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Abstract

Cells are constantly subject to stimuli that trigger sequences of chemical reactions (signalling path-
ways) which culminate in an appropriate response. If the chemical reaction networks involved have
more than one steady state, then there is more than one possible response, resulting in increased
flexibility in cellular decision-making.

The aim of this study is to determine if space can influence the steady states of chemical reaction
networks. This influence is assessed in the sense of the capacity of the networks for more than one
steady state under specific conditions, often called multistationarity.

The intricacy of signalling pathways requires simplifications prior to the analysis, which usually
lead to the exclusion of space. However, signalling pathways are often influenced by space. For
instance, some chemical species are required to move to a specific location before they act or even
shuttle to a distinct compartment.

The approach considers two spatial factors: compartments and diffusion. Chemical Reaction
Network Theory (CRNT) acts as the starting point, describing the networks as systems of Ordinary
Differential Equations (ODEs). These can be modified to account for compartments or include
diffusion terms resulting in reaction-diffusion systems.

On the one hand, to analyse the original ODEs models and the ones with compartments, assuming
mass-action kinetics, the steady states are represented by roots of a polynomial, which can be studied
with Injectivity Methods. On the other hand, the initial steady states are homogeneous solutions of
the reaction-diffusion systems. Using Linear Stability Analysis, we evaluate their diffusion-driven
instability, which could lead to spatial pattern formation.

According to the results, when adding compartments, some networks gain the capacity for
multistationarity, while others lose it. However, none has linear diffusion-driven instability. The
results prove that space can influence the steady states of chemical reaction networks.

Further research could be conducted on the influence of diffusion, through different representations
of the networks, namely with Graph Theory, as well as a combination of compartments and diffusion
that resembles the eukaryotic cell organisation.

Keywords: Signalling pathways; chemical reaction networks; multistationarity; compartments;
diffusion-driven instability





Resumo

As células estão constantemente sujeitas a estímulos que ativam sequências de reações químicas (redes
de sinalização), culminando numa resposta apropriada. Se as redes de reações químicas envolvidas
apresentarem mais do que um estado de equilíbrio, há mais do que uma resposta possível, resultando
num aumento da flexibilidade de decisão celular.

O objectivo do estudo é determinar se o espaço tem influência nos estados de equilíbrio de redes de
reações químicas. Para testar esta influência é considerada a capacidade das redes para apresentarem
mais do que um estado de equilíbrio sob condições específicas, denominada de multi-estacionariedade.

A complexidade das redes de sinalização requer simplificações antes da análise, normalmente
ignorando o espaço. Contudo, as redes de sinalização são geralmente influenciadas pelo espaço. Por
exemplo, algumas espécies químicas necessitam mover-se para um local específico na célula antes de
atuar, ou mesmo mudar de compartimento.

A abordagem seguida considera duas aproximações espaciais: compartimentos e difusão. A
Teoria das Redes de Reações Químicas (CRNT) serve de ponto de partida, descrevendo as redes como
sistemas de equações com derivadas ordinárias (EDOs). Estes podem ser modificados para considerar
compartimentos ou termos difusivos resultando em sistemas de reação-difusão.

Por um lado, para analisar os modelos originais com EDOs e os modelos com compartimentos,
partinda da lei de ação das massas, os estados de equilíbrio são representados pelas raízes de um
polinómio, que podem ser estudadas através de Métodos de Injetividade. Por outro lado, os estados de
equilíbrio iniciais são soluções homogéneas dos sistemas de reação-difusão. Recorrendo a Análise de
Estabilidade Linear, avalia-se a sua instabilidade na presença de difusão, que pode levar à formação
de padrões espaciais.

De acordo com os resultados, com compartimentos, algumas redes ganham a capacidade para
múltiplos estados de equilíbrio, enquanto outras a perdem. No entanto, nenhuma tem instabilidade na
presença de difusão. Os resultados provam que o espaço tem influência nos estados de equilíbrio de
redes de reações químicas.

Poder-se-ia estender a pesquisa à influência da difusão, através de novas representações das redes,
por exemplo Teoria de Grafos, assim como à combinação de compartimentos e difusão para aproximar
a organização interna das células eucarióticas.

Palavras-chave: Vias de sinalização; redes de reações químicas; multi-estacionariedade; compar-
timentos; instabilidade de Turing
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Chapter 1

Introduction

Cells, as the basis of life, must adapt to their environment and act appropriately to stimuli. Receptors
interpret internal and external signals, triggering a sequence of chemical reactions that ultimately
lead to an appropriate response. These highly complex chemical networks are involved in cellular
regulatory activities, such as cell division and growth, chemotaxis (chemically directed movement)
and apoptosis (programmed death). Therefore, studying signalling pathways is crucial to understand
cellular activities and diseases that arise from their errors, such as tumours.

A chemical system is said to be at steady state when the concentrations of the chemical species
involved do not change in time. Steady states are directly linked to the flexibility of cells decision-
making. On the one hand, if a signalling pathway has a unique steady state, then there is only one
response to the stimulus. On the other hand, multistationarity, as the existence of more than one steady
state under specific conditions, allows for more complex behaviour of cells. Switch-like behaviour
and irreversibility are some of the phenomena associated with multiple steady states. [7, 8]

As a result of the intricacy of signalling pathways, they are modelled through systems of Ordinary
Differential Equations (ODEs), focused on the temporal evolution of concentrations of chemical
species. Such a simplification disregards the influence of space on the systems. However, many path-
ways require molecules to diffuse to a specific location before an event occurs, while sometimes they
must change compartments. For instance, in Synthetic Biology, the creation of microcompartments is
a rising experimental tool. [1, 2, 4, 9]

Despite the advancements in computational tools, it is still difficult to analyse a complete pathway.
However, there are specific mechanisms that are ubiquitous to such networks and that give insight
on their behaviour. Studying some motifs, simplified patterns of activation and inhibition between
a small number of species, acts as a reference point for the complexities of general pathways. The
thesis focuses on signalling and phosphorylation motifs. Within the former, feedback and feedforward
are two of the most relevant, associated with cellular memory and differentiation, and gene regulatory
activity, respectively. The latter refers to the activation of substrates by action of an enzyme called
kinase, by adding a phosphate group. [17]

As space has a role on cellular activities, we intend to assess its influence on the steady states of
chemical reactions. To that end, space will be considered in two settings: temporal models with two
compartments and spatial models in one compartment with diffusion. The two approaches intend to

1



2 Introduction

assess the influence of compartmentalisation and of diffusion, as two ways of accounting for space
without an impractical increase on the complexity of the study.

Regardless of the biological inspiration, the analysis is purely mathematical. Firstly, Chemical
Reaction Network Theory (CRNT) provides a translation of chemical reactions to an autonomous
system of ODEs, describing the temporal evolution of species concentrations. Secondly, analysing
the steady states amounts to studying the zeros of the function that determines the system, namely
the existence of more than one positive zero, equivalent to the multistationarity of the network.
Thirdly, compartmentalisation is achieved by considering reactions happening in two compartments
simultaneously, with some species moving between them. Lastly, a one-dimensional system, obtained
from the system of ODEs by adding diffusion terms, is studied using Linear Stability Analysis to
determine the capacity for diffusion-driven instability.



Chapter 2

Chemical reactions and injectivity

The evolution of chemistry led to the need for an analytical theory to represent and study chemical
reactions. The first important step in this direction was made by Aris [3], who layed the foundations
for the study, by proposing principles somehow analogous to those of continuum mechanics, as
himself recognises:

“By ‘stoichiometric’ we undersand the calculus of changes in composition that take place
by reaction; it corresponds to kinematics in the analogy with continuum mechanics. By

‘kinetics’ we understand the relations that govern the speed of the composition changes
and this bears some analogy to the dynamics of continua.” [3, pp. 81–82]

Afterwards, Chemical Reaction Network Theory grew to become the language and the tool to
study chemical reactions, specially their properties and equilibria. The work by Feinberg [5] focuses
on representing chemical networks with ODEs, determining existence, multiplicity and stability of
equilibrium. The ODEs systems only describe the temporal evolution of the chemical species, a
simplification that requires assumptions on the homogeneity, temperature and volume of the vessel
where the network takes place.

Assuming mass-action kinetics, the systems of ordinary differential equations (ODEs) are au-
tonomous, that is of form dx

dt
= f (x), where the vector function f has polynomial coordinate functions.

The steady states can be studied through appropriate algebraic methods applied to the system f (x) = 0,
focusing on the injectivity of f , as proposed in [6] with an algorithm sustained by algebraic results
detailed in [11]. Such methods exploit a matrix representation for generalised polynomials and do not
fix the parameters of the model, therefore reaching general conclusions. Moreover, the methods only
test solutions that are positive and that satisfy conservation laws.

2.1 Chemical Reaction Network Theory

A chemical reaction is the transformation of one set of chemical substances (or chemical species)
into a different one. The consumed substances are the reactants and the ones created are the products.
Intuitively, a chemical reaction network is a set of linked chemical reactions, where the product of one
reaction is the reactant of another. CRNT formalises these notions, allowing for a rigorous analysis of
the behaviour of the systems.

3



4 Chemical reactions and injectivity

Chemical reactions usually take place in heterogeneous media, influenced by temperature and vol-
ume. However, to simplify the set up of the analysis, CRNT assumes that the medium is continuously
stirred (homogeneous), temperature and volume are constant, and if there is a continuous inflow, it is
balanced by a continuous outflow with the same rate.

Definition 1. A chemical reaction network is a set {S ,C ,R}, with

• S = {X1, . . . ,Xn} the set of chemical species.

• C the set of complexes, i.e, the left-hand and right-hand side of reactions.

• R ⊂ C ×C the set of reactions, i.e, the relations between complexes.

Each species must be in at least one complex, and each complex in at least one reaction. There are no
reactions between identical complexes.
It is possible to consider a zero complex, representing the inflow and outflow of a species, if it lies on
the left-hand or right-hand side of a reaction, respectively.

Example 1. Let us consider the chemical network

X1 + X2
k1 X3

2 X3
k2
k3

X2 + X4

X4
k4 X1 + X2

where ki, i = 1, . . . ,4, stand for the reaction rates. To this network correspond the following sets

S = {X1,X2,X3,X4}
C = {X1 +X2,X3,2X3,X2 +X4,X4}

R = {X1 + X2 X3,2 X3 X2 + X4,X2 + X4 2 X3,X4 X1 + X2}.

The aim is to compute the state of the system, which is uniquely defined by the concentrations of
the species in a given instant. Let P be the set of non-negative real numbers. Then, the concentration of
species in an instant t is represented by x(t) = (x1(t), . . . ,xn(t)) ∈ Pn. In addition, a chemical reaction
system requires the definition of a function for each reaction, determining the rate of its occurrence.

Definition 2. A rate function for a reaction y y’ is a continuous function ky y’ : Pn → P
which satisfies

ky y’(x)> 0 ⇐⇒ supp(y)⊂ supp(x), (2.1)

with supp the support function in Pn and x the concentration vector. The kinetics of a chemical
reaction network {S ,C ,R} is defined by the assignment of a rate function to each reaction in R.

Remark 1. Condition (2.1) means that the reaction rate is positive for concentrations x if and only if
the reactants have positive concentration in the vector x. Therefore, the reaction takes place if and
only if all the reactants are present in the system.
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One of the simplest laws of kinetics, introduced by Waage and Gulberg [18], is mass-action
kinetics, used throughout the text.

Definition 3 (Law of mass-action). The rate of a reaction is proportional to the concentration of its
reactants. If x = (x1, . . . ,xl) is the concentration vector of the reactants, there exist positive constants

k, α1, . . . ,αl , such that the speed of the reaction is k
l

∏
i=1

xαi
i , with αi the stoichiometric coefficient of xi

in the reaction, and k the rate constant.

Therefore, the speed of the reactions is uniquely defined by the positive rate constants associated to
each reaction, κ = (k1, . . . ,kr), with r the number of reactions. After identifying the four components
of the chemical system, {S ,C ,R,κ}, the evolution of concentrations is defined by an autonomous
system of ODEs, whose second members are polynomial functions.

Example 2. The network in Example 1 is described by the following ODEs system.

dx1

dt
=−k1x1x2 + k4x4

dx2

dt
=−(k1x1 + k3x4)x2 + k2x2

3 + k4x4

dx3

dt
= (k1x1 +2k3x4)x2 −2k2x2

3

dx4

dt
= k2x2

3 − k3x2x4 − k4x4

(2.2)

It is possible that a group of equations adds up to zero. This is equivalent to saying that the sum of
their time derivatives is equal to zero at all times, thus the sum of their concentrations does not change
over time, retaining the initial total amount. The resulting equations are called conservation laws.

In Chapters 2, 3 and 4 of this thesis we focus on the steady states of chemical reaction networks,
i.e, the set of species concentrations for which the system does not change in time. These are the
solutions of dx

dt
= fκ(x) = 0. Assuming mass-action kinetics, the steady state system is polynomial

and determining equilibria is the same as calculating the roots of a polynomial function.
As fκ(x) is a polynomial vector function, it has a matrix representation easily deducted from

the underlying reaction network. Let V ⊂ Rn×r be the matrix of exponents, with each column, v j,
corresponding to a reaction, and vi j the coefficient of Xi in the reactants of the j-th reaction. To
simplify the notation, xv j := xv1 j

1 · . . . · xvn j
n and xV := (xv1 , . . . ,xvr). In addition, let A ⊂ Rn×r be the

stoichiometric matrix that satisfies

dx
dt

= fκ(x) = A(κ ◦ xV ), (2.3)

where ◦ represents the Hadamard product, i.e, product element-wise.

Remark 2. Each column of A corresponds to a reaction and the value of each entry is the difference
in coefficients of the corresponding species, as a product and as a reactant. For instance, if a species is
consumed in the same proportion as it is produced in a reaction, the entry in A is zero. If it is only a
product, the value will be positive, and if it is only a reactant, it will be negative. Additionally, the
orthogonal space of Im(A) is the subspace of the conservation laws of the system.
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Example 3. The matrices for the system (2.2) are

A =


−1 0 0 1
−1 1 −1 1
1 −2 2 0
0 1 −1 −1

 , V =


1 0 0 0
1 0 1 0
0 2 0 0
0 0 1 1

 ,

and x2 + x3 + x4 = xT , with xT a positive constant defined by the initial conditions, is the only
conservation law.

2.2 Injectivity criteria

The capacity for multiple steady states is intrinsic to networks, therefore to the function fκ(x)
determining the ODEs system. Analysing its injectivity provides insight on the steady states. If
the function is injective, there can be at most one steady state. There are injectivity methods that
exploit the structure in (2.3), without fixing rate constants κ , to prove the existence of rates that allow
for multistationarity. The results in this section are based on [11], thus they are also applicable to
generalised polynomials and not only those which arise from chemical networks.

The relevant steady states are positive for all species and correspond to the same initial conditions,
x∗ ∈ Pn. Considering the stoichiometric subspace, S := span{y− x ∈ Rn : x y ∈ R}= Im(A),
it is clear that fκ(x) ∈ S for all x ∈ Pn, thus the trajectories of fκ lie in (x∗+S). In order to disregard
the initial conditions, we focus the analysis on the zeros x,y ∈ Pn of fκ such that x− y ∈ S, through
the notions of S-injectivity and multiple S-zeros. The chemical system is S-injective if for all rate
constants κ , for all distinct x,y ∈ Pn such that x− y ∈ S, fκ(x) ̸= fκ(y). Conversely, the system has
multiple S-zeros if there exist rate constants κ for which there are distinct x,y ∈ Pn such that x− y ∈ S
and fκ(x) = fκ(y) = 0.

Remark 3. The restriction to the stoichiometric subspace ensures the signs of the rate constants
follow mass-action kinetics and guarantees that they appear in components of x involved in a common
reaction complex.
Additionally, S⊥ represents the conservation laws of the system. A basis for the subspace identifies
the species whose combined concentrations do not change in time.

The results in this section use the following notations:

σσσ stands for the sign function, and σ(x), x ∈ Rn, is the result of applying the sign function element-
wise to x.

σ(S)σ(S)σ(S) = {σ(x) : x ∈ S}.

Σ(S)Σ(S)Σ(S) = σ−1 (σ(S)) = {λ ◦ x : λ ∈ Pn,x ∈ S}.

S∗S∗S∗ = S\{0}.

SVSVSV =
{

xV − yV : x,y ∈ Pn,x− y ∈ S
}

.

Λ(S)Λ(S)Λ(S) = {ln(x)− ln(y) : x,y ∈ Pn,x− y ∈ S}.
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diag(λ )diag(λ )diag(λ ) is the diagonal matrix with diagonal entries equal to λ ∈ Rn, and AλAλAλ = A ·diag(λ ).

[n][n][n] = {1, . . . ,n}.

Remark 4. Note that following this notation fκ(x) = A
(
κ ◦ xV

)
= AκxV .

The Determinant Criterion (Theorem 1) assesses the S-injectivity of the polynomial function,
considering conservation laws, by analysing the sign of a specific determinant.

Theorem 1 (Determinant Criterion). Let A ∈ Rn×r, with rank(A) = s, V ∈ Rn×r, κ ∈ Pr, λ ∈ Pn,
dim(S) = s, Z ∈ R(n−s)×n whose rows form a basis for S⊥, Ã ∈ Rs×r and ker(Ã) = ker(A). Let

Γκ,λ =

(
Z

ÃκV t
λ

)
. (2.4)

The following statements are equivalent,

1. The map fκ(x) = AκxV is S-injective for all κ ∈ Pn.

2. The determinant of Γκ,λ , when regarded as a polynomial in κ and λ , is not identically zero and
its coefficients have the same sign.

Before proving Theorem 1, we require some auxiliary results. The proofs can be found in
Appendix A.

Lemma 1. Let X ,Y ⊂ Rn, then

Σ(X)∩Y = /0 ⇐⇒ σ(X)∩σ(Y ) = /0 ⇐⇒ X ∩Σ(Y ) = /0.

Lemma 2. Let B ∈ Rr×n and S ⊂ Rn. The following are equivalent.

1. ker(Bλ )∩S = /0 for all λ ∈ Pn.

2. σ (ker(B))∩σ(S) = /0.

Lemma 3. Σ(S) = Λ(S)

Let A ∈Rn×n, I,J ⊂ [n] sets of l indeces of A, with 1 ≤ l < n, corresponding to rows and columns,
respectively. Additionally, AI,J is the submatrix of A obtained by keeping the entries on the intersection
of the list of indices I and J, and Ic is the complementary set of I in [n]. The generalised Laplace
expansion (2.5) gives an expression for the determinant of A.

det(A) = (−1)τ(I)
∑
J
(−1)τ(J) det(AI,J)det(AIc,Jc) , (2.5)

with τ(I) the parity of the permutation that sends [n] to Ic ∪ I, with Ic and I each sorted in ascending
order.
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Considering matrices B ∈Rm×n and C ∈Rn×m, m < n, the following is the Cauchy-Binet Formula

det(BC) = ∑
I

det(B[m],I)det(CI,[m]), (2.6)

with sum over the different sets of I ⊂ [n] with m elements.

Lemma 4. Let Γκ,λ as defined in Theorem 1, then

det(Γκ,λ ) = ∑
I,J
(−1)τ(J) det

(
Z[n−s],Jc

)
det
(
Ã[s],I

)
det
(
V t

I,J
)

κ
I
λ

J,

with sum over all sets I ⊂ [r], J ⊂ [n] with s elements.

Lemma 5. Let q(c) ∈ R [c1, . . . ,cl] represent a homogeneous polynomial not identically zero, with
degree at most 1 in each variable. Then, there exists c∗ ∈ Pl root of q if and only if not all the
coefficients of q(c) have the same sign.

Since the proof of Theorem 1 is long, the following equivalences are required to reach the final
result.

Proof of Theorem 1. The following steps are needed to prove the equivalence of the statements.

1. fκ S-injective for all κ ∈ Pr ⇐⇒ σ (ker(A))∩σ (V t (Σ(S∗))) = /0.

fκ being S-injective for all κ ∈Pr means that for all x,y∈Pn such that x−y∈ S∗, Aκ

(
xV − yV

)
̸=

0, for all κ ∈ Pr. Thus, it is equivalent to ker(Aκ)∩S∗V = /0, for all κ ∈ Pr. Applying Lemma 2,
the equivalence with σ(ker(A))∩σ(S∗V ) = /0 is clear. Therefore,

σ (S∗V ) = σ
({

xV − yV : x− y ∈ S∗
})

= σ
({

V t(lnx− lny) : x− y ∈ S∗
})

= σ
(
V t (Λ(S∗))

)
= σ

(
V t (Σ(S∗))

)
,

the last equality is a consequence of Lemma 3.

2. σ (ker(A))∩σ (V t (Σ(S∗))) = /0 ⇐⇒ ker
(
AkV t

λ

)
∩S∗ = /0 for all κ ∈ Pr, λ ∈ Pn.

Note that 0 = AkV t
λ

x = A(κ ◦ (V t (λ ◦ x))), then, using Lemma 1 for the first equivalence,

σ (ker(A))∩σ
(
V t (Σ(S∗))

)
= /0 ⇐⇒ ker(A)∩Σ

(
V t (Σ(S∗))

)
= /0

⇐⇒ ∀κ ∈ Pr,λ ∈ Pn,x ∈ S∗ : A
(
κ ◦
(
V t (λ ◦ x)

))
̸= 0

⇐⇒ ∀κ ∈ Pr,λ ∈ Pn,x ∈ S∗ : AkV t
λ

x ̸= 0

⇐⇒ ker(AκV t
λ
)∩S∗ = /0, ∀κ ∈ Pr,λ ∈ Pn

3. ker
(
AkV t

λ

)
∩S∗ = /0 for all κ ∈ Pr, λ ∈ Pn ⇐⇒ Γκ,λ x ̸= 0 for all κ ∈ Pr, λ ∈ Pn, x ∈Rn \{0}.



2.2 Injectivity criteria 9

As a consequence of the definition of Γκ,λ , Γκ,λ x = 0 ⇐⇒ Zx = 0 ∧ AκV t
λ

x = 0. Therefore

ker
(
AkV t

λ

)
∩S∗ = /0, ∀κ ∈ Pr,λ ∈ Pn ⇐⇒ ∀κ ∈ Pr,λ ∈ Pn,x ∈ S∗ : AκV t

λ
x ̸= 0

⇐⇒ ∀κ ∈ Pr,λ ∈ Pn,x ∈ S∗ : Γκ,λ x ̸= 0

⇐⇒ ∀κ ∈ Pr,λ ∈ Pn,x ∈ Rn \{0} : Γκ,λ x ̸= 0.

The last equivalence comes from the definition of Z, as S is a solution set of Zx = 0.

4. Γκ,λ x ̸= 0 for all κ ∈ Pr, λ ∈ Pn, x ∈ Rn \{0} ⇐⇒ det
(
Γκ,λ

)
̸= 0 for all κ ∈ Pr, λ ∈ Pn.

Since Γκ,λ is a square matrix, its determinant exists. Thus, Γκ,λ x ̸= 0, for all κ ∈ Pr, λ ∈ Pn,
x ∈Rn \{0}, is equivalent to Γκ,λ being nonsingular for all κ ∈ Pr, λ ∈ Pn, which is equivalent
to det

(
Γκ,λ

)
̸= 0, for all κ ∈ Pr, λ ∈ Pn.

5. According to Lemma 4, det(Γκ,λ ) is a homogeneous polynomial in κ and λ , with degree at
most 1 in each variable.

6. Since det
(
Γκ,λ

)
̸= 0 and it is a homogeneous polynomial with degree at most 1 in each variable,

according to Lemma 5, all its coefficients have the same sign.

If S ⊂ Rn is a vector space, S-injectivity of the polynomial map is related to the determinant of its
Jacobian matrix. To prove the main result, Lemma 6 is essential.

Lemma 6. Let fκ : Pn → Rm, fκ(x) = AκxV . Then, the set of Jacobian matrices J fκ
(x) and the set of

matrices AκV t
λ

coincide:

{J fκ
(x) : κ ∈ Pr, x ∈ Pn}= {AκV t

λ
: κ ∈ Pr, λ ∈ Pn}.

It is now possible to relate the result of Theorem 1 and the Jacobian matrix of fκ .

Proposition 1 (Jacobian Injectivity Criterion). Let A ∈Rn×r, rank(A) = s, V ∈Rn×r, κ ∈ Pr, λ ∈ Pn,
S ⊂ Rn subspace with dimension s, x ∈ Pn, fκ(x) = AκxV .

If J fκ
(x) is the Jacobian matrix of fκ , det(J fκ

) ̸= 0 and all its coefficients have the same sign, then
fκ is S-injective.

Proof. To prove Theorem 1 we showed the equivalence between S-injectivity of fκ , for all κ , and
ker(J fκ

(x))∩ S∗ = /0, for all x ∈ Rn \ {0},κ ∈ Pr, taking Lemma 6 into account. Since J fκ
(x) is a

square matrix, the former is equivalent to det(J fκ
(x)) ̸= 0 for all x ∈ Rn \{0},κ ∈ Pr. As x ∈ Pn and

κ ∈ Pr, if det(J fκ
(x)) is not identically zero and, when seen as a polynomial in x and κ , its coefficients

all have the same sign, its determinant is not identically zero. Consequently, the assumptions imply
S-injectivity of fκ for all κ ∈ Pr.
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2.3 Summary

CRNT provides tools to describe chemical reaction networks as systems of ODEs, assuming the
networks take place in controlled conditions of temperature and pressure, in a homogeneous medium.

When assuming mass-action kinetics, the second members of the system are polynomial functions.
Thus, determining the steady states of the network is equivalent to calculating the roots of polynomials.
Note that the relevant steady states lie in an affine subspace (x∗+S), with x∗ ∈ Pn the initial conditions
and S = Im(A), the stoichiometric subspace.

Despite not having a linear system, it is possible to use a matrix representation for the system of
ODEs, which is defined by the stoichiometric matrix A and the matrix of exponents V . Additionally,
there is conservation of total amounts of some species, which is conveyed by the conservation laws.
Such information is encoded in S⊥.

To assess the existence of multiple steady states, proving the S-injectivity of the determining
function acts as an exclusion criterion. For instance, the Determinant Criterion exploits the matrix
representation of the polynomial, relating its S-injectivity to the determinant of a relevant matrix, Γκ,λ .
As the steady states must be consistent with the system and positive, this information is taken into
account when the search for injectivity is confined to elements x,y such that x− y ∈ S. The Jacobian
Injectivity Criterion is a weaker result, only providing a sufficient condition for S-injectivity.



Chapter 3

Motifs and algorithm

The complexity of signalling pathways, as a consequence of the large number of species and reactions
involved, results in intricate models. Thus, simplifications are required to allow for their analysis. By
considering recurrent mechanisms in such pathways, as feedback and feedforward, it is possible to
gain insight on their behaviour, while avoiding analysing the full system.

In order to conduct an extensive study, the analysis focused on eleven motifs and possible
variations, classified as signalling and phosphorylation networks. The former refers to a sequence of
chemical reactions activated by an exterior signal, while the latter involves phosphorylation cycles.
The motifs were based on [1, 2, 7, 14].

The criteria defined in Section 2.2 give information on the capacity for multistationarity. Further-
more, they can be used indirectly to gather more information. To that end, an algorithm based on
[6] was implemented to calculate and test appropriate matrices A and V , deducted from the original
matrices. In some cases, the method was inconclusive, which required the usage of the CRNT
Toolbox.1 Subsection 3.2.4 includes examples of the application of the algorithm, namely concluding
S-injectivity, a unique zero and multiple S-zeros.

Considering the algorithm in subsection 3.2.3, it is possible to obtain initial results regarding the
steady states of the motifs, which act as the control group for the study of the influence of space on
the equilibria.

3.1 Motifs

Signalling pathways are present in both cellular regulatory activities and intercellular communication.
There are different signal transductions, where the signal is converted into a chemical cascade inside
the cell, leading to a response. Such cascades involve activation and deactivation of species. Moreover,
the process may require the action of enzymes, as is the case of phosphorylation cycles.

Phosphorylation is the process of adding a phosphate group to a molecule, with the intervention
of enzymes called kinases. The opposite process, dephosphorylation, is regulated by phosphatases.
Phosphorylation is essential for enzymatic regulation, as it activates and deactivates enzymes.

1CRNT Toolbox is available at http://crnt.osu.edu/CRNTWin
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The motifs have a representation as systems of ODEs, based on CRNT. To avoid presenting
duplicate information and a system with an equation for each species, the following sections include a
mix of ODEs and conservation laws for each motif.

3.1.1 Signalling networks

Fig. 3.1 represents the signalling networks in study, with S the signal, X , Y and R the chemical species
which are activated and deactivated, with the active R as the response. The activated forms act on
other species, either activating (arrow with a tip) or deactivating (arrow with a circle), except for the
cyclic module for which each species spontaneously becomes the next one. The signal is constant in
time.

Note that for all the networks apart from the cyclic module, there is spontaneous activation and
deactivation of species, which is not featured in Fig. 3.1.

S

�� ��
X

��

Y

��
R

(a) Coherent feedforward

S

�� ��
X

◦

Y

��
R

(b) Incoherent feedforward I

S

�� ◦
X

��

Y

��
R

(c) Incoherent feedforward II

S

��
X

��

Yoo

R

??

(d) Positive feedback

S

��
X

��

Y◦

R

??

(e) Negative feedback

X

S

��
R

??

Yjj

(f) Cyclic module

Fig. 3.1 Signalling networks

We present in what follows the systems of ODEs that describe the signalling networks in Fig 3.1.
Note that an arrow represents activation of the element at its end by the active form of the element at
the beginning, while an arrow ending in a circle represents deactivation. Moreover, the active forms
are marked with a ‘*’. For the cyclic module (Fig. 3.1f), each species transforms into the next one
spontaneously, apart from X , that does so with help of S.

Coherent feedforward

The signal S activates X and Y , and both activate the response, R (Fig. 3.1a). XT , YT and RT are total
amounts.
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S + X
k1 S + X*

S + Y
k2 S + Y*

X* + R
k3 X* + R*

Y* + R
k4 Y* + R*

X
k5

k6
X*

Y
k7

k8
Y*

R
k9

k10
R*

dX∗

dt
= (k1S+ k5)X − k6X∗

dY ∗

dt
= (k2S+ k7)Y − k8Y ∗

dR∗

dt
= (k3X∗+ k4Y ∗+ k9)R− k10R∗

XT = X +X∗

YT = Y +Y ∗

RT = R+R∗

Incoherent feedforward

There are two possible representations for this mechanism. Either, S activates X and Y , which have
different actions over the response (Fig. 3.1b), or S activates X and inhibits Y , with both X and Y
activating the response R (Fig. 3.1c). XT , YT and RT are total amounts.

S + X
k1 S + X*

S + Y
k2 S + Y*

X* + R* k3 X* + R

Y* + R
k4 Y* + R*

X
k5

k6
X*

Y
k7

k8
Y*

R
k9

k10
R*

dX∗

dt
= (k1S+ k5)X − k6X∗

dY ∗

dt
= (k2S+ k7)Y − k8Y ∗

dR∗

dt
= (k4Y ∗+ k9)R− (k3X∗+ k10)R∗

XT = X +X∗

YT = Y +Y ∗

RT = R+R∗

S + X
k1 S + X*

S + Y* k2 S + Y

X* + R
k3 X* + R*

Y* + R
k4 Y* + R*

X
k5

k6
X*

Y
k7

k8
Y*

R
k9

k10
R*

dX∗

dt
= (k1S+ k5)X − k6X∗

dY ∗

dt
= k7Y − (k2S+ k8)Y ∗

dR∗

dt
= (k3X∗+ k4Y ∗+ k9)R− k10R∗

XT = X +X∗

YT = Y +Y ∗

RT = R+R∗
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Positive feedback

In this model, the signal S activates X , initiating a cycle of activations, of X , R and Y , sequentially
(Fig. 3.1d). XT , YT and RT are total amounts.

S + X
k1 S + X*

X* + R
k2 X* + R*

R* + Y
k3 R* + Y*

Y* + X
k4 Y* + X*

X
k5

k6
X*

Y
k7

k8
Y*

R
k9

k10
R*

dX∗

dt
= (k1S+ k4Y ∗+ k5)X − k6X∗

dY ∗

dt
= (k3R∗+ k7)Y − k8Y ∗

dR∗

dt
= (k2X∗+ k9)R− k10R∗

XT = X +X∗

YT = Y +Y ∗

RT = R+R∗

Negative feedback

Similarly to the previous one, the signal S activates X , which activates the response R. The response
also activates Y but Y acts as an inhibitor of X (Fig. 3.1e). XT , YT and RT are total amounts.

S + X
k1 S + X*

X* + R
k2 X* + R*

R* + Y
k3 R* + Y*

Y* + X* k4 Y* + X

X
k5

k6
X*

Y
k7

k8
Y*

R
k9

k10
R*

dX∗

dt
= (k1S+ k5)X − (k4Y ∗+ k6)X∗

dY ∗

dt
= (k3R∗+ k7)Y − k8Y ∗

dR∗

dt
= (k2X∗+ k9)R− k10R∗

XT = X +X∗

YT = Y +Y ∗

RT = R+R∗

Cyclic module

This model has a cycle of activations that starts with X with the action of S, and follows to Y and Z.
The activations are spontaneous (Fig. 3.1f).

S + X
k1 S + Y

Y
k2 R

R
k3 X

dX
dt

= k3R− k1XS

dY
dt

= k1XS− k2Y

RT = X +Y +R
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3.1.2 Phosphorylation networks

Fig. 3.2 represents the phosphorylation networks in study, with the enzymes identified above the
arrows. The intermediate complexes have not been represented Fig. 3.2.

X1
E // X∗

1
F1

ooaa

X2

""
X∗

2F2

oo

(a) Two-step phosphorelay

S0

E
&&
S1

F

ff

(b) One-site modification

S0

E1

&&
S1

F1

ff

E2

&&
S2

F2

ff

(c) Two-site modification

S0

E
&&
S1

F1

ff P0

E
&&
P1

F2

ff

(d) Modification of two substrates

S0

E
&&
S1

F1

ff

P0

S1

&&
P1

F2

ff

(e) Two-layer cascade

Fig. 3.2 Phosphorylation networks

According to the analysis in [7], sharing enzymes can influence the capacity for multiple steady
states, therefore for the motifs in Figs. 3.2c, 3.2d and 3.2e, the study extends to having E1 = E2 and
F1 = F2, if appropriate.

Two-step phosphorelay

X1 is activated by kinase E, and there is phosphotransfer from X∗
1 to X2, activating the latter. Both

suffer phosphorylation by respective phosphatases F1 and F2 (Fig. 3.2a). ET , F1T , F2T , X1T and X2T

are total amounts.

X1 + E
k1
k2

Y1
k3 X*

1 + E

X*
1 + F1

k4
k5

Y2
k6 X1 + F1

X2 + X*
1

k7 X*
2 + X1

X*
2 + F2

k8

k9
Y3

k10 X2 + F2

dX∗
1

dt
= k3Y1 + k5Y2 − (k4F1 + k7X2)X∗

1

dX∗
2

dt
= k9Y3 + k7X∗

1 X2 − k8X∗
2 F2

dY1

dt
=−(k2 + k3)Y1 + k1X1E

dY2

dt
=−(k5 + k6)Y2 + k4X∗

1 F1

dY3

dt
=−(k9 + k10)Y3 + k8X∗

2 F2

with conservation laws ET = E +Y1, F1T = F1 +Y2, F2T = F2 +Y3, X1T = X∗
1 +X1 +Y1 +Y2 and

X2T = X∗
2 +X2 +Y3.
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One-site modification

S0 is a substrate phosphorylated by E to S1, with phosphatase F . X and Y are intermediate complexes
(Fig. 3.2b).

S0 + E
k1
k2

X
k3 S1 + E

S1 + F
k4
k5

Y
k6 S0 + F

dS0

dt
= k2X + k6Y − k1S0E

dS1

dt
= k3X + k5Y − k4S1F

dX
dt

= k1S0E − (k2 + k3)X

dY
dt

= k4S1F − (k5 + k6)Y

with conservation laws ET = E +X , FT = F +Y and ST = S0 +S1 +X +Y .

Two-site modification

S0 and S1 are substrates, with kinases E1 and E2, and phosphatases F1 and F2, respectively. There are
two one-site phosphorylations, from S0 to S1 and from S1 to S2. The intermediate complexes are X1,
X2, Y1 and Y2 (Fig. 3.2c).

S0 + E1
k1
k2

X1
k3 S1 + E1

S1 + F1
k4
k5

Y1
k6 S0 + F1

S1 + E2
k7

k8
X2

k9 S2 + E2

S2 + F2
k10

k11
Y2

k12 S1 + F2

dS0

dt
= k2X1 + k6Y1 − k1S0E1

dS1

dt
= k3X1 + k5Y1 + k8X2 + k12Y2

− (k4F1 + k7E2)S1

dS2

dt
= k9X2 + k11Y2 − k10S2F2

dX1

dt
= k1S0E1 − (k2 + k3)X1

dY1

dt
= k4S1F1 − (k5 + k6)Y1

dX2

dt
= k7S1E2 − (k8 + k9)X2

dY2

dt
= k10S2F2 − (k11 + k12)Y2

with conservation laws E1T = E1 + X1, F1T = F1 +Y1, E2T = E2 + X2, F2T = F2 +Y2 and ST =

S0 +S1 +S2 +X1 +Y1 +X2 +Y2.

Modification of two substrates

There are two distinct substrates S0 and P0, phosphorylated by kinase E to S1 and P1, respectively.
Each has a phosphatase, F1 and F2, respectively. X1, X2, Y1 and Y2 are intermediate complexes. (Fig.
3.2d).
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S0 + E
k1
k2

X1
k3 S1 + E

S1 + F1
k4
k5

Y1
k6 S0 + F1

P0 + E
k7

k8
X2

k9 P1 + E

P1 + F2
k10

k11
Y2

k12 P0 + F2

dS0

dt
= k2X1 + k6Y1 − k1S0E

dS1

dt
= k3X1 + k5Y1 − k4S1F1

dP0

dt
= k8X2 + k12Y2 − k7P0E

dP1

dt
= k9X2 + k11Y2 − k10P1F2

dX1

dt
= k1S0E − (k2 + k3)X1

dY1

dt
= k4S1F1 − (k5 + k6)Y1

dX2

dt
= k7P0E − (k8 + k9)X2

dY2

dt
= k10P1F2 − (k11 + k12)Y2

with conservation laws ET = E +X1 +X2, F1T = F1 +Y1, F2T = F2 +Y2 , ST = S0 +S1 +X1 +Y1 and
PT = P0 +P1 +X2 +Y2.

Two-layer cascade

There is a one-site modification from S0 to S1, with kinase E and phosphatase F1. Then, S1 acts
as kinase to modify the substrate P0 into P1, which has phosphatase F2. X1, X2, X3, Y1 and Y2 are
intermediate complexes (Fig. 3.2e).

S0 + E
k1
k2

X1
k3 S1 + E

S1 + F1
k4
k5

Y1
k6 S0 + F1

P0 + S1
k7

k8
X2

k9 P1 + S1

P1 + F2
k10

k11
Y2

k12 P0 + F2

dS0

dt
= k2X1 + k6Y1 − k1S0E

dS1

dt
= k3X1 + k5Y1 + k8X2 + k9Y2 − (k4F1 + k7P0)S1

dP0

dt
= k8X1 + k12Y2 − k7P0S1

dP1

dt
= k9X2 + k11Y2 − k10P1F2

dX1

dt
= k1S0E − (k2 + k3)X1

dY1

dt
= k4S1F1 − (k5 + k6)Y1

dX2

dt
= k7P0S1 − (k8 + k9)X2

dY2

dt
= k10P1F2 − (k11 + k12)Y2

with conservation laws ET = E +X1, F1T = F1 +Y1, F2T = F2 +Y2, ST = S0 +S1 +X1 +Y1 +X2 and
PT = P0 +P1 +X2 +Y2.
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3.2 Method

Focusing on the injectivity of the determining function, it is possible to assess if the system has
more than one zero. Consequently, there is information on the capacity of the underlying motif for
multistationarity. If the polynomial map is S-injective, there can be at most one positive steady state.
Otherwise, there may exist rate constants that allow for multistationarity.

In order to analyse some motifs, a method based on the algorithm in [6] was implemented using
the software Mathematica, systematically applying the criteria in Theorem 1 and Proposition 1.2 If
these were inconclusive, we resorted to the CRNT Toolbox.

The proofs of the results can be found in [6].

3.2.1 Injectivity

We aim to determine the injectivity of function fκ with respect to S, despite of the value of the rate
constants κ . Therefore, the family of functions in study is the following

FA,V =
{

fκ = A
(
κ ◦ xV ) : κ ∈ Pr} . (3.1)

This set of functions is adequate for the application of the Determinant Criterion. The relevant
stoichiometric subspace in the context of chemical reactions is S = Im(A), which will be considered
throughout the text. If the family is S-injective, the chemical network has, at most, one positive
steady state. Otherwise, it is not possible to conclude multistationarity: there may exist x,y ∈ Pn, with
x− y ∈ S but fκ(x) = fκ(y) ̸= 0.

The relevant information in A is in its kernel, therefore let Ã ∈ Rs×r such that ker(A) = ker
(
Ã
)

and Ã = [Ids|A1]. It is possible to swap the columns of Ã and V , and entries of κ simultaneously to
obtain such a matrix, without influencing the dynamics they represent. Using the structure,

0 = Ã(κ ◦ xV ) ⇐⇒


k1xv1

...
ksxvs

=−A1


ks+1xvs+1

...
krxvr



⇐⇒


k1
...

ks

=−


x−v1

...
x−vs

◦A1


ks+1xvs+1

...
krxvr

=: gκ̂ .

A new family of functions arises

GA,V =
{

gκ̂ : κ̂ ∈ Pr−s} .
If gκ̂ is S-injective, then fκ has at most one positive zero. However, gκ̂ does not have the matrix

representation needed for the Determinant Criterion. As gκ̂ is a generalised polynomial map, it is
possible to calculate A′ and V ′ such that gκ̂(x) = fη(x) = A′

(
η ◦ xV ′

)
.

2The code is available at http://www.mat.uc.pt/~mat1224/Tese/.

http://www.mat.uc.pt/~mat1224/Tese/
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These matrices are calculated directly from gκ̂ , with V ′ including the exponents of the monomials
in x in its columns, and A′ the coefficients. Note that the same κ̂i can be the coefficient for more
than one monomial, which forces the introduction of a new parameter η ∈ Pr′ , with r′ the number of
distinct monomials of gκ̂ , and

GA,V =
{

fη ∈ FA′,V ′ : η ∈ Pr′ , ηi = η j if i, j ∈ Ik, for some k ∈ [q]
}
, (3.2)

with I1 ∪ . . . Iq = [r′] an adequate partition.

Given that GA,V ⊂ FA′,V ′ , it is possible to apply the Determinant Criterion to A′ and V ′. If the
family FA′,V ′ is S-injective, then fκ cannot have more than one positive zero, but the reverse conclusion
is not immediate as a consequence of the strict inclusion.

To illustrate the previous notions, consider the following example.

Example 4. Let

Ã =

(
1 0 −1 −1
0 1 −1 0

)
, V =

(
1 1 0 0
0 1 1 2

)
=⇒ A1 =

(
−1 −1
−1 0

)
. (3.3)

It is possible to determine gκ̂ ,

gκ̂ =−

(
x−1

1

x−1
1 x−1

2

)
◦A1

(
k3x2

k4x2
2

)
=

(
k3x−1

1 x2 + k4x−1
1 x2

2

k3x−1
1 .

)

Consequently, there are three distinct monomials, η = (η1,η2,η3),

A′ =

(
1 1 0
0 0 1

)
, V ′ =

(
−1 −1 −1
1 2 0

)
,

and I1 = {1,3}, I2 = {2}, thus gκ̂ ∈
{

fη ∈ FA′,V ′ : η ∈ P3,η1 = η3
}
.

3.2.2 Multiple zeros

Assuming that FA′,V ′ is not S-injective, it is not possible to conclude that GA,V is also not S-injective.
Therefore, it is necessary to define a new family of functions FÂ,V̂ with Â and V̂ defined as follows,

• Â ∈ Rs×s(r−s) the block diagonal matrix whose blocks are the symmetric of the rows of A1 and
remaining entries equal to zero.

• V̂ ∈ Rn×s(r−s) with l-th column given by

v̂l = v j+s − vi, if l = (i−1)(r− s)+ j, with i ∈ [s] , j ∈ [r− s] .

The definition becomes clear with Example 5.
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Example 5. Considering matrices (3.3), from Example 4,

Â =

(
1 1 0 0
0 0 1 0

)
, V̂ =

(
−1 −1 −1 −1
1 2 0 1

)
.

Therefore, GA,V ⊂ FA′,V ′ ⊂ FÂ,V̂ , and assuming that FA′,V ′ is not S-injective implies that FÂ,V̂ is
not S-injective as well. Therefore, there exist η ∈ Ps(r−s), distinct x,y ∈ Pn such that x− y ∈ S and
fη(x) = fη(y).

Proposition 2 gives sufficient and necessary conditions on η for fη ∈ FÂ,V̂ to belong in GA,V .

Proposition 2. Assuming that fη ∈ FÂ,V̂ , then fη ∈ GA,V if and only if

η j+(b−1)(r−s) = η j+(c−1)(r−s), (3.4)

for j ∈ [r− s], b,c ∈ [s] and b,c ∈ α j, with α j the support of the j-th column of A1.

To conclude that fκ has multiple S-zeros it is sufficient to prove that there exist κ̂ ∈ Pr−s, distinct
x,y ∈ Pn, x− y ∈ S, such that

gκ̂(x) = gκ̂(y) (3.5)

gκ̂(x)> 0 (3.6)

If 3.5 and 3.6 are verified, then κ := (gκ̂(x), κ̂) ∈ Pr is a constant rate vector for which fκ(x) =
fκ(y) = 0 as a consequence of the definition of gκ̂ and κ .

As fη(x) = fη(y) and fη ∈ FÂ,V̂ , we want to modify η to another parameter η̂ in order to
have fη̂ ∈ GA,V and fη̂(x) = fη̂(y). Considering ε ∈ Ps, ε̂ := (ε1, . . . ,ε1, . . . ,εs, . . . ,εs) ∈ Ps(r−s) and
η̂ := ε̂ ◦η , then

fη̂ = fε̂◦η = ε ◦ fη =⇒ fη̂(x) = fη̂(y).

Consequently, to prove that GA,V is not S-injective, it is sufficient to define a modifying parameter
ε such that η̂ satisfies the assumptions of Proposition 2. To that end, Proposition 3 gives a sufficient
condition on A1 for the existence of such ε .

Proposition 3. Let η ∈ Ps(r−s). Assuming that for each j ∈ [r− s], there is an index l j ∈ [s] such that
α j ∩α j′ = {l j}= {l j′} for all j, j′ such that the cardinality of α j,α j′ is at least two and α j ∩α j′ ̸= /0.
Then, there exists ε ∈ Ps with ε̂ ◦η satisfying condition (3.4).

Remark 5. The assumption in Proposition 3 can be described in the following way: for each column
j of A1 with at least two non-zero entries, if its support intersects the support of another such column,
then the intersection has one element. If the columns of A1 have disjoint supports, the hypothesis is
trivially verified.

Proposition 4 gives a sufficient condition for 3.6.

Proposition 4. If all the entries of A1 are non-positive and each row has at least one negative element,
then gκ̂ is positive for all κ̂ ∈ Pr−s.
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Let ai j be the entries of A1, then

gκ̂(x) =


x−v1 ∑

r−s
j=1 (−a1 j)xvs+ j ks+ j

...
x−vs ∑

r−s
j=1 (−as j)xvs+ j ks+ j

 ,

all the entries are positive when the assumptions in Proposition 4 are verified.
To sum up, assuming that FA′,V ′ is not S-injective, the following conditions on A1 are sufficient to

conclude that GA,V is not S-injective, proving that FA,V has multiple S-zeros.

(a) For each column of A1 with at least two non-zero elements, if its support intersects the support
of another such column, the intersection has a single point.

(b) All entries must be non-positive, with each row having at least one negative element.

3.2.3 Algorithm

A method based on Theorem 1 and Proposition 1, applied to the families of functions defined in Chapter
3, can be used to identify the uniqueness of steady state or assess the capacity for multistationarity.
The algorithmic translation of the method consists of the following steps:

1. Apply the Determinant Criterion to A and V , with S = Im(A). If it concludes S-injectivity, stop.

2. Calculate A′ and V ′ such that gκ̂ = fη ∈ FA′,V ′ , and apply the Determinant Criterion. If it
concludes S-injectivity, stop.

3. Check sufficient conditions (a) and (b) in Subsection 3.2.2. If verified, there are multiple S-zeros
for some κ , stop.

4. Permute the columns of A, and corresponding columns of V , to obtain a new set of s linearly
independent columns as the first of A. Return to step 1.

5. Apply the Jacobian Criterion to the polynomial function, after reduction using conservation
laws. If it concludes S-injectivity, stop.

6. Use CRNT Toolbox.

Since only the first s columns of A and V are relevant for the Determinant Criterion, in case the test
is inconclusive, it is required to permute the columns to test all possible combinations. It is sufficient
to consider all sets of s linearly independent columns.

3.2.4 Examples

To clarify the application of the algorithm described in Section 3.2.3, consider the following examples.
In Example 6, it is possible to conclude S-injectivity by applying the Determinant Criterion. In
Example 7, the Determinant Criterion shows that FA,V is not S-injective, but when calculating gκ̂ , A′

and V ′, we prove the uniqueness of the steady state. For Example 8, FA′,V ′ is not S-injective and A1

satisfies conditions (a) and (b), proving that FA,V has multiple S-zeros.
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Example 6. Consider the cyclic model (Fig. 3.1f), with S constant and included in constant k1. Then,
the following matrices define the system,

A =

 −1 0 1
1 −1 0
0 1 −1

 , V =

 1 0 0
0 1 0
0 0 1

 .

Then, Z = (1,1,1) and, since rank(A) = 2, choosing the last two rows of A for Ã,

Γκ,λ =

 1 1 1
k1λ1 −k2λ2 0

0 k2λ2 −k3λ3

 ,

and det
(
Γκ,λ

)
= k1k2λ1λ2+k1k3λ1λ3+k2k3λ2λ3, which is not identically zero and has the same sign

for all coefficients. The conclusion is S-injectivity for all κ , and, therefore, the existence of at most
one positive steady state.

Example 7. Consider the model positive feedback (Fig. 3.1d). Note that the numbering of the
reactions does not coincide with the numbering in the ODEs system. The following matrices describe
the motif

A =


0 0 0 0 0 0 0 0 0 0
−1 0 0 −1 −1 1 0 0 0 0
0 1 0 0 0 0 −1 −1 0 0
0 0 1 0 0 0 0 0 −1 −1
1 0 0 1 1 −1 0 0 0 0
0 −1 0 0 0 0 1 1 0 0
0 0 −1 0 0 0 0 0 1 1

 ,V =


0 0 0 1 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 1 0
1 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0

 .

According to the Determinant Criterion, the function is not S-injective. Afterwards, matrices A′

and V ′ are determined. Applying Gauss elimination to A, the submatrix 3× 7 next to the identity
matrix is

A1 =

1 1 −1 0 0 0 0
0 0 0 −1 −1 0 0
0 0 0 0 0 −1 −1

 .

Consequently,

gκ̂(x) =−

 x−1
2 x−1

6

x−1
6

x−1
7

◦A1



k4x1x2

k5x2

k6x5

k7x3x7

k8x3

k9x4x5

k10x4


=

 −k4x1x−1
6 − k5x−1

6 + k6x−1
2 x5x−1

6

k7x3x−1
6 x7 + k8x3x−1

6

k9x4x5x−1
7 + k10x4x−1

7

 .
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Then, gκ̂ ∈ FA′,V ′ , with matrices

A′ =

−1 −1 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1

 , V ′ =



1 0 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 1
0 0 1 0 0 1 0
−1 −1 −1 −1 −1 0 0
0 0 0 1 0 −1 −1


.

When applying the Determinant Criterion to A′ and V ′, S-injectivity is concluded for all κ ,
therefore positive feedback has at most one positive steady state.

Example 8. Consider the chemical network defined by the following matrices,

A =



−1 0 0 0 1 1 0 0 0
1 0 0 0 −1 −1 0 0 0
0 1 0 0 0 0 −1 0 0
0 −1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1 0
0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0


, V =



0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 1 1 1 0 1 0 0 0
0 0 2 0 0 0 1 3 1
0 1 1 3 0 0 0 0 2
1 0 0 0 0 0 0 0 0


.

The application of the Determinant Criterion leads to the conclusion that the function is not
S-injective. The same conclusion is reached for the function defined by A′ and V ′. Therefore, it is
relevant to check if the conditions in Section 3.2.2 are satisfied. Focusing on A1,

A1 =


−1 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1


Since the supports of the columns of A1 are disjoint, there are no positive entries and each row

has at least one negative entry, there exists a rate constants vector κ such that fκ has more than one
positive zero.

3.3 Initial results

The application of the method in Section 3.2 to the motifs in Section 3.1 leads to the conclusion that
most motifs do not have the capacity for more than one positive steady state.

There are some exceptions which have the capacity for multistationarity for some rate constants,
namely two-site modification when {E1 = E2} and {E1 = E2,F1 = F2}, modification of two substrates
when {F1 = F2}, two-layer cascade when both E and S1 act as kinases for the second phosphorylation
cycle and two-layer cascade when {F1 = F2}.





Chapter 4

Compartmentalisation

Despite the trend to disregard space, many authors proposed techniques to assess its influence, as in
[1, 2, 9].

To avoid considering a spatial variable and to use CRNT to describe the system, the initial
approach would be to consider compartments. Eukaryotic cells have compartments, namely nucleus
and cytoplasm, and it is possible that the same network is happening simultaneously in both or that
the membranes separate its distinct stages. Feinberg [5] mentioned this potentiality of CRNT, with
the idea of having chemical networks occurring in different cells connected by a chemical reaction
representing intercellular movement. Similar experiments were conducted by Harrington et al. [9] and
Alam-Nazki and Krishnan [2], the latter with different tools.

We focused on two distinct ways to introduce compartments, namely by considering the motifs
in parallel or in stages. The former refers to having the same set of reactions taking place in two
independent compartments, while the latter focuses on separating the reactions in two compartments.
In both cases, a selection of species moves between compartments. With this approach, it is possible
to describe the networks using CRNT and to apply the algorithm defined in Chapter 3.

Fig. 4.1 illustrates the stages of the study for the two-layer cascade. Firstly, we assess the capacity
of the motifs for multistationarity (see Section 3.3). Secondly, we assume the same set of reactions is
taking place in two compartments, simultaneously, not necessarily with the same rate constants. The
compartments are connected through species that can move between them. Lastly, if the motif can be
separated in two stages, each one is placed in one compartment, with the connecting species moving
between them. The initial results in Section 3.3 act as the control group, compared with the results in
compartments.

It was clear that for some motifs compartmentalisation resulted in changes in the number of steady
states. Therefore, space can influence the equilibria of chemical networks.

Fig. 4.1 Illustration of the stages of the analysis.
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4.1 Models in parallel

Within a cell, the same species and reactions can occur simultaneously in different compartments, and
there can be movement through membranes, connecting them. Therefore, the capacity for multista-
tionarity may change when considering the reactions happening in parallel in two compartments.

The compartmentalisation is achieved by considering copies of the reactions in another com-
partment, indexed appropriately to distinguish their location. To emulate the movement through the
barriers, it is possible to add reactions between the same species from different compartments. The
system in (4.1) illustrates the reaction between X and Y happening in two compartments, with X
moving between them.

X Y

Xc Yc

X Xc

(4.1)

The change on the steady states will depend on the motifs and the species that are allowed to move
between compartments. For instance, if both networks are isolated, there cannot be a change in the
behaviour. As a consequence of the high number of possible shuttling species, not all sets were tested.
Moreover, the intermediate species were only allowed to shuttle for the one-site modification, as it is
one of the smallest networks.

The negative feedback module was only tested for one or two species, which retained the unique-
ness of the steady state, while the two-site modification was not possible to analyse with the given
method. The two-step phosphorelay could only be tested for one or two species, leading to the
conclusion that with {X1,X∗

2 }, {X∗
1 ,F2}, {X2,E}, {E,F1}, {E,F2} or {F1,F2} shuttling there is the

capacity for multistationarity.

The motifs that had the capacity for multistationarity, namely modification of two substrates, with
F1 = F2, two-layer cascade, with E acting as a kinase or with F1 = F2, kept their multistationarity,
regardless of the shuttling species, with at most 3 species shuttling.

Some networks were not affected by this approach, and continued to display at most one positive
steady state, namely coherent feedforward, incoherent feedforward and cyclic module, for all sets with
at most three species.

Positive feedback, one-site modification, modification of two substrates and two-layer cascade
have the most interesting results, with a clear change on the number of steady states.

From the results it is clear that one species shuttling is not enough to change the capacity for
multistationarity. In addition, adding elements to a set that leads to multistationarity may result in the
loss of that property.

Positive feedback

Table 4.1 summarises the results. The original network has at most one positive steady state, which
does not change when considering one shuttling species in parallel. The sets marked with (∗) have the
capacity for multistationarity for some weakly monotonic kinetics (an increase in the concentration
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of a reactant implies an increase on the speed of the reaction), not necessarily mass-action kinetics.
However, the networks are not injective with mass-action.

Sets that include both the active and inactive forms of a species result in multistationarity. This
“continuity” is only visible in this motif.

Table 4.1 Capacity for multistationarity of positive feedback in parallel.

Species One steady state Multistationarity
1 All None

2
{X , Y }, {X , Y ∗}, {X , R}, {X , R∗},

{X∗, Y }, {X∗, Y ∗}, {X∗, R}, {X∗, R∗}, {X , X∗}∗, {Y , Y ∗}, {R, R∗}
{Y , R}, {Y , R∗}, {Y ∗, R}, {Y ∗, R∗}

3

{X , X∗, Y }∗, {X , X∗, Y ∗}∗, {X , X∗, R}∗,
{X , Y , R}, {X , Y , R∗}, {X , Y ∗, R}, {X , X∗, R∗}∗, {X , Y , Y ∗}, {X , R, R∗},

{X , Y ∗, R∗}, {X∗, Y , R}, {X∗, Y , R∗}, {X∗, Y , Y ∗}, {X∗, R, R∗}, {Y , Y ∗, R},
{X∗, Y ∗, R}, {X∗, Y ∗, R∗} {Y , Y ∗, R∗}, {Y , R, R∗}, {Y ∗, R, R∗}

One-site modification

Table 4.2 summarises the results. The network displays a unique steady state originally, and the same
holds when only one species shuttles. However, there are specific pairs that result in multistationarity.

With three species shuttling, if the set includes one of the following, then it has multistationarity:
{S0,S1}, {S0,Y }, {S1,X}, {X ,Y }.

With the increase in the number of species shuttling, there are more sets that result in multistation-
arity. However, adding a species to such a set may result in the loss of such a capacity. For example,
{E,F} results in multistationarity but adding other species does not.

Table 4.2 Capacity for multistationarity of one-site modification in parallel.

Species One steady state Multistationarity
1 All None

2
{S0,S1}, {S0,E}, {S0,F}, {S0,X},

{S0,Y }, {S1,X}, {E,F}, {X ,Y }{S1,E}, {S1,F}, {S1,Y }, {E,X},
{E,Y }, {F ,X}, {F ,Y }

3

{S0,S1,E}, {S0,S1,F}, {S0,S1,X}, {S0,S1,Y }
{S0,E,F}, {S0,F ,X}, {S1,E,F}, {S0,E,X}, {S0,E,Y }, {S0,F ,Y }, {S0,X ,Y },
{S1,E,Y }, {E,F ,X}, {E,F ,Y } {S1,E,X}, {S1,F ,X}, {S1,F ,Y }, {S1,X ,Y },

{E,X ,Y }, {F ,X ,Y }

4

{S0,S1,E,F}, {S0,S1,E,X}, {S0,S1,E,Y },
{S0,S1,X ,Y }, {S0,F ,X ,Y }, {S0,S1,F ,X}, {S0,S1,F ,Y }, {S0,E,F ,X},
{S1,E,X ,Y }, {E,F ,X ,Y } {S0,E,F ,Y }, {S0,E,X ,Y }, {S1,E,F ,X},

{S1,E,F ,Y }, {S1,F ,X ,Y }

5 None All
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Modification of two substrates

Table 4.3 summarises the results. The original network has at most one steady state, as well as the
network in parallel with one species moving.

Note that sets with three elements that include {S0, S1} or {P0, P1} all have multistationarity.
If we consider the sharing of enzymes, namely with F1 = F2, the original network has multiple

steady states, which does not change in parallel with at most three species shuttling.

Table 4.3 Capacity for multistationarity of modification of two substrates in parallel.

Species One steady state Multistationarity
1 All None

2

{S0, S1}, {S0, P0}, {S0, P1},{S0, E},
{S0, F1},{S1, P0},{S1, E},{S1, F1}, {S0, F2}, {S1, P1}, {P0, F1}, {E, F1},
{S1, F2},{P0, P1},{P0, E},{P0, F2}, {E, F2},{F1, F2}

{P1, E},{P1, F1},{P1, F2}

3

{S0, P0, E}, {S0, P0, F1}, {S0, P0, F2}, {S0, S1, P0}, {S0, S1, P1}, {S0, S1, E},
{S0, P1, E}, {S0, P1, F1}, {S0, P1, F2}, {S0, S1, F1}, {S0, S1, F2}, {S0, P0, P1},
{S0, E, F1}, {S1, P0, E}, {S1, P0, F1}, {S0, E, F2}, {S0, F1, F2}, {S1, P0, P1},
{S1, P0, F2}, {S1, P1, E}, {S1, E, F1}, {S1, P1, F1}, {S1, P1, F2}, {S1, E, F2},
{S1, F1, F2}, {P0, E, F2}, {P1, E, F2}, {P0, P1, E}, {P0, P1, F1}, {P0, P1, F2},

{P1, F1, F2} {P0, E, F1}, {P0, F1, F2}, {P1, E, F1},
{E, F1, F2}

Two-layer cascade

Table 4.4 summarises the results. The original network has a unique steady state, and in parallel with
one species shuttling it also holds.

It is interesting that sets with three species including {P0, P1} or {S0, P0} have multistationarity.
If enzymes are shared, namely F1 = F2 or E acting as a kinase for P0, the networks still have the

capacity for multistationarity, with at most three species shuttling.

Table 4.4 Capacity for multistationarity of two-layer cascade in parallel.

Species One steady state Multistationarity
1 All None

2

{S0, S1}, {S0, P1}, {S0, E}, {S0, F1},
{S1, P0}, {S1, P1}, {S1, E}, {S1, F1}, {S0, P0}, {S0, F2}, {S1, F2}, {P1, E},
{P0, P1}, {P0, E}, {P0, F1}, {P0, F2}, {E, F1}, {F1, F2}

{P1, F1}, {P1, F2}, {E, F2}

3

{S0, S1, P1}, {S0, P1, E}, {S0, P1, F1}, {S0, S1, P0}, {S0, S1, E}, {S0, S1, F1},
{S0, P1, F2}, {S0, E, F1}, {S1, P0, E}, {S0, S1, F2}, {S0, P0, P1}, {S0, P0, E},
{S1, P0, F1}, {S1, P0, F2}, {S1, P1, E}, {S0, P0, F1}, {S0, P0, F2}, {S0, E, F2},
{S1, P1, F1}, {S1, P1, F2}, {S1, E, F1}, {S0, F1, F2}, {S1, P0, P1}, {S1, E, F2},
{P0, E, F2}, {P0, F1, F2}, {P1, F1, F2} {S1, F1, F2}, {P0, P1, E}, {P0, P1, F1},

{P0, P1, F2}, {P0, E, F1}, {P1, E, F1},
{P1, E, F2}, {E, F1, F2}
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4.2 Models with stages

There exists a different paradigm of compartmentalisation, in which distinct stages of a network take
place in independent compartments, with the relevant species shuttling between them. This analysis
was only considered for the motifs where stages are clearly identified, namely two-step phosphorelay,
two-site modification and two-layer cascade. Table 4.5 includes a summary of the results.

Two-step phosphorelay

The network includes the following reactions

X1 + E Y1 X*
1 + E

X*
1 + F1 Y2 X1 + F1

X c
2 + X *c

1 X *c
2 + X c

1

X *c
2 + F c

2 Y c
3 X c

2 + F c
2

X*
1 X *c

1

{X1 X c
1 }

The original motif continues to have a unique steady state in stages when X∗
1 and X1 shuttle, but

has no positive steady states when only X∗
1 shuttles.

Two-site modification

The network in stages is described by the following reactions

S0 + E1 X1 S1 + E1

S1 + F1 Y1 S0 + F1

S c
1 + E c

2 X c
2 S c

2 + E c
2

S c
2 + F c

2 Y c
2 S c

1 + F c
2

S1 S c
1

{E Ec}

{F Fc}

S1 is the species that connects both stages, and when it shuttles the network continues to have at
most one positive steady state.

If E1 = E2 =: E, the original motif has the capacity for multistationarity, but it is lost when in
stages with S1 shuttling. However, if {S1,E} shuttle there is multistationarity.

In addition, if E1 = E2 =: E and F1 = F2 =: F , the motif retains its multistationarity if {S1,E},
{S1,F} or {S1,E,F} shuttle, while losing this capacity when only S1 shuttles.
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Two-layer cascade

The network in two stages comprises the following reactions

S0 + E X1 S1 + E

S1 + F1 Y1 S0 + F1

S c
1 + P c

0 X c
2 S c

1 + P c
1

P c
1 + F c

2 Y c
2 P c

0 + F c
2

S1 S c
1

{E Ec}

{F Fc}

If S1 shuttles, the uniqueness of the steady state remains.
If both E and S1 act as kinases for the second phosphorylation cycle, the network has the capacity

for multistationarity, but in stages when S1 and E shuttle there is at most one steady state.
If F1 = F2 =: F the network has the capacity for multiple steady states, while there is uniqueness

of equilibrium when S1 shuttles and multiple steady states when {S1,F} shuttle.

Table 4.5 Results for the motifs in stages.

Motif Sharing Original Shuttling Compartments

Two-step phosphorelay Injective
X∗

1 No positive zeros

X∗
1 , X1 Injective

Two-site modification

Injective S1 (*)

E Multiple zeros, for some rates
S1 Injective

S1, E Multiple zeros for some rates

E,F Multiple zeros, for some rates

S1 Injective

S1, E Multiple zeros, for some rates

S1, F Multiple zeros, for some rates

S1, E, F Multiple zeros, for some rates

Two-layer cascade

Injective S1 Injective

E Multiple zeros, for some rates S1, E Injective

F Multiples zeros, for some rates
S1 Injective

S1, F Multiple zeros, for some rates

Remark 6. In Table 4.5, (*) means that the function is not S-injective but there are no multiple zeros.

4.3 Summary

The results suggest that considering compartments can have an influence on the number of steady
states, may it be by considering reactions in parallel or in stages, in two separate compartments. Table
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4.6 includes a summary of the results, with a check for the motifs that exhibit multistationarity under
specific conditions. The cells marked with ‘–’ were not tested with that approach.

For the motifs in study, when in parallel there is no loss of multistationarity and some motifs,
two-step phosphorelay, positive feedback, one-site modification, modification of two substrates and
two-layer cascade, with certain sets of shuttling species, gain multistationarity.

Considering the motifs with stages, there is loss of multistationarity for the two-site modification
when sharing enzymes, and for the two-layer cascade when S1 and E both act as kinases, with distinct
and equal phosphatases.

Table 4.6 Capacity for multistationarity of the motifs with compartments.

Module Sharing Original Parallel Stages
Coherent feedforward –

Incoherent feedforward I –

Incoherent feedforward II –

Positive feedback X –

Negative feedback –

Cyclic module –

Two-step phosphorelay X

One-site modification X –

Two-site modification
–

E X – X

E,F X – X

Modification of two substrates X –

F X X –

Two-layer cascade
X

E X X

F X X X





Chapter 5

Diffusion-driven instability

The results in Chapters 3 and 4 focus on a temporal model for chemical reaction networks, the latter
includes compartments as a subterfuge to introduce space without considering a spatial domain.

To continue the analysis of the motifs and of the influence of space on their steady states, the
models should include space. To that end, we propose new models based on the ODEs system in
Chapter 3, by adding diffusion terms. Thus, the focus is on systems of Partial Differential Equations
(PDEs) in a one-dimensional domain, with no-flux boundary conditions.

We intend to assess if diffusion can influence the steady states, using Linear Stability Analysis
to look for solutions that are not spatially homogeneous. Under specific conditions for diffusion-
driven instability, chemical networks can show spatial patterns, proving the influence of space in
their equilibria. The starting point are the steady states of the original ODEs systems, which are
homogeneous solutions of the reaction-diffusion systems. We want to prove that these are stable
solutions without diffusion, and unstable with diffusion, which can result in interesting spatial
behaviour.

5.1 Linear Stability Analysis

Diffusion was seen as a stabilising mechanism, until Turing [16] suggested that, under specific
conditions, reaction-diffusion systems could reach a spatially heterogeneous steady state. In a coupled
reaction-diffusion system with two chemical species, with one acting as an inhibitor and the other
as an activator, with drastically different diffusion coefficients, the system could generate a pattern.
The context of such study was the formation of biological patterns, such as the prints on animal skin.
Nowadays, reaction-diffusion theory is a field of study on its own.

The interest in diffusion-driven instability requires that there is a homogeneous steady state in
the absence of diffusion, stable for small spatial perturbations, but which becomes unstable in the
presence of diffusion. Therefore, we focus on linear stability of homogeneous steady states. The
analysis presented follows [12].

33
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Consider a system of chemical reactions, with concentrations x(t) at time t, given by the differential
equations and boundary conditions

∂x
∂ t

= f (x)+D∇
2x, in Ω

∂x
∂η

= 0, on ∂Ω

(5.1)

with f the nonlinear reaction kinetics and D the diagonal matrix with the diffusion coefficients, η the
unit exterior normal vector and Ω = [0,a] the domain, a the length of the one-dimensional domain.

Suppose that x0 is a positive homogeneous steady state of f (x) = 0. We want conditions for the
local stability of this steady state. To that end, we linearise around the steady state, considering

w = x− x0. (5.2)

For |w| small, the value of f (x) can be linearly approximated,

f (x) = f (x0 +w) = f (x0)+ J f (x0)w, (5.3)

where J f represents the Jacobian matrix of f .

Since f (x0) = 0, using (5.3),

∂w
∂ t

=
∂x
∂ t

= f (x) = J f (x0)w, (5.4)

with B := J f (x0) the stability matrix.

We are interested in solutions of the eigenvalue problem ∂w
∂ t = Bw, with no-flux boundary condi-

tions. Since the domain is one-dimensional, w = αeλ t , with λ an eigenvalue. As a consequence, if all
the eigenvalues of B have negative real part, Re(λ )< 0, x0 is a stable solution.

To prove diffusion-driven instability, we need to prove that the solution for the following system,
with no-flux boundary conditions, is unstable.

∂w
∂ t

= Bw+D∇
2w. (5.5)

Let w(θ) be time independent solutions of the eigenvalue problem, with k the eigenvalues.

∇
2w+ k2w = 0 (5.6)

As the domain is one-dimensional, the eigenfunctions are wk(θ) = cos
(nπθ

a

)
, n ∈ Z, and k = nπ

a .
Let w, the solution of (5.5), have the form

w(θ , t) = ∑
k

ckwk(θ)eλ t , (5.7)

with λ the temporal eigenvalues and ck determined by the initial conditions.
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Then, it satisfies
∂w
∂ t

= ∑
k

λckwk(θ)eλ t

= Bw+D∇
2w

= B∑
k

ckwk(θ)eλ t +D∑
k

ck∇
2wk(θ)eλ t

= ∑
k

ck(B− k2)wk(θ)eλ t ,

(5.8)

which implies that, for each k,
λwk = Bwk − k2Dwk, (5.9)

the eigenvalue problem that determines the temporal eigenvalues. Therefore, assuming wk is not a
trivial eigenfunction, λ are the solutions of det

(
B− k2D−λ I

)
= 0, with I the identity matrix.

The eigenvalues λ are a function of k, λ = λ (k), and to have diffusion-driven instability, there
must exist k such that at least one eigenvalue λ (k) of B(k) :=

(
B− k2D

)
has a positive real part. If

this is the case, when t → ∞, the value of w is dominated by the terms corresponding to an eigenvalue
with positive real part, that does not vanish.

Remark 7. It is assumed that these unstable eigenfunctions will eventually reach an upper bound,
resulting in a non-homogeneous steady state. The proof of such a result requires additional analysis.

5.1.1 Example

To illustrate the relevance of the study, consider the following chemical reaction network, the Orego-
nator, studied in [13]. The reactions involving X , Y and Z are the following,

A + Y
k1 X + P, X + Y

k2 2 P, A + X
k3 2 X + 2 Z,

2 X
k4 A + P, Z

k5 fY,

assuming the concentrations of A and P are constant in time, with κ = (k1, . . . ,k5) the positive rate
constants vector, and f a positive constant.

The system of ODEs is described by matrices A and V ,

A =

 1 −1 1 −2 0
−1 −1 0 0 f
0 0 2 0 −1

 , V =

0 1 1 2 0
1 1 0 0 0
0 0 0 0 1

 ,

and has a unique steady state, according to the method in Chapter 3. However, it is possible to prove
that for a portion of the parameter space, there is diffusion-driven instability. Such conditions can be
determined using the results in Section 5.2. Despite not having more than one homogeneous steady
state, the diffusion-driven instability may lead to a spatial pattern, proving that diffusion affects the
steady states of chemical networks.
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5.2 Necessary and sufficient conditions

The stability matrix B is the object of study of linear stability analysis, especially its eigenvalues.
However, calculating the eigenvalues of a matrix and assessing the sign of their real part leads to
highly complex inequalities over the parameters. Therefore, it is relevant to consider alternative
criteria and to simplify the systems of equations involved, when possible.

Determining if B is negative definite works as an exclusion criterion, as if B is negative definite,
then there is no diffusion-driven instability. The Routh-Hurwitz conditions, despite their intricacy,
give sufficient and necessary conditions for diffusion-driven instability. Moreover, when B is 3×3,
these give rise to easily tested conditions on the diagonal elements and the diagonal cofactors.

5.2.1 Negative definiteness and stability

In [13] the authors noticed the connection between negative definiteness of the stability matrix, B, and
the stability of B and B(k). This condition is applicable to any system with a finite number of species.

Definition 4. Matrix B ∈ Rn×n is negative definite if for all x ∈ Rn, x ̸= 0, xtBx < 0.

Proposition 5 states the relationship between negative definiteness and stability. Note that the
converse implication is not valid.

Proposition 5. If a matrix B ∈ Rn×n is negative definite, then it is stable.

According to Proposition 6, if B is negative definite then B(k) is also negative definite, which
proves that if the stability matrix is negative definite there cannot be diffusion-driven instability.

Proposition 6. If the stability matrix B is negative definite, then so is B(k).

In summary, a necessary condition for diffusion-driven instability is that the stability matrix is not
negative definite. Moreover, being negative definite acts as an exclusion criterion.

5.2.2 Special case n = 3

In addition to noticing the relation between negative definiteness and stability, in [13] the authors
define a necessary and sufficient condition that depends on the diagonal elements of B and on its
diagonal cofactors.

Consider Mi j the cofactor of bi j, i.e, (−1)i+ j det(Ci j), with Ci j the submatrix obtained from B
after removing row i and column j.

The characteristic polynomial of B is

λ
3 + p2λ

2 + p1λ + p0 = 0,

with p2 =− tr(B), p1 = M11 +M22 +M33 and p0 =−det(B).
Considering the Routh-Hurwitz conditions for B, it is stable if and only if

det(B) =−p0 < 0 (5.10)

tr(B) =−p2 < 0 (5.11)

tr(B) · (M11 +M22 +M33)−det(B) =−p1 p2 + p0 < 0 (5.12)
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Note that the coefficients of the characteristic polynomial of B(k) are given by

p2(k2) =(d1 +d2 +d3)k2 − tr(B)

p1(k2) =(d1d2 +d2d3 +d1d3)k4 − [d1(b22 +b33)+d2(b11 +b33)+d3(b11 +b22)]k2

+(M11 +M22 +M33)

p0(k2) =d1d2d3k6 − (b11d2d3 +b22d1d3 +b33d1d2)k4

+(d1M11 +d2M22 +d3M33)k2 −det(B).

(5.13)

Proposition 7 gives a necessary condition for diffusion-driven instability.

Proposition 7. If B is stable, with all its diagonal elements negative, and all its diagonal cofactors
positive, then B(k) is also stable.

This condition is not only necessary, it is also sufficient, as stated in Proposition 8.

Proposition 8. If B is stable and

1. the largest diagonal element of B is positive, or

2. the smallest digonal cofactor of B is negative,

then, B(k) is unstable.

To sum up, according to Proposition 7, if all diagonal elements of B are negative and all its
diagonal cofactors are positive, then there is no need for further analysis, since if B is stable then B(k)
will also be stable and there will be no diffusion-driven instability. However, if the assumptions of
Proposition 8 hold, to have diffusion-driven instability the conditions to guarantee that B is stable are
sufficient.

5.3 Results

To determine the influence of diffusion on the steady states of the motifs in Chapter 3, we study
systems of PDEs which are modified versions of the original ODEs systems, by adding a diffusion term
to each equation. Note that to maintain the analysis as generic as possible, the diffusion coefficients
are not fixed.

As with CRNT, the one-dimensional domain is isolated, by considering no-flux boundary condi-
tions.

Some of the motifs involve many parameters and reactions. To simplify the study some of the
species are substituted by conservation laws or assumed homogeneous in space and constant in time.
The conservation laws of the ODEs systems are still valid for the PDEs systems, under specific
conditions.

Note that, as a consequence of d X1
d t

+ . . .+ d Xl
d t

= 0 for the ODEs system,

∂x1

∂ t
+ . . .+

∂xl

∂ t
= d1

∂ 2x1

∂θ 2 + . . .+dl
∂ 2xl

∂θ 2 . (5.14)
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Assuming d1 = . . .= dl =: d and x = x1 + . . .+ xl , we get the following differential problem,

∂x
∂ t

=
∂ 2x
∂θ 2 , in Ω

x(0,θ) = XT , in Ω

∂x
∂η

= 0 , in ∂Ω,

(5.15)

with XT := x1(0,θ)+ . . .+ xl(0,θ) the initial total amount. This differential problem has a unique
solution x = XT , which proves that the conservation laws are still valid.

As some conservation laws involve more than two species, to minimise the conditions imposed on
the diffusion coefficients, we only account for the conservation laws involving two species. Then, it is
possible to substitute one of the species involved by the relation deducted from the law as well as to
remove one equation from the system.

After simplification using conservation laws, if possible, we can analyse the motifs. Firstly,
focusing on the stability matrix B we calculate eigenvalues and check negative definiteness. For
instance, if B is negative definite, there is no diffusion-driven instability, and there is no need for
further analysis. However, as the resulting inequalities involve many parameters and do not lead to
an easy identification of a portion of the parameter space, they were omitted. Otherwise, we focus
on the 3×3 principal submatrices of B, which are the stability matrices for the system if only three
species are not spatially homogeneous and constant in time. Then, we check the diagonal elements
and diagonal cofactors, according to Subsection 5.2.2.

Following the aforementioned approach, we concluded the motifs in study do not have diffusion-
driven linear instability.

Coherent feedforward

Considering conservation laws X +X∗ = XT , Y +Y ∗ = YT and R+R∗ = RT we arrive at a system
with three equations, one positive steady state and the following stability matrix.

B =

−k1S− k5 − k6 0 0
0 −k7 − k8 − k2S 0

k3(RT −R∗) k4(RT −R∗) −k9 − k10 − k3X∗− k4Y ∗,


As B is triangular, it is easily seen that its eigenvalues are real and positive, and therefore

stable. If λ is an eigenvalue of B, then λ − k2d, with d a positive constant, is an eigenvalue of B(k).
Consequently, all eigenvalues of B(k) are real and negative, which makes B(k) stable, leading to no
diffusion-driven instability.

Incoherent feedforward

As both motifs that represent coherent feedforward have very similar systems, consider the one
where the signal acts as an activator for both X and Y (Fig. 3.1b). Considering conservation laws
X +X∗ = XT , Y +Y ∗ = YT and R+R∗ = RT we arrive at a system with three equations, one positive
steady state and the following stability matrix.
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B =

−k1S− k5 − k6 0 0
0 −k7 − k8 − k2S 0

k3R∗ k4(RT −R∗) −k9 − k10 − k3X∗− k4Y ∗,


As before, B is a triangular matrix which simplifies the determination of its eigenvalues. As its

eigenvalues and those of B(k) are real and negative, both matrices are stable, proving that there is no
diffusion-driven instability.

Positive feedback

Considering conservation laws X +X∗ = XT , Y +Y ∗ = YT and R+R∗ = RT we arrive at a system
with three equations, one positive steady state and the following stability matrix.

B =

−k5 − k6 − k1S− k4Y ∗ k4(XT −X∗) 0
0 −k7 − k8 − k3R∗ k3(YT −Y ∗)

k2(RT −R∗) 0 −k9 − k10 − k2X∗


As the system has only three equations, we focus on the diagonal elements and cofactors of B.

The diagonal entries are negative and the diagonal minors are positive,

M11 = (k7 + k8 + k3R∗)(k9 + k10 + k2X∗)> 0

M22 = (k5 + k6 + k1S+ k4Y ∗)(k9 + k10 + k2X∗)> 0

M33 = (k5 + k6 + k1S+ k4Y ∗)(k7 + k8 + k3R∗)> 0,

according to Proposition 7, if B is stable, then B(k) will be stable. Therefore, the system does not
show diffusion-driven instability.

Negative feedback

Considering conservation laws X +X∗ = XT , Y +Y ∗ = YT and R+R∗ = RT we arrive at a system
with three equations, one positive steady state and the following stability matrix.

B =

−k5 − k6 − k1S− k4Y ∗ −k4X∗ 0
0 −k7 − k8 − k3R∗ k3(YT −Y ∗)

k2(RT −R∗) 0 −k9 − k10 − k2X∗


As the system has only three equations, we focus on the diagonal elements and cofactors of B.

The diagonal entries are negative and the diagonal minors are positive,

M11 = (k7 + k8 + k3R∗)(k9 + k10 + k2X∗)> 0

M22 = (k5 + k6 + k1S+ k4Y ∗)(k9 + k10 + k2X∗)> 0

M33 = (k5 + k6 + k1S+ k4Y ∗)(k7 + k8 + k3R∗)> 0,

according to Proposition 7, if B is stable, B(k) will be stable. Therefore, the system does not show
diffusion-driven instability.
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Cyclic module

The original model has conservation law XT = X +Y +R. However, if we consider this conservation
law, for it to be valid for the diffusion system, the diffusion coefficients of the species need to be
the same. Therefore, we shall consider that at the starting point, one of the species is already at
equilibrium and homogeneous over the domain.

As a consequence of the symmetry of the system, the choice for the fixed species is irrelevant.
Assume R is already at steady state. As concluded before, the system has one homogeneous positive
steady state and the following stability matrix.

B =

(
−k1S 0
k1S −k2

)
,

whose eigenvalues are negative, −k1S and −k2, proving B is stable. Since, the eigenvalues of B(k) are
−k1S− k2d1 < 0 and −k2 − k2d2 < 0, B(k) is also stable and there is no diffusion-driven instability.

Two-step phosphorelay

The original model has conservation laws ET =Y1+E, F1T =Y2+F1, F2T =Y3+F2, X1T = X∗
1 +X1+

Y1 +Y2 and X2T = X∗
2 +X2 +Y3. For the analysis we shall consider only the first three conservation

laws, since the last ones require all diffusion coefficients to be the same. The system has one positive
homogeneous steady state and the following stability matrix.

B =


−k7X2−k4(F1T−Y2) 0 0 −k7X∗

1 k3 k5+k4X∗
1 0

k7X2 −k1(ET−Y1) 0 k7X∗
1 k2+k1X1 k6 0

k7X2 0 −k8(F2T−Y3) k7X∗
1 0 0 k9+k8X∗

2
−k7X2 0 0 −k7X∗

1 0 0 k10
0 k1(ET−Y1) 0 0 −k2−k3−k1X1 0 0

k4(F1T−Y2) 0 0 0 0 −k5−k6−k4X∗
1 0

0 0 k8(F2T−Y3) 0 0 0 −k10−k9−k8X∗
2


The conditions for B being negative definite are complex. Thus, we will focus on systems with

three species, with the remaining species considered constant.

Fig. 5.1 Diagonal cofactors from all 3×3 principal submatrices of B, for the two-site phosphorelay.
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To that end, we used Mathematica to determine all the possible determinants from 2×2 principal
submatrices, which are all the diagonal cofactors of the matrices in study. Given that the diagonal
elements are negative, there can only be diffusion-driven instability if one of these cofactors is positive
(Fig. 5.1). This method was repeated for all motifs with more than three species after simplification
with conservation laws.

As all cofactors are positive, there is no system with three species deducted from this one that
has diffusion-driven instability, because if B is stable, since all diagonal elements are negative and all
diagonal cofactors are positive, B(k) will be stable.

One-site modification

The original model has conservation laws ET = E +X , FT = F +Y and ST = S0+S1+X +Y . For the
analysis we shall consider only the first two conservation laws, since the last one requires all diffusion
coefficients to be the same. To simplify the analysis, we will focus on systems with three species, with
the remaining species considered constant. The system has one positive homogeneous steady state
and the following stability matrix.

B =


−k1 (ET −X) 0 k2 + k1S0 k6

0 −k4 (FT −Y ) k3 k5 + k4S1

k1 (ET −X) 0 −k2 − k3 − k1S0 0
0 k4 (FT −Y ) 0 −k5 − k6 − k4S1


Given that the diagonal elements are negative, there can only be diffusion-driven instability if one

of these cofactors is positive (Fig. 5.2).

Fig. 5.2 Diagonal cofactors from all 3×3 principal submatrices of B, for the one-site modification.

As all cofactors are positive, there is no system with three species deducted from the original one
that has diffusion-driven instability, because if B is stable, since all diagonal elements are negative and
all diagonal cofactors are positive, B(k) will be stable.

Two-site modification

The original model has conservation laws E1T = E1+X1, E2T = E2+X2, F1T = F1+Y1, F2T = F2+Y2

and ST = S0 +S1 +S2 +X1 +X2 +Y1 +Y2. For the analysis, we consider only the ones involving two
species. To simplify the analysis, we will focus on systems with three species, with the remaining
species considered constant. The system has one positive homogeneous steady state and the following
stability matrix.
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The stability matrix is

B=


−k1(E1T−X1) 0 0 k2+k1S0 0 k6 0

0 −k7(E2T−X2)−k4(F1T−Y1) 0 k3 k8+k7S1 k5+k4S1 k12
0 0 −k10(F2T−y2) 0 k9 0 k11+k10S2

k1(E1T−X1) 0 0 −k2−k3−k1S0 0 0 0
0 k7(E2T−X2) 0 0 −k8−k9−k7S1 0 0
0 k4(F1T−Y1) 0 0 0 −k5−k6−k4S1 0
0 0 k10(F2T−Y2) 0 0 0 −k11−k12−k10S2


Assuming that B is stable, we focus on its diagonal entries and cofactors. It is clear that its

diagonal entries are negative. Additionally, Fig. 5.3 includes all the diagonal cofactors from the
relevant 3×3 submatrices of B.

Fig. 5.3 Diagonal cofactors from all 3×3 principal submatrices of B, for the two-site modification.

It is easily seen that all the values are positive. Therefore, assuming that B is stable, according to
Proposition 7, B(k) is stable, and there cannot be diffusion-driven instability. For two-site modification
with enzyme-sharing there is no diffusion-driven instability either, for subsystems with three species.

Modification of two substrates

The original model has conservation laws ET = E +X1 +X2, F1T = F1 +Y1, F2T = F2 +Y2, ST =

S0 +S1 +X1 +Y1 and PT = P0 +P1 +X2 +Y2. The only conservation laws considered are the ones that
involve only two species. To simplify the analysis, we will focus on systems with three species, with
the remaining species considered constant. The system has one positive homogeneous steady state
and the following stability matrix.

B =



−k1E 0 0 0 −k1S0 k2 0 k6 0
0 −k4(F1T−Y1) 0 0 0 k3 0 k5+k4S1 0
0 0 −k7E 0 −k7P0 0 k8 0 k12
0 0 0 −k10(F2T−Y2) 0 0 k9 0 k11+k10P1

−k1E 0 −k7E 0 −k7P0−k1S0 k2+k3 k8+k9 0 0
k1E 0 0 0 k1S0 −k2−k3 0 0 0

0 0 k7E 0 k7P0 0 −k8−k9 0 0
0 k4(F1T−Y1) 0 0 0 0 0 −k5−k6−k4S1 0
0 0 0 k10(F2T−Y2) 0 0 0 0 −k11−k12−k10P1
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Assuming that B is stable, we focus on its diagonal entries and cofactors. It is clear that its diagonal
entries are negative. Additionally, Fig. 5.4 includes all the diagonal cofactors from the relevant 3×3
submatrices of B.

Fig. 5.4 Diagonal cofactors from all 3× 3 principal submatrices of B, for the modification of two
substrates.

It is clear that all diagonal elements of B are negative and that the cofactors shown in Fig. 5.4 are
all positive. Therefore, there cannot be diffusion-driven instability. Moreover, for the modification of
two substrates with enzyme-sharing there is no diffusion-driven instability either.

Two-layer cascade

The original model has conservation laws F1T = F1 +Y1, F2T = F2 +Y2, ET = E +X1, ST = S0 +S1 +

X1 +Y1 and PT = P0 +P1 +X2 +Y2. The only conservation laws considered are the ones that involve
only two species. To simplify the analysis, we will focus on systems with three species, with the
remaining species considered constant. The system has one positive homogeneous steady state and
the following stability matrix.

B =



−k1E 0 0 0 −k1S0 k2 0 0 k6 0
0 −k13P0−k4(F1T−Y1) −k13S1 0 0 k3 0 k14+k15 k5 0
0 −k13P0 −k7E−k13S1 0 −k7P0 0 k8 k14 0 k12
0 0 0 −k10(F2T−Y2) 0 0 k9 k15 0 k11

−k1E 0 −k7E 0 −k7P0−k1S0 k2+k3 k8+k9 0 0 0
k1E 0 0 0 k1S0 −k2−k3 0 0 0 0

0 0 k7E 0 k7P0 0 −k8−k9 0 0 0
0 k13P0 k13S1 0 0 0 0 −k14−k15 0 0
0 k4(F1T−Y1) 0 0 0 0 0 0 −k5−k6 0
0 0 0 k10(F2T−Y2) 0 0 0 0 0 −k11−k12


Assuming that B is stable, we focus on its diagonal entries and cofactors. It is clear that its

diagonal entries are negative. Additionally, Fig. 5.5 includes all the diagonal cofactors from the
relevant 3×3 submatrices of B.
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Fig. 5.5 Diagonal cofactors from all 3×3 principal submatrices of B, for two-layer cascade.

It is clear that all diagonal elements of B are negative and that the cofactors shown in Fig. 5.5
are all positive. Therefore, there cannot be diffusion-driven instability. Moreover, for the two-layer
cascade with enzyme-sharing there is no diffusion-driven instability either.

5.4 Summary

Using Linear Stability Analysis it is possible to determine if a reaction-diffusion system may showcase
spatial patterns. Our initial analysis of the motifs focused on their steady states which are spatially
homogeneous solutions of the reaction-diffusion systems of this Chapter. If the steady states are stable
without diffusion and become unstable with diffusion, it may be possible to observe the formation of
spatial patterns. If this was the case, there would be an influence of space on the motifs.

The study of diffusion-driven instability focuses on the stability matrix of the system, B, more
specifically on its eigenvalues. However, the conditions that arise are not easy to understand, forcing
us to simplify the system. As a consequence, our analysis regards the subsystems of three species
obtained by assuming the remaining species start at a homogeneous steady state.

None of the three species subsystems in study showed diffusion-driven linear instability.



Chapter 6

Conclusion

Steady states of a cellular signalling pathway are the possible responses for a stimuli, thus multista-
tionarity results in more flexibility in decision-making. The thesis aimed to determine if space can
have an influence on steady states of chemical reaction networks, by considering different models to
describe them.

CRNT is the classical theory for such study, representing the temporal evolution of species
concentrations through systems of ODEs (Chapter 2), therefore disregarding space.

As steady states are intrinsic to the networks, we wanted to consider a general set of chemical
reaction networks that represented mechanisms ubiquitous in signalling pathways. To that end, we
chose eleven motifs, described in Chapter 3. Moreover, by assuming mass-action kinetics, the steady
states are represented by the roots of a polynomial, which can be studied with injectivity methods. As
injectivity methods exploit a matrix representation of the polynomials, with matrices independent of
the parameters of the model, the results are general, which means we can conclude the uniqueness of
steady state for all rate constants or the existence of a set of rate constants that lead to multistationarity.

Space was initially studied through the idea of compartments, leading to models described by
similar ODEs systems. In Chapter 4, two types of compartmentalisation are accounted for: in
parallel and in stages. For some motifs, there were changes in the capacity for multistationarity, from
uniqueness of steady state to multiple steady states and vice-versa.

In Chapter 5 we wanted to define a model in a one-dimensional domain. Accounting for diffusion
inside cells, we defined reaction-diffusion models based on the ODEs ones. Determining the influence
of space was equivalent to determining the influence of diffusion on the homogeneous solutions,
which meant assessing the stability of the original steady states when diffusion is added to the system.
The classical theory of diffusion-driven instability relies on Linear Stability Analysis, for systems
with two species, and there are few results for three or more. Therefore, the systems were simplified
to focus on three species, and none of the motifs displayed linear diffusion-driven instability.

We concluded that space can have an influence in the capacity for multistationarity of chemical
reaction networks. Despite not concluding diffusion-driven instability for any motif, with compart-
ments there were changes. For instance, some motifs gained the capacity for multistationarity when in
parallel, while its loss was visible for motifs in stages.

There were some limitations to be overcome by future research on the topic. Firstly, assuming
mass-action kinetics allowed for the application of injectivity methods (Chapter 3), but considering
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other kinetics may lead to different results. For instance, Michaelis-Menten kinetics are often used for
phosphorylation networks. Thirdly, we considered two compartments in Chapter 4, which could be
extended to more compartments to emulate the communication of a set of cells in a body. Thirdly,
in Chapter 5, the lack of linear diffusion-driven instability may be a consequence of the focus on
subsystems with three species. There are more general results, focusing on the stability matrix that
may be relevant [15] as well as alternative tools that describe the chemical network as a bipartite graph
[10]. Moreover, it is possible the motifs exhibit diffusion-driven instability that is not linear. Lastly,
it would be insteresting to combine the ideas of compartments and diffusion, as both are present in
eukaryotic cells. On the one hand, we could consider boundary conditions emulating membrane
binding, with the domain representing the cytoplasm and the boundaries distinct membranes. On the
other hand, we could consider a spatial domain with internal membranes, which separate different
cellular compartments and allow for a more realistic representation of movement through membranes,
not necessarily rate restricted as in Chapter 4.

This work offers a justification for the growth in the spatial study of signalling pathways, while
including results that can be useful for other researchers, namely synthetic biologists. By thoroughly
analysing a number of motifs and including space through different perspectives, we proved the
influence of space in the capacity of chemical reaction networks for multistationarity.
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Appendix A

Auxiliary results used in Chapter 2

Lemma 1. Let X ,Y ⊂ Rn, then

Σ(X)∩Y = /0 ⇐⇒ σ(X)∩σ(Y ) = /0 ⇐⇒ X ∩Σ(Y ) = /0.

Proof. It is sufficient to prove the first equivalence, as the second follows by changing the roles of
X and Y . If Σ(X)∩Y = /0 and σ(X)∩σ(Y ) ̸= /0, there are x ∈ X and y ∈ Y such that σ(x) = σ(y).
Consequently, there are λ ∈ Pn with y = λ ◦ x. Thus, y ∈ Σ(X)∩Y ̸= /0.

On the other hand, assuming Σ(X)∩Y ̸= /0 and σ(X)∩σ(Y ) = /0, there are y ∈ Y , x ∈ X , and
λ ∈ Pn such that y = λ ◦ x. Consequently, σ(y) = σ(λ ◦ x) = σ(x) and σ(Y )∩σ(X) ̸= /0.

Lemma 2. Let B ∈ Rr×n and S ⊂ Rn. The following are equivalent.

1. ker(Bλ )∩S = /0 for all λ ∈ Pn.

2. σ (ker(B))∩σ(S) = /0.

Proof. For the proof, take into account the second equivalence from Lemma 1. Assuming ker(Bλ )∩
S = /0, for all λ , and ker(B)∩Σ(S) ̸= /0, there are w ∈ S and λ ∈ Pn such that B(λ ◦w) = 0. Note that
0 = B(λ ◦w) = B diag(λ )w = Bλ w, thus w ∈ ker(Bλ )∩S ̸= /0.
On the other hand, assuming there is λ ∈ Pn such that ker(Bλ )∩S ̸= /0, and ker(B)∩Σ(S) = /0, then
there is w ∈ S satisfying Bλ w = 0. Moreover, 0 = Bλ w = B(λ ◦w) and λ ◦w ∈ Σ(S).

Lemma 3. Σ(S) = Λ(S)

Proof. Let λ ∈ Pn and w ∈ S. Fixing x and y as

yi =

 wi
eλiwi−1

, if wi ̸= 0

1 , if wi = 0

and xi = eλiwiyi. Then, x− y = w and ln(x)− ln(y) = λ ◦w.
If x, y, x− y ∈ S, then σ(ln(x)− ln(y)) = σ(x− y) ∈ σ(S), since the logarithm is an increasing
function. Thus, ln(x)− ln(y) ∈ σ−1 (σ(S)) = Σ(S).
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Lemma 4. Let Γκ,λ as defined in Theorem 1, then

det(Γκ,λ ) = ∑
I,J
(−1)τ(J) det

(
Z[n−s],Jc

)
det
(
Ã[s],I

)
det
(
V t

I,J
)

κ
I
λ

J,

with sum over all sets I ⊂ [r], J ⊂ [n] with s elements.

Proof. Using Laplace expansion (2.5), with I = [s],

det(Γκ,λ ) = ∑
J
(−1)τ(J) det

(
Z[n−s],Jc

)
det
((

ÃκV t
λ

)
[s],J

)
,

with sum over J ⊂ [n] with s elements. Note that τ(I) = 0.
Considering Cauchy-Binet formula (2.6), with I ⊂ [r] with s elements,

det(Γκ,λ ) = ∑
J
(−1)τ(J) det

(
Z[n−s],Jc

)
∑

I
det
((

Ãκ

)
[s],I

)
det
((

V t
λ

)
I,J

)
= ∑

I,J
(−1)τ(J) det

(
Z[n−s],Jc

)
det
((

Ãκ

)
[s],I

)
det
((

V t
λ

)
I,J

)
= ∑

I,J
(−1)τ(J) det

(
Z[n−s],Jc

)
det
((

Ã
)
[s],I

)
det
((

V t)
I,J

)
κ

I
λ

J.

Lemma 5. Let q(c) ∈ R [c1, . . . ,cl] represent a homogeneous polynomial not identically zero, with
degree at most 1 in each variable. Then, there exists c∗ ∈ Pl root of q if and only if not all the
coefficients of q(c) have the same sign.

Proof. If every coefficient has the same sign, there is no positive root. Assuming there is one pair of
coefficients with opposite signs. Let αcv be a monomial of q, then v ∈ {0,1}l . Considering ε > 0, let

ci(ε) =

ε , if vi = 1

1 , if vi = 0
.

Then, q(c(ε)) is a polynomial in one variable, ε , with the same degree as q and α as its leading
coefficient. Thus, if ε is sufficiently big, the sign of the polynomial is determined by the sign of α . As
it is possible to choose two monomials of q whose coefficients have distinct signs, then q(c) takes
positive and negative values in Pl . Being a polynomial, it is continuous, therefore it has a positive
root.

Lemma 6. Let fκ : Pn → Rm, fκ(x) = AκxV . Then, the set of Jacobian matrices J fκ
(x) and the set of

matrices AκV t
λ

coincide:

{J fκ
(x) : κ ∈ Pr, x ∈ Pn}= {AκV t

λ
: κ ∈ Pr, λ ∈ Pn}.

Proof. Given that fκ,i(x) = ∑
r
j=1 ai jκ jxv j , the (i, l)-th entry of the Jacobian matrix of fκ is the follow-

ing,
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J fκ
(x)i,l =

∂ fκ,i(x)
∂xl

=
r

∑
j=1

ai jκ jxv j vl jx−1
l .

Thus, the Jacobian can be written as

J fκ
(x) = A diag(κ ◦ xV )V t diag(x−1) = Aκ ′V t

λ ′ ,

with κ ′ = κ ◦ xV and λ ′ = x−1. Clearly, going over κ and x is equivalent to going over κ ′ and λ ′.





Appendix B

Auxiliary results used in Chapter 5

Proposition 5. If a matrix B ∈ Rn×n is negative definite, then it is stable.

Proof. For B to be stable, all its eigenvalues must have negative real part. Let λ be and eigenvalue
with eigenvector v = α + ı̇β .

2Re(λ )∑
j
|v j|2 = (λ + λ̄ )∑

j
v jv̄ j

= ∑
j
(λv jv̄ j + ¯λv jv j)

= ∑
j,l
(b j,lvl v̄ j + ¯b j,lvlv j)

= 2∑
j,l

(
α jb j,lαl +β jb j,lβl

)
= 2(α tBα +β

tBβ )< 0.

(B.1)

Proposition 6. If the stability matrix B is negative definite, then so is B(k).

Proof. Let y ∈ Rn such that y ̸= 0. Then,

yt B(k) y = yt (B− k2D
)

y = yt B y− k2yt D y <−k2
∑

j
d j y2

j < 0.

Proposition 7. If B is stable, with all its diagonal elements negative, and all its diagonal cofactors
positive, then B(k) is also stable.

Proof. It is sufficient to show that under these assumptions, B(k) satisfies conditions 5.10.
Calculating the determinant of B(k),

det(B(k)) = det(B)− k2 (d1M11 +d2M22 +d3M33)+

k4 (d2d3b11 +d1d3b22 +d1d2b33)− k6d1d2d3 < 0,
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since det(B)< 0, Mii > 0, di > 0, bii < 0, i = 1,2,3.
It is clear that its trace is negative, tr (B(k)) = tr(B)− k2(d1 +d2 +d3)< 0.
For the third condition, using (5.13), and calculating the derivative of q(k2) =−p1(k2)p2(k2)+ p0(k2)

with respect to k2,

∂q
∂k2 = tr(B)(M11 +M22 +M33 − f1(d,b))

+ k2 (2 f2(d,b)+2 tr(B)g1(d)+g2(d) f1(d,b)− tr(B) f1(d,b))

+ k4 (tr(B)g1(d)−2g2(d)g1(d)−3g3(d)) ,

(B.2)

with

f1(d,b) = b11d2 +b22d1 +b11d3 +b33d1 +a22d3 +b33d2

f2(d,b) = b11d2d3 +b22d1d3 +b33d1d2

g1(d) = d1d2 +d1d3 +d2d3

g2(d) = d1 +d2 +d3

g3(d) = d1d2d3,

which satisfy f1(d,b)< 0, f2(d,b)< 0, g1(d)> 0, g2(d)> 0 and g3(d)> 0. Therefore, as conditions
5.10 are valid for B, the derivative of q is negative, which implies that q(k2)< q(0) =−p1 p2+ p0 < 0.

Proposition 8. If B is stable and

1. the largest diagonal element of B is positive, or

2. the smallest digonal cofactor of B is negative,

then, B(k) is unstable.

Proof. B(k) is unstable if one of the conditions (5.10) is not satisfied. To that end, it is required to
find suitable diffusion coefficients di, i = 1,2,3, and k.
Assuming M33 < 0, consider d1 = d2 = 0, then

p0(k2) = d3M33k2 −det(B).

If k2 > det(B)
d3M33

, then p0(k2) < 0, and B(k) is unstable. In practical terms, d3 shouls be considered
significantly larger than d1 and d2.
If, for example, b11 > 0, assume d2 = d3 = 1 and d1 = 0. Then,

p0(k2) =−b11k4 +(d2M22 +d3M33)k2 −det(B).

If k is sufficiently large, the sign of p0(k2) will be determined by the sign of the term −b11k4.
Therefore, there exists k such that p0(k2)< 0, i.e., B(k) is unstable.
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