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Abstract

In the last few years the number of Internet of Things (IOT) networks has
been increasing. In order to support Fifth Generation (5G), large-scale highly-
dense networks will have to be deployed. Those networks will contain a
massive number of low power, battery operated sensors, sensing and for-
warding messages in dynamic topologies (star, mesh, ad-hoc). These highly
dense networks can cause rapid exhaustion of a node’s resources. As such
they have to be as efficient as possible to operate as long as they are needed,
while achieving reliable communications.

This work presents and examines state of the art mechanisms for en-
ergy measurements and data aggregation in Low power and Lossy network
(LLN). Measuring the energy consumption of multiple sensor nodes is a com-
plex task. This work presents some of the techniques used and opts by a soft-
ware approach to obtain that metric. This work focuses on in-network data
aggregation. The data aggregation is performed at every hop.

The core part of this work focuses on the development of a testbed en-
vironment. This environment consists of several physical boards commu-
nicating with each other and a gateway. The main focus of the testbed is
measuring the energy consumption across different scenarios.

With these challenges in mind, this work presents a cross-layer approach
to data aggregation. The main objective of the aggregation is to reduce the
power consumption. The method is based on the creation of groups of nodes
with similar properties, leveraging the similarity of the exchanged data. The
final mechanism is capable of achieving up to 9.17% in energy savings when
performing aggregation.
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Energy efficiency
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Chapter 1

Introduction

This chapter presents the work produced during this Masters Thesis. It
contains a state-of-the-art study about data aggregation and energy measure-
ment in IOT sensor networks. It also contains the setup of an experimental
testbed and the testing of the developed method of data aggregation.

This first chapter starts by stating the motivation behind this work, fol-
lowed by the objectives and expected contributions. Finally the thesis struc-
ture is presented.

1.1 Motivation

In today’s world people are more connected than ever. Everyday new
technological products appear, many of which can be connected to the In-
ternet. IOT is following the trend and rapidly expanding. It is difficult to
estimate the role it will have in the next few decades.

Cisco estimates [1] that by the year 2020 the Internet will contain more
than 50 billion devices among which the majority of them will have con-
straints in terms of memory, processing power or energy. With the number
of use cases for IOT products expanding, future technologies will have to
deal with very dense networks and saturated wireless channels. Therefore it
is of the utmost importance that an effort is made not only to reduce battery
usage but also to decrease the amount of data flowing within those networks.

1.2 Objectives and Contributions

This work focuses on the issues of dense networks. When energy-constrained
devices communicate in dense networks it is necessary to use energy efficient
mechanisms to avoid a quick exhaustion of the nodes energy. The main ob-
jective of this work is to reduce the energy consumption in those networks.
In order to do this it is necessary to measure the energy consumption across
many devices simultaneously. It is also necessary to develop energy efficient
mechanisms. This work focuses on data aggregation.
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During the development of this thesis several contributions have been
made.

First it was necessary to correctly create a testbed environment to test the
developed data aggregation techniques. In order to set up the testbed several
tasks had to be performed. First it was necessary to find an accurate method
of measuring the energy consumption. The simplest solution to measure the
energy consumption on several nodes simultaneously was using the soft-
ware Energest.

For this energy measurement software to be used it was necessary to mea-
sure its accuracy. Several tests were performed comparing the energy mea-
surements obtained by Energest against those obtained by a hardware tool.
The measured difference was acceptable and the Energest was selected to
measure the energy consumption.

Having the testbed capable of measuring energy consumption the next
step followed. It was necessary to test if it was possible to reduce the en-
ergy consumption by performing data aggregation at each node. The first
tests showed that it was possible to save energy by performing aggregation.
A paper was written with the results and submitted to The 20th ACM Inter-
national Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems (MSWiM 2017).

Finally a data aggregation mechanism based on groups was developed.
This method included a light-weight layer combined with extra fields added
in each Constrained Application Protocol (CoAP) message that enabled a
node to perform data aggregation. This method differed from the one first
tested, groups were created that enabled internal aggregation, between group
members. External aggregation was also possible, between different groups.
This mechanism was tested in an environment similar to the one from the
first tests. It showed an improvement in energy consumption.

1.3 Thesis Structure

This Thesis is divided as follows: Chapter 2 introduces ContikiOS, the
operating system that will be used on the testbed, Chapter 3 introduces tech-
niques to measure energy consumption and data aggregation methodologies.
Chapter 4 describes the experimental work performed in order to prepare the
testbed. Chapter 5 contains the information regarding the first experimental
tests. Chapter 6 presents the developed data aggregation technique based in
groups and contains a discussion about the results. Chapter 7 illustrates and
describes the work plan and Chapter 8 presents the conclusions and future
work.
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Chapter 2

ContikiOS Platform

This chapter introduces ContikiOS. First an overview of the platform is
presented as well as important aspects of its architecture. Then the included
energy estimation software is presented followed by the reasons behind se-
lection ContikiOS amongst others.

2.1 Introduction

ContikiOS is an operating system for the IOT. It connects tiny low-cost,
low-power microcontrollers to the Internet. Being an operating system it pro-
vides a lot of commodity features to speed up and facilitate program devel-
opment. Those features include a network simulator (Cooja) [2], useful to
test programs before the deployment, power awareness (Energest), for mea-
suring energy consumption or full Internet Protocol (IP) networking for com-
munication, amongst many others. Like other other operating systems it has
device drivers to interact with specific hardware, that means it is possible to
have the same program running on a network of heterogeneous hardware. It
also includes many Internet standard protocols that will be discussed latter.

ContikiOS dates back to 2003, when the creator Adam Dunkels [3] re-
leased it as an open source project. It had several features that contributed to
its success, the original version included application level multithread sup-
port, run time application loading as well as an IP protocol version called
µIP designed to run on 8 and 16 bit microcontrollers.

2.2 Contiki Overview

Typically the hardware used in LLN has very high restrictions at both
energy and resource levels that do not necessarily decrease as technology
improves, as such multi-threading support could not follow the traditional
architectures. The earlier versions of Contiki used an event based kernel with
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a preemptive multi-threading library available only to applications that re-
quired it. Preemption was implemented using timer interrupts that saved
processor registers onto the stack an later switched to the kernel stack. The
model was later abandoned due to the need of having one separate stack
per thread which consumed valuable resources. It was later replaced by pro-
tothreads which will be discussed in the next section.

In a deployed network which can have many nodes over a very widespread
area it becomes exceptionally laborious to reprogram the nodes individually.
Contiki introduced run-time remote node reprogramming. Now, tasks such
as bug removal or the addition of new features could be done in a reduced
amount of time with minimal overhead.

In older systems it was necessary to send the full binary image of the
system, including all the libraries, the kernel and the application itself, which
caused a huge impact on the networks with low throughput. By enabling just
the application to be sent, not only was the time to reprogram the network
reduced but the energy spent doing so as well, since the amount of data was
several times smaller compared to the full system.

An important feature of Contiki was the µIP protocol stack, also devel-
oped by Dunkels [4]. It was adopted by several big companies like Atmel and
Cisco and updated to support Internet Protocol version 6 (IPv6) [5]. Contiki
can also be distributed in a Virtual Machine (VM) with all the tools needed
for development. The VM has a simulator called Cooja which can simulate a
LLN deployment, it is a very usefull feature for quick prototyping and test-
ing.

2.3 ContikiOS Architecture

The ContikiOS can be divided in two parts, the first contains the loaded
program, called application, which can be changed dynamically in run-time.
The second is the core, which contains the kernel, services, libraries an the
loader. Bellow is an image depicting the Contiki partitioning. The commu-
nication between processes always goes through the kernel but applications
can directly control hardware.

The kernel consists of an event scheduler that dispatches events to run-
ning processes and executes calls to the processes polling handlers The polling
mechanism is used to manage high priority events called synchronous events,
these are scheduled between low priority events, called asynchronous events.
All processes share the same stack. Event scheduling is done at the same level
and processes cannot alter that order unless an interrupt occurs. Interrupts
can be generated by hardware.
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FIGURE 2.1: Contiki [3]

Program loading is done by a run-time re-location function. When the
program is loaded the loader attempts to allocate enough memory for it, if
it fails the program loading is aborted. If the memory is available the loader
calls the processes main function.

Services are processes whose functions can be used by more than one
program. Services can also be loaded during run-time, they are accessed by
an interface which has the list of running services. If one program wants to
access a service, it uses a stub of that interface to search for the service by
using a string with the service name. Then the interface returns the process
ID of the desired service.

The kernel implements only the basic mechanisms to manage process
handling and CPU. Other tasks are managed by libraries that can either be
dynamically or statically lined with processes.

The communication stack is implemented as a service and can be altered
in run-time. When a packet is received an event is generated to deliver the
packet to the corresponding application. If the application replies a reply
packet is placed in the output buffer.

In the first versions, Contiki had a multi-threading model where each
thread had its separate stack, however this behaviour sometimes caused ex-
haustion of the hardware resources in some weaker systems. To solve that
problem the Contiki creator launched a system called protothreads.

Protothreads[6] are a simplified thread system, here threads share the
same stack and context changes are done by re-wounding the stack, they in-
clude locking mechanisms. Compared to the previous system protothreads
only run on the function which implements them, and so, if a function using
protothreads calls other function, the secondary function will not have lock-
ing mechanisms. In order to provide conditional locking all functions need
to run in a separate protothread.



Chapter 2. ContikiOS Platform 6

2.4 Energy Estimation Mechanism

Contiki has an internal mechanism [7], that is able to estimate how much
energy a node is consuming. Energest is a service that maintains a table
entry for every component, the CPU and transceiver on the node. Each entry
contains the total time, expressed in system ticks, that particular component
has been active. When the component is turned on the energy estimation
module produces a time stamp, when the component is turned of the module
computes the time it spent active.Finally the table entry is updated with the
difference.

The energy estimation mechanism uses a linear model for the sensor node
energy consumption. The energy consumption is calculated by the formula:

E

V
= Imtm + Iltl + Ittt + Irtr +

∑
i

Icitci (2.1)

where V is the supply voltage,Im the current draw of the microprocessor
when running, tm the time in which the microprocessor has been running,
Il and tl the current draw and the time of the microprocessor in low power
mode(there is no low power mode available in the transciever), It and tt the
current draw and the time of the communication device in transmit mode.
Ir and tr the current draw and time of the communication device in receive
mode, and Ici and tci the current draw and time of other components such as
sensors and LEDs.

Finally,to obtain the energy consumption it is only necessary to know the
power consumption of each component by checking the datasheet of the
selected hardware and. Despite that energy measurements should be con-
ducted to verify, and possibly correct, those values. This methodology has
been evaluated [8] and was found to be a valuable alternative to more com-
plex, expensive and difficult solution such as specialised hardware.

2.5 Why ContikiOS

When searching for an operating system for IOT there were a few options
available. The major criteria that lead to the rejection of most of them was the
inclusion of standard IOT protocols such as CoAP and IPv6 over Low power
Wireless Personal Area Networks (6LoWPAN). The IOT community has been
converging to certain protocols and makes sense in the context of this work
to propose data aggregation on top of those protocols. Other factor such as
project maturity, included features, the developer community support and
hardware support also weighed in the decision.

In the end it came down to Contiki and TinyOS[9]. ContikiOS ended up
being the chosen platform. It included the above mentioned protocols and
more, it has a large and active community of developers, with a reasonable
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amount of reading material available not only to learn about, but also to trou-
bleshoot potential problems. There are also companies using and supporting
Contiki. Companies such as Zolertia, a hardware manufacturer or Cisco also
contributed to the platform with drivers and IPv6 related code respectively.
There are also big projects using Contiki [10] ,[11], [12], which contribute to
its improvement and growth. Also many referenced papers in this Thesis
make use of Contiki, and although there are no surveys about IOT operating
system usage, it is commonly referred as the most popular project.

2.6 Summary

This section started by introducing ContikiOS in the context of this project,
followed by an overview of relevant features that contributed to its success.
Then the system architecture was described in a more in-depth way, followed
by the description of the embedded energy estimation software. This was
done in preparation for the next chapter because energy management is a
big component of this thesis. Lastly the reasoning behind the choice of this
platform amongst others was given.
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Chapter 3

Energy Efficiency and Data
Management in IOT

This chapter comprises two fundamental points that are the core of this
thesis, energy efficiency and data management. Section 3.1 of this chapter
will introduce energy measurement techniques essential to compare energy
efficiency between different protocols. Section 3.2 discusses energy usage
reduction when applying data aggregation schemes.

Energy efficiency in IOT environments is one of the base pillars of a suc-
cessful real-world deployment. Node networks have very limited resources
not only in terms of processing but also in terms of energy supply, as they
frequently use batteries and can be deployed for a very long time. It then be-
comes imperative to develop applications that are built with energy saving
mechanisms but are also capable of reliable and scalable communications.

3.1 Energy Measurement

Measuring energy consumption is a very important task when designing
and managing a IOT network. There are several ways energy can be mea-
sured, some rely on software and others rely on hardware.

The Sensor Node Management Device (SNMD) [13] is a hardware device
that plugs into sensor nodes, and is capable of measuring energy consump-
tion of sensor nodes in a distributed fashion as well as handle management
tasks. The device is capable of completely controlling the energy supply of
the sensor node. It can use a real battery to supply power as well as simu-
lating a real one. In this case a special circuit controls the voltage in a way
that resembles a real world depletion. Since the real world behaviour is very
difficult to simulate, hardware has very specific characteristics that are not
considered in simulation scenarios. This may lead to untrustworthy results
of energy consumption estimation in the simulation results.

The MoteLab testbed, from Werner-Allen et al. [14], consists of a set of
permanently deployed sensor nodes connected to a central server that han-
dles scheduling, reprogramming nodes, and data logging. In addition, each
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node in MoteLab is connected to a network-connected digital multi-meter,
which helps to continuously monitor the energy usage of the node.

Similarly to the previous measurement techniques Sheu et al. [15] also
propose a hardware device called E-MCU (hardware device with energy
measurement capability) that plugs into the sensor node to measure energy
consumption. The method consists on modifying the TinyOS libraries to sig-
nal each state change through the board pins. Then the E-MCU measures
the time in each state. It takes into account processor, radio, LED and other
board components such as resistors and transistors bonded to a single state.
The energy levels for each component is measured with a multimeter. To cal-
culate the total energy consumption the time on each state is multiplied by
the supplied voltage.

Contrary to previous energy measurement methods this one is software
based, Dunkels et al. [7] use a method similar to Sheu et al. [15] but with
software. The Energest software module was previously explained in the
Contiki, Chapter 2.4.

Another software energy measurement method is Powertrace, developed
by Dunkels et al. [16]. This method however differs from the previous one
as it can measure energy consumption from network-level activities such as
packet transmission or reception. Internally it uses structures called energy
capsule which records the time of the desired activity whether it is a packet
reception, packet transmission or idle wake up. It can be seen as a fine-
grained extension to Energest. Where the latter measures hardware compo-
nents energy as a whole, Powertrace can measure individual activities inside
those components. Energy capsules can also be combined into capsule aggre-
gates. Those aggregates contain the sum of the energy from all its capsules.
They can later be used to attribute power consumption to network protocols.
Powertrace also enables applications or protocols to subscribe to its capsule
feed. When the activity of a capsule has been terminated the control mod-
ule informs Powertrace that then distributes those values to the subscribers.
This enables the creation of power aware protocols and applications. By us-
ing those feeds those protocols can make energy-aware decisions.

Lastly one very important fact to consider are the inaccuracies on the pro-
duction of electronic components, in some cases the difference in energy con-
sumption between the same hardware may differ more than 4% according to
Hurni et al. [8].

All of the methods mentioned above have pros and cons. SNMD [13] is
probably the best method to measure energy consumption from the methods
described above. It allows a distributed energy measurement and manage-
ment of the device. The drawback of this method however is cost, according
to [8] the cost is about 300$ per unit which makes it a convenient tool for lab
environments but too costly for large deployments.
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Similarly in Werner-Allen et al. [14] the usage of a network connected dig-
ital multimeter has a very high degree of accuracy but the cost of the equip-
ment is very high. In Sheu et al. [15] the cost of the equipment is lower
because the E-MCU is a rather simpler device and it is shown its accuracy
only differs 2.6% from measurements with a multimeter. However the main
drawback of this solution is that it cannot be used in a real test scenario.
Mainly because the device sends its data via Universal Asynchronous Re-
ceiver/Transmitter (UART), that would mean each node would have to be
connected via cable to a PC in order to extract the data.

The software method cited is Energest, as Powertrace is Energest based.
This method accuracy was already evaluated on Hurni et al. [8], and it has an
overhead of 0.7% [7], however in order to obtain valid results the consump-
tion on each state has to be validated with a measurement device as the real
consumption may differ from the datasheet.

One other method of measuring the energy consumption is using using
an oscilloscope. Oscilloscopes are very precise devices capable of measuring
the energy consumption of nodes. However when dealing with a network
of several nodes far from each other using this type of equipment becomes a
complex and costly endeavour.

3.2 Energy Consumption Optimisation

Energy conservation has become a central focus in IOT research. Work
in energy conservation has been considered at several levels of the protocol
stack. From the design of the physical layer, to protocols developed with
energy savings in mind. Protocols developed for energy savings take advan-
tage of overhearing and scheduling to allow nodes to sleep when they are not
transmitting or receiving messages [17] [18]. At the routing level [19], an In-
ternet Engineering Task Force (IETF) standard has been designed to operate
in an energy efficient way across a wide range of network types with focus
on LLN. Other techniques such as energy harvesting [20] take into consid-
eration solar powered node when building the routing trees and traffic will
preferably go through the nodes equipped with solar panels.

Many different solutions have been presented to reduce energy consump-
tion at all levels. Radio modules are typically the greatest consumers of en-
ergy [21]. The energy consumption during data transmissions is directly pro-
portional to the number of bits sent through the network. An important as-
pect to keep in mind is that aggregation is in some cases a trade-off. It can
achieve a smaller number of transmissions but it can add extra delay or in-
crease the in Sensor Node (node) processing.

The Grid-based Routing and Aggregator Selection Protocol (GRASS), Al-
Karaki et al. [22], is a cluster based protocol and has two levels of data ag-
gregation. First a group is created and a Local Aggregator and Cluster-head
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are elected. This selection is performed according to a set of rules designed
to maximise network lifetime, one node can have those two functions. Then
Master Aggregators are elected and they will aggregate data from smaller
groups.

One method, called Lifetime Balanced data Aggregation(LBA) [23] pro-
poses an aggregation scheme under an application-specific end-to-end de-
lay requirement. LBA adaptively adjusts the aggregation delays between
parent-child nodes to balance lifetime. Once a collection tree has been estab-
lished each node needs to set Self-Aggregation Delay (SAD) and Forwarding-
Aggregation Delay (FAD) parameters. SAD is the time a node waits to trans-
mit a packet. After that time expires all data produced in that node is ag-
gregated, to reduce the amount of data sent to the parent node. Similarly the
FAD will wait, a certain amount of time, for packets from its children, if it has
any. Once those parameters have been set up, each child-parent relationship
will adjust those values to maximise node lifetime while maintaining delay
requirements.

Two-tier aggregation for multi-target applications (TTAMA) [24] performs
data aggregation within group communications. The aggregation structure is
constructed in two phases. In the first phase a Network Spanning Tree (NST)
containing all nodes is calculated, then it is pruned to find subsets called
TTAMA trees that will route both Internal Group Traffic (IGT) and External
Group Traffic (EGT) traffic. IGT includes nodes belonging to a group with
the same configurations Internal traffic is aggregated by means of a simple
mathematical function, it can be a Sum, Maximum, Minimum or an Average.
Despite the number of input packets, the output is always one packet. EGT
comprises all traffic from different groups. Payloads from different groups
are merged into a single message. TTAMA has been developed to work with
group-based communications and was tested with CoAP groups [24] .

AIDA [25] proposes an adaptive application independent data aggrega-
tion method. The goal is to maximise the utilisation of the communication
channel with the benefit of lowering energy consumption. This is achieved
by employing various degrees of data aggregation, in accordance with cur-
rent traffic patterns. The goal is to reduce channel contention, packet header
overhead and data padding for fixed size packets. Conceptually AIDA is im-
plemented in the protocol stack as a intermediate layer between the MAC
and network layers. It can be combined with other application specific data
aggregation schemes. Aggregation is performed by concatenating payloads
in one single packet. The number of payloads depends on a parameter called
Degree Of Aggregation (DOA) which is tuned according to the network state.
The AIDA layer intercepts communications between the MAC and Network
layers to gather information to tune the DOA parameter. As the network
traffic builds up and transmission is delayed, the feedback loop adjusts the
DOA to allow for a greater degree of aggregation prior to sending.
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3.3 Summary

In order to develop energy efficient protocols we first need to implement a
reliable way to measure energy consumption. If we are able to assign energy
usage to individual protocols rather than just to hardware states the optimi-
sation we can achieve is much greater. Energy consumption increases with
the number of bytes sent. In this section various methods of performing data
aggregation were mentioned, their main objective is to reduce the amount of
data flowing in the network in order to save power.
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Chapter 4

Tools Validation

This Chapter describes the background experimental work done to pre-
pare the testbed experiments. Section 4.1 describes the main objectives. Sec-
tion 4.2 presents the hardware and software tools used. Section 4.3 describes
all of the experimental scenarios and the Chapter ends with a summary.

4.1 Objectives

The main objective of this chapter was to validate the testbed. The pur-
pose of the testbed experiments was to evaluate the energy consumption on
real hardware. The energy consumption was obtained by using Energest
[7]. This application has enough precision, as shown in section 4.3.2 and is
the most adequate to measure energy usage in many devices simultaneously
without added complexity. Validation and calibration tests have been per-
formed to ensure the values reported by this tool are indeed correct.

4.2 Environment Description

This section contains all the relevant information about the components
used in the experimental testbed. First the hardware devices are listed, fol-
lowed by the software tools, finally the protocol stack is introduced.

4.2.1 Hardware

The board, which will act as a node, selected for this project is the Atmel
Atmega256rfr2 Xplained Pro [26]. It has an embedded IEEE 802.15.4 radio
chip, one ceramic antenna, and a SMA header for an external antenna. The
flash memory has 256Kb. This board has embeded transcievers that avoid
configurations, and an integrated bootloader that facilitates programing. An
FTDI chip was also used to interact with the border router through a Serial
Line Internet Protocol (SLIP) connection. The other Atmel boards have had
the output redirected to the Universal Serial Bus (USB) port, to allow for a
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faster development with less cables. A Texas Instruments P401R board was
also used to measure energy consumption using the Energy Trace technology.

Figure 4.1 is the FTDI chip used to communicate with the Border Router
(or gateway). Figure 4.2 corresponds to the board wich will be used as a
node. Finally Figure 4.3 depicts the Texas Instruments P401R board used to
measure the energy consumption.

FIGURE 4.1: FTDI chip

FIGURE 4.2: Atmega256rfr2 X-pro board
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FIGURE 4.3: Texas Instruments MSP432 P401R

4.2.2 Software

The following list contains all the software used in the experimental testbed.

• Ubuntu 16.04 LTS, as the operating system

• Windows 7 with Atmel Studio and Code Composer Studio 7

• AVR 8 bit toolchain (avr-gcc, version 4.9.2), compiler for the board

• Avrdude version 6.2, used to program the board

• Screen version 4.03.01, terminal program to grab the board output

• Wireshark version 2.0.2, to check packet flow on the network

Ubuntu was used as the development system because its compatibility
with the Avrdude, Screen and the AVR compiler. Windows 7 was used be-
cause both programs mentioned were not available in other platforms. At-
mel studio was used to flash the boards with the bootloader provided by
the current Atmel platform mantainer. Code Composer was used because it
contains the Energy Trace tool. This software alied to the P401R board can
measure the energy consumption of a target board with a resolution of 2kHz.
This tool had two purposes, it was used to calibrate the values of the energy
consumption for both the CPU and the transceiver in the Atmel board.
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4.2.3 Protocol Stack

The chosen protocol stack, shown in Table 4.1, contains the standard pro-
tocols used by low power sensor networks [27] [28] [29] [30].

CoAP is an application layer protocol designed for resource-constrained
devices. It translates easily to Hypertext Transfer Protocol (HTTP) to enable
integration with the web. The User Datagram Protocol (UDP) protocol is
a transport layer protocol, well know in the TCP/IP suite. IPv6 Routing
Protocol for Low-Power and Lossy Networks (RPL) is a protocol designed
specifically to address constraints related with routing within LLN such as
processing power, energy or memory. 6LoWPAN is the technology devel-
oped to deliver IPv6 to LLN. The IEEE 802.15.4 is a standard that specifies
the physical layer for low-rate wireless networks.

These protocols were chosen because the IOT community is rapidly con-
verging to these standards [31].

TABLE 4.1: IOT Protocol stack

CoAP
UDP
RPL

6LowPAN
IEEE 802.15.4

4.3 Tool Validation

This section contains information about the experimental work produced.
Its purpose is to validate the tools used in the testbed. This includes the inter-
nal clock and Energest validation. To ensure the Energest module was func-
tioning properly two things were necessary. First the timer keeping track of
the time spent on each state had to be working properly. Then the energy
spent on each state (transmission/reception and active CPU) had to be cali-
brated.

The first experiment in section 4.3.1 was done to test the clock. The second
experiment in section 4.3.2 was done to calibrate the Energest module and
measure its accuracy.

4.3.1 Clock Validation

The Contiki operating system has different sets of timer libraries that are
used both by applications and system alike. The Rtimer library [32] pro-
vides scheduling and execution of real time tasks. This library has a very
fine grained resolution and is used by the Energest module to count the time
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spent on each state. In early tests some drifts appeared between what was
the expected on time of the CPU module and the actual value.

In an attempt to correct the drift some more recent bootloaders from At-
mel were flashed and different fuses used. Fuses are configuration parame-
ters set in special registers that can control, amongst others, what oscillator to
use and the frequency the CPU runs at. This proved ineffective, but the dif-
ferent bootloaders/fuses had an impact on the actual time passing, just not
the expected one. Upon reading the support material about CPU frequency
on ContikiOS, it was found out that there is a variable that can set the CPU
frequency. The CPU frequency was set to 8MHz and some tests were per-
formed to ensure the reported value was consistent to what was expected.
These tests were done to evaluate the drift between the expected time and
the real value.

RPL Border 

Router

Contiki Node

(ATmega256RFR2-XPRO)

CoAP Traffic

30CM 30CM

30CM
30CM

40CM

50CM

62CM

50CM

62CM

FIGURE 4.4: Clock drift evaluation scenario

Figure 4.4 represents the topology chosen to measure the clock drift. In
this test five boards were placed on a table communicating simultaneously
with each other and with the border router. Five separate executions were
done and then the results were averaged. Each execution took 63 minutes
and the first three minutes were discarded as warm-up time. Each node sent
a CoAP message every 30 seconds. The Energest CPU variable was used to
count the total time. The Rtimer library has a variable that contains the value
of timer ticks that correspond to a second, which is set to 7812 ticks.

So at the end of the 60 minutes of test the CPU total value is expected
to be 28 123 200 ticks. The averaged value obtained across all boards was
29 184 312 ticks. This means the average drift is 3.7% or about 135 seconds
every hour. The standard deviation was 1 087 794 ticks or about 139 seconds.
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These values were odd because the standard deviation was very close to the
average drift value. Upon an inspection of the Energest values it was found
out one function in the Energest module had an issue. The function was
being called to update the Energest without taking into account the Rtimer
register only has 16 bits, so, about every 8 seconds it is necessary to take
into account the register is reset. That issue was corrected and the test was
redone.

Upon the new execution the CPU total value is expected to be 28 123 200
ticks, same as before. The averaged value obtained across all boards was
28 377 768 ticks. This means the average drift is 0.9% or about 32 seconds ev-
ery hour. The standard deviation was 54 915 ticks or about 7 seconds. These
values are much better than before and the standard deviation is much lower.

The values for the drift are acceptable considering there is no protocol in
place correcting the clock for each board.

4.3.2 Energest Validation

The Energest module was already explained in the Section 2.4. In order to
use this tool it was necessary to measure the energy consumption in differ-
ent states (the states being active CPU and radio Transmit/Receive). Then it
was also necessary to perform a testbed experiment and measure the energy
consumption. The energy consumption was measured by the Texas Instru-
ments board and by the Energest. The obtained values were then compared
to measure the difference between.

The energy consumption of each state is indicated in the datasheet. How-
ever those values only take into account the microcontroller and the board
has other chips, LED’S, resistors and other components that also have an en-
ergy draw.

The first tests were performed in order to measure the power consump-
tion of the different states. The methodology of those tests was the following:
10 boards were selected to be measured. This number represents a significant
sample from the total number. All of the tests had a duration of 10 minutes
and the first two were discarded as a warmup.

For the CPU test all radio functions were turned off and each node ran
a simple program that printed "Hello World!" every 10 seconds. Two execu-
tions were done for each board and then all the results were averaged. The fi-
nal value was then set as the CPU consumption. That value was 9.32 mA, the
standard deviation was 0.18 mA. The CPU measurements were performed
running Contiki without entering in low power mode, since this version of
Contiki is not stable when ATmega256RFR2 is in low power mode.

For the radio transmit value, three separate executions were done for each
of the 10 boards and then all the results were averaged. In each of those ex-
ecutions three transmissions were picked and averaged. This was done by
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exporting the Energy Trace CSV file containing the values of each execution.
Then a Python script was created. It took as input the start and end time of
the transmission and outputted the average transmission power of that exe-
cution. The final value was 21.44 mA, and the standard deviation was 0.42
mA. The radio receive methodology was similar to the radio transmit with
the difference being the Python script was fed the start and end time of a
packet reception. The final value was 15.49 mA and the standard deviation
was 0.15 mA. At this point one of the 10 boards, the board number 2, con-
sistently reported higher values than the average, both for active CPU and
radio Transmit/Receive. Its values were discarded because the behaviour
was classified as an outlier. The final values measured for the Energest are in
Table 4.2.

TABLE 4.2: Current Measurement of the States

State CPU Transmission Reception
Electrical Current 9.32 mA* 21.44 mA 15.49 mA
*This measurement includes idle and active.

The values for the different states were applied to the Energest to mea-
sure the Energy consumption. It was then necessary to check if the energy
consumption reported by the Energest was consisted with the values mea-
sured by the Texas P401R board. For these tests the methodology was the
following. Each of the 9 remaining boards was subject to 63 minute tests
communicating with the border router with a CoAP message every 30 sec-
onds. The first three minutes were discarded as warmup time. Then three
separate executions were done for each board and then the results were av-
eraged.

The results for this test are shown in Table 4.3, the average error was 3.16%
and the standard deviation is 1.57%, these values are consistent with the error
interval measured in [8]. The error rate is acceptable, so the Energest was
used to measure the energy consumption in subsequent tests.

TABLE 4.3: Total Energy Consumption, in mJ

Error Error
Board Real Energest (%) Board Real Energest (%)
1 112707.3 115272.3 2.28 6 109282.3 113216.6 3.60
2* n/a n/a n/a 7 113827.7 113929.6 0.20
3 108492.0 114006.3 5.09 8 111921.7 114646.3 2.44
4 108710.0 114345.0 5.19 9 109843.7 114412.0 4.16
5 111113.0 114455.0 3.01 10 111296.3 114086.0 2.50
Avg 110799.3 114263.2 3.16
*Outlier.
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4.4 Summary

In this Chapter the testbed environment was introduced. The hardware
and the software tools were depicted and their purpose was described. Then
the requirements to use the Energest tool were presented. The Rtimer clock
had some issues that had to be solved and then tested. Then the Energest
required that the correct energy consumption value was set for the different
states. Tests were performed to measure those values. The Chapter ended
with the comparison between the hardware and software measurements.
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Chapter 5

Testbed Experiments

This chapter contains information about the development of the aggrega-
tion mechanism and subsequent tests.

Section 5.1 starts by introducing the two data aggregation techniques that
will be implemented. Chapter 5.2 contains the overview of the data aggre-
gation architecture. Section 5.3 contains the results and discussion about the
first experiments conducted. The Chapter ends with a summary.

5.1 Data aggregation techniques

There are two types of aggregation that were implemented, namely pay-
load aggregation [24] and payload concatenation [24]. Payload aggregation:
occurs when one node receives messages from child nodes and combines that
data into a single value using a mathematical function (e.g. average value).

As per Table 5.1, node 1 receives one packet from node 2 and one packet
from node 3. When the node 1 has to send data it combines its data with data
it received. In this case node 1 uses the average function, and the average
value between those three values is 12. Now instead of transmitting three
separate packets, only one packet is sent, but its data is the average value
between those three nodes.

TABLE 5.1: Payload Aggregation in Node 1

Node Id Packet Header Payload(integer)
Node 2 message yes-discard 20
Node 3 message yes-discard 10
Aggregator node (1) no 6
Message to be transmitted yes 12
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TABLE 5.2: Payload Concatenation

Node Id Packet header Payload(integer)
Node 2 message yes-discard 20
Node 3 message yes-discard 10
Aggregator node (1) no 6
Message to be transmitted yes 6 20 10

Payload concatenation: uses the same principles mentioned above, the
data originates in other nodes and then arrives at the node performing ag-
gregation. However instead of using a mathematical function to reduce the
size of the data the payloads are concatenated and then sent as a single pay-
load without loss in precision. The payload aggregation is a classical method
of aggregating data, already presented in Section 3.2. In Table 5.2 the mes-
sages received from other nodes are concatenated in the payload, this means
the data produced by nodes 2 and 3 will be kept intact.

5.2 Data aggregation mechanism

The objective of the data aggregation mechanism was to perform aggre-
gation at the application level. As described in 4.2.3 CoAP was selected as
the application protocol. When nodes sent CoAP messages in the network
it was first necessary to capture packets that were being forwarded. Then it
was necessary to use one of the aggregation techniques described above to
merge the data.

In order to capture packets a cross-layer approach was necessary. This
layer was located between the Internet Protocol (IP) and the User Datagram
Protocol (UDP) layers. It was created between these layers in order to verify
the destination IP address of every message received from the neighbours.

After packets had been captured one of the aggregation techniques would
be used to merge the data. The first data aggregation technique that was
implemented was the payload concatenation, as it seemed more complex and
could need more testing.
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Algorithm 1 Concatenation algorithm
1: Start
2: function NEW_PACKET_ARRIVES(msg)
3: typeCode← parseCode(msg)
4: address← parseAddrs(msg)
5: if isCoAP(typeCode) and notMyAdd(address) then
6: buffer(msg)
7: if timer_not_set() then
8: set_timer()
9: end if

10: end if
11: end function
12:
13: function TIMEOUT_CALLBACK( )
14: msg_num← count_msg(buffer)
15: payloads_data← extractPayloads(buffer)
16: new_coap← assembly_new_coap(payload_data)
17: forward_next_layer(new_coap)
18: end function
19: End

Algorithm 1 depicts the decision mechanism of the referred layer. At line
2 of Algorithm 1 a verification is performed when a packet arrives. This ver-
ification checks if the received packet is a CoAP message and is not destined
for the node itself. If the message meets the criteria it is stored in a buffer
and a timer is set. After the timer is set all messages will be stored until that
timer is triggered. When the timer is triggered the node assembles a single
message containing all of the payloads from the packets. Other information
contained in those packets is discarded.

5.3 Testbed experiment and results

This section contains results of the testbed experiments with the aggrega-
tion. First a threshold study was conducted to verify the minimum number
of messages that had to be aggregated in order for the aggregation to be cost
efficient. This cost is related to the cost of extracting payloads versus the en-
ergy again achieved by transmitting less data. Then a larger testbed was cre-
ated to verify if the values obtained in the smaller experiment were similar
when a greater number of nodes was used.

5.3.1 Threshold experiment

After the mechanism for data concatenation had been implemented in
Contiki, it was necessary to find in which conditions would aggregation
achieve energy savings.
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To do this a threshold test was conducted. The objective was to find
which is the minimum number of payloads on a message able to be cost-
efficient in terms of energy consumption. A small test scenario was created
with 4 nodes. Two nodes were producing packets at different time intervals
and sending them to one node that communicated with the Border router (or
gateway). For comparison purposes, the standard CoAP has been evaluated
in the same scenario. Standard CoAP produces messages containing only a
single payload and forwards all the received messages from the 2 injector
nodes.

A communication round takes 60 seconds. At each communication round
the number of packets created by the injector varies between 6, 12, 18 and 24.
When aggregating data the node only produces a message every 60 seconds.
This is done in order to test how the aggregation behaves if it aggregates
more payloads. That message will contain all the payloads received in that
60 second round. The tests consisted of 15 individual experiments for each
number of packets per round. The tests were performed for simple data for-
warding and data aggregation. The tests lasted 8 minutes and the first 3
minutes were discarded.
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FIGURE 5.1: The fixed unit fields

Figure 5.1 shows the obtained results. The results show that when com-
paring standard data forwarding to packet concatenation energy gains are
only achievable if more than 12 packets are concatenated.

5.3.2 Testbed experiment results

A larger testbed was created to check if the threshold values were similar
when a larger number of nodes was used. In this experiment only packet
concatenation was tested due to time constraints.

In the testbed scenario the 8 Contiki nodes were deployed to create a bal-
anced tree topology in an indoor environment. The distance between each
board is depicted in Figure 5.2, the distance between nodes may have varied
between experiments by a few centimetres.
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FIGURE 5.2: Evaluation Scenario topology

The duration of each execution was 10 minutes, the first 4 minutes were
discarded as a warmup time. In Figure 5.2 the 4 boards that connect to both
nodes 2 and 3 were producing data at different time intervals. The number
of packets per round was the same of the threshold experiment but the com-
munication round time was 120 seconds. Each packet sent had a payload of
2 bytes. All obtained results were computed based on 15 independent exper-
iments. The energy measurements were obtained by the Energest.
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FIGURE 5.3: Energy Consumption

Figure 5.3 depicts the difference in energy consumption between packet
forwarding and data concatenation in nodes 2 and 3. Using the topology rep-
resented in Figure 5.2. Table 5.3 contains the difference between forwarding
and packet concatenation. The values show a decrease in energy consump-
tion up to 14.96% in the case of 24 payloads in a single message.
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TABLE 5.3: Energy difference between Forwarding and Packet
concatenation

Difference Node 2 Difference Node 3 Average difference
6 4.54% 4.99% 4.77%
12 8.06% 7.23% 7.65%
18 10.91% 14.86% 12.88%
24 15.62% 14.30% 14.96%
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FIGURE 5.4: Energy consumption in node 1

Figure 5.4 depicts the difference in energy consumption in node 1. The
difference in energy consumption is up to 3.2% when 24 packets are sent in
each communication round. This value is low, particularly because node 1 is
a bottleneck in this topology. So the energy savings should be higher because
of the difference in the number of sent packets. The cause of this values was
only discovered after performing the experiments in Chapter 6 and will be
discussed later.

5.4 Summary

This Chapter started by presenting the data aggregation techniques that
were implemented. Then a small scale test was conducted to find how many
packet a node had to aggregate to reduce the energy consumption. This test
was redone and the results were different. Those results showed that even
when just 6 payloads were concatenated the energy consumption could be
reduced.
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Chapter 6

Cross layer group-based data
aggregation

This Chapter contains the information regarding the implementation of
the group-based in-network data aggregation solution. Section 6.1 intro-
duces the developed solution and Section 6.2 details the implementation.
Section contains an evaluation and discussion of the results. The chapter
ends with a summary.

6.1 Introduction and Goals

Leveraging previous work presented in Chapter 3, this chapter introduces
the developed in-network data aggregation solution for multi-hop networks.

Typically in an IOT network deployment there are several nodes mea-
suring the same target [33] (e.g. Temperature or humidity). In a multi-hop
network each of those nodes will be producing its own data and forwarding
data received from its neighbours. If several nodes are producing data of the
same type groups of nodes can be formed. Those groups are comprised of
nodes with similar configurations. Figure 6.1 represents two different groups
measuring different targets inside a multi-hop network.
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FIGURE 6.1: Diferrent groups inside the same network

Since the nature of the data exchanged by the elements of the same group
is similar, that data can be subject to aggregation. When one node measuring
temperature receives a packet from other node, also measuring temperature,
that data can be merged together using a mathematical function (e.g. average
value). Now instead of sending 2 packets with temperature values only one
packet is sent. That packet will contain the average temperature recorded
by those two nodes. Several groups can be created inside a network and the
data from those different groups can also be combined to reduce further the
number of messages being sent.

6.2 Solution Description

This section contains the details of the group based aggregation solution.

6.2.1 Objectives

As discussed in the previous Chapter, transmitting and receiving data is
a costly operation in terms of energy. If the number of messages exchanged
inside a network is reduced the radio will be used less often saving power.
The main objective of this data aggregation solution is to save energy by per-
forming in-network data aggregation. That means every node forwarding
packets has the possibility of merging its data with the data it is forwarding.

6.2.2 Requirements

The proposed data aggregation technique requires two things to work.
First some extra information needs to be added to the packet to differentiate
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between different groups. Second, it is necessary to implement an analysis
and decision layer between the IP and UDP layers.

In order to support multiple group aggregation fixed sized units had to
be created. Each of those group units contains enough information about the
data produced by its members. Another fixed unit was also necessary. Its
purpose was to give information about how many group units follow and
if the data produced by that group could be concatenated with other group
units.
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6.2.3 Data units and underlying layer

The data produced by members of the same group is to be subject to in-
ternal aggregation with a mathematical function (e.g. average value). There
is also the possibility of merging together packets from different groups by
concatenating their group units. This reduces even further the number of
packets flowing in the network.

As depicted in Figure 6.2, the data units consists of a 1 byte unit and one
or more 4 byte group payload units. The fixed unit contains information
about whether data from different groups can be concatenated to that packet
and how many group units follow. Each group unit belongs to a different
group.
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FIGURE 6.2: The fixed unit fields

The fields in the fixed unit, shown in Figure 6.2, are defined as follows:

External concatenation (F): 1 bit unsigned integer.A value of 1 indicates that
data from a different group can be appended to that packet. A value of 0 will
mean that packet will be forwarded by members of a different group

Reserved (R): 3 bit unsigned integer. Reserved for future use.

Number of units (NR): 4 bit unsigned integer. This value indicates how
many group units follow, each group unit contains data belonging to one
CoAP group. If one specific group does not allow external concatenation this
value will always be 1.
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FIGURE 6.3: The Group Unit

The group unit, shown in Figure 6.3, contains the data of a single CoAP
group. One message has one or group units. It is defined as follows: GroupID
(GID): 4 bit unsigned integer. Indicates the ID number of the group this unit
belongs to.

Aggregation function (AGGF): 4 bit unsigned integer. This field indicates
the number of the corresponding mathematical function used. (0000) value
corresponds to the MIN function, (0001) corresponds to the MEAN function
and (0010) corresponds to the MAX function, no other values are supported
yet.

Number of values (NR): 8 bit unsigned integer. This value indicates how
many different values were used to produce the value V (e.g. an average of
10 numbers).

Value (V): 16 bit unsigned integer. This field indicates the value of the re-
source being measured (e.g. Temperature or humidity).

The size, in bits, of each of the fields in both the Fixed and the Group Unit
were developed with the basis of measuring targets with a small range of
values. These targets include temperature, humidity, co2 levels and others
that values that fit into 16 bits.
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6.2.4 Decision Mechanism

As referenced in Section 6.2.3 this data aggregation solution relies on both
a light-weight layer and a standard packet.

The light-weight layer is responsible for analysing incoming packets and
deciding if the data can be stored in the buffer to be aggregated. That decision
process relies on the analysis of the fields of the header mentioned above.

Algorithm 2 Decision algorithm
1: Start
2: function NEW_PACKET_ARRIVES(msg)
3: typeCode← parseCode(msg)
4: address← parseAddrs(msg)
5: if isCoAP(typeCode) and notMyAdd(address) then
6: if Inspect_packet(msg) then
7: cancel_forwarding and aggregate
8: else
9: forward_next_layer(buffer)

10: end if
11: end if
12: end function
13:
14: function INSPECT_PACKET( )
15: if packet has my groupID then
16: Aggregate_group (return 1)
17: else
18: if Can I concatenate externaly(F) then
19: if Does the packet allow external concatenation then
20: Aggregate_other_group (return 1)
21: else
22: forward_next_layer (return 0)
23: end if
24: else
25: forward_next_layer (return 0)
26: end if
27: end if
28: end function
29: End

Algorithm 2 shows the decision process behind the group aggregation.
First, in line 2 when the packet arrives it is necessary to check if it is a CoAP
message. If it is and it was not self-produced it is necessary to check the
header to verify if that packet is suitable for data aggregation. In the In-
spect_Packet() function the Fixed Header is checked, the NR field is accessed
to check how many different Group Units have to be inspected. If any of
those Group Units has a GroupID value equal to the nodes, the data is stored
and will be aggregated only to the correct group. The forwarding of the
packet will be cancelled.

If the packet does not have any Group Unit with the same GroupID of the
node, it is necessary to verify if that packet can carry the data from more than
one group and if the data from the node itself can carry it. In the Algorithm
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2, at lines 18 and 19 that verification is made. First the node checks if it can
concatenate its own data. If it can and if that packet allows it the data will be
stored. In the negative case the packet is forwarded.

As an example, one node receives packets from two different groups, both
suitable for external aggregation, as well as the node. When a message is
to be sent the Fixed Header will have an F value of 1 and an NR value of
2 meaning two 4 byte Group Units will follow. Those Group units will be
fulfilled with the data stored in their respective section of the buffer.

6.3 Evaluation

The discussed aggregation method was implemented on a testbed to ob-
tain real-world measurements. In a simulator there are several behaviours
that cannot be accurately represented. Some of those behaviours include the
interference between nodes, the energy drain of the node or packet loss.

RPL Border 

Router
Node 1

Node 2Contiki Node

(ATmega256RFR2-XPRO)

CoAP Traffic

Node 3

2m

2m

2m

2m

2m

2m

80cm

Producer 

nodes

Producer

 nodes

FIGURE 6.4: Evaluation Scenario topology

The testbed scenario is similar to the one used in Chapter 5. In the testbed
scenario the 8 Contiki nodes were deployed to create a balanced tree topol-
ogy in an indoor environment. The distance between each board is depicted
in Figure 6.4, the distance between nodes may have varied between experi-
ments by a few centimetres.

The duration of each execution was 10 minutes, the first 4 minutes were
discarded as a warmup time. In Figure 6.4 the 4 boards that connect to both
nodes 2 and 3 were producing data at different time intervals. The time inter-
vals were 10, 13.2, 20 and 40 seconds. Nodes 2 and 3 were either forwarding
data or aggregating the packets. The communication round time is 120 sec-
onds. When the nodes 2 and 3 produce an aggregated packet the size of the
payload is 5 bytes.
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All obtained results were computed based on 10 independent experiments.The
energy measurements were obtained by the Energest.

6.3.1 Results and Discussion

This section contains the results of the experimental scenario described in
6.3. The metrics gathered were: energy consumption and packet loss.
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FIGURE 6.5: Node 1 energy

Figure 6.5 contains the energy comparison between simply forwarding or
aggregating data. The difference is small, lower than 1,14%. This happens
because although the Border router was configured to have a Channel Check
Rate (CCR) rate of 8Hz, its code turns the Radio Duty Cycling (RDC) protocol
off to ensure a high packet reception. Having no RDC protocol means the
border router is always listening and the packet loss between itself and node
1 is zero.

TABLE 6.1: Packet loss in node 1

Forwarding Group Aggregation
6 6,50% 0,69%
12 7,11% 5,45%
18 5,35% 3,61%
24 11,09 8,14%

Table 6.1 contains the packet loss in node 1. This packet loss is related
to the number of packets sent by nodes 2 and 3. When performing data
aggregation the number of packets is smaller, 6 packets in total, although
the number of values they hold is different. So in order to be able to compare
packet loss, a function that counts the number of values in each packet was
created. This function just accesses the NR field in the group unit and ads its
value to variable. Losing one packet carrying the aggregated data of twenty
four transmissions is different from losing one packet in twenty four. The
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number of lost packets in the last case is high because during one experiment
only 4 packets are received instead of 6.
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(A) Node 2 energy

11000

11500

12000

12500

13000

13500

14000

6 12 18 24

E
ne

rg
y 

C
on

su
m

pt
io

n 
(m

J)

Number of Tx Payloads in each Comm. Round

Forwarding Group	Aggregation

(B) Node 3 energy

FIGURE 6.6: Energy Consumption

Figures 6.6a and 6.6b contain the energy measurement values for each
number of packets. When performing data aggregation nodes 2 and 3 send
packets at every 120 seconds. This time interval is considered a communica-
tion round.

Table 6.2 contains the differences in energy consumption for each node.
As expected, the difference increases when a greater number of packets is
sent trough the network. The average difference in energy consumption is
up to 9.17%.

TABLE 6.2: Energy difference between Forwarding and Group
Aggregation

Difference Node 2 Difference Node 3 Average difference Stdev
6 1.02% 2.39% 1.7% 0.96%
12 1.61% 4.48% 3.04% 2.03%
18 5.47% 7.91% 6.69% 1.72%
24 8.95% 9.40% 9.17% 0.32%
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TABLE 6.3: Energy Consumption by state in node 2

Tx General CPU for
Payloads CPU Tx Rx Group Aggregation

G
ro

up
s 6 96.08% 0.06% 2.89% 0.05%

12 95.53% 1.21% 3.16% 0.09%
18 95.52% 0.65% 3.68% 0.13%
24 93.69% 1.72% 5.06% 0.17%

Fo
rw

ar
d 6 95.19% 1.54% 3.25% n/a

12 94.10% 2.99% 2.90% n/a
18 90.68% 4.06% 5.24% n/a
24 86.18% 6.94% 6.86% n/a

Table 6.3 contains a comparison between forwarding and group aggrega-
tion in node 2. This comparison is based on percentage of energy consumed
by state. So when the number of packets per round is 24 there is notable
difference particularly in CPU and TX percentages. When forwarding the
number of packets forwarded by round is much greater and naturally the
TX state consumes more energy. The energy spent in the RX state is similar
in both cases. Table 6.4 contains the packet loss at node 2. The difference
between both sets of values is not very high.

TABLE 6.4: Packet loss in node 2

Forwarding Group Aggregation
6 3.33% 1.66%
12 1.11% 2.77%
18 0.18% 0.55%
24 5% 2.91%

Table 6.5 contains a comparison between forwarding and group aggrega-
tion in node 3. The values are similar to the ones of node 2. The difference in
the values is not very significant.

TABLE 6.5: Energy Consumption by state in node 3

Tx General CPU for
Payloads CPU Tx Rx Group Aggregation

G
ro

up
s 6 96.02% 0.99% 2.93% 0.05%

12 95.04% 0.95% 2.93% 0.09%
18 95.43% 1.03% 3.40% 0.13%
24 94.64% 1.74% 3.44% 0.17%

Fo
rw

ar
d 6 93.81% 2.48% 3.70% n/a

12 91.07% 4.17% 4.74% n/a
18 88.60% 5.84% 5.53% n/a
24 86.71% 7.71% 5.68% n/a
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Table 6.6 shows the packet loss of node 3, again these values are similar
to the ones of node 2.

TABLE 6.6: Packet loss in node 3

Forwarding Group Aggregation
6 3,33% 1,66%
12 1,11% 2,77%
18 0,18% 0,55%
24 5% 2,91%

The obtained results clearly show improvement in energy consumption.
As expected the improvement increases with higher traffic rates. The results
of nodes 2 and 3 are similar both in terms of energy consumption and packet
loss.

The results from node 1 show that being closest to the border router does
not always mean higher energy consumption. This is mainly due to the
router keeping the radio permanently in the receive state. If the experiment
had a higher number of hops the energy savings should be even higher be-
cause of the reduction in the traffic rate.

6.4 Summary

In this Chapter the Cross layer data aggregation technique was presented.
This technique consisted in creating a light-weight layer to parse incoming
packets and extra information to the packet itself to distinguish between dif-
ferent groups. A test scenario similar to the one used before was deployed.
The results also showed that this aggregation reduced the energy usage de-
spite not being the optimal test scenario. This group-based mechanism is
expected to benefit from a scenario where a greater number of nodes is in-
volved.
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Chapter 7

Project Management

This chapter describes the activities that took place in the first and second
semester. Each subsection contains the expected tasks to be performed and
the actual tasks performed.

7.1 First Semester

The work during the first semester consisted mainly of research for the
state of the art and preliminary experimental work. The next two Gantt
charts present the proposed schedule and the effective schedule.

• Task 1: Research state-of-the-art in IOT communications

• Task 2: Research state-of-the-art in energy efficiency/data management

• Task 3: Characterization of dense IoT environments in terms of energy
consumption, reliability and scalability

• Task 4: Specification of the mechanisms for energy-efficient, reliable
and scalable IOT communications in dense scenarios

• Task 5: Writing of first semester report
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2016 2017

September October November December January

Task 1

Task 2

Task 3

Task 4

Task 5

FIGURE 7.1: Proposed first semester plan

The actual tasks carried out during the first semester were different from
those initially proposed. They are listed bellow:

• Task 1: Research about IOT operating systems

• Task 2: Research about IOT deployments

• Task 3: Research about energy efficiency in IOT networks

• Task 4: Research about data aggregation techniques

• Task 5: Installing Contiki on the hardware

• Task 6: Experiments with radio and overall tests with the hardware

• Task 7: Data aggregation implementation and testing

• Task 8: Writing of the first semester report
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FIGURE 7.2: Effective first semester plan



Chapter 7. Project Management 43

7.2 Second Semester

This subsection also contains the planned work schedule and the effective
that took place during the second semester. There were some changes to the
proposed schedule as well as some delays.

The proposed schedule was the following:

• Task 1- Implementation of the first version of the group communica-
tions (06/02/2017 - 24/03/2017): This task starts by finishing the issues
from the previous semester. This includes correcting the internal clock
deviation and implementing the payload aggregation. Then the work
will begin on the practical scenario. An aggregation module will be
developed and include the necessary functions to perform the different
types of aggregation. A separate module with energy statistics will also
be included and its task will be to measure the energy spent on each
state (Transmission, Listening, Sleep and Active) by using the Energest
[7].

• Task 2- Evaluation of the mechanisms created in the previous task
(27/03/2017 - 7/04/2017): In this task the previously created mechanisms
will be tested on the testbed and the results evaluated. The test sce-
narios include one where no aggregation is performed and one with
varying traffic rates and different network topologies. The aggregation
parameters will be tuned across several runs of the experiment to mea-
sure their impact across the selected metrics mentioned in the previ-
ous chapter. The results from the testbed will then be analysed against
assumption, such as, is the number of packets received at the border
router much smaller when the nodes are performing aggregation. The
conclusions withdrawn from those experiments will then be used to
improve and modify the testbed.

• Task 3- Specification of enhancements to the mechanisms developed
in the first phase (10/04/2017 - 19/05/2017 ): This task will be largely
dependant on the results of the last. Firstly the mistakes found when
evaluating the testbed will be fixed, this task can include changes to the
code, the addition of new parameters or changes in topology.

• Task 4- Evaluation of the enhancements to the basic mechanisms
(22/05/2017 - 9/06/2017 ): This evaluation will take into account all the
results from previous tasks. First the topologies will be specified, then
the number of groups, the duration of the experiments, the traffic inter-
val, the type and size of the messages, the type of internal aggregation
function, the maximum length of the aggregated payloads. Other pa-
rameters will be added according to previous runs of the experiments.
Then the results will be evaluated accordingly.

• Task 5- Scientific paper writing (7/04/2017 - 9/06/2017 ): In order to
contribute to the ongoing work with data aggregation, this work will
be compiled into a scientific paper to present to the community.
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• Task 6- Writing of the final report (7/04/2017 - 30/06/2017 ): This report
will include a fully detailed version of every step taken to complete this
work. It will encompass all the materials consulted and produced along
this thesis.

2017

February March April May June

Task 1

Task 2

Task 3

Task 4

Task 5

Task 6

FIGURE 7.3: Proposed second semester plan
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The effective plan fulfilled during the second semester was the follow-
ing:

• Task 1- Clock validation (13/02/2017 - 17/03/2017 ): This task was nec-
essary in order to be able to use the Energest as it relies on tracking the
time spent on different Radio and CPU states. This validation included
finding out the issues that caused the clock drift, fixing them and then
running some tests to measure the clock drift.

• Task 2- Energest validation (20/03/2017 - 03/04/2017 ): With the clock
measuring the correct time, to use the Energest it was necessary to mea-
sure energy consumption on each state. Then tests needed to be run to
check if the values reported by the Energest were close to those mea-
sured with the P401r board.

• Task 3- Testbed preparation (10/04/2017 - 5/05/2017 ): This task in-
volved defining parameters and adjusting variables for the testbed. This
included adjusting CoAP parameters, defining topologies, traffic rate
,payload size and warmup time and test duration.

• Task 4- Testing first aggregation scenario (8/05/2017 - 19/05/2017 ): This
task consisted of testing the aggregation scenario with the parameters
defined in the previous. A paper was also written with the results.

• Task 5- Defining, implementing and testing the Group based aggre-
gation layer (22/05/2017 - 16/06/2017 ): This task consisted in develop-
ing the CoAP header extension and modifying the underlying layer to
support the CoAP groups.

• Task 6- Writing final report (22/05/2017 - 16/06/2017 ): This task repre-
sents the writing of the final report. All the work performed, the results
and the final conclusions were compiled in this document.
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FIGURE 7.4: Effective second semester plan
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Chapter 8

Conclusions and Future work

This work contains several contributions worth mentioning. First the
testbed was prepared. This involved finding a method to measure the en-
ergy consumption. The Energest was a candidate but measurements had to
be performed to ensure it was accurate. Test were performed that showed
the error was within acceptable parameters.

Then a testbed experiment was set up. This experiment compared two
scenarios, one where data was simply being forwarded and other where data
was aggregated. This showed application level aggregation can have signifi-
cant energy savings. The energy savings in this experiment were up to 14.9%.
The results of this experiment were submited to The 20th ACM International
Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
(MSWiM 2017).

Then a group-based data aggregation was developed and tested. This
method of performing data aggregation relied on the creation of groups with
similar properties. This method of data aggregation achieved up to 9.4%
in energy savings. In this experiment node 1 showed little improvement,
mainly because it was sending its data to a router that was permanently lis-
tening. If the topology contained a higher number of hops the savings could
be even higher.

For future work larger scenarios should be tested with different topolo-
gies. As the network density increases the ability to reduce, even by a few
percent, the number of messages can generate significant energy savings.
Taking into account that sometimes nodes are deployed for several weeks
those savings can add up to a significant time increase.
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Appendix A

Appendix A

This Appendix contains the paper submitted during the development of
this thesis.
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1 INTRODUCTION

Energy e�ciency is a major concern within the context of
the Internet of Things (IoT). Data aggregation has been
applied to reduce energy consumption, with special focus on
periodic many-to-one tra�c, which is common in applications
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such as smart metering and building monitoring. With such
approach it is possible to reduce the amount of messages
generated by these applications. However, traditional data
aggregation reduces the accuracy of the collected information.
In most solutions, the data-receiver entity has only generic
information about the network, since data aggregation resorts
to statistical functions on the data (e.g. Maximum, Minimum,
Sum, and Average). Thus, it is still a challenge to reduce the
energy consumption of IoT communications while keeping
data accuracy.

This paper presents an approach that is able to reduce
the energy consumption and also maintain the accuracy of
the collected data. The proposed solution, named Messaging
mULTIple Payloads LayEr (MULTIPLEx), allows the low
power nodes to produce messages with multiple payloads
when the node is producing its own messages or forwarding
messages. MULTIPLEx assembles messages with multiple
payloads to exploit the fact that most of the periodic many-to-
one tra�c in IoT environments is composed by payloads that
correspond to less than 10% of the whole message. Besides,
MULTIPLEx is able to reduce the energy consumption of
the nodes without reducing the data accuracy, since the
content of all payloads is preserved. The paper is structured
as follows. Section 2 and 3 introduce the related work and
MULTIPLEx. Section 4 presents the real implementation
and the performance evaluation experiments. Section 5 shows
the conclusions and future works.

2 RELATED WORKS

The idea of inserting many payloads inside the same message
is also proposed by Stasi et. al [4] and Tsitsipis et. al [3].
Although these solutions were not implemented for IoT pro-
tocols, they show that a network can significantly improve
the communication e�ciency by transmitting messages with
several payloads combined. Stasi et. al [4] propose a layer
that extracts all payloads at every communication hop and
decides whether the extracted payloads should be inserted
again in a single message or not. This solution allows the
network to improve throughtput, but does not improve the
energy consumption. Tsitsipis et. al [3] propose an approach
in which a node inserts all the payloads received from the
neighbors inside a single message, but it also inserts self-
produced data on the payload until the new message reaches
the maximum payload size. Thus, the solution proposed by
Tsitsipis et. al improves the energy spent on message headers,
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but it does not reduce energy consumption because every
created message has the same payload size. On contrary of
the works presented by Stasi et. al and Tsitsipis et. al, MUL-
TIPLEx is proposed for IoT protocols with the objective of
reducing the overall energy consumption of the nodes.

In the literature, controlling the number of payloads is
related to data aggregation approaches. In most cases, as pre-
sented by Becchetti et al [2] and Li et al [8], data aggregation
solutions are designed to reduce to one all the payloads re-
ceived during a time interval. To compute the single payload,
these solutions use simple mathematical functions, such as
maximum, minimum, average, or sum. In these solutions, the
data accuracy is largely reduced, since the final destination
receives one payload for the entire network.

Riker et. al [9] present a solution considering multiple
groups on the network, named Two-Tier Aggregation for
Multi-target Application (TTAMA). This solution aggre-
gates the payloads using a simple mathematical function
while the payloads are transiting inside a group. Outside
groups, all the payloads are preserved, creating messages
with multiple payloads. However, the cost to create the multi-
ple payload messages is not considered. In addition, TTAMA
is not evaluated on real devices.

Harb et. al [5] present an approach implemented and eval-
uated on real devices that performs two types of procedures:
one is executed by the nodes and the other is performed by the
cluter heads. On the nodes, the sensed data is summarized
using statistical functions to avoid payload transmissions
with raw data. On the cluster-heads, this solution applies
algorithms to reduce the similarities found on a large set of
payloads. One important drawback of this solution is that in
some cases it reduces the data accuracy in 33.8%.

Ishaq et. al [7] present a real implementation of a messaging
approach designed for periodic communication of multiple
Constrained Application Protocol (CoAP) nodes. In this
solution, the gateway aggregates all the CoAP messages
received from the nodes, sending a single CoAP message
to the final destination. However, in this solution, only the
gateway is able to send messages with multiple payloads on a
single message, so it does not improve the energy consumption
of the low power devices.

In summary, MULTIPLEx advances the related works in
the following aspects: (i) it is designed, implemented, and eval-
uated considering a stack of IoT protocols; (ii) the proposed
solution is able to reduce the overall energy consumption of
the low power devices without reducing the data accuracy;
(iii) the implementation of the proposed solution is cost e↵ec-
tive on a real testbed and considers the real costs to execute
the proposed approach.

3 MESSAGING MULTIPLE PAYLOADS
LAYER

This section describes the generic ideas of the proposed solu-
tion, named Messaging mULTIple Payloads LayEr (MULTI-
PLEx). As Figure 1 shows, MULTIPLEx stores in a bu↵er
the application messages received from the neighbors and

also the self produced messages. The application messages
are only stored if the node is not the final destination of the
message. A timer is set periodically to verify if the MUL-
TIPLEx criterion has been satisfied for issuing a multiple
payload message. In case the criterion is positively verified,
the payloads are extracted and information can be added
to each individual payload, such as node id, data-type or
timestap. Then, the extracted payloads are inserted as a
bulked payload into a new application message. In case the
criterion has not been satisfied, MULTIPLEx does not change
any information in the messages. In both cases, the resulting
messages are forwarded to the appropriate layer.

2
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Figure 1: MULTIPLEx overview

MULTIPLEx can be designed with di↵erent criteria to
decide if a new message will be created with multiple payloads
or not. In this paper, MULTIPLEx applies a simple, but
e↵ective criterion for this decision. The decision is based on a
threshold, called �, which is related to the number of stored
messages. When the timer expires, MULTIPLEx counts the
number of messages in the bu↵er. If this number is equal or
greater than �, then a new multiple payload message will be
produced. Otherwise, all messages are preserved.

The decision based on the number of received messages
is justified by the fact that the extraction and assembly
operations demand a considerable amount of processing and
energy resources. Therefore, MULTIPLEx is designed to
perform these operations when the energy savings due to the
message header suppression payo↵ the costs.

4 EXPERIMENTAL CASE STUDY

This section presents a case study where MULTIPLEx is
implemented on real Contiki devices. Section 4.1 presents
the system and the hardware. Section 4.2 shows the details
of the MULTIPLEx implementation in Contiki. Section 4.3
describes the real measurements used to set the parameters of
the energy consumption software. Section 4.4 and 4.5 present
the tuning study for threshold � and the obtained results in
the testbed, respectively.
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4.1 System and Harware Specifications

MULTIPLEx can be applied to di↵erent IoT application pro-
tocols, for instance CoAP [10] and Message Queuing Teleme-
try Transport (MQTT) [1]. For this case study, CoAP has
been selected as the application protocol because it supports
natively many-to-one tra�c and has the “observe” option
that enables a client to receive data periodically.

Contiki has been selected as the operating system. Some
reasons that motivated this choice are: (i) Contiki provides
stable open-source version of the IEEE standard protocols;
(ii) it has a large community of developers; and, (iii) it is
designed for several low-energy hardware platforms.

Regarding the hardware, the Contiki nodes run on the
ATmega256RFR2-XPRO board1. It has a 16 MHz Micro-
Controller integrated with a 2.4Ghz transceiver, 256 KBytes
of flash, and one temperature sensor.

4.2 Implementation of MULTIPLEx

MULTIPLEx is implemented on Contiki as a light-weight
layer, located between the Internet Protocol (IP) and the
User Datagram Protocol (UDP) layers. MULTIPLEx was
implemented between these layers in order to verify the
destination IP address of every message received from the
neighbors. This verification is necessary because payloads
are extracted for the creation of new CoAP messages if the
message has not reached the final destination. For the case of
a CoAP message arriving from the UDP layer, MULTIPLEx
assumes that this message has been produced by the node
itself, so it does not extract the payload from this message.

Algorithm 1 shows the main logic executed by MULTI-
PLEx when a new packet arrives from the IP layer and also
presents the algorithm executed when the timer triggers the
decision of creating a new multiple payload message.

Algorithm 1 MULTIPLEx algorithm

1: Initialize: threshold
2: Start
3: function new packet arrives(msg)
4: typeCode  parseCode(msg)
5: address  parseAddrs(msg)
6: if isCoAP(typeCode) and notMyAdd(address) then
7: bu↵er(msg)
8: if timer not set() then
9: set timer()

10: end if
11: end if
12: end function
13:
14: function timeout callback( )
15: msg num  count msg(bu↵er)
16: if isGreater(msg num, threshold) then
17: payloads data  extractPayloads(bu↵er)
18: new coap  assembly new coap(payload data)
19: forward next layer(new coap)
20: else
21: forward next layer(bu↵er)
22: end if
23: end function
24: End

In Algorithm 1, from line 3 to 12, MULTIPLEx implements
a simple bu↵er for messages arriving from the IP layer and

1http://www.atmel.com/tools/atmega256rfr2-xpro.aspx

sets a timer. In lines 14 to 23, MULTIPLEx decides if it
will create a new CoAP message having multiple payloads.
Depending on the number of stored packets on the bu↵er,
the creation of a multiple payload message is cost-e�cient
or not. For this reason, it is necessary to set the threshold �
with an adequate value.

4.3 Calibrating the Contiki’s Energy Tool

Contiki contains an Energy Consumption Tool, called En-
ergest, that is able to estimate how much energy a node has
consumed. Energest uses a Contiki service that maintains
a table with the total time the CPU and transceiver have
been active. This service produces time stamps when the
component is turned on and o↵. Having these time stamps,
it is possible to estimate the energy consumption of the node,
as presented in Equation 1.

E

V
= Imtm + Ittt + Irtr (1)

In Equation 1, tm, tt, and tr are the time the micro-
controller is in the following states: active, transmitting, and
receiving, respectively. Besides, the set of constants {Im,
It, Ir} represents the electrical current necessary to run
each of these states. To achieve an accurate estimation of
the total energy consumption via Energest it is necessary to
calibrate the values of the set {Im, Il, It, Ir}. This calibration
was performed using a two step methodology. First, real
measurements were performed on the Contiki devices to find
the electrical current in each state. Second, the total energy
consumption estimation provided by Energest was compared
to the real measurements.

The MSP432 P401R2 board was used to measure all the
real current energy consumption of the ATmega256RFR2-
XPRO boards. The P401R board can measure the amount of
energy consumed and the electrical current of a target board
with a resolution of 2kHz.

4.3.1 Current Measurements of the States. The energy
states have been measured in 10 di↵erent ATmega256RFR2-
XPRO boards and executed twice for each board. Each test
lasted 10 minutes and the first two minutes were considered
as a warm-up period. Table 1 shows the obtained values of
the current for each state.

Table 1: Current Measurement of the States

State CPU Transmission Reception

Electrical Current 9.32 mA* 21.44 mA 15.49 mA

*This measurement includes idle and active.

CPU measurements were performed running Contiki with-
out entering in low power mode, since this version of Contiki
is not stable when ATmega256RFR2 is in low power mode.
The result for CPU is the average electrical current for the
whole period of the experiment, in which the transceiver is
turned o↵ and the CPU can be active or idle.

2http://www.ti.com/lit/ug/slau597c/slau597c.pdf
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4.3.2 Real vs Estimated Energy Consumption. Table 2 shows
the real and the estimated energy consumption reported by
the P401R board and the Energest, respectively. For these
tests, 10 boards were subject to three separated executions
of 1 hour of operation, which comprises the transmission to
a border router of one CoAP message every 30 seconds. The
error column in Table 2 shows in percentage how much the
estimated energy is di↵erent from the real measurements.

Table 2: Total Energy Consumption

Error Error
Board Real Energest (%) Board Real Energest (%)
1 112707.3 115272.3 2.28 6 109282.3 113216.6 3.60
2* 125105.1 127952,3 n/a 7 113827.7 113929.6 0.20
3 108492.0 114006.3 5.09 8 111921.7 114646.3 2.44
4 108710.0 114345.0 5.19 9 109843.7 114412.0 4.16
5 111113.0 114455.0 3.01 10 111296.3 114086.0 2.50

Avg 110799.3 114263.2 3.16

*Outlier.

Hurni et al [6] present measurements related to the calibra-
tion of the Contiki’s energy consumption tool. The obtained
average error value of 3.16% is compatible with the error
interval presented by Hurni et al.

4.4 Preliminar Study of Threshold �

The objective of this study is to determine the threshold
�, which is the minimum number of payloads on a message
able to be cost-e�cient in terms of energy consumption. The
study of the threshold � was conducted using four nodes: 1
node running MULTIPLEx, 2 nodes that inject CoAP tra�c,
and 1 receiver node. For comparison purposes, the standard
CoAP has been evaluated in the same scenario. Standard
CoAP produces messages containing only a single payload
and forwards all the received messages from the 2 injector
nodes. Figure 2 shows the obtained results, considering a
communication round of 120 seconds.
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Figure 2: Threshold �

As can be seen in Figure 2, MULTIPLEx has a lower
energy consumption if the number of payloads in the message
is equal or greater than 12. Otherwise, it is more e�cient to
use the standard CoAP, in which the messages have a single
payload. The main reason MULTIPLEx does not payo↵ for
less than 6 payloads is related to the cost of extracting and
producing a new message.

4.5 Experimental Evaluation and Results

To evaluate the energy consumption of MULTIPLEx, a
testbed composed of 8 Contiki nodes was used. As depicted
in Figure 3, the 8 Contiki nodes were deployed to create
a balanced tree topology in an indoor environment. The
experiments were conducted to evaluate MULTIPLEx and
the Standard CoAP solution under the same settings. The
following set of protocols were used: CoAP, UDP, 6LowPAN,
RPL, ContikiMac, and IEEE 802.15.4. All obtained results
were computed based on 15 independent experiments. Each
experiment lasted for 10 minutes, and the first 4 minutes
were defined as the warm-up internal. The measurements
were obtained by the Contiki’s Energy Consumption Tool
(see Section 4.3).

Figure 3: Testbed Topology

The final destination of all injected CoAP messages is an
external computer, which is connected to the border router
and runs a tra�c capture software to collect the received
messages. Table 3 presents additional seetings used in the
experimental evaluation.

Table 3: Settings of the Real Experiments

Setting Value

MULTIPLEx Threshold 12 Payloads

Application Protocol CoAP

Single Payload Size 2 Bytes

MAC Protocol ContikiMac

ContikiMac Channel Check Freq. 8hz

Wireless Technology IEEE 802.15.4

Communication Round Interval 60 sec

Among the 8 nodes, 1 node is the border router, 1 node
acts as parent for the rest of the network, 2 nodes execute
the MULTIPLEx code, and 4 nodes inject CoAP messages
in the network. The parent node is set to forward the CoAP
messages received.

Figure 4 presents the average total energy consumption
and the standard deviation for di↵erent numbers of CoAP
payloads. In Figures 4a and 4b, the results show the energy
consumption of the two MULTIPLEx nodes. Regarding these
results and for all measured cases, MULTIPLEx has the
lowest energy consumption. The improvement is 14.85% for
the case of 24 payloads in a single message.

In Figure 4c, the obtained energy consumption corresponds
to the node that acts as parent for the MULTIPLEx nodes.
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(b) MULTIPLEx Node 2
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Figure 4: Energy Consumption

In this set of results, MULTPLEx is more cost-e↵ective in the
case of 18 and 24 payloads. This figure shows that MULTI-
PLEx also improves energy consumption of the parent node,
since this node forwards less CoAP headers.

Table 4 shows the average energy consumed in each state
of the MULTIPLEx nodes. In these results it is possible
to measure how MULTIPLEx changes the energy spent on
Transmission, Reception, General CPU operation, and also
it presents the CPU demanded by MULTIPLEx.

Table 4: Energy Consumption

Tx General CPU for

Payloads CPU Tx Rx MULTIPLEx

M
U

L
T

IP
L
E

x 6 95.50% 1.09% 3.36% 0.03%

12 94.80% 0.97% 4.14% 0.07%

18 93.30% 1.16% 5.41% 0.11%

24 89.40% 1.41% 9.03% 0.14%

S
ta

n
d
a
rd

6 91.32% 2.97% 5.70% n/a

12 88.20% 6.06% 5.73% n/a

18 83.27% 6.21% 10.51% n/a

24 78.90% 9.46% 11.63% n/a

The results in Table 4 show that MULTIPLEx compared
to the standard CoAP solution increases the energy spent
by the CPU. However, the MULTIPLEx CPU consumption
is cost-e↵ective, since the saved energy on Transmission and
Reception is greater than the energy consumed to execute
MULTPLEx. Another advantage of MULTIPLEx is that it
preserves the content of the payloads, which means that the
data accuracy is not reduced.

5 CONCLUSIONS AND FUTURE
WORKS

This paper presents the Messaging mULTIple Payloads LayEr
(MULTIPLEx) solution, which is able to assemble messages
with multiple payloads. MULTIPLEx exploits the fact that
most of the periodic many-to-one tra�c in IoT applications

has small size payloads. The experimental evaluation con-
ducted in real Contiki devices shows that the energy gain
of MULTIPLEx is up to 14%, without reducing the data
accuracy, since the content of all payloads is preserved.

In future works, a new criterion will be implemented in
MULTIPLEx in order to improve the decision of assembling
messages with multiple payloads. The new criterion will
consider delay and the number of children nodes. Besides,
MULTIPLEx will be evaluated in a larger testbed.
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