, recursively simplify

7 if dmax > ε then

8 recursiveResult1 = Ramer-Douglas-Peucker(Points 1 to idx, ε)

9 recursiveResult2 = Ramer-Douglas-Peucker(Points idx to n, ε)

10 Result = [recursiveResult1(1 to length(recursiveResult1)-1),

11 recursiveResult2(1 to length(recursiveResult2)-1)

12 else

13 Result = [Point 1, Point n]

14 end

15 end

be extracted from the intersection of those lines. A Least Square Fitting algorithm

was used for it.

The main problem of a simple Least Square Fitting algorithm is the fact that

it does not work properly with vertical lines. As it can be seen from the previous

equations, the calculation of the slope largely depends on the variation of x. For

vertical lines the results are not good because there is not much x variation. To

solve this problem, a slope inversion can be done, as shown in Algorithm 3.

As a comparative algorithm, it was also used a robust RANSAC fitting [15],

implemented in Matlab by Yan Ke (Algorithm 4). RANSAC is an iterative algorithm

which is commonly used on point sets containing outliers. It fits a new line in

each iteration using two random points of the segment and then saves the line’s

parameters if the line contains a minimum number of inliers. The more iterations,

the more probable it is to find a better line (robust, with less outliers). However,

increasing the number of iterations comes with an additional computational effort,

26

Algorithm 3: Least Square Fitting algorithm approach for vertical lines
Data: List of (x1, y1), ..., (xn, yn) points corresponding to a segment

// Calculation of initial slope

1 mi =
Sxy · n− SxSy

Sxx · n− S2
xx

;

// Check if it is a vertical line

2 if StandartDeviation(Sx)>StandartDeviation(Sy) then

3 m = 1/mi ; // Inversion of slope

4 else

5 m = mi ;

6 end

// Calculation of line intercept

7 q =
Sy −m · Sx

n

which may cause high computational times for bigger scenarios, as it will be discussed

after.

Another regression method was used with the purpose of achieving better regres-

sion results. Theil-Sen estimator, developed by Theil [36] and Sen [34], is a robust

regression method that is almost insensitive to outliers. This method determinates

the slope m of the line, fitting a set of points, by calculating the median of the slopes

of all possible lines that can be generated by all pairs of points.

All the above mentioned regression methods (Least-Square Fitting, RANSAC and

Theil-Sen estimator) have shown similar results when used in our experiments.

After obtaining regression lines, it is possible to predict corners based on the in-

tersection of these lines. To find corner candidates, consecutive lines must fulfil two

conditions: the euclidean distance between two consecutive points of two distinct

consecutive segments (dseg) must be less than a certain threshold (defined with a

value of 0.1); and the angle between lines has to be greater than a defined threshold

angle (for most tests, a angle of 45o was used). For most of the tests performed,

the distance condition dseg was not necessary, since the corners only existed between

consecutive segments. However, in more complex scenarios, corners might not only

come from the intersection of consecutive segments. Those scenarios will proba-

bly require the intersection between all segments and, for that reason, a distance

condition is mandatory.

Before doing scan matching with the results obtained from this algorithms, two

27

Algorithm 4: Random Sample Consensus to fit a line (RANSAC Algorithm)

Data: List of (x1, y1), ..., (xn, yn) points corresponding to a segment, an inlier distance

threshold thInlr and number of iterations iterNum

1 for i=1 to iterNum do

// 1. Fit using 2 random points

2 pointSample = Select2RandomPoints(Points);

3 line = GenerateLine(pointSample);

// 2. Count the inliers

4 inliers = ComputeInliers(line,Points);

5 numInliers = length(inliers);

6 if numInliers > thInlr then

7 Compute and save line parameters ρ1 and θ1;

// Final fitted line ρ = sin(θ) · x+ cos(θ) · y

8 end

9 end

// 3. Choose line with most inliers

10 [∼, index] = max(numInliers);

11 ρ = ρ1(index);

12 θ = θ1(index);

more algorithms were implemented (FLIRT and FALKO), to compare results with

the ones developed. Both FLIRT and FALKO libraries (analysed before in Sec-

tion 2.3) have their source code available, provided by OpenSLAM [35]. FLIRT

library is composed of four different detectors and two descriptors. For the purpose

of this work, two detectors were chosen according to how well they fitted in the

laser scan data used. FALKO library was used specifically to extract corners from

laser scan data and to compare them with the extracted corners from the developed

algorithms . This library is also available in [35] and has two detectors, OC and

FALKO, which have been previously discussed.

3.2 Scan Matching

To do scan matching, a reference set of points has to exist. This can either be

gathered from laser scan data or directly measured from the environment. The

reference map used during tests was built from tape measurements of the environ-

28

Algorithm 5: Intersection between lines and corner extraction
Data: Parameters m (slope) and b (intercept) of both lines

// Intersection point of lines l1 and l2

1 xintercept =
b2 − b1
m1 −m2

;

2 yintercept =
m1 · b2 −m2 · b1

m1 −m2
;

// Considering n segments of laser scan data

3 j = 1 // corner index

4 for i=2 to n do

// Calculate angle and distance between segments

5 θintercept =

∣∣∣∣∣tan−1
(

m(i)−m(i− 1)

1 +m(i) ·m(i− 1)

)∣∣∣∣∣;
6 index = length(Si−1);

7 dseg = dist
[
Si(x1, y1), Si−1(xindex, yindex)

]
);

// Check if there might be a corner between segments

8 if θintercept > 0.8 ∧ dseg < 0.1 then

9 corners(j)=(xintercept, yintercept);

10 j = j + 1;

11 end

12 end

ment. For a scan matching algorithm to be effective, specially an ICP algorithm,

the reference set of points has to be as closest to the real environment as possible.

To implement a localization method based on an ICP algorithm, two different

approaches were made: a first approach used the corners previously detected to

match with the corners measured from the scenario represented in Fig. 4.4; in a

second approach, the full laser scan points were used to match with a set of linearly

generated points between map corners. The main purpose of this second approach’s

implementation was to have a better evaluation of the first one. Because of that,

this second implementation had to be as robust as possible so it could be used as

a reference. Since all laser data is used, using a set of linearly generated points

between map corners instead of just the map corners, allows the ICP algorithm to

have more matching points and, consequently, better and more robust results.

The first approach followed was to use ICP algorithm with the previous extracted

corners. These corners are used with the environment measured corners to find a

rigid body transformation consisting in a rotation matrix R ∈ R2 and a translation

29

vector t ∈ R2 that fits a set of N points (extracted corners) {pi}Ni=1 to a set of model

points X (measured corners). After that, a second approach was implemented,

where all the laser scan data was used instead of only corners. The main purpose of

this approach was to understand if using only corners would bring an advantage to

this work. The algorithms of both approaches will now be analysed and the results

discussed in Chapter 4.

Algorithm 6 resumes the implemented ICP algorithm, which uses corners as fea-

tures. This algorithm is a re-weighted ICP approach where weights are estimated

using criterion functions (see Section 2.3). The selected criterion function was the

one that performed better in the given set of data points used in the algorithm.

Algorithm 6: Iterative Closest Point algorithm using corners extracted
Data: List of n data points D and n model points X

1 for iter = 1 to maxIter do

2 for i = 1 to n do

3 for j=1 to m do

4 d = dist(D(i)−M(j));

5 if d < dmin then

6 dmin = d;

7 residuals(i) = d;

8 end

9 end

10 end

11 weights(1...n) =criterionFunction(residuals);

12 sumWeights =
∑
weights;

13 Dw =
(D · weights)
sumWeights

; ; // Apply weights to Data points

14 Xw =
(X · weights)
sumWeights

;; // Apply weights to Model points

15 C = D · weights ·X ′ − (sumWeights ·Dw) ·X ′w;

16 [U, S, V] = svd(C) ; // SVD decomposition

17 Ri = V · U ′;; // Calculate rotation matrix

18 Ti = Dw −Ri ·Xw;; // Calculate translation vector

19 D = Ri ·D + Ti; ; // Apply transformation

// Update transformation (TR and TT are the output tf)

20 TR = Ri· TR;

21 TT = Ri·TT + Ti;

22 end

30

3.3 Applying Corner Features in the HectorSLAM

In order to give a SLAM perspective to this dissertation, a SLAM method was

integrated along side with the corner extraction algorithms explored. To do this

integration, a robust SLAM method had to be used in order to achieve the best

possible results. As stated before, in [32] an evaluation of some SLAM methods

available in ROS is done, where the HectorSLAM and Gmapping show the most

satisfactory results. The HectorSLAM was chosen due to the fact that, even though

this method can incorporate data from many sensors, it is designed to be able to

work efficiently with only laser data unlike Gmapping which needs odometric data

as well.

The HectorSLAM, like any other SLAM method, has two main components: lo-

calization and mapping. Considering that this dissertation is focused on localization,

some changes were made to this SLAM method in order to not use its mapping part

and so work as a localization method. Another change regarding the use of a feature

(corners) extraction algorithm was done in order to evaluate the SLAM method’s

behaviour when using features instead of the raw range data. Both changes will now

be presented and explained.

3.3.1 Preprocessing

Figure 3.3: Main modules of the HectorSLAM: preprocessing module highlighted in

red was modified to integrate corner features extracted from laser range data.

The HectorSLAM has a preprocessing module (Fig. 3.3), which is mainly used

to convert the laser scan data into a point cloud of scan endpoints i.e. convert

the polar coordinates from the laser scan data into cartesian coordinates. This

dissertation addresses corner feature extraction methods and its application in the

HectorSLAM’s preprocessing unit.

31

In order to perform corner features extraction, FALKO’s extractor was used.

There were two main reasons behind the choice of FALKO over the developed al-

gorithm: first, due to time constraints, since both the HectorSLAM and FALKO

library were available in C++ code, unlike the developed algorithm which was im-

plemented using Matlab; secondly, because the results obtained from both FALKO

and the developed algorithm were very similar, as it will be seen in the next chapters.

The first approach done was to use FALKO to extract interest points. FALKO

has also a preprocessing unit to convert polar coordinates into a 2D point cloud

(cartesian coordinates), which is used in FALKO’s keypoint extractor. This keypoint

extractor was presented in Section 2.1.2 and is now summarized in Algorithm 7.

Since sometimes there is not enough information on the extracted corners to perform

a robust localization, a second approach was made using interest regions. The

key idea behind interest regions is to use more information on each interest point

extracted by using additional near points.

Algorithm 7: FALKO’s keypoint extraction algorithm
Data: List of n laser scan points pi

1 for i = 0 to n do

// Generate a neighbourhood region of oints pj around pi

2 neigh = getNeighPoints(pi);

3 for j = 0 to length(neigh) do

// Computate an orientation for each point pj

4 φj,L =getPointOrientation1(pj,L);// Left side of pi

5 φj,R =getPointOrientation1(pj,R);// Right side of pi

// Computate a score for each side of point pi

6 scoreL(pi) =getPointScore(φj,L);

7 scoreR(pi) =getPointScore(φj,R);

8 score(pi) = scoreL(pi) + scoreR(pi);

9 end

// Keypoints are then chosen as local minima of the score function with

a non-maxima supression (NMS) procedure.

10 end

1This function has a critical error which was corrected allowing better results in Matlab/MEX

or ROS.

32

3.3.2 Mapping

Figure 3.4: Main modules of the HectorSLAM: mapping module highlighted in red

was modified to use an a priori map.

A SLAM method builds and updates a map of the environment and uses that map

to perform localization simultaneously. As stated before in this work, there is no

interest in the mapping feature of the HectorSLAM method and instead a reference

map will be used. In order to understand how this reference map is applied in the

implemented SLAM approach, it is important to first understand how the mapping

process usually works in the HectorSLAM. After that, the modification done in the

mapping unit (Fig. 3.4) will be presented and explained.

The HectorSLAM builds or updates the map every time the robot has an either

linear or angular movement higher than a defined threshold. When this happens, the

points scanned are mapped into a grid map, according to Bresenham’s line algorithm

[8], represented in Fig. 3.5.

Figure 3.5: Bresenham’s algorithm representation between the robot’s position R

and a scan endpoint S.

This algorithm is briefly summarized in Algorithm 8. The grid map generated

is a logarithmic map, i.e. the probability of each cell being occupied is given in

log odds, which makes the map update faster since multiplications are replaced by

additions and the solution is numerically stable.

33

Algorithm 8: Bresenham Line Drawing Algorithm

1 (x1, y1): coordinates of one endpoint of the line

2 (x,y2): coordinates of the other endpoint of the line

3 ∆x = x2 − x1
4 ∆y = y2 − y1
5 ε = 2 ·∆y −∆x

6 for x = x1 to x2 do

7 SaveGridCell(x,y)

8 if ε > 0 then

9 y = y + 1

10 ε = ε− 2 ·∆x

11 else

12 ε = ε+ 2∆y

13 end

14 end

The probability P (n|z1:t) that a cell n is occupied given the sensor measurements

z1:t is estimated according to [17]:

P (n|z1:t) =

[
1 +

1− P (n|zt)
P (n|zt)

1− P (n|z1:t−1)
P (n|z1:t−1)

P (n)

1− P (n)

]−1
where P (n) is a prior probability, P (n|z1:t−1) the previous estimate and P (n|zt)

denotes the probability that cell n is occupied given the measurement zt. It is

considered a probability P (n|zt) = 0.9 to the cells containing the laser scan endpoints

and a probability P (n|zt) = 0.3 to the remaining free cells.

Even though the map update described previously was removed in the Hec-

torSLAM integration to this dissertation, the mapping procedure to build a ref-

erence map for scan matching was quite similar. Since the interpolation scheme of

the HectorSLAM does not allow the use of a feature map, a grid map has to be

built based on the measurements acquired from the tests room. To build this grid

map, a linear interpolation between the measured corners was done, i.e. lines were

linearly drawn between consecutive points. These lines were projected into a grid

map using Bresenham’s line algorithm (Algorithm 8).

34

Chapter 4

Experimental Results

4.1 Validation Platform

Figure 4.1: Robot structure used during tests.

Before starting to analyse the results obtained, it is important to know the laser

characteristics and the platform’s structure (Fig. 4.1). It is equipped with an Hokuyo

UTM-30LX laser range-finder, a MGS1600GY sensor which is capable of detecting

and reporting the position of a magnetic field along its horizontal axis (which was

not used during this work) and a inertial measurement unit (IMU), which was also

not used during this dissertation, since the main goal was to only use laser readings.

To analyse the results of tests performed, it is important to work with the robot’s

35

base position, i.e. where the robot’s motor, which commands the wheels movement,

is located. As it can be seen in Fig. 4.1, to define the robot’s base position, a

transformation must be applied to the laser, along x-axis. The laser is located 0.7m

along x-axis so the transformation applied is:

RobotTLaser =

1 0 0 0.7

0 1 0 0

0 0 1 0

0 0 0 1

As it can be seen in Fig. 4.1. the laser used was Hokuyo’s UTM-30LX. It uses laser

source (λ = 870nm) to scan a 270o semicircular field. Table 4.1 shows the laser’s

main specifications. Sensor’s measurement data along with the correspondent angle

are transmitted through a communication channel.

Supply Voltage 12VDC +- 10%

Guaranteed Range 0.1 ∼ 30m

Maximum Range 0.1 ∼ 60m

Scan Angle 270o

Angular Resolution 0.25o

Measurement Step 1080

Scan Speed 25ms

Measurement Resolution 1mm

Table 4.1: Hokuyo’s UTM-30LX laser main specifications.

This communication is made using LaserScan messages, included in sensor msgs

ROS package. Besides other attributes, this type of message contains an ordered ar-

ray of 1081 range measurements from the minimum to the maximum angle. Based on

these values and on the angular resolution, which is also an attribute of LaserScan

message, it is possible to convert this measurements into cartesian coordinates as

already presented before and as it i shown in Algorithm 9 shows how this conversion

was done for all laser scan points. This is useful since most algorithms developed

work with this type of coordinates rather than polar coordinates.

Fig. 4.2 summarizes the validation platform architecture using ROS framework.

As already stated before, the communication between laser scanner and the platform

is done using LaserScan messages, which are later converted. A more in-depth

explanation in how this process works is presented on Appendix A. The robot’s

36

Algorithm 9: Laser scan data conversion to cartesian coordinates
Data: Set of n laser scans (ranges), each with 1081 measurements

1 for i=1 to n do

2 for j=1 to 1081 do

3 x(i, j) = ranges(i, j) · cos(min angle+ (j − 1) · angle increment);

4 y(i, j) = ranges(i, j) · sin(min angle+ (j − 1) · angle increment);

5 end

6 end

Figure 4.2: Overview of actions performed on the validation platform.

movement is controlled using a gamepad controller, which sends instructions to the

platform’s powerdrive.

4.2 Workspace Description

To evaluate the performance of the developed algorithms, they were tested in the

same environment, presented in Fig. 4.3. According to the tests performed, this room

had some changes in its topology that will be described next. As stated before, it is

Figure 4.3: Panoramic photo of the test room used during experiments.

37

(a) Full room with objects in

it.

(b) Smaller scenario within

the room.

(c) Test room used for last

tests performed.

Figure 4.4: Two different scenarios used during localization tests.

crucial for scan matching that the reference map is as close to the real environment

as possible. To do so, the room where tests were performed was manually measured

with measuring tape and afterwards digitally constructed using those measures.

Figure 4.4 shows both scenarios tested during ICP implementation. Figure 4.4a is

the full room with objects inside (closets, tables and smaller objects) where most

of the tests were performed. It can be seen that this scenario is slightly different

from the one in Fig. 4.3, as some objects were re-arranged during tests. During

ICP implementation, and with the purpose of validate the algorithm developed, a

smaller scenario (Fig. 4.4b) was created to minimize the error coming from small

objects detection.

The scenarios presented above were used to evaluate the algorithms’ behaviour

using static positions around the scenarios. To evaluate the behaviour of algorithms

in later tests where the robot performed an elliptical path around the room, a

different room configuration was used, as it can be seen in Fig. 4.4c, which is the

scenario presented above in Fig. 4.3. This new scenario was built with the purpose

of reducing the noise coming from chairs and tables that are within the part of the

room that was closed, allowing a better evaluation of the algorithms developed.

4.3 Primitive Extraction

Too have a better evaluation of segmentation and primitive extraction, the full

room scenario was used. This is because the smaller scenario is only composed of

four lines, which are relatively simple to extract. The fact that the room has objects

38

in it gives the possibility of a better analysis of the algorithms implemented.

Segmentation algorithm was the first one tested. The key to get good results with

the segmentation algorithm is the regulation of distance threshold Dthd. As it can

be seen in Fig. 4.5, increasing the value of Dthd results in less segments, each one

containing more points. As it can be seen, using a low value of Dthd (0.01) results

in no segmentation (1081 segments/points) and using a high value of it (0.5) will

result in only one segment generated (with 1081 points on it).

Figure 4.5: Number of segments generated in terms of distance threshold Dthd.

This distance threshold may be regulated to best fit the set of points used, i.e. it

has a great dependency on the environment. However, as it can be seen in Fig. 4.6,

the results of this segmentation method are not yet appropriate for line fitting and

corner extraction because there are segments that can still be split. To do so, a

Douglas-Peucker algorithm was applied on top of this results so that a line fitting

algorithm can be used without compromising the corner extraction results.

Just like the segmentation algorithm, Douglas-Peucker algorithm is also very reli-

able on the regulation of threshold ε. Figure 4.7 shows the results of Douglas-Peucker

algorithm for different values of threshold ε. For lower values of ε, more segments

are generated which might result in an increase error in some parts of the scenario.

For higher values of ε, the result is closer to input from initial segmentation with

some segments split, leaving however some segments that could be important un-

touched. This regulation will depend not just on the environment, but also on what

this results are for. Fig. 4.8 shows the number of segments generated from different

39

(a) Laser scan data. (b) Dthd = 0.05.

(c) Dthd = 0.10. (d) Dthd = 0.20.

Figure 4.6: Laser scan data segmented with different values of Dthd.

(a) Initial Segmentation (Dthd = 0.20). (b) DP with ε = 0.05.

(c) DP with ε = 0.10. (d) DP with ε = 0.15.

Figure 4.7: Douglas-Peucker algorithm results for different values of threshold ε.

40

values of threshold ε. As it can be seen, this values are far more consistent than the

ones observed in Fig. 4.5, which allows the implementation to be less sensitive to

environment changes.

Figure 4.8: Number of segments generated in terms of threshold ε.

For the purpose of this dissertation, low values of ε compromise the results of a

line fitting algorithm and so values of ε between 0.15 and 0.20 are the ones that give

better results overall.

The initial approach followed this procedure, i.e. an initial segmentation applied

to the laser scan data and afterwards a Douglas-Peucker algorithm to split some of

segments. Because the results of DP algorithm were very promising, a second ap-

proach was made with no initial segmentation done, only applying Douglas-Peucker

on the laser scan points. Even though the results were similar, the computation

times of both approaches were slightly different, as shown in Table 4.2.

ε=0.10 ε=0.15 ε=0.20

Segmentation &

Douglas-Peucker

Dthd=0.05 0.0267 0.0257 0.0250

Dthd=0.10 0.0249 0.0245 0.0244

Dthd=0.20 0.0280 0.0256 0.0253

Douglas-Peucker without initial segmentation 0.0499 0.0474 0.0452

Table 4.2: Computation times with different approaches of segmentation.

As it can be seen, even though computation times are overall small, segmentation

using only Douglas-Peucker algorithm without any initial segmentation is relatively

41

slower than segmentation following the first approach presented. This is because

DP algorithm is a fairly heavy algorithm when used on a large set of points due to

its recursiveness. If an initial segmentation is previously done, DP will only be used

on particular segments and the computation effort will be much lighter.

Following the segmentation and Douglas-Peucker implementation, Fig. 4.9 shows

the results of this implementation from random selected frames of laser scan. From

Figure 4.9: Corner detection after applying LSF and line intersection.

Fig. 4.9, it can be seen that, for this scenario, results are quite promising. Even

though laser scan data is not optimal, because there are some important missing

points that could help detect some more corners, the results still show a good corner

extraction. However, segmentation and regression methods always input some error

into the system, which affect ICP algorithm results aswell.

4.4 ICP Algorithm

As already stated before, the first tests were made in a smaller scenario, which

only has four walls and no objects in it. Because it is such a simple scenario, corners

can easily be extracted and no outliers will be detected. For that reason, when using

the re-weight ICP approach, all criterion functions had exactly the same results and

so Huber’s criterion function was chosen for these initial tests.

42

Even though when the robot has no movement it can easily extract two or more

corners, when a movement command is imposed, it may happen that only one corner

is detected or a previous detected corner suddenly stops being detected, which may

lead into pose estimation errors. To solve this problem, a feature tracking (FT)

technique [3] was used, in which the detected features were kept in memory. This

allows that for a few iterations after a feature stops being detected, the algorithm

still consider it has being currently detected. The results obtained for this small

scenario will be analysed and discussed in Section 4.4.1 and Section 4.4.2.

4.4.1 Small scenario with no movement

A first test was made with no movement applied to the robot. Figure 4.10 shows

the error of robot’s position applying different algorithms. As it can be seen, using

only Douglas-Peucker algorithm to extract corners produces the worst results, as

it would be expected. Even though using no corners on ICP algorithm gives a less

variable position error, the best results are obtained when corners are extracted from

line intersection (either with or without FT applied).

0 50 100 150 200 250 300
0

0.05

0.1

0.15

(a) Corners extracted from DP.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

(b) Corners extracted from line intersection.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

(c) Corners extracted and application of FT.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

(d) ICP using full laser scan without corners.

Figure 4.10: Robot’s position error for small scenario with no movement (1).

43

0 50 100 150 200 250 300
0

0.05

0.1

0.15

(a) Corners extracted from FALKO.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

(b) Corners extracted from OC.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

(c) Corners extracted from Normal Edge De-

tector.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

(d) Corners extracted from Normal Blob De-

tector.

Figure 4.11: Robot’s position error for small scenario with no movement (2).

After using the developed algorithms, four more algorithms from FLIRT and

FALKO libraries (described before) were used as comparison with the previous ob-

tained results. Both libraries are provided as C++ repositories 12so it was necessary

to adapt the existing code into Matlab MEX functions.

As it can be seen in Fig. 4.11, FALKO’s detector is the one with the better

results, even though it still has a considerable amount of deviation between error

measurements.

Table 4.3 shows the Mean Error, Root-Mean-Square Error (RMSE), Standard

Deviation (SD), maximum and minimum values of error for all the algorithms eval-

uated. The first conclusion that can be done is that, for this specific scenario and

with no movement applied to the robot, all algorithms are viable because their mean

error goes between 0.5-2.4cm. However, extracting corners with the developed algo-

rithm or FALKO does give better overall results.

It is important to evaluate both position and orientation of the robot. In order to

evaluate its orientation, Table 4.4 shows the angular error for the robot’s orientation.

Even though all error measurements are acceptable (with corners and using the full

laser scan), as it can be seen, using extracted corners gives better overall results.

1FALKO - https://svn.openslam.org/data/svn/falkolib/
2FLIRT - https://svn.openslam.org/data/svn/flirtlib/

44

https://svn.openslam.org/data/svn/falkolib/
https://svn.openslam.org/data/svn/flirtlib/

Method Mean Error RMSE SD Max. Min.

ICP w/o Corners 0.0214 0.0214 0.0006 0.0228 0.0198

ICP w/ Corners 0.0239 0.0334 0.0233 0.1349 0.0015

ICP w/ Corners (LSF) 0.0056 0.0068 0.0038 0.0284 0.0024

ICP w/ Corners(LSF+FT) 0.0055 0.0061 0.0027 0.0215 0.0012

OC 0.0231 0.0277 0.0153 0.0714 0.0008

FALKO 0.0128 0.0139 0.0052 0.0331 0.0009

NormalBlobDetector 0.0239 0.0251 0.0077 0.0476 0.0031

NormalEdgeDetector 0.0256 0.0269 0.0082 0.0626 0.0054

Table 4.3: Error analysis for small scenario with no movement.

Method Mean Error RMSE SD Max Min

ICP w/o Corners 0.6846 0.6854 0.0342 0.7717 0.5726
ICP w/ Corners (LSF) 0.1833 0.2197 0.1211 0.8335 0.0278
ICP w/ Corners(LSF+FT) 0.1833 0.1958 0.0687 0.5936 0.0875
FALKO 0.4647 0.5322 0.2594 1.2251 0.0018

Table 4.4: Angular error analysis for smal scenario with no movement.

4.4.2 Small scenario with rotation movement

Because this was the simplest test scenario possible, another similar was made,

but with a rotation movement applied to the robot. The robot was placed on the

centre of the scenario and a rotation of 360o was applied to him. The purpose of

this test is to evaluate how well the algorithms do when new corners are detected

and previous ones start to become unseen by laser range-finder. The exact same

procedure was done here, with all 8 algorithms being tested.

Figure 4.12 shows the error evolution of the methods previous presented. As it

can be seen, error evolution with rotation movement applied is very different from

the one seen before with no movement. A few conclusions can be done from this

results. First, error is higher every time a new feature (corner) is detected or a

previous one is no longer detected. This is substantially notable in Fig. 4.12a, where

error measurements can go up to almost 14cm, which is not acceptable. When

extracting corners using line intersection (with and without FT) this error peaks

still exist, however they have much lower values. Figure 4.13 shows the results for

the remaining algorithms applied. It can be seen that FALKO gives the best results,

just like observed before. However, just like before, it is noticeable that introducing

45

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

(a) Corners extracted from DP.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

(b) Corners extracted from line intersection.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

(c) Corners extracted and application of FT.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

(d) ICP using full laser scan without corners.

Figure 4.12: Robot’s position error for small scenario with rotation movement (1).

a rotation movement on the robot produces worst results and less robust position

measurement.

Table 4.5 shows the results of all algorithms applied during this test with rotation

movement. Like already seen before, both algorithms that extract corners using

LSF (with or without FT application) have similar results, with the application of

FT reducing the value of RMSE.

Method Mean Error RMSE SD Max Min

ICP w/o Corners 0.0173 0.0184 0.0064 0.0296 0.0053

ICP w/ Corners 0.0171 0.0213 0.0127 0.1355 0.0012

ICP w/ Corners (LSF) 0.0160 0.0172 0.0062 0.0338 0.0028

ICP w/ Corners(LSF+FT) 0.0160 0.0168 0.0051 0.0334 0.0013

OC 0.0311 0.0412 0.0269 0.1884 0.0009

FALKO 0.0143 0.0164 0.0079 0.0620 0.0009

NormalBlobDetector 0.0223 0.0245 0.0100 0.0574 0.0012

NormalEdgeDetector 0.0217 0.0239 0.0100 0.0581 0.0002

Table 4.5: Error analysis for small scenario with rotation movement.

Comparing these results with FALKO’s results possibilitates the drawing of one

important conclusion: even though FALKO algorithm gives the best overall mean

error and RMSE, it is important to notice that standard deviation is lower for the al-

gorithm developed, which means that the error measurements are more constant for

46

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

(a) Corners extracted from FALKO.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

(b) Corners extracted from OC.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

(c) Corners extracted from Normal Edge De-

tector.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

(d) Corners extracted from Normal Blob De-

tector.

Figure 4.13: Robot’s position error for small scenario with rotation movement (1).

this algorithm. This aspect is even more important when looking at maximum error

of both algorithms, with FALKO having more than 6cm, while the algorithm devel-

oped has, approximately, 3.34cm. This consistency shows that this last algorithm

is more robust than FALKO’s algorithm for the scenarios tested.

Because these algorithms rely so much on environment features, it is important

to analyse these algorithms for a bigger and more complex scenario, which will be

done in Section 4.4.3.

4.4.3 Full room scenario

After testing the localization algorithm in the small scenario, it is necessary to

evaluate it in a bigger one. To do so, two kind of tests were performed: the first one

was a static test, i.e not giving any movement to the robot (neither translational or

rotational), in three different positions around the room - it is a quantitative test

since the main purpose is to compare the position error for the different algorithms;

in the second test, the robot had both translational and rotational movement, per-

forming a path around the room returning to the start point - it is a qualitative

test, in which the main goal is to evaluate if both starting position and end position

match.

47

The first position tested is shown in Fig. 4.14a. Table 4.6 presents the results

obtained for the position error for this position. Only the algorithms that shown

the best results in the previous tests were used, which are ICP without the use of

corners, ICP with the use of corners extracted (both with the application of Kalman

Filter and not) and FALKO’s keypoint extractor.

(a) First static position used to evaluate al-

gorithms’ results in full room scenario.

(b) Second position used to evaluate algo-

rithms’ results in full room scenario.

Figure 4.14: Elliptical path performed without obstacles in it using both extracted

features and full laser scan approaches.

As it can be seen from Table 4.6, all the results are similar, with the algorithm

of ICP without corners performing slightly better. This happens because the other

three algorithms depend on feature extraction, which might not be done correctly

if the laser range-finder is as close to an object as it is in Fig. 4.14a.

Method Mean Error RMSE SD Max Min

ICP w/o Corners 0.0200 0.0200 0.0006 0.0215 0.0187
ICP w/ Corners (LSF) 0.0310 0.0312 0.0033 0.0410 0.0222
ICP w/ Corners(LSF+FT) 0.0301 0.0301 0.0015 0.0337 0.0259
FALKO 0.0316 0.0320 0.0051 0.0455 0.0163

Table 4.6: Error analysis for full room (position 1).

Table 4.7 show the angular error regarding the laser orientation. As it can be

seen, the results from using ICP with corners are slightly better than with the full

laser scan, like it was seen in the smaller scenario.

The second position tested was close to the centre of the room, as shown in

Fig. 4.14b, where the laser scan can gather a wider amount of data and, consequently,

48

Method Mean Error RMSE SD Max Min

ICP w/o Corners 0.4165 0.4174 0.0272 0.4651 0.2834
ICP w/ Corners (LSF) 0.2015 0.2059 0.0427 0.3215 0.0658
ICP w/ Corners(LSF+FT) 0.2032 0.2055 0.0307 0.2725 0.1336
FALKO 0.2748 0.3032 0.1281 0.6181 0.0128

Table 4.7: Angular error analysis for full room (position 1).

more amount of features. This is particularly helpful when using ICP algorithms

that rely on feature extracted, like the ones being tested.

As it can be seen in Table 4.8, there is not much difference here between the

algorithms tested, with the use of corners performing just slightly better than the

ICP with the full laser scan.

Method Mean Error RMSE SD Max Min

ICP w/o Corners 0.0297 0.0297 0.0017 0.0345 0.0260
ICP w/ Corners (LSF) 0.0298 0.0299 0.0025 0.0392 0.0198
ICP w/ Corners(LSF+FT) 0.0291 0.0291 0.0017 0.0373 0.0221
FALKO 0.0245 0.0252 0.0060 0.0434 0.0110

Table 4.8: Error analysis for full room (position 2).

For this position, angular error is higher, specially for algorithms that use ex-

tracted corners. However, the results are overall good, without the error being

higher than 1o.

Method Mean Error RMSE SD Max Min

ICP w/o Corners 0.4819 0.4822 0.0164 0.5265 0.4350
ICP w/ Corners (LSF) 0.5563 0.5577 0.0391 0.7483 0.4573
ICP w/ Corners(LSF+FT) 0.5512 0.5517 0.0246 0.6516 0.4983
FALKO 0.5689 0.5811 0.1182 0.9577 0.2535

Table 4.9: Angular error analysis for full room (position 2).

As stated before, there was also done a test performing an elliptical path inside

the latest scenario presented (Fig. 4.4c), where two different scenarios were tested.

The normal scenario has no obstacles in it, i.e. objects that are not present on

the reference map used for scan matching. The dynamic scenario contains dynamic

obstacles that appear along the path, in this case it is a person crossing the robot’s

path multiples times during the whole dataset recording.

49

Figure 4.15 shows the results obtained from the elliptical path using both ex-

tracted features and full laser scan in the normal scenario (where the blue line is

the robot’s position and the black dots are the natural features existent on the en-

vironment). As it can be seen in Fig. 4.15a, even though there is some noise during

the path (specially near right upper corner), the path is closed, which means that

the robot returns to his initial position as it was done during the dataset recording.

In Fig. 4.15b the path has overall less error, which indicates that for more complex

scenarios, feature extraction methods might be compromised when features can not

be clearly extracted. This problem will later be mitigated with the integration of

the HectorSLAM, as it will be seen ahead.

(a) Extracted corners (normal scenario). (b) Full laser scan (normal scenario).

Figure 4.15: Elliptical path performed without obstacles in it using both extracted

features and full laser scan approaches.

After the first tests performed with no obstacles, a dynamic scenario was done

with the purpose of evaluating the performance of the algorithms explored when

dynamic obstacles (people crossing th robot’s path) were introduced. Algorithms

using extracted features did not perform well in this scenario, because when obstacles

came into the path, multiple features were not able to be seen causing the algorithms

to have high pose estimation errors. Figure 4.16 shows the results of the dynamic

scenario using the full laser scan for scan matching. Although the results from the

normal scenario were quite good, the presence of obstacles introduced many position

estimation errors during this path. This shows that even scan matching algorithms

that use the full laser scan as input do not have the robustness against obstacles

needed for non-test environments (e.g., industrial environments).

50

Figure 4.16: Elliptical path performed with dynamic obstacles in it using full laser

scan.

4.5 Applying Corner Features to the HectorSLAM

The main goal behind the HectorSLAM integration on the developed algorithms

is to increase the robustness of the localization process, without increasing the pose

estimation error (or if possible, trying decrease its value). In order to do so, a few

approaches were done and will now be presented and discussed.

Three approaches were done concerning the HectorSLAM integration on the algo-

rithms explored and developed. Even though these approaches use the HectorSLAM

on the same way, they differ in how the data is introduced into this SLAM method.

Also, these approaches try to mimic the behaviour of a SLAM technique in an

industrial environment, i.e. its given an a priori map of the environment to the

HectorSLAM and this method uses that map to perform localization without gen-

erating or updating the map. The first approach uses the full laser scan as input,

i.e. this is the standard the HectorSLAM and is mainly used to compare with other

algorithms’ results. A second approach was then done using a map of natural fea-

tures extracted as input, instead of all laser data. The third and last approach was

done using regions of interest as input. Features extracted by FALKO are consid-

ered points of interest and so it was interesting to consider a neighbourhood around

each interest point extracted (region of interest). Table 4.10 shows the initialization

parameters used in FALKO during the tests performed.

Figure 4.17 show the results for the elliptical path performed in the latest scenario

presented (Fig. 4.4c) for the three approaches described above. As it can be seen in

Fig. 4.17, the overall results with the integration of the HectorSLAM are quite good.

51

Minimum Score Threshold 50

Minimum Extraction Range 0.01

Maximum Extraction Range 30

NMS Radius 0.03

Neighbourhood Parameter a 0.1

Neighbourhood Parameter b 0.05

Neighbourhoot Minimum Point 2

β Ratio 5.5

Number of Grid Sectors 16

Table 4.10: Initialization parameters used in FALKO’s extractor.

Results using the full laser scan (standard the HectorSLAM) are good as expected

in both scenarios. As it can be seen, using the HectorSLAM with extracted features

(keypoints) had some issues around the room, specially on the left down corner.

This happens due to the fact that in the area there are many close objects which

makes the corners hard to extract in some of the laser scans. The lack of information

about a certain area of the map due to the fact that corners are not easily extracted

compromises the results of the localization, which is solved using regions of interest.

Using additional information around each extracted interest point will bring more

scan matching correspondences and so better overall results.

As it can be seen in Fig. 4.18a, the area mentioned above gathered by laser scan

does not match with precision the real map of the environment. This can mislead

the behaviour of the algorithm, specially when using features since the scan pre-

sented does not allow the extraction of important corners that should be visible. In

Fig. 4.18b there is another example of what can be a problematic scenario, in which

the presence of an obstacle occludes some of the main features of the environment.

However, it is notable that on either of these two scenarios, the methods developed

had good results overall, which shows that the integration of the HectorSLAM really

brought more robustness and flexibility to the system.

52

(a) Full laser (normal scenario). (b) Full laser (dynamic scenario).

(c) Extracted corners (normal scenario). (d) Extracted corners (dynamic scenario).

(e) Regions of interest (normal scenario). (f) Regions of interest (dynamic scenario).

Figure 4.17: Position estimation for elliptical path in both normal and dynamic

scenarios.

(a) Comparison between real map and laser

scan.
(b) Laser scan with an obstacle present.

Figure 4.18: Two possible situations that can mislead localization algorithm.

53

Chapter 5

Conclusion and Future Work

This dissertation focused on the research of localization algorithms for mobile

robots (more specifically an AGV) using only laser data. Even though localization

methods are still very conservative, there has been an evolution over the years to

try to simplify these methods, without inputting more any more error into it. In

that way, some important conclusions can be drawn from the work developed in this

dissertation.

Regarding feature extraction and scan matching with ICP algorithm the results

were good overall. However, the different scenarios used had indeed repercussions

on the behaviour of the algorithms developed. On one hand, using a small sce-

nario with no more than four walls (no objects inside introducing noise), allowed

the algorithms developed using feature extraction to have the best results amongst

others tested. On the other hand, when a bigger scenario was used, the results with

and without feature extraction were similar, since the error from extracting these

features was higher. It is however important to refer that even on feature extrac-

tion algorithms worst results, the mean error obtained was around 2-3cm, which is

completely acceptable for the scenarios tested.

The HectorSLAM brought robustness to the localization algorithms evaluated

before. Even though with a simple scenario all algorithms could do a good pose

estimation, when a dynamic scenario was used, all of them had some problems.

With the integration of the HectorSLAM these problems were mitigated, with this

method showing some promising results, that can be explored in the future.

The work developed in this dissertation showed that when environment natural

55

features can be easily extracted, a scan matching algorithm using those features has

overall better results than when using scan matching using the full laser scan. The

main drawback of this method is when features can not be extracted so easily, i.e.

when there is a great amount of noise on the laser scan data coming from obstacles

that are not in the map used as reference for scan matching. Even though this

was not so problematic with the integration of the HectorSLAM, it is important to

highlight that there is still work to be done concerning feature extraction. Since this

is the core of the algorithm developed, enhancing the feature extraction process will

also improve the performance of the localization algorithm overall.

56

Appendix A

Background and Datasets

Before starting to analyse the algorithms developed and their results, it is impor-

tant to have a background on how the tests were performed. This chapter focus not

only on that, but also on giving an overview of the system used for that purpose:

Robot Operating System (ROS). A brief analysis over this system will be done in

order to understand how the datasets were taken and the nomenclature used to

describe it.

A.1 Robot Operating System

The work presented in this dissertation was developed in Robot Operating System

(ROS) , so a brief overview of this system is extremely important. ROS is the most

popular robotics framework nowadays. It is a modular, tools-based software, pro-

viding libraries and drivers in order to help the development of robotic applications,

enabling researchers to perform simulations and real world experiments in a simple

and reliable way.

A.1.1 System Design

As described in [29], ROS can be summarized in five important characteristics:

peer-to-peer service, tools-based, multi-lingual, thin, free and open-source.

• Peer-to-peer : ROS has a peer-to-peer network of processes (potentially dis-

tributed across machines) that are loosely coupled using its communication

infrastructure. A peer-to-peer architecture coupled to a buffering system and

57

a lookup mechanism (called master in ROS), allows each component to com-

municate directly with any other;

• Tools-based : Instead of a monolithic runtime environment, ROS adopted a

micro-kernel design, where a large number of small tools are used to build and

run the various system components. The advantage of this solution is that a

problem with one tool (executable) won’t affect the others, which makes the

system more robust and flexible than a system based on a centralised design;

• Multi-lingual : The choice of a programming language can change based on per-

sonal preference and because of that, ROS is designed to be language-neutral.

The main libraries are written in C++, Python and LISP, however it can

support many other languages, such as Octave, Matlab or Java. Peer-to-peer

connections are negotiated in XML-RPC, which exists in a great number of

languages;

• Thin: ROS developers intend for all drivers and algorithms to be contained in

standalone executables that have no dependencies on ROS. This allows code

reusing and, above all, keeps its size down. Unit testing is also easier when

the code is split into libraries, as standalone programs can be used to exercise

different library features;

• Free and Open-Source: ROS source code is publicly available. Because of

the characteristics exposed before, it is extremely easy to exchange code and

develop it. This was particularly useful in the development of this work, as it

allowed the use of already written code.

A.1.2 File System

ROS resources are organized hierarchically on disk. There are two important con-

cepts to retain about ROS file system: a package is a directory containing nodes

(explained bellow), libraries, data and most importantly a manifest file (pack-

58

Figure A.1: ROS basic communication structure.

age.xml, for example), describing the package and its dependencies on other pack-

ages; a collection of packages is usually known as a stack and its primary goal is to

simplify the process of code sharing. A collection of stacks is called distribution.

During this work, ROS Kinetic Kame distribution was used.

A.1.3 Nomenclature

To understand some of the notation used in this dissertation, it is important to

know how ROS works and what is the nomenclature used in it [1]. Figure A.1 shows

the basic ROS components and how they communicate between themselves.

A node is a process that performs computation. These nodes are meant to work

together in a robot control system. For example, for a differential robot like the

one used on this work, one node controls a laser range-finder, one node performs

localization, one node performs path planning, and so on.

Nodes communicate with each other by passing messages. A message is a data

structure, comprising a combination of primitive types (integer, float, boolean, etc.)

and arrays of primitive types and constants.

Messages are sent between nodes using topics. A node can either publish data into

a topic or subscribe a topic (read data from it). There may be multiple concurrent

publishers and subscribers for a single topic, and a single node may publish and/or

subscribe to multiple topics. Data is exchanged asynchronously by means of a topic.

For synchronous transactions, a service is the most appropriate type of commu-

nication between nodes. Services are defined by a pair of messages structures: one

59

for the request and one for the reply.

Another important ROS concept is the bag. Bags are formats for storing and

playing back data, very useful to store data that can be difficult to collect and use it

to develop and test algorithms, as if it was real time data. During this dissertation,

all the tests performed were done on bag files (datasets) and because of that it is

important to have a careful look at it.

A.2 Dataset Extraction

Most of the tests performed were done using Matlab, in order to evaluate results

in an easier and better way. To analyse the data gathered from laser range-finder,

it has to be saved in a bag file and then transformed into a text file, so it can be

worked out in Matlab (Fig. A.2).

Figure A.2: Dataset extraction scheme.

The validation platform has many sensors on it and so there are many topics

published at the same time, such as odometry, inertial measurement unit (IMU) or

laser scan data, which is the one wanted. To record this topic into a bag file, the

following command has to be typed:

$ rosbag record /scan ,

where /scan is the topic associated with laser scan data. Because Matlab itself does

not handle bag files (without the use of extra toolboxes), it is required that the bag

file created is converted in one file that can be read by Matlab. The bag file is then

written into a text file using the command:

$ rostopic echo /scan > dataset.txt

where dataset.txt is the desired converted bag file.

After having a text file with the laser scan data, it is important to retrieve the

desired information. A LaserScan message is a predefined ROS message, transversal

60

to most robots with laser scanners which makes it easier to work with different

types of robots with laser range-finders. The format of this type of messages is

presented in Fig. A.3. Most of the information contained in these messages is about

Figure A.3: LaserScan message format [1].

laser specifications, such as its angle width, its range or its scan time. The most

useful information is on the array ranges, where all the distances between the laser

and the objects detected are stored. Since it stored in a text file, this array can

be easily extracted to Matlab and worked from there. This range measurements

alongside with the correspondent angle form the polar coordinates, which can later

be converted to cartesian coordinates as it will be seen ahead.

61

Bibliography

[1] Ros Wiki. http://wiki.ros.org/. Accessed: Mar, 2017.

[2] Tim Bailey and Hugh Durrant-Whyte. Simultaneous Localization and Mapping

SLAM: Part II. In IEEE Robotics & Automation Magazine, Vol. 13, pp 108-

117, 2006.

[3] Yaakov Bar-Shalom and Xiao-Rong Li. Estimation with Applications to Track-

ing and Navigation. John Wiley & Sons, Inc., New York, NY, USA, 2001.

[4] Per Bergström and Ove Edlund. Robust registration of point sets using iter-

atively reweighted least squares. In Computational Optimization and Applica-

tions, 2014.

[5] Per Bergström and Ove Edlund. Robust registration of surfaces using a refined

iterative closest point algorithm with a trust region approach. In Numerical

Algorithms, 2017.

[6] Paul J. Besl and Neil D. McKay. A Method for Registration of 3-D Shapes. In

IEEE Transactions on Pattern Analysis and Machine Intelligence, Feb 1992.

[7] G.A. Borges and M.-J. Aldon. Line Extraction in 2D Range Images for Mobile

Robotics. In Journal of Intelligent & Robotic Systems, 2004.

[8] J. E. Bresenham. Algorithm for Computer Control of a Digital Plotter. IBM

Syst. J., 4(1):25–30, March 1965.

[9] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,

and J. J. Leonard. Past, present, and future of simultaneous localization and

mapping: Toward the robust-perception age. IEEE Transactions on Robotics,

32(6):1309–1332, Dec 2016.

63

http://wiki.ros.org/

[10] Andrea Censi. An ICP variant using a point-to-line metric. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA),

Pasadena, CA, May 2008.

[11] K. C. J. Dietmayer, J. Sparbert, and D. Streller. Model based object classifica-

tion and object tracking in traffic scenes from range images. In IEEE Intelligent

Vehicles Symposium, 2001.

[12] Albert Diosi and Lindsay Kleeman. Fast Laser Scan Matching using Polar

Coordinates. In The International Journal of Robotics Research, Oct 2007.

[13] David H. Douglas and Thomas K. Peucker. Algorithms for the Reduction of

the Number of Points Required to Represent a Digitized Line or its Caricature.

In The International Journal for Geographic Information and Geovisualization,

Vol. 10, No. 2 (pp. 112-122), 1973.

[14] R. Duda and P. Hart. Pattern Classification and Scene Analysis. John Wiley

and Sons, Inc, NY, 1973.

[15] Martin A. Fischler and Robert C. Bolles. Random Sample Consensus: A

Paradigm for Model Fitting with Applications to Image Analysis and Auto-

mated Cartography. In Communications of the ACM, Vol. 24, pp 381-395,

1981.

[16] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved Techniques

for Grid Mapping with Rao-Blackwellized Particle Filters. In IEEE Transac-

tions on Robotics, Vol. 23, pp 34-46, 2007.

[17] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss, and Wol-

fram Burgard. Octomap: An efficient probabilistic 3d mapping framework

based on octrees. Auton. Robots, 34(3):189–206, April 2013.

[18] Fabjan Kallasi, Dario Lodi Rizzini, and Stefano Caselli. Fast Keypoint Features

From Laser Scanner for Robot Localization and Mapping. In IEEE Robotics

and Automation Letters, 2016.

[19] Stefan Kohlbrecher, Oscar von Stryk, Johannes Meyer, and Uwe Klingauf. A

Flexible and Scalable SLAM System with Full 3D Motion Estimation. In IEEE

64

International Symposium on Safety, Security, and Rescue Robotics (SSRR),

2011.

[20] M. Lauer, S. Lange, and M. Riedmiller. Calculating the Perfect Match: an

Efficient and Accurate Approach for Robot Self-Localization. In Robocup 2005:

Robot soccer world cup IX, Springer, pp. 142-153, 2006.

[21] John J. Leonard and Hugh Durrant-Whyte. Mobile Robot Localization by

Tracking Geometric Beacons. In IEEE Transactions on Robotics and Automa-

tion, Vol. 7, pp 376-382, 1991.

[22] Jiayuan Li, Ruofei Zhong, Qingwu Hu, and Mingyao Ai. Feature-based laser

scan matching and its application for indoor mapping. Sensors, 16(8):1265, aug

2016.

[23] David G Lowe. Object Recognition from Local Scale-Invariant Features. In

IEEE International Conference on Computer Vision, 1999.

[24] Feng Lu and Evangelos Milios. Robot Pose Eestimation in Unknwon Envi-

ronments by Matching 2D Range Scans. In Journal of Intelligent and Robotic

Systems, Mar 1997.

[25] Michael Montemerlo, Sebastian Thrun, Daphne Koller, and Ben Wegbreit.

Fastslam: A Factored Solution to the Simultaneous Localization and Mapping

Problem. In Eighteenth national national conference on Artificial Intelligence,

pp 593-298, 2002.

[26] E. Pedrosa, A. Pereira, and N. Lau. Efficient localization based on scan match-

ing with a continuous likelihood field. In 2017 IEEE International Confer-

ence on Autonomous Robot Systems and Competitions (ICARSC), pages 61–66,

April 2017.

[27] Cristiano Premebida. Detecção e Classificação de Objectos em Ambiente Ex-

terior para Véıculos Autónomos. Master Thesis, Departamento de Engenharia

Eletrotécnica e de Computadores, Universidade de Coimbra, Portugal, 2007.

[28] Cristiano Premebida and Urbano Nunes. Segmentation and Geometric Primi-

tives Extraction from 2D Laser Range Data for Mobile Robot Applications. In

65

5rd National Festival of Robotics Scientific Meeting (ROBOTICA), Coimbra,

Portugal, 2005.

[29] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy

Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: An open-source Robot Operating

System. In ICRA Workshop on Open Source Software, 2009.

[30] Urs Ramer. An Iterative Procedure for the Approximation of Plane Curves. In

Computer Graphics and Image Processing, Vol. 1, No. 3 (pp. 244-256), 1972.

[31] Szymon Rusinkiewicz and Marc Levoy. Efficient Variants of the ICP Algorithm.

In Third International Conference on 3D Digital Imaging and Modeling, 2001.

[32] J. M. Santos, D. Portugal, and Rui P. Rocha. An Evaluation of 2D SLAM

Techniques Available in Robot Operating System. In IEEE International Sym-

posium on Safety, Security, and Rescue Robotics (SSRR), Linköping, Sweden,

Oct 2013.

[33] S. Santos, J. Faria, F. Soares, R. Araujo, and U. Nunes. Tracking of Multi-

Obstacles with Laser Range Data for Autonomous Vehicles. In 3rd National

Festival of Robotics Scientific Meeting (ROBOTICA), 2003.

[34] Pranab Kumar Sen. Estimates of the regression coefficient based on kendall’s

tau. In Journal of the American Statistical Association, 63(324), (pp.

1379–1389), 1968.

[35] Cyrill Stachniss, Udo Frese, and Giorgio Grisetti. OpenSLAM. https:

//openslam.org/. Accessed: May, 2017.

[36] Henri Theil. A Rank-Invariant Method of Linear and Polynomial Regression

Analysis. In Advanced Studies in Theoretical and Applied Econometrics (pp.

345–381), Springer Netherlands, 1992.

[37] Sebastian Thrun and Arno Bücken. Learning maps for indoor mobile robot

navigation. Technical Report CMU-CS-96-121, Carnegie Mellon University,

Computer Science Department, Pittsburgh, PA, 1996.

66

https://openslam.org/
https://openslam.org/

[38] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics.

MIT Press, Cambridge, MA, 2005.

[39] Gian Diego Tipaldi and Kai O. Arras. FLIRT - Interest Regions for 2D Range

Data. In IEEE International Conference on Robotics and Automation, 2010.

[40] J. Vandorpe, H. Van Brussel, and H. Xu. Exact Dynamic Map Building for a

Mobile Robot using Geometrical Primitives Produced by a 2D Range Finder.

In IEEE International Conference on Robotics and Automation, 1996.

67

	Acknowledgments
	Abstract
	Resumo
	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Context and Motivation
	Objectives
	Outline of the dissertation

	State of Art
	Segmentation and Primitive Extraction
	Segmentation
	Geometrical Primitive Extraction

	Map Representations
	Localization: Scan matching algorithms
	Iterative Closest Point

	Simultaneous Localization and Mapping
	Gmapping
	HectorSLAM

	Developed Methods
	Segmentation and Primitive Extraction
	Scan Matching
	Applying Corner Features in the HectorSLAM
	Preprocessing
	Mapping

	Experimental Results
	Validation Platform
	Workspace Description
	Primitive Extraction
	ICP Algorithm
	Small scenario with no movement
	Small scenario with rotation movement
	Full room scenario

	Applying Corner Features to the HectorSLAM

	Conclusion and Future Work
	Background and Datasets
	Robot Operating System
	System Design
	File System
	Nomenclature

	Dataset Extraction

	Bibliography

