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Abstract

Nowadays, billions of people use distributed systems on the Internet, includ-
ing services to make online payments, to share information and to commu-
nicate, making it crucial to guarantee privacy and even their safety. Unfor-
tunately, most of these systems receive user information in plain text (even
if the channel is encrypted) and persist that information in servers where
it remains accessible and readable, therefore compromising the human right
to privacy.

In this context, secure group communication through untrusted servers
is the fundamental research question addressed in this thesis. This research
question presents several challenges. Namely, providing confidentiality and
integrity of stored information, key distribution among geographically dis-
tributed clients, ensuring availability of private information, and meeting
the necessary scalability.

This thesis proposes a security protocol, named Sharelock, that provides
end-to-end encryption as the means to securely communicate through un-
trusted servers. The protocol scales to large groups and large amounts of
data by applying fast cryptographic algorithms in the client-side application.
Moreover, the protocol supports diverse applications by being agnostic in
relation to the information shared between the users.

An experimental evaluation of the protocol was performed, focusing on
the scalability of the most frequently used and the most complex protocol
primitives. Namely, persisting data, fetching data, and removing users from
group (the heaviest operation with respect to the key distribution prob-
lem). The results show that the protocol can scale to large group sizes
and group data volumes. Therefore, this work shows that it is feasible to
have secure group communication through untrusted servers by shifting the
cryptographic tasks to the client-side without compromising scalability.

Keywords: Security, Cryptography, Distributed Systems, End-to-end
Encryption, Group Communication.
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Chapter 1

Introduction

The Internet has grown substantially is used by billions of people around the
world. During this significant growth, several distributed systems, such as
Facebook, Amazon, Gmail and Paypal, started providing sensitive services
on the Internet. Currently, people use services on the Internet to make online
payments, to share information, to communicate, etc. Therefore, services
handle sensitive information of their users, which should be kept private.

Taking into account the human right to privacy, security in services
on the Internet is recognised as a fundamental problem. In order to ensure
privacy, the service provider should not have the right to read and use users’
information without their consent.

Nowadays, most of services on the Internet use secure channels between
clients and servers, like Hyper Text Transfer Protocol Secure (HTTPS),
to prevent disclosure of information from unauthorised parties. However,
this strategy does not guarantee privacy at the server as the information is
handled in plain text allowing the server to read, mine and update the data.
Therefore, to achieve security we have to prevent accesses and modifications
to information from unauthorised parties, while making it only available to
authorised entities.

In order to overcome these problems, security protocols implemented
mechanisms where the information is encrypted by the sender and can only
be decrypted by the receiver, this is known as end-to-end encryption which
is the main focus of this thesis. Moreover, end-to-end encryption follows
such a mechanism using a key which is only known by the sender and the
receiver. The protocols may also implement end-to-end encryption when
multiple users share information, i.e., in group communications. Signal and
Snake are examples of such protocols that provide end-to-end encryption
through untrusted servers, in other words servers which may access and
manipulate the information maliciously.

Signal supports synchronous and asynchronous group communications,
availability and application independence. Firstly, synchronous communica-
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2 CHAPTER 1. INTRODUCTION

tions means that the sender and the receivers can communicate in a continu-
ous stream at a constant rate, [11]. Secondly, asynchronous communications
means that both parties can communicate without being online at the same
time. Thirdly, availability means that the information persisted by the users
is only available for them and the server cannot access it. Lastly, applica-
tion independence represents information that comes from the client-side is
always processed and persisted equally, regardless of its data type.

Snake was designed for Online Social Networks (OSN) providing untrace-
ability, anonymity and unlinkability (see Section 2). When compared with
Signal, Snake supports user, group and data management through Create,
Read, Update, Delete (CRUD) primitives.

Despite the increase in security granted by these two protocols could be
improved. On the one hand, Signal does not provide an abstract data model
nor specification of the protocol as we only know that Signal has primitives
to send and receive persisted data but we do not know if Signal provides
user and group management primitives as well. Signal has recently started
to support application independence as when this research begun, they only
supported end-to-end encryption for text messages. On the other hand,
Snake does not provide application independence as it is only developed for
Online Social Networks (OSN).

To overcome the aforementioned problem, we propose a security proto-
col, named Sharelock, which provides end-to-end encryption in asynchronous
group communication, access control, application independence and database
abstraction through untrusted servers as well as user, group and data man-
agement primitives. We consider end-to-end encryption as one of the thesis
goals.

Sharelock shifts all cryptographic work to the client side adopting high-
speed cryptographic algorithms to decrease the client processing time with-
out compromising system security. Additionally, the protocol provides ap-
plication independence which allows multiple message data types and data
models. Considering application independence as one of the thesis goals.

Scalability is relevant as it refers to the capacity of the system to handle
different amounts of work without compromising the whole system thus
we test the protocol through a web implementation measuring the most
used and the most complex primitives, and comparing the execution time
of requests with payload in plain text or encrypted with Sharelock. We also
consider performance and scalability as one of the thesis goals.

This thesis contributes with four artefacts. Firstly, a specification of
Sharelock for any client-server architecture. Secondly, a adapatation of
Sharelock protocol for Internet of Things (IoT) systems which manuscript
is in preparation for a submission to a international journal. Thirdly, a web
implementation of the protocol which provides a javascript library, a Rep-
resentational State Transfer (RESTful) Application Programming Interface
(API) and a database for fast integration. Finally, a web chat, named Hed-
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wig, which uses the aforementioned implementation to achieve end-to-end
security.

This document is divided into Chapters and Sections. Chapter 2 de-
tails the state of the art. Chapter 3 details the Protocol including sections
like architecture and design, the security goals, the main features and a
security evaluation. Chapter 4 details the web implementation of the proto-
col. Chapter 5 details the performance evaluation in order to test the most
used primitives and the most complex primitive of the web implementation
of the protocol. Finally, Chapter 6 details the future work and the main
conclusions.





Chapter 2

State of the art

This chapter describes the current status of web security explaining the most
used protocols and focusing on those related to our work. It also provides a
summary which matches the analysed protocols and the following attributes,
namely end-to-end encryption, confidentiality, integrity, availability, group
communication and database abstraction.

2.1 Notation

Based on [10], an entity involved in a scenario is a Principal and Table 2.1
refers the familiar names used to portray these principals in scenarios.

Table 2.1: Familiar names for the protagonists in security protocols
Alice First participant

Bob Second participant

Carol Participant in three- and four-party protocols

Dave Participant in four-party protocols

Eve Eavesdropper

Mallory Malicious attacker

Sara A server

In addition, Table 2.2 details the main threats classes: leakage, tamper-
ing and vandalism. The knowledge of classic attacks improves the security of
new designs. Table 2.3 explains the classic attacks defined in the literature.

Moreover, interaction diagrams portray the interaction between nodes
and servers over time, where the communication between them is represented
by arrows symbolising requests on a secure channel. Furthermore, each ar-
row must contain a message, a function or an acknowledge, namely ack,
stands for an acknowledge. functionName(param1, param2, ...) for a func-
tion call with n parameters. {Data}, for a request payload. hash(param1),
for a hashed variable. In addition, the encryption equations follows this

5



6 CHAPTER 2. STATE OF THE ART

Table 2.2: Security Threats Classes

Leakage
Refers to the acquisition of information by unauthorised
recipients.

Tampering Refers to the unauthorised alteration of information.

Vandalism
Refers to interference with the proper operation of a system
without gain to the perpetrator.

Table 2.3: Security Classic Attacks
Eavesdropping Obtaining copies of messages without authority.

Masquerading
Sending or receiving messages using the identity
of another principal without their authority.

Message tampering
Intercepting messages and altering their contents
before passing them on the intended recipient.

Replaying
Storing intercepted messages and sending them at
a later date.

Denial of service
Flooding a channel or other resource with messages
in order to deny access for others.

notation, namely Ks, stands for a symmetric key. K+
Alice, for Alice’s public

key. K−
Alice, for Alice’s private key. M , for the information. {M}Ks , for

an object encrypted with a symmetric key. {Ks}K+
Bob

, for a symmetric key

encrypted with Bob’s public key. {K+
Bob}pwd, for Bob’s public key encrypted

with a password. [M ]K−
Bob

, for signed information.

2.2 Security

In [2], security is defined by confidentiality, availability and integrity. Firstly,
confidentiality means the prevention of unauthorised access to private infor-
mation. Secondly, availability means that the information must be readily
accessible only for authorised entities. Lastly, integrity ensures that the
information remains unmodified by unauthorised entities.

The most effective way to ensure security in a distributed system is by en-
crypting the data and the channels. To that end, the usage of cryptographic
keys grew in distributed systems. Nowadays, techniques like symmetric and
asymmetric keys, digital signatures and certificates are essential to provide
and achieve full security on the Internet.

According to [20], an asymmetric key is a pair of two different keys which
represent a public and a private key. A public key can decrypt information
that was encrypted by a private key and vice versa. Conversely, symmetric
keys are not a set of keys, but only one key which is able to encrypt and
decrypt information.
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Signatures sign and validate documents ensuring authenticity and trust-
worthiness. Additionally, Digital Signatures sign information confirming the
authenticity of the received information.

The certification authorities are trusted by the clients and by the servers
and, their job is to certificate and verify the authenticity of these exter-
nal entities. For instance, HTTPS uses certificates in order to identify the
servers and, in some cases, the clients.

2.3 Protocols

This section details the most used security protocols on the Internet which
ensure at least one of the following security aspects, namely integrity, con-
fidentiality, availability, group communication and end-to-end encryption.

2.3.1 HTTPS

HTTPS [18, 19] is a security protocol which implements a secure layer on
the Hyper Text Transfer Protocol (HTTP) [14]. Technically, this proto-
col implements a security layer, based on Transport Layer Security (TLS)
[13, 12], which provides confidentiality and integrity in the communication
channel between the clients’ browser and the server. On the one hand, the
messages are delivered in plain text to the server side, on the other hand,
the channel which carries these messages is encrypted.

Most web applications on the Internet implement this protocol as their
only security measure. As a consequence, they are able to read, mine and
update the users’ information.

2.3.2 PGP

Pretty Good Privacy (PGP) [15, 8] is a security protocol which provides
asynchronous secure communications through end-to-end encryption. It was
introduced to provide privacy in email conversations, achieved with confi-
dentiality, integrity and authenticity of exchanged data by using asymmetric
encryption.

When a user wants to send an encrypted email, they initially have to
get the receiver’s public key in order to encrypt the email. It provides confi-
dentiality and integrity because the information can only be decrypted with
the receiver private key. To speed up the process of getting the receiver’s
public key, there are many services which provide features to publish public
keys and to get public keys from other entities.

This protocol shifts all key management work to the client who is respon-
sible for persisting their own public and private keys. As a consequence, if
they lose their keys, they have to generate a new key pair and notify their
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recipients. This protocol was mainly designed for point-to-point communi-
cations.

2.3.3 Off-The-Record Messaging

Off-The-Record (OTR) [6, 1] is a security protocol which provides end-to-
end encryption and represents the idea of two people chatting face-to-face
in a private room. This protocol provides confidentiality through symmetric
key encryption.

The protocol ensures deniability, confidentiality and integrity of the
shared messages. However, the protocol does not persist shared messages
and does not support group communication.

Deniability means that there is no proof of the sender’s identity. For
instance, Bob cannot prove that he received a message from Alice. This
happens because after the session key exchanging, it is impossible to prove
that someone who has the session key sent any message.

2.3.4 Signal

Signal [9, 17] is a security protocol which provides end-to-end encryption. It
supports synchronous and asynchronous group communication. Signal has
recently started to support multiple message formats such as video, text or
images.

In terms of cryptography, Signal supports ephemeral keys, future and
forward secrecy of the shared messages and implements the Double-Ratchet
Protocol. Firstly, ephemeral keys are symmetric keys which are individu-
ally generated for each message. Secondly, forward secrecy means that if
a key is compromised, the information encrypted with previous keys from
the same keychain cannot be decrypted with this key. Thirdly, future se-
crecy means that if a key is compromised, the future information will not be
compromised either. Finally, Double-Ratchet Protocol is a key management
algorithm that manages the renewal of ephemeral keys used to encrypt mes-
sages. Moreover, this protocol also prevents previous messages from being
compromised by future keys.

2.3.5 MTProto

Alongside with WhatsAPP and Messenger, Telegram is a popular chat which
supports end-to-end encryption in group communications by implementing
the MTProto protocol. According to [16], MTProto is a symmetric en-
cryption protocol which has some security vulnerabilities, namely the lack
of authenticated encryption and the possibility of chosen-ciphertext attack.
The former, authenticated encryption provides confidentiality, integrity and
authenticity of the encrypted data. The latter, chosen-ciphertext attack is
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an attack where the attacker can infer on the information by decrypting
some of its pieces.

In addition, messages are encrypted in client-side with symmetric keys
and sent to the server to be relayed to the recipients. During this process,
the server does not persist the message. Therefore, MTProto do not support
availability of the shared information.

2.3.6 Snake

Snake [4, 3] is a security web protocol for Online Social Networks (OSN)
providing end-to-end encryption along with untraceability, anonymity and
unlinkability. Firstly, untraceability is the prevention of tracing user’s ac-
tions. Secondly, anonymity is the ability to allow anonymous information.
Lastly, unlinkability means that the information cannot be associated with
the source entities. The protocol also provides confidentiality even when
faced with a leakage of persisted data.

Regarding features, Snake provides user, group and data management
as well as a public key authentication through Web of Trust mechanisms
or through the Socialist Millionaire Protocol in order to preserve privacy.
On the one hand, Web of Trust is a concept which creates a graph of trust
where the nodes trust the connected nodes of their connected nodes. For
instance, if Alice trusts Bob and Bob trusts Carol, Alice trusts Carol. On the
other hand, Socialist Millionaire Protocol is based on the socialist millionaire
problem in which two millionaires try to compare their fortunes without
being the first to disclose the information.

Focusing on group management, the protocol ensures confidentiality of
the group data by using symmetric encryption. When someone joins the
group, the symmetric key is shared with them. While when someone leaves
the group, the key is refreshed and spread to the group members. Group
features, like invite or remove members, are only performed by group ad-
ministrators. For data management, the protocol provides availability by
persisting encrypted information, which was previously encrypted in client-
side, making it available only for authorised entities.

2.4 Summary

Table 2.4 summarises the state of the art matching the protocols with the
security requirements and with group communications, namely end-to-end
encryption, confidentiality, integrity, availability, group communications and
database abstraction. Firstly, end-to-end encryption ensures confidentiality
and integrity of the shared information. Secondly, confidentiality repre-
sents the requirement of preventing unauthorised access of the persisted and
shared information. Thirdly, integrity means that the information shared in
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the system cannot be modified from unauthorised entities. Fourthly, avail-
ability means that the information must be available only for authorised
entities. Fifthly, group communications means the ability of the protocol to
support users communicating through a group. Finally, a database abstrac-
tion is the ability of the protocol to easily allow multiple and different data
models in their architecture.

Table 2.4: State of the art summary
End-to-End
Encryption

Confidentiality Integrity Availability
Group

Communication
Database

Abstraction

HTTPS[18, 19] 7 3 3 7 7 7

PGP[15, 8] 3 3 3 7 7 7

OTR[6, 1] 3 3 3 7 7 7

MTProto[16] 3 3 3 7 3 7

Signal[9, 17] 3 3 3 3 3 7

Snake[4, 3] 3 3 3 3 3 7

Sharelock 3 3 3 3 3 3

HTTPS only supports confidentiality and integrity as it encrypts the
communication channel instead of encrypting the data. PGP and OTR also
provide end-to-end encryption by encrypting the data with cryptographic
keys only known by the end users, which are asymmetric and symmetric
keys, respectively. Moreover, OTR ensures deniability of the information.
MTProto adds group communication but not availability as the information
is encrypted in client-side and sent directly to the end users. Signal and
Snake are very similar providing all the above requirements and availability
by encrypting information in client-side with symmetric keys which are en-
crypted with the group members’ public keys. However, Snake is an OSN
while Signal is a communication protocol.

Note that none of the aforementioned protocols implements a database
abstraction, which is the ability to apply different data models in multiple
scopes of group communications. This feature speeds up the integration
process of new systems with the protocol, regardless of their data model.
Chapter 3 includes a suggestion on how to implement the feature.

The last line represents Sharelock which provides end-to-end encryption
in group communications through untrusted servers and is completely de-
fined in the following chapter.



Chapter 3

Protocol

The protocol, named Sharelock, is based on a client-server architecture. The
clients and the server are connected through a secure channel which in web
scenarios could simply be a HTTPS channel. Based on that, the protocol
provides an end-to-end encryption for group communication through un-
trusted servers.

The following sections describe, firstly, the system architecture by ex-
plaining how the design choices meet the requirements. Secondly, they de-
scribe the security goals detailing the used cryptographic algorithms and
the protocol threat model. Thirdly, they describe all features provided by
Sharelock, namely User management, Data management and Group man-
agement. Lastly, they describe a security evaluation of the protocol detailing
some possible attacks.

3.1 Architecture and Design

The design choices rely in the requirements, namely end-to-end encryption
in asynchronous group communication through untrusted servers, applica-
tion independence, scalability, availability as well as user, group and data
management.

To meet end-to-end encryption in asynchronous group communication
through untrusted servers, Sharelock shifts all cryptographic work to the
client side. The clients are responsible for encrypting and decrypting their
group information as well as managing their keys. As a consequence, the
server only persists encrypted information sent by the clients. In order to
achieve high scalability and to decrease the client processing time, the pro-
tocol adopts high-speed cryptographic algorithms featured in National In-
stitute of Standards and Technology (NIST) Recommendations [5], namely
SHA-256 for hash functions, RSA-OEAP for asymmetric key generation,
AES-GCM for symmetric key generation and PBKDF2 for cryptographic
operations with passwords. Despite using these cryptographic algorithms,

11
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for some protocol primitives, this design choice could increase the client pro-
cessing time and the network latency for large group states (data shared)
and sizes (number of members). However, the application developer can
implement some adjustments to decrease the client processing time in order
to achieve higher scalability.

In spite of providing end-to-end encryption in group communication,
Sharelock does not support identity verification. It means that each identity
have to be verified out of band by the User through third party mechanisms.
Unfortunately, it also means that the information sent by the Server must be
verified in the client side to prevent tampering (see Section 3.2). To address
this, Sharelock implements a trust list where each User could persist in the
Server their out of band Users’ identities validations (see Section 3.3).

Access control is obtained through group keys, which are only known by
group members, preventing unauthorised access from the server and other
entities. Furthermore, the group state is always encrypted with a group
key, which, in turn, is encrypted with the group members’ public keys.
Consequently, there is no unauthorised access to the group key and the
group state.

Sharelock provides application independence allowing different data types
which are converted to Objects, supporting multiple data models. Further-
more, Object is defined between brackets and contains key value structures.
These structures are attributes separated by commas and each of them con-
tains a key and a value separated by a colon. The key has to be a string
while the value could be a string, an integer, a double, a boolean, a list or
even an object with the same structure definition than it. In addition, the
list has to be surrounded by square brackets and could contain the same
objects and data types as the Object. When the Object is converted to
a string, it only appends double quotes around the object. This Object
follows the same structure as the Javascript Object Notation (JSON) defini-
tion. Therefore, when the Group state is persisted, the Object is converted
to a string, encrypted with the Group key and tagged with a specific label.

Regarding the Sharelock data model, Diagram 3.1 details how the entities
were modelled to meet the aforementioned requirements. Firstly, Table User
has a key pair, a session token, a salt, a password and an email address.
Each User also have a list of trusted people. Despite the protocol does not
manage these lists, it persists and makes these trusted identities available
for the Users. Secondly, Table Group represents a set of Users who share
Data. It also has a symmetric key associated which represents the Group
key. Finally, Table Data represents the Group state which allows multiple
scopes with different label names.
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Diagram 3.1: Protocol Data Model. VARCHAR(255) for a string with
a maximum length of 255 characters. LONGTEXT for a string with a
maximum length of 4 gigabyte. FK for foreign key and PK for primary key.

3.2 Security Goals

The protocol provides an end-to-end encryption where the Server is consid-
ered as an untrusted entity. As a consequence, the information must always
be encrypted and signed in client side through group keys.

Accordingly, when a User joins the system, the User generates a key pair,
encrypts the generated private key and persists the key pair in the Server.
Furthermore, the key pair is generated through RSA-OEAP algorithm with
2048 length.

Diagram 3.2 illustrates how the protocol encrypts and persists a key pair.
Firstly, the password is imported using the PBKDF2 algorithm. Secondly,
the key is derived. Thirdly, the second half of this key is used to encrypt the
private key using AES-GCM algorithm. Lastly, the key pair is persisted.

Additionally, Diagram 3.3 details how the Client fetches their key pair.
Firstly, they requests the Server by sending the email and a hash of the first
half of the aforementioned derived key. Secondly, the Server validates the
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Client Server Database

generateKeyPair()

generatePBKDF2(pwd)

encryptPrivateKey(private key, pwdKey)

derive(pwdKey)

{K+
Bob, {K

−
Bob}pwd}

persistKeyPair({K+
Bob, {K

−
Bob}pwd})

ack

ack

Diagram 3.2: Persisting a key pair. After the private key encryption, the
key pairs are persisted in the database.

Client Server Database

{email, hash(half derivedKey)}
validateCredentials()

ack

getKeyPair()

{K+
Bob, {K

−
Bob}pwd}

getSessionToken()

{authToken}
{K+

Bob, {K
−
Bob}pwd, authToken}

Diagram 3.3: Fetching a persisted key pair. First, the Client authenticates
and the Server validates the credentials. Subsquently, the Server fetches
the key pair and the session token by requesting the Database. Finally,
the Server returns the key pair and the session token. When the Client
receives the key pair, it decrypts the private key using the User password
and imports the key pair.

credentials and returns the key pair as well as the session token. Finally,
the private key is decrypted and both keys become available in the node.

To sum up, the main advantage of these decisions is the fact that the
information can be encrypted, decrypted and signed always in the client side
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preventing leakage and tampering attacks. In order to meet integrity and
access control, before persisting to the database, the Group state is always
encrypted with a Group key, which, in turn, is encrypted with all Group
members’ public key and signed by the Group founder.

Group Encryption Model

Achieving secure group communication requires a adequate spcification of
the Group encryption model. The following paragraphs detail the required
keys and how the model works in order to prevent attacks such as leakage,
tampering or Man In The Middle (MITM).

The Group state is always encrypted with a Group key, as shown in
Equation 3.1. Ks represents the Group key and is used to encrypt and
decrypt the Group state.

GroupStateEncryption =
(
{M}Ks

)
(3.1)

When the User creates a Group, the Group key is generated and signed
with the founder’s private key. In addition, when someone is invited, the
User who invited them must encrypt the Group key with the Group mem-
bers’ public keys in order to spread the Group key to all members, as shown
in Equation 3.2. For instance, this equation presents a Group key signed
by Bob’s private key and shared with all Group members, namely Bob and
Alice.

GroupKeyEncryption =
(

[Ks]K−
Bob

,

{Ks}K+
Bob

, {Ks}K+
Alice

) (3.2)

When a member leaves the Group, the Group key has to be updated in
order to protect future information from unauthorised entities. This mecha-
nism is always initiated by the User who removed someone from the Group.
Therefore, a new Group key is generated, signed and persisted by following
the same process of creating a Group, as specified in the Equation 3.2.

The Group state structure is a dictionary and a list of dictionaries, as in
Equation 3.3. The dictionary has the data encrypted with the Group key,
while the list contains multiple dictionaries, which represent the Group key
encrypted for each Group member.

GroupState =
(
{data : {M}Ks},(
{key : {Ks}K+

Alice
, email : ”alice@...”}, ...

)
,

{signed : [Ks]K−
Bob
}
) (3.3)
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To prevent tampering, the Group key is signed with the founder’s private
key. At any time the User is able to check the integrity of the symmetric
key.

Threat Model

To evaluate the protocol security, it is required to define what kind of attacks
are expected. Obviously, the main goal is to limit the attacker to access and
manipulate private information.

We consider the Server honest but curious which means that the Server
will not deliberately attack the protocol by tampering or replaying messages.
However, the Server might read and infer from plain text information. For
instance, the Server manages the group and, in order to prevent confiden-
tiality and integrity, the protocol shifts the key distribution problem to the
client side. As a consequence, the Server knows what users belong to each
group, but the Server would never manipulate information in order to attack
the protocol and exploit private information.

In terms of classic attacks, masquerading attacks may be attempted
when the Attacker uses other identity to send and to receive messages from
the Groups. Tampering attacks can occur when Attacker intercepts Group
states and manipulates them. Eavesdropping attacks occur when the At-
tacker copies the states of the Groups without authorisation. Denial of
Service (DOS) attacks occur when multiple Attackers requests the Clients
and the Server. Section 3.4 details the security evaluation of these attacks.

3.3 Features

Authentication mechanisms, group communication and data persistence are
the most required features of any system. Thus, Sharelock provides these
requirements through three cross-cutting features, namely User, Group and
Data Management, detailed in the next subsections.

3.3.1 User Management

User Management includes Login, Account Registration, Login with Session
Token, Account Deletion, Account Information procedures and Management
of the Trust List.

User Registration

In most systems, User Registration is a must-have feature usually imple-
mented through a form. Thus, according to Diagram 3.4, the following
steps are required to register an account:

1. The User presents the credentials, namely the email and the password.
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2. The key pair is generated using the RSA-OEAP algorithm.

3. The password is imported into a new key through the PBKDF2 algo-
rithm.

4. This key is derived and the first half is used for authentication pro-
poses.

5. The private key is encrypted with the second half of the previous
derived key by using the AES-GCM algorithm.

6. The request is made, including the email, a hash of the first half of the
derived password key, the public key and the encrypted private key.

7. The User is created and the email, the derived password key and the
key pair are associated to their account.

8. When the registration process is complete, the User is notified with a
success message.

Client Server Database

generateKeyPair()

generatePBKDF2(pwd)

encryptPrivateKey(private key, pwdKey)

derive(pwdKey)

register(email, hash(half dKey), K+
Bob, {K

−
Bob}pwd)

createUser()

ack

ack

Diagram 3.4: User Registration. The key pair is generated, the private
key is encrypted with a derived password key, the password is derived and
converted to a base 64 string. Afterwards, the request is made in order to
create a new account.
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User Login

User Login has to authenticate a User by validating their credentials. This
feature is implemented with an adequate level of security through salt func-
tions, encrypted passwords and hashes. Similarly to Diagram 3.5, the fol-
lowing steps detail the User authentication procedure.

1. The User presents the credentials, namely the email and the password.

2. The password is imported into a new key through the PBKDF2 algo-
rithm.

3. The previous key is derived and the first half is used for authentication
proposes.

4. The request is made with their email and a hash of the first half of the
derived password key.

5. The Server validates the password with the associated salt. In case
of correctness, the Server returns a new session token, the public key
and the encrypted private key.

6. When the Client receives the information, it initiates the process to
decrypt the private key and to import the key pair.

7. The Client is able to consider the User as authenticated.

Token Based User Authentication

Sharelock returns a authToken after a successful User authentication. It
brings some advantages against the session based authentication, namely
decreased memory usage, scalability and flexibility. This token is a manda-
tory parameter in most endpoints of the public interface as it is used as an
authentication token. According to Diagram 3.6, when a User is authenti-
cated with a session token, the Server returns an acknowledgement.

Delete Account

Deleting an Account allows a User to delete their own account from the
system, as shown in Diagram 3.7. Note that this procedure simply deletes
the account information but not the Groups states they belong to.

Trust List Management

Trust List Mechanism manages out of band authentications of User’s iden-
tities. Each User has a group of trusted people. It means that the User
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Client Server Database

generatePBKDF2(pwd)

derive(pwdKey)

login(email, hash(half derivedKey))

validateCredentials()

{K+
Bob, {K

−
Bob}pwd, authToken}

{K+
Bob, {K

−
Bob}pwd, authToken}

decryptPrivateKey()

importPublicKey()

importPrivateKey()

Import Key PairImport Key Pair

Diagram 3.5: User Login. The password is transformed into a PBKDF2 key
which is derived into a set of bits and converted to a base 64 string, after,
the login request is made. Then, the Server validates the credentials by
requesting the Database and, in case of success, it returns the public key,
the encrypted private key and the session token. Finally, the Client decrypts
and imports the keys.

knows the groups’ members true identity as the User previously authenti-
cated them by out of band mechanisms.

Diagram 3.9 portrays that the User is able to fetch their trust list and to
authenticate an User public key through out of band mechanism that they
trust. In case of matching success, they sign the public key and the email,
and persist it, as shown in Diagram 3.8.

Fetch Account Information

According to Diagram 3.10, the User is able to request their own account
information, which includes the email address, the public and the private key,
the authToken and the Groups they belong to. According to Diagram 3.11, if
User requests account information from another User, the procedure simply
returns the email address and the public key of this User.
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Client Server Database

loginToken(authToken)

validateSessionToken()

ack

ack

Diagram 3.6: Token Authentication.

Client Server Database

deleteAccount(authToken)

validateSessionToken()

ack

deleteAccount()

ack

ack

Diagram 3.7: Delete User Account.

Client Server Database

verifyIdentityUsingThirdParty(K+
Bob)

trust([K+
Bob, email]K−

Alice
)

appendTrustList([K+
Bob, email]K−

Alice
)

ack

ack

Diagram 3.8: Trust User. Bob’s identity is verified by Alice through a third
party entity. In case of correctness, Alice signs Bob’s public key and Bob’s
email with his private key and appends it into the trust list.
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3.3.2 Group Management

The protocol offers a set of primitives to manage a Group shifting the man-
agement of the Group policies to the application layer. Therefore, each
member is able to add and remove Users, and delete Groups. The following
subsections detail the primitives Create Group, Delete Group, Fetch Group
Key, Fetch Group Members, Add User to Group and Remove User from
Group.

Create Group

According to Diagram 3.12, in order to Create a Group:

1. The User has to name the Group.

2. The Group state was previously defined by the application developed.
Therefore, the User initiates a new Group state.

3. A new Group symmetric key is generated in the client side.

4. The Group key is signed with the User’s private key.

5. The Group state is encrypted with the Group key.

6. The Group key is encrypted with User’s public key.

7. The Client requests the services layer. The request body includes the
encrypted Group key and the Group name.

8. When the Group is created, the User is able to add new members.

Client Server Database

getTrustList(authToken)

getTrustList()

([K+
Bob, email]K−

Alice
, ...)

([K+
Bob, email]K−

Alice
, ...)

Diagram 3.9: Fetch Trust List. When Alice requests hers trust list, the
Server returns a list of dictionaries which represent each User’s identity
signed and trusted by her.
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Client Server Database

getAccount(authToken)

validateSessionToken()

ack

getAccountInformation(authToken)

{K+
Bob, {K

−
Bob}pwd, authToken, email, groupList}{K+

Bob, {K
−
Bob}pwd

authToken, email

groupList}

Diagram 3.10: Get User Account.

Delete Group

Any team member has permission to delete the Group. According to Dia-
gram 3.13, when it happens, the Group state and the Group keys are lost
and cannot be recovered.

Client Server Database

getUser(email, authToken)

validateSessionToken()

ack

getAccountInformation()

{K+
Bob, email}

{K+
Bob, email}

getTrustList(authToken)

getTrustList()

([K+
Bob, email]K−

Alice
, ...)

([K+
Bob, email]K−

Alice
, ...)

verifyIdentity(K+
Bob)

Trust MechanismTrust Mechanism

Diagram 3.11: Fetch User Information. When Alice fetches Bob’s identity
from the Server, she has to validate the identity returned by the Server.
Consequently, she requests for her trust list and validates Bob’s identity.
If Bob’s identity was not in the Alice’s public list, she could verify Bob’s
identity through a third party mechanism as explained in 3.8.
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Fetch Group Key

According to Diagram 3.14, in order to Fetch a Group Key, the User has to
mention the group id for their Group key to be returned. When the Client
fetches the key, it initiates the decryption process to import the key for
future cryptography operations.

Fetch Group Members

According to Diagram 3.14, in order to Fetch Group Members, the User has
to mention the group id in the request payload for the Group members to
be returned in a list. Each element of the list contains the email and the
public key of each Group member.

Add User and Remove User From Group

Any Group member has permission to add and to remove someone. Accord-
ing to Diagram 3.16, the User who added the new member will get their
public key and has to encrypt the current Group key with the new members’
public key, persisting them afterwards. Then, the Group key is shared with
the new member when they get the Group state.

Additionally, according to Diagram 3.17, when a member is removed
from the Group, the User who did it has to regenerate and to sign the new
Group key, and get all Group members’ public keys, in order to encrypt the

Client Server Database

generateSymmetricKey()

encryptGroupState(Ks, data)

encryptGroupKey(K+
Bob)

createGroup(groupName, encryptedGroupKey, data)

validateSessionToken()

ack

createGroup(groupName)

{groupId, groupName}
{groupId, groupName}

Diagram 3.12: Create Group. The Group key is generated, signed and the
Group state is initialized and encrypted with the Group key. Then, the key
is encrypted with User’s public key and the Group is created.
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Client Server Database

deleteGroup(groupId)

validateSessionToken()

ack

deleteGroup()

ack

ack

Diagram 3.13: Delete Group.

Group key separately with each Group members’ public key. Then, the User
persists the set of encrypted Group keys.

3.3.3 Data Management

Each Group has multiple states, which are Objects (see Section 3.1) con-
verted to strings, encrypted and tagged with labels. When a Group member
updates the Group state and tags it with an existent label, it persists a
new stringified Object replacing the old one. In addition, the protocol does
not provide a group state history. As a consequence, if the application has
this requirement, the developer should implement it into Objects. In other
words, the bject will be persisted with multiple objects inside. This solution

Client Server Database

getGroupKey(groupId)

validateSessionToken()

ack

getGroupKey(groupId)

{{Ks}K+
Alice

, [Ks]K−
Alice

}

{{Ks}K+
Alice
}

decryptGroupKey(K−
Alice)

Diagram 3.14: Fetch Group Key. Alice requests the Group key and decrypts
it using her private key. Alice receives the Group key signature which was
previously signed by the group founder or by a group member (which per-
formed a remove member from group operation).
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Client Server Database

getGroupMembers(groupId)

validateSessionToken()

ack

getGroupMembers(groupId)

{[email : ”bob@...”, key : K+
Bob, ...]}

{[email : ”bob@email.com”, key : K+
Bob, ...]}

getTrustList(authToken)

getTrustList()

([K+
Bob, email]K−

Alice
, ...)

([K+
Bob, email]K−

Alice
, ...)

verifyIdentity(K+
Bob)

Trust MechanismTrust Mechanism

Diagram 3.15: Fetch Group Members. When Alice fetches the Group mem-
bers, she has to verify their identities through her trust list. If there is any
distrusted member in the list, she can initiate the trust User algorithm, as
shown in Diagram 3.8.

leads the developers to a version control problem, which is their responsibil-
ity. The protocol also provides three primitives to manage the Group state,
namely Persist Data, Fetch Data and Delete Data.

Persist Data

According to Diagram 3.18, the following steps summarise the Persist Data
algorithm.

1. The Group key is requested.

2. The key is decrypted and imported in the client side.

3. The Data object is converted to string, encrypted with the Group key
and persisted.
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Client Server Database

getUser(email)

validateSessionToken()

ack

getUserInformation(email)

{email, K+
Bob}

{email, K+
Bob}

getTrustList(authToken)

getTrustList()

([K+
Bob, email]K−

Alice
, ...)

([K+
Bob, email]K−

Alice
, ...)

verifyIdentity(K+
Bob)

Trust MechanismTrust Mechanism

getGroupKey(groupId)

validateSessionToken()

ack

getGroupKey(groupId)

{{Ks}K+
Alice

, [Ks]K−
Alice

}

{{Ks}K+
Alice
}

decryptGroupKey(K−
Alice)

encryptGroupKey(K+
Bob)

persistGroupKey({Ks}K+
Bob

)

validateSessionToken()

ack
persistGroupKey({Ks}K+

Bob
)

ack

ack

Diagram 3.16: Add User to Group. In order for a User to join the Group,
the Group key must be encrypted with the public key of the User.
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Client Server Database

kickUser(groupId, email)

validateSessionToken()

ack

kickUser(groupId, email)

ack

ack

getGroupMembers(groupId)

validateSessionToken()

ack

getGroupMembers(groupId)

{[email : ”bob@...”, key : K+
Bob, ...]}

{[email : ”bob@email.com”, key : K+
Bob, ...]}

genGroupKey()

signGroupKey({Ks}K−
Alice

)

encryptGroupKey([K+
Bob, ...])

persistGroupKeys([{Ks}K+
Bob

, ...])

validateSessionToken()

ack
persistGroupKeys([{Ks}K+

Bob
, ...])

ack

ack

Diagram 3.17: Remove User from Group. Bob was removed from the Group
by Alice. So, she has to generate a new Group key and sign it and to share
it with the Group members, she has to get all Group members’ public keys
and encrypt the new generated Group key with those public keys.
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Client Server Database

getGroupKey(groupId)

validateSessionToken()

ack

getGroupKey(groupId)

{{Ks}K+
Bob

, [Ks]K−
Alice

}

{{Ks}K+
Bob
}

decryptGroupKey({{Ks}K+
Bob

, [Ks]K−
Alice

})

encryptGroupData(Ks, data)

persistGroupData({M}Ks
)

validateSessionToken()

ack
persistGroupData({M}Ks

)

ack

ack

Diagram 3.18: Persist Data to Group. Before persisting Group Data, the
Group key is required to encrypt the Group Data.
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Fetch Data

As aforementioned, this procedure only returns the current Group state
as the protocol does not manage the Group state history. According to
Diagram 3.19, the following steps detail the Fetch Data procedure.

1. The Client requests the Group state including the User session token
for authentication needs.

2. When the User has the Group state and the Group key, the decryption
mechanism is initiated.

3. The Group key is decrypted using their own private key.

4. The Data is decrypted using the Group key.

5. The Data is converted into an object.

Client Server Database

getGroupState(groupId)

validateSessionToken()

ack

getGroupState(groupId)

{{M}Ks
}

getGroupKey(groupId)

{{Ks}K+
Bob

, [Ks]K−
Alice

}

{{M}Ks
, {Ks}K+

Bob
, [Ks]K−

Alice
}

decryptGroupKey(K+
Bob)

decryptGroupState(Ks)

Diagram 3.19: Fetch Data from Group.

Delete Data

This feature follows the Persist Data procedure. The Client requests the
Group key, encrypts the empty object and persists it. In this case, the object
is an empty Data model.
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3.4 Security Evaluation

Sharelock uses cryptographic algorithms to hash keys and information, to
encrypt and decrypt Group states, Group keys or key pairs as well as to
generate key pairs (asymmetric keys) and Group keys (symmetric keys).

• PBKDF2 is a key derivation function and it is used to derive passwords
creating a key with more bits in order to prevent potential brute force
attacks. Sharelock uses this algorithm to derive Users’ passwords (see
Section 3.3).

• RSA-OEAP is mainly used in asymmetric encryption and it is se-
cure against chosen cipher text attacks. It prevents attackers from
decrypting only a part of the message inferring knowledge from it.
Additionally, the algorithm is used to generate a key pair when the
User registers in the system.

• AES-GCM is used in symmetric encryptions and supports authen-
ticated encryption providing integrity and confidentiality of the en-
crypted information preventing tampering attacks. Therefore, Share-
lock uses this algorithm for cryptographic work with Group keys.

Passive Attackers

Passive Attackers do not interact with any system entity hacking the system
only by watching the behaviour of the system entities and sniffed informa-
tion. Sharelock is secure against them as they only see encrypted information
(i.e., {M}Ks).

Let Eve be an eavesdropper capturing the protocol communications from
a Group. She cannot read the messages without the Group key and to access
the Group key she needs a User’s private key to decrypt it. Consequently,
each private key is encrypted with a derived PBKDF2 key which was pre-
viously generated with the User’s password.

In contrast, if she knew the User’s password, she would be able to read
all Group states. Although, to prevent weak passwords in the protocol, we
can make some adjustments, namely use temporary passwords or use strong
password hashes algorithms.

Active Attackers

By Active Attackers, we mean a hacker who tries to manipulate information,
replay identities or flood the servers with requests in order to disrupt their
service.

In Sharelock, we identified message tampering, replaying and masquerad-
ing as the main active attacks. In spite of the messages and the keys being
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encrypted by symmetric authenticated encryption or by digital signatures,
the protocol presents some weaknesses, namely requests without signed and
encrypted payloads. For instance, Remove User From Group requires the
session token for authentication proposes, the groupId and the email from
the User who we want to remove. In this scenario, if the communication
channel is encrypted, Mallory cannot manipulate the request and remove any
user from any Group. We also evaluate another weaknesses, namely replayed
attacks and key manipulation which are described in the next paragraphs.

Replayed Attacks occur when the attacker replicates information and
resends it to the system. These attacks also arise when the attacker resends
delayed information over the network. These attacks are mainly applied to
stateless servers as they treat each request as a new one, they cannot retain
clients information. However, Sharelock cannot be affected by these attacks
as the protocol uses a secure channel between client and server. Otherwise,
Mallory could delay the message to change the Group keys and reset the
Group key to a previous value.

Key Manipulation is considered a threat as any Group member is able to
alter the Group key which might compromise the Group privacy. Let Alice
be a member of two Groups. She can change both Group keys to the same
key compromising the privacy of both Group states.

Forward Secrecy

Forward secrecy prevents past encrypted information from being disclosed as
long-term secret keys cannot decrypt previous information. Sharelock uses
long-term secret keys such as Group keys Ks and key pairs K+

Bob,K
−
Bob. In

a scenario of a Group key was leaked, it would compromised all information
encrypted with Ks. Therefore, to implement forward secrecy, Ks should be
updated temporarily. For scalability reasons, the protocol does not support
automatic group key updates as it would increase the client processing time,
consequently, it would lead to a overall loss of scalability.

In addition, if a key pair were disclosed by a passive attacker, the result
would be terrible as all group keys encrypted with this key would be leaked
as well. For this reasons, we can state that Sharelock does not have forward
secrecy.





Chapter 4

Implementation

In order to test and evaluate Sharelock, we created a web implementation.
The clients are represented by web browsers, while the server is represented
by an web API and a database.

The reminder of this chapter details which technologies we used to im-
plement Sharelock, how the client-server architecture was implemented and
what architectural components were developed, namely the services layer,
the database and the Javascript library.

4.1 Architecture

We chose the C4 Model to describe our implementation architecture. As
detailed in [7], this model describes any architecture in four levels of detail.
The first level, named System Context Diagram, shows the big picture of our
system by representing only the direct and indirect systems or people which
our system interacts with. The second level, named Containers Diagram,
illustrates how many containers (i.e, public interfaces, databases, servers,
etc.) we have in our system, what is their job and their responsibilities,
and what technologies they use. The third level, named Components Dia-
gram, illustrates how the containers are made and what their responsibilities
are. Finally, the fourth level is optional and represents Unified Modelling
Language (UML) diagrams.

This implementation could be applied for multiple web applications as
it provides a Javascript library with all protocol features implemented. Di-
agram 4.1 shows that any signed User can perform any protocol primitive,
namely User, Group or Data Management. As a consequence, the web ap-
plication developers have to deal with the management of Group policies
limiting the access of Users to some protocol primitives. For instance, the
Group founder is the only Group member who has the right to remove some-
one.

33
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Diagram 4.1: System Context Diagram represents an abstract diagram for
a web application which integrates the Sharelock Protocol. Basically, the
protocol web implementation provides all features namely User, Group and
Data Management to a signed User. It also provides the feature, register
new account, to anonymous Users.

Diagram 4.2 illustrates that the architecture follows a client-server paradigm
where the clients are web browsers and the server is composed by a RESTful
API and a MySQL database. The RESTful API was developed with Java
Platform, Enterprise Edition (J2EE) technologies.

As shown in Diagram 4.3, it contains stateless beans, namely Account-
Bean, GroupBean and UserBean. Firstly, AccountBean has functions to
create and delete accounts, to fetch account information and to login with
or without session tokens. Secondly, GroupBean has functions to create
and delete groups, to invite and remove users from groups, to persist, fetch
and remove group states, to persist and fetch group keys and to fetch all
group members. Lastly, UserBean has functions to manage the trust list and
to get users information. It also implements an Object-Relational Mapping
(ORM) layer using Java Persistence API (JPA) technology. This layer maps
Java classes and their relationships into database tables. This container also
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Diagram 4.2: Containers Diagram shows up that each User requests the
RESTful API through an HTTPS channel. The services layer was imple-
mented through J2EE technologies and was deployed on WildFly application
server. It also uses a MySQL database to persist all information shared in
the protocol, namely Users, Groups, Data and Keys.

implements a Representational State Transfer (REST) public interface us-
ing J2EE/JAX-RS technologies. In sum, the web API uses stateless beans
which are connected to the database through the MySQL java connector.

Data Model

Diagram 4.4 portrays the tables which were automatically created by the
ORM layer, as shown in Diagram 3.1. However, it has more tables, namely
group members, group data, group secret and user trustedIdentity because
these tables represent auxiliary tables created in many to many relationships.
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Diagram 4.3: Components Diagram shows up the RESTful API structure
which has stateless beans, REST endpoints, an ORM layer and a logging
component.
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Diagram 4.4: Database Entity-Relationship (ER) Diagram.
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Table 4.1: Group and Data Management Endpoints
Verb Endpoint Header Body

Create Group POST /v1/group X-Auth-Token name

Delete Group DELETE /v1/group X-Auth-Token idGroup

Get Group Key POST /v1/group/key X-Auth-Token idGroup

Update Group Key PUT /v1/group/key X-Auth-Token members, idGroup

Invite User POST /v1/group/member X-Auth-Token idGroup, email, groupKey

Kick User DELETE /v1/group/member X-Auth-Token idGroup, email

Get Members POST /v1/group/members X-Auth-Token idGroup

Persist Data POST /v1/group/data/add X-Auth-Token idGroup, label, data

Get Data POST /v1/group/data/get X-Auth-Token idGroup, label, data

Delete Data DELETE /v1/group/data/remove X-Auth-Token idGroup, label

Public Interface

Tables 4.2 and 4.1 describe all endpoints available in the public interface.
They implement a Representational State Transfer (REST) API which al-
lows HTTP requests through the four verbs of HTTP namely get, post, put
and delete.

Both tables represent an API endpoint detailing the HTTP verb, the
header and the body parameters. Furthermore, each endpoint is composed
by a set of words, namely the first word for the API version, the second
word for the scope and usually the last word for the action.

For instance, in Table 4.2, the register account procedure has the follow-
ing route: /v1/account/register. It uses the API version one, it is related
with the account management scope, while the action is to register a User.

In addition, some endpoints have the X-Auth-Token as a mandatory
header. This usually happens when the endpoint needs authentication. For
instance, when it is strictly necessary the X-Auth-Token to proceed to the
authentication of the User. Moreover, X-Auth-Token can be used to imple-
ment a session mechanism in the web applications.

To sum up, Table 4.2 details the Account Management Endpoints namely
Register User, Login User, Delete User, User Info and Token Authentica-
tion. All endpoints are RESTful and in some cases is mandatory the X-
Auth-Token for authentication proposes. The interface also supports group
management and is mandatory to provide the header with the X-Auth-Token
in all requests. Additionally, the scope of each endpoint is the group and
it allows to Create and to Delete a Group, to Add a User to the group, to
Remove a User from a group, and to Persist, Fetch or Delete Group Data.

In order to speed up the protocol integration with web applications,
we developed an event based Javascript library which provides, through an
interface, a set of primitives that are essential to develop and integrate the
protocol. Technically, this library was implemented with promises along
side jQuery which allows for asynchronous requests to the API.

In addition, the library is supported by WebCrypto API and JQuery.
The former, webCrypto API implements the World Wide Web Consortium
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Table 4.2: Account Management Endpoints
Verb Endpoint Header Body

Register User POST /v1/account/register -
email, derived pwdKey

public key
encrypted private key

Login User POST /v1/account/login - email, derived pwdKey

Token
Authentication

POST /v1/account/token X-Auth-Token -

Account Information GET /v1/account X-Auth-Token -

User Information GET /v1/account/user X-Auth-Token email

Delete User DELETE /v1/account X-Auth-Token -

Trust User POST /v1/user/trust X-Auth-Token signature, email

Untrust User POST /v1/user/untrust X-Auth-Token email

Get Trust List POST /v1/user/trustlist X-Auth-Token -

(W3C) standard for in-browser cryptography, includes a set of cryptographic
primitives and is a default library in most contemporary browsers. The
latter, JQuery is an event based library which provides an API for HTTPS
requests.

Regarding the architecture, the library is composed by multiple files,
namely scope, functions, requests and WebCrypto API implementations.
Firstly, the library implements its own runtime scope where it temporarily
persists the user information, namely password, email, public and private
keys. Secondly, the functions files include all procedures which implement all
the features requests detailed in interaction diagrams in Chapter 3. Thirdly,
the requests files import JQuery API and implement all requests to the
RESTful API detailed in Section 4.1. Lastly, the library has multiple im-
plementations of the cryptographic algorithms defined in Chapter 3 using
WebCrypto API.

4.2 Proof of Concept

Nowadays, web chats are the most popular and used applications in the web,
for instance WhatsApp, Facebook Messenger, Snapchat or Telegram, which
connect millions of people through web and mobile applications. Conse-
quently, we decided to implement an end-to-end web chat, named Hedwig,
which employs the protocol implementation described in Chapter 4.

The requirements of this project are, mainly, to guarantee integrity, avail-
ability and confidentiality of the shared messages in group communications
through the usage of the aforementioned protocol implementation.

Table 4.3 details the web chat features. ID stands for the numeric iden-
tification of the feature, Description for a proper feature description, and
Priority for rating the feature as must-have or nice-to-have.

In addition, following the same headers definitions, Table 4.4 details the
security and architectural concerns that the application should implement.
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Table 4.3: web chat functional requirements
ID Description Priority

1 Allow a chatroom for each group communication. MUST

2
Allow User to create an account by requesting
the email address and the password.

MUST

3
Allow User authentication by requesting
the email address and the password.

MUST

4
Allow User to send and receive messages
from multiple groups.

MUST

5 Allow User identity verification. MUST

6 Allow User to trust and to untrust any group member. MUST

7 Allow User to create a group. MUST

8
Allow User to delete a group where they are a
member of and even if they are not the group founder.

MUST

9
Allow User to invite other members to a group
where they are a member of.

MUST

10
Allow User to invite other members to a group
where they are a member of.

MUST

11 Allow User to view their own key pair. NICE

Technically, this web chat was implemented with React-js and Boot-
strap. The former, React-js, is a Javascript library to build web interfaces
and was developed by Facebook. The latter, Boostrap, is a Hyper Text
Markup Language (HTML), Cascading Style Sheets (CSS) and Javascript
(JS) framework to develop responsive web applications. Fig. 4.1 shows some
user interfaces of Hedwig, namely the homepage and the group chat inter-
face.



4.2. PROOF OF CONCEPT 41

Table 4.4: web chat non-functional requirements
ID Description Priority

1
Information should be always encrypted and
decrypted in client-side.

MUST

2
The application must provide confidentiality,
integrity and availability of the share messages
and keys.

MUST

3
Users should never receive any modified
group messages.

MUST

4
All cryptographic mechanisms should
run in background.

MUST

5 All API requests should run in background. MUST

6
The group messages should always be delivered
in casual order.

NICE

(a) Homepage (b) Chatroom

Figure 4.1: Hedwig web Application
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Performance Evaluation

”A distributed system is scalable if the cost of adding a user is a
constant amount in terms of the resources that must be added.”
[pp. 33, 10]

For this reason, we made design decisions in order to increase the pro-
tocol scalability. We focused the analysis on the most used and complex
operations, namely Persist and Fetch Data and Remove User From Group.
The former, Persist and Fetch Data, refers to the two most frequent oper-
ations. In the both cases, the overhead is getting the group state, {M}Ks ,
and decrypting or encrypting it with the group key, Ks. The latter, Remove
User From Group, is a complex operation as it runs the key distribution al-
gorithm when someone leaves the group.

In order to test the scalability of the protocol, we planned two different
experiments. On the one hand, we measure the execution time of the afore-
mentioned primitives requests with payload encrypted with Sharelock. On
the other hand, we measure the execution time of the same primitives with
payload in plain text comparing both results.

The outliers were removed from the measured results by applying Equa-
tion (5.1).

Outlier = average(data)± 2 ∗ standardDeviation(data) (5.1)

The setup of this performance evaluation was a virtual machine which
ran Wildfly (v10) and MySQL (v5.6), and a Macbook Pro. The former,
virtual machine had 2 Intel(R) Xeon(R) CPU E5620 2.40GHz, 4 gigabyte of
RAM and CentOS (v6.7) as the operative system. The latter, Macbook Pro
specifications were retina 13-inch display, early 2015, processor 2,7 GHz Intel
Core i5, 8 GB of DDR3 RAM with 1867 MHz and Intel Iris 6100 graphics
card with 1536 MB of memory. In addition, the HTTPS requests were
made through Chrome browser (v59) using jQuery and WebCryptoAPI.
These components also communicated through a public network with 64ms
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of latency. The application server (Wildfly) was reset in each test in order to
provide the same initial state. Finally, the times were measure in client-side
through the High Resolution Time Level 2 public interface which provides
time measurements in milliseconds since 01 January, 1970 UTC.

Persist Data

Persist Data is one of the most used operations, it encrypts the group states
in client side and requests the server to persist them. We implemented six
different tests where we tested separately the primitive performance using
plain text payloads and payloads encrypted with Sharelock. Each test was
executed one thousand times with different group state sizes, namely 8000,
80000 and 800000 bytes.

Figure 5.1: Persisting several group state sizes in plain text and encrypted
with Sharelock.

Fig. 5.1 illustrates the average execution time for persisting several group
state sizes in plain text and encrypted with Sharelock. It is clear that, there
are two types of blocks on the figure. The requests with group state sizes
encrypted with Sharelock is represented by the grey blocks, while the blue
blocks represent requests with group state sizes in plain text. The figure also
demonstrates that the requests with payloads encrypted through Sharelock
cost more execution time than requests with payloads in plain text.

In addition, the figure shows that, in requests with payloads encrypted
through Sharelock primitives, when the group state size grows, the execution
time increases as well. Additionally, the execution time of requests with
group states encrypted with Sharelock is over treble of the requests with
group states in plaintext.
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Although, the group key is a symmetric key (which enables faster cryp-
tographic operations than asymmetric keys), the overhead of this operation
is on encrypting the whole group state with the group key. As a conse-
quence, this operation could be costly for the clients for large group states.
The client will need more resources to encrypt the group size leading to a
significant increase in client processing time.

The figure also illustrates that the average execution time for persisting
group states in plain text varies around 25ms, while the average execu-
tion time in persisting encrypted group states with Sharelock varies around
150ms.

The highest variance of average execution time for persisting group states
in plain text occurs when the group state grows from 80,000 to 800,000 bytes
reporting an increase of 27%, while when the group state grows from 8,000
to 80,000 bytes, the average execution time is approximately 19%.

In addition, the highest variance of average execution time for persisting
encrypted group state with Sharelock occurs when the group state grows
from 8000 to 80000 bytes reporting an increase of approximately 44%, while
when the group state grows from 80000 to 800000 bytes, the average execu-
tion time is approximately 43%.

Fetch Data

Fetch Data is one of the most used operations. It fetches and decrypts
the group states in client-side using the group key. The experiment is the
same as the Persist Data, we implemented six different tests where we tested
separately the primitive performance using plain text payloads and payloads
encrypted with Sharelock. Each test was executed one thousand times with
different group state sizes, namely 8,000, 80,000 and 800,000 bytes.

Fig. 5.2 portrays the average execution time for fetching several group
state sizes in plain text and encrypted with Sharelock. The figure also
presents two different types of blocks, namely the blue block deals with re-
quests made with plain text payloads and the grey block represents requests
made with payloads encrypted through Sharelock primitives.

As shown in Fig. 5.1, the average execution time is bigger in requests
with payloads encrypted with Sharelock than with payloads in plain text.
However, the difference is under 20ms.

Notice that when the group state size grows, the client-side processing
increases. Despite of the group key being a symmetric key, the processing
time will increase with the size of the group state.

The figure also illustrates that the average execution time for persisting
group states in plain text varies around 15ms, while the average execution
time in persisting encrypted group states with Sharelock varies around 27ms.

The highest variance of average execution time for fetching group states
in plain text occurs when the group state grows from 80,000 to 800,000 bytes
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Figure 5.2: Fetching several group state sizes in plain text and encrypted
with Sharelock.

reporting an increase of approximately 28%, while when the group state
grows from 8,000 to 80,000 bytes, the average execution time is constant.

In addition, the highest variance of average execution time for fetching
encrypted group state with Sharelock occurs when the group state grows
from 80,000 to 800,000 bytes reporting an increase of 21%, while when the
group state grows from 8,000 to 80,000 bytes, the average execution time is
approximately 12%.

Remove User From Group

Remove User From Group is an extremely important feature as it represents
the key distribution algorithm. Namely, when a User is removed from a
group, the User who performed the action has to get all public keys of the
group members, generate a new group key and spread the key to all group
members by encrypting it with their public keys. Therefore, key distribution
is extremely complex as it depends on the group size.

In terms of the experiment, we implemented six different tests where we
tested separately the primitive performance using plain text requests and
requests using Sharelock encryption mechanisms. The first test removed 1
group members, in a group size of 6 members. The second test removed
1 group members, in a group size of 36 members. The last test removed 1
group members, in a group size of 216 members. Each test was executed 250
times. Additionally, in each request, the same group member was removed
separately and the group key was regenerated, encrypted and spread every
time.



47

Figure 5.3: Removing several group members in plain text and applying
Sharelock key distribution algorithm

Fig. 5.3 illustrates the average execution time for removing several group
members in plain text and encrypted with Sharelock. The figure has two
different types of blocks, namely the grey blocks represent the removal of
group members using Sharelock key distribution algorithm and the blue
blocks represent the removal of group members by sending plain text re-
quests.

The figure also demonstrates that there is a dramatically growth of al-
most 800% of average execution time between requests with payloads in plain
text and requests which applied the key distribution algorithm of Sharelock.

Notice that the average execution time for removing group members en-
crypted with Sharelock varies around 600ms. However, the highest variance
occurs when the group size grows from 36 members to 216 members report-
ing an increase of almost 68% of average execution time, while when the
group size grows from 6 members to 36 members, the average execution
time rises 18%.

The figure also illustrates that the average execution time for removing
group members in plain text varies around 113ms. However, the highest
variance occurs when the group size grows from 36 members to 216 members
reporting an increase of 101%, while when the group size grows from 6
members to 36 members, the average execution time rises approximately
22%.





Chapter 6

Conclusions

This work describes a security protocol, named Sharelock, which provides
secure group communication through untrusted servers. In order to guar-
antee end-to-end encryption, the protocol shifts all cryptographic tasks to
client side using symmetric encryption algorithms to encrypt and decrypt
group states as it provides more performance than an arbitrary asymmet-
ric encryption algorithm. Therefore, this design choice is undoubtedly the
mechanism of choice to be used on the most frequent primitives. As a
consequence, the key distribution problem is one of the main focus of the
protocol.

Regarding the key distribution, before persisting a group state, the
clients encrypt the group state with the group key, {M}Ks

. The group key
was previously encrypted with their public keys, [{Ks}K+

Bob
, {Ks}K+

Alice
, ...],

and was signed, [Ks]K+
Bob

, by the group founder or by the user who per-

formed a remove user from group operation. Thus, the protocol meets the
defined thesis goals, namely end-to-end encryption and access control.

In order to test the performance and the scalability, we developed a web
implementation of the protocol. Therefore, we analysed the most used prim-
itives (Persist and Fetch Data) and the most complex primitives (Remove
User from Group).

In terms of the Persist and Fetch Data primitives, the client processing
time increases with the size of the group state as they have to encrypt or
decrypt it in each operation. Thus, it is expected that these primitives
present a linear complexity. However, for large group states, the application
developer can split the group state by using multiple scopes in the same
group. For instance, the application developer can create a scope for each
client, for blocks of time or create public and private scopes. By fetching
and persisting smaller states, the user could speed up the entire process,
reduce the network latency and the client-side processing. The results show
that these primitives apparently follow a logarithm complexity. However, to
prove this, it would be necessary to make more tests increasing the group
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state sizes.
In addition, it is expected that Ks remains stable for a long time as the

remove user from group primitive is not very used. Therefore, the results
suggest that the protocol could achieve linear scalability.

The cryptographic choices were made in order to achieve linear scalability
as well. Therefore, Sharelock uses SHA-256 for hash functions, RSA-OEAP
for asymmetric key generation, AES-GCM for symmetric key generation and
PBKDF2 for cryptographic operations with passwords. In addition, these
design and cryptographic choices also allow Sharelock to be adapted to other
web systems (i.e, IoT) as they have low computational costs.

Sharelock is agnostic in relation to the information shared between the
users by representing the group state by abstract objects which are con-
verted to strings and persisted in the database. Therefore, the application
developer is able to develop the desired data model for each group through
the usage of these objects (which are similar to JSON objects).

After analysing the defined requirements and the final results, we can
conclude that all requirements were met. Sharelock demonstrated that it
is possible to have secure group communications through untrusted servers
without compromising the system scalability. We believe that this definition
may help future secure applications.
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