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Abstract

Human beings are very efficient in detecting target objects among distractors using color
as a search feature. Different aspects on a scene drive the attention of the observer, which
does not equally process all this information, and color is one of the basic features that influ-
ences attentional capture. Additionally, humans are particularly impressive at appropriately
discriminating colors. They are able to successfully identify them under different degrees
of illumination and congruently classify them in abstract terms. This has a high impact in
human performance in object search by color. The goal of the presented work is to create
a biologically plausible solution that is able to regulate attentional capture according to a
visual search objective that depends on a color that can be abstractly defined. To attain this
goal, first a set of behavioral experiments was conducted to select the approach that best
reflected human performance. Results showed that the RGB color model for computing
similarity to a reference color and the mode for computing the dominant color of an image
patch were the methods most consistent with human behavior. Additionally, it was proven
that the effect of abstract color classification had a marginal effect in memorizing a reference
color, and that Retinex-based color constancy algorithms used in preprocessing did not
substantially improve overall processing performance. Next, the final processing pipeline
was designed. Different algorithmic alternatives for proto-object segmentation were tested,
and the proposed solution was applied to video frames taken from a typical scenario. The
proposed solution was found to have satisfying performance in terms of replicating human
behavior. Future work includes a final optimized, real-time implementation of the pipeline
in a artificial attention system developed in previous research performed at the Institute of
Systems and Robotics.

Keywords: color, visual search, attentional capture, similarity, saliency, abstract
color classification





Resumo

Os seres humanos são muito eficientes a detectar objetos-alvo entre distrações usando a cor
como meio de procura. Diferentes aspetos na cena captam a atenção do observador, que
não processa toda a informação da mesma maneira, e a cor é uma das propriedades básicas
que influencia a captura por atenção. Adicionalmente, os humanos são particularmente
impressionantes a discriminar cores de uma forma apropriada. São capazes de as identificar
com sucesso em diferentes graus de luminosidade e classificá-las apropriadamente usando
termos abstratos. Tudo isto tem um grande impacto na procura de objetos pela cor. O
objectivo deste trabalho é criar uma solução biologicamente plausível que seja capaz de
regular a captura por atenção de acordo com um objectivo obtido por procura visual que
dependa de uma cor que possa ser abstractamente definida. Para atingir este objectivo, foram
primeiramente executadas uma série de experiências para analisar qual a melhor abordagem
que reflita o comportamento humano. Os resultados demonstram que o modelo de cor
RGB usado para calcular a semelhança de cores relativamente a uma cor de referência e
a moda para obter a cor dominante de uma imagem foram os métodos mais consistentes
comparativamente ao comportamento humano. Adicionalmente, foi provado que o efeito
de classificação abstrata de cor tinha um efeito marginal na memorização de uma cor de
referência, e que algoritmos baseados no método Retinex usados em pré-processamento não
melhoravam a performance do processamento. De seguida, uma pipeline de processamento
foi desenhada. Foram testados vários algoritmos alternativos para a segmentação em proto-
objetos, e a solução proposta por eles foi aplicada a frames de um vídeo captado num
cenário quotidiano. A solução proposta aparentou ter resultados satisfatórios em termos de
replicação do comportamento humano. Trabalhos futuros includem uma versão em tempo-
real e optimizada do pipline num sistema de atenção artificial desenvolvido em investigações
prévias no Instituto de Sistemas e Robótica.

Palavras-chave: cor, procura visual, captura por atenção, semelhança, saliência,
classificação abstrata de cor
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Chapter 1

Introduction

1.1 Motivation

Color is a crucial discriminative feature in human visual perception. In fact, visual perception

in the human brain includes color from its earliest processing stages [1]. Additionally,

humans and other primates evolved beyond the more common dichromatic color vision of

most mammals towards trichomatric color vision, a relatively new genetic development,

allowing for improved discrimination between various shades of red and green [2, 3]. This

evolution is believed to be a survival skill for effectively discriminating the color of tropical

fruits, resulting from the development of specialized tuning to long wavelength colors (red,

orange and yellow), which often signal the most nutritious fruits at hand [3].

Human beings therefore became very efficient in detecting target objects among dis-

tractors using color as a search feature [4], a process named visual search by color. The

ability to discriminate color helps us to detect objects that might otherwise be confused

with their surroundings [1]. As a species, we are particularly impressive at appropriately

discriminating colors, successfully identifying them under different degrees of illumination

[1] and coherently abstractly classifying them [5]1.

To improve sensory and computational resource usage, the human brain does not equally

process all the sensory data from a scene – in fact, the brain anticipates its needs and selects

1These issues will be discussed in detail in Chapter 2.
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Fig. 1.1 Real life example of color contrast. The orange/blue disparity is often used in movie posters to convey sensations of both coolness
and enthusiasm. It performs well because orange and blue are complementary colors (©Abheetsingh / Wikimedia Commons / CC BY-SA
4.0)

which resources to use and what parts of the scene should be scanned by the senses in a

process called attention [6]. Attention is volitionally directed by the goals of the observer, but

it is also heavily driven by the inherent relevance of the sensory stimuli themselves, which is

unconsciously determined by the brain – in fact, it is believed that the current goal of the

observer modulates stimulus-driven salience processes by means of an attentional set [7, 6].

Color, as a basic attentional feature, is a particularly important driver of stimulus salience.

This results in particularly strong pop-out effects, in which the salience of a feature captures

attention.

Color pop-out effects have been usually taken as being mainly driven by local color

contrast, i.e. a striking difference in color between a particular object or part of an object and

its surroundings2. In fact, color contrast is frequently used in advertising, most commonly in

movie posters, in order to convey different feelings (Fig. 1.1). However, color priming, the

preparation for detecting a target by focusing on its color, is known to take on an important

role in visual search by color because it increases search effectiveness by decreasing detection

times through the pop-out effect. In fact, Becker et al. [8] recently showed that relative color

of the target in opposition to non-targets might be more important than contrast per se. For

instance, consider a red ball on a grassy field, and a green ball on a red carpet. The contrast

2To be introduced in detail in Section 2.1.2.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


1.2 Related Work 3

between object and background is the same in both cases, but the time it takes to find the

ball by presenting the latter scenario after the former is not influenced, whilst when using the

same target color consecutively detection time decreases significantly [8]. This appears to

mean that the reference target color is at least as important as (and probably cumulative with)

color contrast – in fact, it is possible that the observer’s goal of visual search by a reference

target color (e.g. “find the red ball”) is modulating the salience of that particular color and

thus increasing its pop-out effect.

In summary, the main motivation for the work presented in this thesis rests on the working

hypothesis that visual search by color in artificial perception might also benefit from these

types of mechanisms.

1.2 Related Work

The basis for attentional prioritization in our work relates to seminal research by Itti et al.

[9]. Their studies resulted in a computational solution for stimulus-driven attention inspired

on the behavior and neuronal architecture of the early primate visual system. The system

breaks down the problem by selecting conspicuous locations to be analyzed in detail. For

this purpose, a salience map is proposed, to "represent the conspicuity at every location in

the visual field by a scalar quantity and to guide the selection of attended locations, based

on the spatial distributions of saliency" [9]3. In accordance to what was said in the previous

section, one of the features driving this solution, and most of its derivative follow-ups, is

color contrast, which is commonly used as a conspicuity channel in salience computation.

Gelasca et al. [10] propose the only solution, to our knowledge, that directly explores

color relativity instead of contrast as salience; however, their solution relies on a static a

priori prioritization, as would be expected when performing free viewing, i.e. no specific

attentional goal, as opposed to visual search based on a reference color. More specifically,

they performed a free viewing experiment in which they demonstrated that human subjects

shared a common prioritization ranking of colors (red in this case would be the most important

3See also Section 2.2.1.
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Fig. 1.2 Differences between attentional capture by color. On the top we have the original picture. On the bottom left we have a salience
map using color contrast, and on the bottom right using similarity to reference color (obtained using a modified version of the solution
proposed in Section 4.3), which is displayed on its top left corner. In both maps, lighter pixels have been classified as more salient, while
darker pixels as less so – attention will consequently be captured by the lightest pixel in each case. Original image and capture by contrast
kindly provided by Dr. Radhakrishna Achanta, author of [12].

color from a set of 12, followed by yellow and green), and then proceeded to implementing

this prioritization as a saliency model.

1.3 Goals and Contributions

As mentioned in Section 1.2, we have no knowledge of any work that studies color salience

in artificial systems in a systematic fashion, in particular involving a reference target color.

Additionally, the majority of the proposed solutions in the literature use salience channels for

color contrast, with the sole exception of [10].

We therefore intend to contribute with a biologically-plausible solution that takes the

similarity to a reference color that we wish to find within the given scene as a measure of

saliency (Fig. 1.2). This mechanism is to be integrated into an attentional system developed

during the CASIR FCT-funded project (Coordinated Attention for Social Interaction with

Robots – FCT Contract PTDC/EEI-AUT/3010/2012) [11] – see Fig. 1.34.

4And also http://mrl.isr.uc.pt/projects/casir/ for more information on the project.

http://mrl.isr.uc.pt/projects/casir/
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Fig. 1.3 Simplified conceptual diagram of part of the CASIR-IMPEP attentional middleware. The attentional goal of the observer (which,
if engaged in a visual search, will include a target color) will influence the weights (W0, W1, ..., Wn) of the saliency channels(C0, C1, ...,
Cn) resulting in the final map (S). This map is obtained by calculating a weighted sum of all the channels.

1.4 Structure of Dissertation

This dissertation is structured as follows:

• Chapter 1 explains the motivation for the reported work, surveys related research, and

states the main goal and expected contributions to the state of the art.

• Chapter 2 introduces and defines relevant and presents the specific implementation

algorithms and methods used for implementation of the proposed solution.

• Chapter 3 reports on the behavioral studies conducted to ensure the biological plausi-

bility of the proposed solution and respective findings.

• Chapter 4 describes the testing and selection of the algorithms used in the implemen-

tation of the final processing pipeline and reports results of its application.

• Chapter 5 concludes the dissertation by drawing conclusions and proposing follow-up

work.





Chapter 2

Background and Methods

2.1 Background and definitions

2.1.1 Color model / color space

A color model can be described as a mathematical model consisting of tuples of numbers

used to represent colors. These tuples can be represented in a delimited n−dimensional

space, called color space.

The most common color spaces used on this work were RGB (red, green, blue) , Lab

(lightness, green-red ratio, blue-yellow ratio), HSV (hue, saturation, value), YUV (luminance,

chrominance 1, chrominance 2), HCL (hue, chroma, luminance) [4]. These color spaces

were selected based on the different ways they represent color, and, therefore, the different

color distance methods associated with them.

Using the 3 RGB coordinates as a starting point, we can easily obtain the coordinates

for the remaining color spaces. The RGB color space faces some limitations such as the

impossibility to represent some colors by superposing the three values and difficulty in

detecting the presence (or absence) of a specific color [4].

The HSV (Hue, Saturation, Value) represents color in a way that can be compared to the

process of selecting colors from a wheel or palette. One can experience the usage of the

HSV color space during the process of selecting paint on a hardware store, as the shades of
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Fig. 2.1 Depiction of the HSV color space. (©Eric Pierce / Wikimedia commons / CC BY-SA 3.0)

colors are represented using this color space, because it corresponds better to how people

experience color in detriment do the RGB color space [13]. The Hue component (H) specifies

a dominant color as it is perceived by a human. Saturation (S) refers the amount of white

light that gets mixed up with the previous component, therefore creating brighter shades of

the same color [4]. The smaller the value of saturation, the most the color resembles a shade

of gray. Finally, Value (V) represents brightness, and the smaller it is the more it appears

as a darker shade of gray. The limitation of this color space resides on the fact that an high

amount of white present in a color has a small variation of luminosity compared to a fully

saturated color.

Contrary to the RGB color space, YUV’s chrominance has two dimensions (U and V),

and the intensity is coded on the third (Y) [14]. Due to this characteristic, YUV is normally

associated to a color image encoding similar to human perception [14].

Lab (also referred as L*a*b* in some literature) is a color space defined by the CIE

(Comission Internatuinale de l’Eclairage). The main problem associated to the usage of this

color space is the inadequacy to represent shades of blue [4].

The HCL (hue, chroma, luminance) color space was also used. Assuming that both

chrominance and hue of a specific color can be obtained as a blend of red, green or blue,

therefore we can obtain the coordinates for the HCL color space from RGB tuples [4]. The

calculations used to obtain the HCL coordinates take into account several human traits, such

as the reaction to color intensity. Therefore, one can argue that HCL seems to be the best suit

https://creativecommons.org/licenses/by-sa/3.0/
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to simulate human behavior at color perception, although the results shown on 3.2.5 prove

otherwise.

Besides these more standard color models, two more color models were used on this

work, which were proposed by [15]: normalized RGB (nRGB) and L1L2L3, due to their

invariance to changes in viewing direction, illumination and object geometry [15]. The first

of the two is a color model that takes information from the main diagonal axis on the cube

formed in the 3 dimensional space created by the R, G and B axes. By connecting the "black"

and "white" corners we can define Intensity, which consists on an important factor that allows

the transformation into nRGB coordinates. It is simply obtained by dividing the value of

each pixel by the sum of the values of the remaining channels of the same pixel. According

to the work previously cited, this color model seems to be the most suited when there are no

highlights and under the constraint of white illumination. The L1L2L3 color model works in

a similar way, as it is also obtained by calculations involving all the channels of a specific

pixel, but produces an entirely different result. This new model represents color in a way that

is only dependent on the sensors and the surface albedo. More information on these color

models can be found on Appendix B.

2.1.2 Color similarity, difference and contrast

Color similarity can be defined as the subjective evaluation of how identical two color

samples are. The example on Fig. 2.2 depicts the situation better. The perception of color

similarity varies from individual to individual: the way one perceives and discriminates

colors is different for each person (e.g. some people tend to find the same tone of green

closer to yellow and another group of people might find them closer to cyan, as depicted on

Fig. 2.2).

Color difference refers to the distance (for this reason sometimes also called “color

distance”) between two colors in a particular color space. In this work it is used as a measure

for color (dis)similarity.

There are several standard color difference metrics, for example Euclidean distance,

which is given by
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Fig. 2.2 Three different sets of colors used to define color similarity. On the left, it is easy to infer how human subjects will grade the
similarity of the two colors a and b to reference color 1. Conversely, for reference colors 2 and 3 it is not trivial to infer how subjects will
react when trying to classify their similarity to color-pairs c,d and e,f, respectively.

DE =
√
(x1 − x2)2 +(y1 − y2)2 +(z1 − z2)2, (2.1)

and also weighted Euclidean, which is given by

DWE =
√

W1(x1 − x2)2 +W2(y1 − y2)2 +W3(z1 − z2)2, (2.2)

where W1, W2 and W3 are different values (weights).

For the RGB, HSV , nRGB and L1L2L3 color spaces, we compared both of these metrics.

The Lab color space has a particular color distance measure called ∆E∗
ab, which is

essentially an Euclidean distance. The HCL color space has a distinct color similarity

measure associated, as it was adapted to better simulate human behavior. Consequently, this

color difference (Section 2.1.2) metric takes into account human color perception [4], and is

given by

DHCL =
√

(AL∆L)2 +AH(C2
1 +C2

2 −2C1C2 cos(∆H)), (2.3)

where AH is a parameter which helps to reduce the distance between colors having a same hue

as the hue in the target (reference) color, and AL is a constant of linearization for luminance

from the conic color model to the cylindric model [4]. Considering two colors A(H1,C1,L1)

and B(H2,C2,L2), ∆H refers to the difference in hue (H1 −H2), and ∆L represents the

difference in luminance(L1 −L2).
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Color contrast can be defined as the difference between the color of a region in space

and the color of its surroundings. As described in Section 1.2, most of the state-of-the-art

attentional capture algorithms use color contrast as a saliency channel.

2.1.3 Color constancy

Color constancy consists on the capability that human beings have which allows them to

successfully identify similar colors under varying illumination conditions [1]. This is a useful

skill when it comes to identifying colors regardless of shading and illumination. The Retinex

theory (Section 2.2.5) attempts to computationally model this human trait.

2.1.4 Pre-attentive segmentation – proto-objects / superpixels

Proto-objects consist of pre-attentive structures with feature coherence that limit a specific

area on an image, forming volatile perceptual units that are believed to be formed in early

stages of visual processing in the brain. They are a partial byproduct of the simultaneous

effect of the perception of color discrimination and constancy, among other features. This

rapid pre-attentive segmentation of the image allows for the conjunction of image locations,

features and objects as a unified unit of attention [6], making it arguably preferable to single

abstract pixels.

There are several methods for segmenting proto-objects — in this work, superpixel

clustering was used.

It is imperative that the proto-object segmentation produces an acceptable superpixel

outlining with a proper dominant color attributed to it. The desired properties of superpixel

segmentation are mentioned in [16]:

• Every superpixel may only overlap with a single object.

• The boundaries of a set of superpixels should constitute a superset of object boundaries.

• The performance of the application should not be jeopardized by including superpixel

segmentation.
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• The final result should be obtained with the minimum number of superpixels.

Therefore, by having a robust superpixel segmentation method, one can obtain proto-

objects that resemble the original objects on the scene, which will facilitate the analysis of

certain attributes in the original picture.

2.2 Methods and algorithms for implementing an artificial

version of attention capture by color

2.2.1 Spatial prioritization of the visual field using color saliency

Distinctive sensory stimuli (the measure for “distinctiveness” was dubbed by Itti, Koch et al.

[9] as saliency) attract attention more effectively when they are relevant to the task at hand.

Attentional capture, resulting from the so-called pop-out stimulus effect (see Section 1.1)

has been identified as the fast, automatic, pre-attentive evaluation of the relevance of the

incoming stimuli according to basic features, which is then encoded into sensory-centred

spatially organized maps [6]. The particular encoding divised by Itti et al., named salience

map [9], attributes priority in attentional capture (typically as a integer or floating point

grayscale value ranging from 0 to 255 or 0 to 1, respectively) to regions in an image, more

specifically to pixels or groups of pixels, according to stimulus relevance – examples of

this type of visual map were presented in Fig. 1.2. This map is then usually subjected to

a winner-take-all process (i.e. its maximum is computed) to determine the next focus of

attention. As also mentioned in Section 1.1, involuntary attentional mechanisms, while

apparently fundamentally stimulus-driven, are additionally modulated by goal-directed

influences through the so-called attentional sets that impose task relevance as a prioritising

measure [6]. In other words, the sensory (bottom-up) distinctiveness of a feature interacts

with the ongoing cognitive (top-down) goal.

As described in Section 1.3, we will follow up on previous work described in [11] and

base our solution on this concept in order to perform spatial prioritization of entities in

images according to similarity (Section 2.1.2) to a reference color.
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2.2.2 Abstract color classification

Abstract color classification refers to the capability human beings have to associate an abstract

class (represented by a name) to a group of colors. People with normal color vision generally

tend to agree on abstract classifications, and can also restrict a specific class by adding a

proper classifier (i.e. an adjective). For instance, an individual might classify a color as “red".

Although this serves as a proper abstract class for that color, one could restrict the class the

specific color belongs to even further by saying it is “dark red" or even “maroon". Both of

the previous labels are acceptable to classify the color since they all fit the classification of

“shades of red". The previous example shows that the way people classify color varies from

one individual to the other, but there are some rules that apply. The influence of abstract

classification in color memory was investigated in our work, and the results of this study are

presented in Chapter 3.

2.2.3 Methods for proto-object segmentation

There are several methods that can be employed to segment an image into proto-objecs by

creating superpixels, however, the algorithms used within this work focused on just two of

them: ERS and SLIC. ERS (Entropy Rate Superpixel) is a superpixel segmentation method

that is based on the "entropy rate of a random walk on a graph and a balancing term" [16].

The entropy rate was used in order to promote the creation of compact and homogeneous

clusters and the balancing term ensured that these clusters were similar in terms of their

size . Its creators propose a novel graph construction for images and prove that it induces

a matroid (combinatorial structure that generalizes the concept of linear independence in

vector spaces) [16]. The segmentation itself is obtained through the "graph topology that

maximizes the objective function through the matroid constraint" [16]. On the other hand,

SLIC (Simple Linear Iterative Clustering) is a faster method and is more memory efficient. It

is based of k-means for superpixel generation, with some differing factors such as limiting

the search space to a region proportional to the superpixel size, which causes the number of

distance calculations to be reduced, and control over compactness and size of the superpixels
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by computing a weighted distance measure that combines color with spatial proximity

[17]. Unfortunately, the off-the-shelf implementation of the SLIC method only works on

the Windows operating system, forcing us to mostly use the ERS method, given our time

restrictions.

The Proto-Object segmentation methods used for the tests on this work (Section 4.2.1

and Section 4.3) were implemented using an adaptation of a series of off-the-shelf MATLAB

scripts developed by Yu and coworkers [18]. These adaptations included the removal of

unnecessary calculations (for our purpose) as well as adding some parameters and arguments

to the functions in order to adapt them to fit our analysis.

This algorithm takes an image and segments it into Proto-Objects based on a few pa-

rameters. According to the author of the paper, the code was suited to work with images

with an 800×600 resolution, using its default parameters. Empirical tests were performed to

find the best set of parameter values for smaller resolutions, such as our target resolutions of

640×480 and 320×240.

The ProtoObjectSegmentation function returns the processed image and accepts 6

input parameters:

imageFile

As the name suggests, it contains the path to the image file we want to segment. It accepts

images in every format, but works better with .png files.

cs

This parameter refers to the color space used to preform cluster analysis in order to obtain

superpixels based on neighboring pixels that share similar features. The color spaces available

are the same as in the original algorithm: RGB, HSV and LAB.

numSeg

This parameter determines the maximum number of proto-objects obtained in the final result.

A smaller value of numSeg will require a shorter period of time to produce a poorly segmented
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Fig. 2.3 Example of some results using the proto-object segmentation algorithm with varying number of superpixels. From left to right
we have a segmentation done with 10 maximum proto-objects, followed by 100, followed by 1000. The image on the far right represents
the original picture used. All the parameters, except for numSeg, were the same for all segmentations.

image, contrary to a higher value of numSeg, which will require a larger amount of time to

produce an extremely segmented image. One should find the balance and choose the value

that better suits their needs. Examples of segmentation using different values of numSeg can

be found on Fig. 2.3.

segType

This variable determines the method for superpixel segmentation. It can either be ’SLIC’

or ’ERS’. As was mentioned on Section 2.2.3 , the ’SLIC’ method could only be used

on the Windows operative system since it required .exe files to run, so, in order to have a

multi-platform algorithm, the use of ’ERS’ is advisable.

meanMed

meanMed determines what color to be attributed to a specific superpixel. It can take the form

of ’MEAN’, which attributes the mean color of all pixels contained in the superpixel, or

’MED’, which does the same but used the median color instead.

BW

Referring to band width, this final parameter determines the search area for the shift directions

[18].
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Fig. 2.4 Dominant colors of real life objects. How does the human brain decide what is the dominant color in an object? In this picture,
someone with normal color vision would probably classify the cookie box (1) as being orange, although it has numerous other colors
in its composition. An easier choice can be made regarding the ketchup bottle (2), which one would agree is red, although it has some
shades of white and yellow in its label. So, how do we make that choice?

2.2.4 Dominant color computation

Determining the dominant color of an object in a biologically plausible fashion proved to be

challenging, since the way humans perform this task is still mostly unknown. Consequently,

we decided to tackle the problem using simple statistical measures: the mean, the median

and the mode. Due to time restrictions, we then followed a purely empirical strategy, and

chose the method that produced the most visually convincing results (see Fig. 2.4). The

examples shown in Figs. 2.5 and 2.6 portray two additional results obtained during the

preliminary empirical tests. On all these examples the mode operand proved to be a valid

option to determine the dominant color of an object. However, the example depicted in Fig.

2.7 represents a situation where the mode does not perform as adequately as the mean or the

median.

The effect of each of these methods can be indirectly verified in the results presented in

Chapter 3.
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Fig. 2.5 Dominant color computing using mean, median and mode - example 1. In this example, the crop shown on the left contains an
object. The following 3 colored squares represent the output of the algorithm as well as the RGB coordinates for each color; As it is
perceivable, the 3 colors are very similar, and any of them could be easily described as the object’s dominant color.

Fig. 2.6 Dominant color computing using mean, median and mode - example 2. The crop shown on the left contains an object. The
following 3 colored squares represent the output of the algorithm as well as the RGB coordinates for each color; In this case, the results
differ a bit more (compared to the previous example). The opinions on which of the 3 colors could be ascribed as the dominant one are,
on this case, more divided.

Fig. 2.7 Dominant color computing using mean, median and mode - example 3. Taking into account the pixels that compose the cardboard
box, we can see that the mode operand, in this case, is the worst of all three. This is due to the fact that the sticker on the box had a lot
of gray (243,243,243) pixels (probably caused by jpeg compression), which influenced the calculation. The remaining methods provide
acceptable results. Cardboard box image: ©Rlsheehan / Wikimedia Commons / Public Domain.

https://wiki.creativecommons.org/wiki/Public_domain
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Fig. 2.8 Example of Retinex pre-processing. Retinex algorithm input (left) and output (right). Output generated using the demo from [20]

2.2.5 Color constancy - the Retinex theory

As was mentioned in Section 2.1.3, human beings can easily identify similar colors under

different degrees of illumination. In order to replicate this phenomena, the Retinex theory

was created. It attempts to replicate and illustrate how the human visual system perceives a

scene, most specifically, its color [19].

This theory establishes that human beings perceive relative lightness instead of absolute

lightness. Relative lightness can be interpreted as a variation of lightness in local image

regions. Therefore, the Retinex algorithms result in a shadow removal effect [20], creating

the illusion depicted in Fig. 2.8. Retinex methods are therefore potentially useful, and were

tested as a pre-processing method in Section 2.2.4.

http://demo.ipol.im/demo/107/


Chapter 3

Color Salience as a Computational

Model of Human Performance

3.1 Introduction

As a first step, a set of experiments were conducted in order to help frame the biological

plausibility of our approach, which will be described in this chapter. With these experiments,

we set out to attempt to answer the following research questions:

• How does the human brain classify, through a similarity measure, a color compared to a

reference, both in an abstract and contextual situation? (Experiment 1, and Experiments

2 and 3 respectively.)

• How do humans determine the dominant color of a specific object on a scene? (Experi-

ments 2 and 3)

• Does the lighting on a scene influence color vision in humans? If so, how do humans

react to that change? (Experiment 3)

• How do humans abstractly classify similar colors? (Experiment 4.)

• Does attributing an abstract class to a color change a human subject’s memory of the

original color used as reference through time? (Experiment 4.)
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• Do humans share a consistent set of color classification criteria? (All experiments.)

The color similarity scores provided by the subjects on the first 3 experiments were given

as integers from 0 to 100 (which can be construed as a “degree of similarity" represented as a

percentage), an unorthodox range of values for use in behavioral studies, which usually use

psychometric scales such as the Likert-type scales [21], which typically use no more than 10

different values. This was done so as to achieve a more direct correspondence with the scale

resolution used by the saliency methods described in Section 2.2.1.

3.2 Behavioral studies of color difference

3.2.1 Experiment 1 – decontextualized study of color difference

This experiment was conducted in order to study how humans rate the similarity between

two colors in an abstract, non-contextualized setting.

A total of 15 subjects were inquired on this experiment. 13 of them were male and the

remaining 2 were female, ranging from 19 to 65 years old. The average age of the participants

was approximately 23 years old. A total of 14 were engineering students and one had no

college degree whatsoever. All the subjects were inquired, before the start of the experiment,

about their vision. The vast majority reported that they had normal or corrected-to-normal

vision and all reported to have normal color vision. All the subjects were naïve to the

experiment.

The experiment was conducted using MATLAB. An ASUS VW199 monitor was used to

show the subjects the different images through out the experiment. The monitor measured

44× 29cm and worked with a resolution of 1400× 900, with its brightness level at 100,

contrast at 74, saturation at 50, using the settings of Color Temp. as "User Mode" and Skin

Tone as "Natural".
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Stimuli

In this experiment there were a total of 11 numbered comparison colors per reference color

from a total of 15 for each subject. Both of these sets of colors were the same for each subject,

although their order was randomly changed for each participant. The time limitation of ten

minutes imposed by experimental design, chosen so as to bring participant discomfort to a

minimum, determined the ratio of reference colors, comparison colors and time expended

per scoring used – considering a mean response time of 4 seconds per comparison, we obtain

a total of 660 seconds per trial, representing one minute over the 10 minute limit. The

comparison colors were selected based on a subjective classification found on [22]. This

classification ensured that we had at least one shade of every color present in the visible light

spectrum. The selection of reference colors was performed using the same process, but since

their number was greater, a few shades of the same colors, as well as tones of gray, black and

white were added. An example can be found on Fig. 3.1.

Procedure

Subjects remained seated straight during the whole extent of the experiment, whilst looking

a the computer monitor at a distance of roughly 48cm. Their chin was properly placed in a

chin rest that allowed some horizontal head tilting but prevented vertical head swings. They

were asked to keep their hands on their knees and to avoid moving their heads during the

whole extent of the experiment, in order to maintain their head on the initial position. The

computer monitor was always kept at the same angle and at the same distance from all the

subjects; by doing so, all the subjects were able to keep the same eye level throughout the

procedure.

The objective of this experiment was to compare the human subjects abstract scoring

with scorings provided by an algorithm. The MATLAB script generated the order of the

comparison colors and a specific reference color. A window similar to Fig. 3.1 was generated

and the subject was asked to then score, on a scale from 0 to 100 (0 meaning colors were the

exact opposite, and 100 that the colors were precisely the same), starting from comparison

color 1 all the way to 11. This scoring measured the similarity between each comparison-
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reference color pair. This value would then be called out to the technician, who would

validate and introduce them via keyboard. When all the 11 scores were input, a new reference

color would appear on the screen, as well as a new numerical order for the comparison colors.

After this, a new batch of classification values would be annotated. The process was then

repeated 13 additional times, in order to obtain the results for all the reference colors.

Fig. 3.1 Experiment 1 window example. The comparison colors are displayed in the topmost part and the reference color at the bottom.

3.2.2 Experiment 2 – contextualized study of color difference under

regular lighting conditions

This experiment was created in order to investigate how human beings rate the similarity

between two colors in a contextualized setting (i.e. viewing a photo of a real-life scenario)

under regular lighting conditions. These results also provided some elucidation on the way

human beings determine the dominant color of an object.

A total of 15 subjects were tested in this experiment. 4 of these subjects were female and

the remaining 11 were male. The subjects had ages ranging from 23 to 65 years. The average

age of the participants was 31 years old. From the total of 15 participants, 10 of them were

engineering students, 2 were investigators at Instituto de Sistemas e Robótica, and 3 had no

college degree whatsoever. As in the previous experiment, all of them were inquired, before

the beginning of the experiment, about their vision. The vast majority reported that they had

normal or corrected-to-normal vision and all reported to have normal color vision. Again, all

the subjects were naïve to the experiment.
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The materials used were the same as in experiment 1.

Stimuli

In this experiment, there were a total of 15 reference colors and 3 different images containing

5 highlighted objects each. Although the reference colors were shown to the participants,

the comparison colors were not directly shown as in the previous experiment. Instead, they

had to classify the dominant color of every highlighted object and use the result of their

assessment as the comparison color. The reference colors were chosen using the following

criteria:

1. 3 colors that were very similar to the dominant color of 3 different objects (calculated

using euclidian distance);

2. 1 color that was almost the opposite of a forth object among the highlighted ones

(calculated using euclidian distance);

3. A pure tone of RGB (Red 255, Green 255 or Blue 255);

In this case, there were 5 reference colors for each set of 5 objects, so a total of 5×5×3=

75 values that should be input. With an estimated comparison time of 5 seconds, the

experiment should last approximately 7 minutes.

Procedure

Just like in the previous experiment, the subjects remained seated and maintained their

positions following the same initial procedures described on Experiment 1.

The objective of this experiment is to compare contextual scoring given by human subjects

with the ones provided by an algorithm, calculated using different methods. It also served as

a case study on how humans determine what is the dominant color of an object on a scene.

The first window shown to the subjects (Fig. 3.2a) contained the first reference color.

The participants should look at it, memorize it, and verbally signal the technician when they

were ready to begin. After the verbal input, the window containing the reference color was
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(a) Experiment 2 window 1 example.
(b) Experiment 2 window 1 example.

Fig. 3.2 Example of two windows used on experiment 2.

closed and substituted by a window containing the picture surrounded by the five numbered

crops, each one with the corresponding highlighted objects (Fig. 3.2b). The subjects would

then compare each of the objects dominant color with the reference color they had previously

memorized using the same method as in Experiment 1. This process was repeated five times

for each reference color. After inputing the last score associated with the object comparing

to the fifth reference color, the technician would warn the subjects about changing the image,

which lead to a new batch of results. This process was repeated a total of two more times,

since there were three different images.

3.2.3 Experiment 3 – contextualized study of color difference using

varying lighting conditions

The third experiment allowed us to better understand how humans rate the similarity of two

colors also in a contextualized setting, but this time under varying lighting conditions. As

before, it also provided insight concerning the way human beings determine the dominant

color of an object on a scene.

A total of 15 subjects were tested in this experiment. 5 of these subjects were female

and the remaining 10 were male. The subjects had ages ranging from 21 to 26 years. The

average age of the participants on this experiment was of approximately 23 years old. All of

them were either engineering students or investigators at Instituto de Sistemas e Robótica.

As before, they were individually inquired, before the start of the experiment, about their
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vision. The vast majority reported that they had normal or corrected-to-normal vision and all

reported to have normal color vision. All the subjects were naïve to the experiment.

The third experiment had a similar procedure to the second one, where a reference color

was first shown followed by the crops with highlighted objects on them. More specifically, 3

sets of 3 photos were taken, where each set had 3 pictures of the same scene captured with

different degrees of illumination. The 3 sets contained several objects placed on multiple

environments (All the pictures can be seen on Fig. 3.3). The objects would always differ

between sets. The angle of the camera and the position of the objects were not changed

during the photo shoot for each set, so that the only changing factor between pictures was the

illumination conditions.

Stimuli

This experiment was mostly similar to the previous one, as it relied on the subject’s ability to

determine the dominant color on a specific object within a scene. In this case, there were 15

different reference colors divided into 3 sets of 5 colors each. There were also 3 sets of 3

images each, where each image belonging to the same set had 3 highlighted objects. The

reference colors were chosen based on the criteria described on the previous experiment

(Section 3.2.2), and the comparison colors were obtained through the same MATLAB script

used for experiment 2. The subjects had to compare 5 reference colors with 3 highlighted

objects on 9 pictures, which totaled 135 scoring values. With an estimated response time of

5 seconds, the experiment’s duration was approximately 12 minutes.

Procedure

The subjects began by sitting comfortably on a chair and remained seated maintaining their

positions by following the same initial procedures described on Experiment 1.

This experiment consisted of several steps, each step containing two windows. The first

window (similar to 3.2a) shown to the subjects contained the reference color. The participants

should take a look at it, memorize it, and verbally signal the technician when they were

ready to begin the next step. Next, the first window was closed and replaced by the second
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Fig. 3.3 All the pictures used for experiment 3. Each line consists on one of the three sets, with each picture taken with different lighting
conditions: normal lighting (normal), artificial lighting(artificial) and dim lighting(dim). In the first set we have, from left to right, normal,
artificial, dim, on the second one it is normal, dim, artificial, and on the third line we have artificial, normal, dim.

one (similar to 3.2b), containing the original picture and the 3 numbered crops, each one

with the corresponding highlighted objects. The subjects would then compare each of the

dominant color of the objects with the reference color they had previously memorized using

the same scoring method explained in the previous experiments. This scoring would then be

verbally signaled to the technician. This process was repeated three times for each reference

color, one for each highlighted object. These actions constitute a step. There was a change

of picture after the input of the third score corresponding to the fifth reference color for

that specific image. By signaling the last score to the technician, he would then inform the

subject about the change of pictures, and the process was repeated again. This procedure was

repeated a total of 9 times, one for each picture of each set (Fig. 3.3).

3.2.4 Data collection and processing

In order to analyze and compare the data obtained from all the experiments some precautions

had to be taken. The data was all stored in .txt files, one for each subject, that contained

all the information needed for further analysis. In experiments 1 and 2 the .txt files had the

following structure, divided into 7 separate lines:

• RGB coordinates (0-255) of the reference color, separated by commas (integers);
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• RGB coordinates (0-255) of the comparison color, separated by commas (integers);

• Scoring attributed to the pair by the subject (0-100) (integers);

• Euclidian distance (0-100) in RGB (double);

• Euclidian distance (0-100) in YUV (double);

• Euclidian distance (0-100) in Lab (double);

• Euclidian distance (0-100) in HSV (double);

This was repeated as many times as was necessary to ensure that data regarding every

pair of reference-comparison colors was collected. The format made it easy to develop the

scripts to analyze all the data, since only a few parameters (like the number of reference and

comparison colors) had to be changed from one script to the other.

Experiment 3 had a similar structure, but instead of 7 lines, the data was distributed into

9 lines. The first 7 contained the same information displayed previously, whereas the 8th and

9th contained:

• Image number (integer);

• Crop number (integer);

The different format can be justified by the fact that Experiment 3 had 3 sets of 3 similar

pictures. Due to the similarity on some pictures within the same set, a reference to the picture

and, subsequently, to the crop, was needed.

Regarding experiments 2 and 3, when the data was collected initially, it only contained

placeholder values for the coordinates of the comparison colors. This was due to the fact

that several methods for obtaining these coordinates were used. Because of this, a different

set of scripts were created in order to substitute these placeholder values with coordinates

regarding a specific method. Since the comparison color coordinates were changed, lines 4

to 7 also had to change, in order to display the newly calculated distances between reference

and comparison colors. All of the new files were saved using a different name to prevent the

overwriting of the old ones.
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Table 3.1 Data regarding the subject-subject comparison. This values were obtained after following the procedure described in Section
3.2.5

Experiment mean ρ maximum p-value

1 0.747554 5.55E-15
2 0.735112 5.28E-09
3 0.715723 2.80E-07

Methods

As was mentioned before, experiments 2 and 3 used real life scenes as pictures, therefore, the

RGB coordinates related to each object’s dominant color had to be calculated using different

methods mentioned in Section 2.2.4.

In order to do this, a MATLAB script was created that calculated the RGB coordinates of

every pixel containing the desired object. The remaining pixels on the crop were set to an

RGB triplet that was not contained in the object. After this, the statistical measures described

in Section 2.2.4 were used to calculate a set of 3 RGB coordinates, that could be interpreted

as the dominant color of that object.

The color differences between the two colors were obtained through distinct dissimilarity

measures, namely the Euclidean distance and the weighted Euclidean distance or a color

space-specific measure (Section 2.1.2).

3.2.5 Results and discussion

For every experiment, the results obtained from every subject were first sorted using a pre-

determined order. This sorting process gave priority to the scores attributed and, in case of

ties, the order was stipulated by a file containing all the pairs of colors. There was a different

file for every experiment. The Spearman’s rank correlation (see Appendix A) was then

calculated for every subject-subject pair – Table 3.1. Results yielded mean ρ values over 0.71

for significance levels substantially under 1% – the high correlation value shows that subjects

ranked color similarity in a coherent fashion, meaning that an aggregate ranking representing

them as a group could be built in order to compare with each similarity computation method.



3.2 Behavioral studies of color difference 29

For the purpose of building this aggregate representation, a ranking corresponding to the

median of the rankings of all subjects was determined, which we will call from now onwards,

for simplicity sake, as the “median participant". An incremental value ranging from 1 to

total number of comparisons was attributed to each line of the resulting sorted table of

scores, hereby designated as “initial rank", and the fractional ranks method was applied to

scores with the same value (see Appendix A for an explanation of this method).

The rank for the scores given by the algorithms were calculated the same way as the rank

of the median participant according to the similarity scores each method produced. These

results were then compared to the median participant and placed into a file following the

order obtained from the median participant, allowing the computation of the results that can

be seen on tables 3.2, 3.3, and 3.4. The methods were then considered to be more suitable

for final selection according to the following hierarchy of criteria:

1. Rank correlation – the correlation between how the method and the participants order

the degree of similarity is the most important criteria in our perspective.

2. Mean absolute score error – in case rank correlations achieved by two methods are

similar, this would serve as a tie-breaker.

3. Standard deviation of absolute score error – in case the two previous criteria are similar

for two methods, the lowest standard deviation (which would correspond to a more

stable algorithm) would serve as a tie-breaker.

The data reveals that the RGB color space had the highest rank correlation in all the

experiments (Tables 3.2, 3.3, 3.4). Concerning mean error, the results demonstrate that the

L1L2L3 color space scores the lowest in all the experiments; however, it performs rather

badly in terms of ranking (i.e. low ρ values). This could be caused by the way the model

itself was built (Appendix B). The instabilities associated with this method are caused by the

computation of photometric invariants, which involve non-linear transformations, therefore

this approach may be impractical for some applications [23]. These conclusions can be

verified by analyzing Fig. 3.4.
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(a) L1L2L3 rank comparisons (b) L1L2L3 score errors

(c) RGB rank comparisons (d) RGB score errors

Fig. 3.4 Plots of the data obtained from the comparison between median participant and different methods in experiment 1. The graphs
portrayed in (a) and (c) correspond to the plotting of the rank comparisons according to the process described in the beginning of Section
3.2.5. The graphs portrayed in (a) and (c) correspond to the plotting of the comparison of the L1L2L3 and the RGB rankings (X-axis)
with the “median participant” ranking (Y-axis) according to the process described in the beginning of Section 3.2.5.The plots on (b) and
(d) display the absolute error between the scores obtained from the median participant and the scores attributed by the method. The red
horizontal line represents the mean error.

The usage of Retinex pre-processing proved to have a residual effect in a few cases,

as it scored the lowest mean error in Tables 3.3 and 3.4 (represented in cyan); however it

significantly decreases the value of ρ on every situation. Due to the increase of processing

time caused by the addition of Retinex pre-processing, the data obtained using the same

method of determining the dominant color (without Retinex) was highlighted in red on table

3.3 and table 3.4. A close analysis shows that the values regarding the mean error are not

that far apart, revealing that the methods highlighted in red can also be considered acceptable

as results.

In regard to the best method to determine the dominant color of an object in an image,

the mean and mode operand turned out to be the most accurate, despite the somewhat

contradictory results shown on tables 3.3 and 3.4. On the first case, the highest Spearman’s ρ

was associated with a method using the mean operand and the lowest mean error to a method

using the mode operand. The complete opposite can be seen on 3.4. By analyzing the results
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Table 3.2 Summarized table for experiment 1. It comprises the best results obtained on experiment 1. The highlighted lines represent the
method and metric with highest ρ (in green), and the lowest mean error (in cyan). The full content of this table can be seen on appendix
C (table C.2).

Method metric ρ Min Error Max Error Mean Error stdev Median Error p-value

E 0.6818 0.33 66.69 27.12 14.75 27.07 3.34E-24
RGB

WE 0.6855 0.33 63.5 27.47 14.93 26.80 1.56E-24
YUV E 0.6748 0.33 75.35 44.89 16.51 47.15 1.43E-23

E 0.3945 0.06 95.67 18.99 24.07 10.06 7.88E-08
L1L2L3

WE 0.3354 0.10 95.67 22.27 23.77 15.16 5.31E-06

Table 3.3 Summarized table for experiment 2. It comprises the best results obtained on experiment 2, namely the highest Spearman’s
correlation factor and lowest mean errors. The highlighted lines represent the method and metric with highest ρ (in green), the lowest
mean error (in cyan), and the lowest mean error without using pre-processing (in red). The full content of this table can be seen on
appendix C (table C.3).

Method metric ρ Min Error Max Error Mean Error stdev Median Error p-value

E 0.6853 2.59 63.67 27.02 15.91 27.13 5.92E-12
NR_Mean_RGB

WE 0.6731 0.31 62.31 26.20 16.19 25.26 1.85E-11
E 0.6789 2.04 66.47 27.82 15.95 27.55 1.09E-11

NR_Median_RGB
WE 0.6625 0.20 65.07 26.49 16.22 24.63 4.79E-11
E 0.4576 0.2 86.58 17.48 20.54 7.99 1.83E-05

NR_Mode_L1L2L3
WE 0.4832 0.5 87.7 19.11 20.38 12.72 5.63E-06
E 0.6821 0.17 64.08 26.77 16.03 27.85 8.03E-12

WR_Mean_RGB
WE 0.6668 0.42 62.09 26.22 16.26 25.84 3.26E-11
E 0.4573 0.49 83.55 16.81 19.40 9.06 1.86E-05

WR_Mode_L1L2L3
WE 0.5029 0.11 84.97 18.35 19.19 12.61 2.13E-06

on both tables, one can conclude that either one of these operands can be used to determine

the dominant color of an object.

3.3 Behavioral study of color classification

3.3.1 Experiment

A total of 26 subjects were inquired on this experiment. 15 of them were male and the

remaining 11 were female, with ages ranging from 19 to 65 years old. The average age of

the participants was 27.73 years old. A total of 20 were engineering students, 2 of them were

law students, and 4 had no college degree whatsoever. All the subjects were inquired before

the start of the experiment about any anomalies related to their vision and color vision. The

vast majority reported that they had normal or corrected-to-normal vision and all reported to
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Table 3.4 Summarized table for experiment 3. It comprises the best results obtained on experiment 3, namely the highest Spearman’s
correlation factor and lowest mean errors. The highlighted lines represent the method and metric with highest ρ (in green), the lowest
mean error (in cyan), and the lowest mean error without using Retinex pre-processing (in red). The full content of this table can be seen
on appendix C (table C.4).

Method metric ρ Min Error Max Error Mean Error stdev Median Error p-value

E 0.3172 0.08 78.27 20.62 21.46 12.00 8.89E-05
NR_Mean_L1L2L3

WE 0.3521 0.02 79.97 21.99 21.74 14.85 1.41E-05
E 0.5636 0.02 68.16 31.46 17.35 32.96 5.56E-13

NR_Median_RGB
WE 0.5496 0.07 69.98 31.99 17.39 34.03 2.54E-12
E 0.5798 0.03 79.92 29.85 17.57 31.03 8.67E-14

NR_Mode_RGB
WE 0.5657 0.07 79.90 30.56 17.50 31.94 4.37E-13
E 0.3369 0.03 78.21 20.60 21.59 11.97 3.23E-05

WR_Mean_L1L2L3
WE 0.3519 0.02 79.48 22.02 21.82 14.86 1.43E-05
E 0.5694 0.24 67.94 31.34 17.29 32.80 2.87E-13

WR_Median_RGB
WE 0.5562 0.14 69.80 31.89 17.35 33.90 1.25E-12

have normal color vision. In spite of this one result had to be discarded due to non-diagnosed

color blindness detected on a subject. All the subjects were naive to the experiment.

The equipment used on this experiment was the same used on the previous experiments.

Stimuli

In this experiment there were a total of nine reference colors and sixty four comparison colors.

These were the same for all the subjects, although the order on which every comparison

color was displayed on the screen varied from subject to subject. The order on which the

reference colors appeared was always the same. To select the 9 reference colors, we fixed

five values for each RGB component (0, 32, 64, 128 and 255), and then selected nine RGB

triplets that supposedly would contain, all together, almost all of the comparison colors

available. These comparison colors were generated by dividing the RGB spectrum into 3

different sections, which gave us four values to work with: 0, 85, 170 and 255. Since RGB

colors work in triplets and each component could have one of four values, we had a total of

sixty four different colors: 4×4×4 = 64. By avoiding to choose the triplets (0,0,0) and

(255,255,255), we had reference colors that were never the same as the comparison colors.

Procedure

The subjects followed the same preparation procedure described in the previous experiments.

The duration of this experiment was approximately twelve minutes.
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The goal of this experiment is to compare the classification (class attribution) given to

the same colors by different human subjects. The experiment was composed of 9 steps (one

for each reference color), each one having associated three different windows (Fig. 3.5). All

the steps started by showing a window (Fig. 3.5a) on the screen with a squared filled with

the first reference color. The subject had an undetermined amount of time to memorize it

and to classify it (attribute an abstract class to it). After this process, the previous window

was closed and the screen showed now a new window with a numbered 8×8 grid with the

sixty four comparison colors (Fig. 3.5b). The subjects should then verbally identify the

numbers corresponding to colors that fitted the abstract class previously named by them. The

results were input in the computer by the hand of a specialized technician. When the subjects

finished identifying the numbers of the colors, they would verbally warn the technician of

this choice, which would lead to the closing of the comparison colors window and to the

opening of the third one (Fig. 3.5c). In this final window, the reference color and all the

colors that they had selected in the previous window (Fig.3.5b) were displayed through

numbered vertical filled rectangles. The order on which they were represented was random.

The subjects should then verbally identify the number associated to the reference color,

according to their memory, whose value was input in the computer by the technician, and

therefore starting the next step. This whole process was repeated eight more times.

3.3.2 Data collection and processing

Since experiment 4 was completely different from the remaining ones, the way the data

was stored had to be done using a different approach. Instead of having a single file for

each subject, the data was separated in 28 different .txt files for each participant, three for

each reference color (forming a total of 9 trios) and another one simply containing all the

information to ease the analysis in some cases. Each trio corresponded to a step on the

experiment. The first file contained the name (abstract class) chosen by the subject for that

specific color (first step). The second file contained the RGB coordinates of all the colors

chosen by the subject during the second step, and the third file contained the color chosen

by the subject on the final step. This division can be justified because of the use of different
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(a) Example of the first window of each step. (b) Example of the second window of each step.

(c) Example of the third window of each step.

Fig. 3.5 Example windows of 1 of the 9 steps for experiment 4. The subject had to classify and memorize the color in (a), select colors
that could be classified using the same abstract class as in (a) in (b), and identify the reference color (a) in (c).

data types, where the first file of the trio we are using strings and for the remaining two we

use integers, as well as files with different sizes due to the fact that, contrary to the previous

experiments where each reference color got paired with a comparison color an a score was

associated with it, on this one a reference color could be paired with several (or even none)

comparison colors, leading to files from different subjects referring to the same reference

colors having disparate values in distinct quantities.

In this experiment, the subjects provided us some color names that had to be compared to

some sort of reference, so, it was decided that the colors on [22] would serve this purpose,

since it was the most complete color list available online. Although containing a huge sample

of color coordinates, it did not contain a label for every single RGB triplet. In order to cover

all possible combinations, a simple script was created that received an RGB coordinate and

attributed it a name, by calculating the minimum euclidian distance to any color that had a

label associated with them.

Due to all the differences previously mentioned, a different script had to be created in

order to analyze the data.
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Fig. 3.6 All the colors obtained on experiment 4 plotted in the RGB space. Each small dot corresponds to a color picked by the subjects
to fit in a specific color class. The bigger dots correspond to the mean color obtained from the colors connected to it by a line.

3.3.3 Results and discussion

The results of experiment 4 can be examined on Fig. 3.6 and Fig. 3.7. The color names that

can be read there were attributed according to [22]. On Fig. 3.7, the first two columns refer

to the reference color, which the subjects had to memorize in the beginning of each step. The

first of these two columns has the RGB coordinates for each color name represented on the

second one. The third and forth columns represent the color from memory, obtained from

the last part of each step. In this case, the colors and coordinates represented refer to the

ones chosen more often by the subjects. It is important to mention that all of the colors on

these two columns were featured on the first or second part of each step of the experiment.

The two final columns represent the mean color, obtained from the selection made by every

subject for each step, along with the label obtained from the script mentioned on 3.3.2. The

colors on the background of each cell containing a name represent the color obtained by the

RGB triplets on the cells by their left.

The most common abstract classes attributed by the subjects can be seen on Fig. 3.8a,

along with the percentage of subjects that impute that label.
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Fig. 3.7 Table with all the results from experiment 4. The columns with numbers represent the RGB coordinates of every color named to
their immediate right. The background of each cell containing a name represents the color obtained by the coordinates on its immediate
left.

(a)

(b)

Fig. 3.8 (a) shows the most common abstract classes attributed by the subjects on experiment
4. (b) depicts a side-by-side comparison between reference, memory and average colors. The
values contained in the boxes represent the color similarity value. The column in the middle
shows what value is greater.

The results show that abstractly classifying a color influences its memory (Fig. 3.7). On

cases where the selected abstract class is more specific (for instance "Dark red"), the majority

of the subjects correctly identified the reference color. But on cases where the abstract class

was more broad ("Orange") the majority chose a color different from the reference one.

The mean colors, represented on the rightmost two columns on Fig. 3.7, are empirically

consistent to the reference colors (also visible on Fig. 3.8b). One can easily notice that

although having a different shade, the colors fit the same "label" when comparing both

reference and average color. The presence of the RGB coordinates on Fig. 3.7 enables one

to have better understanding on how close or far apart the coordinates are in the RGB plane.

The color similarity, in he RGB color space, obtained through an euclidian distance and
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normalized to fit a scale from 0 to 100 is also portrayed in Fig. 3.8b. In this case, the closer

the values are to 100, the more similar the two colors are. By looking at the numbers on

Fig. 3.8b one can notice that all of the pairs have quite high similarity values, which can be

empirically verified by looking at the colors side by side.

3.4 General discussion and conclusions

In summary, it seems that the RGB and L1L2L3 color models were the ones that depict color

differences closer to the way humans do, although a lot more work can be done in this field.

The data also shows that most humans define the most common color on an object as the

dominant color. In terms of color classification, it seems that abstractly classifying a color

affects color memory, specifically when the “label" is not very specific, but, more often than

not, humans recall colors correctly based on an abstract class imposed by them.

The conclusions we reached regarding the pre-processing of an image with a Retinex

algorithm reveal that it has little to no influence on the final result, despite the positive

results obtained on tables 3.3 and 3.4. This pre-processing also delays the acquisition of

the final results, since the execution times have to take into account the application of the

method, which, on the tests preformed on an ASUS K56C laptop, would increase the run

time by roughly 1.5 seconds. This could easily be bypassed by a using a computer with better

hardware, but the application of the method would still increase the run time. Despite being

overlooked on this situation, we could still use Retinex pre-processing before preforming

proto-object segmentation (Section 4.2.1).





Chapter 4

Implementation

4.1 Introduction

In this Chapter we describe the implementation of the algorithm, using the data obtained

from the experiments on chapter 3. It also includes a performance study to determine if the

proto-object segmentation provides acceptable results.

4.2 Choice of appropriate processing sequence and algo-

rithms

4.2.1 Testing processing pipeline

In Section 3.2.5 we mentioned that using the Retinex method had little to no influence on

the process of determining the dominant color of a specific object in a biologically plausible

fashion. In spite of this, it does not completely remove the method from our investigation.

To test its usability during proto-object segmentation we designed the pipeline shown on Fig.

4.1.
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Fig. 4.1 Image segmentation pipeline. The original image could be either pre-processed (a) using the PDE-Retinex algorithm [19] or the
Multiscale Retinex algorithm [20]. It was also possible to leave the image in its original state. The next step (b) used the algorithm on
[18]. The output from the last step could suffer, or not, proto-object compression (c) using a method described in Section 4.2.1, leading
to dominant color computation (d) which used a similar method to the one described on Section 2.2.4.

On the first step of the pipeline (Fig. 4.1-(a)) we used 2 retinex algorithms on the original

images: the PDE-Retinex [19] and Multiscale Retinex [20]. Due to the presence of an online

demo, all the manipulation was done using the demo from [19] and the demo from [20]. This

pre-processing was utilized in order to remove the shading effect on the image, which in

theory would prevent the superpixel segmentation from detecting an object and its shade as

two different clusters, which is a major problem when using the proto-object segmentation

algorithm.

The PDE-Retinex method only had a parameter that could be changed, the contrast

threshold [19]. This variable (t) is used to eliminate the small intensity variations caused

by the shading. The value of t could not be too large, which would cause a major loss in

significant details, but it could also not be too low, which resulted on no clear changes relative

to the original picture [19]. Therefore, it was decided that the value 4 was the optimal one to

use for these tests. It is important to mention that even though the image is modified in order

to better simulate how humans perceive it, it maintains the same mean and variance, which

causes the original and processed image to have the same global contrast [19]. Contrary

to the PDE-Retinex method, the Multiscale Retinex allowed substantially more freedom in

terms of processing the final image, causing it to have 5 parameters: "three scales, and the

percentage of saturation on each side of the histogram" [20]. This method is significantly

slower comparing to PDE-Retinex, which should be taken into account when analyzing the

results. The parameters were set to default since they provided the best results.

http://demo.ipol.im/demo/lmps_retinex_poisson_equation/
http://demo.ipol.im/demo/107/
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As for proto-object segmentation (Fig. 4.1-(b)), it uses the same algorithm described

in Section 2.2.3, but limited to the ERS method (the reason for this choice can be seen on

Section 2.2.3). In order to further eradicate the effect of false positives cause by the shading

on objects, two consecutive proto-object segmentations were preformed on this step. By

doing so, adjacent superpixels that were attributed similar colors due to being part of the

same object could be merged on a singe one, therefore creating a more realistic proto-object.

In order to do this, the algorithm on Section 2.2.3 was run using ’rgb’ as cs, ’ERS’ as the

segType, ’MEAN’ as meanMed and a BW of ’3’. The tests were made with two different

initial values for numSeg, ’40’ and ’400’. These values are described as "initial" due to the

fact that there were two consecutive segmentations, were the second one was preformed with

the same parameters as described above except the numSeg, which was half of the initial

value. This step was limited to the RGB color space due to the results obtained on Section

3.2.5. The same data also fixated the choice on ’mean’ for the meanMed.

In order to further remove the illusion of multiple proto-objects associated to the same

object, the step "Proto-Object Compression" (Fig. 4.1-(c)) was introduced in this pipeline. It

consisted on a MATLAB script that took the segmented image obtained from the previous

step and calculated which pair of colors had color distances under a specific threshold. The

adjacent superpixels with similar colors fused into one, with its new color obtained by the

application of the mean operand to the RGB coordinates of the pair. The downside of this

step, besides the added processing time, seems to be the loss in contrast through out the

whole image.

The final step (Fig. 4.1-(d)) consisted on dominant color computation. The segmented

image obtained from the previous steps had the areas where the proto-objects were located

analyzed. By calculating the mean color of every pixel contained inside the area previously

mentioned, we obtained a new RGB coordinate, which was compared with the coordinate

attributed by the previous methods. The dominant color was computed using the mean of the

two colors. This step was avoided due to the time it took to analyze each image (approximately

30 minutes per image). Although useful, it still lacks a lot of optimization. The areas were
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Table 4.1 Summarized agreement table. The methods featured on the column "Method" use the following template: [Pre-
Processing]_[Compression]_[Number of proto-objects]. Pre-processing can replaced by “NR" (No Retinex), “WR" (Retinex), or “MSR"
(Multi scale retinex). "Compression" can be replaced by “nc" (no proto-object compression), or “wc" (proto-object compression). Num-
ber of proto-objects can either be 40 or 400. The method also contains a reference for its specific table on Appendix C. The "Method"
column refers to the table from which the values were taken. "JM" and "JFF" refer to the initials of the human experts whose analysis
was compared to the method.

Method
JM JFF

mean %agreement
% agreement %agreement

NR_nc_40 (Table C.5) 6.96% 14.28% 10.62%
NR_nc_400 (Table C.6) 6.99% 36.37% 21.68%
NR_wc_400 (Table C.7) 9.61% 27.50% 18.55%
WR_nc_40 (Table C.8) 5.98% 4.93% 5.46%

WR_nc_400 (Table C.9) 7.72% 33.30% 20.51%
WR_wc_400 (Table C.10) 6.18% 21.26% 13.72%
MSR_nc_400 (Table C.11) 6.88% 31.27% 19.07%

filled with the newly obtained color and compared with the empirical segmentation, whose

results can be seen in Section 4.2.2.

4.2.2 Preliminary testing results

The data on table 4.1 reveals that using a segmentation with a larger number of proto-objects

is more in agreement with human experts. The mean %agreement was higher for an image

with a large number of proto-objects, either using Retinex pre-processing or not. In fact,

the highest value for % agreement corresponds to a method that used no pre-processing of

any sort. Another important detail is the fact that proto-object compression did not improve

the concordance, which reveals that this step can be overlooked, although it is important to

mention was not properly optimized, which could justify the not so good results.

Finally, in these tests it was found that superpixel computation/proto-object segmentation

decreased processing times significantly when comparing to applying the full pipeline to the

image considering all individual pixels, even taking into account segmentation processing

time, which represents an additional advantage of using proto-objects.
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Fig. 4.2 Algorithm pipeline for the implementation. The "original image" and "abstract color" are input by the user. The algorithm
segments the image into proto-objects and attributes them a dominant color. The abstract color (reference color) is analyzed and given
RGB coordinates. The similarity to reference color is computed cy comparing the dominant color of each proto-object to the reference.
The saliency map is then generated as an output.

Fig. 4.3 GUI main window with colored shapes to indicate different functionalities. The red square (1) represents the image selection
step, followed by the blue area (2) which allows the selection of the reference color. Next, the purple rectangle (3) allows the proto-object
segmentation and finally, the green area (4), displays the results through out all the previous steps. The remaining numbers identify
specific functions of each area: (5) to (7) allow the user to choose the reference color, which will appear on (8), (9) to (11) determine the
proto-object segmentation parameters, and (12) to (15) display the results of the different steps of the process.

4.3 Definitive algorithm pipeline and respective implemen-

tation

Fig. 4.2 depicts the pipeline for this implementation. The main window of the application

can be seen on Fig. 4.3. The application was designed based on the results from 3.2.5. The

purpose of this script was to simulate all the processes that allows the system to successfully

identify an object based solely on a reference color input by the user.

The red area ( Fig. 4.3-(1)) represents the button where the user would select the image

they want analyzed. Every image file is accepted, but it only works with small resolution
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pictures in the .png and .jpg formats. The maximum image resolution for this build is

640×480, which was set to this value due to issues associated to proto-object segmentation,

making it slower and, sometimes, even crashing MATLAB.

The blue rectangle is the reference color selection area (Fig. 4.3-(2)) where the user can

choose from one of three methods to select the desired color. The first consists of a list that

can be accessed through the pop-up menu ( Fig. 4.3-(5)). This list contains 746 different

colors, whose names and values were based on the ones found in [22]. The selected color

can be previewed on the white square on Fig. 4.3-(8). The user may opt to input the RGB

coordinates of the color, which can be done by filling in the proper text boxes visible in

Fig. 4.3-(6). By inputing the values and clicking the "Refresh" button the user will be able

to see a preview of the color on Fig. 4.3-(8). In order to prevent the user from inserting

disparate values, a simple exception handling method was implemented, where each value

input outside of the range of 0 to 255 was treated as 255. Finally, the user may decide to

manually write the color name, which can be done through the window on Fig. 4.3-(7).

Although, it is important to mention that the latest version will only accept colors whose

name is featured on the list aforementioned. Just like before, the user will be able to see a

preview of the selected color on the window in Fig. 4.3-(8).

Moving to the purple rectangle (Fig. 4.3-(3)), it consists on the proto-object segmentation

part of the process (Section 2.2.3), whose algorithm was described on Section 4.2. On Fig.

4.3-(3) one can see that this area has 3 separate bounding boxes that can be filled in any

order. The "Color Space" bounding box (Fig. 4.3-(9)) lets the user the selection of the color

difference method that allows superpixel clustering. The text box on Fig. 4.3-(10) recognizes

the maximum number of proto-objects to be formed in the segmentation process. It has no

maximum value that can be input, but one should remember that the higher the value, the

more time spent on this particular step. Finally, the "Segmentation Type" bounding box

(Fig. 4.3-(11)) allows the user to chose between ’ERS’ and ’SLIC’ as segmentation methods

(one again emphasizing that ’SLIC’ only works on Windows OS) and the operand used for

superpixel coloring (Mean or Median). To prevent errors, the application had default values
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for all these parameters. Also, the buttons on each bounding box are mutually exclusive to

avoid the selection of multiple values for the same parameter.

Lastly, the area indicated by a green rectangle (Fig. 4.3-(4)) displays the different results

from the original image to the final result that can either be the original image with the

desired color highlighted, or a crop containing the objects whose dominant color resembles

the reference one. The first window on Fig. 4.3-(12) displays the original image chosen

from Fig. 4.3-(1). The second window (Fig. 4.3-(13)) illustrates the result of proto-object

segmentation preformed after clicking "segment" in Fig. 4.3-(3). After that, we immediately

obtain the result of saliency mapping the reference color (chosen in Fig. 4.3-(2)) on Fig.

4.3-(14). In this case, the lighter the shade of gray filling an area, the more similar the

dominant color of that proto-object is to the reference color. An analogous reasoning can be

applied to darker shades of gray, that represent colors very different from the reference one.

The original image with highlighted objects consists on the final result, represented on Fig.

4.3-(15). In order for the highlight to be salient, it is always filled in with the opposite color

compared to the reference one. This way, the desired objects can be easily identified.

It is important to mention that, for debugging purposes, the application always identified

a color on the image that was the most similar to the reference one, even if there were no

colors that resemble it on the picture. For instance, if one chose "Dark blue" as the reference

color for a picture containing only shades of red, the application would highlight a shade

of red as being similar to "Dark blue", which, even though it is the closest according to our

color dissimilarity measure, it is not an acceptable result due to the the colors belonging to

clearly distinct abstract classes.

Some concrete examples of results obtained through the application can be seen on

Section 4.4

4.4 Results on image sequence processing

The human experts were asked to manually segment a set of images into proto-objects, with

a limit of 50 proto-objects per picture. These segmentations were compared to the results
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obtained from the pipeline on Section 4.2.1. Using the proto-objects segmented by each

human expert as reference, the percentage of agreement was calculated, by comparing them

to the segmentations provided by the methods. These results were depicted on Table 4.1.

The 4 images on the first column of Fig. 4.4 represent 4 frames from an 8 second video.

The images were then analyzed using the pipeline described in Section 4.3. The target color

was ’Green’, which the application associated with the RGB coordinates (0,255,0). The

results of the search can be seen on Fig. 4.4, column 4. It is important to mention that the

algorithm only highlights the objects whose dominant color is the closest to the reference

color, in this case, ’Green’. The images were individually analyzed using an ASUS K56C

laptop running the unoptimized methods using MATLAB, resulting in an average processing

time of 1.207 seconds. The results depicted on row (d) are acceptable, although one of them

has an odd shape. This can be justified by looking at the second row of (b) and verifying that

the proto-object segmentation algorithm considered the plushie as being two proto-objects

instead of one. This effect was caused by its shadow on the left, causing a color difference

high enough for the superpixel cluster to consider two separate superpixels. Due to the

fact that the algorithm only considers the one proto-object whose color is the closest to the

reference color, only one area in the image was selected. The results regarding the other

frames seem empirically acceptable.

4.5 General Discussion

The image segmentation pipeline revealed that Retinex pre-processing did not provide better

results when applied before proto-object segmentation. Instead, a solution with a great

number of proto-objects and no Retinex pre-processing of any sort was considered the closer

to human analysis. The implementation of the algorithm also provided acceptable results

when used to identify ’Green’ objects on several images.
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(a) (b) (c) (d)

Fig. 4.4 Steps from frame analysis using the algorithm. This analysis was preformed using ’Green’ as the reference color. The first
column (a) represents the original frames. The second column (b) shows the result of proto-object segmentation using 200 maximum
proto-objects. Column (c) depicts the saliency map (and the reference color in the top left color), with areas filled with a lighter shade of
gray representing proto-objects whose color is most similar to ’Green’. The final column (d) represents the area on the original picture
where the color ’Green’ is more salient.





Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work we carried out a series of experiments that allowed the gathering of data

regarding how humans discriminate color, how they describe it and how they compare it with

other sets of colors. The results revealed that the RGB color model proved to be the most

concordant with the subjects, although some more data is required to assess the best color

model to do so. The implementation of the algorithm used the data previously mentioned to

provide the more human-like results, which were found to exhibit a satisfactory performance.

The image segmentation pipeline revealed that subjects were more concordant when the

number of proto-objects segmented was higher, without pre-processing the image using

the Retinex method. The algorithm implementation was not optimized, which preclude

real-time performance as is. However, an implementation using C in the future is expected to

substantially improve processing times.

5.2 Future Work

In terms of future work there are several new tasks that can be implemented, namely the

optimization of the algorithm for color search, the usage of the L1L2L3 color space instead

of the RGB to represent color in the algorithm, the usage of the angular distance as a
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color dissimilarity measure on the data collected from the first 3 experiments, and finally,

implement the mechanisms on section 1.3 on the CASIR-IMPEP attentional middleware.
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Appendix A

Statistical Analysis of Experimental Data

The Spearman’s rank correlation coefficient ρ is a statistical measure that calculates the
statistical dependence between the ranking of two variables (rank correlation). It is a measure
that determines how consistent two variables can be. The value of ρ ranges from −1 to 1,
where the first one represents a situation where the ranks are the complete opposite of each
other, and 1 occurs when the ranks follow the exact same order. Spearman’s ρ was obtained
using eq. A.1, where n is the size of the sample and di represents the difference between the
two ranks of each observation.

ρ = 1− 6Σd2
i

n(n2 −1)
(A.1)

The p-value represents the level of significance of a statistical hypothesis test, representing
the probability of the occurrence of a given event. It is used as a mean to provide the smallest
level of significance that can reject the null hypothesis. Smaller p-values indicate that the
evidence is in favor of the alternative hypothesis. The p-value was obtained using the t
distribution [24].

Table A.1 Example ranking table.

Color pair Color Space 1 Color Space 2 Subject
Score Rank Score Rank Score Rank

A 100 3 7 1 10 3
B 98 2 8 2 9 2
C 90 1 9 3 8 1

Table A.1 depicts an example that demonstrates the comparison between ranks and scores.
One can easily notice that the absolute score error between color space 1 and subject is
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significantly higher than the one calculated between color space 2 and subject, however, the
rank correlation (ρ) has an higher value on the second case due to the order on which the
ranks appear: on "Rank - color space 1" one can see that the values follow a descending
order, something that can also be perceived on the column "Rank - subject". On the other
hand, the values on "Rank - color space 2" follow an ascending order, reflecting on a negative
ρ when calculated comparing to "Rank - subject". In fact, the relation in terms of sorting,
which demonstrates priority, is more important than the score, although a minimum score
error can also be a desirable result. Considering what was previously stated, despite "Color
Space 2" having a smaller error compared to "Subject" (the secondary objective), "Color
Space 1" and "Subject" constitute a better result, due to having a similar ranking, which is
our main goal.



Appendix B

Normalized Color Spaces – Additional
Information

Normalized RGB color space

Considering a color whose RGB coordinates are (R,G,B) we can obtain the Normalized
RGB channels (nR,nG,nB) by:

S = R+G+B

nR =
R
S

nG =
G
S

nB =
B
S

HCL color space

Considering a color on the RGB space represented as (R,G,B) we calculate:

M = Max(R,G,B)

m = Min(R,G,B)

Where Max(R,G,B) is the component with the highest value among (R,G,B), and
Min(R,G,B) is the component with the lowest value.

L =
Q.M+(1−Q).m

2
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Where Q = eαγ is a "parameter that allows a tuning of the variation of luminosity between
a saturated hue (color) and a hue containing a great amount of white, with α = ( m

M.Y0
) and

Y0 = 100" [4]. The correction factor γ = 3 coincides with the one used for the Lab space.
C can be defined through a combination of the 3 channels of an RGB coordinate (red-

green, green-blue and blue-red), multiplied by the Q parameter [4] previously defined:

C =
Q.(|R−G|+ |G−B|+ |B−R|)

3
And

H = arctan(
G−B
R−G

)

The value of H should be expressed on degrees and not radians, and varies between −90
and 90. However, this value has to vary from −180 to 180, so, a few if clauses have to be
implemented to guarantee that H is expressed on this scale [4]:

• if ((R−G < 0) and (G−B)≥ 0), then H = 180+H

• if ((R−G < 0) and (G−B)< 0), then H = 180−H

L1L2L3 color space

Considering a color whose RGB coordinates are (R,G,B) we can obtain the L1L2L3 channels
by [15]:

L1 =
(R−G)2

(R−G)2 +(R−B)2 +(G−B)2

L2 =
(R−B)2

(R−G)2 +(R−B)2 +(G−B)2

L3 =
(G−B)2

(R−G)2 +(R−B)2 +(G−B)2

If R = G we have:

L1 =
(R−R)2

(R−R)2 +(R−B)2 +(R−B)2 = 0

L2 =
(R−B)2

(R−R)2 +(R−B)2 +(R−B)2 =
(R−B)2

2× (R−B)2 =
1
2

L3 =
(R−B)2

(R−R)2 +(R−B)2 +(R−B)2 =
(R−B)2

2× (R−B)2 =
1
2
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In the same degree, if we have R = B:

L1 =
(R−G)2

(R−G)2 +(R−R)2 +(G−R)2 =
(R−G)2

2× (R−G)2 =
1
2

due to the fact that (R−G)2 = (G−R)2.

L2 =
(R−R)2

(R−G)2 +(R−R)2 +(G−R)2 = 0

L3 =
(G−R)2

(R−G)2 +(R−R)2 +(G−R)2 =
(G−R)2

2× (G−R)2 =
1
2

Analogously, if G = B we have L1 =
1
2 , L2 =

1
2 and L3 = 0.

In case the three components are equal (R = G = B) the result would be a division by 0,
but no matter what denominator we choose, the coordinates for L1L2L3 would be the same.





Appendix C

Experimental Data

C.1 Behavioral Studies

Tables C.1, C.2, C.3 and C.4 contain experimental data for Experiments 4, 1, 2 and 3.
In Tables C.3 and C.4 the column "Method" specifies the method used to obtain the

values compared to the median participant. The norm used to discern the methods follows the
template: [Pre-processing]_[statistical method]_[color_space]. On this case "Pre-processing"
either is "WR" (with Retinex pre-processing) and "NR" (without pre-processing). "Sta-
tistical_method" refers to the operand used on the method (mean, median or mode) and
"color_space" specifies the color space used to calculate the color differences using the metric
specified in "metric" (E - Euclidian; WE - Weighted Euclidian). The Retinex processing used
the demo from [19]. The line filled with green represents the method and metric that scored
the highest ρ , and the line highlighted in cyan refers to the method and metric that scored the
minimum mean error. The highlight in red represents the version of the method and metric
highlighted cyan but with no Retinex pre-processing.

C.2 Implementation Testing

This section refers to tables C.5, C.6, C.7, C.8, C.9, C.10 and C.11.

http://demo.ipol.im/demo/lmps_retinex_poisson_equation/


62 Experimental Data
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Table C.2 Data regarding the results obtained in experiment 1. The column "Method" refers to the color space where the color differences
specified by "metric" were calculated. The E on "metric" stands for euclidian and the WE stands for weighted euclidian. ρ represents
Spearman’s rank correlation. "Min Error" and "Max Error" represent the minimum and maximum error obtained when comparing the
method with the median participant. The standard deviation is represented on the column identified as "stdev". The line filled with green
represents the method and metric that scored the highest ρ , and the line highlighted in cyan refers to the method and metric that scored
the minimum mean error.

Method metric ρ Min Error Max Error Mean Error stdev Median Error p-value

E 0.5390 0.11 81.11 41.46 22.71 44.44 4.08E-14
HSV

WE 0.4916 0.33 83.17 42.91 24.49 48.42 1.00E-11
LAB E 0.6222 0.33 79.94 52.17 18.18 57.17 2.43E-19

E 0.6818 0.33 66.69 27.12 14.75 27.07 3.34E-24
RGB

WE 0.6855 0.33 63.5 27.47 14.93 26.80 1.56E-24
YUV E 0.6748 0.33 75.35 44.89 16.51 47.15 1.43E-23
HCL E 0.5495 0.33 95.59 45.40 26.18 47.63 1.07E-14

E 0.5379 0.33 69.13 32.37 18.81 34.66 4.63E-14
nRGB

WE 0.5367 0.33 72.27 35.82 19.05 39.08 5.38E-14
E 0.3945 0.06 95.67 18.99 24.07 10.06 7.88E-08

L1L2L3
WE 0.3354 0.10 95.67 22.27 23.77 15.16 5.31E-06
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Table C.3 Data regarding the results obtained in experiment 2. Detailed explanation of this table can be found in the main text (Section
C.1).

Method metric ρ Min Error Max Error Mean Error stdev Median Error p-value

NR_Mean_LAB E 0.6276 0.60 79.61 52.10 20.65 57.43 8.38E-10
NR_Mean_YUV E 0.3997 1.68 91.65 50.52 24.02 53.82 1.90E-04
NR_Mean_HCL E 0.6526 0.01 88.37 42.52 22.21 42.52 1.12E-10

E 0.6302 1.13 72.83 41.16 20.60 43.51 6.89E-10
NR_Mean_HSV

WE 0.6304 0.34 70.57 40.60 20.64 45.28 6.77E-10
E 0.4879 0.00 84.1 17.26 19.27 9.06 4.49E-06

NR_Mean_L1L2L3
WE 0.5250 0.30 85.47 19.00 19.14 12.97 6.65E-07
E 0.5852 0.81 77.12 38.85 21.08 41.43 1.76E-08

NR_Mean_NRGB
WE 0.5741 0.31 77.68 39.69 20.84 39.24 3.62E-08
E 0.6853 2.59 63.67 27.02 15.91 27.13 5.92E-12

NR_Mean_RGB
WE 0.6731 0.31 62.31 26.20 16.19 25.26 1.85E-11

NR_Median_LAB E 0.6267 1.60 78.78 51.95 20.53 57.19 9.01E-10
NR_Median_YUV E 0.4049 0.66 93.91 50.41 24.18 53.60 1.57E-04
NR_Median_HCL E 0.6475 0.66 88.45 42.55 21.98 42.55 1.71E-10

E 0.6294 0.83 72.09 41.12 20.41 44.47 7.30E-10
NR_Median_HSV

WE 0.6208 0.62 70.14 40.55 20.46 44.43 1.41E-09
E 0.4864 0.25 83.48 17.29 19.03 9.06 4.83E-06

NR_Median_L1L2L3
WE 0.5202 0.60 84.91 18.92 18.73 13.00 8.61E-07

NR_Median_NRGB E 0.6146 2.60 78.94 38.64 20.93 40.92 2.24E-09
WE 0.5872 2.58 79.22 39.50 20.66 37.23 1.53E-08
E 0.6789 2.04 66.47 27.82 15.95 27.55 1.09E-11

NR_Median_RGB
WE 0.6625 0.20 65.07 26.49 16.22 24.63 4.79E-11

NR_Mode_LAB E 0.6210 1.88 79.24 51.72 20.40 55.93 1.39E-09
NR_Mode_YUV E 0.4152 0.64 95.28 50.61 24.08 52.51 1.06E-04
NR_Mode_HCL E 0.6656 0.53 87.82 42.59 21.93 41.60 3.63E-11

E 0.6262 0.68 71.37 40.57 20.05 43.66 9.40E-10
NR_Mode_HSV

WE 0.6180 2.28 70.48 39.99 20.03 44.52 1.74E-09
E 0.4576 0.20 86.58 17.48 20.54 7.99 1.83E-05

NR_Mode_L1L2L3
WE 0.4832 0.50 87.7 19.11 20.38 12.72 5.63E-06
E 0.6307 3.93 79.62 39.27 20.51 41.31 6.61E-10

NR_Mode_NRGB
WE 0.6110 3.94 79.87 40.16 20.24 39.35 2.91E-09
E 0.6774 1.30 67.42 28.07 15.99 26.94 1.25E-11

NR_Mode_RGB
WE 0.6586 0.15 66.02 26.71 16.30 24.91 6.71E-11

WR_Mean_LAB E 0.6212 0.04 79.98 52.15 20.80 57.44 1.37E-09
WR_Mean_YUV E 0.4050 1.82 92.87 50.40 20.85 53.70 1.57E-04
WR_Mean_HCL E 0.6490 0.02 88.53 42.55 22.32 42.16 1.52E-10

E 0.6294 1.04 72.77 41.03 20.65 43.47 7.30E-10
WR_Mean_HSV

WE 0.6295 0.45 70.70 40.47 20.70 44.39 7.27E-10
E 0.4954 0.18 84.19 17.22 19.25 9.06 3.11E-06

WR_Mean_L1L2L3
WE 0.5236 0.31 85.55 18.97 19.12 13.00 7.18E-07
E 0.5783 0.95 77.51 38.91 21.18 41.58 2.76E-08

WR_Mean_NRGB
WE 0.5684 0.40 78.04 39.75 20.93 39.39 5.19E-08
E 0.6821 0.17 64.08 26.77 16.03 27.85 8.03E-12

WR_Mean_RGB
WE 0.6668 0.42 62.09 26.22 16.26 25.84 3.26E-11

WR_Median_LAB E 0.6239 1.58 79.54 51.93 20.54 56.75 1.12E-09
WR_Median_YUV E 0.4018 0.92 94.09 50.39 24.18 53.16 1.76E-04
WR_Median_HCL E 0.6530 0.38 88.14 42.45 22.02 41.66 1.08E-10

E 0.6296 0.62 71.94 41.13 20.43 44.55 7.22E-10
WR_Median_HSV

WE 0.6244 0.87 69.79 40.56 20.49 44.36 1.07E-09
E 0.4889 0.09 83.91 17.12 18.98 9.06 4.28E-06

WR_Median_L1L2L3
WE 0.5224 0.64 85.29 18.83 18.66 13.00 7.64E-07
E 0.6111 3.00 78.76 38.66 20.99 40.50 2.89E-09

WR_Median_NRGB
WE 0.5835 2.97 79.16 39.51 20.73 37.26 1.97E-08
E 0.6780 1.57 66.2 27.62 15.99 26.86 1.18E-11

WR_Median_RGB
WE 0.6626 0.91 64.87 26.31 16.31 25.46 4.76E-11

WR_Mode_LAB E 0.6155 2.00 79.92 51.77 20.61 56.37 2.10E-09
WR_Mode_YUV E 0.3918 1.00 91.98 50.23 20.59 53.46 2.54E-04
WR_Mode_HCL E 0.6705 0.62 88.67 42.49 21.92 41.66 2.35E-11

E 0.6178 0.22 72.04 40.41 29.12 41.91 1.77E-09
WR_Mode_HSV

WE 0.6048 1.79 70.78 39.83 20.47 41.56 4.54E-09
E 0.4573 0.49 83.55 16.81 19.40 9.06 1.86E-05

WR_Mode_L1L2L3
WE 0.5029 0.11 84.97 18.35 19.19 12.61 2.13E-06
E 0.6123 3.23 80.15 38.29 21.17 38.64 1.72E-08

WR_Mode_NRGB
WE 0.5790 3.83 80.31 39.09 20.93 37.87 2.64E-08
E 0.6462 0.89 67.86 27.72 16.40 26.06 1.91E-10

WR_Mode_RGB
WE 0.6371 0.03 66.66 26.45 16.47 24.39 4.00E-10
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Table C.4 Data regarding the results obtained in experiment 3. Detailed explanation of this table can be found in the main text (Section
C.1).

Method metric ρ Min Error Max Error Mean Error stdev Median Error p-value

NR_Mean_LAB E 0.3947 0.09 78.07 49.97 23.02 58.06 1.08E-06
NR_Mean_YUV E 0.2876 0.40 92.51 52.21 39.12 57.01 3.60E-04
NR_Mean_HCL E 0.4643 2.31 94.03 44.68 24.63 46.05 7.06E-09

E 0.4063 0.10 78.97 37.49 21.33 40.55 5.05E-07
NR_Mean_HSV

WE 0.4090 0.23 78.09 37.52 20.95 39.76 4.21E-07
E 0.3172 0.08 78.27 20.62 21.46 12.00 8.89E-05

NR_Mean_L1L2L3
WE 0.3521 0.02 79.97 21.99 21.74 14.85 1.41E-05
E 0.3717 0.02 93.23 31.26 23.21 28.04 4.53E-06

NR_Mean_NRGB
WE 0.3819 0.78 93.63 32.35 22.80 30.64 2.43E-06
E 0.5532 0.41 68.39 31.60 17.33 32.37 1.72E-12

NR_Mean_RGB
WE 0.5398 0.41 70.15 32.14 17.37 34.37 7.08E-12

NR_Median_LAB E 0.3998 0.02 77.82 49.86 22.95 57.89 7.77E-07
NR_Median_YUV E 0.2868 1.16 92.47 52.07 25.19 57.33 3.72E-04
NR_Median_HCL E 0.4687 1.71 94.06 44.71 24.66 47.01 4.92E-09

E 0.4022 0.08 78.47 38.24 21.42 40.69 6.64E-07
NR_Median_HSV

WE 0.4052 0.39 77.37 38.31 21.02 40.12 5.44E-07
E 0.3252 0.24 83.66 20.75 21.80 12.06 5.95E-05

NR_Median_L1L2L3
WE 0.3508 0.30 83.91 22.08 21.94 15.03 1.51E-05
E 0.3838 0.40 93.03 30.76 23.12 27.90 2.16E-06

NR_Median_NRGB
WE 0.3883 0.80 93.43 32.06 22.81 30.82 1.63E-06
E 0.5636 0.02 68.16 31.46 17.35 32.96 5.56E-13

NR_Median_RGB
WE 0.5496 0.07 69.98 31.99 17.39 34.03 2.54E-12

NR_Mode_LAB E 0.3996 0.66 76.65 49.53 22.38 57.91 7.88E-07
NR_Mode_YUV E 0.3179 0.94 91.16 50.56 25.50 57.15 8.60E-05
NR_Mode_HCL E 0.4691 1.58 94.34 46.26 24.66 48.61 4.77E-09

E 0.3765 0.63 84.47 37.22 21.35 40.47 3.39E-06
NR_Mode_HSV

WE 0.3787 0.22 82.98 37.22 21.05 40.14 2.97E-06
E 0.3452 0.69 81.37 21.19 22.60 12.00 2.06E-05

NR_Mode_L1L2L3
WE 0.3709 0.16 81.84 22.81 21.92 15.02 4.75E-06
E 0.3955 0.24 93.02 30.11 22.75 25.65 1.03E-06

NR_Mode_NRGB
WE 0.4013 0.09 93.46 31.43 22.79 30.87 7.05E-07
E 0.5798 0.03 79.92 29.85 17.57 31.03 8.67E-14

NR_Mode_RGB
WE 0.5657 0.07 79.90 30.56 17.50 31.94 4.37E-13

WR_Mean_LAB E 0.3976 0.11 78.07 49.99 23.01 58.03 8.97E-07
WR_Mean_YUV E 0.2881 0.18 92.38 52.23 25.09 57.09 3.52E-04
WR_Mean_HCL E 0.4651 2.24 94.03 44.71 24.64 46.42 6.58E-09

E 0.4062 0.02 79.01 37.46 21.31 40.54 5.08E-07
WR_Mean_HSV

WE 0.4082 0.21 78.15 37.48 20.93 39.87 4.44E-07
E 0.3369 0.03 78.21 20.60 21.59 11.97 3.23E-05

WR_Mean_L1L2L3
WE 0.3519 0.02 79.48 22.02 21.82 14.86 1.43E-05
E 0.3730 0.27 93.71 31.21 23.20 28.26 4.18E-06

WR_Mean_NRGB
WE 0.3794 0.89 93.55 32.44 22.76 30.65 2.85E-06
E 0.5579 0.83 68.09 31.50 17.26 32.46 1.03E-12

WR_Mean_RGB
WE 0.5398 0.78 69.90 32.05 17.30 34.22 7.07E-12

WR_Median_LAB E 0.4078 0.08 77.86 49.88 22.93 58.03 4.59E-07
WR_Median_YUV E 0.2939 0.30 92.41 52.08 25.21 56.91 2.71E-04
WR_Median_HCL E 0.4636 2.14 94.06 44.63 24.75 46.44 7.45E-09

E 0.4054 0.38 78.74 38.25 21.40 40.49 5.37E-07
WR_Median_HSV

WE 0.4057 0.61 77.68 38.33 20.98 40.00 5.28E-07
E 0.3121 0.28 83.66 20.76 22.10 12.06 1.14E-04

WR_Median_L1L2L3
WE 0.3445 0.15 83.91 22.06 22.22 14.47 2.15E-05
E 0.3993 0.26 92.99 30.51 22.98 27.82 8.02E-07

WR_Median_NRGB
WE 0.4008 0.43 93.43 32.06 22.62 30.41 7.29E-07
E 0.5694 0.24 67.94 31.34 17.29 32.80 2.87E-13

WR_Median_RGB
WE 0.5562 0.14 69.80 31.89 17.35 33.90 1.25E-12

WR_Mode_LAB E 0.3929 0.36 77.77 49.72 22.55 57.85 1.22E-06
WR_Mode_YUV E 0.3051 1.50 90.85 50.81 25.49 54.95 1.61E-04
WR_Mode_HCL E 0.4545 1.39 94.33 46.03 24.99 48.55 1.53E-08

E 0.3164 0.30 86.52 38.41 21.98 40.56 9.24E-05
WR_Mode_HSV

WE 0.3182 0.20 85.55 38.34 21.69 40.28 8.45E-05
E 0.3454 0.09 90.15 21.32 22.65 12.06 2.04E-05

WR_Mode_L1L2L3
WE 0.3472 0.18 90.27 22.80 22.25 15.22 1.84E-05
E 0.3981 0.19 93.09 30.70 22.96 27.55 8.67E-07

WR_Mode_NRGB
WE 0.4093 0.11 93.56 32.71 22.44 31.99 4.12E-07
E 0.5662 0.10 66.77 30.81 17.59 33.16 4.15E-13

WR_Mode_RGB
WE 0.5465 0.13 68.37 31.48 17.51 33.61 3.53E-12
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Table C.5 The segmentation was done using a maximum of 40 proto-objects and did not use
any type of pre-processing nor proto-object compression. "JM" and "JFF" refer to the initials
of the human experts whose analysis was compared to the method.

Image
JM JFF

mean %agreement
% agreement %agreement

1 4.90% 20.00% 12.45%
2 1.27% 16.67% 8.97%
3 8.51% 18.18% 13.35%
4 5.71% 10.00% 7.86%
5 15.38% 16.67% 16.03%
6 4.55% 18.18% 11.36%
7 3.77% 7.69% 5.73%
8 15.79% 11.11% 13.45%
9 2.78% 10.00% 6.39%

Mean 6.96% 14.28% 10.62%

Table C.6 The segmentation was done using a maximum of 400 proto-objects and did not
use any type of pre-processing nor proto-object compression. "JM" and "JFF" refer to the
initials of the human experts whose analysis was compared to the method.

Image
JM JFF

mean %agreement
% agreement %agreement

1 5.88% 30.00% 17.94%
2 6.33% 50.00% 28.16%
3 8.51% 18.18% 13.35%
4 5.71% 30.00% 17.86%
5 5.13% 50.00% 27.56%
6 15.15% 36.36% 25.76%
7 5.66% 46.15% 25.91%
8 10.53% 66.67% 38.60%
9 0.00% 0.00% 0.00%

Mean 6.99% 36.37% 21.68%
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Table C.7 The segmentation was done using a maximum of 400 proto-objects with proto-
object compression. No pre-processing was executed. "JM" and "JFF" refer to the initials of
the human experts whose analysis was compared to the method.

Image
JM JFF

mean %agreement
% agreement %agreement

1 9.80% 60.00% 34.90%
2 6.33% 33.33% 19.83%
3 8.51% 9.09% 8.80%
4 20.00% 30.00% 25.00%
5 0.00% 0.00% 0.00%
6 7.58% 9.09% 8.33%
7 13.21% 61.54% 37.37%
8 21.05% 44.44% 32.75%
9 0.00% 0.00% 0.00%

Mean 9.61% 27.50% 18.55%

Table C.8 The segmentation was done to an image pre-processed using the PDE-Retinex
method (section 4.2.1) using using a maximum of 40 proto-objects. No proto-object compres-
sion was executed. "JM" and "JFF" refer to the initials of the human experts whose analysis
was compared to the method.

Image
JM JFF

mean %agreement
% agreement %agreement

1 6.86% 20.00% 13.43%
2 1.27% 16.67% 8.97%
3 4.26% 0.00% 2.13%
4 2.86% 0.00% 1.43%
5 5.13% 0.00% 2.56%
6 0.00% 0.00% 0.00%
7 1.89% 7.69% 4.79%
8 31.58% 0.00% 15.79%
9 0.00% 0.00% 0.00%

Mean 5.98% 4.93% 5.46%
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Table C.9 The segmentation was done to an image pre-processed using the PDE-Retinex
method (section 4.2.1) using using a maximum of 400 proto-objects. No proto-object
compression was executed. "JM" and "JFF" refer to the initials of the human experts whose
analysis was compared to the method.

Image
JM JFF

mean %agreement
% agreement %agreement

1 8.82% 40.00% 24.41%
2 2.53% 50.00% 26.27%
3 8.51% 18.18% 13.35%
4 11.43% 20.00% 15.71%
5 0.00% 16.67% 8.33%
6 18.18% 45.45% 31.82%
7 9.43% 53.85% 31.64%
8 10.53% 55.56% 33.04%
9 0.00% 0.00% 0.00%

Mean 7.72% 33.30% 20.51%

Table C.10 The segmentation was done to an image pre-processed using the PDE-Retinex
method (section 4.2.1) using using a maximum of 400 proto-objects, followed by proto-object
compression. "JM" and "JFF" refer to the initials of the human experts whose analysis was
compared to the method.

Image
JM JFF

mean %agreement
% agreement %agreement

1 6.86% 40.00% 23.43%
2 2.53% 33.33% 17.93%
3 6.38% 18.18% 12.28%
4 8.57% 10.00% 9.29%
5 0.00% 16.67% 8.33%
6 6.06% 9.09% 7.58%
7 9.43% 30.77% 20.10%
8 15.79% 33.33% 24.56%
9 0.00% 0.00% 0.00%

Mean 6.18% 21.26% 13.72%
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Table C.11 The segmentation was done to an image pre-processed using the Multiscale
Retinex method (section 4.2.1) using using a maximum of 400 proto-objects. No proto-object
compression was executed. "JM" and "JFF" refer to the initials of the human experts whose
analysis was compared to the method.

Image
JM JFF

mean %agreement
% agreement %agreement

1 6.86% 30.00% 18.43%
2 0.00% 16.67% 8.33%
3 8.51% 27.27% 17.89%
4 8.57% 20.00% 14.29%
5 5.13% 50.00% 27.56%
6 16.67% 54.55% 35.61%
7 5.66% 38.46% 22.06%
8 10.53% 44.44% 27.49%
9 0.00% 0.00% 0.00%

Mean 6.88% 31.27% 19.07%
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