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I feel a little funny about this because we have this term SDN and in a funny way it’s always been 

about software, even the original packet switches at the ARPANET were based on software. It’s 

just that you’re in the middle of a kind of renaissance in thinking about what networking can do 

because there’s more that we can get the software to do, there’s more that we can get the 

hardware to do in cooperation with it. And so, in a very interesting way you have an opportunity 

to reinvent the whole notion of networking and so I’m very excited about that. It’s nice to see this 

kind of fresh new thinking happening in spite of the fact that the internet it has been around in 

concept for 40 years and it has been in operation for 30. Here’s an opportunity in the beginning 

of the 21st century to think differently and new about what networking is all about. 

Vint Cerf1 

 

                                                      

1 Open Networking Summit, April 2013 
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Abstract 

 

In recent years, Supervisory Control and Data Acquisition (SCADA) Industrial Control Systems 

(ICS) – a kind of systems used for controlling industrial processes, power plants, assembly lines, 

among others – have become a serious concern because of security and manageability issues.  

After years of trusting in air-gaped isolation and obscurity security, the increased coupling of 

operational and information systems, together with the absence of proper management and 

security policies, disclosed several weaknesses in SCADA ICS. Despite not constituting any 

novelty within the information and communications technology (ICT) domain, which has dealt 

with similar problems for decades, the practices applied there could not be easily ported to the 

ICS domain due to the distinct priorities and requirements of each of those domains along with 

the limitations of the existing networks.  

The rise of Software-Defined Networking (SDN) constituted a paradigm shift. Through the usage 

of abstraction and simplification, it brought significant gains in terms of: firstly, allowing more 

control over networks and information flows; secondly, bringing a new and powerful (yet 

simplified) network management; thirdly, enabling more flexible and adaptable networks; 

fourthly, and most importantly for business managers, lowering the managing and maintenance 

costs and allowing faster time to market, which are some of the most important parameters in 

competitive markets. 

However, the benefits brought by SDN are yet to reach the ICS domain.  

In this sense, this thesis provides an overview on the usage of such technologies and presents 

some solutions, based on synergies between both, which can address the problems mentioned 

above in order to improve SCADA ICS manageability, availability and security. 

 

 

Keywords: Critical Infrastructure, Industrial Control Systems, ICS, Supervisory Control and 

Data Acquisition, SCADA, Software-Defined Networking, SDN 
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Introduction 

 

During the last five decades, the industrial production environment has suffered several changes 

and improvements, in a continuous improvement effort towards the achievement of four key goals: 

increased production, improved quality, lower costs and maximum flexibility [1].  

Until the 60s, all the production control systems were simply mechanical or hydraulic. Later on, 

then the 4-20 mA analogue interface was established as a standard for instrumentation technology, 

setting itself as the first standardized communication interface across manufactures. In most cases 

it was used as a simple interface between operators and relay panels.  

In 1969, the first programmable logic controller (PLC) was invented in the scope of the 

automotive industry in order to replace the relay panels and hard-wired programming, which had 

several downsides. The rising of the PLC was probably the biggest responsible for the mass 

implementation of digital industrial control, even though some hardware preforming digital 

control (direct digital control – DDC) already existed, since the beginning of the 60s, in the 

industrial control world [2] (despite having different characteristics and costs). Soon after, in 1971, 

the first microprocessor [3] is launched on the market and becomes the major precursor for the 

release of the Honeywell TDC 2000 and the Yokogawa Centum, the first distributed control 

systems (DCS’s). Since then, we have witnessed a widespread of digital computers and distributed 

control systems. The latest were intended to allow systems to spread out over a geographical area. 

However, the existing communication networks were unable to support such a wide geographical 

range and so the major manufactures were forced to develop their own industrial communication 

networks, with proprietary protocols, to support their needs.  

In the meantime, while DCS’s technology was evolving and was being adopted in all kind of 

industries, communication networks outside the industrial environment were also changing. In 

1974, the initial TCP specification [4] is presented and the following year a two-network TCP/IP 

communication test is performed. In 1976, a paper [5] is published describing the results of an 

experience using new “…communication system for carrying digital data packets among locally 

distributed computing stations” that could support any computer. A few years later, in the 

beginning of the 80s, TCP/IP became standardized. Non-industrial computer networks started to 

proliferate, due not only to the emergence and evolution of personal desktop computers and user 

friendly operative systems, but also to the increasing use of TCP/IP, among other developments. 
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In the 90s, computer networks were already present in the offices of several public and private 

institutions.  

Each of these networks (industrial, later called Industrial Control System (ICS); non-industrial, 

referred to as Information and Communication Technology [ICT]) followed different paths as to 

accomplish different purposes. While ICS networks were intended to achieve availability, 

reliability, real-time capabilities and were based on proprietary technology, ICT networks 

prioritized security, confidentiality, resilience – moreover, their core technology mostly consisted 

on open standards. 

Nevertheless, in the early 2000, bearing in mind the four key goals of industry and, hence, as to 

improve business and organizational workflows, executives started to realize the importance of 

integrating the field information directly into enterprise resource planning systems (ERP). In 

some cases [6], predictions pointed out to a 70% efficiency gain. In order to accomplish this 

integration, it would be necessary to merge the ICT and ICS networks. The natural choice for this 

merging felt over Ethernet and TCP/IP. Not only had ICT networks had a worldwide massive 

deployment, but Ethernet and TCP/IP had also evolved considerably since their first appearance 

and were already pretty mature technologies built on open standards. Furthermore, ICT networks 

presented the best overall cost/benefit. Since these ICS networks demanded specific requirements 

and were connected to industrial hardware that was only prepared to function with specific 

protocols, the chosen solution was to adapt the existing industrial protocols, to enable them to 

work over the new network. 

Up to that moment, ICS ecosystems benefited from an air gap isolation and, since most of its 

implementations were based on proprietary technology, its specificities were known only by a 

handful of technicians and programmers (“obscurity approach”) working for the companies which 

developed such technologies. Being so, decision makers never thought security could be an issue 

and so it was never taken into account. This approach was proven wrong in several cases, for 

instance: 

 In 2000, Maroochy water system was attacked [7] [8] on several occasions through the radio 

signalling system, resulting in 800.000 litres of raw sewage being drained into local parks and 

rivers and, consequently, causing serious damage to local fauna and flora. 

 In 2010, a worm dubbed stuxnet [9] [10] struck and disabled the Iranian nuclear facility at 

Natanz, causing serious damage to the system. This took its toll on the country's political 

policies and had a negative financial impact of millions of dollars. Again, the air gap was 

bypassed, this time by using USB device to transport the “virus”. 
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This became an even more serious problem since the integration of both networks exposed the 

ICS to the outside world through the ICT network, which by default had already a lot more people 

accessing it and, to make things worse, was frequently connected to other networks such as 

internet. Moreover, and despite all the positive features of ICT networks, these weren’t ready to 

deal with all the issues addressed by ICS, just like ICT network managers, since the working and 

fundamental goals were completely distinct. The combination of these factors paved the way for 

even more attacks like the ones referred in [11] [12].  

According to some network and security companies, there is an increasing report of attacks to 

ICSs (“worldwide SCADA attacks increased from 91,676 in January 2012 to 163,228 in January 

2013, and 675,186 in January 2014” [13]) and its harmfulness (“it is likely or extremely likely 

that a cyberattack will take down critical infrastructure and cause loss of human life in the next 

three years“ [14]). 

Nowadays, ICSs are widely spread, being involved in processes responsible for our water supply, 

telecommunication, agriculture, food production, electricity production and distribution, public 

health, natural gas, fuel and oil, financial services, transportation systems or security services, just 

to mention some examples. Therefore, ICSs have also begun to be referred to as critical systems 

(CSs), something that clearly demonstrates its strategic importance. Being so, it is urgent to 

discover and implement new ways to make these systems more secure and reliable, in order to 

guarantee their stable operation. Until now, and despite the adoption by ICS systems, 

conventional network technologies have failed short in responding to some of the specific needs 

of this domain, in a cost-efficient way.  

Meanwhile, in 2008, a new network paradigm emerged – Software-Defined Networking –, 

depicted as a way to bring new potential to networking through abstraction and simplification: 

firstly, allowing more control over networks and information flows; secondly, bringing a new and 

powerful (yet simplified) network management; thirdly, enabling more flexible and adaptable 

networks; fourthly, and most importantly, especially for business managers, lowering the 

managing and maintenance costs; finally, allowing faster time to market, which is one of the most 

important parameter in competitive markets.  In spite of being a relatively fresh technology, still 

at a sharp evolution stage and with a low implementation rate in production environments, some 

case studies brought great credibility to this new approach to networking, for instance Google [15] 

[16], where since 2012 all the datacentre backbone traffic is carried on top of SDN.  

Hence, one might wonder whether this could be an asset to the ICS world. This rationale was the 

starting point for the thesis hereby documented. 
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Research Statement  

There is a question whether SDN will be able to fill the gaps of traditional networks and 

simultaneously meet the requirements inherent to real-time systems. Furthermore, one might 

question if the conjugation of both SDN and ICS will result in more flexible, reliable and smart 

systems. At first glance it seems possible and realistic to think that innovations to ICS can emerge 

from synergies between both technologies. 

In this sense, the main goal of the research done during this internship, at Laboratory of 

Communications and Telematics of the Engineer Informatics Department of the University of 

Coimbra, is the merge between ICSs and SDN to ascertain the potential result of this synergy.  

 

Thesis Outline  

This thesis is organized as follows: 

 In Chapter 1, the fundamental concepts of programmable networks are described, giving 

special emphasis to the main elements of an OpenFlow compliant environment, and SCADA 

systems.  

 In Chapter 2, a reflection is made on the improvements that SDN can bring to ICS. 

 In Chapter 3, a detailed description of the research that was done is presented, focusing on 

aspects such as the built testbed, the used tools, the tests carried out and minor conclusions 

drawn. 

 In Chapter 4, the conclusions of this research work are presented and discussed, as well as 

other ongoing and future developments of this research effort. 
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Chapter 1 – State of the Art 

 

1.1. Software-Defined Networking 

Software-defined networking is a new approach to communication networks which, through 

abstraction, tries to simplify all its complexity of configuration and management and, at the same 

time, brings new and more powerful features. 

In spite of the reference to the SDN designation in 2009, in a MIT Technology Review’s [17] 

article, the concept comes from a natural evolution from projects and ideas of the past 20 years 

[18] and gains greater importance in 2008, when a team lead by Nick Mckeown published an 

article [19] on a new network architecture protocol they named OpenFlow (OF). In this paper, the 

authors presented a solution that would allow researchers to overcome existing barriers in current 

networks, which were precluding them to test new solutions that could bring improvements and 

innovation to the network world, by enabling the overcome of the stagnation of conventional 

networks. 

After some proof-of-concept (PoC), the alpha version (OF 1.0) was made publicly available in 

early December 2009 and, that same year, more precisely on the last day of the year, the first 

stable version with support for installation in dedicated hardware solutions [20] was officially 

launched. This first version already contained several innovative features in comparison to 

forwarding systems at that time [21] such as: number of the analysed header fields, counters for 

statistical parameters, range of allowable actions. 

By this time, important players encouraged and supported this new technology, as it was the case 

for Ericsson, with OpenFlow-MPLS project, which intended to accomplish an integration 

between MPLS and OF [22], or Google that, in the Spring of 2010 [16],  initiated the first phase 

of implementation of OF in their data centres, thus becoming the first major company to deploy 

and confirm the potential of this technology in a production environment. 

In February 2011 the OF 1.1 [23] version was launched with new features, especially in terms of 

MPLS, multipath, VLANs, logic gates and support for multiple flow tables. 

That same month, in a joint effort and in order to leverage the standard development and adoption 

of this new technology, the creation of the Open Networking Foundation (ONF) [24] was 

formalized, becoming responsible for the future development and open publication of the OF. Its 

initial members were: Broadcom, Brocade, Ciena, Cisco, Citrix, Dell, Deutsche Telekom, 
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ErICSson, Facebook, Force10, Google, HP, IBM, Juniper Networks, Marvell, Microsoft, NEC, 

Netgear, NTT, Riverbed Technology, Verizon, VMware, and Yahoo.  

From then until the current date, as seen on Figure 1, four more main versions of OF were released 

[25] [26] [27] [28] bringing  significant improvements to this standard, such as support for IPv6, 

extensible headers, QoS, Q-in-Q tunnelling (bridging backbone which allows for tunnelling 

across datacentres), statistical data on each flow, dynamic structures based on type-length-value 

(TLV) [29], among others. 

 

Figure 1 – OpenFlow timeline 

 

 Conventional Network Limitations  

Until now, the majority of networks is based on hardware which consists of two merged layers 

(Figure 2). These two layers, depending on their respective routing protocols and policies, 

manage the network traffic behaviour. The data/forwarding plane is responsible for packet 

forwarding, and the control plane for making decisions on how these packets should be processed. 

 

 

Figure 2 – Conventional network 
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This architecture allows us to easily identify problems such as: 

 Limitation of the potential for innovation: in most cases, these solutions are proprietary 

and closed, making it impossible for a researcher (external “to the brand”) to access both the 

necessary information and the permissions that would allow him to test new theories, 

mechanisms or solutions (e.g. new routing protocols, security, QoS, etc.) in networks with 

significance in terms of size, complexity and density (usually: production environments). 

 Vendor lock-in: for the above mentioned and also by strategic choice of equipment vendors, 

in most cases, it’s mandatory to have a homogeneous network in terms of the brand of the 

various equipment’s in order to enable the full potential of the network equipment and make 

use of solutions or protocols that represent some improvement. 

 Complexity: most of the active equipment, especially when from different brands, require 

individual configuration due to the presence of the control and data planes in each of them 

(e.g. reconfiguring VLAN’s, ACL’s, etc.). This need not only increases management and 

maintenance costs of the networks, but also creates the problems identified below. 

 Performance and safety: by the previously identified need, the likelihood of inconsistencies 

across the configuration of multiple equipment is high. This can easily lead to performance 

loss situations (e.g. traffic prioritization) or to situations where security policies are not 

uniform across the network, creating permeability situations in it. 

 Adaptability/Scalability: the complexity described above requires that, whenever there is a 

need to adapt the network to a new reality, prior knowledge of most settings of the network 

is demanded so that the appropriate changes can be made in a correct away. A good example 

are the situations related to physical changes in the networks, as well as situations that call 

for a policy change, whether security, routing, QoS or others. 

If we have a business vision of these factors, we realize that all these problems have one thing in 

common: all lead to a negative impact, which has multiple repercussions. Moreover, the limitation 

of the routing and forwarding systems is also something that should be considered, since the 

processing decisions are taken having, mainly, only two parameters in consideration: physical 

address (layer 2) and IP address (layer 3). 
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 Architecture 

SDN emerged as an attempt to eliminate the negative factors mentioned in the previous subsection.  

Strongly based on a predecessor project, Ethane [30], the fundamental idea behind SDN is quite 

simple and intuitive. Taking advantage of the fact that most of the routers and Ethernet switches 

contain ternary content-addressable memory (TCAM) [31] – that runs at line-rate (normally used 

to for QoS, firewalls, NAT and to collect statistics) –, and have a set of functions which are 

transversal to all, a protocol was created that could extend these common features allowing the 

creation of fast flow tables, which could be programed in an accessible, dynamic and remote way, 

independently of the hardware in question. To make it possible, it was necessary to create an 

abstraction of the physical layer and hence the control and the data plane, which were previously 

within the same hardware components, were separated (Figure 3). 

 

Figure 3 – Data and control plane separation 

 

In this sense, the data plane remains on “the same” equipment where it was allocated before 

(switches, routers) with the individual device “intelligence” being removed, by passing the control 

plane to a centralized point (from a logical point of view). Thus, switches and routers become 

mere forwarding boxes and the entire network programming is concentrated on a single point, 

greatly simplifying the control and management of the network. 

As a result of this separation, SDN networks are composed of three distinct components: 

 Equipment/devices: off-the-shelf hardware responsible for packet forwarding (such as 

switches). This action is taken in accordance with rules present in the flow tables it is hosting; 

 controller: software that takes decisions on the way packets should be processed and then 

populates the flow tables, present in switches, with the rules derived therefrom; 

 secure channel: communication channel that allows the exchange of information between 

switches and the controller and vice versa. 
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However, after analysing conventional networks in a more detail, we realize that there are other 

components in the network, such as firewalls, load balancers, NATs, IDSs among others (Figure 

4).  

 

Figure 4 – SDN simplified architecture 

 

So, it did not make sense to remove decision-making capabilities from switches and then keep 

these middle boxes scattered around the network, as it would bring the same kind of drawbacks. 

There was also the need to withdraw these middle boxes from the middle of the network, 

relocating them "above" the controller (Figure 5), transforming them in SDN-aware functions. 

 

Figure 5 – SDN architecture 

 

Dissecting the architecture of SDN in more detail, we are able to identify some new “inner layers” 

which may help to better understand all the structure behind SDN and its functioning (Figure 6). 
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Figure 6 – SDN inner layers 

 

These layers (next described, following a bottom-up approach) encompass several functions, 

namely: 

 Data plane 

o Network infrastructure: forwarding hardware (switches) without, in general 

terms, any type of autonomous decisions capabilities before being programmed 

by the controller. 

o Southbound interface: standard application programming interfaces (APIs) 

mainly responsible for connecting the forwarding and control elements.  

 Control plane 

o Network hypervisor: virtual hosting which allows for resource allocation on-

demand enabling the provisioning of elastic services in a flexible and easy way. 

o Network operating system (NOS) also called controller: responsible for 

providing abstractions from the hardware; essential services such as topology, 

statistics, notifications, device management, shortest path forwarding and 

security; APIs for those services. 

o Northbound interface: APIs responsible for connecting the control and the 

management plane. The type of used/available APIs depends on the chosen NOS. 

Thus far, REST and RESTful are the most used. 

o East/Westbound interface: APIs responsible the connecting of multiple 

controllers in order to create a distributed controlled network. The type of 

used/available APIs depends on the chosen NOS.  
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 Management plane 

o Language-based virtualization: virtualization based on programming 

languages that offer abstraction regarding the network (e.g. allowing the use of 

“network objects” – the object network can represent several switches). 

o Programming languages: high-level programming languages that offer 

abstraction regarding the network. 

o Network applications: the intelligence of the entire network. Responsible for 

processing information and defining the way packets are dealt with. 

This abstraction and separation of planes allowed networks to start being treated as a whole, and 

not as a set of multiple hardware components, which opened the door to a new vision: instead of 

concentrating on the way a specific behaviour has to be implemented to achieve a particular 

purpose, the focus should now be on the overall (or higher-level) objective that we want the 

system to adopt. 

As shown in Figure 7, and explained by Scott Shenker [32] in his presentation [33], if we intended 

to stop X from talking to Y in a conventional network, we would have to choose a path and then 

tell all the including nodes to drop those packets. Then, we would have to check for alternative 

paths and to do the same with the new nodes that were included. If, for any reason, there was a 

change in the network architecture, we would have to go through all the process again. In SDN 

we could just define that X can’t talk to Y. 

  

Figure 7 – Conventional networks vs SDN 

 

 Southbound Interfaces 

As mentioned above, southbound interfaces are standard APIs, which are mainly responsible for 

connecting the forwarding and control elements. Depending on the protocols in usage, the APIs 

will change accordingly. There are several possible protocols, such as: 



12 

 

 OpenFlow – by specifying the configuration of the communication channel and the operation 

of forwarding elements (such as OpenFlow Switches – OFSs), it enables the controller to 

configure the behaviour of OF compliant switches. 

 Open vSwitch Database (OVSDB) [34] – created by Nicira (Open vSwitch creators), it is a 

management protocol used to remotely configure the switch itself (bridges, ports, interfaces…) 

on an SDN environment. Several vendors started to support this protocol.  

 MPLS Transport Profile (MPLS-TP) [35] – created by a joint ITEF/ITU-T effort, it is a 

variant of MPLS meant to be used on packet-switched networks, specially by carriers and 

service providers. 

 Border Gateway Protocol (BGP) [36] – aims at exchanging network routing and 

reachability information with other BGP systems. 

 OpFlex [37] from Cisco – it is based on declarative control and on moving some complexity 

to the leaf elements. Policies are defined at the controller and then sent to the switches, which 

all adapt in order to try to accomplish those policies.  

 NETCONF [38] – it is used to configure and manage network devices.  

 Locator ID Separation Protocol (LISP) [39] – aims at improving the scalability of routing 

by enabling network virtualization through dynamic multitenant overlays. 

 Forwarding and Control Element Separation (ForCES) [40] – defines a master-slave kind 

of communications for messages exchange between the control (master) and forwarding 

planes (slave), which allows the controller to configure the behaviour of OF compliant 

switches.  

Some are well known protocols imported from conventional networks (e.g. BGP, NETCONF), 

mostly for backward compatibility and for heterogenic environments, others are new protocols 

created in the context of the architecture of SDN (e.g. ForCES, OpenFlow, OVSDB).  

As stated before, currently, the de facto standard is OpenFlow. However, it is important to be 

aware that not all southbound interfaces are competing with each other, some are complementary 

and others are used for specific purposes that may even be independent of the SDN concept. This 

means that in a SDN it is possible to have several southbound interfaces active in simultaneous 

using different protocols.  
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 OpenFlow2 

Through the usage of this protocol and compliant APIs, the controller, in order for the network to 

start providing the desired behaviour to achieve a certain objective, can sense and manage all the 

infrastructure by communicating and programming the OFSs (which are the class of forwarding 

elements used in this research effort). An OpenFlow compliant environment mainly relies on a 

set of well-defined components, namely: controller, communication channel and OFS (Figure 8); 

where the controller makes use of its southbound OF API to communicate with the OFS over a 

TCP connection.  

 

Figure 8 – OpenFlow main components3 

 

1.1.4.1. Communication Channel and Messages 

The communication channel, which is by default instantiated as a single network, allows the 

connection and supports the message exchange between the OFSs and the controller. This channel 

is typically encrypted using TLS or may run directly over TCP.  

There are three main message types: 

                                                      

2 The following OpenFlow related information is based on OpenFlow Switch Specification 1.4 (October 14, 2013), unless stated 

otherwise.  
The OF specification contains several optional features which may or may not be present in a certain implementation. It is the 

controller responsibility to retrieve that information from the switches.    
3 Adapted from [48] 
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 Controller-to-switch – originated by the controller and may or may not demand a response 

from the switch, such as for requesting available features, configuring and managing or 

requesting stats update. 

 Asynchronous – sent by the switch without being actively solicited by the controller to 

announce a port status change, a flow removal or a packet-in which transfers the control of 

an arrived packet to the controller. 

 Symmetric – may be initialized by the OFSs or the controller without solicitation and are 

used upon connection start-up, as keep-alive notifications or as experimental messages for 

additional functionalities. 

All the messages have guaranteed delivery and processing, except in case of complete channel 

failure. Nevertheless, switches may reorder the received messages for performance enhancement. 

In this case, flow rules may be installed in a different order from the one sent by the controller. In 

some situations, there can be rule dependencies which imply a certain processing order (e.g. when 

a rule references a group which is still to be created, it is mandatory to first process the message 

related to the group creation and only after the forwarding action), in order to ensure it, barrier 

messages should be used. This technique forces the processing of all the messages before a barrier 

and only after it the following messages can be processed.  

In case there is a connection interruption, which prevents a switch from communicating with 

any controller, one of two modes can be immediately and automatically activated:  

 Standalone4 – the switch becomes autonomous and assumes the processing of all the packets, 

including the ones that were intended to be send to the controller, adopting the role of a typical 

Ethernet switch or router.  

 Secure mode – the switch continues to behave “normally”, processing the packets according 

to the rules which were already installed. All the other packets and messages that are meant 

to the controller are dropped.  

To improve processing performance, it is possible to take advantage of the parallelism present 

in most switch implementations and expand the channel to multiple auxiliary network connections, 

which can even be assigned with different processing priority.  

                                                      

4 This mode may not be available on all the switches. It is normally supported by hybrid switches.  
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1.1.4.2. Flow Table 

Every OF compliant switch contains at least one flow table. These are data structures that describe 

the characteristics of every packet flow and its corresponding processing instruction (and some 

other information as described next in this chapter). Each flow table has a self-identifying number. 

Every time a new packet arrives to the switch, a packet matching action takes place, it starts in 

the flow table number zero and follows an ascending order until a match is found. 

Each flow table contains rows, normally called flow entries, consisting of six main components: 

Match fields Priority Counters Instructions Timeouts Cookie 
 

Table 1 – Composition of a flow entry 

 

 Match fields: fields regarding packet headers, ingress port and/or metadata against which a 

packet is matched in order to identify what instruction to execute. An OFS has to support at 

least 13 specific mandatory match fields (signalled in bold in Table 2). Nevertheless, in the 

OF specification 1.4 match fields as well as programming structures to allow experimental 

match fields are considered.  

 

 

Switch input port ARP opcode 

Switch physical input port ARP source IPv4 address 

Metadata passed between tables ARP target IPv4 address 

Ethernet destination address ARP source hardware address 

Ethernet source address ARP target hardware address 

Ethernet frame type IPv6 source address 

VLAN id IPv6 destination address 

VLAN priority IPv6 Flow Label 

IP DSCP (6 bits in ToS field) ICMPv6 type 

IP ECN (2 bits in ToS field) ICMPv6 code 

IP protocol number Target address for ND 

IPv4 source address Source link-layer for ND 

IPv4 destination address Target link-layer for ND 

TCP source port MPLS label 

TCP destination port MPLS TC 

UDP source port MPLS BoS bit 

UDP destination port PBB I-SID 
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SCTP source port Logical Port Metadata 

SCTP destination port IPv6 Extension Header pseudo-field 

ICMP type PBB UCA header field 

ICMP code EXPERIMENTAL 

Table 2 – Match fields  

 Priority: value that defines the matching precedence of the flow entry. The higher the value 

the highest priority it has. This field is normally used to prioritize more specific rules in order 

to ensure the intended granularity for the network. 

 Counters: statistical data related to each flow entry, which is updated every time packets are 

matched. 

 Timeouts: value that defines the amount of time (hard timeout or idle timeout) before a flow 

is deleted from the flow table by the switch. Defining timeouts is fundamental for the control 

of memory allocation and packets processing speed. The smaller the flow tables are, the less 

memory is needed as well as for the processing power and time. By keeping the hardware 

requirements lower, one will be able to reduce the cost of the switches.  

 Cookie: id assigned by the controller, which may be used to filter flow statistics, flow 

modifications and flow deletion.  

 Instructions: (or set of instructions) that are executed when a packet is matched. The 

execution of the instructions will result in changes to the packet, pipeline processing or/and 

action set. There are six supported types: 

o Meter (optional) – sends the packet directly to a stated meter. 

o Apply-actions (optional) – immediately applies the actions specified on the 

action list it includes.  

o Clear-actions (optional) – clears the actions present in the action set. 

o Write-actions (required) – merges the actions specified into the current packet’s 

action set. 

o Write-metadata (optional) – writes the stated metadata into the metadata field. 

o Goto-table (required) – designates the next table in the processing pipeline. 

The apply-actions instruction type is composed by an action list which may contain one or more 

of the following actions: 

o Set-Queue (optional) – defines the queue which is attached to the port to where 

the packet is forward. 

o Drop (required) – discards the packet. 

o Group (required) – forwards the packet to the specified group. 
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o Push-Tag/Pop-Tag (optional) – Pushes or pops tags from Ethernet header (e.g. 

VLAN, MPLS). 

o Set-Field (optional) – rewrites the specified field(s) of the header of the packet. 

o Change-TTL (optional) – modifies the value of the time-to-live field (e.g. IPv4 

TTL, IPv6 Hop Limit, MPLS TTL). 

o Output (required) – forwards the packet to the specified OF port, which in turn 

can be: 

 Physical – corresponds to a hardware network interface. 

 Logical – can be mapped to several physical ports and include packet 

encapsulation. These are similar to physical ports in terms of internal 

structure, being the only difference the possibility of having an extra 

metadata field (Tunnel-ID), and in terms of processing since they interact 

with OF just like a physical port.5   

 Reserved – represents generic common forwarding actions or related 

scenarios6: 

 ALL – sends a copy of the packet to all ports, for the exception 

of the ingress port and ports that were previous configured to 

drop forwarded packets. 

 TABLE – sends the packet to the first flow table. 

 IN_PORT – sends the packet out through its ingress port. 

 FLOOD – sends the packet to all ports through the non-

OpenFlow pipeline, with the exception of the ingress port and 

ports that were previous configured to drop forwarded packets. 

 LOCAL – can be used as an ingress or output port in the stack 

of the switch’s local networking and management stack, which, 

for example, can be useful for creating an in-band controller 

connection. 

 NORMAL – sends the packet out by using a non-OpenFlow 

pipeline. 

 CONTROLLER – when used as an ingress port, it identifies the 

packet as coming from the controller, when used as an output 

                                                      

5 Although logical ports demand some more extra processing, this is done outside the scope of OF. 
6 NORMAL and FLOOD are only available with hybrid switches. 
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port it encapsulates the packet in a packet-in message and sends 

it to the controller. 

 ANY – simply represents an absence of port definition in a 

command such as a wildcard situation. 

 

The above mentioned actions can interact with the following layers: 

 Layer 1 – Port 

 Layer 2 – Ethernet 

 Layer 3 – IPv4, IPv6, MPLS, ARP 

 Layer 4 – TCP, UDP, ICMPv4, ICMPv6, SCTP 

 

The following table gives a clear view of the scope of the OF instructions.  

Layer Protocol/Instruction Behaviour Description 

Layer 1 

--- Drop Discards packet 

Group Forward Group ID: apply group processing 

Output Forward 

Port ID: forward to physical or logical port 

All: flood all but ingress port 

In_Port: send out ingress port 

Controller: send to controller 

Table: controller injected packets 

Local: host networking stack 

Flood: non-OpenFlow flood 

Normal: Non-OpenFlow dataplane 

Queue Set Queue ID 

Layer 2 Ethernet 

Set 

Source MAC 

Destination MAC 

VLAN ID 

VLAN Priority 

PBB I-SID 

PBB UCA 

Push/Pop VLAN ID 

 PBB I-SID 

Layer 3 

MPLS 

Set 

Label 

Traffic Control 

TTL 

Bottom of Stack 

Decrement TTL 

Push/Pop Label 

Copy-In TTL: copy outermost TTL to next-outermost TTL 

Copy-Out TTL: copy innermost TTL to next-innermost TTL 

ARP Set 

Opcode 

Sender Hardware Address 

Sender Protocol Address 

Target Hardware Address 

Target Protocol Address 
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Layer Protocol/Instruction Behaviour Description 

Layer 3 

IPv4 

Set 

Source Address 

Destination Address 

DSCP 

ECN 

TTL 

Decrement TTL 

Copy-In TTL: copy outermost TTL to next-outermost TTL 

Copy-Out TTL: copy innermost TTL to next-innermost TTL 

IPv6 

Set 

Source Address 

Destination Address 

DSCP 

ECN 

Flow Label 

TTL 

Extension Header 

Decrement TTL 

Copy-In TTL: copy outermost TTL to next-outermost TTL 

Copy-Out TTL: copy innermost TTL to next-innermost TTL 

Layer 4 

TCP Set 
Source Port 

Destination Port 

UDP Set 
Source Port 

Destination Port 

SCTP Set 
Source Port 

Destination Port 

ICMPv4 Set 
Type 

Code 

ICMPv6 Set 

Type 

Code 

ND Target Address 

ND Link-Layer Source 

ND Link-Layer Target 

Table 3 – OpenFlow actions instructions, protocols and layers7 

 

 

1.1.4.3. Group Table 

Group tables are used to assign more specific forwarding action to each flow entry. A reference 

to a specific group table can be achieved by applying the group action in the instructions field of 

a flow entry, giving it a more flexible and complete set of actions. 

 

 

                                                      

7 Based on [112] 
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Each group entry consists of four elements: 

Group identifier Group type Counters Action bucket 

Table 4 – Main components of a group entry 

 Group identifier: unique value used to identify the group. 

 Counters: statistical data related to each group, which is updated every time packets are 

processed by that group. 

 Action buckets: an ordered list of action buckets where each action bucket contains a set of 

actions to execute and associated parameters. 

 Group type: label used to declare the type of group among the following possibilities:  

o All (required): executes all buckets in the group. The packet is cloned for each 

bucket and each one is processed according to the actions of respective bucket. 

It can be used for multicast or broadcast forwarding, among others. 

 

Figure 9 – All group type8 

 

o Indirect (required): executes the only defined and allowed bucket in the group. 

This group type is effectively identical to an “all” group with only one bucket. 

Since multiple flow entries or groups can point to a common group identifier, 

common actions can be configured allowing faster and more efficient 

convergence (e.g. next hops for IP forwarding).   

                                                      

8 Adapted from [116] 
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Figure 10 – Indirect group type8 

 

o Select (optional): executes only one of the buckets in the group.  The bucket is 

selected based on a switch-computed selection algorithm which can go from a 

simple round-robin to a custom algorithm using some other criteria.  It can be 

used for load balancing or other roles depending on the used algorithm. 

 

Figure 11 – Select group type8 

 

o Fast failover (optional): executes only the first live bucket. Each action bucket 

is associated with a specific port and/or group. When a packet is processed, the 

buckets are evaluated and the first bucket, which is associated with a live 

port/group, is chosen. This enables the pre-definition of backup actions in the 

switch, avoiding the need to wait for a round trip to the controller. It can, for 

example, be used for fast failover recovery in case of link failure. 
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Figure 12 – Fast-failover group type8 

 

1.1.4.4. Meter Table 

Meter tables (Figure 13) allow to monitor the ingress rate of packets defined by each flow entry 

or by each custom group of flow entries and assign specific actions accordingly before their output. 

By using the instruction meter, packets matching an entry can be pipelined to a specific meter 

containing one or more pre-defined meter bands. 

 

Figure 13 – Main components of a meter entry 

 

Each meter entry consists of three elements: 

 Meter identifier: unique value used to identify the meter. 

 Meter bands: an unordered list of rate bands where each specifies the maximum allowed rate 

and the way to process the packet. 

 Counters: statistical data related to all the meter bands, which is updated every time packets 

are processed by meter bands. 
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In turn, each meter band entry consists of four elements: 

 Band type: may define how packets are processed (e.g. drop) or influence the way they will 

be processed in a next step (e.g. differentiated service code point – DSCP – remark) by using 

a pre-defined name type (see below, Figure 14). Although there is no required type, two 

optional ones are commonly available:  

o Drop – discards the packet. 

o DSCP remark – increases the value of the drop precedence of the DSCP in the 

IP header of the packet. 

 Rate: value that defines the lowest rate at which the meter band is applied. By default, the 

rate value is in Kilobits per second but it can also be defined in packets per second 

(OFPMF_PKTPS flag). 

 Counters:  statistical data related to each meter band, which is updated every time packets 

are processed by that meter band. 

 Type specific arguments: field that stores optional arguments of some band types (e.g. 

precedence value for the DSCP remark). 

 

Despite not being represented above since it is done through the declaration of a non-conceptual 

internal flag (OFPMF_BURST), it is also possible to configure the flexibility of the meter by 

means of defining a burst value, which is common to all the bands. 

When the packet/byte rate exceeds the threshold of one of the pre-programmed rate bands, it 

triggers it and the respective action is processed (Figure 14). This means that actions are taken 

based on the rate of the received packets. If more than one band is exceeded, the used band is the 

one with the highest configured rate.  

 

Figure 14 – Meter with 3 bands 

 

Being so, it is possible to create a rate limiter service based on the “drop” meter type. When the 

rate goes over the threshold we defined, the packet is dropped and the processing rate is assured. 
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It is important not to confuse meters with queues, which have a rigid behaviour and simply output 

packets at a certain rate. Also, although queues are supported by OF, in order to provide basic 

QoS support, their configuration is outside the scope of OF and has to be done by means of an 

external configuration protocol or through a command line tool (e.g. for OVS queues can be 

created and configured by using the ovs-vsctl command).  

However, meters and queues can complement themselves as to provide more complex and 

flexible QoS services, such as differentiated services (DiffServ). By using the “DSCP remark” 

meter type, it is possible to dynamically increase or decrease the dropping priority of certain 

traffic according to some pre-defined logic/algorithm and then feed it to the queues, so that they 

can deal with the output rate. 

 

1.1.4.5. Flow Instantiation 

Regarding packets processing, it is also important to realise that there are three important types 

of approach: 

 Reactive flow instantiation: every time a new packet arrives into the switch, a lookup in the 

flow tables is made. If no match is found, the packet has to be replicated, encapsulated and 

sent to the controller. Then, the controller (management applications) has to analyse the 

packet and make a decision and, after that, it has to send a response again to the switch. If we 

take into account all this steps and the fact that not all of the flow tables are standing on top 

of application-specific integrated circuit (ASIC) hardware with TCAM memory, the resulting 

overhead can have a negative impact on the network. 

 Proactive flow instantiation: flow tables are filled in anticipation, similar to what is 

currently done with protocols like "routing by rumour", thus eliminating the need for 

triggering the controller consultation process and, consequently, eliminating the respective 

overhead. Thus, forwarding shall be done linearly. This strategy also has its drawbacks since, 

despite ensuring low-latency forwarding of packets, it is quite inflexible to situations where 

the receiving packets don not have a matching entry in the flow table.  

 Hybrid flow instantiation: most of the rules tend to be implemented in advance (Proactive 

flow instantiation) to ensure a low latency. However, the flexibility for situations, when 

packets arrive and are not associated to any rule, is left open by means of reactive flow 

instantiation. 

It is then easier to conclude that the performance and scalability of the SDN networks also depends 

on the granularity of the rules present at the flow tables. 
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1.1.4.6. Counters 

Almost every internal component of the pipeline of an OFS has counters (Table 5) which record 

statistical data related to each component. The following table presents all the counters defined 

on the OFS specification, despite not all being mandatory. 

 

 

Per Flow 

Table 

Per Flow 

Entry 
Per Port Per Queue Per Group 

Per Group 

Bucket 
Per Meter 

Per Meter 

Band 

Reference 

Count (active 

entries) 

Received 

Packets 

Received 

Packets 

Transmit 

Errors 

Transmit 

Packets 

Reference Count 

(flow entries) 
Byte Count Flow Count 

In Band 

Packet Count 

Packet 

Lookups 
Received Bytes 

Transmitted 

Packets 

Receive Frame 

Alignment 

Errors 

Transmit Bytes Packet Count Packet Count 
Input Packet 

Count 

In Band Byte 

Count 

Packet 

Matches 

Duration 

(seconds) 
Received Bytes 

Receive 

Overrun Errors 

Transmit 

Overrun Errors 
Byte Count  Input Byte Count  

 
Duration 

(nanoseconds) 

Transmitted 

Bytes 

Receive CRC 

Errors 

Duration 

(seconds) 

Duration 

(seconds) 
 

Duration 

(seconds) 
 

  Receive Drops Collisions 
Duration 

(nanoseconds) 

Duration 

(nanoseconds) 
 

Duration 

(nanoseconds) 
 

  Transmit Drops 
Duration 

(seconds) 
     

  Receive Errors 
Duration 

(nanoseconds) 
     

Table 5 – OpenFlow counters 

 

This data can be provided automatically or on demand to the controller and above managing 

applications, in order to deliver a clear view of what is happening in the network.  

 

1.1.4.7. Pipeline 

It is not possible to describe a strict OF pipeline which matches all the cases and implementations, 

since the OF specification offers several optional features and customizations. Nevertheless, a 

generic description can be made with the intention of exemplifying the internal operation of an 

OFS.  
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To make it more noticeable, a pipeline is presented using the following diagram (Figure 15) as 

well as a simplified description. 

 

Figure 15 – OpenFlow switch pipeline9 

 

When the packet arrives to the switch, its ingress port is registered and a new action set is 

initialized. Then, it is matched against the first table, and so on, until a flow entry match is found 

or, if none is found, the packet is dropped. Assuming there is a match, the instructions in that flow 

entry are executed accordingly with their priority. These may, for example, result in changes to 

the packet, updates to the match fields, updates to the action set and/or to metadata. Then, 

depending on the outcome, the packet can be forward to the next table, so it can be processed 

again, and new instructions can be performed or it may reach the end of its pipeline – in which 

case, the packet is processed with its associated action set and, most of the times, forwarded to an 

output port. 

However, this is a generic description of an OF pipeline which means that distinct behaviours can 

be programmed and different paths can be followed by the packet during the pipeline, such as: 

 cloning the packet and forward it to multiple ports; 

 cloning the packet and while one copy is forwarded out the other is reinserted in the pipeline 

for extra processing; 

 sending the packet to meters and/or queues for QoS processing where it can be dropped, 

halted or burst. 

In each step of the pipeline, the respective active counters (Table 5) are updated. 

                                                      

9 Retrieved from [27] 
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Commonly, flow tables are programmed with an entry which has the lowest priority and wildcards 

all the match fields. This is usually called table-miss entry and it is used to specify how to process 

unmatched packets. Normally, one of three options is taken: 

 the packet is dropped; 

 the packet is passed to another table (not possible if it is already the last table); 

 the packet is sent to the controller by means of a packet-in encapsulation and the OFS will 

wait for the controller answer indicating how the packet should be processed (reactive flow 

instantiation).  

 

1.1.4.8. Experimental Extensions 

Since one of the reasons that lead to the creation of OF was to bypass the closure of proprietary 

systems and help to leverage research and the creation of new features, its implementation offers 

experimental extensions for most of the OF objects such as basic messages, OXM matches, 

instructions, actions, queues, meters and error.  

 

 Forwarding Hardware 

The designation “switches” in SDN network gains a new scope since, as we have seen, these relay 

boxes can easily take over functions belonging to different layers and that were usually attributed 

to routers, firewalls, load balancers or other type of middle boxes. Everything depends on the 

information they receive from the controller and how it translates in terms of flow entries. 

As a conceptual example10, by looking at the partial representation of a flow table (Figure 16) we 

can see the following distinct functionalities: 

 switching (first row) – the packet is outputted according to the physical address; 

 routing (second row) – the packet is outputted according to its IP address; 

 firewall (third row) – the packet is blocked according to the source and destination IP 

addresses in conjunction with the TCP port; 

                                                      

10 This example does not represent OpenFlow structures in a strict way. It serves merely the purpose of facilitating the perception of 

the functionalities that an OpenFlow switch can take.  
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 load balancing (fourth and fifth rows) – packets with the same destination can be forwarded 

through different ports. 

Ingress 

port 

MAC  

src 

MAC 

dst 

VLAN 

id 

IP  

src 

IP  

dst 

TCP  

src 

port 

TCP  

dst 

port 

Pirority Action 

* 00:01:1… * * * * * * 300 Port 1 

* * * * * 10.0.1.0/24 * * 300 Port 2 

* * * * 192.168.2.1 192.168.2.7 * 80 250 Drop 

* * * * 10.6.6.1 10.6.6.10 * 80 350 Port 3 

* * * * 10.6.6.1 10.6.6.10 * 5400 350 Port 4 

* * * * * * * * 1 Controller 

Figure 16 – OpenFlow switch different functionalities 

 

In OF environments there are two main types of switches: hardware-based and software-based. 

The first are commercial switches which tend to have superior performances and higher 

acquisition costs. The second are applications developed with the same intention and that can be 

installed on commodity hardware. From this comes its main advantage, the cost of acquisition is 

notably lower since there is no hardware attached and we may choose to buy cheaper white 

branded material or just reuse already existing hardware. In some cases, such as Open vSwitch 

[41], the software acquisition cost is null since some products are freeware.  

Inside these types of switches, it is possible to divide them in two different categories: OpenFlow 

only and OpenFlow hybrid. The first one can only handle OF operations, which means that the 

packets have to be compliant with the protocol and they will only be processed through an OF 

pipeline. The second category can also handle OF operations but it also supports the conventional 

Ethernet switching operations. In addition to distinguishing incoming packets and forwarding 

them to the respective pipeline, it still allows packets to be sent from the OF pipeline to the 

conventional Ethernet pipeline by making use of the NORMAL and FLOOD reserved ports 

(previously mentioned). 

In [42] is possible to have access to a fairly long list of the above mentioned OF switches.  
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 Controller 

The controller, also referred to as a NOS, is the software responsible for the connection between 

the physical and virtual network mapping, allowing the communication of management 

applications, which are responsible for defining the network configuration based on the policies 

defined by the network manager, with the OFSs. For this reason, it is considered a critical element 

in a SDN architecture. 

In order to support this functionality, the controller has to deal with several operations, such as: 

 accepting the connection request done by the OFSs, 

 setting and querying configuration parameters,  

 identifying the capabilities of a switch and of its OF implementation and configuration (as 

stated before, many of the OF functionalities are optional or may have optional features), 

 verifying the status of the controller-switch connection in terms of liveness, latency and 

bandwidth, 

 receiving and processing packet-in messages, 

 adding, deleting and modifying table entries (flow, group, meter), 

 pulling statistical data from counters, 

 ensuring message dependencies are met (barrier messages), 

 receiving notifications for completed or erroneous operations, 

 orchestrating multiple controllers and/or connections. 

These operations are supported by messages exchange as mentioned on the sub-chapter 1.1.4.1.  

According to the chosen controller and network requirements and configuration, the controller 

may use centralized or distributed architecture (although from a logical point of view it is often 

referred to as centralized):  

 Centralized: for small networks a single controller maybe sufficient, however, it creates a 

single point of failure. 

 Distributed: for networks that demand scalability or when characteristics like resilience and 

availability are important. The communication between controllers is supported by 

East/Westbound APIs, located at the control plane, that are built having in consideration 

features such as: advanced data distribution mechanisms, distributed concurrent and 

consistent policies, fault tolerance, interoperable multi-domain and heterogeneous 

communications, among others. 
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There are many different available solutions on the market. Created in 2008, NOX [43] [44] was 

the first one to arise and, since then, many others were made available: POX [45] (python version 

of NOX), Beacon [46], Floodlight [47], ONOS [48], OpenMul [49], OpenDaylight (ODL) [50], 

Ryu [51], Trema [52], among many others. In [42] and [53] it is possible to access extensive 

listings with commercial and freeware options. As in any software market, performance and extra 

functionalities may vary depending on the choice made.  

 

1.2. SCADA ICS 

SCADA is a common designation for the integration of several protocols, technologies and 

platforms used in ICS for control and automation of production lines, whether on a small or large 

scale, that can be geographically dispersed over the premises or over vast areas that, eventually, 

can cross country or continental borders (e.g. water, gas, oil, distribution systems).  

Among nowadays technologies, real-time field data can be accessed remotely from anywhere. 

This allows information to reach decision-makers (governments, businesses, individuals, machine 

learning software) in order to make data-drive decisions about how to improve their processes. 

SCADA systems can result in substantial savings of time and money. This is why they are 

currently placed at the core of several private and public modern industries, such as water, energy, 

transportation, oil and gas, manufacturing, food and beverage, recycling and many more. 

To allow this flow of information to go from the production process and reach the financial and 

business management (not be confused with manufacturing operations management), it is 

mandatory that SCADA systems are integrated in the remainder business structure. The following 

image (Figure 17) clearly shows that integration as defined by ANSI/ISA-95 [54]. 

 

Figure 17 – SCADA integration pyramid 
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At enterprise level, where all the resource planning, cost analysis, sells and other financial 

measures are taken, it is possible to make decisions that will have a direct and immediate effect 

(if necessary) on production and logistics management. In turn, the process-level changes 

resulting from these decisions are transmitted to the supervisory level where SCADA systems 

will be responsible for making the necessary changes and/or optimizations on the control 

equipment, thus producing the necessary effect on the process line in order to meet the decisions 

taken at the higher level. This is only possible due to the bridge made by SCADA systems that 

allow field-level data to reach top decision-makers and, conversely, decisions taken by them to 

be reflected in the production process. 

 

 Architecture 

The main components of a SCADA systems (which allow data monitoring, gathering and 

processing and also the control of machines and devices such as motors, valves, pumps) are: 

 Supervisory stations (deployed on the supervision level) supervise processes, control and 

monitor slaves and often provide support for Human-Machine Interface (HMI) consoles. 

They are also frequently connected to other applications, such as databases, to log process 

data which is often used for presenting trends.  

 Control devices (PLC’s and PAC’s11  – deployed on the control level12) are embedded 

systems connected to sensors and actuators, and also to one or more master stations, being 

responsible for most of the monitoring and control activities. In general, these devices operate 

on the basis of pre-defined clock cycles. In each cycle (Figure 18), a scan is made to 

determine the input state, transmitted by the process sensors, which is then loaded into the 

I/O image memory area. This data is then processed based on the program loaded previously 

into the PLC. The result of this processing determines the state of the outputs that will be 

loaded into the I/O image memory area and then sent to the output modules in order to have 

the actuators fulfilling their tasks.  

                                                      

11 Although there are some differences between PLC's and PAC's, these are not relevant in the context of this work and, as such, it is 

assumed a similar functioning for both. 

12 Not to be confused with the controller or control level from the SDN – there is no relation between them.  
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Figure 18 – PLC scan cycle (blue arrows) 

 

 Field devices (deployed on the field level) constitute the physical interface with the process, 

providing information about it (sensors) and enabling the execution of actions affecting its 

behaviour (actuators).  

 

Typically, SCADA systems use communication protocols in which on one side there is the 

element that manages information and communications and on the other end one or more elements 

that generate the information and respond to requests for communication. Within this logic, there 

are two main architectures, Master/Slave as used by Modbus-TCP [55] and Producer/Consumers 

as used by Ethernet/IP [56]. The most noticeable difference between the two is that: in the first 

case, the slave only sends information when requested by the master; while, in the second case, 

the producer (corresponding to the slave of the Master/Slave architecture) sends the information 

at predefined time intervals. Normally, the control devices play the role of slave/producer and the 

supervisory devices play the role of master/consumer. However, in both architectures, it is 

possible, and not unusual, to have the inverse attributions of roles or even to have the same device 

acting as master and slave or consumer and producer at the same time. 

An example of a common SCADA master/slave system architecture for process control is shown 

below (Figure 19). 
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Figure 19 – Simple SCADA system13  

 

1. Data from sensors (level 0) is being read by slave devices (level 1) according to its processing 

rate cycle. 

2. According to that data, level 1 hardware may or may not send control data instructions to 

actuators (level 0) in order to trigger some kind of action. 

3. At the same time, the master station sends data requests to the slave devices. 

4. Data (from step 1) is then sent by the slave devices to the master station, which analyses and 

displays information based on it (e.g. it may be raw data, like the actual output sent initially 

by a sensor, or it can be processed data, like the result from logic and math operations made 

by the SCADA software) using a graphical user interface (GUI), often referred to as HMI.  

5. With that information, operators can make supervisory decisions to adjust the system or to do 

an ad hoc override to the controls of the slave devices, in order to reduce waste and improve 

efficiency in the manufacturing process or to prevent or solve undesirable situations.  

Regarding the size and the purpose of the SCADA system, the complexity of the pipeline may 

change and, as stated before, the assets of the architecture may slightly differ.  

 

                                                      

13 Retrieved from [110] 
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 Communication Channel 

The communication channel is one of the most important aspects of an ICS and it is responsible 

for connecting all the layers of SCADA systems. The latest developments in this area are closely 

linked to the evolution and adoption of new network technologies. Regarding the scope of this 

work, we can divide this topic in two: before and after Ethernet. 

 Before Ethernet 

Between mid-80s until the end of the 90s, the information from the field and control level 

only reached the supervision level, which was the requirement for controlling industrial 

processes. In the majority of cases, fieldbuses [57] like Modbus and Profibus [58] were used. 

This proved to be a very cost-efficient approach, since many devices could share the same set 

of cables in a multi-dropped fashion and multiple parameters could be communicated per 

device, whereas, until then, dedicated set of cables per device had to be used and only one 

parameter could be transmitted. 

In 1994, a major step was given in the ICS world, the Fieldbus Foundation [59] was created 

in order to achieve an internationally acceptable fieldbus standard. From this moment 

onwards, the doors for integration of multi-vendor hardware and systems were open (in spite 

of the “opening” of some protocols, like Modbus, only arrived years after). 

 After Ethernet 

In early-2000, information started to be a key word in the industrial world. The necessity to 

bring field data to the management and enterprise levels (so it could be transformed in 

information) brought Ethernet to ICSs (e.g. as proven on [6], information on items/products 

stock has to be known by decision makers, suppliers, or others, so as to avoid production 

stoppages). New protocols were created [60] (in some cases old ones were just encapsulated 

in Ethernet TCP/IP packets, such as Ethernet/IP, Modbus-TCP or ProfiNet [61]). The 

adoption of Ethernet also came with advantages like increasing bandwidth, ability to use 

standard network hardware with lower costs and it was also an enabler for more inter-operable 

systems. Nowadays, despite being possible to take Ethernet until the field level, in the 

majority of the ICSs, it is still only used as far as the control level, due to the cost of 

implementation. However, in a near future, this scenario will likely change.  
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 Programming Languages 

The international standard IEC 61131-3 [62], defines five distinct programming languages used 

to create programs which run on slave devices: Function Block, Ladder, Instruction List, 

Sequential Function Charts and Structured Text. Figure 20 shows a simple example of three of 

these languages. 

 

 

Figure 20 – Ladder, function block and instruction list example14 

 

For programming the SCADA HMI, in the vast majority of cases, a drag-and-drop visual 

programing tool is used which allows the creation of intuitive diagrams like the one shown under 

(Figure 21). 

                                                      

14 Retrieved from [115] 
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Figure 21 – SCADA diagram14 

 Management and Security 

Especially after the adoption of Ethernet, the management of industrial networks became more 

difficult since its complexity greatly increased. Today, network managers have to deal with two 

completely different networks (ICT and ICS) which cannot be separated, but have completely 

different priorities, integration of multiple protocols with different demands, protocols and built-

in software without security awareness, impossibility of having downtime to preform 

maintenance, among other challenges. 

As usual, there are some proprietary solutions that claim to make network management easier but, 

besides being vendor lock-in, do not solve or cover the core problems.   

In terms of security, SCADA systems have several problems [63], e.g.: 

 Insecure design and implementation: 

o No hardware authentication, which makes it easier to connect non-authorized 

computers to the system. 

o No access credentials: several systems do not use access credentials, which 

means their security really only on the belief that no one (non-authorized) will 

get virtual or physical access to them. 

o No individual access credentials: some systems only allow the setting of general 

passwords that quickly become known by too many people. 

o Access limitations in control software are often not used. 

o Anonymous access allowed: services like Telnet and FTP often allow for 

anonymous login. 
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 No system patching: on the last years several efforts were made to improve the policy on 

patch management and from these efforts resulted some standards [64]. Nevertheless, once 

systems go into production, they will likely never be patched, due to the impossibility of 

having downtime on the production line, the fear that systems may become unstable, have 

limitations, lack support/updates by the vendor, among others.   

 External network connections: nowadays almost all the SCADA systems are, directly or 

indirectly, connected to external networks like internet, however it is often believed they are 

completely isolated from the outside world. This means that numerous connections are 

uncontrolled. 

Efforts around security issues have been made, like the creation of ISA99 Committee [65], that 

brings together cybersecurity experts and other stakeholders from across the globe to develop and 

establish ISA standards on ICS management and security. This ongoing work is being used by 

the International Electrotechnical Commission in producing the multi-standard IEC 62443 series, 

which focuses on industrial automation and control systems (IACS) security. 

Likewise, the European Union countries joint efforts aim at the same goals, through European 

FP7 [66] projects such as MICIE [67], CockpitCI [68] or the ongoing successor ATENA [69] 

supported by the more recent Horizon 2020 EU Program Framework [70].  

 

 Generations 

When talking about SCADA architecture, it is possible to identify four main evolutions, being 

that we are now entering the fourth stage of evolution: 

1. Monolithic: independent systems with only one SCADA station without external 

connectivity.  

2. Distributed: multiple SCADA stations could be connected to one system, increasing 

processing power and/or improving redundancy and reliability of the system as a whole. 

3. Networked: systems could be spread across multiple networks, allowing for clear 

geographically separation. Usage of open standards as Ethernet and TCP/IP permitting 

the usage of off-the-shelf systems, lowering costs, bringing new players into market 

(typically ICT vendors) and enabling new information processing and usage. Security 

issues relevance arises.  

4. Internet of Things (IoT) also referred to as Industrial Internet of Things (IIoT): 

adoption of IoT principles and related technology with considerably infrastructure costs 
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reducing and increasing the easiness of maintenance and integration of new elements on 

the industrial structure. The rising adoption of wireless technologies will provide more 

flexibility to the industrial process but will also demand more flexible and secure network 

solutions. 

 

1.3. SDN and SCADA ICS: an overview of related work and use cases 

In [71], Dong et al. propose reinforcing the resilience of SCADA networks used for smart grid 

applications, using a solution relying on three elements (SCADA master, SDN controller, 

Intrusion Detection System—IDS), which coordinate with each other in order to detect attacks 

and reconfigure the network so as to mitigate and overcome identified problems. Suggested use 

cases include the dynamic establishment of routes to transmit control commands only when 

necessary (to shorten the time window for tampering attempts), automatic rerouting or dropping 

of suspicious packets to avoid spoofing or flooding attacks from compromised SCADA elements, 

or implementation of network monitors to deal with delay attacks. 

Irfan & Mahmud [72] propose using SDN for dynamic creation of virtual networks in order to 

isolate distinct traffic and hosts, and to enable traffic prioritization and secure partitioning. The 

concept is demonstrated using an SDN-controller proxy to create three isolated networks, which 

share the same physical infrastructure but have their own SDN controllers. Authors discuss the 

use of this architecture to improve aspects such as authentication, confidentiality, integrity, non-

repudiation, and availability. A similar approach is also suggested by Machii et al. [73] as a way 

to minimize the attack surface by using SDN to dynamically segregate fixed functional groups 

within the ICS. A dynamic zone-based approach is also proposed, taking advantage of the 

information obtained from field devices to estimate the operation phase of the ICS (as each 

phase—such as start-up, normal operation, or load-change—exhibits different behaviour and 

communications profiles) and to calculate the optimal zone topology, deploying the needed SDN 

configuration in runtime. This strategy reduces the time and spatial exposure to attacks 

(effectively creating a moving target) and also provides the means to isolate compromised devices. 

Also related to dynamic configuration techniques, Chavez et al. [74] present a security solution 

based on network randomization, which also encompasses an IDS with near real-time reaction 

capabilities. This network randomization approach assigns new addresses to network devices in 

a periodic basis or by request, in order to protect them against attacks that rely on knowledge 

about the ICS topology (such as static device addresses). The responsible controller application 

keeps an updated database of all the network specifications (mostly devices and real addresses), 
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generating overlay IP addresses for the same devices and for each flow, which are used to define 

the OpenFlow rules on flow tables. This way, all the traffic flowing on the network uses ‘fake’ 

overlay addresses that are periodically randomized, reducing their useful lifetime and, 

consequently, the time window available for any attacker to take advantage of that knowledge. 

The proposed IDS takes advantage of the predictable, auto-similar, traffic patterns of ICS 

networks for identifying attacks and triggering defence reactions (a network randomization 

request, which will render useless any ongoing attack using old overlay addresses). Attack 

detection makes use of machine learning algorithms and mathematical methods, fed and trained 

using OpenFlow’s statistical counters. 

Silva et al. [75] also describe a dynamic technique that makes use of SDN to prevent 

eavesdropping on SCADA networks. The intended goal is to deter attackers from collecting 

sequential data, which is essential for breaking encryption, identifying patterns, and retrieving 

useful information from the payload. By taking advantage of redundant network connectivity, a 

multi-path routing mechanism enables a flow to be transmitted and split over different paths (see 

Figure 22 below) by resorting to an algorithm that calculates the shortest path between two 

devices, dynamically assigns a cost to each one, and uses an OpenFlow timer (hard timeout) to 

periodically reinstall new flow rules. 

 

Figure 22 – Multi-flow, redundant routing for flow splitting 

 

Genge et al. [76] propose two distinct SDN-based techniques to mitigate and block ICS cyber-

attacks. The first technique (see Figure 23 below), designed for single-domain networks, attempts 
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to mitigate DoS attacks by rerouting traffic, using information from the SDN controller. SDN 

controllers feed an application that continuously monitors the state of the network links and 

communicates with the controller to issue flow reconfiguration operations. Once an attack is 

detected (few details are provided about this, though), the corresponding data flows are rerouted, 

in order to protect the ICS (Figure 23). 

 

  

Figure 23 – A single-domain SDN-based security solution 

The second technique (Figure 24) targets multi-domain networks, with the goal of blocking the 

attack as close as possible to the entry point in the network. 

 

  

Figure 24 – A multiple-domain SDN-based security solution 

 

For such a multi-domain network, each domain has its own OpenFlow controller, connected to a 

centralized security application. This application receives information from the SDN controllers, 

which have access to a global perspective about the network. Once an attack is detected, the 

security application will backtrack towards its origin by recursively issuing queries about the 
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related flows to identify the previously paired nodes until the original network entrance point is 

found. 

ICS-specific honeypots and honeynets can also benefit from the introduction of SDN technologies. 

Honeypots are decoy or dummy targets set up to attract and detect/profile attacks. Exposed to 

probing and attack, these targets are used to lure and track intruders as they advance, revealing 

any scouting activities. Traditionally, honeypot systems live in unused address space in the system, 

waiting for attackers to find them, but their operation can be greatly improved by SDN, which 

has the possibility of turning them into a more proactive defence. 

Using SDN network-flow manipulation capabilities, it is possible to improve honeypot operation 

and transform it into an active security component by working together with other mechanisms, 

such as network intrusion detection systems (NIDS). When an unauthorized activity is detected 

by a NIDS, the SDN controller can divert the anomalous traffic flows to an ICS-specific honeypot, 

such as the one proposed by Simões et al. [77]. The attacker would not be aware of this diversion 

and would continue the attack. Meanwhile, the honeypot will log its activity for forensics analysis. 

Figure 25, below, illustrates an example of this approach. 

 

 

Figure 25 – Active honeypot15 

 

Also, Song, Shin, and Choy [78] suggested using honeynets (networks set up with several 

honeypot devices) together with SDN technologies to detect scouting procedures and collect 

profiling information about attackers. This is achieved by providing the attacker with false 

                                                      

15 Retrieved from [113] 
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information from the honeynet, using OpenFlow to detect the scan attacks by inspecting packets 

coming towards closed or unused ports, or to detect corrupt packets or sessions. After a successful 

detection, the infringing packet and the subsequent ones in the same flow will be redirected to the 

honeynet. Despite being a generic proposal, this solution can be easily ported to most ICS 

infrastructures. 

Adrichem et al. [79] present a SDN network failover solution that should reduce the recovery 

time in multiple topologies. The proposed process is divided into two steps: firstly, recovery based 

on preconfigured forwarding rules to guarantee fast end-to-end connectivity; secondly, controllers 

calculating and configuring new optimal paths. Being the speed of failure detection the main key 

for improving the recovery time, a short discussion on different failure detecting systems is 

presented and the best choice is presented in a detailed mode. In [80], N. Dorsch et al. also 

describe their algorithms and different approaches based on SDN regarding: the efficiency 

improvement of network recovery time in case of link failure; the real-time processing of 

messages through the implementation of QoS mechanisms, based on the flexibility of SDN 

networks. Comparison data is presented and the IEC 61850 open source traffic compliant library, 

which was used on the testbed, is referred to, which may be useful. 
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Chapter 2 – Technological and Internship Opportunities and 
Challenges 

 

Like any new and innovative technology, SDN brings with it a wider range of advantages which 

open the door to new opportunities, like the integration in ICSs. However, this would not be 

possible without a number of challenges which, if not addressed correctly, could become 

disadvantages. 

 

2.1. Technological Opportunities 

Due to its architecture, SDN can improve and simplify several aspects of SCADA networks by 

means of: 

 

 Configuration and Management  

 Allowing a unified view of the network, regardless of the hardware.  

 Providing the ability to write customized and best fitted network management applications 

that can be reconfigured from a centralized point.  

 Enabling self-configuring networks that can reconfigure themselves in a dynamic way, in 

order to meet changing service requirements, such as new layout on the ICS or the 

reprogramming of control elements that begin to generate more traffic over some network 

links, among others. 

 Automatically re-configuring a switch when, by some reason, it needed to be reset or replaced.   

In ICS, switches are often left without any kind of configuration (simply making layer 2 

forwarding) so that, in case of need, they can be rapidly swapped without the overhead of 

having to be reconfigured again. 

 

 Security 

 “Denying-by-default” traffic, which can be a very simply way to block unexpected potentially 

dangerous traffic coming from unauthorized machines, such as attempts to over-write data on 

PLC’s memory (allowed by the lack of authentication on the most used ICS protocols). 
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 Supporting a higher level of granularity based on the multiple flow entries match fields, SDN 

can filter undesirable traffic at line rate as well as detect new unexpected traffic. 

 Detecting changes in traffic patterns, by using the above mentioned granularity capabilities 

or by means of statistical treatment based on the numerous counters, as a way to detect attacks 

to ICSs. (e.g. DDoS frequently involve random spoofing of IP and ports, the increase of the 

number of used TCP/IP ports and addresses may reveal ongoing issues. The number of 

packets per flow counter can also be used for DDoS detection, since such attacks usually rely 

on the transmission of a reduced number of packets from a large amount of sources; the 

number of active flows or packet matches can also be used to detect DoS. The number of 

single-flows can also be used as a way to detect attacks, since it is possible that the number 

of unpaired flows increases dramatically at the beginning of a flood attack. This can be 

calculated on a per interval basis, after subtracting the paired flows from the total.)  

 Allowing flexible configurations that can change dynamically when attacks or strange 

behaviours are detected, in order to neutralize or mitigate attacks. For example, flow-based 

forwarding can be used to increase the efficiency of a reaction, being used to isolate or divert 

flows, instead of simply blocking an attack. This is useful to improve existing security 

techniques such as dynamically diverting attackers to honeypot systems as soon they are 

detected.  

 Using proactive flows instantiation may close the opportunity window to some attacks. ICS 

communication is normally quite deterministic, hence allowing to predefine in advance the 

flow entries with a high level of granularity. 

 

 

 Reliability and Availability 

 Providing a centralized global view of the network which allows:  

o self-healing solutions, which can actuate quickly on case of link or node failure, 

ensuring the availability of critical systems; 

o faster converging to optimum resources allocation according to the demand for 

network resources; 

o easily managing of end-to-end paths. 
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 Innovation 

 Allowing high fidelity test environments. Since the backbone of SDN networks are purely 

software, they can be emulated in order to help research, testing and verification. 

 Enabling new services to be introduced quickly and at a lower cost, without the need to change 

infrastructure and with minimal disruption to the ICS. Quick time to market is also one of the 

most important characteristic in competitive markets. 

 Improving the computing capabilities of the network control hardware, which allows the 

inclusion of more complex algorithms (e.g. path optimization, multi-path discovery). 

 

2.2. Technological Challenges 

Being a new technology, which is still not stable, SDN also carries some sensitive points, such as: 

 Specified features from the last two versions of OF may still not be fully implemented or may 

present some bugs. 

 It is still not completely clear what functionalities should reside on the controller and what 

should be on the switches. 

 Multiple instances of the network controller have to be provisioned in order to avoid a single 

point of failure, since the control of the network is centralized. 

 It may send malicious control messages to the network, if a controller is compromised. 

 Prone to the existence of software bugs, especially on the controller and management 

applications. 

 Excess of granularity in rules may affect the network scalability. It is important to find a 

balance between both. 

 Latency variability. Being typically a very strict parameter in ICSs, it is important to  

attain a good structuring/programming of the flows entries, since several factors can influence 

the individual latency of each. (e.g. number and type of tables, number of flows in each table, 

instruction type, number and type of actions, “internal recirculation”). 
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2.3. Internship Aims and Constraints   

The research work done during the internship focused on the prospection, design and development 

of mechanisms that could take advantage of the potential synergies between the two technologies, 

SDN and ICS SCADA, as well as of the creation of a physical test environment (testbed) where 

those mechanisms could be tested and validated. 

Hence, it was necessary to study and understand the functioning of both technologies to be able 

to perceive the strengths and weaknesses of each one as to reach theoretical conceptions where 

the conjunction of the two could result in added value.  

After a detailed analysis of the SCADA ICS, it was defined that the objective would be to combine 

the dynamism, flexibility and statistical data provided by SDN with the determinism of SCADA 

ICS networks, in order to take advantage of this interactions in terms of security (detection, 

analysis, reaction), resilience and fault tolerance. 

As expected, throughout the research some constraints had to be overcome. 

Firstly, since these technologies are not approached in depth (or not at all) in any of the curricular 

subjects, there was a lack of previous knowledge on SDN and SCADA ICS (which implied a 

greater effort to gather relevant research literature). There was also an exceeding effort to fully 

understand both technologies as well as to define the level of expertise required to be able to 

analyse possible synergies between both technologies. 

Moreover, due to SDN being a relatively recent technology, there were some inconsistencies 

between scientific articles and other academic/technical documentation related to SDN, as well 

as some difficulty in perceiving which article referred to attainable applications according to the 

present and which were merely theoretical, having little or no tried or tested results. Furthermore, 

at different times, there was a need to cope with situations of software failure due to instability 

and/or incompatibilities. 

The scope of the research as well as its associated requirements presented heterogeneous 

challenges by implying different fields of expertise. Despite proving quite enriching, this diversity 

led to breaches on the path to the main purpose of this research, which proved to be very time 

consuming. 

All these constraints resulted in a steeper learning curve and a slower pace of progress. 
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2.4. Methodology and Project Scheduling 

It was necessary to do some research on the work methodologies most frequently used in the areas 

of software development in order to organize the work that would have to be developed during 

the investigation and as to understand which would best fit the expected needs. Since no 

dependency on external factors to the investigation was foreseen, the choice was to adopt an 

approach based on the back-stepping waterfall model. The adaptation made to this model (Figure 

26) was intended to make it more dynamic, by allowing a slight overlap of tasks and allowing at 

any time to go back to previous steps for verification or redefinition.   

 

Figure 26 – Adapted stepping-back waterfall methodology 

 

Therefore, the workflow based on the adopted model follows the following path: the tasks are 

performed in sequence and the outcome of one task acts as the input for the following task. 

However, since this is a research work and focuses on areas of which there is little knowledge, it 

is only natural that one would need to look slightly further ahead to help make some decisions 

regarding the conclusion of the ongoing task. Being so, a task may start slightly earlier, in parallel 

with the conclusions of the previous one. After finishing a task, if its outcomes so determine, it is 

possible to step back to previous tasks in order to produce the necessary changes. An exception 

to this methodology occurred with task 6 which was not scheduled in advance and had to be done 

in parallel with other tasks. 

 

The tasks performed throughout this research, which were scheduled (Table 6) in compliance 

with the methodology presented above, were: 

 acquaintance with the work theme, project and the state of the art (task 1); 

 preliminary proposal for solutions to develop relating ICSs and SDN (task 2); 

 writing the first version of the testbed architecture (task 3); 
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 discussion and refinement of the final version of the testbed architecture (task 4); 

 implementation of the SDN part of the testbed (task 5); 

 writing of the scientific paper entitled “Security implications of SCADA ICS virtualization: 

survey and future trends” (task 6); 

 intermediate report documentation and writing (task 7); 

 intermediate presentation creation (task 8); 

 refinement of the proposed solutions arising from task #2 (task 9); 

 development and integration of those solutions (task 10); 

 validation of the developed solutions (task 11); 

 prospection of relevant use cases (task 12); 

 writing of the scientific paper entitled “Leveraging Virtualization Technologies to Improve 

SCADA ICS Security” (task 13); 

 analysis and selection of the use cases to implement (task 14); 

 implementation of the ICS testbed (task 15); 

 integration of the SDN and ICS parts of the testbed and general testing (task 16); 

 validation of the solutions making use of the final testbed (task 17); 

 final documentation and writing of the report (task 18). 
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Task 

Month 

Set Out Nov Dec Jan Feb Mar Apr May 

1 
                                  

                                  

2 
                                  

                                  

3 
                                  

                                  

4 
                                  

                                  

5 
                                  

                                  

6 
                                  

                                  

7 
                                  

                                  

8 
                                  

                                  

9 
                                  

                                  

10 
                                  

                                  

 

Task 

Month 

May Jun Jul Set Out Nov Dec Jan  

10 
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Chapter 3 – Research and Development 

 

3.1. Testbed 

Being the testbed one of the essential elements developed throughout this work, since it 

constituted the basis for the rest of research work, a detailed description is next presented. Its main 

purpose is to provide a development and validation environment for the ideas and concepts to be 

developed. As such, its architecture should ideally encompass a number of representative 

ICS/SCADA elements, integrated within the scope of an emulated industrial process. In this 

perspective, a hybrid testbed scenario was developed and built from scratch, incorporating real 

SCADA equipment, as well as emulated and virtualized components. 

 

 Architecture 

The physical simplified testbed architecture is described by Figure 27. It is based on a network 

topology that was planned to accommodate an SDN-aware scenario.  

 

Figure 27 – Testbed simplified physical diagram 
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From a physical point-of-view, the testbed includes a number of diversified components, namely: 

 Bare-metal hypervisor running VMware vSphere 6.0, which hosts the SDN controller, has 

the following specifications: 

o CPU: Intel Xeon X3200 @ 2.13GHz 

o RAM: 8GB DDR2 800Mhz 

o HDD: 120GB 7200rpm 

o NICs: 2x1Gbps 

 Bare-metal hypervisor running Citrix XenServer 7, which hosts the SCADA control (HMI) 

and other virtual machines used for testing, has the following specifications: 

o CPU: Intel Core2 6300 @ 1,86GHz  

o RAM: 8GB DDR 667MHz 

o HDD: 120GB 7200rpm 

o NICs: 4x100Mbps, 2x1Gbps 

 Two similar machines, running CentOS 6 operative system and used as OFSs running OVS, 

with the following specifications: 

o CPU: Intel Xeon X3200 @ 2.13GHz 

o RAM: 8GB DDR2 800Mhz 

o HDD: 80GB 7200rpm  

o NICs: 6x1Gbps 

 A Northbound OpenFlow Zodiac FX switch 

 A 3COM Ethernet 4400 switch  

 SCADA process equipment, which will be discussed in one of the next sections 
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From the logical perspective, the testbed architecture is organized as shown in Figure 28. 

 

 
 

Figure 28 – Testbed logical diagram 

 

There are three distinct areas: the SDN domain composed by the OpenFlow switches and the 

controller; the LAN/WAN which is where the management applications are held; and the ICS 

which uses the SDN to establish the communication between the control and the supervisory 

elements. 

The SDN domain is composed of two separate networks: the first (10.0.0.0/24) is the production 

network and uses the OpenFlow communication protocol; the second, referred to as out-of-band 

for being in a different range of IP’s (192.168.0.0/24), is used for southbound communication 

between the switches and the network controller.  

Northbound communication, which are establish between the controller and the management 

applications, are done through REST/JSON. 
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 SDN Testbed Architecture: an overview 

3.1.2.1. Implementation and Deployment 

Since, in the laboratory, there was no adequate infrastructure where the intended tests could be 

carried out, it was necessary to implement one as it was also one of the objectives of this internship. 

This required a series of steps which are summarized below. 

 Identification of available “on premises” hardware that would suit the intended purposes. 

Since no new hardware was bought and there was no specific hardware for this project or 

SDN technologies, a selection among the existing hardware needed to be made. Some 

components needed to be gathered from different machines and assembled together in other 

to achieve acceptable requirements for each machine. 

 Preparation of active and passive and interconnection of all the testbed components. 

 Installation and configuration of virtualization solutions: 

o VMware vSphere v6, for being quite a complete option and being the solution with 

which the remaining lab researchers were more familiar with since it was already 

used in the laboratory for other purposes.  

o Citrix XenCenter 7 – for hardware compatibility issues. Some of the available 

hardware was somewhat older and was not supported by the other chosen hypervisor. 

 Creation and deployment of distinct virtual machines (VMs) with different specifications in 

order to meet the requirements of different services and purposes. A VM containing the SDN 

controller was deployed into the VMware hypervisor. This VM was running a container-

based virtualization solution (Apache Karaf) in order to easily allow the installation of ODL 

features as well as to simplify the try-out of different ODL versions. Another VM was created 

and deployed in the same hypervisor so as to host Mininet. Other VMs were created and 

deployed into the Citrix hypervisor and used as hosts for testing SDN capabilities. 

 Execution of preliminary tests in Mininet [81] emulated environments so as to test different 

solutions and configurations in a more expedite way (e.g. from first understanding how SDN 

technologies work from an empirical point of view, to test different integrations, to try to 

identify compatibility issues and other similar situations). 

 Installation and configuration of the machines intended to host the OFSs. 

 Configuration of the OVSs and ODL controller.  

 Undertaking of tests to ensure the correct operation of the testbed in terms of physical 

connections and software communication. 

The SDN part of the testbed is mainly composed of two elements, the switch and the controller.  
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Being such a recent technology, one of the main criteria of selection was the maturity of each 

solution in order to try to avoid unstable and buggy scenarios. Also, other factors have been taken 

into account, such as: being freeware, using open standards, being compliant with the more recent 

versions of OF and being well documented. The choice for the switch fell on Open vSwitch and 

for the controller fell on OpenDaylight.  

At the final stage of the internship, it was possible to acquire an OF hardware switch (Zodiac) 

which was also integrated into the testbed. 

 

3.1.2.2. Open vSwitch 

Open vSwitch is, by far, the OpenFlow software switch more used among SDN developers. There 

is also a close collaboration between developers of SDN (particularly from ODL) and developers 

of the OVS. Just by itself, this would be a strong reason to choose OVS as the OFS to be used in 

this testbed. Furthermore, it is the solution which appears to be better documented and has more 

support available (not only from the developers but also from the community). A good indicator 

of maturity and robustness is the fact that OVS is also an integral part of some hypervisors and 

cloud managers such as XenServer, Xen Cloud, VirtualBox, KVM, OpenStack, openQRM, 

OpenNebula, oVirt, and is also full compatible with the main Linux distributions being available 

as packages, or similar, for Debian, Ubuntu, Fedora, CentOS, FreeBSd, etc. In terms of support 

and compatibility, at the time, OVS supports most of the OF v1.3 and 1.4 specifications and, 

taking into account the feedback available on various websites related to the area as well as 

references in scientific papers, appears to be compatible with the most known SDN controllers. 

Being the switch used by Mininet tool is another good reason for choosing it.  

Although most of the settings are made through the controller, there are always basic settings that 

have to be made initially, as also the need for some kind of debugging. The commands mainly 

used for those settings and debugging and which are available through a local console are: 

 ovs-vsctl: is used to configure the OVS switch operations such as port configuration, 

adding/deleting bridges, defining VLAN tagging, configuring the connection mode etc. 

 ovs-ofctl: is used to monitor and administer OF switches allowing the access to active features, 

configurations, table entries, among others.  

 ovs-appctl: is used to manage and control the several daemons which compose the OVS.  
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3.1.2.3. Zodiac 

Over the time that lasted this research, there was no OF hardware switch nor was there a 

possibility to acquire one due to the inherent costs. However, already at the end of the research 

period, it was possible to purchase a switch which appeared as a crowdfunding project [82] from 

an Australian networking company that claimed it would create the cheapest OFS on the market. 

This switch called Zodiac (Figure 29) is an open source hybrid switch that fits the needs for basic 

OF laboratory testing. 

 

 4 x 10/100 Fast Ethernet ports with integrated magnetics 

 Command line interface accessible via USB virtual serial port 

 Amtel ATSAM4E Cortex M4 processor 

 Support for OpenFlow 1.0, 1.3 & 1.4 

 512 entry software flow table 

 64KB frame buffer with non-blocking store and forward 

 802.1q VLAN support for 64 groups from 4096 IDs 

 Per port based 802.1x authentication 

 802.1w Rapid Spanning Tree Protocol (RSTP) 

 16 ACLs per port 

 2KB jumbo frame support 

 QoS / CoS prioritisation with 802.1q tag insertion 

 Auto MDIX with X-over detection 

 Per port link and activity LEDs  

 High speed SPI expansion header 

 USB powered 

 Ultra-small size of only 10 cm x 8 cm 

Figure 29 – Zodiac switch16 

 

Although, at the current date (v0.72), has got some limitations in terms of OF support, such as 

not supporting group or meter operations, it can still support most of the basic OF specifications. 

Having an open source firmware makes it even more interesting for laboratory usage.  

The existence of a forwarding box with such a low cost, open source and with the ease of 

integration in an SDN, like it was possible to observe during its integration in the testbed, proves 

that the objectives set when creating this type of networks are being reached. 

 

                                                      

16 Retrieved from [114] 
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3.1.2.4.  OpenDaylight  

In spite of the existence of controllers with a smaller learning curve – which makes them better 

for quick prototyping, like POX –, there was a will to use technologies that were recognized by 

the industry, so that any upcoming results from this investigation could be more reliable and have 

a greater acceptance. Bearing this in mind, the choice was the ODL controller. This controller is 

supported by the main network players [83] and is highly flexible, permitting centralized and 

distributed architectures and offering standard REST/RESTCONF APIs for northbound 

communications. 

As stated on [84], having a large number of deployments in companies such as Orange, China 

Mobile, AT&T, T-Mobile, Comcast, KT Corporation, Telefonica, TeliaSonera, China Telecom, 

Deutsche Telekom, and Globe Telecom… ODL comes forward as the leading controller of SDN 

ecosystem. The number of contributing individuals has recently exceeded 500, making it one of 

the fastest growing open source projects ever. Considering the current dimension of the SDN 

market, these data seems to indicate some maturity, especially in comparison with the other 

available solutions. 

In terms of architecture, the modular structure of ODL allows us to only load useful modules 

according to the intended goals and required functionalities.  Although there are several modules 

available and new ones appearing over time, there is one – DLUX – which is quite useful for 

research and development environments. DLUX offers a GUI and natively includes two useful 

tools: 

 Topology (Figure 30) – it allows us to visualize the detected network elements and the current 

network topology. 
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Figure 30 – DLUX: Topology 

 

 Yang UI (Figure 31) – by reading and processing YANG modules, it provides us a quick 

access to the operational and configuration ODL databases (as well as all the ODL structures 

which are defined using Yang modelling). Moreover, among other functions, Yang UI also 

allows us to find out what the available REST/RESTCONF APIs and structures are, and 

enables us to validate REST/RESTCONF requests. 

 

Figure 31 – DLUX: Yang UI 
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ODL is also well known for having several southbound APIs and plugins available (such as, 

OpenFlow, NETCONF, BGP, OPFLEX, SNMP, LISP, IoT HTTP/CoAP, LISP) as well as for 

having standard, well known and easy to use northbound APIs (namely, NETCONF, REST, 

RESTCONF and AMQP). 

 

3.1.2.5. Management Application 

The possibility of easy integration of management applications in SDN is often mentioned as one 

of its main assets. Management applications can comprise a variety of functions, from simple 

monitoring of network state, to firewall, to load balancer, to IDS, to QoS optimizer, to paths 

discovery, among many others. After analysing the type of possible applications and their 

characteristics, it was concluded that these could be divided into two distinct groups: the first, 

backend applications that run continuously without human intervention and which can actively 

change the network programming, according to their algorithms and data obtained from the 

network or even from other sources; the second, frontend applications that, through their GUI, 

interact with a user and propagate the repercussions of this interaction to the network.  

 

In the scope of this work, two applications, representing both types, were developed as a PoC. 

  

The first one is a backend application developed in JAVA that collects statistical data from the 

network and then analyses it. This data is collected through RESTCONF communication (Figure 

32) with the SDN controller, using GET operations which are executed in a predefined interval, 

and JSON format for data request and response. The controller receives this data from the OFSs 

and stores it in the operational database. It is the management application responsibility to request 

data from the correct database. 
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Data request communication

 

Reprogramming communication

 

Figure 32 – Management application communication 

 

The application has autonomy to intervene in the network by sending instructions, by means of 

RESTCONF PUT and DELETE operations, to reprogram the network, such as blocking a flow, 

whenever necessary, according to the results of the analysis performed. These instructions should 

target the configuration (config) database. 

The second one is a frontend application developed in HTML, CSS and JavaScript, which offers 

a network monitoring interface with a focus on security, such as those might be used in a security 

operation centre (SOC). This application does not communicate directly with the network 

controller but rather with the first application presented, which in turn can communicate with the 

controller, if necessary. The communication between applications is established using websockets 

(Figure 33) which are used for constant communication (sending statistical data and alerts from 

the first application to the second, and requesting specific data or sending network instructions 

from the second application to the first). 
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Figure 33 – 2nd management application communication 

 

In Figure 34, it is possible to see the GUI from the second application which allows: the 

visualization of network statistics such as the number of flow packets and bytes; the visualization 

of alerts sent by the first application; and the possibility for the user to send reprogramming 

instructions to the network, such as flow blocking. 

 

 

Figure 34 – Management application GUI 
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Given the technologies used, any of the applications can be located in the LAN or WAN, thus 

allowing monitoring and control of the network in the most diverse scenarios. 

 ICS 

3.1.3.1. Industrial Process 

The SCADA process implemented in the testbed is based on a recently implemented industrial 

process (Figure 35) of a national steel company. However, it assumes components and a mode 

of operation that is transversal to several industrial processes. In this particular case, the testbed 

is based on the process described below. 

In order to save costs and increase environmental sustainability of the production process, ray 

concentrating panels were installed to store thermal energy from renewable sources and integrated 

in the existing industrial process. This energy is stored in thermal oil, which is then applied in the 

cleaning process of metal products, which takes place in a cleaning booth that incorporates gas 

burners. The booth has two areas with independent temperatures: bathing area (water) and drying 

area (air). As the drying zone needs higher temperatures, in order to optimize the cost of energy 

consumption, the thermal energy is first consumed in the drying process. The existing burners use 

an ON/OFF working mode so as to maintain the temperature within a previously specified range 

of temperature levels. Thus, when the temperature is below a certain level, the burners are turned 

ON and, when it reaches the intended level, the burners are turned OFF. 

In order to interconnect the new energy source to the mentioned booth without breaching the 

vendor warranty, the following solution was implemented: 

1. As to control the system's inlet temperature, there is a pump controlled by a frequency 

inverter that makes the thermal oil circulate through the solar panels – the longer the 

retention time of the oil in the solar panels the higher the temperature it reaches. If the oil 

temperature is too low, the speed of circulation of the oil is decreased so that it remains 

more time in the panels. If the temperature is high enough, the speed of circulation of the 

oil is increased. 

2. The oil flow directed to each area (drying, bathing) is controlled by two proportional 

solenoid valves which regulate the entrance rate of oil flow into each of the areas, 

according to the required temperature in each of the areas, to its current temperatures and 

also to the oil temperature. 
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Figure 35 – HMI from a production industrial process 

 

3.1.3.2. Implementation and Deployment 

The presented testbed (see below, Figure 36) attempts to simulate the circulation of the thermal 

oil through the circuit17. In order to implement and deploy the testbed, it was required to go 

through a series of steps which are summarized below. 

 Identification of the existing material in the laboratory, followed by an analysis of the 

necessary material to prepare a testbed. On premises there was only a Schneider Modicon 

M340 Discovery Kit composed by a M340 PLC with a digital I/O module and a Telefast 

ABE7-TES160 system used for simulating inputs and outputs and for quick connecting the 

I/O module to the operative parts. 

 Construction of a panel to support the components of the testbed. 

 Installation of the equipment in the mentioned panel. 

 Configuration and wiring of active equipment:  

o Schneider M340 PLC18 and Telefast ABE7-TES160 – The connecting cable between 

the two had to be redone since it was not prepared to work with the inputs and outputs 

made available on the I/O board. This was a time consuming task since there was no 

                                                      
17 Contingent on the constraints imposed by the type and quantity of the available material. 
18 The programming of this equipment was carried out with external aid. 
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documentation available regarding the pinout of the I/O module and cable. 

Subsequently, the PLC had to be programmed according to the intended purpose. 

o Arduino Uno – Since there was only one PLC in the laboratory, there was the need to 

search for alternatives, in order to make the testbed more complete. Hence, an Arduino 

Uno was installed which, through the use of the W5100 Ethernet shield and a Modbus 

library, was used as if it were a second PLC. The use of this equipment had the 

advantage of allowing analogue I/O, since the Schneider PLC only allowed digital I/O. 

A potentiometer was used to simulate the temperature input and a 7-segment display 

with 4 digits to allow the input value to be displayed. Subsequently, the Arduino had to 

be programmed according to the intended purpose. 

o Toshiba VFNC1S Variable Frequency Drive (VFD)18 – This equipment had to be 

parameterized in order to produce the desired effect on the motor in accordance with 

the input connections. 

o Energy counter – This equipment only needed to be wired since the required 

programming was carried out in the PLC, so it would correctly process the impulses 

sent by the energy counter. 

o Motor – This equipment was wired to the VFD.  

 Creation, configuration and deployment, into the VMware hypervisor, of a VM to host a 

SCADA system. 

 Installation and configuration of a SCADA system based on the freeware software Rapid 

SCADA [85].  

 Development of an HMI to enable the visualization of the current state of the ICS. 

 Virtualization of the already existing system containing the Schneider software for PLC 

programing so as to migrate it to the Citrix hypervisor so as to safeguard the software and its 

legal licenses, given that the hardware in which it was installed was presenting signs of failure, 

for the sake of energy saving and to test the reprogramming of the PLC from a remote point 

over the SDN. 
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1. Safety switches 

2. PLC 2 

3. I/O board 

4. Energy counter 

5. PLC 1 

6. Temperature sensor 

7. VFD 

8. Motor 

Figure 36 – ICS testbed 

 

A specific description of the industrial process implemented in the testbed (Figure 37) is 

presented below:  

PLC-1 reads the value sent by the temperature sensor. The temperature value is then sent by PLC-

1 (acting as slave device) to PLC-2 (acting as master device) when requested by the latest. This 

horizontal communication channel is done over Modbus TCP. The value is stored in a memory 

register in PLC-2. Then, PLC-2 will choose one of the following options dependently of the 

temperature value, in accordance with the algorithm that has been programmed:  

 if it is less than 50 degrees, it shuts off or keeps the engine switched off; 

 if it is between 50 and 100 degrees, it starts the engine in medium rotation speed; 

 if it is above 100 degrees, it accelerates the engine to the maximum rotation speed. 
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The motor will only start if the protection switch is on. This parameter is kept in a memory registry 

of PLC-2. 

 

Figure 37 – ICS testbed communications 

 

During the process, the HMI (Figure 38) continuously requests data update to the PLC-2 by using 

Modbus communication. In this case, the PLC-2 acts as slave and the HMI as master. As seen in 

the figure below, HMI receives updates of the motor security switch, of the current state (speed) 

of the motor, of the temperature value and of the power consumption.  
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Figure 38 – Testbed HMI 

As presented on Figure 37, the PLC-2 does not communicate directly with the motor, instead it 

communicates with a VFD which, according with the inputs activated by the PLC (through its 

outputs) and with its pre-defined parametrization, will control the speed rotation of the motor by 

means of varying the frequency of the electric signal. However, for the sake of simplification, 

throughout this report this interim link will be omitted. 

 

3.2. Toolset 

During the research, several tools were used, for testing, deployment, support and implementation 

of features and functionalities. A list of those tools as well as a short description of its usage is 

presented below: 

 iPerf [86]– this is a freeware tool for network testing. Its main purpose is to gather values of 

network metrics (throughput, bandwidth, jitter, packet loss), so that analysis can be made 

regarding the performance of the network. This is achieved by running the application in two 

deserved points of the network, one of the instances serving as a client and another as a server. 

The client establishes a preconfigured connection with the server and from there the 

measurements are taken. It is possible to define several communication parameters, such as: 

protocol (TCP/UDP), port, number of streams, packet size, buffer size, window size (TCP), 

data to send (random or a specific file), among others. During this research, iPerf was used 

not only for network performance analysis but also for generating flows for OF testing. 
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 Wireshark [87] – this freeware tool is a network protocol analyser. It allows capturing 

network live traffic for analysis. It offers a quite intuitive GUI, making it easier to look into 

each packet. It also supports customized filters to allow only the capture or analysis of the 

intended traffic. During this research, Wireshark was used to confirm what type of traffic was 

arriving at certain machines in order to help debugging abnormal situations as well as to 

check/confirm the size, payload and bytes of Modbus packets. 

 Karaf [88] – this freeware tool is a lightweight container, which can be used in a standalone 

mode or in a complex enterprise system by making use of all the features it includes. This 

tool was used since ODL is distributed inside a karaf container. Being so, this tool was used 

to run ODL and to install some of its features (modules). 

 Unity Pro [89] – although not being freeware, this tool was included in the Schneider Modicon 

M340 Discovery Kit and it is used for configuring and programming Schneider Electric 

Modicon PAC’s through its GUI. During this project, it was used to configure and program 

the Schneider Electric industrial equipment, which was included in the testbed. 

 Modbus pool and Modbus slave [90] – these commercial tools, which are also available as 

trial versions, are Modbus simulators which have the ability to act as master or slave, 

respectively. They allow to test all the different features of Modbus and provide a GUI to 

allow the monitoring and visualization of the Modbus messages results. These tools where 

used to test, verify and debug Modbus communications, such as the ones which were included 

in the programming PLC’s and in the attack script that was used in one of the use cases. 

 Rapid SCADA – this freeware tool is a SCADA software. Although being a quite simplistic 

implementation of a SCADA system, it fulfils all the basic needs of such a system. The fact 

of being open source and offering a simple interface makes it a good choice for laboratory or 

small/medium size systems. This tool was used to create the HMI of the testbed. 

 Mininet – this freeware and open source network emulator allows the creation of virtual 

networks with distinct topologies, in a simple "light" and scalable way. The created 

environments are OF compliant which use OVS’s. It also allows the installation of handy 

network tools, like the ones mentioned above for performing tests, measurements and analysis 

of performance (some are already natively incorporated). This tool was used for quick 

prototyping networks, firstly at the beginning of this research in order to better understand 

the SDN mechanisms and later for testing different possibilities. 
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3.3. Network Equipment Testing and Validation 

In the knowledge that ICSs have high requirements in terms of delays in communications, one of 

the first issues raised regarding the applicability of SDN in ICSs relates to performance in terms 

of latency.  

 

Although the OFSs used in this work fell far short of the equipment used in the production 

environment – since two are software switches running on non-dedicated hardware and another 

is a hardware switch with very modest specifications, as already mentioned – it was important to 

have an idea of their performance in order to see if this would be a limiting factor for the testing 

related to the integration of the SDN in the ICSs. Being so, it was decided to carry out some tests 

and comparisons so as to gauge their level of performance. The methodology used to measure the 

switches/network performance is presented below.  

A simple architecture composed by two hosts and a switch was used and replicated for each switch. 

In order to have a comparison term, a conventional Ethernet switch (3COM 4400) was also tested. 

During the testing no parallel usage of the network was being done.  

To be able to retrieve the network metrics iPerf and Ping tools were used. Since it was used a 

closed and controlled testing environment which suffered no fluctuations during the testing, it 

was decided to only repeat each test ten times. 

 Ping was used to collect delay and packet loss data. Being a simple and closed test 

environment with no parallel traffic or alternative paths, the round-trip time retrieved from 

the execution of the following command was interpreted as being twice the latency. 

$ ping 10.0.0.2 -c 120 -s [58 | 127 | 248] -i [0.1 | 0.25 | 0.5] 

Different sizes of packets were tested: 66, 135 and 256bytes. These values were chosen since 

most of the Modbus messages measured by analysing the traffic on the testbed had a 66bytes 

size and since the traffic measure on a real production environment was around 135bytes [91]. 

The values used in the shell command took into account the 8 bytes extra of the ICMP header 

data. Regarding the interval defined between ping commands, it was used 100, 250 and 500ms 

since these values are similar to the ones used in several ICSs. Each test was performed by 

sending 120 ICMP packets. 
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Figure 39 – Network delay 

 

As it can be seen in the above graph (Figure 39; raw data presented in the Appendix A), the 

behaviour of the conventional switch (3COM) and the OVS was quite stable and similar 

throughout the different tests – hence, only one graph related to the testing is presented. 

Although the conventional switch always got slightly better results, this was already expected 

given the non-dedicated hardware in which OVS was installed. The Zodiac switch exhibited 

a somewhat unstable behaviour, which translated into a few peaks in the measured values 

which, in turn, had resulted in higher average of delay. In terms of packet loss, none was 

detected throughout this testing. However, one cannot conclude that in a production 

environment the same would apply since there would be more network elements and hops, 

more parallel and heterogeneous traffic and, possibly, packet collisions.  

 

 iPerf was used to analyse the throughput capacity. The following commands were used on 

the server and on the client’s side respectively. 

$ iperf -s -w 512K $ iperf -c 10.0.0.2 -t 120 -w 512K 

TCP protocol was chosen since, by default, it uses the maximum available bandwidth 

provided by the network. A large window size was defined so it would not negatively 

influence the performance. The tests had the duration of 120 seconds. 
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Figure 40 – Network throughput 

 

In the first set of tests, only the 3 switches mentioned above were analysed. However, the 

discrepancy between the OVS and the conventional switch was quite high (note that the vertical 

axis of the graph uses a logarithmic scale). This would be due to the fact that the conventional 

switch had 100Mbps network interfaces, while the OVS had 1Gbps network interfaces. This 

allowed the positioning of the OVS above a conventional switch at 100Mbps, but not permitting 

to understand whether the performance obtained would be acceptable for a switch with gigabit 

interfaces. In order to clarify this doubt, it was possible to arrange a conventional gigabit switch 

(TP-Link TL-SG108E) to be submitted to similar tests. As it is possible to see in the graph above 

(Figure 40; raw data presented in the Appendix A), this switch obtained very close results to the 

OVS. Since the measured values were still far from 1Gbps, it was assumed that the network 

interfaces of the hosts used in the tests were to be responsible for limiting the measured throughput 

(probably due the usage of a shared PCI bus from the hypervisor machine). Nevertheless, one 

might conclude that the OVS performance was very positive. As for the Zodiac, the obtained 

results were quite disappointing. Despite being an experimental low cost switch, it was expected 

that it would have a better performance. However, it is thought that the poor results obtained may 

be due to a problem with the latest firmware and not to the hardware itself, since in quick tests 

carried out at the time of its acquisition it achieved much better results. 

One should bear in mind that, in a production environment, there would be several other factors 

influencing the switches/network behaviour, such as multiple flows running in parallel, distinct 

protocols, variable packets size, which could all affect the switches performance. Also, regarding 

latency in OFSs, there are other aspects which can be of significant importance for its performance 

and which were not covered in detail by the performed tests, such as lookup cost, the recycle cost 

and the action cost. This happens because these aspects are strongly related to the used hardware 
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and, due to the type of OFSs used, it did not make sense to perform this tests since the results 

would reflect, even more, the hardware used and not the OF capabilities as was the objective of 

this research. Also, these are factors which may vary substantially from case to case dependently 

on the network programming.   

Nevertheless, for laboratory usage, the OVS seems to be up to the task. As for the Zodiac switch, 

it was not possible to confirm the suspected firmware problems, so further contacts with the 

vendor will have to be done in order to clarify this situation.   

 

3.4. Use Cases for SDN and ICS/SCADA Integration 

Within the different possibilities considered while trying to find synergies between SDN and 

SCADA ICS, distinct scenarios underwent a more detailed investigation which is presented below. 

One scenario focused on the area of availability, the other scenarios, more complex, covered the 

areas of security, reliability, configuration and management. 

 

  Availability 

Availability is one of the most important parameters in an ICS network. Failure in 

communications can lead to the loss of visibility of the process as well as making control decisions 

impossible. This can result in situations of breakdown of ongoing processes, which in turn may 

translate into costly environmental, financial or even deadly consequences. 

The more demanding systems/standards, such as IEC 61850 for electrical substations automation 

systems, consider recovery times in the order of 0 to 100ms [92], although there is no strictly 

defined recovery time transversal to every ICS, due the existing heterogeneity on the usage of 

these systems – hence, the existence of soft real-time and hard real-time nomenclature. 

 

3.4.1.1. Scenario 1 – Link Failover 

In this scenario (Figure 41), a link failure is simulated in order to verify the SDN performance in 

terms of recovery time and also of how it is translated in terms of packet loss. 
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Figure 41 – Failover scenario 

 

Both switches were preconfigured with a fast-failover group type so as to provide a redundant 

connection for when the main connection becomes unavailable, in which case the switches will 

automatically change the active link. When this strategy is used, the decision in case of failure is 

brought to the periphery of the network, thus avoiding all the communication overhead with the 

controller and not relying on higher layer protocols. 

 

Figure 42 – Fast-failover flow and group entries 

In the image above19(Figure 42), it is possible to see the flow entries programmed in one of the 

switches. The first flow is responsible for outputting the packets coming from where the first 

device is connected to the group responsible for the fast failover (group id=2), which will use the 

first available bucket (bucket outputting for port number 2, if it is active, if not, it will use the next 

bucket, which is outputting for port number 1). The other flows are responsible for accepting the 

incoming traffic being sent by the other device and which will be entering through port number 2 

                                                      

19 This image is a representation of the flow entries used just for this testing scenario. They were simplified in order to be the least 

granular for simplification and in order to fit the report. 
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or 1 and forwarded to port number 3 (where the first device is connected). On the other switch, 

similar flows were programmed according to the ports used on that switch.  

The test methodology was to manually create two link failures and reconnections, which implied 

that the cable responsible for the main link was disconnected twice and, after each one, 

reconnected some time after. Every time the original main link was reconnected, it was again 

assumed as the active link. This resulted in four link swaps (Figure 43). 

 

Figure 43 – Link failure scenario 

 

In order to better control the experiment variables, to avoid possible hardware limitations and to 

better visualize the outcome data, the Ping tool was used in detriment of the ICS testbed. The 

following command was used to produce a burst of 1000 packets 135bytes size. 

$ ping 10.0.0.2 -s 135 -c 1000 -i [0,1 | 0,01] 

Two different rates were assumed for sending the packets: 0,1s and 0,01s. The first one came 

close to a more usual, yet demanding, value for Modbus TCP communications. The second was 

intended to verify the behaviour of the system in a situation of greater stress. After performing 

the tests, the reading of the results obtained for each situation (Figure 44; raw data presented in 

the Appendix A) indicated that they were very homogeneous, which proves the coherence of the 

functioning of the fast-failover system. Regarding the percentage of packet loss, it can be stated 

that the values obtained were quite encouraging. Achieving a loss of 13,5% when sending 1000 

packets with a cadence of 0,01s and only 1,5% when sending with a cadence of 0,1s. This 

corresponds to the loss of 135 and 15 packets respectively, which translates into 1,35s and 1,5s 

of total recovery time. Since there were four jumps between links, we can conclude that the 
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recovery time for each testing was 0,337s and 0,375s respectively20. Having in consideration that 

the switch was running on non-dedicated hardware, with four link changes, there was a clear 

positive result, which leaves us wondering how much better results could have been achieved by 

using a high quality hardware switch.  

 

Figure 44 – Packet loss 

 

Thus, it can be concluded that this fast-failover mechanism provided by OF is very efficient and 

meets the needs of ICS in terms of network recovery time. It would have been interesting to make 

a comparison between the recovery time of the network using the mechanisms described above 

and the rapid spanning tree protocol (RSTP), which was not possible to perform in the time 

conveyed for this research. Nonetheless, the article [93] refers recovery times in the order of 5 to 

20ms for the RSTP, which seems to prove the conclusions drawn. On the other side, it must be 

taken into account that this recovery mechanism may not be the best option to all the network 

failure scenarios, since it acts in a localized way, without taking into account an overview of the 

network which would allow it to consider the state of the remaining links beyond the first hop. 

This does not mean that it cannot be used in conjunction with centralized mechanisms that have 

this capability. For example, a centralized algorithm may predict which links are most likely to 

fail (either based on internal or external network factors) and prevent such failures by dynamically 

programming in advance this connection backup system. 

 

                                                      

20 Assuming the same overhead for each link swap and considering that this was the only factor affecting the packet loss factor. 
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  Security, Configuration and Management 

In ICS, security is often neglected due to the difficulty of configuring and managing the network, 

further magnifying the exposure to malicious attacks already existing due to the use of insecure 

protocols. 

Next, two scenarios are presented which demonstrate some of the capabilities of SDN in securing 

an ICS by detecting, analysing and reacting to anomalous network situations in a simple and 

effective way without compromising the ease of configuration and management. 

The use of proactive high granular rules could, by itself, nullify or at least hinder some attacks. 

However, since it is being assumed that every network can be breached, some relaxation has been 

assumed in the programming of OpenFlow rules, once that the focus of these scenarios was in 

detection, analysis and reaction rather than prevention. 

 

3.4.2.1. Scenario 2 – Automatic System Reaction 

In this scenario (Figure 45), an attack21 is made against the ICS by means of exploiting the 

vulnerabilities of the PLC and of the Modbus TCP protocol. An attacking machine does a MAC 

spoof of the physical address of PLC-1 and floods the PLC-2 with a Modbus TCP message which, 

using the Write Single Register function, writes in the same memory register that was being used 

to store the temperature value sent by PLC-1. The PLC-2 will execute its normal processing, 

considering the value sent by the attacking machine, because the message cadence sent by the 

attacking machine is much higher than the one sent by PLC-1 with the real value.  

                                                      

21 The result of this attack is similar to a man-in-the-middle attack, in which an ARP cache poisoning is done by flooding ARP caches 

with ARP replies. In this more elaborate attack there would be a total control in the messages that are sent to the PLC-2. However, 

since the detection principle is the same, it was decided to make an attack, which clearly shows (and relies only on) some of the 

vulnerabilities specific to ICS's. 
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Figure 45 – Attack scenario with automatic reaction 

 

When the management application is active, it detects an anomalous network pattern based on the 

analysis of the packet rate of the communication between the PLC-1 and PLC-2 in comparison to 

the previous analysis. A simple and lightweight statistical processing technique were applied to 

perform anomaly checks on communications traffic, using time series analysis based on a 

technique derived from the Shewhart [94] control charts. Shewhart control charts provide a low-

overhead technique for teletraffic flow analysis - its main shortcoming relates to its low sensitivity 

regarding the detection of small sustained shifts in the mean. A Shewhart control chart defines 

the concept of Upper and Lower Control limits based on a statistic obtained from N observations 

(y(l−1)N+1, . . . , yl) , in this specific case: 

𝑦�̅� =
1

𝑁
∑ 𝑦𝑡  𝑤ℎ𝑒𝑟𝑒 𝑙 = 1,2, …

𝑙𝑁

𝑡=(𝑙−1)𝑁+1

 

Based on flow information, the SDN app is able to calculate totals for several features, such as 

bandwidth and transferred bytes as well as the inter-packet arrival time. For each captured interval 

(5s), the values for these properties are averaged, accordingly with the formula. However, these 

averages do not constitute an unbiased estimator of the mean, due to the fact the samples are not 
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independent and also because the measurements are not guaranteed to follow a normal distribution 

- due to its nature, network captures do not correspond to a stationary random process with 

uncorrelated values. Working hour schedules may generate non-stationarities, with serial 

correlation being caused by nature of protocol state machines, whom not change states in an 

arbitrary fashion - especially in SCADA, communications tend to systematically change 

accordingly with patterns that can be easily uncovered by a network trace autocorrelation graph.  

Traditional Shewhart charts are geared towards Gaussian stationary processes with stable means 

and standard deviations, therefore, with no autocorrelation, as control limits are based on the 

standard deviation of the sampled variable. In the presence of a stationary Gaussian process, this 

would mean that the means and standard deviation would be stable, implying that observations 

within the -2*σ to 2*σ would correspond to a 95% confidence interval. Since they rely on a fixed 

interval, calculated from σ, classic Shewhart charts are not suitable for non-stationary or 

autocorrelated processes, as they would generate too many false alarms. 

While time-series analysis allows for removing pattern phenomena and serial correlation, there is 

the difficulty of fitting auto-regressive models (and the implied computational complexity). As 

an alternative, the analysis of communications traffic relies on exponential smoothing, using 

prediction errors (also called residuals) in Shewhart analysis - an approach some authors refer by 

Exponential Weighted Mean Average (EWMA) charts with residuals [95]. This allows for 

implementing adaptive control intervals, accordingly with the evolution of the analysed data (the 

optimal value for 𝛼 was estimated by trial-and-error, for the testbed scenario). 

𝑥𝑡+1 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑥𝑡 
 , with 𝑥𝑡+1 being an estimation of 𝑥𝑡+1 

While σ could be calculated from the past history of sampled residuals (that is, the time series of 

prediction errors between readings and forecasted values), [96] refers that this estimation would 

be very sensitive to outliers, suggesting instead the usage of a moving estimator using the 

Exponentially Weighted Mean Square Error (EWMS), as a variance estimator (the smoothing 

constant 𝜌  was established at 0.01, after several tests, while 𝜀𝑡 is the prediction error of the 

residuals, that is 𝜀𝑡 = 𝑥𝑡 − 𝑥𝑡 
). The UCL and LCL calculated from �̂�𝑡

2, as suggested by [96]. 

�̂�𝑡
2 = 𝜌(𝜀𝑡 + 𝜇) + (1 − 𝜌)�̂�𝑡−1

2 , 𝜇 ≈ 0 under normal conditions 

This solution allows for the implementation of an online anomaly detection system that relies on 

time-series analysis of residual prediction errors to provide semi-supervised anomaly detection. 

Due to the nature of the SCADA process and field network environments, there is a considerable 

degree of stability and homogeneity (especially in comparison with ICT networks), regarding the 
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mix of protocols, hosts and traffic flows involved that makes this approach particularly 

appropriate, not only for cyber-security monitoring but also for safety monitoring and diagnostics.  

After an anomaly is detected and identified as an attack (Figure 46), the application will react by 

sending a REST command to the controller to block the responsible flow and issuing a warning 

to its own console in order to alert the responsible personal. The controller then sends an OF 

message to the entrance switch in order for it to drop the respective packets, thus eliminating the 

exposure to the attack.  

 

Figure 46 – Automatic attack reaction 

 

This method proved to be quite effective in detecting, identifying and responding to an attack. No 

human intervention was required in order to accomplish this objective since all the needed actions 

and configurations were taken by the management application. These results help to prove the 

advantages in terms of security, configuration and management of SDN. 

Although the decision making comes from the layers above the data plane, the OF specifications 

contemplate meters that allow decisions dependent on the rate of packets to be made locally on 

the switch and before any type of forwarding action. By doing it, in addition to avoiding 



80 

 

communication overhead, it would be possible to immediately block traffic in the periphery of 

the network. The management application could program and update meters, and the respective 

meter bands, in advance according to the average packet rate, thus improving the reaction time of 

the system and bypassing possible attack vectors that may first try to isolate the switch from the 

controller and only then perform the attack to the PLC. Nevertheless, this alternative has not been 

tested since this functionality is still not implemented neither in the OVS [97] nor the Zodiac 

switch. 

However, in ICS, automatic blocking of communication may not be the best solution due to the 

problems previously identified on the first scenario. In addition, this mode of action is not always 

well accepted by those responsible for ICS who, in many cases, prefer decision-making to be 

taken by a responsible technician. An alternative method is then presented in the next scenario. 

 

3.4.2.2. Scenario 3 – Manually Operated Reaction (human-in-the-loop) 

In this scenario (Figure 47), a similar attack vector is used but the value sent by the attacker along 

with the Write Single Register function is out of a range (0-200º) that was pre-defined having in 

consideration the logic of this particular industrial process.  

 

Figure 47 – Attack scenario with manually operated reaction 
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The management application detects an anomalous network pattern based on the significantly 

increasing bytes’ average rate of the flow responsible for the communication between the PLC-1 

and PLC-2 in comparison with the previous analysis. It then sends a REST command to the 

controller in order to create a mirror of that flow, which is then sent to a deep packet inspection 

(DPI) system (Snort [98]). The controller then sends an OF message to the switch so as to program 

the intended mirror. 

After the mirror is created, the DPI system starts to receive a copy of the anomalous flow.  

The analysis made by the DPI looks inside the Modbus TCP frame so as to check the bytes 

corresponding to the Modbus function code and data. Below (Figure 48) is possible to see the 

rule used by the DPI. 

Alert tcp any any -> 10.0.0.200 502 (msg: “Alert IDS…”; content:”|06|”; offset:7; depth:1; 

byte_test:2,>,200,10; sid:10000003;) 

Figure 48 – Snort rule for Modbus analyse 

If it detects a write function (in this particular case the Write Single Registry function) and a data 

value out of the pre-defined range, it triggers an alert message that will be sent to the application 

manager through a network socket. In Figure 49 is possible to see a Modbus TCP packet and an 

explanation regarding the above mentioned bytes. 

 

Figure 49 – Modbus TCP packet inspection 
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The application manager will then issue an alert in its GUI and wait for the responsible technician 

to decide what behaviour should be adopted. For example, he decides whether to: 

 block the communication (as represented in Figure 50), which implies that a REST message 

is sent to the controller in order to block the responsible flow. The controller then sends an 

OF message to the entrance switch in order for it to drop the respective packets, thus 

eliminating the exposure to the attack. 

 forward the communication to a honey pot for further analysis. REST messages are sent to 

the controller so as to divert the intended flow and rewrite the packet headers (IP and MAC 

addresses) making the diverting transparent to the attacker. The controller then sends the 

correspondent OF messages to the entrance switch in order for it to apply the intended 

changes. 

 

 

Figure 50 – Attack reaction 

As in the second scenario, it was also possible to verify the effectiveness, easiness and 

versatility that SDN can bring to ICS networks in terms of security, configuration and 

management. In this third scenario, human intervention is highlighted in the decision-making 

process, without this implying any increase in complexity in terms of network configuration nor 

compromising the security of the network.  
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Chapter 4 – Conclusions and Future Developments 

 

In the course of this investigation, and despite some improvements as of mid-2016, some 

challenges and constraints, mainly related to its connection to recent and still developing 

technology, had to be overcome as to reach this research purposes. The several challenges faced 

were gradually overbore allowing the research to progress positively. Along with all the work 

done, it was also possible to produce and publish two articles in the scope of this research: 

 “Leveraging virtualization technologies to improve SCADA ICS security”, published in a 

special edition of Journal of Information Warfare (Volume 15, Issue 3). (Appendix B) 

 

 “Security implications of SCADA ICS virtualization: survey and future trends”, published in 

the 15th European Conference on Cyber Warfare and Security and considered one of the best 

papers of the conference. (Appendix C) 

A third article is already being prepared, to be submitted to a class A conference (NOMS or LCN 

are being considered).  

 

4.1. Conclusions 

From all the research done one can conclude that the proper SDN integration in ICS presents 

numerous advantages at different levels.  

Firstly, it has been shown that it is possible to perform the integration of both technologies in a 

simple manner, without the need of any type of intervention or change in equipment from the ICS, 

a factor which frequently delays the adoption of new technologies. 

As for configuration and management, some potential of SDN has been found, by being able, in 

real-time, to display network status as well as to still being able to perform alterations either via 

pre-programming or via human interaction with a simple click of a button.  

As for availability in cases of breach in communication due to connection failure, it has been 

proven that the mechanism inherent to OpenFlow allows a quick and effective response, 

minimizing or even annulling the negative impact on ICS.  

https://www.jinfowar.com/journal/volume-15-issue-3/leveraging-virtualization-technologies-improve-scada-ics-security
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In what security is concerned, it is currently highly consensual that communication analysis can 

prove itself to be quite helpful in the identification of anomalous situations, which are often not 

detected by other more localized systems. ICS SCADA networks are highly vulnerable due to 

their equipment and specific communication requirements. In this area, SDN present itself as an 

asset, since it allows for a quite granular control and analysis of all communication. As proven, 

the merge of SDN to ICS SCADA permits us to make the entire network safer, not only in 

prevention, but also in detection, analysis and response to anomalous (and often malicious) 

situations.  

 

4.2. Future Work 

Within the scope of configuration and management, it would be interesting to explore a scenario 

in which a system created for this purpose received as input configuration files from the industrial 

control, containing data such as identification of network devices and their programming (e.g. 

ladder logic with some extra information). According to the analysis of the mentioned files, this 

system would then be able to identify data (such as the elements intervening in communication, 

the frequency of this communication, …) and automatically configure the entire network. Such 

system would greatly facilitate the ground up creation of an ICS as well as the management and 

integration of new systems or devices in production environment. 

As for availability, it would be interesting to explore more complex mechanisms, which would 

take into consideration the entire network, as to being able to intervene in the network for the 

optimization of links as well as to respond to broader and more complex connection failure. 

In what security is concerned, similarly to what is presented in this project, it would be interesting 

to develop a centralized security system (based on a SaaS model), that could analyse, monitor and 

intervene simultaneously in different systems. This would provide two clear benefits: broader 

knowledge in terms of security, due the centralization of data resulting of the analysis and 

monitoring of several systems; enhanced expertise in security and its innovation, due to this being 

a usual gap in ICS environments. 

Generally speaking, one of the great advantages of SDN is its easy merge with other technologies. 

Other beneficial ideas, apart from those mentioned above, could arise from the merge of other 

technologies such as machine learning for the analysis of several metrics offered by SDN as to 

detect patterns and behaviours that might be explored (e.g. relation between behaviour and ICS 

system status with the several network flow and parameters).  
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It would also be interesting to merge network function virtualization (NFV), which allows the 

decoupling of the software implementation of the network functions form the underlying 

hardware by means of leveraging virtualization techniques, with SDN flexibility, so as to achieve 

more adaptable networks on demand. A good application for an ICS system that could make use 

of this interconnection could be a detection and analysis system where virtual security functions, 

such as DPI or malware filters, could be dynamically deployed on any part of the network when 

and where needed (e.g. when there is a suspicion of some kind of threat in the network or when 

the already deployed network functions could need extra processing capabilities so as to be able 

to process data in real-time – this could be achieved by parallel processing). NFV would be 

responsible for the deployment, SDN would be responsible for adapting the network to the new 

deployed elements. 

It would also be interesting to be able to perform tests in production environment, or similar, since 

this would certainly lead to benefits in the research and development of new solutions. During 

this project an effort was made as to reach this goal, considering the investment constraints 

presented. 

 

 

Summing up, I believe that the work produced cleared some of the way for the exploitations of 

synergies between SND and ICS and, not only did it achieved the intended purposes, as it also 

resulted in data which opens possibilities for future investigation. 
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Appendix A 

 
 
 

          

          

Network Equipment Testing: Wait interval between packet sending: 0,100s 

Switch OVS Zodiac 3COM 

Packet size (bytes) 66 135 256 66 135 256 66 135 256 

Collected data 

0,779 0,707 0,719 0,710 0,742 0,841 0,638 0,609 0,646 

0,710 0,737 0.709 0,710 1,844 1,031 0,574 0,586 0,620 

0,719 0,740 0,728 1,041 1,706 0,855 0,559 0,598 0,787 

0,724 0,748 0,834 1,199 0,777 0,840 0,604 0,597 0,639 

0,703 0,730 0,717 0,706 0,740 0,854 0,556 0,622 0,697 

0,712 0,744 0,772 0,691 0,759 0,867 0,562 0,587 0,654 

0,722 0,739 0,794 0,780 0,821 0,838 0,596 0,596 0,732 

0,718 0,709 0,786 1,754 2,023 0,832 0,584 0,606 0,748 

0,719 0,721 0,727 0,731 2,411 2,420 0,558 0,599 0,699 

0,714 0,735 0,739 0,705 0,813 0,968 0,576 0,598 0,703 

Arithmetic mean 0,722 0,731 0,757 0,903 1,264 1,035 0,581 0,600 0,693 

Standard deviation 0,021 0,014 0,041 0,345 0,655 0,491 0,026 0,011 0,053 

          

  

 

        

  

 

        

Network Equipment Testing: Wait interval between packet sending: 0,250s  

Switch OVS Zodiac 3COM 

Packet size (bytes) 66 135 256 66 135 256 66 135 256 

Collected data 

0,697 0,754 0,762 0,784 0,751 1,345 0,561 0,588 0.634 

0,699 0,724 0,729 0,711 0,762 1,785 0,586 0,644 0,658 

0,695 0,758 0,734 0,750 0,888 1,645 0,595 0,569 0,616 

0,724 0,747 0,755 0,712 0,797 0,850 0,574 0,573 0,617 

0,717 0,744 0,743 0,743 0,744 1,841 0,554 0,584 0,621 

0,722 0,736 0,728 0,764 0,790 1,606 0,563 0,575 0,619 

0,703 0,740 0,741 1,387 0,744 1,367 0,547 0,582 0,622 

0,693 0,741 0,744 0,681 0,762 0,834 0,552 0,586 0,632 

0,698 0,744 0,738 1,056 1,820 0,831 0,548 0,601 0,652 

0,717 0,739 0,735 1,394 0,794 0,848 0,569 0,598 0,643 

Arithmetic mean 0,707 0,743 0,741 0,898 0,885 1,295 0,565 0,590 0,631 

Standard deviation 0,012 0,009 0,011 0,280 0,331 0,420 0,016 0,022 0,016 
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Network Equipment Testing: Wait interval between packet sending: 0,500s  

Switch OVS Zodiac 3COM 

Packet size (bytes) 66 135 256 66 135 256 66 135 256 

Collected data 

0,727 0,744 0,766 0,713 2,234 0,838 0,585 0,599 0,643 

0,735 0,739 0,756 1,351 0,764 0,705 0,573 0,597 0,690 

0,731 0,744 0,741 0,735 0,891 0,850 0,593 0,643 0,620 

0,713 0,751 0,762 0,714 0,752 0,826 0,567 0,588 0,615 

0,724 0,734 0,833 0,698 0,761 0,821 0,594 0,607 0,634 

0,834 0,741 0,729 0,716 0,756 0,833 0,542 0,599 0,616 

0,750 0,746 0,718 0,714 0,747 0,829 0,587 0,593 0,612 

0,744 0,731 0,729 0,700 2,194 1,402 0,548 0,667 0,648 

0,731 0,758 0,764 0,705 0,761 0,825 0,601 0,592 0,618 

0,729 0,753 0,724 0,705 0,772 0,856 0,561 0,632 0,631 

Arithmetic mean 0,742 0,744 0,752 0,775 1,063 0,879 0,575 0,612 0,633 

Standard deviation 0,034 0,008 0,034 0,203 0,608 0,189 0,020 0,026 0,024 
 

 
 
 
 
 

Network Equipment Testing: Throughput 

Packet size (bytes) 128 Kbps 

Switch OVS Zodiac 3COM TP-Link 

Collected data 

462,000 5,750 93,900 464,000 

462,000 5,610 93,900 465,000 

464,000 4,040 93,900 465,000 

461,000 4,080 93,900 464,000 

463,000 5,880 93,800 465,000 

463,000 6,310 93,800 467,000 

464,000 5,880 93,900 465,000 

462,000 4,980 93,900 466,000 

463,000 4,900 93,800 464,000 

463,000 4,070 93,800 464,000 

Arithmetic mean 462,700 5,150 93,860 464,900 

Standard deviation 0,949 0,858 0,052 0,994 
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Scenario 1 - Packet loss – Packet size: 135 bytes 

Interval 0,01s 0,1s 0,5 

Collected data 

14,000 2,000 1,000 

12,000 1,000 0,000 

14,000 2,000 0,000 

13,000 1,000 0,000 

15,000 1,000 0,000 

12,000 2,000 0,000 

13,000 1,000 1,000 

14,000 1,000 0,000 

14,000 2,000 0,000 

14,000 2,000 0,000 

Arithmetic mean 13,500 1,500 0,200 

Standard deviation 0,972 0,527 0,422 
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Abstract: In recent years, Supervisory Control and Data Acquisition (SCADA) Industrial 

Control Systems (ICS)–systems used for controlling industrial processes, power plants, 

or assembly lines–have become a serious concern because of security and manageability 

issues. While the introduction of virtualization technologies has been instrumental in 

helping ICT infrastructures deal with such problems, their adoption in the ICS domain 

has been slow, despite recent developments such as the introduction of hypervisors or 

software-defined networking. This paper provides an overview of the usage of such 

technologies to improve SCADA ICS security and reliability; it also proposes advanced 

use cases. 

 

Keywords: Virtualization, Critical Infrastructure Protection, Industrial Control Systems 

 

Introduction 

In recent years, SCADA ICS–systems used for controlling power plants, assembly lines, 

or industrial processes, often part of critical and/or strategic infrastructures–have become 

a serious concern because of security and manageability issues. After years of air-gaped 

isolation, the increased coupling of ICS and ICT systems, together with the absence of 

proper management and security policies (Krutz 2006), disclosed several weaknesses in 

SCADA ICS, which were left exposed to attacks and potentially catastrophic 

consequences. These problems hardly constitute any novelty within the ICT domain, 

which has dealt with them for decades, prompting the development of specific tools and 

protocols, as well as for the establishment of management frameworks, such as 

Information Technology Infrastructure Library (ITIL) change management (Galup et al. 

2009) or security-oriented policies. 
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However, ICT-specific practices cannot be easily ported to the ICS domain. For ICS 

operators, equipment manufacturers, and software developers alike, reliability is the top 

priority. Continuous operation and operational safety targets make it difficult to deploy 

several ICT-specific strategies and tools because of the potential impact on the ICS. This 

has pushed the industry, researchers, and standardization organizations to conceive ICS-

specific security and management solutions and frameworks, as well as to publish 

guidelines documenting best practices. New product lines have also been introduced, with 

added security features and management capabilities. 

 

Still, the ICS paradigm itself remained relatively unchanged, as proposed solutions try to 

fix what is wrong without attempting to introduce significant change into existing systems. 

This solution is far from optimal, as typical lifecycle-management operations, such as 

security patch deployment, are still an issue in modern SCADA ICS, the same being true 

for change management. In contrast, these issues have been addressed in the ICT domain 

for years through the continuous development of technologies, tools, and practices 

designed to address such needs. Virtualization technologies, which influence ICT 

computing and communications infrastructures, are among these developments. 

Developments such as hypervisors, Software-Defined Networking (SDN), or Network 

Function Virtualization (NFV) are reshaping the ICT ecosystem, providing the means to 

rationalize the use of computing and communications resources, also being instrumental 

to optimize and/or to improve aspects such as lifecycle management, energy efficiency, 

reliability, or security, among others. 

 

From an ICS-security and -reliability perspective, device and infrastructure virtualization 

may have a similar impact as they had for ICT, as the industry slowly starts to absorb 

some of the technologies customized and fine-tuned for critical infrastructure 

environments. However, this process is still in early stages, not only because the specific 

ICS use cases for several virtualization technologies have yet to be developed, but also 

because extensive testing is required for its certification in such environments. In this 

scope, this paper consists of an extended version of an earlier article (Cruz et al. 2016)–

analysing the application of virtualization technologies for communications and 
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computing resources in ICS contexts, with a focus on recent developments, open 

challenges, and benefits, from a security and reliability-oriented perspective. 

 

The rest of this paper is structured as follows. The next section discusses the problem of 

security in ICS/SCADA, also explaining the potential benefits of introducing domain-

aware virtualization technologies in such environments. Immediately following is a 

discussion of the introduction of network virtualization technologies in SCADA ICS and 

its security benefits. Next, the advantages of introducing partitioning hypervisors in ICS 

are addressed by describing a virtualized Programmable Logic Controller (PLC-) -use 

case. Finally, the authors present conclusions and insights about future developments. 

 

Virtualization and SCADA ICS Security 

As their scope was originally restricted to isolated environments, SCADA systems were 

considered relatively safe from external intrusion. However, as architectures evolved, 

these systems started to assimilate technologies from the ICT world, such as TCP/IP and 

Ethernet networking. This trend, together with the increasing adoption of open, 

documented protocols, exposed serious weaknesses in SCADA architectures, a situation 

that was aggravated by factors such as the use of insecure protocols, including Modbus 

(Triangle 2002) and inadequate product lifecycle-management procedures (Igure, 

Laughter & Williams 2006), the latter being responsible for the proliferation of devices 

and components beyond their end-of-life-support status. Also, the interconnection of the 

ICS network with organizational ICT network infrastructures, and even with the exterior 

(for remote management), brought a new wave of security incidents, with externally 

initiated attacks on ICS systems increasing significantly, especially when compared with 

internal attacks (Kang et al. 2011). Overall, this situation has become the root cause of 

many well-known ICS security incidents, such as the Stuxnet Trojan (O’Murchu & 

Falliere 2011). 

 

In fact, ICS security cannot be approached in the same way as its ICT counterpart, as both 

domains differ significantly in terms of their fundamental design principles. Due to their 
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critical nature, ICS-operation and -design practices frequently privilege availability and 

reliability over confidentiality and data integrity—a perspective that is quite opposite 

from the ICT philosophy, which follows an inverse order of priorities (ISA-99.00.01). 

 

The differences between the ICT and ICS domains also mean that there is no ‘one-size-

fits-all’ solution when it comes to choosing and implementing security mechanisms. The 

fundamental premises for ICT security tools and commonplace lifecycle-management 

procedures, such as patching and updating a system, can become troublesome in an ICS, 

especially with situations such as the impediment/high cost of stopping production (Zhu 

et al. 2011), or even the explicit prohibition by the system’s manufacturer, as any software 

release has to be certified before being released. Also, several security mechanisms, such 

as anti-virus software, are frequently ill advised by SCADA software providers, as they 

might interfere with the response latency of the host. The same rationale applies to 

anything deployed in the middle of the critical communications path (for example, an 

inline network Intrusion Detection System), as it may induce latency or some other sort 

of reliability issue. 

 

Ironically, much of the problems faced by ICS are not entirely new, as they were known 

well before in the ICT domain, which has undergone several paradigm shifts and 

undertaken major technological steps to deal with them. More recently, the rise of the 

virtualization paradigm has become instrumental in changing the ICT computing 

landscape and providing the means to leverage computing and communications resources 

through consolidation and efficient management. Technologies such as hypervisors, SDN, 

or NFV are contributing to rationalizing, streamlining, and reshaping of infrastructures 

and devices, up to the point of changing the way communications and computing 

resources are consumed by end-users. 

 

In terms of security and reliability, the impact is manifold. For instance, by creating a 

virtual machine (VM) snapshot, it is possible to rollback changes in case of failure or 

corruption caused by a failed OS patch or malicious tampering; VMs can be cloned for 
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sandboxed testing, prior to deployment into production; hypervisors can perform in-place 

behaviour monitoring of instances for security and safety purposes. Similarly, 

technologies such as SDN, which constitute a flow-oriented virtualization mechanism for 

networks, allow for the flexible creation and management of network overlays on top of 

existing physical infrastructures, while also enabling significant security and reliability 

benefits (Proença et al. 2015). NFV, in its turn, can work together with SDN to virtualize 

network equipment functionality, spreading it across the communications and computing 

infrastructure in an efficient and rational way, and also enabling the creation of innovative 

security solutions designed to better couple with the increasingly distributed nature of 

modern ICS and associated threats (Cruz et al. 2015). 

 

But the introduction of ICT-like virtualization techniques in ICS is not a straightforward 

process. For operators, equipment manufacturers, and software developers alike, 

reliability, operational safety, and continuous operation are top priorities, which make it 

difficult to deploy several IT-specific strategies and tools, because of the potential impact 

on the ICS. For example, the latency overhead of certain mechanisms may not be 

compatible with real-time operation requirements. Hypervisors must cope with the (soft) 

real-time requirements of ICS applications; any attempt to introduce SDN or NFV must 

account for the potential impact in terms of ICS reliability or latency. 

 

Despite the constraints, the potential efficiency, security, and reliability benefits for ICS 

are enough to justify the progressive development and introduction of domain-aware 

virtualization technologies. For instance, real-time hypervisors can provide safe 

partitioning and isolation, which will enable the creation of managed execution 

environments for real-time workloads, with continuous assessment of partition behaviour, 

and also provide rollback capabilities for potentially compromised systems. Use of SDN 

technologies can provide the ICS operator with the means to monitor the ICS 

communications infrastructure behaviour, while easing the implementation of 

countermeasures and deployment of security mechanisms. As ICS become increasingly 

distributed, NFV can provide the means to efficiently spread functional security 

components across the ICS communications and computing infrastructure in order to 
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better couple with the dispersed nature of the protected systems. The next section of this 

article will discuss how domain-aware virtualization can provide effective security 

benefits for ICS, with a focus on two major scopes: communications and computing. 

 

Virtualization of SCADA ICS Communications Infrastructures 

This section is specifically concerned with the introduction of SDN and NFV 

technologies within the SCADA ICS scope. For this purpose, the security benefits of the 

technologies hereby discussed will be analysed from a broad perspective, both in terms 

of the physical ICS dimension and dispersion of its scope, ranging from plant-level to 

distributed Industrial Automation and Control Systems (IACS) use cases. All sections 

will start with a brief introduction of their respective cornerstone concepts, namely SDN 

and NFV, in order to ease their introduction in the context of SCADA ICS security. 

 

SDN and SCADA ICS 

In conceptual terms, network architectures encompass three planes, which represent 

different areas of operation (Kreutz et al. 2014; Ellanti et al. 2005), as illustrated in 

Figure 1, below: management, control, and data. In this model (there are other variations), 

each plane has a specific function in terms of data transmission and network operations. 

 

Figure 1. Network planes (adapted from Kreutz et al. 2014) 

 

                            Management Plane

                                 Control Plane

                                    Data Plane
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In this model, each plane plays a well-defined role, each one with its own characteristics: 

 

 The management plane corresponds to traffic generated by services used for 

network infrastructure provision, maintenance, and monitoring. Such traffic can 

be transported through in-band (sharing the same link as user/normal traffic) or 

out-of-band (OOB) connections (a separate link/connection dedicated for 

management operations) (Schudel & Smith 2007). 

 The purpose of the control plane (or signalling plane) is to support the setup of 

the data plane, including traffic between network elements related with policy or 

routing information exchanges. This is the case with switches, which may use 

specific protocols to exchange bridge information among them in order to infer 

topology information and to avoid loops. Control-plane traffic includes signalling, 

routing information, and link-state protocols, among other types of traffic 

(Schudel & Smith 2007). 

 The data plane (also referred as the user plane, forwarding plane, carrier plane, 

or bearer plane) is responsible for carrying user data. Traffic belonging to this 

plane does not involve source or destination IP addresses belonging to network 

elements, such as routers or switches,, as it is expected to involve only end devices, 

such as computers and servers (Schudel & Smith 2007), which use the network 

for transport purposes. 

 

SDN departs from the vertical integration that is characteristic of the traditional 

networking model, proposing an architecture that decouples forwarding functions (data 

plane) and network control (control plane), with the aim of introducing direct 

programmability into the network, to applications and policy engines alike (Kreutz et al. 

2014). The control plane is moved outside the forwarding network elements and placed 

in a logically centralized controller (whose functionality may be spread among several 

instances, to improve scalability and resilience (Yeganeh, Tootoonchian & Ganjali 2013)), 

with the data plane remaining in place. The term SDN (for ‘Software Defined 

Networking’) was first introduced in an article (Greene 2009) referring to the Openflow 

project (ONF 2012) at the time being developed at the University of Stanford, which 

eventually became one of the first SDN-enabling standards. 

 

With SDN, packet forwarding is flow oriented, meaning both origin and destinations are 

taken into account, instead of just packet destination, as in traditional networking. The 

SDN controller manages flow policies for a range of forwarding elements, effectively 
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moving such functions out of the devices. Thus, SDN-capable elements can be 

dynamically reconfigured over the network accordingly with the needs of network 

services and applications. For this reason, the controller will have a broader view of the 

domain, contrasting with the narrow view that an individual forwarding element has in a 

traditional IP network. Figure 2 illustrates the flow-rule table of the OpenFlow protocol 

(one of the most popular SDN protocols). 

 

Figure 2: Openflow flow-rule table (adapted from SDX Central 2014) 

 

Leveraging SDN for SCADA/ICS security 

SDN allows for increased network flexibility and programmability, in particular for 

complex scenarios, which benefit from the reduced overhead for management operations 

such as topology changes for implementing overlay networks. Besides these benefits, 

SDN can also provide an effective mechanism for security applications (Proença et al. 

2015). This is due to the fact that a centralized element with a global view of all the 

network entities (such as devices, flows, and network elements) is able to provide more 

efficient information-gathering and security-reaction mechanisms, especially when 

compared with the narrow local view individually provided by each forwarding element 

in traditional IP networks. For instance, an Openflow controller can provide information 

useful for online analysis and detection of security issues, as suggested by Braga, Mota, 

and Passito (2010): 

 

 Packets per flow: this counter can be used for slow rate DDoS detection, as such 

attacks usually rely on the transmission of a reduced number of packets from a 

large amount of sources; 

 Average bytes per flow: this can be used to detect small payload sizes, which are 

frequent in DDoS attack flows, in order to increase the attack efficiency; 

 Average duration per flow: an SDN flow is deleted from its flow table if left 

inactive (no packets received) for a period of time, a feature which can be used to 

detect short flows characteristic of DoS attacks (Sadre, Sperotto & Pras 2012); 
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 Percentage of pair-flows: an asymmetry between flows coming into and out of 

the network can be an indicator of an ongoing DDoS attack (Kreibich 2005); 

 Number of single-flows: it is possible that the number of unpaired flows 

increases dramatically in the beginning of a flood attack. This can be calculated 

on a per interval basis after subtracting the paired flows from the total; 

 Number of used TCP/IP ports and addresses: DDoS frequently involve random 

spoofing of IP and ports, whose rate of increase may reveal ongoing issues. 

 

Moreover, flow-based forwarding can be used to increase the efficiency of a reaction, 

being used to isolate or divert flows, instead of simply blocking an attack. This is useful 

to improve existing security techniques—for example, dynamically diverting attackers to 

honeypot systems as soon they are detected. SDN can also help handling Denial of 

Service (DoS) and Distributed DoS (DDoS) attacks by improving detection and reaction 

mechanisms. 

 

Besides the generic security application scenarios, there have been several developments 

regarding SDN-based security mechanisms for ICS. For instance, Dong et al. (2015) 

propose reinforcing the resilience of SCADA networks used for smart grid applications 

using a solution relying on three elements (SCADA master, SDN controller, Intrusion 

Detection System—IDS), which coordinate with each other in order to detect attacks and 

reconfigure the network so as to mitigate and overcome identified problems. Suggested 

use cases include the dynamic establishment of routes to transmit control commands only 

when necessary (to shorten the time window for tampering attempts), automatic rerouting 

or dropping of suspicious packets to avoid spoofing or flooding attacks from 

compromised SCADA elements, or implementation of network monitors to deal with 

delay attacks. 

 

Irfan & Mahmud (2015) propose using SDN for dynamic creation of virtual networks in 

order to isolate distinct traffic and hosts, and to enable traffic prioritization and secure 

partitioning. The concept is demonstrated using an SDN-controller proxy to create three 

isolated networks, which share the same physical infrastructure but have their own SDN 

controllers. Authors discuss the use of this architecture to improve aspects such as 
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authentication, confidentiality, integrity, non-repudiation, and availability. A similar 

approach is also suggested by Machii et al. (2015) as a way to minimize the attack surface 

by using SDN to dynamically segregate fixed functional groups within the ICS. A 

dynamic zone-based approach is also proposed, taking advantage of the information 

obtained from field devices to estimate the operation phase of the ICS (as each phase—

such as start-up, normal operation, or load-change—exhibits different behaviour and 

communications profiles) and to calculate the optimal zone topology, deploying the 

needed SDN configuration in runtime. This strategy reduces the time and spatial exposure 

to attacks (effectively creating a moving target) and also provides the means to isolate 

compromised devices. 

 

Also related to dynamic configuration techniques, Chavez et al. (2015) present a security 

solution based on network randomization, which also encompasses an IDS with near real 

time reaction capabilities. This network randomization approach assigns new addresses 

to network devices in a periodic basis or by request, in order to protect them against 

attacks that rely on knowledge about the ICS topology (such as static device addresses). 

The responsible controller application keeps an updated database of all the network 

specifications (mostly devices and real addresses), generating overlay IP addresses for 

the same devices and for each flow, which are used to define the OpenFlow rules on flow 

tables. This way, all the traffic flowing on the network uses ‘fake’ overlay addresses that 

are periodically randomized, reducing their useful lifetime and, consequently, the time 

window available for any attacker to take advantage of that knowledge. The proposed 

IDS takes advantage of the predictable, auto-similar, traffic patterns of ICS networks for 

identifying attacks and triggering defence reactions (a network randomization request, 

which will render useless any ongoing attack using old overlay addresses). Attack 

detection makes use of machine learning algorithms and mathematical methods, fed and 

trained using OpenFlow’s statistical counters. 

 

Silva et al. (2015) also describe a dynamic technique that makes use of SDN to prevent 

eavesdropping on SCADA networks. The intended goal is to deter attackers from 

collecting sequential data, which is essential for breaking encryption, identifying patterns, 
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and retrieving useful information from the payload. By taking advantage of redundant 

network connectivity, a multi-path routing mechanism enables a flow to be transmitted 

and split over different paths (see Figure 3, below) by resorting to an algorithm that 

calculates the shortest path between two devices, dynamically assigns a cost to each one, 

and uses an OpenFlow timer (hard timeout) to periodically reinstall new flow rules. 

 

Figure 3: Multi-flow, redundant routing for flow splitting (adapted from Silva et al. 2015) 

Genge et al. (2016) propose two distinct SDN-based techniques to mitigate and block ICS 

cyber attacks. The first technique (see Figure 4, below), designed for single-domain 

networks, attempts to mitigate DoS attacks by rerouting traffic, using information from 

the SDN controller. SDN controllers feed an application that continuously monitors the 

state of the network links and communicates with the controller to issue flow 

reconfiguration operations. Once an attack is detected (few details are provided about this, 

though), the corresponding data flows are rerouted, in order to protect the ICS. 
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Figure 4: A single-domain SDN-based security solution (adapted from Genge et al. 2016) 

The second technique (see Figure 5) targets multi-domain networks, with the goal of 

blocking the attack as close as possible to the entry point in the network. 

 

  

Figure 5: A multiple-domain SDN-based security solution (adapted from Genge et al. 2016) 

For such a multi-domain network, each domain has its own OpenFlow controller, 

connected to a centralized security application. This application receives information 

from the SDN controllers, which have access to a global perspective about the network. 

Once an attack is detected, the security application will backtrack towards its origin by 

recursively issuing queries about the related flows to identify the previously paired nodes 

until the original network entrance point is found. 

 

ICS-specific honeypots and honeynets can also benefit from the introduction of SDN 

technologies. Honeypots are decoy or dummy targets set up to attract and detect/profile 

attacks. Exposed to probing and attack, these targets are used to lure and track intruders 

as they advance (Simões et al. 2013), revealing any scouting activities. Traditionally, 

honeypot systems live in unused address space in the system, waiting for attackers to find 

them (Spitzner 2003), but their operation can be greatly improved by SDN, which has the 

possibility of turning them into a more proactive defence. 

 

Using SDN network-flow manipulation capabilities, it is possible to improve honeypot 

operation and transform it into an active security component by working together with 
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other mechanisms, such as network intrusion detection systems (NIDS). When an 

unauthorized activity is detected by a NIDS, the SDN controller can divert the anomalous 

traffic flows to an ICS-specific honeypot, such as the one proposed by Simões et al. 

(2013). The attacker would not be aware of this diversion and would continue the attack. 

Meanwhile the honeypot will log its activity for forensics analysis. Figure 6, below, 

illustrates an example of this approach. 

 

 

Figure 6: Active honeypot (reproduced from Hewlett-Packard 2014) 

Also, Song, Shin, and Choy (2014) suggested using honeynets (networks set up with 

several honeypot devices) together with SDN technologies to detect scouting procedures 

and collect profiling information about attackers. This is achieved by providing the 

attacker with false information from the honeynet, using OpenFlow to detect the scan 

attacks by inspecting packets coming towards closed or unused ports, or to detect corrupt 

packets or sessions. After a successful detection, the infringing packet and the subsequent 

ones in the same flow will be redirected to the honeynet. Despite being a generic proposal, 

this solution can be easily ported to most ICS infrastructures. 

 

Network Function Virtualization and distributed ICS 

NFV is the result of the convergence between telecommunications infrastructures and 

infrastructure virtualization. As network applications and services scale and evolve (not 

only in sheer capacity requirements, but also in complexity), they impose an added burden 

to the supporting telecommunications provider infrastructure, requiring the use of specific 
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network management and traffic policies that cannot be provided by the network. As  

Chiosi et al. (2012) have noted, from this perspective, NFV is a significant development 

as it enables the creation of flexible and on-demand network services through a service 

chain-based composition mechanism that uses network functions implemented in VNF 

(Virtualized Network Functions) components comprising functionality such as NAT, IDS, 

Firewalls or other service modules implemented as VM appliances. 

 

The NFV vision attempts to decouple network capacity from functionality, by conceiving 

an end-to-end service as an entity that can be modelled and described by means of 

network function forwarding graphs (Figure 7) involving interconnected VNFs and 

endpoints (also known as service chaining). 

 

 

Figure 7: NFV Forwarding Graph example 

This approach allows for creation of differentiated end-to-end services that can be 

provided by the (ordered) combination of elementary VNF or physical functions, chained 

together by a Forwarding Graph, which models the service flows (see Figure 8, below). 

Furthermore, VNF FGs can be nested to define complex functions. VNFs are 

implemented in software, being interconnected through the logical links that are part of a 

virtualized network overlay, which can be implemented using SDN. 
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Figure 8: NFV end-to-end service with VNFs (adapted from Ersue 2013) 

Eventually, even Physical Network Functions (conventional network devices with close 

coupled software and hardware that perform network functions) can be involved in a 

Network Forwarding Graph service chain (the concept of service chain is not exclusive 

of NFV). A virtualization layer abstracts the physical resources (computing, storage, and 

networking) on top of which the VNFs are deployed and implemented, with the 

supporting NFV Infrastructure (NFVI) being spread across different physical locations, 

called Points of Presence (NFVI PoPs), as shown in Figure 5, above. 

 

NFV as an enabler for a new generation of distributed IACS 

Use cases such as Internet of Things (IoT), wire-to-water generation, micro generation, 

smart metering or smart water management constitute a new generation of distributed 

IACS that can only be supported with the help of a complex distributed software stack, 

potentially also requiring the involvement of third-parties, such as telecommunications 

and cloud operator infrastructures—for this reason, the introduction of Network Function 

Virtualization component appliances, distributed across geographically dispersed 

infrastructure PoPs, makes entire sense. 

 

As the IACS enters the customer premises, the NFV service abstraction model (services 

as composition of VNFs) provides an effective way to introduce support components 

along the service path. For instance, a data collection and analysis VNF can be added to 

the customer service chain (eventually within a virtual Business Gateway service 
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abstraction) to provide data collection for smart metering scenarios. The same rationale 

applies for security purposes, as cyber-physical protection (for example, to implement 

bump-in-the-wire encryption) or security anomaly detection VNFs can be integrated 

within service chains, also using SDN to create flexible security monitoring and reaction 

capabilities. Moreover, Distributed IDS (DIDS) components may be consolidated in the 

form of VNFs optimally deployed in order to reduce service overhead and rationalize 

resources. For instance, the DIDS components might be deployed in the form of VNFs, 

either shared among several Business Gateway FGs or used exclusively by a service 

instance (Cruz et al. 2015). Some manufacturers (RAD 2015) (ECI 2015) are starting to 

propose NFV products for ICS applications that implement this philosophy, incorporating 

NFV capabilities in access nodes for optical transport or packet switched networks, for 

hosting firewall, encryption or traffic monitoring VNFs. 

 

NFV is also an enabler for fog computing scenarios. The term ‘fog computing’, frequently 

also referred as ‘edge computing’, is based on the idea that, rather than hosting and 

working from a centralized cloud, some parts of the infrastructure may be deployed on 

network ends, using virtualized platforms located between end-user devices and the cloud 

data centres. It attempts to provide better quality of service in terms of delay, power 

consumption, and reduced data traffic over the Internet, among other benefits. Fog 

computing tries to address the need to process large data streams in real time while 

working within the limits of available bandwidth, by placing some of transactions and 

resources at the edge of the cloud, thus improving the efficiency of the infrastructure by 

offloading processing tasks before passing them to the cloud. 

 

The NFV paradigm is naturally compatible with fundamental premises for 

implementation of fog-computing distributed topologies. As such, it is envisioned that 

distributed awareness and IACS cyber-security detection capabilities will take advantage 

of the NFV paradigm to support their underlying deployment model, departing from the 

conventional, self-contained model and moving towards an architecture capable of 

keeping up with the geographically dispersed nature of IoT IACS. Also, the VNF 

deployment criteria may consider the availability of specific capabilities (such as raw 

http://www.academia.edu/8648486/Fog_Computing_Will_it_be_the_Future_of_Cloud_Computing


 

 

115 

 

processing capacity) in a specific NFVI POP. For instance, per-subscriber security-event 

processing components may be hosted in a different NFVI POP from the one(s) hosting 

other VNFs for the DIDS service. 

 

Real-time Hypervisors + SDN = Towards a Virtualized PLC 

Born in the mainframe era, Virtual Machine Monitors (also called Hypervisors) have 

ultimately evolved towards being supported in open, Commercial Off-The-Shelf (COTS) 

hardware, bringing a significant improvement for the ICT ecosystem, allowing for co-

hosting of several VMs within a host machine, sharing resources, and providing a 

managed execution environment. Specifically, type-1 (bare metal) hypervisors have 

become popular in large-scale virtualization scenarios such as data centres, bringing 

several benefits in terms of resource consolidation, business continuity, scalability, 

management, and security. 

 

However, most type-1 hypervisors are optimized for ICT loads, and, thus, are unsuitable 

for several ICS application use cases, mostly due to the overhead of the mediation and 

translation mechanisms abstracting the host hardware from the VM. This situation 

gradually began to change, as some operators started virtualizing hosts with services 

deployed on general-purpose OS, such as SCADA Master Stations (MS), Human-

Machine Interfaces (HMI) or Historian Database servers (HDB), using conventional type-

1 hypervisors. This was possible due to developments that allowed such hypervisors to 

benefit from hardware-assisted memory management and I/O mechanisms to implement 

robust resource affinity and reservation (such as VT-d and PCI SRV-IO; see Garcia-Valls, 

Cucinotta & Lu 2014), thus, providing performance guarantees while avoiding the effect 

of resource overprovisioning. Also, real-time clock integrity issues, one of the main 

concerns in hypervisor environments, were mostly solved using para-virtualized 

interfaces (KVM 2015) and/or adequate clock synchronization policies. 

 

Other ICS elements, such as process control devices, can also potentially benefit from 

virtualization technologies. For instance, (Cahn et al. 2013) proposed the virtualization 
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of Intelligent Electronic Devices (IEDs) used to collect information from sensors and 

power equipment, with the purpose of optimizing the maintenance and cost overheads, 

while increasing reliability. The same rationale could be applied to Programmable Logic 

Controller (PLC) devices, which constitute the focus of this section. 

 

PLCs are pervasive components in ICS, such as SCADA systems, being designed to 

control industrial processes autonomously or as part of a distributed-control system 

topology. While the success of the PLC may be explained by its robustness and reliability, 

it is one of the most enduring legacies in modern ICS, having evolved very little over the 

last years. Modern PLCs are the outcome of an evolutionary process that started with the 

first generation of relay-based devices, progressively incorporating technologies such as 

microprocessors and microcontrollers, Real-Time Operating Systems (RTOS) and 

communications capabilities ranging from serial point-to-point or bus topologies to 

Ethernet and TCP/IP. Although modern PLCs are often embedded devices running Real-

Time Operating Systems (RTOS), equipped with System-on-Chip or CPUs (PowerPC, 

x86 or ARM) based on commodity Instruction Set Architectures (ISA), their 

virtualization was not deemed feasible until recently, due to the lack of specific hardware, 

software, and infrastructure support. 

 

Towards the virtual PLC 

PLCs are designed for reduced and deterministic latency, operating under strict timing 

constraints that are dependent on factors such as the end-to-end and event response 

latencies across components on interconnected buses, or signal and message propagation 

delays. These requirements are incompatible with the use of several virtualization 

technologies, such as conventional type-1 hypervisors, due to overhead issues and the 

lack of support for real-time payloads. 

 

However, recent developments, such as the implementation of low-latency deterministic 

network connectivity for converged Ethernet and the availability of real-time hypervisors, 

have made it possible to virtualize components of the PLC architecture. The vPLC 

architecture described by Cruz, Simões & Monteiro (2016) takes advantage of these 
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capabilities by decoupling the PLC execution environment from I/O modules using an 

SDN-enabled Ethernet fabric to provide connectivity to the I/O subsystem (Figure 9, 

below). This architecture departs from the SoftPLC concept, as proposed by products 

such as (Codesys) or (ISaGRAF), by adopting an approach in line with (Intel 2013) and 

(IntervalZero 2010), with the added benefit of a convergent fabric scenario with SDN 

capabilities. 

 

 

Figure 9: The vPLC architecture 

In the vPLC, the PLC I/O bus is replaced by high-speed networking capabilities, with 

SDN allowing for the creation of flexible virtual channels on the I/O fabric, 

accommodating the connectivity flows between the vPLC instances and the I/O modules 

(such as sensor interfaces or motion controllers), and providing traffic isolation. 

Moreover, such I/O modules can be built with reduced complexity, thanks to recent 

progress in terms of Field-Programmable Gate Arrays (FPGA) and Application Specific 

Integrated Circuit (ASIC) technology. SDN reconfiguration is managed by means of an 

SDN controller, via a High-Availability (HA) server (not depicted in the figure), which 

interacts with its northbound interface. The HA server continuously monitors the SDN 

switch statistics and path reachability, triggering reconfiguration procedures in case of 

performance degradation or failure. 

 

This decentralized model shares similarities with remote or distributed I/O PLC 

topologies, with networked I/O modules acting as extensions of the PLC rack. This 
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architecture shares similarities with the Converged Plantwide Ethernet (CWpE) (Didier 

et al. 2011) proposal, or even critical avionics systems, which replace legacy 

interconnects with Ethernet-based technologies, such as Avionics Full-Duplex Switched 

Ethernet (AFDX) (Fuchs 2012).  

 

Advances in cut-through switching, together with Remote Direct Memory Access 

techniques (RDMA), particularly in converged Ethernet scenarios, have allowed for port-

to-port latencies of the order of the hundredths of nanoseconds in 10G Ethernet switch 

fabrics and application latencies in the order of microseconds (Beck & Kagan 2011). 

Additionally, resources such as Intel’s Data Plane Development Kit (DPDK) (Zhang et 

al. 2014) allow for the implementation of low-latency, high-throughput packet processing 

mechanisms that bypass kernels, thus, bringing the network stack into user space and 

enabling adapters to perform Direct Memory Access operations to application memory. 

This enables satisfying requirements for single-digit microsecond jitter and restricted 

determinism, allowing for bare-metal performance on commodity server hardware. On 

top of this, proposals such as the 802.1Qbv Time Sensitive Networking (IEEE TSN) 

standard provide compliance with real-time requirements in the microsecond range on 

conventional Ethernet. 

 

As for computing resources, there are two factors that must be considered. First, modern 

x86 or ARM processors have become capable of replacing microcontrollers in standalone 

PLC applications (Kean 2010) because of improvements in terms of raw performance, 

low latency I/O mechanisms, or the availability of ISA extensions suitable for Digital 

Signal Processing tasks. Second, the availability of real-time static partitioning 

hypervisors, such as Jailhouse (Siemens), Xtratum (Crespo, Ripoll & Masmano 2010), 

X-Hyp (X-HYP) or PikeOS (Baumann et al. 2011), enables hosting RTOS guest VMs for 

real-time workloads. Some hypervisors, such as Xtratum and PikeOS, even replicate the 

ARINC 653 (Fuchs 2012) partitioning model for safety-critical avionics RTOS, with a 

Multiple Independent Levels of Security/Safety (MILS) (Alves-Foss et al. 2006) 

architecture. 
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The benefits of this approach are manifold. The price tag for entry-level PLCs is 

comparable to a COTS server that can host several vPLC instances, being kept out of the 

factory floor or industrial environment. Distributed I/O on converged Ethernet also 

provides cost-effective performance and reliability benefits, as communications between 

different vPLC instances can take place across the convergent fabric or even locally, if 

co-located on the same host, with SDN allowing for flexible creation of communications 

channels for differentiated requirements. Moreover, I/O modules—the components with 

highest failure rate in PLCs—can be easily and quickly replaced in case of failure. 

 

Particularly, the potential advantages of the vPLC in terms of reliability, safety, and 

security are considerable, as it can take advantage of datacentre-like redundant power, 

computing, and communications resources. Other benefits are also envisioned, namely: 

 

 Hypervisors allow for migration of virtualized ICS components, as well as 

instance cloning for pre-deployment tests; 

 PLC watchdogs and system-level debugging and tracing mechanisms can be 

implemented at the hypervisor level, which is able to oversee and control the 

vPLC partition behavior; 

 vPLCs benefit from partitioning isolation, with VMs being easy to restore in a 

fresh state in case of tampering or other malicious activity; 

 SDN-managed isolated I/O paths ease the implementation of flexible, on-demand 

protection mechanisms at the I/O level, thereby paving the way for the 

introduction of NFV components at the ICS level. 

 

Overall, these benefits constitute strong arguments in support of the vPLC proposal. 

Moreover, most of them suggest that the vPLC could be feasible even for a single instance 

per device, using Industrial-grade Single Board Computers, instead of COTS servers. 

 

Conclusion 

This paper discusses the implications of the progressive introduction of virtualization 

technologies in ICS, with a special focus on security and reliability aspects. The 

virtualization of both network and computing virtualization was analysed from an ICS-
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centric standpoint, covering recent developments as well as proposing new use cases and 

approaches to improve network and systems security. 

 

Starting with an overview of network virtualization technologies, such as SDN and NFV 

and their application within ICS and distributed IACS, the paper next addressed the issue 

of using hypervisor technologies for real-time workloads. In this latter perspective, a 

virtual PLC (vPLC) architecture was discussed, which transcends the simple 

virtualization of the PLC device, constituting an integrated approach in which the device 

merges with the infrastructure in a seamless way. The vPLC takes advantage of network 

and computing virtualization technologies to propose a converged approach for plan-wide 

consolidation of the ICS infrastructure, with performance, cost, and security benefits. 

This proposal is presently under development by a team that includes the authors of this 

paper. 
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Abstract: In recent years, Supervisory Control and Data Acquisition (SCADA) Industrial Control 

Systems (ICS) – a kind of systems used for controlling industrial processes, power plants or 

assembly lines – have become a serious concern because of security and manageability issues. 

Years of air-gaped isolation, the increased coupling of ICS and Information and Communication 

Technology (ICT) systems, together with the absence of proper management and security policies, 

disclosed several weaknesses in SCADA ICS. Suddenly, these systems were faced with a reality 

that was familiar for ICT infrastructure managers for decades, which has driven the need for the 

development of specific technologies, as well as the establishment of management frameworks 

and the adoption of security-oriented policies. Virtualization was one of such developments, 

whose influence spawns several domains, from networking and communications to mass storage 

and computing resources.  

For ICT, the rise of virtualization constituted a paradigm shift, with significant gains in terms of 

resource consolidation, manageability or even security. These benefits are yet to fully reach the 

ICS domain, despite recent developments geared towards the introduction of hypervisors or 

software-defined networking within such systems. This paper provides an overview on the usage 

of such technologies to improve SCADA ICS security and reliability also proposing advanced 

use cases. 

 

Introduction  

In recent years, SCADA ICS – a kind of systems used for controlling power plants, assembly 

lines or industrial processes, often part of critical and/or strategic infrastructures – have become 

a serious concern because of security and manageability issues. After years of air-gaped isolation, 

the increased coupling of ICS and ICT systems, together with the absence of proper management 

and security policies (Krutz 2006), disclosed several weaknesses in SCADA ICS, which were left 

exposed to attacks, with potentially catastrophic consequences. Nevertheless, these problems 

hardly constitute any novelty within the ICT domain, which has dealt with them for decades, 

driving the need for the development of specific tools and protocols, as well as the establishment 
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of management frameworks, such as Information Technology Infrastructure Library (ITIL) 

change management (Gallup 2009) or security oriented policies. 

However, ICT-specific practices cannot be easily ported to the ICS domain. For ICS operators, 

equipment manufacturers and software developers alike, reliability is top priority.  Continuous 

operation and operational safety targets make it difficult to deploy several ICT-specific strategies 

and tools, because of the potential impact on the ICS. This has pushed the industry, researchers 

and standardization organizations to conceive ICS-specific security and management solutions 

and frameworks, as well as publishing guidelines and guides documenting best practices. New 

product lines were also introduced, with added security features and management capabilities.  

Still, the ICS paradigm itself remained relatively unchanged, as proposed solutions try to fix what 

is wrong without attempting to introduce significant change into existing systems. This solution 

is far from optimal, as typical lifecycle management operations such as security patch deployment 

are still an issue in modern SCADA ICS, the same being true for change management. In contrast, 

these issues have been addressed in the ICT domain for years, through the continuous 

development of technologies, tools and practices, designed to address such needs. Virtualization 

technologies are among these developments, which influence ICT computing and 

communications infrastructures. Developments such as hypervisors, Software-Defined 

Networking (SDN) or Network Function Virtualization (NFV) are reshaping the ICT ecosystem, 

providing the means to rationalize the use of computing and communications resources, also 

being instrumental to optimize and/or improve aspects such as lifecycle management, energy 

efficiency, reliability or security, among others. 

From an ICS security and reliability perspective, device and infrastructure virtualization may have 

a similar impact as they had for ICT, as the industry slowly starts to absorb some of the 

technologies, customized and fine-tuned for critical infrastructure environments. However, this is 

a process undergoing its early stages, not only because the specific ICS use cases for several 

virtualization technologies have yet to be developed, but also because extensive testing is required 

for its certification in such environments. In this scope, this paper analyses the application of 

virtualization technologies for communications and computing resources in ICS contexts, with a 

focus on recent developments, open challenges and benefits, from a security and reliability-

oriented perspective.   

The rest of this paper is structured as follows. Section 2 discusses the problem of security in 

ICS/SCADA, also explaining the potential benefits of introducing domain-aware virtualization 

technologies in such environments. Section 3 discusses the introduction of network virtualization 

technologies in SCADA ICS and its security benefits. Section 4 addresses the advantages of 
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introducing partitioning hypervisors in ICS, describing a virtualized Programmable Logic 

Controller (PLC) use case. Finally, section 5 presents conclusions insights about future 

developments. 

Virtualization and SCADA ICS security 

As their scope was originally restricted to isolated environments, SCADA systems were 

considered relatively safe from external intrusion. However, as architectures evolved, these 

systems started to assimilate technologies from the ICT world, such as TCP/IP and Ethernet 

networking. This trend, together with the increasing adoption of open, documented protocols, 

exposed serious weaknesses in SCADA architectures, a situation that was aggravated by factors 

like the use of insecure protocols, such as Modbus (Triangle 2002) or inadequate product lifecycle 

management procedures (Igure 2006), the latter being responsible for the proliferation of devices 

and components beyond their end-of-life support status. Also, the interconnection of the ICS 

network with organizational ICT network infrastructures, and even with the exterior (for example, 

for remote management) brought a new wave of security incidents, with externally initiated 

attacks on ICS systems increasing significantly, especially when compared with internal attacks 

(Kang 2011). Overall, this situation has become the root cause of many well-known ICS security 

incidents, such as the Stuxnet Trojan (O’Murchu 2011). 

In fact, ICS security cannot be approached in the same way as its ICT counterpart, as both domains 

differ significantly on their fundamental design principles. Due to its critical nature, ICS operation 

and design practices frequently privilege availability and reliability over confidentiality and data 

integrity – a perspective that is quite the opposite from the ICT philosophy, which follows an 

inverse order of priorities (ISA-99.00.01).  

The differences between the ICT and ICS domains also mean that there is no “one size fits all” 

solution when it comes to choose and implement security mechanisms. The fundamental premises 

for ICT security tools and commonplace lifecycle management procedures, such as patching and 

updating a system, can become troublesome in an ICS, when faced with situations such as the 

impediment / high cost of stopping production (Zhu 2011), or even the explicit prohibition by the 

system’s manufacturer, as any software release has to be certified before being released. Also, 

several security mechanisms, such as anti-virus software are frequently unadvised by SCADA 

software providers, as they might interfere with the response latency of the host. The same 

rationale applies to anything deployed in the middle of the critical communications path (e.g., an 

inline network Intrusion Detection System), as it may induce latency or some other sort of 

reliability issue.  
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Ironically, much of the problems faced by ICS are not entirely new, as they were known well 

before in the ICT domain, which has undergone several paradigm shifts and major technological 

steps to deal with them. More recently, the rise the virtualization paradigm has become 

instrumental in changing the ICT computing landscape, providing the means to leverage 

computing and communications resources, through consolidation and efficient management. 

Technologies such as hypervisors, SDN or NFV are contributing to rationalize, streamline and 

reshape infrastructures and devices, up to the point of changing the way communications and 

computing resources are consumed by end-users. 

In terms of security and reliability, the impact is manifold. For instance, by creating a virtual 

machine (VM) snapshot it is possible to rollback changes in case of failure or corruption caused 

by a failed OS patch or malicious tampering; VMs can be cloned for sandboxed testing, prior to 

deployment into production; hypervisors can perform in-place behavior monitoring of instances 

for security and safety purposes. Similarly, technologies such as SDN, which constitute a flow-

oriented virtualization mechanism for networks, allow for the flexible creation and management 

of network overlays on top of existing physical infrastructures, while also enabling significant 

security and reliability benefits (Proença 2015). NFV, in its turn, can work together with SDN to 

virtualize network equipment functionality, spreading it across the communications and 

computing infrastructure in an efficient and rational way, also enabling the creation of innovative 

security solutions designed to better couple with the increasingly distributed nature of modern 

ICS and associated threats (Cruz 2015). 

But the introduction of ICT-like virtualization techniques in ICS is not a straightforward process. 

For operators, equipment manufacturers and software developers alike, reliability, operational 

safety and continuous operation are top priorities, a situation that makes it difficult to deploy 

several IT-specific strategies and tools, because of the potential impact on the ICS. For example, 

the latency overhead of certain mechanisms may not be compatible with real-time operation 

requirements. Hypervisors must cope with the (soft) real-time requirements of ICS applications; 

any attempt to introduce SDN or NFV must account for the potential impact in terms of ICS 

reliability or latency. 

Despite the constraints, the potential efficiency, security and reliability benefits for ICS are 

enough to justify the progressive development and introduction of domain-aware virtualization 

technologies. For instance, real-time hypervisors can provide safe partitioning and isolation, 

enabling the creation of managed execution environments for real-time workloads, with 

continuous assessment of partition behavior, also providing rollback capabilities for potentially 

compromised systems. Use of SDN technologies can provide the ICS operator with the means to 

monitor the ICS communications infrastructure behavior, while easing the implementation of 
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countermeasures and deployment of security mechanisms. As ICS become increasingly 

distributed, NFV can provide the means to efficiently spread functional security components 

across the ICS communications and computing infrastructure, in order to better couple with the 

dispersed nature of the protected systems. The next two chapters will discuss how domain-aware 

virtualization can provide effective security benefits for ICS, with a focus on two major scopes: 

communications and computing.  

Virtualization of SCADA ICS communications infrastructures 

This chapter is specifically concerned with the introduction of SDN and NFV technologies within 

the SCADA ICS scope. For this purpose, the security benefits of the technologies hereby 

discussed will be analyzed from a broad perspective, both in terms of the physical ICS dimension 

and dispersion of its scope, ranging from plant-level to distributed Industrial Automation and 

Control Systems (IACS) use cases. All sections will start with a brief introduction of its respective 

cornerstone concepts, namely SDN and NFV, in order to ease its introduction in the context of 

SCADA ICS security. 

SDN and SCADA ICS 

SDN is an architecture that decouples forwarding functions (data plane) and network control 

(control plane), with the aim of introducing direct programmability into the network, to 

applications and policy engines alike. With SDN, packet forwarding is flow oriented, meaning 

both origin and destination are taken into account, instead of just packet destination, as in 

traditional networking. Flow policies are granted by an SDN controller, which manages the 

policies for a range of forwarding elements in a given network, effectively moving control plane 

functions outside of the devices. Thus, SDN-capable elements can be dynamically reconfigured 

over the network accordingly with the needs of network services and applications. For this reason, 

the controller will have a broader view of the domain, contrasting with the narrow view that an 

individual forwarding element has in a traditional IP network. There are several SDN protocols, 

among which OpenFlow (ONF) is one of the most popular.  

SDN allows for increased network flexibility and programmability, in particular for complex 

scenarios, which benefit from the reduced overhead for management operations such as topology 

changes for implementing overlay networks. Besides these benefits, SDN can also provide an 

effective mechanism for security applications (Proença 2015). This is due to the fact that a 

centralized element with a global view of all the network entities – such as devices, flows and 

network elements – is able to provide more efficient information gathering and security reaction 

mechanisms, especially when compared with the narrow local view individually provided by each 
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forwarding element in traditional IP networks. Moreover, flow-based forwarding can be used to 

increase the efficiency of a reaction, being used to isolate or divert flows, instead of simply 

blocking an attack. This is useful to improve existing security techniques – for example, allowing 

to dynamically divert attackers to honeypot systems, as soon they are detected. SDN can also help 

handling Denial of Service (DoS) and Distributed DoS (DDoS) attacks, by improving detection 

and reaction mechanisms.  

Besides the generic security application scenarios, there have been several developments 

regarding SDN-based security mechanisms for ICS. For instance, (Dong 2015) proposes 

reinforcing the resilience of SCADA networks used for smart grid applications using a solution 

relying on three elements (SCADA master, SDN controller, Intrusion Detection System – IDS), 

which coordinate with each other in order to detect attacks and reconfigure the network so as to 

mitigate and overcome identified problems. Suggested use cases include the dynamic 

establishment of routes to transmit control commands only when necessary (to shorten the time 

window for tampering attempts); automatic rerouting or dropping of suspicious packets to avoid 

spoofing or flooding attacks from compromised SCADA elements; or the implementation of 

network monitors to deal with delay attacks. 

(Irfan 2015), proposes using SDN for dynamic creation of virtual networks in order to isolate 

distinct traffic and hosts, enabling traffic prioritization and secure partitioning. The concept is 

demonstrated using an SDN controller proxy to create three isolated networks, which share the 

same physical infrastructure, but have their own SDN controllers. Authors discuss the use of this 

architecture to improve aspects such as authentication, confidentiality, integrity, non-repudiation 

and availability. A similar approach is also suggested by (Machii 2015) as a way to minimize the 

attack surface, by using SDN to dynamically segregate fixed functional groups within the ICS. A 

dynamic zone-based approach is also proposed, taking advantage of the information obtained 

from field devices to estimate the operation phase of the ICS (as each phase, such as start-up, 

normal operation or load-change exhibit different behavior and communications profiles) and 

calculate the optimal zone topology, deploying the needed SDN configuration in runtime. This 

strategy reduces the time and spatial exposure to attacks, also providing the means to isolate 

compromised devices.  

Also related to dynamic configuration techniques, (Chavez 2015) presents a security solution 

based on network randomization, complemented with an IDS capable with near real time reaction 

capabilities. This network randomization approach assigns new addresses to network devices in 

a periodic basis or by request, in order to protect them against attacks that rely on knowledge 

about the ICS topology (such as static device addresses). The responsible controller application 

keeps an updated database of all the network specifications (mostly devices and real addresses), 
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generating overlay IP addresses for the same devices and for each flow, which are used to define 

the OpenFlow rules on flow tables. This way, all the traffic flowing on the network uses “fake” 

overlay addresses that are periodically randomized, reducing their useful lifetime and, 

consequently, the time window available for any attacker to take advantage of that knowledge. 

The proposed IDS takes advantage of the predictable, auto-similar, traffic patterns of ICS 

networks for identify attacks and trigger defense reactions (a network randomization request, 

which will render useless any ongoing attack using old overlay addresses). Attack detection 

makes use of machine learning algorithms and mathematical methods, fed and trained using 

OpenFlow’s statistical counters. 

(Silva 2015) also describes a dynamic technique that makes use of SDN to prevent eavesdropping 

on SCADA networks. The intended goal is to deter attackers from collecting sequential data, 

which is essential for breaking encryption, identify patterns and retrieve useful information from 

the payload. By taking advantage of redundant network connectivity, a multi-path routing 

mechanism enables a flow to be transmitted and split over different paths (see Figure 1) by 

resorting to an algorithm that calculates the shortest path between two devices, dynamically 

assigns a cost to each one and uses an OpenFlow timer (hard timeout) to periodically reinstall 

new flow rules.  

 

Figure 1:  Multi-flow, redundant routing for flow splitting (adapted from (Silva 2015)) 

(Genge 2016) proposes two distinct SDN-based techniques to mitigate and block ICS cyber 

attacks. The first technique (see Figure 2), designed for single-domain networks, attempts to 

mitigate DoS attacks by rerouting traffic, using information from the SDN controller. SDN 

controllers feed an application that continuously monitors the state of the network links and 

communicates with the controller to issue flow reconfiguration operations. Once an attack is 

detected (few details are provided about this, though), the corresponding data flows are rerouted, 

in order to protect the ICS. 
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Figure 2: A single-domain SDN-based security solution (adapted from (Genge 2016)) 

The second technique (see Figure 3) targets multi-domain networks, with the goal of blocking the 

attack as close as possible to the entry point in the network.  

  

Figure 3: A multiple-domain SDN-based security solution (adapted from (Genge 2016)) 

For such a multi-domain network, each domain has its own OpenFlow controller, connected to a 

centralized security application. This application receives information from the SDN controllers, 

having access to a global perspective about the network – once an attack is detected, it will 

backtrack towards its origin, by recursively issuing queries about the related flows to identify 

the previously paired nodes, until the original network entrance point is found. 

Network Function Virtualization and Distributed ICS 

NFV is the result of the convergence between telecommunications infrastructures and 

infrastructure virtualization. As network applications and services scale and evolve (not only in 

sheer capacity requirements, but also in complexity), they imposed an added burden to the 

supporting telecommunications provider infrastructure, requiring the use of specific network 

management and traffic policies that cannot be provided by the network. In this perspective, NFV 

(Chiosi 2012) is a significant development as it enables the creation of flexible and on-demand 

network services through a service chain-based composition mechanism that uses network 

functions implemented in VNF (Virtualized Network Functions) components comprising 
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functionality such as NAT, IDS, Firewalls or other service modules, implemented as VM 

appliances.  

The NFV vision attempts to decouple network capacity from functionality, by conceiving an end-

to-end service as an entity that can be modeled and described by means of network function 

forwarding graphs (Figure 4) involving interconnected VNFs and endpoints (also known as 

service chaining. 

 

Figure 4: NFV Forwarding Graph example 

This approach allows for creation of differentiated end-to-end services that can be provided by 

the (ordered) combination of elementary VNF or physical functions, chained together by a 

Forwarding Graph, which models the service flows (see Figure 5). Furthermore, VNF FGs can 

be nested to define complex functions. VNFs are implemented in software, being interconnected 

through the logical links that are part of a virtualized network overlay, which can be implemented 

using SDN. 

 

Figure 5: NFV end-to-end service with VNFs (adapted from (Ersue 2013))  

Eventually, even Physical Network Functions (conventional network devices with close coupled 

software and hardware that perform network functions) can be involved in a Network Forwarding 

Graph service chain (the concept of service chain is not exclusive of NFV). A virtualization layer 

abstracts the physical resources (computing, storage, and networking) on top of which the VNFs 

are deployed and implemented, with the supporting NFV Infrastructure (NFVI) being spread 

across different physical locations, called Points of Presence (NFVI PoPs), as shown in Figure 5.  

NFV as an enabler for a new generation of distributed IACS 
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Use cases such as Internet of Things (IoT), wire to water generation, micro generation, smart 

metering or smart water management constitute a new generation of distributed IACS that can 

only be supported with the help of a complex distributed software stack, potentially also requiring 

the involvement of third-parties, such as telecommunications and cloud operator infrastructures 

– for this reason, the introduction of Network Function Virtualization component appliances, 

distributed across geographically dispersed infrastructure PoPs, makes entire sense,. 

As the IACS enters the customer premises, the NFV service abstraction model (services as 

composition of VNFs) provides an effective way to introduce support components along the 

service path – for instance, a data collection and analysis VNF can be added to the customer 

service chain (eventually within a virtual Business Gateway service abstraction) to provide data 

collection for smart metering scenarios. The same rationale applies for security purposes, as 

cyber-physical protection (for example, to implement bump-in-the-wire encryption) or security 

anomaly detection VNFs can be integrated within service chains, also using SDN to create flexible 

security monitoring and reaction capabilities. Moreover, Distributed IDS  (DIDS) components 

may be consolidated in the form of VNFs optimally deployed in order to reduce service overhead 

and rationalize resources. For instance, the DIDS components might be deployed in the form of 

VNFs, either shared among several Business Gateway FGs or used exclusively by a service 

instance (Cruz 2015). Some manufacturers (RAD 2015) (ECI 2015) are starting to propose NFV 

products for ICS applications that implement this philosophy, NFV capabilities in access nodes 

for optical transport or packet switched networks, for hosting firewall, encryption or traffic 

monitoring VNFs 

NFV is also an enabler for fog computing (or “edge computing”) scenarios, allowing parts of the 

infrastructure to be deployed on the network edges, using virtualized platforms located between 

end user devices and the cloud data centers. This approach addresses the need to process large 

data streams in real time while working within the limits of available bandwidth, by placing some 

of transactions and resources at the edge of the cloud (in locations close to end users), thus 

improving the efficiency of the infrastructure by offloading processing tasks before passing it to 

the cloud. For these reasons, fog computing is becoming a cornerstone concept for distributed 

IACS architectures, providing a way to deal with the information volume generated by sensor 

streams in an efficient way. 

The NFV paradigm is naturally compatible with fundamental premises for implementation of fog 

computing distributed topologies. As such, it is envisioned that distributed awareness and IACS 

cyber-security detection capabilities will take advantage of the NFV paradigm to support its 

underlying deployment model, departing from the conventional, self-contained model and 

moving towards an architecture capable of keeping up with the geographically dispersed nature 

http://www.academia.edu/8648486/Fog_Computing_Will_it_be_the_Future_of_Cloud_Computing
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of IoT IACS. Also, the VNF deployment criteria may consider the availability of specific 

capabilities (such as raw processing capacity) in a specific NFVI POP – for instance, per-

subscriber security event processing components may be hosted in a different NFVI POP from 

the one(s) hosting other VNFs for the DIDS service. 

Real-time Hypervisors + SDN = towards a virtualized PLC 

Born in the mainframe era, Virtual Machine Monitors (also called Hypervisors) have ultimately 

evolved towards being supported in open, Commercial Off-the-shelf (COTS) hardware platforms. 

Specifically, type-1 (bare metal) hypervisors have become popular in large-scale virtualization 

scenarios such as datacenters, bringing several benefits in terms of resource consolidation, 

business continuity, scalability, management and security. 

But most type-1 hypervisors are optimized for ICT loads, being unsuitable for several ICS 

application use cases, mostly due to the overhead of the mediation and translation mechanisms 

abstracting the host hardware from the VM. This situation gradually began to change, as some 

operators started virtualizing hosts with services deployed on general-purpose OS, such as 

SCADA Master Stations (MS), Human-Machine Interfaces (HMI) or Historian Database servers 

(HDB), using conventional type-1 hypervisors. This was possible due to the development of 

hardware-assisted memory management and I/O mechanisms to implement robust resource 

affinity and reservation (such as VT-d and PCI SRV-IO (Garcia-Valls 2014) support), providing 

performance guarantees while avoiding the effect of resource overprovisioning.  

Other ICS elements, such as process control devices can also potentially benefit from 

virtualization technologies. For instance, (Cahn 2013) proposed the virtualization of Intelligent 

Electronic Devices (IEDs) used to collect information from sensors and power equipment, with 

the purpose of optimizing the maintenance and cost overheads, while increasing reliability. The 

same rationale could be applied to Programmable Logic Controllers (PLC) devices, which 

constitute the focus of this section. 

PLCs are pervasive devices in ICS, such as SCADA systems, being designed to control industrial 

processes. Contemporary PLCs are the outcome of an evolutionary process that started with the 

first generation of relay-based devices, progressively incorporating technologies such as 

microprocessors, microcontrollers and communications capabilities, ranging from serial point-to-

point or bus topologies to Ethernet and TCP/IP. Despite modern PLCs often being embedded 

devices with commodity Instruction Set Architecture (ISA) System-on-Chip or CPUs (PowerPC, 

x86 or ARM), running Real-Time Operating Systems (RTOS), its virtualization was not deemed 

feasible until recently, due to the lack of specific hardware, software and infrastructure support. 
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Towards the virtual PLC 

PLCs are designed for reduced and deterministic latency, operating under strict timing constrains 

that are dependent on factors such as the end-to-end and event response latencies across 

components on interconnected buses, or signal and message propagation delays. These 

requirements are incompatible with the use of several virtualization technologies, such as 

conventional type-1 hypervisors, due to overhead issues and the lack of support for real-time 

payloads.  

However, recent developments such as the implementation of low-latency deterministic network 

connectivity for converged Ethernet and the availability of real-time hypervisors made it possible 

to virtualize components of the PLC architecture. The vPLC architecture hereby proposed (Figure 

6) takes advantage of these capabilities, by decoupling the PLC execution environment from I/O 

modules – using an SDN-enabled Ethernet fabric to provide connectivity to the I/O subsystem.  

This architecture departs from the SoftPLC concept, as proposed by products such as (Codesys) 

or (ISaGRAF), by adopting an approach in line with (Intel 2013) and (IntervalZero 2011), with 

the added benefit of a convergent fabric scenario with SDN capabilities. 

 

Figure 6: The vPLC architecture 

In the vPLC, the PLC I/O bus is replaced by high-speed networking capabilities, with SDN 

allowing for the creation of flexible virtual channels on the I/O fabric, accommodating the 

connectivity flows between the vPLC instances and the I/O modules, such as sensor interfaces or 

motion controllers, providing traffic isolation. Moreover, such I/O modules can be built with 

reduced complexity, thanks to recent progress in terms of Field-Programmable Gate Arrays 

(FPGA) and Application Specific Integrated Circuit (ASIC) technology. SDN reconfiguration is 

managed by means of an SDN controller, via a High-Availability (HA) server (not depicted in the 

figure), which interacts with its northbound interface. The HA server continuously monitors the 

SDN switch statistics and path reachability, triggering reconfiguration procedures in case of 

performance degradation or failure.  
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This decentralized model shares similarities with remote or distributed I/O PLC topologies, with 

networked I/O modules acting as extensions of the PLC rack. This goes in line with the Converged 

Plantwide Ethernet (CWpE) (Didier 2011) architecture, or even critical avionics systems, which 

replace legacy interconnects with Ethernet-based technologies, such as Avionics Full-Duplex 

Switched Ethernet (AFDX) (Fuchs 2012).  

Advances in cut-through switching, together with Remote Direct Memory Access techniques 

(RDMA), particularly in converged Ethernet scenarios, have allowed for port-to-port latencies of 

the order of the hundredths of nanoseconds in 10G Ethernet switch fabrics and application 

latencies in the order of microseconds (Beck 2011). Additionally, resources such as Intel’s Data 

Plane Development Kit (DPDK) (Zhang 2014) allow for the implementation of low latency, high-

throughput packet processing mechanisms that bypass kernels, bringing the network stack into 

user space and enabling adapters to perform Direct Memory Access operations to application 

memory. This enables satisfying requirements for single-digit microsecond jitter and restricted 

determinism, allowing for bare-metal performance on commodity server hardware. On top of this, 

proposals such as the 802.1Qbv Time Sensitive Networking (IEEE) standard provide compliance 

with real-time requirements in the microsecond range on conventional Ethernet. 

As for computing resources, there are two factors that must be considered. First, modern x86 or 

ARM processors have become capable of replacing microcontrollers in standalone PLC 

applications (Kean 2010), due to improvements in terms of raw performance, low latency I/O 

mechanisms or the availability of ISA extensions suitable for Digital Signal Processing tasks. 

Second, the availability of real-time static partitioning hypervisors, such as Jailhouse (Siemens), 

Xtratum (Crespo 2010), X-Hyp (X-HYP) or PikeOS (Baumann 2011) enables hosting RTOS 

guest VMs for real-time workloads. Some hypervisors, such as Xtratum and PikeOS, even 

replicate the ARINC 653 (Fuchs 2012) partitioning model for safety-critical avionics RTOS, with 

a Multiple Independent Levels of Security/Safety (MILS) (Alves-Foss 2006) architecture.  

The benefits of this approach are manifold. The price tag for entry-level PLCs is comparable to a 

COTS server that can host several vPLC instances, being kept out of the factory floor or industrial 

environment. Distributed I/O on converged Ethernet also provides cost-effective performance and 

reliability benefits, as communications between different vPLC instances can take place across 

the convergent fabric or even locally, if co-located on the same host, with SDN allowing for 

flexible creation of communications channels, for differentiated requirements. Moreover, I/O 

modules – the components with highest failure rate in PLCs – can be easily and quickly replaced, 

in case of failure. 

Particularly, the potential advantages of the vPLC in terms of reliability, safety and security are 
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considerable, as it can take advantage of datacenter-like redundant power, computing and 

communications resources. Other benefits are also envisioned, namely: 

 Hypervisors allow for migration of virtualized ICS components, as well as instance 

cloning for pre-deployment tests; 

 PLC watchdogs and system-level debugging and tracing mechanisms can be 

implemented at the hypervisor level, which is able to oversee and control the vPLC 

partition behavior; 

 vPLCs benefit from partitioning isolation, with VMs being easy to restore in a fresh state 

in case of tampering or other malicious activity; 

 SDN-managed isolated I/O paths ease the implementation of flexible, on demand, 

protection mechanisms at the I/O level (as shown in Section 3) also paving the way for 

the introduction of NFV components at the ICS level. 

Overall, these benefits suggest that virtualizing a PLC could be feasible even for a single instance 

per device, using Industrial-grade Single Board Computers, instead of COTS servers.  

Conclusion 

This paper discussed the implications of the progressive introduction of virtualization 

technologies in ICS, with a special focus on security and reliability aspects. The virtualization of 

both network and computing virtualization was analyzed from an ICS-centric standpoint, 

covering recent developments as well as proposing new use cases and approaches to improve 

network and systems security. 

Starting with an overview of network virtualization technologies such as SDN and NFV and their 

application within ICS and distributed IACS, the paper next addressed the issue of using 

hypervisor technologies for real-time workloads. In this latter perspective, a virtual PLC (vPLC) 

architecture was discussed, which transcends the simple virtualization of the PLC device, 

constituting an integrated approach where the device merges with the infrastructure, in a seamless 

way. The vPLC takes advantage of network and computing virtualization technologies to propose 

a converged approach for plan-wide consolidation of the ICS infrastructure, with performance, 

cost and security benefits. This proposal is presently under development by a team that includes 

the authors of this paper. 


