

OpenCar
The App Platform for Connected Cars

Eduardo Filipe Fernandes da Silva
effsilva@student.dei.uc.pt

Advisor:

Prof. Dr. Filipe Araújo

Master’s Degree in Software Engineering
Dissertation

Abstract

The Connected Car market has been around for a while now, growing from
small applications like answering the phone without taking the hands off the
wheel to larger ones like getting directions to the last restaurant the driver
has been to.

However, as cars improve, the drivers not so much. There is so much to
do inside and outside the car that the users become a lot less concerned about
the car itself. We believe the functionality of nowadays vehicles infotainment
systems can still be extended greatly, and go further than help the driver
answer the phone without hands.

The problem could be overcome by keeping track of certain driving be-
haviours over a given amount of time. Afterwards, the information could be
presented in a way that is understandable for the ordinary end-user. Such
approach presents many challenges, namely when choosing which events
should be considered relevant enough to track, analyse and take conclusions
from.

An example of such events can be how many times the wheels locked up
under speed. This kind of event not only will cause premature wear on the
tyre but will also cause traction loss due to the flat sections created. After
happening a few times it may be a good idea to take a look at the tyres to
see if they need changing before something bad happens.

This thesis proposes a centre console application capable of identifying
and keeping track of this type of event in real-time, coupled to a web appli-
cation in which the user can consult both raw data and calculated statistics
about his vehicles.

This will be achieved using technology from a company that has been for
quite some time around this market: INRIX’s OpenCar. This technology
gives an idea of what this sector of the industry could mean to both software
engineers and car manufacturers.

Keywords: Connected Cars, Software Engineering, OpenCar, Business
Intelligence, Data Mining, Data Warehousing

Acknowledgements

I would like to thank my thesis advisor Prof. Dr. Filipe Araújo at University
of Coimbra not only for his support and counselling during the development
of this project but also for believing in the project and always wanting to
take it a step further. When I first came to talk to him about this theme
so ”out of the box” and with so little time to submit a decent proposal,
he backed me up, and I am most grateful for that. Prof. Bruno Cabral at
University of Coimbra also had a huge role steering me in the right direction
even before I had an idea of what I wanted to do. This thesis could not have
existed if it was not for him, therefore I leave my thanks.

I also want to thank all the people who saw and tried out my project working
in its final tests and to the The Driving Club - Coimbra for giving me lots
of feedback and a testing ground that was most useful in the early stages of
the development.

Lastly, but not less important, I would like to leave a word of appreciation
and gratitude for my family for always supporting me in all my decisions and
for the encouraging words through the years that led to this very moment.
Also, a thanks to all my friends at the university, both for the support given
until the last moment and for these crazy, crazy years. It definitely would
not have been the same without any of it. Thank you all.

Contents

1 Introduction 1

1.1 Scope & Motivation . 1

1.2 Methods . 2

1.3 Objectives . 2

1.4 Document Structure . 3

2 State of the Art 5

2.1 Organisations . 6

2.1.1 AGL - Automotive Grade Linux 6

2.1.2 The GENIVI Alliance 9

2.1.3 AUTOSAR . 12

2.1.4 Summary . 14

2.2 Middleware Platforms . 15

2.2.1 The OpenCar Platform 15

2.2.2 Tizen . 21

2.2.3 QNX Car Platform . 22

2.2.4 Summary . 24

2.3 Smartphone-Based solutions 24

2.3.1 Android Auto . 24

2.3.2 Apple CarPlay . 26

2.3.3 AppLink - Ford Developer Program 27

2.3.4 Summary . 29

2.4 Conclusion . 30

3 Methodology 31

3.1 Requirements . 31

3.1.1 Non-Functional . 31

3.1.2 Functional . 32

3.2 Use-cases . 32

3.2.1 Console Application 32

3.2.2 Online Platform . 33

3.3 Architecture Overview . 34

3.3.1 High Level perspective 34

CONTENTS

3.3.2 System Context Diagram 35

3.3.3 Container Diagram . 35

3.3.4 Components Diagrams 36

3.4 Testing/Validation . 37

3.4.1 The Simulated Environment 37

3.4.2 Tests conducted . 39

3.5 Technologies . 40

4 The Project 43

4.1 Assetto Corsa developed add-on 43

4.2 UDP Reader . 45

4.3 Console Application . 47

4.3.1 Controller structure 47

4.3.2 View structure . 49

4.3.3 Final Aspect & Functionality 51

4.4 Platform . 56

4.4.1 Final Aspect & Functionality 57

4.4.2 Structure . 62

4.5 API / Server . 63

4.5.1 File Structure . 63

4.5.2 Structure Diagram . 64

4.5.3 Routes Implemented 65

4.6 Database . 65

4.6.1 Tables . 65

4.6.2 ER Diagram . 67

5 Work Plan 69

5.1 Milestones . 69

5.2 Setbacks . 71

5.3 Gantt diagram . 71

6 Conclusion 73

Bibliography 75

Appendices 77

A GENIVI Member List 79

B QNX Partner List 83

C Functional Requirements 85

D Assetto Corsa/OpenCar: Information cross-check 87

E Routes Implemented 89

F Console Application Use-Case Tables 91

G Online Platform Use-Case Tables 99

List of Figures

2.1 Automotive Grade Linux (AGL) Architecture Diagram 8
2.2 GENIVI compliance approval process 10
2.3 GENIVI Architecture . 11
2.4 AUTOSAR architecture overview 13
2.5 OpenCar Connect Overview 17
2.6 Files included in an OpenCar app 18
2.7 Framework Architecture . 19
2.8 Oxygen . 21
2.9 Hydrogen . 21
2.10 Human Machine Interface (HMI) Profiles present in OpenCar

Simulator . 21
2.11 QNX technologies . 23
2.12 Android projecting information in Android Auto 25
2.13 Usages of CarPlay . 26
2.14 Android supported applications 28
2.15 iOS supported applications 28
2.16 Ford SYNC catalogue . 28
2.17 SYNC with MyFord . 29
2.18 SYNC with MyFord Touch 29
2.19 SYNC 3 . 29
2.20 Ford SYNC’s different version’s displays 29
3.1 Real-world scenario . 34
3.2 Simulated scenario . 34
3.3 System Context diagram . 35
3.4 Container diagram . 36
3.5 Component diagram of Opencar Application 37
3.6 Component diagram of the system Application Programming

Interface (API) . 38
3.7 Assetto Corsa injecting data into OpenCar simulator 39
4.1 Assetto Corsa Add-On . 45
4.2 Component representation . 45
4.3 Component representation . 47
4.4 Driving Analyst logo . 47
4.5 OpenCar Simulator slider . 48

iii

iv LIST OF FIGURES

4.6 Action bar in Driving Analyst app 49
4.7 Centre’s console application main dashboard 51
4.8 Centre’s console application fuel dashboard 52
4.9 Fuel dashboard - Nearest Station 53
4.10 Centre’s console application acceleration dashboard 53
4.11 Centre’s console application online stats 55
4.12 Centre’s console application settings 56
4.13 Login page . 57
4.14 Register Page . 57
4.15 Login & Register pages . 57
4.16 Web application ”Main” dashboard 57
4.17 Web application ”Acceleration” dashboard 58
4.18 Web application ”Statistics” upper dashboard 59
4.19 Web application ”Statistics” lower dashboard 59
4.20 Web application ”Full Logs” dashboard 60
4.21 Web application ”Profile” dashboard 61
4.22 Web application ”My Cars” dashboard 61
4.23 Web Application Structure 62
4.24 API File Structure . 63
4.25 API file diagram . 64
4.26 Component representation . 65
4.27 Database Entity-Relationship (ER) diagram 67
5.1 Gantt diagram . 72

List of Tables

A.1 GENIVIS’s Original Equipment Manufactures 79
A.2 GENIVI’s First Tier Members 80
A.3 GENIVI’s OSV, Middleware, Hardware, and Ser-vice Suppliers 80
A.4 GENIVI’s Silicon and Other Members 81
B.1 QNX Partners . 84
C.1 Centre console’s application functional requirements 85
C.2 Platform’s Functional Requirements 86
D.1 Telematic Data provided by Assetto Corsa coincident with

OpenCar’s . 88
E.1 Routes Implemented for the centre console’s application . . . 89
E.2 Routes Implemented for the web application 90

v

Acronyms

ABS Anti-lock Braking System. 42, 55, 60, 65, 73

AGL Automotive Grade Linux. iii, 6–9, 13, 15, 22, 23, 41, 52

API Application Programming Interface. iii, iv, 2, 9, 10, 13, 18, 21, 22, 28,
37, 40, 45, 53, 57–61, 64, 68–71, 76, 77, 81, 82, 89–96

CAGR Compound Annual Growth Rate. 6

CAN Control Area Network. 14, 18, 20, 37

CSS Cascading Style Sheet. 18, 23, 25, 54, 68, 69

ECU Electronic Control Unit. 1, 5, 13, 14

ER Entity-Relationship. iv, 74

FOSS Free and Open Source Software. 23

GPS Global Positioning System. 6, 18

GUI Graphical User Interface. 3, 32, 48

HMI Human Machine Interface. iii, 7–9, 21, 23, 24, 29

HTML HyperText Markup Language. 18–20, 53, 54, 67–69

HTML5 HyperText Markup Language revision 5. 17, 18, 23–25

HTTP HyperText Transfer Protocol. 18, 20, 21, 38

IPC Inter-Process Communication. 9

IS International System. 60

IVI In-Vehicle Infotainment. 3, 6, 7, 9–12, 23, 24

LIN Local Interconnect Network. 14, 18, 20, 37

vii

viii Acronyms

LTSI Long Term Support Initiative. 9

MOST Media Oriented Systems Transport. 14, 18, 20, 37

MVC Model-View-Controller. 18, 38, 51

MVP Minimum Viable Product. 76

OEM Original Equipment Manufacturer. 7, 12, 14

OS Operating System. 6, 12, 13, 15, 23, 24, 32

RPM Revolutions Per Minute. 2, 55, 56, 58, 59, 65, 73

RTE Run-Time Environment. 13, 14

SDK Software Development Kit. 3, 21–24

SVG Scalable Vector Graphics. 68

TCP/IP Transmission Control Protocol / Internet Protocol. 5

TCS Traction Control System. 55, 58–61, 65, 73

UDP User Datagram Protocol. 37, 38, 47–50, 52, 53

UI User Interface. 44, 76, 78

USB Universal Serial Bus. 26, 29

W3C World Wide Web Consortium. 16

Chapter 1

Introduction

A few decades ago, cars were completely mechanical, rather simple, and
over time started acquiring bits and pieces of new and innovative technology
such as Electronic Control Unit (ECU) controlled fuel injection or cooling
systems. These units were indeed a great leap in making them more efficient,
yet they were not that present in them as only a handful of these units were
installed in the first times. Today, there are hundreds of these units installed
in one single vehicle, opening more and more possibilities for technology to
embrace them, being software solutions one of the main targets.

With this market growing at a good rate, many companies have already
made available plenty of solutions and applications. Among these solutions,
there have been companies focused on producing community-based environ-
ments and platforms for developers to try and find more and better solutions,
together. An example of such platforms is the very subject of this thesis:
the OpenCar Platform.

These solutions have drivers themselves as end-users. The usual driver
wants to still be connected to the world when driving the car, which means,
he wants to be able to execute tasks he would normally do on his daily life
when inside the car without endangering his life by, for example, picking up
the phone. However, the usual driver is but a portion of the whole public
in this market.

1.1 Scope & Motivation

So far, solutions that allow the user to use the phone, both for messaging
and calling, have been the most wanted features by users. There are also
solutions for music on demand, and even social networking when driving a
car. These solutions may cover the needs of the usual driver, but there is
more to it than the usual driver.

A good way to tackle this rising market would be to aim at a different
public. In a society more and more focused on efficiency, cars are slowly

1

2 CHAPTER 1. INTRODUCTION

becoming autonomous. This might be good news for the usual driver but,
on the other hand, the drivers that still enjoy a good driving experience on
their own are running out of options when buying a new car, often going for
older ones.

This specific kind of driver has different goals when driving. They often
wonder if they are pushing Revolutions Per Minute (RPM) too high, if they
need to have their tyres checked or if they are over-using the gearbox. Just
some of the questions that pop in the mind of a regular gearhead. This
project’s main goal is to try and answer these same questions and more.

These motives were the main drive for developing this project, to give
this portion of the market’s public an option to stay up to date on car
technology and still be able to cherish driving, while taking advantage of
this small niche’s needs without forgetting the rest of the market.

1.2 Methods

As the title of this thesis suggests, the OpenCar Framework will be used.
Other technologies were taken into account, however, unlike other platforms
OpenCar offers a solid simulator, well-documented API’s, code samples and
most important of all: easy access to all the car’s sensors.

The main idea is to gather information from the various sensors made
available by OpenCar’s API’s and calculate results to report back to the
user. These results would consist either in statistic data about the possible
condition of the car or the driver’s performance in a given time period.
This will be achieved by developing an API that will serve the OpenCar
application and embed an web application. The OpenCar application will be
responsible for detecting a given set of events and collecting the data, sending
it to the API where it will be treated and stored. The web application will
access that same API to retrieve both raw data and calculated statistics
that were previouly saved and processed.

Since OpenCar is rather new, the possibility of testing the software in a
real car is pretty much impossible. Given this unfortunate situation, testing
the reliability and usability of the software to be developed will be done
through a driving simulator with accurate physics, delivering information in
a similar format to OpenCar’s.

1.3 Objectives

This project will consist mainly in two distinct objectives:

• Successfully implement and test a demo to prove the poten-
tial of the system

1.4. DOCUMENT STRUCTURE 3

Make a small app that will use some features of the framework
and connect it to the rest of the system. This app will simple col-
lect data from a small set of sensors from the car, measuring times
from 0-100 km/h accelerations and reporting calculated results about
the drivers performance while monitoring a selected set of sensors for
related information.

• Improve the demo to a more professional and full product

Once the concept was proven successful, there is a green light to
re-use the code and start developing the application that this project
will consist, with a larger set of sensors and a much bigger set of results
calculated. This will allow the user to receive feedback on his driving,
or even to try and trace the cause of a possible accident.

1.4 Document Structure

Apart from this same introductory chapter, this document is separated in
multiple chapters.

The State of the Art chapter will give a brief introduction to the concept
of ”Connected Car” and describe the major entities currently active on this
particular market. The first section is dedicated to organisations that may or
may not include various partnerships and are currently providing In-Vehicle
Infotainment (IVI) systems from the Graphical User Interface (GUI) to the
hardware inside the car. The second section is dedicated to development
ecosystems in the form of platforms in which a developer can sign up and
use the provided Software Development Kit (SDK)’s to develop an idea that
may or may not pass the quality assurance of the company and be later
deployed in a real-world car.

The Methodology chapter includes a detailed explanation of the process
of development that was followed to meet the expectations created. In a first
section are explained the the requirements that the project will have to meet
once it is finished, followed by its use-cases and respective descriptions. Is
also explained how the final product was put to the test, what architecture
was initially defined and what technologies were used and why.

The Project chapter will explain thoroughly the development of the var-
ious pieces of software that this project contains, containing details from the
implementation, diagrams and some views of the final product.

The Work Plan chapter will give an overview on the work intended to
be done on the next semester, consisting on a list of milestones, a Gantt
diagram distributing these same milestones over the semester in the form
of monthly tasks. Some implications to the project’s development are also
described in this section.

The Conclusions chapter contains some reflections and opinions about

4 CHAPTER 1. INTRODUCTION

both major and minor situations encountered during the development of this
projects, as well as some visions we have about the future of this project.

The Bibliography contains references to all the documents and websites
visited during the development of this document.

Lastly, the Annexes chapter contains documents and information that
might be interesting to consult along the reading of this document but are
not relevant enough, for example, the list of all GENIVI members.

Chapter 2

State of the Art

While concept of Connected Cars may be only surfacing lately, it has been
around since almost two decades ago. Back in 1998 researchers of Daimler-
Benz Research and Technology [1] already had the vision of what they called
the ”Internet Car”:

”An Internet Car is one which is like any other node on the Internet.
Although it is highly mobile, it uses Transmission Control Protocol / Internet
Protocol (TCP/IP) to communicate with the other nodes on the Internet. An
Internet car can be an Internet client as well as an Internet server. The car
in essence becomes an open platform for services to be delivered over the
Internet.”

Little did they know about how right they were going to be, in a time
where wireless bandwidth reached values of 19 kbit/s. As expected, tech-
nology evolved and concepts like this started to gain form. Not many years
after, it was possible to have remote vehicle diagnostics, a feature that not
only saves companies lots of additional costs in recalls and repairs since the
companies were able to tell if the car had any problem, remotely. This was
certainly a huge breakthrough. In fact that is so big that, if we look at the
number of ECU’s installed on a vehicle a few years ago, they were meant
for crucial tasks such as fuel injection or cut the power to the engine in case
of accident. Nowadays, the number of ECU’s installed rocketed, with some
vehicles having well over 100 ECU’s and rising. However, the tendency will
be to reduce this number, since the greater the number the greater the risk
of failure, as well as making maintainability a real challenge.

Today, we live in a somewhat app-driven society where there is an app
for pretty much everything. This made automakers seriously re-think their
strategy on how to strike the market, which led to small, but useful, features
like answering a phone call without taking the hands off the wheel. Now,
smartphones are here to stay and many users seek a similar experience while
driving since the need to stay connected digitally is getting bigger and bigger.
This led to a significant increase in the demand for smartphone-like features

5

6 CHAPTER 2. STATE OF THE ART

on vehicles. So far, simple features like sending voice or text messages,
music on demand, or even more complex ones like Global Positioning System
(GPS) real-time positioning and path calculation have become somewhat of
a standard. But it does not end here. Many companies focus is on enhancing
the driving experience using only the vehicle. This means cars will have
their own Operating System (OS) running, and consequently their own set
of applications as well as the tools to allow the development of more.

According to a press release in 2014 [21], major economies like eCall in
Europe, GLONASS in Russia and Stolen Vehicle Tracking in Brazil have
already introduced telematics mandates. These mandates imply that infor-
mation from the vehicle is used, for example, to track a driver’s behaviour
before an accident, or even call an emergency number automatically when
an accident is detected. As the future generations will rely more and more
in cloud-based back-end systems, this market research report analysing the
supply chain of the of connected cars gives pretty clear expectations to this
market in the near future, giving special attention to the continuous in-
crease in value that is expected to reach more than $46 Billion by 2020, at
a Compound Annual Growth Rate (CAGR) of 10.82%.

In this chapter we will give an overview of the some of the existing
alliances and a few of the most recognised middleware frameworks, such as
OpenCar and an explanation about how their services work and how they
stand when compared to OpenCar.

2.1 Organisations

Since cars started using so much software, they became software engineering
problems as well. Like any other software project, making partnerships is
often a rewarding choice.

In this section we will give an overview about the existing organisations
as well as their goals, partners and work-flows.

2.1.1 AGL - Automotive Grade Linux

In this section of the document will be given an introduction of what AGL [20]
consists and what it represents for the connected car market as an open-
source community.

Overview

Automotive Grade Linux is a Linux Foundation workgroup currently work-
ing on open-source software solutions for vehicles, more specifically, IVI
systems. Although this was their primary objective, AGL will also support
other applications like instrument clusters or telematics systems. Apart

2.1. ORGANISATIONS 7

from active participants from automotive industries, AGL also welcomes
any independent developer to their project.

By using Linux Kernel and lots of other open-source projects, AGL is
capable to keep up with the demand of better IVI systems for the automotive
suppliers, a problem that has been around for too long, and since it is
running Linux, there are many open-source software developers willing to
maintain it, as well as to improve it.

The main objectives in mind for the creation of the AGL Workgroup were
mainly to create an healthy environment for either developers or Original
Equipment Manufacturer (OEM)’s to develop new ideas for IVI systems, as
well as share their own in order to improve each other, as an open-source
community. The choice of using Linux means that there is already many
pieces of software that can be used as well as there are many developers
already acquainted with it.

Similar to other organisations, AGL Workgroup offers an open, collab-
orative environment that allows a more direct contact with entities closer
to the industry like Automotive OEM’s and Tier One suppliers, as well as
their semiconductor and software providers. AGL also made available an
embedded Linux distribution to hasten the prototyping process, allowing
developers to quickly test and have a minimum of quality assured before
presenting the product.

Architecture

As can be seen next, AGL’s architecture [20] consists mainly in five layers:
App/HMI, Application Framework, Services and Operating System, each of
which will be described in the next sections.

App/HMI Layer
This is the most high-level layer in the system, being the one that will
interact directly with the driver. This layer is responsible for handling all
the user’s requests, being them either through voice commands or pressing
buttons, and will enable functions like phone calls or more complex ones like
navigation. It will also be responsible for holding all the respective business
logic for the application in question.

AGL gives the liberty of having applications that use a web based frame-
work or a native framework, which does not imply that the developer has
to choose one: more than one framework can be included in a system. The
coordination of these applications among frameworks will be performed by
the Application Framework, which is described in the next section.

Application Framework Layer
Like it was described in the previous section, this layer is mainly responsible
for coordinating the applications in the upper layer, providing access to any
service needed for the applications and their respective interfaces to work.

8 CHAPTER 2. STATE OF THE ART

Figure 2.1: AGL Architecture Diagram

As mentioned before, developers are not confined to using a single frame-
work, it is possible to use more than one. The application layer will contain
all the code specifically written for that framework. Besides this code, it will
also contain all the necessary components to access the lower-level layers in
order to serve the application’s needs, regardless the framework used.

Services Layer
Following the diagram, it is safe to say that there are clearly two kinds of
services in AGL: platform services and automotive services. In a general way,
this layer will serve the upper layers via Inter-Process Communication (IPC)
type interfaces or subroutines from a given API. These interfaces remain
unaltered in a given implementation and it is the Application Framework
Layer’s job to provide access to these same interfaces for the applications
running on the top layer, the App/HMI layer.

Platform services will serve the applications needs in terms of software
resources, such as Bluetooth or Wifi connection, location services or even
persistent storage needed for an application to run correctly.

Automotive services are more related to what it is going on in the car.
These services provide a vastly great variety of information, being it derived
from diagnostics or even directly from the car’s buses, serving the application
with crucial information about, for example, telematics.

Operating System Layer
As mentioned, AGL makes fully use of Linux Kernel. As any other operating
system, this means that everything going on the IVI system of the vehicle is

2.1. ORGANISATIONS 9

generated by this layer. Everything from graphics to processing information
coming from the car’s buses.

AGL also grants a new release of the same kernel every sixty days, which
means that the system is constantly evolving. However, this does not imply
good news only. Since cars usually have a design cycle of 4-6 years for IVI
systems, it is wise to to be careful when updating the system. There are
features and products designed by the open-source community that need to
be supported, and there is also the need to update the operating system.
There must be a balance.

Like any other project from Linux Foundation, this one has a Linux
distribution of its own: Long Term Support Initiative (LTSI) kernel [27].
Currently, this distribution is the only open-source kernel that gets really
close to the automotive industry’s needs. It already includes multiple auto-
motive -driven components, and since it is fully aligned with Linux LTS it
takes advantage of its features and security level.

It is also worth mentioning that LTSI allows for a much more greater
set of components and bug-fixes than any other Linux distribution, and it
is carefully validated manually with the help of tools to try and ease the
process, assuring a greater level of reliability.

2.1.2 The GENIVI Alliance

Before starting with OpenCar, it is important to know what motivated
OpenCar to be what it is today. This alliance brought together a great
number of companies with the purpose of providing an open environment to
enrich the connected car market and already made joint projects with other
major stakeholders like AGL and AUTOSAR. This section will give a brief
introduction to this alliance.

Overview

The GENIVI [3] Consortium was established in 2009 and is a non-profit or-
ganisation aiming to introduce and maintain an open, Linux based, infotain-
ment and connectivity platform for the general transportation industry. It
successfully introduced the concept of open-source development to the con-
nected car market, which allowed for IVI projects to be more flexible among
vehicles while satisfying the costumers’ requests. This greatly reduces the
challenges automakers face when delivering the latest functionalities, keep-
ing their customers happy. Besides this flexibility, it also took upon itself
all the advantages that come with the open-source concept, such as reusable
components and the redeployment of already developed solutions. GENIVI
also provides many standards and open-source references.

Besides encouraging the joint development of new solutions, GENIVI
also has technical deliverables made available. These deliverables vary from

10 CHAPTER 2. STATE OF THE ART

individual software to standard API interfaces or even IVI architectures, all
of them benefiting from open-source software.

So far over 140 companies have joined, mainly companies based in Eu-
rope. However, not all of them are exactly automakers. GENIVI’s members
consist mainly in automakers but companies from sectors like electronics or
communications that showed interest in the prevail of the IVI systems have
also joined.

Compliance

Currently, the GENIVI Alliance has a program that allows its members to
participate in its compliance activities. To do so, companies submit their
own IVI platform that will then endure a full review process in order to
assure if it is really ready to be considered a GENIVI compliant product.

Figure 2.2: GENIVI compliance approval process [18]

As straight-forward as the image above may seem, this process is more
complicated than that. Once submitted, the GENIVI’s assigned reviewers
have to clarify every single question they may have with the applicant, and if
found any they must correct it (hence the step for ”Issue resolution”). Once
the reviewers conclude the applicant’s platform meets all the requirements,
it receives a green light to be published on GENIVI’s website and to benefit
from all the perks of being a a GENIVI compliant platform.

2.1. ORGANISATIONS 11

Architecture Overview

Even not offering a complete IVI solution and a given design, GENIVI does
deliver a set of tools that lets current IVI solutions like Tizen and OpenCar
make their choices in what components to use.

In the next Fig. [2] below is possible to see which components GENIVI
offers as middleware (yellow and purple sections) to any GENIVI compliant
IVI solution.

Figure 2.3: GENIVI Architecture

Both yellow and purple sections are considered middleware, GENIVI’s
main focus, but there is one slight and meaningful difference. While com-
ponents represented on the yellow section are available in the Open-Source
Community (some of them are still in being developed in GENIVI’s Open
Source Projects section), the components represented in the purple section
may need commercial software components in order to be used.

Another point to be noted in the diagram is the bottom layer. GENIVI
standardisation of software relies greatly on Linux Kernel. This said, any
IVI solution that is GENIVI compliant will be, ultimately, running Linux
in the background.

12 CHAPTER 2. STATE OF THE ART

Members

As was mentioned before, there are over 140 companies already in this al-
liance. It is possible to find a list of these companies in the Annexes of this
document, listed in an industrial view as Original Equipment Manufactur-
ers (Table A.1), First Tiers (Table A.2), OSV, Middleware, Hardware, and
Service Suppliers (Table A.3, OpenCar is listed in this sector), Silicon (Ta-
ble A.4) and others (Table A.4) that do not categorise in any of the above
but are still partners.

2.1.3 AUTOSAR

In comparison to GENIVI there are a few similarities worth mentioning
about AUTOSAR, being them the running OS and a few aspects in the
architecture.

Overview

Much like GENIVI, AUTOSAR [5] was also born from a partnership between
multiple companies that took the challenge to establish multiple standards
for the automotive industry, being the first ones BMW, Bosch, Continental,
Daimler, Chrysler and Volkswagen in 2002.

This alliance is mostly formed by OEM manufacturers and Tier 1 au-
tomotive suppliers, all motivated in standardise IVI systems in a way that
they will be easily integrated, modified and updated, making the challenges
faced by automotive companies when providing good IVI systems a whole
lot easier.

So far, AUTOSAR has been successful to define a basic software archi-
tecture, structured in layers, which allows the encapsulation of hardware de-
pendencies. This also made possible the integration of new software modules
as well as their functional reuse, which is an added value to the partnership
increasing the agility of the process of development. Another great feature
of AUTOSAR are the standardised interfaces. By using API’s to separate
AUTOSAR’s software layers one can encapsulate functional software com-
ponents more easily. Just like the interfaces, all the rest both the software
and the Run-Time Environment (RTE) implementation specification were
also standardised in order to assure bus compatibility and the application
itself.

Last but not least, there is the RTE (Run-Time Environment). Unlike
GENIVI or AGL, AUTOSAR provides inter- and intra-ECU communication
across the whole vehicle network, not necessarily running Linux, that sits
right in the middle of the software components and the software modules.
However, this implies that all entities connected to this environment respect
AUTOSAR’s specifications, or else nothing will work properly.

2.1. ORGANISATIONS 13

Architecture and Components

As we can see in Fig. 2.4 below, the differences from other platforms of the
likes of GENIVI or AGL are clear. The first to be noticed, and probably the
biggest, is the AUTOSAR Runtime Environment connecting the software to
the hardware instead of a Linux Kernel as OS of choice.

Figure 2.4: AUTOSAR architecture overview [6]

Starting from the top, there is the Software layer. This layer holds all of
the software components currently mapped on the ECU. All the interaction
of these modules to the hardware interfaces is done solely through the RTE,
via an AUTOSAR Interface designed for this purpose that is embedded in
the software component.

Connecting the Software layer closer to the hardware there is the RTE
Layer. This layer will act mostly as a communication centre for inter and
intra-ECU information exchange. This creates an useful abstraction to all
AUTOSAR’s software components in the sense that all the traffic going on
Control Area Network (CAN), Media Oriented Systems Transport (MOST),
Local Interconnect Network (LIN) buses of the car become available through
a simple interface standardised according AUTOSAR’s requirements. How-
ever, the applications in the software layer have their own communication
requirements, which may cause the RTE layer to be adjusted for certain
applications to work. This implies that RTE’s may differ greatly from ECU
to ECU.

Lower in the architecture it is possible to see the Basic Software Layer.
This layer is the one that is closest to the hardware, and the one to provide
the RTE all the information the software applications above it requested.

14 CHAPTER 2. STATE OF THE ART

In this layer there is all the standardised software that are specific to the
ECU where it is installed as it only makes certain services available such as
Communication, Operating System and Microcontroller Abstraction.

Finally, the interfaces. As it can be seen in the diagram above, it is
possible to count three different types of interfaces: AUTOSAR Interface,
Standardised Interface and Standardised AUTOSAR Interface. The names
may be similar but their functions differ.

Standardised Interface
This interface is needed only to serve other standardised components, which
is why it appears mostly in the bottom layer, connecting all the Basic Soft-
ware components.

AUTOSAR Interface
This interface is responsible to describe all the data and services required by
an upper component and is implemented according to the AUTOSAR In-
terface Definition Language. This kind of interfaces are partly standardised,
which means that they may or may not include OEM specific requirements.
Another advantage of these interfaces is the fact that they allow multiple
software components to be distributed among different ECU’s, which is a
pretty transparent process since the RTE will take care of it.

Standardised AUTOSAR Interface
The difference to the previous mentioned AUTOSAR Interface is the fact
that these are also standardised in AUTOSAR. These kind of interfaces split
into two different categories: the ones used to define AUTOSAR services,
which are also standardised (Basic Software Layer) and the ones derived
from AUTOSAR Application Interfaces.

2.1.4 Summary

Among these three distinct organisations, the spotlight goes obviously for
GENIVI and AUTOSAR. These organisations managed to bring together a
lot of companies to work with one single focus: to standardise software for
the automotive industry. Even from a market point of view, these companies
are a safe bet since the support is enormous and the community is constantly
growing.

As for AGL, it seems to have appeared for the single reason that Linux
Foundation saw the automotive industry leaning for Linux as OS of choice
and decided to have one of their own and jump to the front line by force.
However, the support is mostly with GENIVI, an organisation that covers
pretty much the same aspects as AGL.

In essence, GENIVI and AUTOSAR are the way to go in automotive
software. They are made of fruitful partnerships working together to im-

2.2. MIDDLEWARE PLATFORMS 15

prove each other, which is the logical thing to do.

2.2 Middleware Platforms

Platforms for developers to come together and develop new solutions have
been slowly appearing. Like OpenCar, the main objective is primarily to
create a good environment for developers to make their ideas a reality, in a
community-based ecosystem.

This section will give a detailed overview of OpenCar and a briefer of its
main competitors.

2.2.1 The OpenCar Platform

This platform’s main purpose is to not only standardise the access to vehicle
sensor data, making it available and easy to use for developers to produce
usable and rich applications for that same centre console, but also provide
an useful and interactive environment for programmers to independently
produce software and have it certified by OpenCar itself. The following
sections will explain its main objectives and how they are achieved.

Overview

Firstly created by Jeff Payne back in 2011 and currently an active mem-
ber of the GENIVI Alliance and the World Wide Web Consortium (W3C),
OpenCar has come to build the industry’s first updateable application plat-
form and developer ecosystem, to serve the automaker’s need for highly
integrated, car-centric applications. Currently, OpenCar is partnering with
various automakers, suppliers and developers in order to define new stan-
dards and tools, transforming both automotive App development and driver
experience.

Since the OpenCar platform is rather new, we will start by shortly in-
troducing this technology and associated entities.

INRIX

This company has been in the vanguard of the connected cars market for
nearly a decade now. Its main focus and reason to exist is very simple,
yet very logical. In a time where drivers and departments of traffic were
struggling to acquire traffic information about its condition in real-time by
installing expensive sensors in a few roads, INRIX took a different approach.

Instead of using expensive sensors that were both expensive and hard
to maintain and install, INRIX suggested that this data was extracted from
the vehicles themselves. This way it was possible to have easy access to
traffic condition data in real-time, and pretty much everywhere since there

16 CHAPTER 2. STATE OF THE ART

was no need to install sensors on the roads, extracting data directly from
the vehicles would cover a lot more ground in a more effective way.

With the recent acquirement of OpenCar, INRIX hopes to extend its
Autotelligent platform to provide an open solution for manufacturers to an
even wider portfolio of content, without the need for a smartphone or any
other external hardware.

Autotelligent
This INRIX product consists in a cloud-based machine learning platform
that works in the background and monitors road conditions before the user
starts driving to determine the optimal time to leave and which route would
be better considering traffic condition, which is calculated in real-time, there-
fore adjusting the best route to reach its destination.

It will also give special preference to routes already travelled by the user
and ”learn” the ones that the user uses more often when calculating routes.

OpenCar Connect

OpenCar Connect was created with the purpose of being the next-generation
platform to build, integrate and host automotive-grade applications in a
connected car.

OpenCar features an open software development environment backed by
HyperText Markup Language revision 5 (HTML5) standards. This provides
the advantage of benefiting from the power and diversity of the desktop
and mobile app development ecosystems, bringing them to the automaker
segment. Besides this, OpenCar also gives developers access to automaker-
approved vehicle telematic data, something that has been out of reach so
far, allowing them to build rich telematic-driven apps, enhancing even more
the driving experience of the users.

How does it work?
As was mentioned before, the framework works through an amount of layers,
which can vary depending on where the software is running, either a real
vehicle or a simulator. These layers interact with each other in order to
connect all the available information in the system.

As we can see in Fig. 2.5, once the the user makes an input, with it
being buttons, touch screen or even voice control, this input goes through
the corresponding service. This service will be running on the HTML5
Runtime, which is responsible to pass it on to the integration layer, which
is in direct contact with the vehicle hardware.

This hardware mainly consists in buses that deliver information about
what is going on the vehicle, being the most important the CAN bus,
a standard, message-based protocol for vehicles, designed to allow micro
controllers and other devices to communicate with each other, removing the
need to have a host computer, the MOST bus a high-speed multimedia

2.2. MIDDLEWARE PLATFORMS 17

Figure 2.5: OpenCar Connect Overview

network technology responsible for applications running inside or outside the
vehicle. It does not differ much from the CAN bus, although MOST is much,
much faster, what makes CAN unable to compete, therefore these two being
used in in distinct purposes. Finally there is the LIN bus that consists in a
serial network protocol used for communication between components inside a
vehicle. Once again, not much different from CAN in terms of functionality.
However, the need for a cheaper option than CAN was growing and some
manufacturers started using different to connect the components.

Apart from these vehicle-specific components, it is also responsible for
communicating with more generic components, such as GPS, HyperText
Transfer Protocol (HTTP) connectivity devices, bluetooth and so on. The
integration layer communicates with this hardware through the multiple
API’s OpenCar provides, making the application able to access telematic
information, data from external servers, connect with a nearby device or
even store data.

Framework Design Pattern
OpenCar Connect app framework offers an easy and safe way to develop
apps for connected cars. In this section will be given a brief overview of its
design pattern and architecture.

18 CHAPTER 2. STATE OF THE ART

This framework runs in an HTML5 run-time, being its simulator simply
an instance of Google Chrome, allowing for easy debugging and logging.
Each OpenCar application runs in two widely separated portions: Business
logic contained in a controller and Presentation logic contained in a view

As you may have noticed already, the platform follows, in a way, the
Model-View-Controller (MVC) pattern.These containers are common Javascript
files within a manifest file for each application. Besides Javascript, there is
also additional HyperText Markup Language (HTML) and Cascading Style
Sheet (CSS) files, as well as support for other resources (external modules,
libraries).

Figure 2.6: Files included in an OpenCar app

As you can see in Fig. 2.6, the framework allows an easy and effective
way to structure the code. Going file to file, we have:

• app.manifest

This file is responsible for storing the app’s information, such as
id, which file is the controller, view or template, as well as managing
its permissions. For example, in order to gain access to the vehicle’s
Telematics a permission needs to be added in the app’s manifest, or
else it will not work at all.

• appController.js

Following the framework’s architecture, this Javascript file is re-
sponsible for all the business logic of the app, calculating and retrieving
data to the view, for example.

• appLayout.html

This HTML file is responsible for the apps presentation, not much
different from one of a website. It supports templating, as well as

2.2. MIDDLEWARE PLATFORMS 19

external libraries such as Bootstrap.

• appStyleSheet.css

This file works together with the HTML file described previously
and is responsible for enhancing the visual look and feel of the applica-
tion, giving a lot more flexibility when designing apps when compared
to simple HTML.

• appView.js

As the name suggests, this Javascript file is responsible for all the
view logic of the app. It is from this file that the HTML will constantly
receive updates with new information.

• icon.png

This little image file is nothing more than a logo to be shown in the
car’s console when browsing apps. The framework gives the liberty of
having our own logo and showing it in the apps menu. When creating
an app we are given a default logo, although it can be easily replaced.

• External Libraries

As was mentioned before, OpenCar allows external modules and
libraries. As shown in Fig. 2.6, this particular app is taking advantage
of Bootstrap and jQuery libraries.

Figure 2.7: Framework Architecture

20 CHAPTER 2. STATE OF THE ART

Integration Layer
As we can see in Fig. 2.7, this layer is responsible for making available ser-
vices from the native host environment. In an actual vehicle, these services
would include access to CAN, MOST, LIN buses and more. Besides these
services, there are some that cannot be served through the Javascript layer,
these ones will be provided directly as Native Handler, WebSocket Host
Platform interfaces, HTTP for gateway service to the Internet and so on.

LocalHost HTTP Layer
In order to provide a more interactive development environment, OpenCar
SDK offers a a LocalHost HTTP service that provides a host server to the
browser so it can successfully deliver the framework’s contents and applica-
tions (not present in Fig. 2.7).

Since most developers will not have access to a vehicle running OpenCar,
there is not really a ”Native Host Layer” to test on, as there would be in an
automotive integration on an actual vehicle. It also does not take advantage
of the supplied host services such as speech, audio or persistence. Instead,
it uses open-source components like SQLite or GStreamer that would later
be implemented in a vehicle, being in many cases applied such solutions in
actual vehicles.

This abstraction allows developers to finish an OpenCar app using only
the simulation and testing through the current workstation and make it
ready to easily being integrated into any automaker platform without major
changes to the code.

HMI profiles
An important thing to understand about this framework are definitely the
HMI profiles. At this point, the OpenCar Simulator offers two distinct pro-
files to use and switch between, Oxygen and Hydrogen. However, it is not
limited to just a couple of profiles. More profiles are also made available
through OpenCar InsideTrack mentioned above. These profiles can be spe-
cific to automakers or vehicles allowing a specific look-and-feel for each one,
as well vehicle data and native system integration.

The profiles shown in Fig. 2.10 will dictate the functionality of an app ac-
cording to each one’s implementation. Although every profile will support
all OpenCar API’s, the behaviour of a given API may differ greatly de-
pending on the profile selected. An easy example would be the styling and
positioning of buttons. This implies that before developing an OpenCar
app there is a tough choice to be made: will the app be profile-dependent
or profile-independent? Making the app profile-independent will imply
special care when coding the app, since it will have to be very well struc-
tured to maximise the use of OpenCar ”Chambers” (in more practical terms,
OpenCar’s visual elements).

OpenCar InsideTrack
InsideTrack was created with the purpose of providing automakers and con-
tent providers a platform in which they can build apps for new cars and

2.2. MIDDLEWARE PLATFORMS 21

Figure 2.8: Oxygen

Figure 2.9: Hydrogen

Figure 2.10: Default HMI profiles in OpenCar Simulator

maintain them once they are deployed, which can be done remotely over the
entire vehicle life cycle.

It takes the form of a usable online Web platform that gives the option
of creating an OpenCar project and submit it for evaluation through the
SDK (which is also available for download in the platform), or joining an
existing project to work on.

Aside from projects, it is also possible to join a Program. Programs are
meant to bring automakers and system integrators closer in order to put
together and manage sets of applications for the global market. It allows
direct contact with developers, as well as track their status ans securely
share files and simulator plugins.

Also available in the InsideTrack platform is detailed information about
the usage of the framework and how it connects with the vehicle, including
diagrams and brief explanations. When it comes to support the developers,
the platform provides documentation needed for understanding each API
contained in the OpenCar framework as well as examples of how to use
them, separated by SDK versions.

The platform was fully used during the making of this dissertation, being
its final result intended to have a functional project submitted.

2.2.2 Tizen

Since Tizen has been integrated into AGL, we believe it is worth mention-
ing this entity as well as what it represents. According to Jaguar/Land
Rover’s System Architect Rudi Streif, the integration of Tizen into the
AGL project was a good starting point [11], leaping AGL to about 50% [10]
of where it needs to be.

22 CHAPTER 2. STATE OF THE ART

Overview

Tizen is essentially an open-source, standards-based software platform that
allows developers to reach multiple ranges of devices, which can vary from
smartphones to smart TV’s, being these types of devices classified in differ-
ent profiles.

Tizen claims to be the ”OS of everything”, bringing a new user expe-
rience across different devices. This allows the user to be connected when
outside the car, inside the car, even when watching TV. Once its devel-
opment is also open-source driven the support is global, which not only
complies perfectly with AGL but also allows for a more swift improvement
over time.

Tizen IVI

Tizen IVI [26] is one of the many ”profiles” mentioned before. As the name
suggests, it is directed to the connected car market, offering a platform
identical to many others like OpenCar with a Free and Open Source Software
(FOSS) OS. This not only allows for applications to be ran into vehicles but
also extending it to other ”profiles” like smartphones.

In terms of coding, it does not differ much from OpenCar itself by also
taking full advantage of the HTML5+CSS+Javascript trio.

2.2.3 QNX Car Platform

QNX [22] is a real-time Unix operating system that has been around for quite
some time now, mainly powering critical systems like air traffic control, road
signs, medical devices and even nuclear power plants over the past thirty four
years. Recently emerged QNX Car, an attempt to bring this very system
to our everyday vehicle. It is also worth mentioning that QNX is also a
Blackeberry subsidiary since 2010 [12].

Overview

This platform [23] offers a range of already integrated and optimised tech-
nologies from QNX Software Systems and many more partners from their
own ecosystem. Similarly to the already mentioned Tizen platform, this
one was also designed with maximum flexibility in mind providing develop-
ers with lots of options for building IVI systems that keep being updated
regularly and reach more mobile devices.

Similarly to other platforms, QNX also features many SDK’s (being
one of them dedicated to IVI systems). This allows fast-development and
reduced testing once the developers are able to test them before deploying
the software on an actual car, which also results on reduced costs and risks.
Besides this, also has support for Wifi/smartphone connectivity as well as

2.2. MIDDLEWARE PLATFORMS 23

technologies that make possible the development of rich and user-friendly
HMI’s.

Technology

As expected, QNX made available quite a few technologies that were al-
ready developed, and ”simply” added a few quality requirements like crash
resiliency, embedded optimisation and, of course, fast boot.

Among these technologies the ones proven to be pretty useful in IVI
systems are the QNX Neutrino real-time OS, a top-class acoustic echo can-
cellation and noise reduction, a multimedia an application framework SDK
for a range of environments, as well as an HMI framework supporting Qt,
HTML5 and others, not much different from other names like Tizen or
OpenCar itself. It is also worth mentioning that QNX currently supports
smartphone-based solutions like CarPlay and Android Auto, which will both
be explained more thoroughly in the sections to come.

In Fig. 2.11 we can see how these technologies connect each other in a
given IVI system.

Figure 2.11: QNX technologies [23]

Ecosystem

Similarly to partnerships like GENIVI or AUTOSAR, QNX also has some
partners of its own. The platform makes available some implementations
from the multiple partners themselves, allowing them to speed up the de-
velopment and integration processes by using them.

The list of partners can be seen in the Annexes section of this document,
on Table B.1.

24 CHAPTER 2. STATE OF THE ART

2.2.4 Summary

Since the technologies described previously are but a portion of all the exist-
ing ones, it is safe to assume that there are quite a few options in middleware.
All of them are very alike in the most important aspects, what makes the
choice for one a difficult task.

Ultimately the choice for using OpenCar resided on the simplicity of
the framework in terms of code, the quality of the simulator and an aspect
easy to forget: the documentation. Besides being a rather new technol-
ogy, the documentation and examples are well written and cover the most
important aspects, leaving to the programmer the sole tasks of knowing
JavaScript+CSS+HTML5 and coming up with a great idea.

The fact that OpenCar is also an active member of the GENIVI was also
a great reason to keep the technology, since it will be receiving support, now
and in the future.

2.3 Smartphone-Based solutions

There is a strong reason as to why this kind of solutions have been gaining
terrain over more in-car solutions like the ones already discussed. According
to TechRadar [25], cars are not as easy to develop as personal tech devices.
By the time a car is finished, the infotainment system installed in the car
probably is already severely outdated.

Putting this in more practical terms, an average car gets a system refresh
every 2-3 years, and probably a completely new model in 4-6 years. Not to
mention luxury cars, this kind of cars can last 10 years without a new system.

However, this does not happen with smartphones. The time between
new models is around a year, 2 at most, and the updates are much easier.
With this in mind, many solutions regarding the potential of smartphones
inside the car started climbing through the market and are now available
in multiple cars. This section will give a short introduction to some of the
major players in this kind of approach.

2.3.1 Android Auto

Android Auto is, as the name suggests, Google’s approach on the connected
cars market. As will be explained in this section, it takes full advantage of
their already dominant operating system Android.

Overview
In an attempt to make use of the centre console of the car, Google took
advantage of its already developed operating system, Android, applying it
in a numerous variety of cars in the form of Android Auto.

Similarly to Android, Android Auto benefits from the same support
as the original operating system in terms of platform and documentation.

2.3. SMARTPHONE-BASED SOLUTIONS 25

There are already multiple apps originally designed for Android that were
adapted to Android Auto, as well as plenty of online documentation of how
to give Auto features to a given application.

There is, however, a huge difference from the technologies already dis-
cussed in the way the car interacts with the driver.

Figure 2.12: Android projecting information in Android Auto [19]

As Fig. 2.12 suggests, Android Auto is not actually a independent run-
time like OpenCar, instead, the apps are mere projections of the apps on
the user’s Android smartphone.

How it works
Firstly, the driver must have the Android Auto app installed on the smart-
phone. The app is available through the Google Play Store just like any
other Android application.

When inside the car, the driver is able to connect his smartphone to
the car, either via Universal Serial Bus (USB) cable, Bluetooth or WiFi,
although the latter is still pretty nonexistent. Once that is done, the central
console of the car will show a ”smartphone-like” interface that allows the
driver to use the smartphone through voice commands or buttons on the
steering wheel, allowing the driver to stay connected much more safely.

Answering a phone call while driving becomes as easy as saying so inside
the car. So far, the main features of Android Auto also include Google Maps,
Google Play Music and ”OK, Google” [19].

Android Auto enables the user benefit from these Google’s services while
inside the car, being able to use them in the centre console of the car.
However, there is also the possibility for third-party applications to pipe
their information through Android Auto to the car, although, they will be
more of a read-only application. A practical example of this are messaging
apps like WhatsApp or Skype: the user will not be able to interact directly
with it through the car’s commands, but will be able to receive the message.

In short, the all the car does is solely show information originated by the
smartphone, being it the one to do all the heavy lifting [8]. There is currently

26 CHAPTER 2. STATE OF THE ART

no way to benefit from Android Auto without an Android smartphone that
does not have the Android Auto application installed.

This not only constrains the user to own a certain kind of mobile phone,
but also to a very specific operating system since the smartphone HAS to
run Android and be, at least, in version 5.0 [19].

2.3.2 Apple CarPlay

Much like the previously discussed Android Auto, Apple CarPlay is Apple’s
approach on the connected car market, taking fully advantages of Apple’s
services, as will be discussed in this section.

Overview
Much like Android Auto, Apple CarPlay takes on the task of enhancing the
driver’s experience through its already developed operating system, iOS. It
is safe to say that Apple CarPlay and Android Auto are as much opponents
in the connected car market as they are in the smartphones market, making
them direct competitors to each other.

As expected, CarPlay also benefits from a developer program, in which
is possible to make apps work along with CarPlay inside the car. However,
the major difference from Android Auto is the same as the smartphone’s:
just like the original operating system, iOS, one will need an MFi license
in order to develop and publish something, instead of Android that allows
a much more free community to exist.

Figure 2.13: Usages of CarPlay [4]

As we can see in Fig. 2.13 taken from the Apple’s own website, the
similarities to Android Auto are obvious, being the main difference the op-
erating system. CarPlay enables the user to use the smartphone through a
projection of it on the central console.

How it works
Unlike Android Auto, Carplay does not require the installation of a given
application from the Apple Store. Instead, the user simply connects the
the iPhone to the car via a Lightning cable (another major difference when
compared to Android Auto), and the central console will instantly show an
interface similar to the smartphone’s, while keeping the main functionalities

2.3. SMARTPHONE-BASED SOLUTIONS 27

of it. The applications will then become available for use through either
voice commands or buttons installed in the car.

So far, CarPlay offers an ”auto version” of its mains services as well
being them Siri, Apple Maps, Phone Calls and Messaging app. Although it
does not end here. Apple has paved the way for more apps, being them from
the Apple Store or manufactured by the automakers themselves, allowing a
wider variety of applications to choose from.

However, as was mentioned before, CarPlay consists in nothing more
than information coming and going from the smartphone, it is not an in-car
system running any kind of iOS. Once again, the smartphone does all the
heavy lifting, just like Android Auto. This means that, again, one will need
a specific mobile phone running a specific version of a specific operating
system, this time being an iPhone 5 or higher.

2.3.3 AppLink - Ford Developer Program

On the matter of smartphone-like solutions, Ford took a very different ap-
proach. Instead of limiting the driver to using a single kind of smartphone,
it allows the use of both systems. However, there are a few perks worth
mentioning about it.

Overview
The feature the separates Ford’s method from Android Auto and Apple
CarPlay the most is definitely the existence of an embedded system running
in the car. This system allows for both Android and iOS to connect with it
and enable in-car commands, but in a different way than already discussed.

An obvious downside of enabling support for multiple operating systems
is the limiting number of apps to use inside the car. Currently, Ford has a
catalogue available listing the applications that can be used together with
the smartphone, along with every voice and button commands available for
the given application.

How it works
Besides the differences pointed out before to other smartphone-like solutions,
there is another that is most relevant as well: Ford’s infotainment system,
SYNC [16], has functionality on its own.

To extend the functionality and the need of the drivers to stay connected,
AppLink was introduced. AppLink consists in a set of API’s that allow
mobile developers to extend a mobile application to the vehicle’s HMI. Once
connected, the phone will feed information to the centre console, enabling
vehicle controls like voice commands, steering wheel buttons and even the
touch screen of the console to control a given app.

Although AppLink [14] supports both systems, there are some slight
differences. The first one appears when connecting the phone: as suggested
by Ford, iPhones must be connected via an USB cable while Android phones
simply have to connect via Bluetooth. Once this is done, the user is able to

28 CHAPTER 2. STATE OF THE ART

use some of the smartphone’s applications through the vehicle’s system.

Figure 2.14: Android supported
applications

Figure 2.15: iOS supported ap-
plications

Figure 2.16: Ford SYNC catalogue [15]

Fig. 2.16 above shows the entire English version of Ford’s App Catalogue
for both Android and iOS. As we can see, it is still pretty limited, and even
more limited when choosing other languages.

Another downside of AppLink is most definitely it is availability through
the different SYNC versions currently being available on Ford vehicles. So
far, there are three distinct versions of the software.

SYNC with MyFord (Fig. 2.17) is the most basic one of the three.
Even so, it already allows users to complete simple tasks like answering
a phone call or listening to music through voice commands. Although it
supports AppLink, it does not have support for neither Android Auto or
Apple CarPlay. Also, there is no support for an WiFi update to the software.

An upgraded version of the one just described before is SYNC with
MyFord Touch (Fig. 2.18). Curiously, on this version there is no support at
all for AppLink, although there are more features that enhance the driver’s
experience. It is now possible to adjust climate inside the car, use Ford’s
own intelligent navigation systems through voice commands. Support for
Android Auto and Apple CarPlay is still not supported on this version,

2.3. SMARTPHONE-BASED SOLUTIONS 29

neither is WiFi updates capability.
Lastly, there is the SYNC 3 (Fig. 2.19), the latest and most complete

of them all. SYNC 3 brings all of the funcionality of the ones above, while
adding more interesting features. AppLink is now fully supported, as well
as both Android Auto and Apple CarPlay along with all the features they
provide. SYNC 3 also brings to the table the opportunity of connecting
remotely to the car allowing the driver to track its location, as well as track
its status which include lock/unlock the car, start the engine, check fuel
level and so on. To do this however, the driver must have FordPass [17]
app installed on the smartphone. Lastly, SYNC 3 also supports automatic
updates over WiFi.

Figure 2.17: SYNC
with MyFord

Figure 2.18: SYNC
with MyFord Touch

Figure 2.19: SYNC 3

Figure 2.20: Ford SYNC’s different version’s displays [16]

Due to this variety of versions, compatibility is an obvious downside.
Since some cars are only available with certain versions of the software (there
are also models that are made available with all the versions), this will
create a clear constraint on the driver’s smartphone choice since there are
compatibility issues.

A very practical example: let’s imagine the user currently has a Sony
Xperia E5 as his smartphone of choice, and just aquired a 2017 Ford Mustang
equipped with SYNC 3. Currently, there is no compatibility for his phone
with such car, leaving him/her with no choice but to either get a new phone
or use the car without the benefits of SYNC 3.

2.3.4 Summary

In a society depending more and more of smartphone’s capabilities, there
is no denying that using their potential to enhance the driver’s experience
and keep them connected while driving is a very well played move, as its
possible to see from multiple automakers opting for this kind of solution.

In my opinion however, it seems rather limiting since we are only con-
nected to the outside world. Looking at these solutions from a higher point
of view, all we are able to do is interact with the smartphone through the

30 CHAPTER 2. STATE OF THE ART

car. We do not completely disagree, although we think it would be much
more interesting if the driver actually interacted more with the car.

Today’s technology allows for technical information to travel through
the car’s sensors, from a single tire speed to the gear that is engaged in the
gearbox. This kind of information is not only interesting to the driver, but
also valuable to the right entities. The lack of usage of telematic data in
this kind of systems was one of the main factors when choosing OpenCar
for this project, which is very complete in that aspect.

2.4 Conclusion

Even if somewhat unknown, the connected car concept has been gaining
terrain over the years, providing an ever-growing market that might soon
reach a noticeable position among the others. In order to write this chapter
we took upon ourselves the task of understanding a minimum of this market
and we are glad we did. The amount of diversity in technologies and frame-
works is overwhelming, and as if this was not enough the concept itself was
already defined a long time ago, suffering architectural modifications over
the years.

However, it is also really gratifying to see that many companies have
come together to standardise and share knowledge, improving each other’s
products. This not only adds value to the market, but also gives software
engineers and programmers like myself a chance to prove ourselves and,
maybe, give something worthy of being successfully integrated, a chance to
make cars interesting again.

The choice of making a project using a middleware platform instead
of a smartphone-based one was made essentially out of the fact that the
smartphone can be quite limited when it comes to connecting it to a car,
not to mention that without the smartphone the applications will not have
any use.

By using OpenCar, a middleware, OS-agnostic framework, the smart-
phone becomes a plus instead of a must which, in my opinion, enhances
greatly the driving experience of the user. The application will have an
unique GUI, completely independent from smartphone standards and will
function on its own, leaving the smartphone as a complementary element to
the system.

Chapter 3

Methodology

In this section we will explain more thoroughly what the main objectives of
this project are and how they will be achieved, as well as all the requirements
and use cases for this software project.

3.1 Requirements

As any other software project, there has to be some requirements to be met
by the end of the development process. This section is dedicated to give an
high-level perspective of what these requirements will consist.

It is worth mentioning that this system will be a prototype. As so, it
might not fully meet a given requirement, specially non-functional.

3.1.1 Non-Functional

Since both the platform and the console application will handle sensible
data, some requirements must be met. Once successfully operating, the
whole system should meet the following requirements:

• Security All the info the user agreed to collect once he used the
functionality is considered private. Therefore, a minimum of data
security must be assured. In the future, security may not only be
digital as it may be subject to some laws since we are dealing with
personal, delicate data.

• Maintainability With a future deployment in mind, the code should
be well organised and separated by modules in order to make upgrad-
ing and bugfixing easy tasks. Comments on the code are a must for
future reference.

• Availability Since the user will want to check information about his
driving at any time, the platform should be available at all times. An
web-server is advisable.

31

32 CHAPTER 3. METHODOLOGY

• Documentation Being the technology new, good documentation is
required if the project is meant to live on, so new programmers can
pick up the work if needed.

• Fault Tolerance In order to support he Availability requirement, the
platform should be ready to autonomously try to recover from minor
errors and keep the connection up.

3.1.2 Functional

In this section are documented the functional requirements of both the con-
sole application and the online platform.

Console Application

On Table C.1 we can see all the car’s centre console application functional
requirements, as well as their respective priorities.

Online Platform

On Table C.2 we can see all the platform’s functional requirements, as well
as their respective priorities.

3.2 Use-cases

In this section are mentioned all the use cases regarding both the console
application and the online platform. Each of them is described concerning all
their functionality, being them either user or system related, in the Annexes
chapter of this document.

3.2.1 Console Application

On the centre console, the user is able to:

• Check information concerning the ongoing trip

• Reset information on Fuel dashboard

• Save information on Fuel dashboard to the online platform

• Get directions to nearest petrol station

• Save 0-100km/h acceleration data

• Estimate 0-100km/h acceleration time

• Change measurement units of console application

• Turn on/off data collection

3.2. USE-CASES 33

Also, the application by itself is able to:

• Verify if car is registered on the platform

• Show Telematic Information in real-time

• Register driving events

• Measure 0-100km/h acceleration times

• Register max G-Force during acceleration try-outs

• Suggest best RPM range to change gears

• Show online data

All of these use-cases are carefully detailed in the Appendices of this
document, Appendix F.

3.2.2 Online Platform

On the online platform, the user is able to:

• Register on the platform

• Login on the platform

• Add car to the platform

• View latest events/warnings

• Analyse Acceleration data for saved measurements

• View full extent of the logs concerning the selected car

• Delete all the logs of a certain event concerning the selected car

• Edit personal information

• View calculated statistics

• View car list

• Switch car

• Delete Car

The platform by itself is also able to:

• Serve the API for the OpenCar application

All of these use-cases are carefully detailed in the Appendices of this
document, Appendix G.

34 CHAPTER 3. METHODOLOGY

3.3 Architecture Overview

In this section well be explained every aspect of the architecture of the whole
system following Simon Brown’s C4 Model [7]. In this particular project,
there are two possible different architectures to account for, however only
one will be followed for the reasons that were previously explained.

3.3.1 High Level perspective

Figure 3.1: Real-world scenario Figure 3.2: Simulated scenario

In Fig. 3.1 and 3.2 is possible to see both architectures from a high-level
point of view. On the left we have the real-world scenario, in which OpenCar
would receive data from the LIN, CAN and MOST buses of a real road-going
vehicle. For the reasons stated previously on this document, such thing will
not be possible just yet.

On the right, there is a similar architecture, but now the data comes
from a different source. After reading documentation about Assetto Corsa,
we found out that it was possible to extract a lot of information about the
on-going simulation, in real-time. We took some investigating, but in the
end we were able to extract that same information via an User Datagram
Protocol (UDP) socket.

In order to do so, we had to implement a piece of software that Assetto
could read and execute while in-game. With that piece of software up and
running, all that was needed was a UDP reader to be implemented respon-
sible to listen to that same socket to get the data and feed it to OpenCar’s
contoller.js, taking advantage of its HTTP Layer by using websockets to
minimise any probable delay. The code developed in earlier testing proved
very useful to accomplish this feat.

However, in earlier tests the MVC design pattern had to be somewhat
”broken” in order to achieve the results showed. The logic had to be moved
to the view.js and leave the controller.js untouched, which was not optimal.
In this final version, we were able to separate most of the functionality from
the the view.js and relocate it on the controller.js, as it should be. This way,
we were able to ”trick” the OpenCar simulator and inject data in real-time
from a source other than its original websockets.

3.3. ARCHITECTURE OVERVIEW 35

After the data successfully reaches OpenCar, both architectures work
the same. There is a service running on a server that will receive data from
the framework, treat it and then store it in a relational database. This same
service will also serve the online platform made for the drivers to consult
the information about their driving.

The architecture represented in Fig. 3.2 b) will be fully detailed further
in this section, since it is the one that will be fully tested and completed
during development.

3.3.2 System Context Diagram

Figure 3.3: System Context diagram

Aside from the diagrams on Fig. 3.2 displayed earlier, this diagram is the
top view level. The user has interaction, having the liberty to do a number
of operations on a given System which receives data in real-time from a
simulation software, inducing the user into a real-world scenario.

3.3.3 Container Diagram

The Container Diagram in Fig. 3.4 takes us a step deeper into the archi-
tecture. Starting from the top, we still have the same user and simulation
software interacting with the system, however, the system is now divided
in containers, each showing which technologies are being used to implement
their functionality, with a brief description attached. Also shown in this
diagram is the way each component communicates with each other.

36 CHAPTER 3. METHODOLOGY

Figure 3.4: Container diagram

3.3.4 Components Diagrams

The diagrams in this section are related to the one on the previous section,
simplifying some objects and detailing others.

A Components diagram takes us even deeper into the architecture, now
showcasing the specific components of each part of the software. The one
in Fig. 3.5 takes the diagram shown before in Fig. 3.4 and breaks down
what was once before UDP Server Container and the Driving Analyst into
smaller components components, so it is possible to see the information flow
inside the containers.

Similarly to Fig. 3.5, Fig. 3.6 breaks down the RESTful API Container
shown in Fig. 3.4 into several components, and as we can see, the system
currently uses many components to achieve its goals. The fact that they are
so divided was a decision made to make the code easier to read, debug and
maintain.

3.4. TESTING/VALIDATION 37

Figure 3.5: Component diagram of Opencar Application

3.4 Testing/Validation

As was mentioned several times in this document before, the technology to
be used in this project is rather new. All the investigation done for this
project was made purely out of documentation and information available in
the respective company’s websites.

This said, there was currently no way to test the final product in a real-
world scenario, in a real car. An exchange of emails with INRIX’s developer
support assured that it would not be possible. With this in mind, the idea
of using driving simulators came through, something that was already being
done by AGL itself which meant that the idea was validated.

3.4.1 The Simulated Environment

The choice of using Assetto Corsa by Kunos Simulazioni [24] was made not
only considering how accurate and precise the physics are when compared to
other similar software but also because it allows the extraction of data from
the vehicle that is being simulated, in real-time. There is documentation
about how to extract such information and, on the opposite of OpenCar, an
already well-established community.

As we can see in Fig. 3.7, an early demo developed with the sole purpose
of proof of concept, we were now able to inject telematic data coming from
Assetto Corsa into OpenCar simulator, in real-time. This will give a much

38 CHAPTER 3. METHODOLOGY

Figure 3.6: Component diagram of the system API

3.4. TESTING/VALIDATION 39

Figure 3.7: Assetto Corsa injecting data into OpenCar simulator

more realistic environment for the final product to be validated in a more
realistic way than the originally thought of with OpenCar sliders.

After crossing the telematic data provided by Assetto Corsa with all the
data provided by OpenCar, the result was Table D.1.

3.4.2 Tests conducted

The simulation

To test this architecture we needed both the functional architecture, even
if partially, and test drivers. That was provided by The Driving Club -
Coimbra [9], a simulation centre close to the university. This centre currently
offers a simulation experience using the very same simulation software that
was intended for this project, what created a perfect opportunity to test
part of the architecture in terms of reliability.

The tests consisted simply in installing a sample of the software devel-
oped to be used on this project on their simulators and let the drivers do
the rest, unaware of the software. For hours straight the software was able
to retrieve all the information that was theoretically possible to extract, at
a surprisingly fast pace, with no crashes. At this point, the extraction of
telematic data in real-time and the injection in the OpenCar simulator was
tested and approved.

The interfaces

Apart from these tests, usability tests were also conducted on the online
platform and the OpenCar application.

As was expected, the OpenCar application left the testers divided. They
were able to understand most of what was being shown except for more
specific matters like G-force measurement or the Acceleration Measurement

40 CHAPTER 3. METHODOLOGY

screen. Of course, some enthusiasts recognised them right away with no
difficulties, finding them pretty interesting.

As for the online platform the results could be better at first. Com-
mon data like fuel consumption and distance travelled were understood
very quickly, however terms like wheel-spin and wheel-lock were somewhat
unknown. To minimise this issue, several descriptions were added to the in-
terface, as well some interpretations and what to do with those same values.
However, the Acceleration tab was once again overlooked by the common
driver and much more appreciated by the the enthusiast crowd.

Other tests

Aside from the reliability and usability tests described above, there were
conducted some more tests on what kind of values the simulation could
return in certain situations, which proved to be very stable. However, since
this project will not be reaching the market anytime soon due to questions
of, for example data ownership, and since it is not considered a critical
system, unity testing and and white-box testing were not performed.

However, the usability tests using the complete system were long and
exhaustive with little to no errors or crashes, which is a very good sign.

Concluding, since one of the main goals of this project was to give some-
thing useful for an everyday life while taking attention to the enthusiast
share of the market, the results were overall satisfactory.

3.5 Technologies

In addition to OpenCar, this project will require a few more tools to achieve
its goals. This section will explain the technologies being used and why.

The choice for using Python as the main programming language, more
specifically version 2.7.12, was made mostly based on the simplicity of the
language and to speed up the development process, given how simple it is
and the previous experience we have programming in Python. In spite of this
Python has already been used in early tests to extract data from Assetto
Corsa and the driving simulator itself also gives the chance to program
new features in Python if desired, so it is only logical to keep the language
through the whole system.

For developing the API, Flask seemed to be the way to go. Flask is
a micro-framework for Python based on Werkzeug and Jinja2 [13]. Since
the choice for using Python was already made, the choice for the framework
to use to develop the service that will connect the whole system had to be
designed for Python. Flask allows for really fast prototyping, being a ”just-
enough” for the purposes intended here. With the mindset of boosting the
development this micro-framework was chosen.

3.5. TECHNOLOGIES 41

In terms of storage, there were at least three options at on the table:
SQLite, MySQL and PostgreSQL. SQLite was out of question since it does
not handle well multi-user applications. Between the popular MySQL and
the open-source PostgreSQL, the decision was ultimately to use MySQL
since it is more appropriated for web-sites and web-applications, which is
the final goal of this project, not to mention the low level of difficulty to
work with.

Finally, in order to give the online platform a fresh and fast look, the
ReactJS was chosen as the framework to implement the User Interface (UI)
of the web application. This choice was made purely out of the limited
experience we have in designing UI’s for the web, therefore we will be using
one that we can do something minimally attractive.

Chapter 4

The Project

This section will describe in detail all the software that was developed during
this project, as well as show its final aspect. It will cover many aspects from
the design to the file structure.

4.1 Assetto Corsa developed add-on

As was said before, the simulation software we are using is capable of reading
multiple parameters regarding the on-going simulation, in real-time. With
this in mind, all that was needed was a way to make this data available
outside the simulation.

After some investigation about the inner functioning of the game, we
found out that it has a UDP socket that already puts out a nice set of
parameters. However, there is more information to extract by other means,
and that is the reason for the existence of this so called add-on.

Assetto Corsa allows developers to make Python apps that can run inside
the game since it has a version of a Python interpreter embedded. However,
it is not as simple as writing any Python script. It had specific modules to
load, as well as predefined methods, each with their own function.

1 import sys, ac, acsys, time, os, sys, platform, json

2

3 if platform.architecture()[0] == "64bit":

4 sysdir=’apps/python/SharedMemory/DLLs/stdlib64’

5 else:

6 sysdir=’apps/python/SharedMemory/DLLs/stdlib’

7 sys.path.insert(0, sysdir)

8 os.environ[’PATH’] = os.environ[’PATH’] + ";."

9 try:

10 import socket

11 except ImportError as e:

43

44 CHAPTER 4. THE PROJECT

12 import traceback

13 ac.console(str(e))

14 (...)

15 from sim_info import info

16 (...)

17 def acMain(ac_version):

18 global l_fl, l_fr, l_rl, l_rr, fl, fr, rl, rr

19 appWindow = ac.newApp("SharedMemory")

20 (...)

21 return "SharedMemory"

22

23 def acUpdate(deltaT):

24 global l_fl, l_fr, l_rl, l_rr, fl, fr, rl, rr

25 (...)

Above is a portion of the add-on running inside the game, with only the
important parts visible. As we can see, some libraries are well-known to
the common Python programmer. However, libraries of the likes of ac and
acsys are not since they are specific to the game. These are the libraries
that allow the reading of information in real-time.

When defining an app for this particular simulation software, there are
two methods that must be always implemented, acMain(ac version) and
acUpdate(deltaT). The first one is responsible for initialising all the necessary
variables and any GUI that it might contain and return the application
name, so it appears in-game. The second one is executed deltaT times
per second, so we want to read our information there so we can get it in
real-time.

Apart from game-specific methods, the rest of the code is pretty straight-
forward. On the top we must tell the app if we are running the game on a
32-bit or 64-bit machine so we can import the right libraries. After, try to
import the socket module so we can open the previously mentioned UDP
socket. Finally, on the end of the acUpdate method we simply use the json
module to wrap all the info collected, open the socket, send the package and
close the socket. This process happens as many times as the acUpdate()
method executes, which means the socket dictates how fast our simulation
will be in terms of real-time data feeding.

Above on the left we can see the file structure of the software in question.
As you may be wondering, those really are .pyd Python files. The ctypes.pyd
is used to read some of the classes that contain information, the socket.pyd
one to open the socket and the unicodedata.pyd to convert the whole package
into a datagram so it can be sent via UDP . These files are needed since the
game has a very specific Python interpreter and there is not much liberty
when importing modules. As for the rest, SharedMemory.py contains the

4.2. UDP READER 45

Figure 4.1: Assetto Corsa Add-On
file structure

Figure 4.2: Component represen-
tation

code that was just described in this section and the sim info.py contains
auxiliary Python classes, used to read the data more easily. This file is made
according to the documentation made available by Kunos Simulazioni. On
the right we can see where it fits in figures 3.5 and 3.4.

4.2 UDP Reader

Now that we have the information being read and sent, we need to ”catch”
it. To do so, the UDP Reader was created. This piece of software will simply
listen to both the socket of the game and the socket created in the add-on
that is described in the previous section.

This software is made of two fairly simple Python scripts, a reader.py
that keeps the server up and running with a websocket and the core.py where
the information is received and translated to be sent.

1 @sockets.route(’/get’)

2 def echo_socket(ws):

3 while not ws.closed:

4 message = ws.receive()

5 ws.send(dumps(sendToOpenCar()))

6

7 if __name__ == "__main__":

8 from gevent import pywsgi

9 from geventwebsocket.handler import WebSocketHandler

10 server = pywsgi.WSGIServer((’’, 5000),

11 app,

12 handler_class=WebSocketHandler)

13 server.serve_forever()

Apart from the imports, this is all the code required to keep the web-
socket server running. Whenever the application running in OpenCar sends

46 CHAPTER 4. THE PROJECT

a message, this server will reply with the contents read in the sendToOpen-
Car() method. This operation may run forever until the connection is bro-
ken (either this websocket server shuts down or the OpenCar simulator shuts
down) and happens pretty much in real-time, with almost no delay from the
game.

1 # send Handshake

2 sock.sendto(Handshaker(1, 1, HANDSHAKE), (host, port))

3 data, addr = sock.recvfrom(ctypes.sizeof(HandshakerResponse))

4 resp = HandshakerResponse()

5 ctypes.memmove(ctypes.addressof(resp), data,

6 ctypes.sizeof(HandshakerResponse))

7 # Get info from car

8 sock.sendto(Handshaker(1, 1, SUBSCRIBE_UPDATE), (host, port))

9 data, addr = sock.recvfrom(ctypes.sizeof(RTCarInfo))

10 update = RTCarInfo()

11 ctypes.memmove(ctypes.addressof(update), data,

12 ctypes.sizeof(RTCarInfo))

13 # Collect SharedMemory data

14 sm = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

15 sm.bind((’127.0.0.1’, 5001))

16 data = sm.recv(1024)

17 sm_data = json.loads(data.decode(’utf-8’))

18 # SEND MESSAGE TO SOCKET

19 payload = {(...)}

20 return payload

This code sample is taken from the previously mentioned sendToOpen-
Car() method. As was mentioned before, thanks to the add-on developed
we now have two UDP sources. However, the one embedded in the game
took a little more work since we had to follow a very strict methodology
defined by the game developers. It is noticeable mainly by the need to per-
form a handshake first, and handle memory as if we were programming in
C language.

This method reads from both sockets, and returns a single dictionary
that is then sent to OpenCar.

4.3. CONSOLE APPLICATION 47

Figure 4.3: Component
representation

On the architecture, this software is rep-
resented as UDP Server Container on
Fig. 3.5, where the method explained
above fits in the Reader container.

4.3 Console Application

Figure 4.4: Driving Analyst logo

In this section will be explained in detail the various features and deci-
sions made in the development process of the OpenCar application, baptised
as ”Driving Analyst”.

4.3.1 Controller structure

As was previously explained on chapter 2, the OpenCar framework advises
the use of a MVC design pattern. This subsection will explain how the
Controller was made.

As advised, in the controller should be all the business logic needed for
the application, and that includes subscribing sensors across the car.

1 const telematics = new TelematicsAPI();

2

3 // Engine Speed

4 telematics.subscribe(TelematicsAPI.Event.ENGINE_SPEED, rpm => {

5 this.getView().updateEngineSpeed(rpm);

6 });

This little code sample here would allow us to subscribe the event of
the car’s engine speed changing. Every time it changed it would then call

48 CHAPTER 4. THE PROJECT

the view and execute one of its functions, that would most likely change
something on the interface. However, in the meantime there was no way we
could test this on a real car and as such, we would be limited to the sliders
on the OpenCar simulator (Fig. 4.5).

Figure 4.5: OpenCar Simulator slider

This would be enough if we were monitoring only one sensor, but it is
not the case since we are monitoring a large number of sensors and values,
therefore the need to introduce a driving simulator on the project, a method
that has already been used by AGL themselves.

On the subsection before we covered how the information was being re-
lease via the UDP Reader, now we only needed to connect it to the OpenCar
simulator. In order to do that all the code regarding the TelematicsAPI has
been deleted and this has taken its place:

1 var view = this.getView();

2 // Open a web socket

3 var ws = new WebSocket("ws://localhost:5000/get");

4 ws.onopen = function () {

5 // Web Socket is connected, send data using send()

6 ws.send("Message to send");

7 };

8 ws.onclose = function () {

9 // websocket is closed.

10 Log.log("Connection is closed...");

11 };

12 ws.onmessage = function (evt) {

13 /* Update values */

14 var info = JSON.parse(evt.data);

15 var engineRPM = parseFloat(info.engineRPM).toFixed(0);

4.3. CONSOLE APPLICATION 49

16 view.updateEngineSpeed(engineRPM);

17 (...)

18 }

This sample of code does exactly the same as the one before, but now
ignores the OpenCar’s slider and, assuming the UDP Reader and the Add-
On are running, will read data from the simulation software instead, in
real-time.

The main differences are, of course, the use of a websocket instead of
the original OpenCar’s TelematicsAPI to update the values and the need
to store the getView() value outside the onMessage method due to being
in different scopes. In order to calculate and detect events in real-time, all
the logic had to be moved inside the onMessage() method as well. Curi-
ously enough, this is not a complete ”cheating on the system” act since the
OpenCar’s simulator uses websockets all the time internally.

Aside from the websocket implementation, there are also several methods
declared that are responsible for communicating with the API using Open-
Car’s InternetDataAccessAPI. These can be called either from the controller
or the view.

4.3.2 View structure

To make the development more organised and readable, the methodology
adopted was to treat every single component on the screen as an object. By
doing this, every dashboard is, in a low level view, a container.

Figure 4.6: Action bar in Driving Analyst app

As we can see in figure 4.6, there are a total of five different options. This
means that there are five containers of objects. The OpenCar framework
allows the creation of objects directly using HTML. Although this seems
temptingly easier, the container allows us to simply show or hide a whole
container, instead of hiding or showing one by one.

1 const rpm = new TextView({

2 id: ’rpm_style’,

3 text: ’0000 RPM’

4 });

Here we can see how the object is declared. This particular one shows a
text box with the engine’s current speed.

50 CHAPTER 4. THE PROJECT

1 #rpm_style {

2 position: absolute;

3 left: 65px;

4 font-size: 26px;

5 }

When declaring objects it is possible to give them an ID that can be
used by the CSS stylesheet, just like an HTML tag.

The text attribute is given simply to initialise the text box, so it does
not start empty. As was said in the previous subsection the controller will
call for functions declared on the view, giving them new parameters. Fol-
lowing the very same example as before, here is an implementation of the
updateEngineSpeed() function:

1 updateEngineSpeed(value) {

2 rpm.setText(value + " RPM");

3 }

This way, every time the controller receives a new value, will call this
method and the changes will be visible by the user on his centre console.

Finally, in order to add this text box to a container, called Pane in the
framework, is as simple as this:

1 /* DRIVE INFO VIEW Panel construction */

2 const drivePane = new Pane();

3 (...)

4 drivePane.addChild(rpm);

Now the drivePane contains the object, and can be hidden from the
console hiding all its contents. This method is then repeated to all the com-
ponents that are visible in the centre console, throughout the five different
Panes.

By doing this, every time the user chooses a different option on the action
bar, all the software needs to do is to show the one selected, and hide the
other four. This made the code a lot more organised, and easy enough to
find and fix possible problems or even add more and more objects to the
application, which is one of its non-functional requirements.

4.3. CONSOLE APPLICATION 51

4.3.3 Final Aspect & Functionality

In this subsection will be displayed and explained the full extent of the centre
console’s application functionality and design.

Figure 4.7: Centre’s console application main dashboard

When opening the application the first screen the user will see is the one
pictured in Fig. 4.7. On the left we can see some general information regard-
ing the engine, such as its speed in RPM and the throttle. Is also shown the
current status of the Anti-lock Braking System (ABS) and Traction Control
System (TCS). Whenever one these technologies is activated and engages a
little icon will blink as well.

On the right is displayed the current gear the car has engaged and the
current condition of the clutch. Right under this text there is what we can
call a ”G-meter”. That red circle will bounce upwards or sideways according
to the car’s generated g-forces, either from turning or accelerating/braking,
giving the driver an idea of how much force his car is generating.

Right in the middle of the screen we can see the four tyres, all of them
with temperature, pressure and linear speed being monitored in real-time.
Whenever the car experiences wheel-spin, uneven pressure values on a given
axle or the tyres too hot, the graph will display a warning.

Lastly, we have the current car’s speed being shown just below the
graphic.

52 CHAPTER 4. THE PROJECT

Figure 4.8: Centre’s console application fuel dashboard

By pressing the leaf logo, the user is shown the dashboard pictured in
Fig. 4.8. On the right is possible to see how much fuel he currently has in
his car in percentage, while on the left we can see how the current distance
travelled in kilometres, how much fuel has been spent during that distance
in litres and how much the car is spending in a L per 100km relation.

The instant L/100km calculation might not be as accurate as a real car
since the simulation software does not give any information regarding specific
parameters such as engine air-flow, injector’s size, among other mechanical
specific measures. Instead, is calculated using RPM, throttle input, and the
car’s speed.

First, we must calculate how many litres per second the car is burning:

L/s =
Throttle ∗RPM ∗ 0.0030

1000

Now, using the L/s (Liters per second) value

L/100km =
360000 ∗ L/s

speed

It is not ideal, but gives a close approximation and since this is only for
simulation purposes is a pretty good enough method.

Aside from text, we can see three buttons. Starting from the right, the
button RESET resets the values that are being shown on the upper left
corner of the dashboard to zero. This is particularly useful considering that
the SAVE button will save on the database the values that are currently
being shown.

Lastly the button Go to nearest station is pretty self-explanatory. Once
pressed it will show the user what we can see in figure 4.9.

In here the application takes full advantage of the OpenCar’s MapDi-
alogConfig API to show the driver directions to the nearest fuel station in a

4.3. CONSOLE APPLICATION 53

Figure 4.9: Fuel dashboard - Nearest Station

radius of 20km thanks to Google’s PlacesAPI. However, since the simulation
software uses fictional places, this feature cannot be fully tested.

Figure 4.10: Centre’s console application acceleration dashboard

In Fig. 4.10 is pictured undoubtedly the most complex and interesting
feature of the whole application, and would surely be adopted by many,
many driving enthusiasts: measuring and comparing 0-100km/h acceleration
times.

Similarly to the main dashboard mentioned earlier, we can see the cur-
rent conditions of the tyres (top-down: tire linear speed, temperature, pres-
sure), now in a bigger size for easier inspection.

Taking inspiration on some high-performance vehicles the gear is now

54 CHAPTER 4. THE PROJECT

shown in the middle of the screen, with the speed and RPM right next to it
giving a more sporty feel and just below the RPM value is displayed the last
successful 0-100 acceleration. In addition to that, the G-meter is still there,
but now it only measures G forces on the x-axis (accelerating/braking) and
keeps record of the maximum force generated. Lastly, right above the action
bar we can see instructions given by the application for the user to know
exactly how he should proceed to successfully record his times.

The buttons SAVE and Estimate play a huge role in this application.
Every time the user registers a valid acceleration time, he can press the
button SAVE and it will send all the data recorded during the acceleration
directly to the API, where it is stored for later study.

During an acceleration measurement, the application is capable of record-
ing the following information:

• The car’s linear speed

• Each wheel speed during the experiment

• Each wheel initial temperature

• Each wheel initial pressure

• Throttle pedal position during the experiment

• Engine speed during the experiment

• G-Force values generated during the experiment

• RPM values in which gears were engaged during the experiment

• Instants in which gears were engaged during the experiment

• Overall time of the experiment

• TCS status

All this information is then put together and sent to the API.

Last but not least, there is the Estimate button. As the name suggests,
it can estimate how much time the driver will take to reach 100km/h from
standing still based on the current conditions of the car and the driver’s
previous performances.

Once the driver presses the button, the application register the current
tyre’s complete status, RPM range, TCS status and throttle position and
send it to a specific route on the API. It will then take all the recorded
acceleration times and feed them to a multiple linear regression algorithm
that will then compare what it ”learned” with the current conditions that
were just sent, and return an estimation of what the driver could perform
on his next trial. The only drawback of this feature is that it relies on the

4.3. CONSOLE APPLICATION 55

driver to record as many acceleration times as possible in order to improve
the algorithm’s accuracy.

Not only that, but by estimating the possible outcome of the acceleration
test, the application will also calculate the probably best RPM range the
gears should be engaged based on his best performances and assist the driver
by switching colours on the gear display. The colours go from red, yellow
and green (worst to best).

Figure 4.11: Centre’s console application online stats

Like the main screen that was firstly described, the screen shown in
Fig. 4.11 screen is purely informative and does not require any input from
the user or other features.

Here the driver can check his best five acceleration times ever recorded
on the API as well as some minor statistics concerning both ABS and TCS
technologies, showing the total amount of times that the car recorded any
action on behalf of each one.

This information is available in a lot more detail on the online platform
which will be explained later on this document.

Considering that people from different nations have different tastes in
unit measurement, the screen shown in Fig. 4.12 is definitely a must. The
user is able to change the unit of temperatures, pressures and speed.

However, this is merely visual. The user might be seeing the values he
chose to but the calculations and all the logic being applied to the appli-
cation is made using International System (IS) units and any value is also
stored using these same units. This way, there are no discrepancies on the
calculations and the user gets to keep the units he likes the most to see on
his centre console.

Another important aspect is the Data Collection status. Currently the
application is able to record a series of events experienced by the car that

56 CHAPTER 4. THE PROJECT

Figure 4.12: Centre’s console application settings

the user might or might not notice on its own. The events being recorded
are:

• ABS turned On/Off

• ABS engaged

• TCS turned On/Off

• TCS engaged

• Wheel-spin

• Wheel-lock

• Major G-forces on the suspension

• Uneven tyre pressure on a given axle of the car

• Data Collection tuned On/Off

These events are recorded alongside the time-stamp of when it happened,
and are silently sent to the API for further study on the online platform.

However, if the data collection is turned off the application simply records
when it was turned off and will not record anything until it is back on again.
This is made to give the users a choice to preserve their privacy at the wheel.

4.4 Platform

In this section will be explained both the structure and functionality of the
online platform included in this project.

4.4. PLATFORM 57

4.4.1 Final Aspect & Functionality

This section will show and explain the web application’s final aspect and
functionality of every screen available.

Figure 4.13: Login page Figure 4.14: Register page

Figure 4.15: Login & Register pages

In figure 4.15 are shown the first pages the end-user will ever see when
starting to use Driving Analyst. The login page is pretty straight-forward:
the user simply inserts his credentials and clicks ”Login” to enter the appli-
cation. If something goes wrong while login a message will appear on top of
the fields stating a possible reason for it to go wrong.

The register page, obviously, has a few more fields. The user will have
to fill them in with his personal information and click ”Register”, and then
wait for an email on his inbox containing an authentication link. Only when
navigating to that link the account will be activated.

Figure 4.16: Web application ”Main” dashboard

In figure 4.16 is shown the first tab available on the sidebar. This dash-
board shows information regarding the latest events recorded by the current
car (indicated on the bottom of the sidebar), being these events automated
(tyre monitoring, etc) or saved by the user (trips, acceleration times).

58 CHAPTER 4. THE PROJECT

Figure 4.17: Web application ”Acceleration” dashboard

Next to the Main dashboard is the Acceleration dashboard shown in
Fig. 4.17. This dashboard allows the users to fully analyse their saved accel-
eration times. On the right side of the screen the user will find a list of all
the saved acceleration times he ever recorded with the current car. Simply
by clicking one of them, the graph will re-draw itself, as well as the values
below it.

The graph is represents six aspects of the being monitored during the
time it took (X-Axis) to reach 100km/h (Y-Axis). These aspects are:

• Car’s speed The vehicle’s linear speed, as a whole (the same that
would appear on the speedometer).

• Rotating speed of each wheel Since wheels speed unit is radi-
ans/sec, it cannot be directly compared to the the car’s linear speed.
In order to do that the angular speed was multiplied by the wheel’s
radius * 3.6. The result is an approximate speed value that the car
should be going with this much angular speed, which provides an easy
way to spot (and therefore detect) wheel spin events. For example, in
figure 4.17 while the car’s speed is at zero, the front wheels are already
spinning at an angular speed of approximately 40km/h.

• Gear Changes The little green dots on the graph are representing
the instant in which a new gear was engaged on the gearbox.

On top of the graphic, there is its legend stating which colours are rep-
resenting what, and even allows for the user to simply uncheck a certain
colour which will cause the graphic to re-draw again, now without showing
the data-set that was just unchecked.

Lastly, just below the acceleration times list the user has a small list of
suggestions. These suggestions are made by comparing his best acceleration
measure of all time with the one in question and tell what went different

4.4. PLATFORM 59

in pretty much any aspect that is seen on the graph and the table below,
trying to state why a measure was worse than is best.

Figure 4.18: Web application ”Statistics” upper dashboard

The tab pictured in Fig. 4.18 does not have as much functionality as
the last one, however, has a lot more information. By using all the data
ever recorded by the car, the API calculates a set of interesting facts and
statistics about the driving experience so far.

On the upper part of the dashboard the user is able to check statistics
about the trips he chose to save on the centre console application. For both
fuel spent and distance travelled, is possible to check all-time, yearly and
monthly totals, as well as his largest and smallest values in fuel and distance.

Figure 4.19: Web application ”Statistics” lower dashboard

On the lower part shown in Fig. 4.19 it gets more interesting. The first
table divides the information in three sections:

• Tyre wear This section shows statistics about events recorded that
are related to the tyres on the current car. All the values shown in

60 CHAPTER 4. THE PROJECT

here are to be taken into account since once they get high enough it
means tyre abuse, which means tyres getting too worn out and likely
to cause an accident in the future.

• Driving Issues This sections shows statistics about specific aspects
on the car that might jeopardise the driving experience without major
visible signs, being them tyre pressures on a given axle or suspension
being abused too much.

• Miscellaneous This section is not really related to the driving it-
self, however, it might be giving useful information to the user, for
example, the average RPM he changes gear can be related to the fuel
consumption he is experiencing.

Lastly, the bottom two tables show statistics referring to the ABS and
TCS systems, giving both all-time and monthly totals regarding ON, OFF
and ACTION events

Figure 4.20: Web application ”Full Logs” dashboard

In Fig. 4.20 is shown the Full Logs tab. As the name says, the user is
given the liberty to scour all the logs ever recorded by the current selected
car in its most raw state, ordered by the timestamp in descending order.

As you might have noticed, the user can also delete a log, however, he
can never delete the logs of when he changed the state of the Data Collection
log. This decision was made considering the potential this application might
have to, for example, insurance companies.

This data, in this level of detail, can indicate a possible reason for an
accident and so by giving the user the ability to delete that same reason will
make the application useless. In order to serve the interest of entities like
insurance companies and still respect the privacy of the users, a user can
delete all the logs he wants except the Data Collection status log. This means
insurance companies will know whenever the users changed the setting, if
they ever changed it at all, since it comes activated by default at start-up.

4.4. PLATFORM 61

Figure 4.21: Web application ”Profile” dashboard

On the tab shown in Fig. 4.21 the user can edit any field of the informa-
tion he entered upon registration and save it. While editing the platform
will also show warnings about the fields being edited.

Figure 4.22: Web application ”My Cars” dashboard

Lastly, On figure 4.22 is shown the basis of all the information previously
showcased in this section. In here the user is able to switch between any of
its cars, which will cause for the information on all the other tabs (except
the ”Profile” one) to change contents, showcasing only the data regarding
the chosen car.

The user is also able to delete any of his cars, that will cause all of its
logs to be deleted as well from his account.

Lastly, the user can add new cars to his ”garage” on the platform. To
do so, he simply needs to fill some information regarding the new car and
upload a picture of it for future identification.

Once the car is added, the user can only consult it, in any instance can
he ever change any of the fields.

62 CHAPTER 4. THE PROJECT

4.4.2 Structure

As was explained before, the online platform is built using ReactJS. That
is true, however, there are other technologies at play here. This section
will detail those same technologies and explain how the ReactJS code was
organised providing maximum maintainability and modularity.

Since the login and register operations are operations that, besides not
requiring a lightning fast response time, would have a completely different
design than the one chosen for the web application. With this in mind, both
login and register pages are rendered using HTML and Jinja2. To put it
simple, Jinja2 is a templating engine that comes with Flask by default and
allows for dynamic creation of HTML code and has a really close relationship
to Flask. This tool seemed a ”good-enough” tool for these two operations.

As for the others, they are built using pure ReactJS code, carefully
organised by small components that are rendered only when needed.

Figure 4.23: Web Application Structure

On Fig. 4.23 is represented the main structure of the web application.
As we can see there are three distinct components: the navigation bar rep-
resented in grey, the sidebar represented in red and the content in green.

On the navigation bar the user can see his current name, log out the plat-
form and read some driving recommendations and tips about the platform
that change randomly.

The side bar, however, is a lot more functional than that. Every time
a user clicks one of the buttons, the content of the page (green) field is
filled with the respective components. This means, the web page is actually
re-rendered instead of reloaded, thanks to ReactJS.

To make the design of the website Bootstrap was used whenever possible.
Besides being the most popular HTML, CSS, and JavaScript framework
for developing responsive ”mobile-first” web sites, it is completely free to
download and use.

Finally, to aid in showing graphic information on the platform was used
Chartist, a simple responsive charting library built with Scalable Vector
Graphics (SVG). This allowed to easily build graphics dynamically with
information provident from the API in its pretty much raw state.

4.5. API / SERVER 63

4.5 API / Server

This section will explain in detail all there is to know about the server that
holds both the API and the online platform.

4.5.1 File Structure

As was mentioned before on this document, this piece of software is written
in Python, using a micro-framework called Flask. This framework does not
have any restriction as to how the files should be organised so far. However,
that is no excuse to tidy up the code.

Figure 4.24: API File
Structure

On the left we can see the file structure of
the API. Each of those folders represents
a different kind of Python scripts, with
different purposes, with the exception of
the first folder whose purpose is solely to
save data from mainly acceleration times.
DBConn contains what could be called
beans in other frameworks. Each script
contains a class with similar attributes to
the model in question (for example, to
handle operations with a User we would
use a user conn object) that is responsi-
ble to exclusively communicate with the
database. This way the only scripts that
are in contact with the database are lo-
cated in one place instead of being scat-
tered all over the code.

The lib and logic contain utilitarian methods that are used over and
over by the API. These contain mainly methods for conversions, security,
content validation, email sending, treat data, among others.

The models folder contains all the classes required by SQLAlchemy to
successfully create and manage the database. There is a script for each class,
each with a set of attributes and respective keys like any other database. At
the server start-up these are loaded and either create or modify the database
according to the changes made.

In the routes folder are the scripts that contain each and every route
the API currently has available. They are separated in scripts, differentiated
by whoever accesses them (a car, a user or the platform).

The static and templates folders contain all the code required for the
front-end to work properly, being all the HTML files in the templates folder
(as required by the Flask framework) and all the others (Javascript and
CSS) are located inside the static folder.

64 CHAPTER 4. THE PROJECT

Finally, there are two files separated from all the others. The config one
holds vital information that should not be scattered all over the code, like
email credentials. The MainServer script is responsible for initialising all
the scripts that were described before and leave the server up and running.

4.5.2 Structure Diagram

In this section will be presented some diagrams representing the multiple
views of the project, accompanied by a brief explanation.

Figure 4.25: API file diagram

In this diagram we can visualise all that was explained in the previous
subsection. Starting from the top, there is the database that only interacts
with the scripts in the DBConn folder.

4.6. DATABASE 65

Represented in blue are all the different folders containing their respec-
tive scripts. The Routes is not located in the middle by chance. It contains
the core scripts of this software, hence the need to communicate with pretty
much all the other folders.

In red is the main script that initialises everything. It must therefore
communicate with the Routes folder in order to put up all the routes needed
and with the Models folder so it can setup the Database correctly.

Lastly, there are there is the user-level, being the Register, Login and
Home pages from the online platform and the OpenCar all the routes the
console application uses either to store or retrieve data.

Figure 4.26: Component
representation

On the left we can see the API represen-
tation in Fig. 3.6 in previous sections. As
we notice, it does not differ much from the
diagram in Fig. 4.25.

4.5.3 Routes Implemented

In this section are listed and explained all the routes that compose the API
present on this project on Tables E.1 and E.2, separated by the ones being
used by the centre console’s application and the ones being used by the
online platform application.

4.6 Database

In this section will be explained in detail the whole structure of the database
present on this project and all of its contents.

4.6.1 Tables

The database working on this project has a total of 14 tables, being them:

• user Table containing all the information regarding the users of the
platform

• token Table containing the login tokens of each user on the platform.
This token is updated on every login

66 CHAPTER 4. THE PROJECT

• salt Table containing ”salt” strings. These strings are generated on
the register procedure of a new user and is used to concatenate to the
user password hash, providing an extra layer of security

• car Table containing all the information regarding the cars of every
user

• tip Table containing a list of sentences that keep changing on the
online platform’s navigation bar. A slight ”easter-egg” for its users.

• abslog Table containing every registered activity of the ABS system in
all the cars currently on the platform, logging ON, OFF and ACTION
events with a timestamp associated.

• tclog Table containing every registered activity of the TCS system in
all the cars currently on the platform, logging ON, OFF and ACTION
events with a timestamp associated.

• fuellog Table containing every registered activity of the trips the users
ever chose to save record, in all the cars currently on the platform

• gearchangerpmlog Table containing every gear engaged event by
the users while driving, logging the RPM value in which a gear was
engaged.

• pressurelog Table containing every event recorded of cars having
uneven pressure on their tyres, logging which axle has the uneven
values and a timestamp associated.

• suspensionlog Table containing every event recorded of the cars’ sus-
pension hitting unusual G-force values, therefore damaging the suspen-
sion, logging the value registered with a timestamp associated

• wheellocklog Table containing every event of the wheels locking up
after hard-braking on the user’s cars, logging which axle experienced
this event and a timestamp associated.

• wheelspinlog Table containing every event of the wheels spinning
faster or slower than the car itself, causing the car to become unstable,
logging which axle experienced this event and a timestamp associated.

• datacollectionlog Table containing all the times the user has changed
the setting Data Collection on the centre console’s application of his
car, logging OFF events with a timestamp associated

4.6. DATABASE 67

4.6.2 ER Diagram

Figure 4.27: Database ER diagram

Chapter 5

Work Plan

In this section we will detail the main flags to hoist in order to successfully
reach the end of development and have a final product worth presenting.
An overview of the possible implications will also be given, since these same
implications can compromise the healthy development of the project

5.1 Milestones

In order to successfully complete the project at hand, the progress will be
made through achieving a series of milestones. These milestones consist in
developing certain components of the system while trying to connect them
in the process. Ideally, the development should be gradually documented as
well.

The first milestones will consist more in an investigative procedure, being
them:

• Identify relevant events to register It comes without question
that OpenCar provides lots of information. One must not get lost in
such a variety of information, therefore, and given the data provided
by the driving simulator, a clever selection of the most crucial events
to monitor and related sensors must be made.

• Determine how the events will be classified Having the events
selected, it is time to classify them. This classification should consists
in distinguishing them, for example, into dangerous actions that could
have been the cause of an accident, bad behaviour or simply statistic
data.

• Determine how these events will be re-created through the
simulator Once determined all the events and respective classifica-
tions, some scenarios must be defined in order to re-create situations

69

70 CHAPTER 5. WORK PLAN

in which the events previously mentioned would be triggered in a real-
world context.

• Study the best data format and database schema Lastly, the
format the data to be travelling across the system and how this data
will be saved in the database must be well defined in order to avoid
any refactor in the future.

The next phase is to start studying how the application will look and
function, being the main milestones to achieve:

• Study the look and feel of the in-vehicle application Although
OpenCar’s main purpose in this project is to collect data, it does
not mean that it should not benefit from a usable and pretty enough
display. The in-vehicle application should do what is expected and
still be easy to use.

• Develop the in-vehicle application This milestone will most def-
initely one of the longest and hardest to achieve. This includes both
developing the look studied before and all the logic needed to extract
data, as well as defining how frequently the sensors are checked, how
the data is temporarily saved, among other minor details.

• Improve the connector developed in the early stages of this
project Since the tests made previously were a success the most part
of the software can be re-used, more specifically the server that is
connecting the driving simulator to the OpenCar simulator. However,
it will have to suffer improvements in order to satisfy the needs of this
project as well as further testing, this time more enduring.

• Develop the API Once the in-vehicle application and the connector
reach an Minimum Viable Product (MVP) state or higher, it is time
for start developing the API and its routes. This milestone is due to
take a long time developing and testing since it will connect the whole
system together.

• Study the look and feel of the online web-application Much like
the in-vehicle application, the online application should also benefit
from a visibly comfortable and usable UI.

• Develop the web application On a final phase of the development
the platform would be implemented, making full use of the routes
available in the API.

• Document the software Last but not least, the software should be
well documented in order to promote a possible continuous integration.

5.2. SETBACKS 71

5.2 Setbacks

Every software project has its implications and risks, and this project is no
different. In this section we will list and describe some situations that could
possibly provide setbacks to this project.

• Developer Support As was mentioned before, we will be limited
to documentation and code samples while developing with OpenCar’s
framework. So far developer support has shown commitment and in-
terest in helping, however, it may take too long to answer or not answer
at all. This can harm greatly the development process of this project.

• Bugfixing & Research As any software project, bugfixing will be
a long and enduring phase of the project. It must not take too long
stealing time to other important matters or worse, stall the develop-
ment. The same goes to researching for a method to solve a given
problem or even fix an error, this should not take too long as well.

5.3 Gantt diagram

In this section is presented the Gantt diagram displaying the planning done
to the semester in which this project is developed, considering the descrip-
tions given in the previous sections.

As we can see in Fig. 5.1, the first month is dedicated to identifying
events that might be of interest and how the data collected will be treated.
The following month is dedicated to studying the UI’s of both the in-vehicle
application and the web-application in order to properly start the devel-
opment in the next months, knowing exactly what the applications will
require/produce. When developing is supposed to gradually document the
software, even though it is not a priority task.

72 CHAPTER 5. WORK PLAN

Figure 5.1: Gantt diagram

Chapter 6

Conclusion

Upon the start of this project, the concept of Connected Cars was somewhat
unknown, as we barely understood what it actually meant. The development
of this project made us look into it not only as a rising market, but also as
an opportunity to apply our expertise in software engineering in a sector
that has been denied to programmers for as long as a few years ago.

This project in particular was challenging. Besides the technology being
rather new, the search for a way to validate and test the final product once
it was finished was short but a difficult one. This meant hours spent on
documentation and emails exchanged with developer support. Even after
that was done, there was a need to understand this market, namely what was
already available and what can still be offered, which also meant a research
both on major entities on this market and already successful projects.

However, the ultimate challenge was to understand a few physics con-
cepts that would make our idea work and actually provide some usefulness
to its possible users. Understanding the behaviour of a car to the minimum
detail was the first step. Concepts like heat, pressure, friction, variations of
speed both on the car as a whole and independently, and even the basics of
an engine functioning had to be taken into account to provide the product
being presented in this document and the best results possible. Luckily, the
simulation software accurate physics engine helped by a great margin, since
we were able to test multiple scenarios without the cost of damaging any
real car while monitoring multiple variables about the vehicle behaviour.

The final result of this project is a functional centre console application
using OpenCar framework, an API that provides both real-time telematic
information and statistics based on that same information for the user to
see. All of this is happening in a controlled simulated environment that we
were able to connect to the OpenCar simulator in order to get the most
realistic possible results given the tools at our disposal. This telematic data
is then used to calculate statistics to be shown in a light, user-friendly web
application along with graphical information and even the logs in a more

73

74 CHAPTER 6. CONCLUSION

raw state for the most meticulous users.
In the tests conducted, the user was able to see what the car had been

enduring for the past times and be compelled to take additional care of his
car in a real-world scenario and, consequently, of himself while driving. Not
only that, the centre console application can also monitor and warn him in
real-time of these same events that were being recorded on the the database.
As for the non-automated functionality of the application, the user was also
able to save information and analyse it in detail on the online platform as
was expected. All of this on a stable, simulated environment. It is safe to
say that the tests looked promising and show that this software has potential
both among driving enthusiasts and ordinary drivers.

However, it could prove useful to many other situations. One that is
probably the best bet if this product ever reaches the market are the insur-
ance companies. Since this software is capable of telling when the wheels of
a car lost traction or if the traction control is turned on or off is something
that could mean these companies paying or not for an accident, since turn-
ing off this feature is only recommended for very skilled drivers, however
still dangerous, and losing traction could happen easily on a snowy road.

In the future, we plan to completely rework the Controller component of
the OpenCar application to remove all the code that was reading from the
simulation software and revert back to its original architecture in which the
application reads directly from what could someday be a real car. This way
the application will be ready to be submitted on the INRIX platform for
further evaluation, and consequently get some feedback on how to improve
it. This evaluation follows a certain set of parameters to guarantee the
quality of the product, of course, but once it has a green light there is hope
in one day seeing Driving Analyst on the road, on a real car this time,
helping drivers day in day out.

Depending on its success at both the eyes of OpenCar’s professionals and
the users, a rework of the web application and improvements on the API
are also something to look at, as well as new ways to improve the statistics.
This will mean more people working on the project from different areas
although with the same mindset: bring the driving experience closer to the
user, safely.

Bibliography

[1] Matthias Stuempfle Akhtar Jameel, Axel Fuchs. Internet multimedia
on wheels: Connecting cars to cyberspace, 1998.

[2] GENIVI Alliance. Reference architecture. https://www.genivi.org/
sites/default/files/resource_documents/GENIVI_Reference_

Architecture_29Oct2015.pdf, 2015.

[3] GENIVI Alliance. Faq. https://www.genivi.org/about-genivi,
2016.

[4] Apple. Apple carplay - the ultimate copilot. http://www.apple.com/

ios/carplay/, 2016.

[5] AUTOSAR. Autosar - about. https://www.autosar.org/about/

basics/, 2016.

[6] AUTOSAR. Autosar - technical overview. https://www.autosar.org/
about/technical-overview/ecu-software-architecture/, 2016.

[7] Simon Brown. C4 model, Software Architecture for Developers, 2012.

[8] Android Central. Android auto. http://www.androidcentral.com/

android-auto, 2016.

[9] The Driving Club Coimbra. https://www.facebook.com/

thedrivingclub/, 2016.

[10] Gadget Daily. Automotive grade linux. https://www.gadgetdaily.

xyz/wwdc-tickets-sell-out-in-just-under-two-minutes/, 2012.

[11] Embedded Computing Design. Integrating linux into automotive sys-
tems for the long haul. http://embedded-computing.com/articles/
integrating-systems-the-long-haul/, 2013.

[12] Wikipedia EN. Qnx. https://en.wikipedia.org/wiki/QNX, 2016.

[13] Flask. Flask. http://flask.pocoo.org/, 2017.

75

https://www.genivi.org/sites/default/files/resource_documents/GENIVI_Reference_Architecture_29Oct2015.pdf
https://www.genivi.org/sites/default/files/resource_documents/GENIVI_Reference_Architecture_29Oct2015.pdf
https://www.genivi.org/sites/default/files/resource_documents/GENIVI_Reference_Architecture_29Oct2015.pdf
https://www.genivi.org/about-genivi
http://www.apple.com/ios/carplay/
http://www.apple.com/ios/carplay/
https://www.autosar.org/about/basics/
https://www.autosar.org/about/basics/
https://www.autosar.org/about/technical-overview/ecu-software-architecture/
https://www.autosar.org/about/technical-overview/ecu-software-architecture/
http://www.androidcentral.com/android-auto
http://www.androidcentral.com/android-auto
https://www.facebook.com/thedrivingclub/
https://www.facebook.com/thedrivingclub/
https://www.gadgetdaily.xyz/wwdc-tickets-sell-out-in-just-under-two-minutes/
https://www.gadgetdaily.xyz/wwdc-tickets-sell-out-in-just-under-two-minutes/
http://embedded-computing.com/articles/integrating-systems-the-long-haul/
http://embedded-computing.com/articles/integrating-systems-the-long-haul/
https://en.wikipedia.org/wiki/QNX
http://flask.pocoo.org/

76 BIBLIOGRAPHY

[14] Ford. Applink. https://developer.ford.com/pages/applink/,
2016.

[15] Ford. Ford applink catalogue. http://www.ford.

co.uk/OwnerServices/SYNC-and-Bluetooth-Support/

SYNC-App-Link-Catalogue#/, 2016.

[16] Ford. Ford sync. http://www.ford.com/technology/sync/, 2016.

[17] Ford. Welcome to fordpass. https://www.fordpass.com/, 2016.

[18] GENIVI. Genivi compliant - get started. https://www.genivi.org/

genivi-compliant-get-started, 2016.

[19] Google. Android auto. https://www.android.com/auto/, 2016.

[20] Automotive Grade Linux. Automotive grade linux requirements speci-
fication. www.automotivelinux.org, 2015.

[21] MarketsAndMarkets. Connected car market worth $46.69 billion by
2020, 2013.

[22] Wikipedia PT. Qnx. https://pt.wikipedia.org/wiki/QNX, 2016.

[23] QNX. Qnx car - about. http://www.qnx.com/content/qnx/en/

products/qnxcar/index.html, 2016.

[24] Kunos Simulazioni. Assetto corsa. http://www.assettocorsa.net/

en/, 2017.

[25] TechRadar. Apple carplay: everything you need to know about
ios in the car. http://www.techradar.com/news/car-tech/

apple-carplay-everything-you-need-to-know-about-ios-in-the-car-1230381,
2016.

[26] Tizen. About. https://developer.tizen.org/tizen/about, 2016.

[27] LTSI Workgroup. What is ltsi? http://ltsi.linuxfoundation.org/

what-is-ltsi, 2012.

https://developer.ford.com/pages/applink/
http://www.ford.co.uk/OwnerServices/SYNC-and-Bluetooth-Support/SYNC-App-Link-Catalogue#/
http://www.ford.co.uk/OwnerServices/SYNC-and-Bluetooth-Support/SYNC-App-Link-Catalogue#/
http://www.ford.co.uk/OwnerServices/SYNC-and-Bluetooth-Support/SYNC-App-Link-Catalogue#/
http://www.ford.com/technology/sync/
https://www.fordpass.com/
https://www.genivi.org/genivi-compliant-get-started
https://www.genivi.org/genivi-compliant-get-started
https://www.android.com/auto/
www.automotivelinux.org
https://pt.wikipedia.org/wiki/QNX
http://www.qnx.com/content/qnx/en/products/qnxcar/index.html
http://www.qnx.com/content/qnx/en/products/qnxcar/index.html
http://www.assettocorsa.net/en/
http://www.assettocorsa.net/en/
http://www.techradar.com/news/car-tech/apple-carplay-everything-you-need-to-know-about-ios-in-the-car-1230381
http://www.techradar.com/news/car-tech/apple-carplay-everything-you-need-to-know-about-ios-in-the-car-1230381
https://developer.tizen.org/tizen/about
http://ltsi.linuxfoundation.org/what-is-ltsi
http://ltsi.linuxfoundation.org/what-is-ltsi

Appendices

77

Appendix A

GENIVI Member List

Table A.1: GENIVIS’s Original Equipment Manufactures

Original Equipment Manufacturers

BMW Group

Great Wall Motors

Honda

Hyundai Motors Group

Jaguar / Land Rover

Mercedes-Benz R&D

Nissan Motor Co. Ltd.

PSA Groupe

Renault SAS

SAIC Motor Passenger Vehicle

Volvo Car Corporation

79

80 APPENDIX A. GENIVI MEMBER LIST

Table A.2: GENIVI’s First Tier Members

First Tiers

AISIN AW Hyundai Mobies Co.

Alpine Electronics R&D LG Electronics

ALPS Electric Europe Magneti Marelli

AppDirect Mitsubishi Electric Corporation

Clarion Co. Peiker Acustic

Continental Automotive Pioneer Corporation

Delphi Robert Bosh Car Multimedia

Denso Corporation Trend Micro

Harman International Industries Visteon Corporation

Huizhou Desay SV Automotive

Table A.3: GENIVI’s OSV, Middleware, Hardware, and Ser-vice Suppliers
Abalta Technologies Ericsson AB Neusoft Technology Solutions

Accenture Excelfore Corporation NNG

Access Europe FPT Software Hanoi Company Limited NTT DATA MSE Corporation

Actia Nordic Fujitsu Semiconductor Europe OBIGO

Airbiquity Garmin Switzerland OpenCar

Allgo Embedded Systems GlobalLogic OpenMobile World Wide

Altera Corp. Green Hills Software OpenSynergy

Argus Cyber-Security HCL Technologies Limited Palamida

Aricent Group Hortonworks Inc. PathPartner Technology

Arkamys Huizhou Foryou General Electronics Pelagicore

ATS Advanced Telematic Systems IAV PolySync

Audiokinetic Igalia QuEST Global Engineering Services

AutoNavi Software Integrated Computer Solutions Rogue Wave Software

AVE AutoMedia Intive Sasken Communication Technologies

BearingPoint Irdeto Shenyang MXNavi

Black Duck Software itemis AG Smartcar

Capgemini IVIS Co. Suntec Software (Shanghai)

CARFIT Karamba Security Tata Consultancy Services

Cinemo Konsulko Group TATA ELXSI

Codethink KPIT Technologies Telemotive AG

Cogent Embedded Link Motion The Qt Company

Collabora Limited Luxosoft t1nnos

CTAG Mapbox Tom Tom International

Cybercom MediaTek Tuxera

Drive Time Metrics Mentor Graphics Corporation UIEvolution

Elektrobit Automotive Mobica Limited Wind River

EnGIS Technologies Murata Manufacturing Workfrom

EPAM Systems Myine Electronics

Ericpol Navis Automotive Systems

81

Table A.4: GENIVI’s Silicon and Other Members

Silicon

Analog Devices

ARM

CSR Technology

Intel

ISSI

NVIDIA

NXP Semiconductors Netherlands B.V.

Renesas Electronics

ROHM

Telechips

Texas Instruments Incorporated

Other W3C

Appendix B

QNX Partner List

83

84 APPENDIX B. QNX PARTNER LIST

Table B.1: QNX Partners

Company Integration

Apple Mobile device connectivity

Best Parking Location-based parking search

Digia Qt commercialization

Elektrobit Embedded navigation

Freescale Silicon vendor

Google Mobile device connectivity

Hear Planet Internet audio streaming service

HERE Embedded navigation

Intel Silicon vendor

JQuery JavaScript framework

Livio (Ford Subsidiary) Mobile device connectivity

Nuance Speech recognition

NVIDIA Silicon vendor

OpenSynergy and Cybercom Bluetooth

Pandora Streaming internet radio

Parkopedia Location-based parking search

Qualcomm Silicon vendor

RealVNC MirrorLink connectivity

RedBend FOTA software updates

Renesas Silicon vendor

Sencha JavaScript framework

Slacker Streaming internet radio

Soundtracker Internet music streaming service

Texas Instruments Silicon vendor

Wcities Eventseekr Location-based event service

Appendix C

Functional Requirements

Table C.1: Centre console’s application functional requirements
ID Description Priority

01 Allow the User to check if his car is already registered in a given account MUST

02
Allow the User to visualise a dashboard with real-time telematic information
about the car’s current status

MUST

03
Allow the User to visualise real-time information about the trip he is currently
making

MUST

04
Allow the User to save the current information about the trip he is making on
the database

MUST

05 Allow the User to reset the current information about the trip he is making MUST

06 Allow the User to receive directions to the nearest petrol station SHOULD

06 Allow the User to measure 0-100km/h acceleration times MUST

07
Allow the User to estimate 0-100km/h acceleration times given the current
conditions and previous performances

MUST

08 Allow the User to save the last 0-100km/h acceleration time in the database MUST

09 Allow the User to visualise small statistics about his car’s ABS activity SHOULD

10 Allow the User to visualise small statistics about his car’s TCS activity SHOULD

11 Allow the User to visualise his top 5 best acceleration times SHOULD

12 Allow the User to switch off the Data Collection MUST

13 Allow the User to change the temperature unit SHOULD

14 Allow the User to change the pressure unit SHOULD

15 Allow the User to change the speed unit SHOULD

16
Allow the User to navigate between screens through an
action bar

MUST

85

86 APPENDIX C. FUNCTIONAL REQUIREMENTS

Table C.2: Platform’s Functional Requirements
ID Description Priority

01 Allow the User to register a new account on the platform MUST

02 Allow the User to log in the platform MUST

03 Allow the user to register a new car on his account MUST

04
Allow the User to visualise the latest events recorded by the
currently chosen car

MUST

05
Allow the User to visualise and analyse in detail all of his
acceleration times graphically

MUST

06
Allow the User to visualise calculated statistics about aspects
related to his driving and a given car

MUST

07
Allow the User to visualise the full extent of the logs recorded
by a given car

MUST

08 Allow the user to delete any of his logs of the car that is currently selected SHOULD

09 Allow the user to upload a picture of his car upon registration SHOULD

10 Allow the user to edit his personal information MUST

11 Allow the user to add new cars to his account SHOULD

12 Allow the user to switch between cars in his account SHOULD

13 Allow the user to delete a car from his account SHOULD

14 Allow the user to log out from the platform MUST

Appendix D

Assetto Corsa/OpenCar:
Information cross-check

87

88APPENDIX D. ASSETTO CORSA/OPENCAR: INFORMATION CROSS-CHECK

Table D.1: Telematic Data provided by Assetto Corsa coincident with Open-
Car’s
speed Kmh Vehicle’s current speed

isAbsEnabled Check if ABS is turned ON

isAbsInAction Check if ABS is taking action

isTcEnabled Check if Traction Control is turned ON

isTcInAction Check if Traction Control is taking action

accG vertical Vertical acceleration of the vehicle

accG horizontal Horizontal acceleration of the vehicle

accG frontal Frontal acceleration of the vehicle

gas Gas pedal position

brake Brake pedal position

clutch Clutch pedal position

engineRPM Engine speed

steer Steering angle

gear Gear engaged

wheelAngularSpeed[4] Individual rotating speed of each wheel

wheelPressure[4] Individual pressure value of each wheel

wheelTemperature[4] Individual temperature value of each wheel

distanceTravelled Overall distance travelled since the start of the simulation

tyreRadius[4] Individual diameter of each wheel

maxFuel Maximum capacity of the vehicle’s gas tank

currentFuel Current fuel currently on the vehicle’s gas tank

Appendix E

Routes Implemented

Table E.1: Routes Implemented for the centre console’s application
Route Method Headers Payload Description

/checkvin POST None VIN Number Method that checks if the car is registered on the platform

/suspensionHit POST None
VIN Number, Timestamp,
Value

Method that inserts records of any unusual G-Force
experienced by the car’s suspension

/unevenPressure POST None
VIN Number, Timestamp,
Front, Rear

Method that inserts records of the car’s axles ever having
uneven pressure on the tyres

/wheelLock POST None
VIN Number, Timestamp,
Front, Rear

Method that inserts records of the car locking the wheels up
under hard-braking, in each axle

/wheelSpin POST None
VIN Number, Timestamp,
Front, Rear

Method that inserts records of the car spinning the wheels,
in each axle

/rpmLog POST None
VIN Number, RPM,
Timestamp

Method that registers every gear change event and register
the respective engine speed and timestamp

/tcevent POST None
VIN Number, Event,
Timestamp

Method that registers ON, OFF and ACTION events happening
in the car’s ABS system

/absevent POST None
VIN Number, Event,
Timestamp

Method that registers ON, OFF and ACTION events happening
in the car’s TCS system

/fuel POST None
VIN Number, Consumption
Distance, Timestamp

Method that registers data from trips the user chooses to save on the
database

/absstats POST None VIN Number
Method that retrieves a small set of information regarding the
ABS activity so far, bringing it to the car’s centre console

/tcstats POST None VIN Number
Method that retrieves a small set of information regarding the
TCS activity so far, bringing it to the car’s centre console

/dataCollection POST None VIN Number, Timestamp
Method that registers a timestamp of when the driver turns off the
Data Collection setting on the centre console’s application

/estimate POST None
VIN Number, WheelTemperature[4],
WheelPressure[4], RPM, TCS State,
Throttle Position

Method that receives the current car’s conditions for acceleration
measurement and returns an estimate of how much time he could do,
given previous attempts

/accdata POST None

VIN Number, WheelTemperature[4],
WheelPressure[4], Speed[x], FrontLeftWheelSpeed[x],
FrontRightWheelSpeed[x], RearLeftWheelSpeed[x],
RearRightWheelSpeed[x], RPM[x], gearChangeRPM[x],
gearChangeTime[x], Time, TC State, Throttle Position

Method that saves all the data collected in and
acceleration measurement to the server.

/besttimes POST None VIN Number
Methods that returns a list of the top five accelerations times
from the server to show in the centre console’s application

89

90 APPENDIX E. ROUTES IMPLEMENTED

Table E.2: Routes Implemented for the web application
Route Method Headers Payload Description

/webapp/login POST Content-type, Accept Username, Password
Method that checks the credentials of the user
and redirects the user to the web application

/webapp/register/user POST Content-type, Accept
First Name, Last Name,
Email, Password, Phone,
Country, State, Address

Method that registers the user on the platform
and sends the authentication email

/webapp/authenticate/ GET None None
Method that authenticates a user’s account after
registration

/logout GET Content-type, Accept, Token
VIN Number, Timestamp,

Front, Rear
Method that inserts records of the car locking
the wheels up under hard-braking, in each axle

/dashboardInfo GET Content-type, Accept, Token None Method that returns data to the ”Main” dashboard

/profileInfo GET Content-type, Accept, Email None
Method that returns the current profile info of the
logged user

/getCars GET Content-type, Accept, Token None
Method that returns the list of cars currently
registered on the user’s account

/tips GET None None
Method that returns a random tip from the
database

/updateProfile POST Content-type, Accept, Token
First Name, Last Name,
Email, Password, Phone,
Country, State, Address

Method that updates the profile info with the
data inserted on the platform

/getAccelerationList POST Content-type, Accept, Token VIN Number
Method that returns the list of all the acceleration
measurements and respective timestamps

/getAccInfo POST Content-type, Accept, Token VIN Number, Filename
Method that retrieves all the information regarding
a specific acceleration measure of a given car

/getAbsFullLog GET Content-type, Accept, Token, VIN Number None
Method that returns all the records of ABS activity
of a given car

/getTcFullLog GET
Content-type, Accept, Token,

VIN Number
None

Method that returns all the records of TCS activity
of a given car

/getSuspensionFullLog GET Content-type, Accept, Token, VIN Number None
Method that returns all the records of unusual
suspension activity of a given car

/getPressureFullLog GET Content-type, Accept, Token, VIN Number None
Method that returns all the records of uneven
pressure on a given car’s tyres

/getFuelFullLog GET Content-type, Accept, Token, VIN Number None
Method that returns all the records of distances
and cinsumptions of a given car

/getWheelSpinFullLog GET Content-type, Accept, Token, VIN Number None
Method that returns all the records of wheel-spin
activity of a given car

/getWheelLockFullLog GET Content-type, Accept, Token, VIN Number None
Method that returns all the records of wheel lock-up
activity of a given car

/getDataCollectionFullLog GET Content-type, Accept, Token, VIN Number None
Method that returns all the logs of the driver ever
turning off theData Collection setting on the centre
console’s application

/getFuelStats GET Content-type, Accept, Token, VIN Number None
Method that returns statistic data regarding fuel
consumption of a given car

/getDistanceStats GET Content-type, Accept, Token, VIN Number None
Method that returns statistic data regarding distance
travelled of a given car

/getAbsStats GET Content-type, Accept, Token, VIN Number None
Method that returns statistic data regarding ABS
activity of a given car

/getTcStats GET Content-type, Accept, Token, VIN Number None
Method that returns statistic data regarding TCS
activity of a given car

/getMiscStats GET Content-type, Accept, Token, VIN Number None
Method that returns various statistical information
of a given car

/deleteCar DELETE Content-type, Accept, Token, VIN Number None
Method that removes a car and all its logs from
the database

/addCar POST Content-type, Accept, Token Brand, Model, Year, VIN Number, Picture Method that adds a car to a given user’s account

/deleteAbsLog DELETE Content-type, Accept, Token, VIN Number None
Method that deletes all the logs regarding ABS
activity from a given car

/deleteTcLog DELETE Content-type, Accept, Token, VIN Number None
Method that deletes all the logs regarding TCS
activity from a given car

/deleteFuelLog DELETE Content-type, Accept, Token, VIN Number None
Method that deletes all the logs regarding fuel
consumption and distance travelled from a given car

/deletePressureLog DELETE Content-type, Accept, Token, VIN Number None
Method that deletes all the logs regarding uneveven
pressure events from a given car

/deleteSuspensionLog DELETE Content-type, Accept, Token, VIN Number None
Method that deletes all the logs regarding unusual
suspension activity from a given car

/deleteWheelSpinLog DELETE Content-type, Accept, Token, VIN Number None
Method that deletes all the logs regarding wheel-spin
activity from a given car

/deleteWheelLockLog DELETE Content-type, Accept, Token, VIN Number None
Method that deletes all the logs regarding wheel
lock-up activity from a given car

Appendix F

Console Application
Use-Case Tables

Title Verify if car is registered on the platform

ID UC01

Primary actor OpenCar application

Description

1. The use case starts as soon as the user launches the application on the
OpenCar’s centre console. The application itself will request the API
for confirmation if the car is already registered to an account on the
platform.
2. If it does not, the application will not launch, instead, it will show
instructions on how to register the car on the platform.

Assumptions OpenCar working correctly, API is up and running.

Input Vehicle’s VIN number

Output Confirmation if the car is indeed registered on the platform

Exceptions
1. OpenCar is malfunctioning
2. API is down

Priority High

91

92 APPENDIX F. CONSOLE APPLICATION USE-CASE TABLES

Title Show Telematic Information in real-time

ID UC02

Primary actor OpenCar application

Description

1. The use case starts as soon as the user launches the application on the
OpenCar’s centre console and it successfully confirms that the car is
registered. It will then show a dashboard containing various real-time
data concerning the car’s running status

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform.

Input None

Output Real-Time telematic data

Exceptions
1. OpenCar is malfunctioning
2. API is down
3. Car is not yet registered in any account on the platform

Priority High

Title Register driving events

ID UC03

Primary actor OpenCar application

Description

1. The use case starts as soon as the user launches the application on the
OpenCar’s centre console and it successfully confirms that the car is
registered.While the user is driving, it will be alert to recognise any events
that might cause premature wear on some of the car’s parts, as well as
jeopardise the user’s driving experience.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform.

Input Telematic data associated with timestamps

Output None

Exceptions
1. OpenCar is malfunctioning
2. API is down
3. Car is not yet registered in any account on the platform

Priority High

93

Title Show information concerning the ongoing trip

ID UC04

Primary actor End-user

Description

1. The use case starts as soon as the user launches the application on the
OpenCar’s centre console and it successfully confirms that the car is
registered. By pressing the ”leaf” button on the action bar the user will be shown
a screen containing information about the ongoing trip, such as fuel, distance
and consumption efficiency.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform.

Input ”Leaf” button pressed on the action bar

Output Dashboard containing real-time information about the ongoing trip

Exceptions
1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform

Priority High

Title Reset Information on Fuel dashboard

ID UC04a

Primary actor End-user

Description

1. Once pressed the ”leaf” button on the action bar the user will be shown
a screen containing information about the ongoing trip. The use case starts as
soon as the user presses the ”Reset” button on the centre’s console application
screen. It will then zero all the values except the fuel level.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform.

Input ”Reset” button pressed on the screen

Output Distance, fuel consumption and fuel efficiency values are zeroed

Exceptions
1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform
3. User did not press the right button

Priority High

94 APPENDIX F. CONSOLE APPLICATION USE-CASE TABLES

Title Save Information on Fuel dashboard to the online platform

ID UC04b

Primary actor End-user

Description

1. Once pressed the ”leaf” button on the action bar the user will be shown
a screen containing information about the ongoing trip. The use case starts as
soon as the user presses the ”Save” button on the centre’s console application
screen. It will then send the current fuel consumption and distance, associated
with a timestamp, to the online platform.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform.

Input ”Save” button pressed on the screen

Output Distance, fuel consumption and timestamp are sent to the online platform

Exceptions
1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform
3. User did not press the right button

Priority High

Title Show directions to nearest petrol station

ID UC04c

Primary actor End-user

Description

1. Once pressed the ”leaf” button on the action bar the user will be shown
a screen containing information about the ongoing trip. The use case starts as
soon as the user presses the ”Go to nearest station” button on the centre’s
console application screen. It will then receive the current car’s coordinates
and give directions to the nearest petrol station, while showing the corresponding
map.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform.

Input ”Go to nearest station” button pressed on the screen

Output Map is shown on console’s screen, as well as directions to the nearest station

Exceptions
1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform
3. User did not press the right button

Priority High

95

Title Measure 0-100km/h acceleration times

ID UC05

Primary actor OpenCar Application

Description

1. Once pressed the ”tachometer” button on the action bar the user will be shown
a screen containing information about current status of the car, similar to the first
dashboard. The use case starts as soon as the user follows the application’s instructions
just above the action bar. If followed correctly, the application will measure and
show the acceleration time in seconds.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform. User follows application’s instructions

Input ”Tachometer” button pressed on the action bar, instructions followed

Output Acceleration time measurement, shown in seconds.

Exceptions

1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform
3. User did not press the right button on the action bar
4. User did not follow instructions correctly

Priority High

Title Save 0-100km/h acceleration data

ID UC05a

Primary actor End-user

Description

1. Once pressed the ”tachometer” button on the action bar the user will be shown
a screen containing information about current status of the car, similar to the first
dashboard. Once there, the user can follow the application’s instructions and
successfully execute a 0-100km/h acceleration. The use case starts as soon as
the user executes a successful acceleration measurement and presses the button
”Save”

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform. Successful acceleration measurement executed

Input ”Save” button pressed on the console screen

Output Detailed telematic data sent to the API

Exceptions

1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform
3. User did not press the right button on the action bar
4. User did not execute a successful acceleration measurement

Priority High

96 APPENDIX F. CONSOLE APPLICATION USE-CASE TABLES

Title Estimate 0-100km/h acceleration time

ID UC05b

Primary actor End-user

Description

1. Once pressed the ”tachometer” button on the action bar the user will be shown
a screen containing information about current status of the car, similar to the first
dashboard. Once there, the user can simulate the starting state of an acceleration
measurement and press the button ”Estimate”. It will then calculate an estimated
time considering all the previous ones and the current car’s conditions.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform. There are already some measurements saved

Input ”Estimate” button pressed on the console screen

Output Estimated acceleration time

Exceptions

1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform
3. User did not press the right button on the action bar
4. User does not have any acceleration measurement saved

Priority High

Title Register max G-Force during acceleration try-outs

ID UC05c

Primary actor OpenCar application

Description

1. Once pressed the ”tachometer” button on the action bar the user will be shown
a screen containing information about current status of the car, similar to the first
dashboard. Once there, while the user is measuring acceleration times the application
will register the strongest G force generated since the application started and show
it on screen.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform. User is trying to measure acceleration times

Input None

Output Strongest G-Force generated since application start

Exceptions

1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform
3. User did not press the right button on the action bar
4. User does not try to measure acceleration times

Priority High

97

Title Suggest best RPM range to change gears

ID UC05c

Primary actor OpenCar application

Description

1. Once pressed the ”tachometer” button on the action bar the user will be shown
a screen containing information about current status of the car, similar to the first
dashboard. The use case starts as soon as the user estimates an acceleration value.

From that moment on, the gear number will change colour according to the best
calculated RPM range to change gear.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform. User estimated the acceleration time at least once

Input ”Estimate” button pressed at least once

Output Colour change according to best RPM range to change gear

Exceptions

1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform
3. User did not press the right button on the action bar
4. User does not try to estimate acceleration times

Priority High

Title Show online data

ID UC06

Primary actor OpenCar application

Description

1. Once pressed the ”cloud” button on the action bar the user will be shown
a screen containing information about previous events that the car registered
concerning the ABS and TCS systems, as well as a top five best acceleration
times ever recorded. Information that is available also on the online platform

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform.

Input None

Output Online data stored on the database is shown

Exceptions

1. OpenCar is malfunctioning
2. API is down
3. Car is not yet registered in any account on the platform
4. User did not press the right button on the action bar

Priority High

98 APPENDIX F. CONSOLE APPLICATION USE-CASE TABLES

Title Change measurement units of console application

ID UC07a

Primary actor End-user

Description

1. Once pressed the ”cog” button on the action bar the user will be shown
a screen containing switches to change how the values are shown on the
other screens regarding the unit. By switching the sliders the application
will convert the values to the selected unit in all other screens.

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform.

Input Sliders change

Output Convert values to selected unit

Exceptions
1. OpenCar is malfunctioning
2. Car is not yet registered in any account on the platform
3. User did not press the right button on the action bar

Priority Medium

Title Turn on/off data collection

ID UC07b

Primary actor End-user

Description

1. Once pressed the ”cog” button on the action bar the user will be shown
a screen containing switches to change how the values are shown on the
other screens regarding the unit. The first switch turns off the data collection
feature described in use-case UC03. This will not only ignore all those events
but will also register when the switch was turned either ON or OFF

Assumptions
OpenCar working correctly, API is up and running. Car is registered on the
platform.

Input Data collection status is changed

Output
Data collection event is registered with timestamp associated. Events will be
registered or not depending on current status of the switch

Exceptions

1. OpenCar is malfunctioning
2. API is down
3. Car is not yet registered in any account on the platform
4. User did not press the right button on the action bar

Priority Medium

Appendix G

Online Platform Use-Case
Tables

Title Serve the API for the OpenCar application

ID UC01

Primary actor System

Description
1. Every time the OpenCar application requires a connection to the API either
GET or POST information, the platform should have the routes available for
the effect

Assumptions OpenCar working correctly, API is up and running.

Input HTTP requests

Output Data stored/withdrawn

Exceptions
1. OpenCar is malfunctioning
2. API is down

Priority High

99

100 APPENDIX G. ONLINE PLATFORM USE-CASE TABLES

Title Register on the platform

ID UC02

Primary actor End-user

Description

1. his use-case starts when the user opens the login page of
the application and presses the ”Register” button. The user
must then proceed to fill in some personal data about him.
Once that is done, the user will receive an email to authenticate
his account. Only then is the user able to successfully login on
the platform

Assumptions Server is up and running. Credentials do not exist

Input Personal data

Output Account created

Exceptions 1. Server is down

Priority High

Title Login on the platform

ID UC03

Primary actor End-user

Description

1. This use-case starts when the user opens the login page
of the application and inserts the credentials set upon
the registration on the platform, pressing ”Login” button after.
2. If for some reason the user cannot login, a message will
appear with a possible reason why.

Assumptions Server is up and running. Account created and authenticated

Input Login Credentials

Output Access to online platform

Exceptions

1. Server is down
2. Account does not exist
3. Bad credentials
4. Account not authenticated

Priority High

101

Title Add car to the platform

ID UC04

Primary actor End-user

Description

1. This use-case starts when the user either logs in for the first time
and currently has no cars on the platform or when the user wants to
add more by going into ”My Cars” tab. In here the user uploads a picture
of the car in question and fills in some basic information to help both the
system and the user to identify the car in the future.

Assumptions
Server is up and running. Account created and authenticated. Car not
registered yet

Input Car info

Output Car registered on the platform

Exceptions
1. Server is down
2. Car already exists in someone else’s account

Priority High

Title View latest events/warnings

ID UC05

Primary actor End-user

Description
1. This use-case starts when the user logs in the platform and goes into
the ”Main” tab on the sidebar. In here he can view details of the latest
info that was stored from the current selected car.

Assumptions Server is up and running. Account created and authenticated.

Input None

Output Information about latest events

Exceptions
1. Server is down
2. The car has no events recorded

Priority Medium

Title Analyse Acceleration data for saved measurements

ID UC06

Primary actor End-user

Description

1. This use-case starts when the user logs in the platform and goes into
the ”Acceleration” tab on the sidebar. In here the user can thoroughly
analyse details of any stored 0-100km/h acceleration measurement
currently stored. The user will also get some suggestions to improve the
worst measures based on the best ones ever recorded.

Assumptions Server is up and running. Account created and authenticated.

Input Choose measurement

Output Graphical data, ambient conditions and suggestions

Exceptions
1. Server is down
2. The car has no events recorded

Priority High

102 APPENDIX G. ONLINE PLATFORM USE-CASE TABLES

Title View full extent of the logs concerning the selected car

ID UC07

Primary actor End-user

Description

1. This use-case starts when the user logs in the platform and goes into
the ”Full Logs” tab on the sidebar. In here the user can thoroughly
analyse every event ever recorded by the car in question in their
”raw” state.

Assumptions Server is up and running. Account created and authenticated.

Input None

Output All information available about events recorded by the car

Exceptions
1. Server is down
2. The car has no measures stored

Priority High

Title Delete all the logs of a certain event concerning the selected car

ID UC07a

Primary actor End-user

Description

1. This use-case starts when the user logs in the platform and goes into
the ”Full Logs” tab on the sidebar. In here the user can also press the
”Delete” button on each box to delete all of its content. The only event
that cannot be deleted is the ”Data Collection” log.

Assumptions Server is up and running. Account created and authenticated.

Input ”Delete” button pressed

Output All the information about a given event of the selected car is deleted

Exceptions
1. Server is down

2. The car has no data recorded

Priority Low

Title Edit personal information

ID UC08

Primary actor End-user

Description

1. This use-case starts when the user logs in the platform and goes into
the ”Profile” tab on the sidebar. In here the user can check the current
information on the database concerning him and can also change it
if he wants.

Assumptions Server is up and running. Account created and authenticated.

Input Data changed, ”Update” button pressed

Output Personal information successfully edited

Exceptions 1. Server is down

Priority Low

103

Title View calculated statistics

ID UC09

Primary actor End-user

Description

1. This use-case starts when the user logs in the platform and goes into
the ”Statistics” tab on the sidebar. In here the user can consult useful
statistics concerning his driving and the state of the car currently selected.
This data is calculated using all the data available from registered events

Assumptions Server is up and running. Account created and authenticated.

Input None

Output Statistical data about the car and the driving experience

Exceptions
1. Server is down

2. The car has no data recorded

Priority High

Title View car list

ID UC10

Primary actor End-user

Description
1. This use-case starts when the user logs in the platform and goes into
the ”My Cars” tab on the sidebar. In here the user can consult all the cars
he ever added to the platform

Assumptions Server is up and running. Account created and authenticated.

Input None

Output List of cars

Exceptions
1. Server is down
2. The user has no cars

Priority High

Title Switch car

ID UC11

Primary actor End-user

Description

1. This use-case starts when the user logs in the platform and goes into
the ”My Cars” tab on the sidebar. In here the user can switch between cars
to consult data. By changing car, all the data on the other tabs will
change to its corresponding car.

Assumptions Server is up and running. Account created and authenticated.

Input Car choice

Output Information re-calculated now regarding the chosen car

Exceptions
1. Server is down
2. The user has only one or no cars

Priority High

104 APPENDIX G. ONLINE PLATFORM USE-CASE TABLES

Title Delete Car

ID UC12

Primary actor End-user

Description

1. This use-case starts when the user logs in the platform and goes into
the ”My Cars” tab on the sidebar. In here the user can delete a given
car from his account. This will not only delete the car but every single
information about it on the server, mainly logs

Assumptions Server is up and running. Account created and authenticated.

Input Car delete button pressed

Output Car and all its records are deleted from the database

Exceptions
1. Server is down
2. The user has no cars

Priority High

	Introduction
	Scope & Motivation
	Methods
	Objectives
	Document Structure

	State of the Art
	Organisations
	AGL - Automotive Grade Linux
	The GENIVI Alliance
	AUTOSAR
	Summary

	Middleware Platforms
	The OpenCar Platform
	Tizen
	QNX Car Platform
	Summary

	Smartphone-Based solutions
	Android Auto
	Apple CarPlay
	AppLink - Ford Developer Program
	Summary

	Conclusion

	Methodology
	Requirements
	Non-Functional
	Functional

	Use-cases
	Console Application
	Online Platform

	Architecture Overview
	High Level perspective
	System Context Diagram
	Container Diagram
	Components Diagrams

	Testing/Validation
	The Simulated Environment
	Tests conducted

	Technologies

	The Project
	Assetto Corsa developed add-on
	UDP Reader
	Console Application
	Controller structure
	View structure
	Final Aspect & Functionality

	Platform
	Final Aspect & Functionality
	Structure

	API / Server
	File Structure
	Structure Diagram
	Routes Implemented

	Database
	Tables
	ER Diagram

	Work Plan
	Milestones
	Setbacks
	Gantt diagram

	Conclusion
	Bibliography
	Appendices
	GENIVI Member List
	QNX Partner List
	Functional Requirements
	Assetto Corsa/OpenCar: Information cross-check
	Routes Implemented
	Console Application Use-Case Tables
	Online Platform Use-Case Tables

