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With the ubiquity of access to the global network, threats to computer systems have in-
creased exponentially. The sheer amount and width of attack vectors make Cyber Se-
curity a focus of research and development, trying to minimize risk to individuals and
corporations’ technological assets.

A means to get a sense of how systems are behaving is the generation of events based
on their current status and behavior, whether by the systems themselves or by outside
sources.

However, the amount of events generated has increased exponentially as more and
more resources and technologies are made available and used worldwide. Security Op-
erations Center (SOC) teams were initially responsible for gathering, parsing and acting
upon events as they arrived, but have recently become a bottleneck, as their manpower
pales in comparison to the thousands of incoming data entries, possibly from multiple,
highly diverse sources.

To solve that problem, and aid incident response teams, development of monitoring
and analysis platforms has been a focus of Cyber Security experts. Not only can they
help by making data presentable, they can also process, analyse and enrich it, creating
new information from a multitude of originally "loose" events.

This project aims to add value to one such platform. Portolan, a Dognædis product,
is a security monitoring platform outfitted for gathering and enriching data from mul-
tiple independent sources, formatting it into an uniform data model. Portolan gathers
events from external sources in order add more context to internal security events. This
document details the planning, implementation and evaluation of a module capable of
Complex Event Processing, creating complex events from the data already gathered by
Portolan.
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Objective Cyber Intelligence

por Pedro STAMM

A ubiquidade de acessos á rede global levou a um aumento exponencial do número de
ameaças a sistemas digitais. A vasta quantidade e diversidade de vectores de ataque
tornaram a área de Ciber Segurança um foco de pesquisa e desenvolvimento na tentativa
de minimizar riscos para recursos digitais empresariais e de consumidores.

A geração de eventos para catalogar acções e interações de sistemas tornou-se um dos
principais meios de perceber e monitorizar tanto o estado actual como o comportamento
a longo prazo.

A utilização e disponibilização de cada vez mais recursos e tecnologias causou o au-
mento do volume de eventos gerados. As equipas de Segurança e Resposta a Incidentes
que eram responsáveis for reunir, analisar e responder á chegada de Eventos não con-
seguem responder aos milhares de pontos de dados de diversos sistemas e tipos que
recebem apenas com recursos humanos.

Para resolver esse problema e ajudar Equipas de Resposta a Incidentes, desenvolver
plataformas de monitorização e análise de dados tem sido um foco de profissionais na
área de Ciber Segurança. Não só ajudam a apresentar os dados recolhidos, como os
conseguem processar, analisar e enriquecer, gerando nova informação com vista global a
partir de Eventos originalmente isolados.

Este Projecto serve para acrescentar valor a uma dessas plataformas. O Portolan, pro-
duto da Dognædis, é uma plataforma de monitorização de segurança com o objectivo
de reunir e enriquecer dados de múltiplas fontes externas e formatá-los para um mod-
elo de dados uniforme, com o objectivo de adicionar mais informação ao contexto de
segurança interna da empresa cliente. Este Documento detalha o processo que levou ao
planeamento, implementação e avaliação de um novo módulo para o Portolan capaz de
Processamento de Eventos Complexos.
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Chapter 1

Introduction

1.1 Overview

Currently, great amounts of information are produced by users, systems and orga-
nizations all around the world. That data, both from open and private sources, can be
harnessed for CyberSecurity Intelligence in the form of events to aid decision making
and operational activity.

One such example is Portolan, a Cyber Security platform developed at Dognædis,
which uses event producers to gather data from specified sources into the system accord-
ing to an uniform data model. Once in the system, events are then made available for
examination. Portolan makes use of a modular architecture, with components that can
be swapped in and out according to need.

Portolan distinguishes itself from similar products by focusing on data collected from
external, publicly available sources, such as blacklists, pastebins and vulnerability re-
ports. It uses that information to help provide the Users with a broader security context
of their infrastructure and systems.

However, the sheer amount of data gathered makes it impossible to depend solely
on manpower to filter, relate and act. Moreover, events are gathered as simple events,
which means that relations between them have to be inferred manually. As such, there
is a need for means to quickly and effectively process, correlate and present data gath-
ered, reducing workload and allowing better decision-making and faster responses by
the users.

This Project aimed to develop a new module for Portolan capable of High Volume
Data Processing. The new module is capable of ingesting the Event Stream and process
it record by record, delivering results in near real-time. That involved choosing compo-
nents capable of high throughput ingesting, distributing and processing.

Since the data to be produced is a type of Operational Intelligence, the Data Pro-
cessing paradigm most adequate is Complex Event Processing. Care was taken during
the research phase to ensure that the CEP Module is capable of several kinds of high
performance stateful computation, such as pattern matching and using Time Windows,
natively. The features afforded by this paradigm can be used to develop new ways of cor-
relating events, making use of complex structures and processing topologies. It also adds
the capability of processing events from multiple sources (which can be both external and
internal to the client’s system), which is of vital importance in incident prevention and
response.

Data is presented to the user through a new Django App added to the existing Por-
tolan Django Web UI. In accordance with the nature of this project, it is completely mod-
ular and can be added and removed with no functional side-effects to the rest of the
Interface.
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A DataStream was developed for validation capable of filtering and aggregating Events
through their IP and Domain name. This Datastream was used to study and apply DataS-
tream optimizations, the functionalities offered by the Processing Engine’s API, produce
results to aid in developing the User Interface and test the overall system’s performance.

Finally, the system’s compliance with the Requirements was validated, leading to
acceptance of the resulting system.

1.2 Context

This section details the context in which this document and internship are inserted,
with the objective of introducing the preexisting environment. The theoretical concepts
introduced here are further detailed in Chapter 4.

1.2.1 Dognædis

The internship is hosted at Dognædis[9], a company headquartered in Coimbra fo-
cused on information security. The company is a spin-off formed by a team of researchers
from CERT-IPN who, after five years of activity, formed it as a private entity.

FIGURE 1.1: Dognædis logo

Dognædis continues the work started at CERT-IPN, maintaining a focused effort to
advance and innovate information security in private and public entities, all the while
maintaining a strict commitment of excellence in services and products provided for
clients.

That mission statement is in accord with the etymology of Dognædis:

• Dognitas: Quality

• Aedis: Place, Temple

While the business model is focused on offering a number of security services such
as audits, software assurancea and network and design management, Dognædis also
develops products internally.

1.2.2 Portolan

Portolan is an Enterprise Security Intelligence platform developed at Dognædis meant
to be integrated with existing infrastructure. It is leveraged by real-time and cognitive
data analysis engines and directed towards providing decision support for Cyber Secu-
rity.

It is based on three main concepts:

• Integration: Portolan is modular by design, allowing the platform to be adjusted
to the user’s necessities and evolve according to advances in technology without
compromising existing features.
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FIGURE 1.2: Portolan logo

• Independence: The platform is source independent. That means that it is capable
of acting on data gathered from heterogeneous sources (ex: Social Media, IRC Net-
works, Monitoring systems) by event producers that adapt the data collected to the
Data Model used by the system.

• Pro-Activity: Portolan’s goal is to prevent security incidents by serving as a tool for
both operational decision support and automatic response.

It is a sibling of IntelMQ, an open-source project that aims to process multiple data
feeds (pastebins, social media posts) through a message queue.

The feature of interest to this dissertation that Portolan provides is the monitoring
of data from multiple different sources (pastebins, blacklists, security events produced
and made available by public and corporate systems) based on the similar functionality
offered by IntelMQ.

Data is gathered, processed and fit into a defined Data Model by a pipeline composed
of multiple nodes that outputs data gathered as events. The events generated can then
be consulted in Portolan’s dashboard.

This internship focuses on the planning and development of a Complex Event Pro-
cessing module for Portolan capable of correlating the events generated by the previously
mentioned feature through the identification of event patterns and generation of complex
events.

1.2.3 Complex Event Processing

Complex Event Processing is considered a subcategory of Event Stream Processing,
since both are used to extract extra information from events and operate over an un-
bounded event stream.

Instead of being focused on high throughput and simple operations, Complex Event
Processing engines offer more complex functionalities to allow them to enforce rules
meant to identify event patterns and analyse incoming data while maintaining state, such
as streaming windows and aggregations.

Due to the flexibility required for this project and the usage of a custom data model,
Complex Event Processing was considered the ideal approach, as is further explained in
Chapter 4.

1.3 Problem Statement

This product serves to fulfill a need identified by Developers and Users of Portolan.
That need is further detailed in this chapter, along with the objective of the Project.

1.3.1 The Problem

Portolan is currently capable of gathering, standardizing, storing and querying secu-
rity events obtained from multiple and diverse kinds of data sources, both public and
private (ex: pastebins, blacklists, enterprise monitoring systems). However, it lacks the
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capability to further process and correlate events as a whole, leaving that work to the
operators themselves.

With the amount of data received reaching the thousands at a time, using sheer man-
power to keep track of every incoming event in an attempt to filter and identify patterns
or notable situations is becoming a bottleneck. The density of events makes it difficult for
users to take full advantage of the data gathered by the system.

That means that a technological solution capable of operating and correlating the
incoming events as they arrive according to specified patterns is required. The imple-
mentation of such a system would result in reductions in overhead and an expanded
understanding of the data, allowing the user to take full advantage of the system as a
monitoring platform for operational decision support. Furthermore, it would reduce the
time spent by operational team members in incident triage phases, speeding up response
times.

1.3.2 Objective

The core objective of this project is to research, plan, implement and test a new mod-
ule for the platform capable of processing the events gathered, enriching and correlating
them by identifying event patterns and giving the platform the capacity to actually ana-
lyze the data it gathers.

Portolan innovates by focusing on processing events gathered from outside sources,
incentivizing a new paradigm of sharing and gathering security information from the
outside organizations. Processing and correlating them can add new information and
context to a preexisting security infrastructure, some of which could be outright unob-
tainable by smaller teams.

From an implementation standpoint, while visualization is an important part of the
end result, the most important aspect is the actual capacity to analyze and correlate
events as they arrive. Since the platform already works based on events, taking advan-
tage of the Complex Event Processing (CEP) paradigm is a natural fit. That means that a
CEP-capable engine will be required, both due to the need to process events and ensure
high throughput.

From a business standpoint, this project marks the initial exploratory steps of Portolan
becoming a Platform as a Service (PaaS). Given that incident response teams are usually
understaffed when it comes to dealing with medium or large incidents by themselves,
offering Portolan as a service (even just partially) is an interesting business opportunity.
Since it works based on a Feed model, this module can provide invaluable information
for entities with weak security processes or small security teams.

1.3.3 Scope and Breakdown

The majority of this project is focused on the architectural design and adequacy of
the technologies chosen, which means much effort was spent researching and learning
existing solutions and technologies, deploying the chosen components in the available
environment, configurating them to comply with the requirements, listing best practices
and validating their inclusion through compliance with the Requirements. The theoret-
ical study of usefulness of the DataStreams used by the system to process and correlate
events is not a core component of the Internship.

The CEP Module must be capable of handling and processing the data gathered by
the event producers already in use by Portolan. It must enable the extraction of additional
context from the event Stream and any data contained in them through rules or sequences
of processing steps.
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Components used by the CEP Module that are already used by Portolan are consid-
ered production-ready and, unless strictly necessary, their configuration is unchanged.

The resulting system must be capable of presenting data to the user in an under-
standable fashion. This need can be translated into two objectives: the relations between
events are established and clearly shown to the User, and the User must be capable of
querying for events generated by the system. This entails the development or extension
of the existing User Interface to search through the resulting data.

Developing a solution based on Machine Learning is not part of the Problem State-
ment. While it would be useful for Pattern Identification and Matching, the CEP Module
also serves to process events in a stateful manner to extract more information from the
event Stream as a whole according to the needs of the SOC.

Lastly, while the development and first production environments are expected to
be single-machine, the system components should be prepared to scale horizontally to
match the increasing volume of incoming events.

Goals

In order to achieve the stated Objective, the intern accomplished the following high-
level goals across the First and Second semesters:

• First Semester

– Familiarization with the domain

– Research of State of the Art, Technologies and Architectures

– Specification of Requirements

– Definition of Architecture and chosen Technologies

– Creation of a Proof of Concept

• Second Semester

– Development of auxiliary tools

– Definition of the Data Model

– Implementation of Data Ingestion

– Implementation of Data Storage

– Implementation of Data Processing Engine

– Development of DataStream components

– Development of the User Interface

– Verification and Validation

Constraints

The module developed by the intern should mainly make use of free open source
tools, applications and frameworks, and is expected to run on Linux and Debian-based
operating systems. The system will run in Virtual Machines running in company hard-
ware.

The technologies chosen should support standalone and cluster deployments due to
scalability concerns.

In order to be compatible and integrate with the platform in its current state, the user
interface should preferably be made in Python/Django.
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1.4 Document Outline

The present document is meant to support the project developed in the scope of the
course "Dissertation/Internship in Software Engineering", required for completion of the
Master’s Degree in Software Engineering at the University of Coimbra.

The report aims to provide enough information to make known to the reader the
required knowledge to understand the problem statement, requirements, state of the art,
chosen process and decisions taken during the course of this first semester. As such,
this report serves as a combination of a Problem Statement and Software Requirements
Specification.

The chapters are organized as such:

1. Introduction: This First Chapter serves to present a short description of what was
achieved during the course of the internship and a short introduction to the prac-
tical and theoretical context of the Project. It then presents the Problem Statement,
detailing the motivation behind this Project and the objective to be achieved.

2. Planning: The Second Chapter details the Methodology chosen for the develop-
ment process and management tasks associated with it, such as Task Estimations
and Risk Management.

3. State of the Art: The Third Chapter presents the theoretical and practical concepts
in detail. A good amount of effort was spent on research, as the context of the
Project was very new to the Intern, and they serve as justification for the decisions
made later in the Development process.

4. Requirements: The Fourth Chapter details the Elicitation Process and the Require-
ments agreed upon by the Intern and the Product Owner.

5. Supporting Technologies: The Fifth Chapter lists the technologies researched for
every component along with their comparisons and the final decision for each.

6. Architecture: The Sixth Chapter is used to detail the chosen Architectural paradigm
and present views useful to explaining the Architecture of the resulting system.

7. Implementation: The Seventh Chapter presents the implementation process, which
was split into two main phases: the study, deployment and configuration of the
Technologies chosen, along with the development of the CEP Dataflow; and the
development of the User Interface.

8. Verification and Validation: The Eighth Chapter presents an overview of the pro-
cess used to Verify that the components function as expected and Validates the final
product’s compliance with the Requirements.

9. Conclusion: The Ninth and final Chapter serves to close the Document with final
remarks on the resulting system, looking back at what was achieved and detailing
future work that can be built on this platform.

http://www.uc.pt/
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Chapter 2

Planning

Given that this is a rather large project, good planning and choice of methodology is
a great asset to help manage time as a consumable resource, especially considering that
it is being developed by a single person.

The project will be developed in two different stages, one for each semester of the
course.

2.1 Time Budget

The following table presents the time budget available for each semester:

Time Period First Semester Second Semester
Start Date 12/09/2016 30/01/2017
End Date 23/01/2017 16/06/2017
Report Date 23/01/2017 03/07/2017
Weekly Effort 16 hours 40 hours
Weeks 19 19
Total Effort 304 hours 750 hours
Effort Percentage 28.8% 71.2%

TABLE 2.1: Time Budget per semester

As there is a clear discrepancy in estimated time available for each semester, each has
a clear goal that fits with the budget available.

The first semester was thus used to achieve the goals detailed in Chapter 2: to re-
search and understand the required concepts and context, research the State of the Art
and formalize the requirements and architecture for the module to be developed.

Since it had a larger time budget, the second semester featured the implementation
and validation phases of the project.

In the end, extra time was required due to a delay in obtaining a Virtual Machine
for development and testing of the Data Processing Engine. This issue is detailed in the
Chronogram section of this Chapter.

2.2 Methodology

Event Processing is a field that is currently in rapid evolution, with new tools, frame-
works and architectures emerging frequently. Coupled with the intern’s lack of experi-
ence in the fields of Cyber Security and Event Processing, the project lends itself to an
agile methodology.
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An incremental approach not only is more forgiving towards small mistakes but also
permits freedom to learn and explore the necessary concepts and technologies while ac-
commodating the possible need for quick change. As knowledge is gathered and the
intern experiments different approaches the project can be gradually assembled and eval-
uated step-by-step by the company supervisor.

In order to achieve those goals, the intern chose an agile methodology inspired by
Scrum and Kanban.

2.2.1 Scrum

Scrum is an iterative and incremental agile software development framework. It aims
to cut through the complexity and overhead to deliver high-value products in incremen-
tal fashion with short development cycles.[10][11]

While the definition of the framework is team-oriented, the intern chose to adopt the
key-concepts used by Scrum as part of the methodology for this project, with changes
where required.

Product Owner

The Product Owner, in this the company supervisor associated with this internship,
is responsible for maximizing the value of the product, prioritizing items in the Product
Backlog, ensuring the items are understood, ensuring that the product’s vision is main-
tained and providing feedback during each Sprint Review.

Product Backlog

The Product Backlog is an ordered list of everything that might be needed in the prod-
uct and is the single source of requirements for any changes to be made to the product.
It is the responsibility of the Product Owner, in this case represented by the company
supervisor, and discussed with the intern to fit in the scope of the internship.

The Product Backlog lists all features, functions, requirements, enhancements, and
fixes that constitute the changes to be made to the product in future releases.

Sprint

The Sprint represents the basic work unit of the method, a time-box of one month
or less during which a complete, potentially releasable product is created. Sprints have
consistent duration throughout the development effort, with each one having a specific
Sprint Goal. A new Sprint starts immediately after the conclusion of the previous.

Sprints are divided in the following phases:

• Sprint Planning: The work to be performed during the Sprint is planned in this
phase. In the context of the internship, the Sprint Goal will be decided by the intern
according to the current Product Backlog specified with the company supervisor.
After setting the Sprint Goal, the method to accomplish it must be chosen. The
Product Backlog items selected for this sprint plus the plan are called the Spring
Backlog.

• Sprint Review: At the end of each Sprint a Review is to be held to ensure that
the Sprint Goal was accomplished, reflect on the current state and possible changes
to the Product Backlog, and elicit feedback. The Sprint Review will involve the
company supervisor and the intern.
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Increment

The Increment is the sum of all the Product Backlog items completed during a Spring
and the value of the increments of all previous Sprints. It must also be complete and
ready to be deployed, regardless of whether the Product Owner decides to actually re-
lease it.

2.2.2 Kanban

Kanban is a technique for managing a software development process based on Toy-
ota’s "just-in-time" production system. It abstracts the process into a pipeline with feature
requests entering from one end and improved software emerging from the other end[12].

FIGURE 2.1: A Kanban board

In practical terms, it consists in the usage of a board divided into sections that rep-
resent a stage of the process where tasks are posted and moved as they change state. It
allows visualization of the current work pipeline, with tasks being user stories that can
be moved around and annotated as required.

2.2.3 Resulting Process

The resulting process is a mixture of a simplified version of Scrum directed at a devel-
opment team composed of a single member with the usage of a Kanban board. During
the development process, Sprints will last around 1 work week (40 hours), with relevant
tasks added to the Kanban board during Sprint Planning and later if necessary, as long
as the Spring Goal remains unchanged.
If the environment changes enough to make a Sprint Goal unattainable, the Sprint will
be canceled, reviewed, and a new Sprint will be planned to replace it with the necessary
changes.
The Kanban board will contemplate the following stages for the tasks:

• To Do

• Research

• Prototyping

• Implementation

• Validation

• Complete

Each resulting Increment of the system will be presented to the company supervisor
for evaluation to ensure that the project is going according to plan, gather feedback and
to accommodate any necessary changes as soon as they are brought up.
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2.3 Chronogram

All estimations were the result of a 3-Point estimate, as the intern lacked enough
knowledge at the start to use a more precise technique.

This technique involves the estimation of 3 durations for each task, Optimistic, Pes-
simistic, and Most Likely, after which the following formula is used to get the final esti-
mate:

(O + 4M + P )/6

Due to space constraints, the Gantt charts for the 1st and 2nd Semesters can be found
in Appendix A. The 2nd Semester has the Gantt Charts for the initial plan and final result.

2.3.1 1st Semester

The reality matched up with the chart with fairly low deviation. Above all, planning
the completion of tasks that required the most work, Research and Requirements Speci-
fication, until the end of November paid off greatly, since assignments for other courses
became a considerable time drain starting in December.

2.3.2 2nd Semester

The 2nd Semester suffered deviations from the original plan due to the manifestation
of Risk R10. Tasks were reorganized, and all tasks that did not require the Development
Environment were addressed first. There was a short time during which the Intern had
completed the reorganized tasks but the Virtual Machine was not available yet. That time
was used for further study of the technologies and to start developing the Dataflow.

The Development virtual machine was made available in April 4th. There was some
overhead since there was a need to set up the tools and technologies that had been im-
plemented thus far in the new environment. Implementing Apache Flink and the initial
development of the Dataflow were accomplished faster than initially estimated, thanks
to the research done previously.

The User Interface phase started later than was initially planned due to the delay.
Additional iteration of the Dataflow was necessary to keep up with the additions to the
Data Model, necessary for properly presenting data to the User. This phase lasted until
early July.

In late June, the Intern estimated that there wouldn’t be enough time for properly
verifying and validating the system, and finish documenting the development process in
the Final Report. After deliberating with both Supervisors, it was decided that it would
be best to delay the final delivery to September.

The remaining time was split over adding new information and details of the Devel-
opment Process to the Final Report, verifying the Performance and Availability afforded
by the CEP Module and validating the Requirements.

2.4 Change Management

In accordance with the experimental nature of the project, change is expected as the
development process moves along.

2.4.1 Sources

Changes are expected to originate from two different sources:



2.5. Risk Management 11

• Failure to fully implement a component according to the requirements specified in
Chapter 3, causing the technology to be replaced;

• Changes requested by the Product Owner to maintain the vision of the product.

2.4.2 Process

Given that time and manpower resources are limited, changes will be subjected to an
acceptance process, in which their impact on time budget will be evaluated.

If a change would cause enough impact to severely alter the requirements specified
in Chapter 3, causing the scope of the project to increase or change, it will be rejected. If
the change is deemed to be interesting for the product design, it will be added to "Won’t"
priority requirements and listed under Future Work in the final report.

If the change is not deemed to add significant overhead to the development process
and fits the available resource budget, it will be prioritized by the Project Owner and
added to the Product Backlog, along with a new requirement to ensure the feature is
traceable and measurable.

If changes do occur, the Change Management process and results will be documented
in a Change Log in the Final Report.

2.5 Risk Management

This section details the Risk Management process for the project.

2.5.1 Process

Risk Management is the process of identifying, prioritizing and mitigating potential
issues that may occur during the development process. This process is inspired in and
serves as a very light implementation of the Risk Management concepts detailed in ISO
31000[13].

It is inserted into the development process at the end of each Sprint, during the Sprint
Review phase, in which emerging risks should be identified and, if deemed necessary,
existing risks may be re-prioritized.

Risks will be prioritized based on their Probability and Impact, rated Low, Medium
or High, in accordance to a Risk Exposure Matrix.

The intern is the sole entity responsible for managing the risks associated with the
project.

2.5.2 Format

Risks are tracked with the following fields:

• ID

• Description

• Probability

• Impact

• Consequence

• Mitigation
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2.5.3 Identified Risks

These tables describe the risks identified and tracked during the Internship.

FIGURE 2.2: Risk Exposure Matrix

ID R01
Description Full complexity of the project could not be grasped by the intern.
Probability Low
Impact High
Consequence If the concepts, context, scope and technologies required are not under-

stood by the intern, the project risks total failure.
Mitigation Study of the domain during the 1st semester.

TABLE 2.2: R01 - Full complexity of the project not grasped by intern

ID R02
Description Time budget reduced due to overhead with other 1st semester courses.
Probability High
Impact Medium
Consequence The intern may not have enough time to study the domain.
Mitigation Time management policies and possibly reducing the scope of the 1st

semester activities.

TABLE 2.3: R02 - Time budget reduced in the 1st semester
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ID R03
Description Non-existence of technologies adaptable to project requirements.
Probability Low
Impact High
Consequence The project may be unfeasible or require considerably more time than

initially expected.
Mitigation Reduction of project scope and refocus of requirements.

TABLE 2.4: R03 - No existing technologies match requirements

ID R04
Description CEP Engine cannot directly use Data Model used by Portolan
Probability Low
Impact Medium
Consequence Event correlation and Event Processing are impossible if the system

cannot ingest events.
Mitigation An additional component for pre-processing will be required to format

data into an acceptable Data Model.

TABLE 2.5: R04 - CEP Engine and Portolan Data Model prove incompatible

ID R05
Description CEP Engine cannot handle event load specified in requirements
Probability Low
Impact Medium
Consequence Event Processing takes longer than the time specified in Performance

Requirements.
Mitigation Given that these kinds of technologies are meant for high scalability,

the addition of extra computing/memory resources or optimization of
dataflows should solve the issue.

TABLE 2.6: R05 - CEP Engine cannot achieve target performance

ID R06
Description Event visualization cannot be integrated into Portolan’s graphical

dashboard
Probability Low
Impact Medium
Consequence Results of event correlations cannot be visualized or easily consulted.
Mitigation A new graphical interface can be developed, or a new function/compo-

nent can be added between the Database and the Dashboard to process
data into a presentable format.

TABLE 2.7: R06 - Complex Events cannot be integrated to existing GUI
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ID R07
Description Selected technologies turn out to be inadequate.
Probability Medium
Impact Medium
Consequence Problematic technologies will need to be replaced, either with already

existing or custom developed ones.
Mitigation Research was conducted into multiple technologies per component to

ease the replacement process and forewarn which ones may become
more problematic if inadequate.

TABLE 2.8: R07 - Inadequate technologies chosen

ID R08
Description Selected technologies are discontinued and open-source userbase dis-

bands.
Probability Low
Impact High
Consequence Product life expectancy will become considerably lower, requiring re-

placement or reenginering of a new solution.
Mitigation Research was greatly focused on technologies in active development

and with a solid open-source community.

TABLE 2.9: R08 - Technologies are discontinued mid-development

ID R09
Description Chosen Architecture turns out to be inadequate.
Probability Low
Impact High
Consequence An inadequate architecture will need to be re-engineered, possibly

making component choices null up to that point.
Mitigation Research into different architectural paradigms for this kind of prob-

lem. Given that most solutions found follow the reference architecture,
risk of architectural inadequacy was greatly lowered.

TABLE 2.10: R09 - Inadequate Architectural Design

ID R10
Date of Identifi-
cation

February 17th, 2017

Description Delay in access to Development Environment
Probability Medium
Impact High
Consequence Not having the necessary environment for the development process can

cause the project to be delayed or fail.
Mitigation Tasks can be reprioritized, with those that don’t require the develop-

ment environment being fulfilled first. This mitigation plan does not
entirely solve the issue if the delay is serious enough, but can be used
to avoid losing time, which can lead to the project’s failure.

TABLE 2.11: R10 - Delay in access to Development Environment
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2.5.4 Change Log

• R10: This risk was added due to the delay in obtaining the Virtual Machine to run
the Development Environment.

2.5.5 Materialized Risks

This section details risks that materialized during the process and a short comment
detailing how they were handled.

• R01: The intern did not fully understand the scope of the project at the start. How-
ever, the mitigation policy was very effective: research of the domain greatly helped
the intern grasp the concepts, paradigms and technologies necessary to plan out the
implementation phase and architecture for the project, as can be understood in this
document.

• R02: The assignments required for completion of the other 1st semester courses
did cause overhead, which ended up taking some time away from the dissertation.
However, by using the extra free time at the start of the semester, the intern was
able to accelerate the tasks planned out for this semester and complete the domain
study.

• R10: The Development Environment was only made available in April 4th, approx-
imatelly two months after the expected date. The mitigation plan was deployed,
and the Intern reprioritized tasks, accomplishing those that did not require the De-
velopment Environment or depended on those that did. While that kept the Project
manageable, it did not fully eliminate the impact of the delay, which carried over
into the next phase of development and contributed to delaying the final delivery
to September.
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Chapter 3

State of the Art

This internship requires multiple concepts and technologies that are, at this time, not
taught in-depth in the context of the Master’s Degree and that the intern was unfamilliar
with. Research was required for the theoretical and practical aspects of the project in
order to remedy that issue, from the most adequate computing paradigms to possible
architectural patterns to solve the problem at hand.

This chapter contains the results of the research conducted over the course of the
Project. It details the concepts and technologies necessary to fully understand the prob-
lem, the proposed solution, and allow development of the resulting system.

3.1 Similar Products

Examining products similar to Portolan served as an aid to understanding the prod-
uct’s use and purpose. Two software solutions that have some similarities with Portolan,
in different ways, are developed by AlienVault.

AlienVault develops a number of software solutions geared towards Cybersecurity.
Two in particular are similar to Portolan in execution and objectives: Unified Security
Management and Open Threat Exchange.

Unified Security Management[14] (USM) is a paid security platform. It integrates
threat detection, incident response and compliance in a single platform. USM is made
to manage security for Cloud, Hybrid and Local environments through a security dash-
board that discovers any available assets, assesses vulnerabilities and provides views to
aid in intrusion detection, behavior monitoring and correlating security events. It can
be completely deployed on-premises, or make use of sensors that send data back to the
AlienVault secure cloud to be centralized and analyzed.

Open Threat Exchange[15] (OTX) is a free solution for researchers to share data and
collaborate. It is meant to provide a global, public view of current and past threats in
order to monitor their behavior and aid in securing infrastructure. Users can boost their
own Cybersecurity while helping others. Parts of OTX are automated, using big data
processing for natural language processing and machine learning.

While both feature an impressive array of functionalities, they differ from Portolan.
Both Portolan and USM provide a dashboard and utilities to explore security events.
However, by being modular, Portolan can be adapted to the environment and needs of
the user, making it easy to adapt to hardware constraints and extendable with new func-
tionalities. It can also make use of data collected internally and from public sources.

OTX is similar due to its use of public data and engines that analyze data in-flow,
identify trends and are updated often. Portolan differs from it by allowing Users with a
deployment on-premises to use their own data without having to submit it to an external
system. It allows a company that wishes to not share its security events to still take full
advantage of the platform without requiring private data to leave their system. This
does not mean that the benefits added by OTX are lost to the client; in fact, Portolan
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is capable of using OTX as an Event Source, providing amplified capacities for cyber
security analysis from the point of view of the client’s private infrastructure.

3.2 Computing Paradigms

When it comes to Data Processing, both the manner in which data is processed and
the time required are important factors. They heavily influence the Data Model, how
records are transferred between components, the choice of components and architecture
and the latency between data being ingested and results being available.

The choice of Computing Paradigm, then, is a key decision at the core of this project,
so a good portion of the research effort was spent investigating the Paradigms most ade-
quate for processing of large volumes of data, their tradeoffs and the choice use-cases for
each.

Three Paradigms of interest were identified during this research: Event Stream Pro-
cessing, Batch Processing and Complex Event Processing.

3.2.1 Event Stream Processing

Event Stream Processing is focused on constant processing on a boundless stream
of data, producing a steady output. Instead of the regular Database model, where data
is stored, indexed and only then made available for processing, it takes the data in-flight
and iterates over it with a simple set of operations to ensure low latency and take as much
advantage as possible of parallelism, with recent solutions leveraging entire clusters as
pools of resources.

This paradigm is mostly directed towards use-cases that require processed data to be
available as close to "instantly" as possible, whether because the value of results lowers
significantly in a very short timespan or to improve peformance or user experience. Some
systems that take advantage of Stream Processing are bank ATMs, radar systems and
management systems when updating inventory upon a sale, which take Simple Events,
process or enrich them and present the result.

It is the paradigm closest to Real-Time Processing, with latency expected to cap in the
order of just miliseconds.

3.2.2 Batch Processing

Batch Processing consists in the non-continuous, non-real time processing of large
volumes of data. Unlike ESP and CEP, data is initially collected over time and grouped
into Datasets, which are processed whole instead of record-by-record.

Due to processing a large volume of events per iteration, Batch jobs can incur large
amounts of latency, which generally makes them inadequate for activities that require
results in a short timespan, such as decision support and incident response. Plus, batch
Processing can be difficult to parallelize, depending on the nature of the data and on
whether the operations require results previously obtained in the same Dataset.

An example of heavy-duty Batch Processing is in the banking industry, where trans-
actions, calculating interest rates and other operations that require a broad view of the
events that occured over a large period of time are processed. In cases such as this, when
changes to live data could break the process, other transactions can be stalled until the
system finishes processing and has been updated with the end results.

The data generated by periodic Batch Jobs is often referred to as Business Intelligence.
The latency for Batch Processing can vary greatly depending on the volume of data

and the operations required. It is generally expected to be high; in the case of the banking
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example provided each iteration can last hours. With low amounts of data latency can go
as low as seconds, but in that case the Paradigm isn’t being applied to its full potential,
with expected overhead due to having constant context switches in a short timespan
when processing a new small dataset.

3.2.3 Complex Event Processing

CEP can be considered a subtype of Event Stream Processing due to the conceptual
similarities between them. CEP arose from the need to perform more complex operations
over continuous streams of data, dinstinguishing itself from ESP by trading off some of
its performance in exchange for more complex functionalities (such as pattern matching,
combining data from multiple sources and keeping state).

Complex Event Processing can be implemented in systems designed for ESP if the
components or architectural design is flexible enough, either through the addition of new
components to perform more complex tasks or extension of already existing components.

It fills the necessity for data processing that required complex, stateful operations
without incurring in the heavy latency imposed by Batch Processing. Complex Event
Processing emerged as a means to generate Operational Intelligence from unbounded
streams of data or events.

Unlike Business Intelligence, which consists of periodic reports and aggregations of
data, Operational Intelligence is data meant to deliver additional insight in near-real time,
used to aid in short-term decision making and operational response[16][17]. It can be
used to detect patterns signaling that a service is down or detect cyber attacks such as
intrusions and suspicious operations, among others.

Performance remains an important factor. Depending on the complexity of the data,
the operations required and the timespan during which data is still valuable, permissible
latency can vary in the range of seconds to minutes.

3.2.4 Decision

Given that the Computing Paradigm heavily influences the Project as a whole, it was
necessary to consider the affordances and tradeoffs soon in the research process in order
to choose the most adequate paradigm and to focus the remaining time budget on it.

Batch Processing is not a good fit due to high latency, which hampers its usefulness
for incident response. ESP, on the other hand, boasts low latency and high throughput.
However, considering the context of the product, the latency incurred by CEP is an ac-
cepted tradeoff in exchange for the extra data processing capabilities it affords over the
simpler ESP.

Additionally, the kind of data required for SOC teams is Operational Intelligence,
since they have to analyze and respond to situations developing in real-time. That makes
Batch Processing even less fitting.

With the information presented, CEP was deemed as the most adequate paradigm for
the use-case in this Project: it provides near real-time processing of unbounded streams
of data, which is exactly what Portolan requires; it can afford complex operations such
as time-windows and pattern matching, which are important functionalities for produc-
ing Cybersecurity Intelligence to be used for alarmistic, incident response and reporting
purposes.
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3.3 CEP Reference Architectures

Research was conducted into reference architectures and already deployed solutions
in order to serve as guides to the architectural design process of this Project. This section
goes over three architectural paradigms of interest to give a summary overview of the
evolution of Data Processing and the current relevant paradigms.

In order to provide a sense of how high volume Data Processing and Architectural
Design evolved, the paradigms are in chronological order of inception.

3.3.1 N+ Tier Architecture

The N+ Tier Architecture[18] was an initial approach at defining a generalized archi-
tectural paradigm used for Complex Event Processing. This definition dates from 2009,
when Event Processing was starting to become a topic of discussion.

FIGURE 3.1: N+ Tier Architecture[18]

This pattern describes multiple layers of Data Processing organized in Tiers, with
data flowing in-between them for ingestion, processing, storage and output. Each Tier
corresponds to a set of functionalities similar enough to be grouped together or common
to a particular component. The architecture is highly modular and allows the omission
of some Tiers, or rolling functionalities from multiple tiers into one or more components.

Due to the specificity of each Tier and the early state of Stream Processing at the time,
the actual usefulness of this paradigm as a building block for Data Processing architec-
tures was limited, and it did not become a standard. However, the more recent patterns
described below are essentially more generalistic versions of it, correctly adapted to the
technologies available nowadays.

3.3.2 Lambda Architecture

The Lambda Architecture[19][20] is a high-level architectural pattern meant for high
throughput, high volume Data Processing, leveraging both Batch and Stream Processing.
It aims to balance latency, throughput and scaling by using Batch Processing to provide
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accurate views of historical data, while using Stream Processing to fill in the gaps for data
in-flight.

It was designed and formally named by Nathan Marz in 2013, based on his experi-
ence working with high volumes of data at Twitter. Nathan is also one of the people
responsible for Apache Storm, one of the Event Processing Engines detailed in Chapter
5.

FIGURE 3.2: Lambda Architecture[19]

This pattern is divided into layers, each with a specific purpose.

• Data Ingestion: Similar to the N+ Tier’s Layer 0, Data Ingestion is often not re-
ferred. However, the scalability of Data Ingestion is a factor in this Project. It can
include a component to distribute the gathered data, or the distributors can be in-
stead relocated to the Processing layers described next.

• Batch Layer: This layer requires a Data Storage system. New data should be ap-
pended instead of writing over old entries, making it a store for all historical data,
which will be periodically processed by a Batch Processing Engine. The period de-
pends on the amount of data and how often the views should be updated, and as
explained in the previous section batch iterations can range anywhere from minutes
to hours, days or even months.

• Speed Layer: The speed layer processes streams of data as records arrive, out-
putting incremental results with low latency. It requires the use of a Stream Pro-
cessing engine. The expected latency is low, usually on the order of milliseconds to
seconds.

• Serving Layer: Finally, the Serving Layer provides an interface to accept queries on
the data produced by both the Speed and Batch layers. How it accomplishes that
end is not specified, as it may vary depending on the type of data, processing and
components used.

This paradigm is most useful for Business Intelligence due to its capability to strike
a balance between trusted data with a complete view and readily available incremental
data with some faults due to lack of context. It signifies a push for businesses to adopt
Stream Processing along with already existing solutions of Batch Processing.

3.3.3 Kappa Architecture

The Kappa Architecture is an architectural design pattern for high throughput, low
latency Data Processing. It is a simplification of the Lambda Architecture, with the Batch
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Processing Engine removed and all data going solely through a soft real-time Stream
Processing Engine.

It was first described by Jay Kreps from LinkedIn in a 2014 article[21] trying to ad-
dress some of the criticisms raised at the Lambda Architecture, namely the need to main-
tain a separate codebase for each Data Processing Engine. In that article he proposes an
alternative, which he tentatively names the Kappa Architecture.

FIGURE 3.3: Kappa Architecture[22]

All Data Processing is handled by the Stream Processing Engine. If the system only
requires the processing of data in-flight, the system functions similarly to the Lambda
Architecture with just the Batch Layer removed.

However, in some cases reprocessing of historical data may be required, but the over-
head of maintaining two separate codebases or the latency associated with the Batch
engine can be prohibitive, even with the Stream Engine providing incremental output.
In such cases, the Kappa Architecture specification solves that issue by maintaining the
append-only Data Storage and moving the work originally done by the Batch Layer to
the Stream Processing Engine. Instead of having an entire component for reprocessing of
historical data, the Stream Engine is leveraged and has a data stream for that purpose.

Recent Event Stream Processing Engines were designed for that purpose and, asides
from being highly parallelizable, can handle multiple data streams and both Batch and
Stream Data Processing.

3.4 Components

Despite the different architectures available, the units that compose them are largely
identical and fulfill similar needs. This section features overviews of what is expected
from each component.

There are 5 key component types in Data Processing architectures: the Data Sources,
the distribution agents responsible for Data Ingestion, the Event Processing Engine(s),
Data Storage solutions and User Interface.

3.4.1 Data Sources

The Data Sources are responsible for feeding data into the system. They can produce
the data themselves or collect it from other sources and redirect it into the system. The
data is expected to be raw events fit into a Data Model used by the System, each one
representing a simple event.

In this case, events are expected to be gathered from both external (pastebins, black-
lists, security events and reports) and internal (network traffic, system and component
logs) sources. There are multiple Data Sources collecting data at the same time, submit-
ting it into the system at possibly arbitrary intervals.
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It is not part of the CEP Module’s responsibilities to collect events, but it is necessary
to establish their source and format to properly plan the system architecture and estimate
the reliability and scalability needed by components down the line.

3.4.2 Data Ingestion

These components are middleware between event producers (the Data Sources) and
event consumers (the Processing Engines). simple events are submitted to Data Ingestion
and Distribution agents, who are then responsible for distributing it to the Processing
Engines as required.

Data can be pushed into the Data Ingestion agents by the Data Sources, or pulled from
the Sources instead. Both approaches have tradeoffs: if there are enough Data Sources
trying to push data at the same time, the Ingestion agents can be overloaded and struggle
to cope with the incoming data. If data is pulled instead, the agents have to periodically
request it from the Sources, possibly increasing the time between an event occuring and
it being processed. For this kind of problem, Distribution Agents with focus on high-
throughput are usually preferred to minimize latency and avoid being overloaded by the
Data Sources.

They also serve as a buffer, queueing received data instead of overloading the Pro-
cessing Engines. In situations of increased influx of data, depending on how they are
implemented, it is possible for them to temporarily store the incoming data while the
Processing Engines are scaled up to meet the increased demand, avoiding data loss.

3.4.3 Complex Event Processing Engines

As previously stated, CEP distinguishes itself from ESP by employing more intricate
Event Processing operations. They can be included natively in the Processing Engine,
added as extensions to an existing component, or by adding new components to a Data
Processing Architecture.

Generally, CEP is obtained as a part of a larger product. Solutions such as IBM’s
ODM[23] and RedHat Drools Fusion[24] are meant to be integrated as part of their pro-
prietary platforms, providing CEP under the hood for enterprise-level system, network
and business monitoring. There are also standalone or modular CEP solutions, like
Feedzai[25] and Espertech’s Esper[26], meant to be added into existing architectures, inte-
grated with data sources and provide CEP functionality. Those solutions, however, tend
to be tailored for business-oriented use cases, such as fraud detection and generating real-
time business intelligence. Finally, some companies write their own custom-made CEP
Engine implementations for internal or a customer’s use-case, limiting their adaptability
or making them outright incompatible with different sets of requirements.

Alternatively, there are general purpose Stream Processing platforms developed to be
highly scalable and extensible so that developers can heavily customize them. The first
of these engines to undergo development, such as Apache Storm[27], do not have native
CEP functionalities, but the logic required for it can be added. Their main focus was just
prodiving a framework to manage Stream Processing, leaving the business logic to be
implemented according to the use-case. More recent frameworks feature a more diverse
set of native functionalities such as Apache Flink’s[28] native stateful backend and CEP
library.
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3.4.4 Data Storage

The Data Storage layer is responsible for storing two major kinds of data: the raw, im-
mutable, append-only events collected by the system; and the complex events generated
by the Data Processing pipeline.

This layer can correspond to a single or multiple technologies, depending on the ar-
chitectural specification and the system’s needs.

3.4.5 User Interface

The User Interface is the layer with which the User interacts to view and query data.
There are many methods and technologies to implement this layer, along with solutions
that can function out-of-the-box if paired with other matching components.
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Chapter 4

Requirements

In this section are detailed the gathering and analysis of Functional and Non-Functional
requirements for the project.

According to the Methodology chosen by the intern, detailed in Chapter 5, the re-
quirements serve as a Product Backlog for use during development. This list contains the
necessary requirements to design and validate the architecture and technologies chosen.

4.1 Elicitation

Elicitation started with the study of the Problem Statement given by the company,
research of the context and weekly meetings between the intern and the company super-
visor. By being shown walkthroughs of PortoLan, the intern was able to understand the
motivation behind the project and the scope of the task.

While researching the context and State of the Art the system’s requirements were
discussed and validated with the company supervisor, who effectively functions as the
Product Owner.

4.2 Stakeholders

The system is expected to be used by and is therefore targeted towards the following
actors:

Actor User
Description Operational Team Member
Interaction Monitors complex events generated by the system.

Monitors relationships between events.
Makes queries in search of complex events.

TABLE 4.1: User Stakeholder

Actor Developer
Description Actor responsible for extending the system.
Interaction Develops rules for pattern matching.

TABLE 4.2: Developer Stakeholder
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Actor Administrator
Description Actor responsible for maintaining the system.
Interaction Monitors current state of the system.

Ensures system maintains event throughput and performance.

TABLE 4.3: Administrator Stakeholder

4.3 Functional Requirements

Functional Requirements were specified through the use of User Stories. which are a
method to express functional requirements from the point of view of the stakeholder.

The MoSCoW Method[29], commonly used with agile methodologies, was used to
establish priorities between requirements. This approach involves the use of 4 priority
rankings.

4.3.1 Must Have

These are core requirements that reflect the minimum required functionalities of the
product without which the development phase cannot be considered a success.

ID FR01
Stakeholder User
Title Event Aggregation
User Story As a User, I want to see which simple events relate to a particular com-

plex event.
Rationale As the core functionality of the system, being capable of uniting mul-

tiple simple events under one or more complex events is a means of
representing the relation between events. Furthermore, it enables the
inference of more abstract data from the lower level simple events (ex:
a machine is very likely to be compromised if it is reported in multiple
security alerts within a set time period).

Dependencies None

TABLE 4.4: FR01 - Event Aggregation

ID FR02
Stakeholder User
Title Correlated Event Navigation
User Story As a User, I want to be capable of navigating between correlated events.
Rationale Being capable of examining correlated events on demand provides an-

other means to further investigate the situation.
Dependencies FR06

TABLE 4.5: FR02 - Correlated Event Navigation
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ID FR03
Stakeholder User
Title Complex event Search
User Story As a User, I want to be capable of searching for a particular complex

events.
Rationale Aside from presenting events as they are generated, the system must

also allow operators to search for complex events based on their prop-
erties for consultation when necessary.

Dependencies FR06

TABLE 4.6: FR03 - Complex Event Search

ID FR04
Stakeholder Developer
Title Capability to add new rules for identification of patterns
User Story As a Developer, I want the system to be extensible and allow the cre-

ation of new rules.
Rationale As more event types are added into the system and the Operational

team’s needs expand, the system must be configurable to allow detec-
tion of new event patterns.

Dependencies None

TABLE 4.7: FR04 - Modular addition of new rules

ID FR05
Stakeholder Developer
Title Modular architecture
User Story As a Developer, I want the components responsible for analysis to be

detached from the rest of the Portolan architecture.
Rationale Decoupling the analysis engine from the rest of the product greatly sim-

plifies the development and deployment process. It also maintains Por-
tolan’s status as an adaptable solution that can be molded to the needs
of the costumer.

Dependencies None

TABLE 4.8: FR05 - Modular architecture

ID FR06
Stakeholder Developer
Title Programmable Dataflows
User Story As a Developer, I want dataflows to be programmable.
Rationale The flexibility afforded by having dataflows programmable (whether in

Java or another programming language) is very important, considering
that events may come from a wide variety of sources and contain very
distinct information. Not only does using a full-fledged programming
language massively increase the variety of processing approaches, it
uses a familiar paradigm to developers that lowers the learning curve
of creating new rules.

Dependencies FR01

TABLE 4.9: FR06 - Programmable Dataflows
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ID FR07
Stakeholder Developer
Title Data Manipulation
User Story As a Developer, I want the CEP engine to be capable of operating (fil-

tering and manipulating) over every data field of an event.
Rationale Asides from identifying event patterns, the system should retain the

basic Event Stream Processing capability of manipulating data received
at will. It can help with data enriching and creation of more complex
dataflows that require processing aside from pattern detection.

Dependencies FR03

TABLE 4.10: FR07 - Data Manipulation

ID FR08
Stakeholder Developer
Title Streaming windows
User Story As a Developer, I want rules to be capable of using time windows.
Rationale In Cyber Security, some complex events can only be inferred from sim-

ple events with enough certainty within a certain streaming window.
Since this system will be used for operational support, it cannot cre-
ate an alert in the case of an outlier. It would reflect on the usability
and usefulness of the system, as operators would rely less on it, pos-
sibly ignoring it entirely after enough cases of false positives in a row.
Supporting streaming windows is a means to increase the reliability of
complex events generated.

Dependencies None

TABLE 4.11: FR08 - Streaming Windows

ID FR09
Stakeholder Administrator
Title Health Monitoring
User Story As an Administrator, I want to monitor the current health status of the

CEP engine.
Rationale Simple metrics such as the current status of processing and master

nodes are vital in understanding the health status of the system. With-
out that, it’s difficult to identify issues in the module fast enough to
minimize negative impact.

Dependencies None

TABLE 4.12: FR09 - Health Monitoring



4.3. Functional Requirements 29

4.3.2 Should Have

These requirements are features not considered critical, but still capable of adding
high value to the end product.

ID FR10
Stakeholder User
Title Graphical Representation of Relations
User Story As a User, I want to see a graphical representation of the relationships

between events.
Rationale Having a graphical representation of relationships between events al-

lows operational team members to, at a sight, measure the impact and
strength of the connection between events.

Dependencies FR06

TABLE 4.13: FR10 - Graphical Representation of Relations

ID FR11
Stakeholder Developer
Title Reusable Dataflow Components
User Story As a Developer, I want components of dataflows to be reusable for

other dataflows.
Rationale Certain components may have functionalities common to multiple

rules (ex: filter events by a particular attribute). Having to remake com-
mon components would result in overhead in dataflows development.
As such, having the possibility of reusing dataflow components would
greatly reduce overhead for that task.

Dependencies FR01, FR03

TABLE 4.14: FR11 - Reusable Dataflow Components

ID FR12
Stakeholder Administrator
Title Performance Monitoring
User Story As an Administrator, I want to see statistics related to the performance

of the system.
Rationale Allowing system administrators to check performance metrics related

to the system will allow them to identify and solve emerging issues (ex:
bottlenecks, increase in resource consumption).

Dependencies FR09

TABLE 4.15: FR12 - Performance Monitoring

4.3.3 Could Have

These are features that do not add enough value to be considered important, but can
still be included if features with higher priority aren’t affected. These will be the first to
be removed from scope in case of necessity.
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ID FR13
Stakeholder User
Title Simultaneous Event Search
User Story As a User, I want to be capable of peforming a search query over com-

plex events and simple events simultaneously.
Rationale Operating search queries on both complex and simple events is a fea-

ture that is expected to help investigating and inferring new relations
between events, possibly helping in the creation of new rules.

Dependencies FR06, FR08

TABLE 4.16: FR13 - Simultaneous Event Search

ID FR14
Stakeholder User
Title Event Alarm
User Story As a User, I want to be alerted whenever a type of complex event I flag

is generated.
Rationale Taking advantage of the alarm functionality in Portolan could help de-

crease the reaction time of SOC operators.
Dependencies None

TABLE 4.17: FR14 - Event Alarm

ID FR15
Stakeholder Developer
Title GUI for dataflow Deployment
User Story As a Developer, I want to be able to deploy rules through a graphical

interface.
Rationale A quality of life requirement to boost the system’s usability.
Dependencies FR01

TABLE 4.18: FR15 - GUI for Dataflow Deployment

ID FR16
Stakeholder Developer
Title Dataflow Wizard App
User Story As a Developer, I want a simple Wizard app to quickly create simple

rules.
Rationale Having an app to partially automate the process of creating very sim-

ple rules from pre-built components would facilitate quick dataflow
creation and deployment.

Dependencies FR01, FR10

TABLE 4.19: FR16 - Dataflow Wizard App
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ID FR17
Stakeholder Administrator
Title System Performance Alarm
User Story As an Administrator, I want to be alerted when the system’s perfor-

mance/throughput degrades.
Rationale Expanding on the system status monitoring capabilities, metrics could

be measured and an Administrator could be warned if performance
falls below a determined threshold.

Dependencies FR12

TABLE 4.20: FR17 - System Performance Alarm
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4.3.4 Won’t Have

These are requirements that have been requested but are excluded from scope during
the planned duration. They may be included in future phases of development.

As every Functional Requirement was covered and deemed to not be decisively out-
side of the time-budget for this project, none were considered as "Won’t Have".

4.4 Quality Attributes

Quality attributes are requirements that describe the system from a non-functional
point of view. The quality attributes that drive the architectural design are, in order of
importance, Performance, Reliability, Security and Scalability.

4.4.1 Performance

ID QR01
Priority Must
Description The system must be capable of enduring a load of 20000 events per

second.
Rationale Portolan currently receives about 15 to 20 thousand events in burst. As

such, it should be expected for the system to support at least that esti-
mated load. This requirement will affect both required hardware spec-
ifications and technologies chosen. The choice in target value was as-
sisted by research conducted by the Intern and Data Processing Bench-
marks performed by Yahoo and Data Artisans.

TABLE 4.21: QR01 - Target event load

ID QR02
Priority Must
Description The system can have latency of no more than 5 seconds between an

event entering the system and it being processed, up to the load esti-
mated in QR01.

Rationale Since this is meant to improve Portolan as a decision support platform,
processing latency should not exceed a specified amount to ensure that
incident response is not delayed.

TABLE 4.22: QR02 - Target latency

4.4.2 Reliability
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ID QR03
Priority Must
Description The system will use stable, upgradable technologies.
Rationale The use of stable technologies minimizes the risk of unstable features.

Technologies being upgradable ensures that, in case of a discovered
vulnerability or software faults, they can be fixed and the system can
be updated.

TABLE 4.23: QR03 - Stable, upgradable technologies

ID QR04
Priority Should
Description The system will support checkpointing.
Rationale Checkpointing refers to the capability of, in case of an unexpected fail-

ure (ex: hardware failure), the system should be capable of resuming
processing the event from a saved state to avoid restarting the entire
dataflow.

TABLE 4.24: QR04 - Checkpointing

4.4.3 Security

ID QR05
Priority Should
Description In the GUI, input fields will be treated to avoid injection.
Rationale Code injection is a common software vulnerability and should be

avoided given the security nature of the platform.

TABLE 4.25: QR05 - Avoid injection from user input
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ID QR06
Priority Should
Description In the GUI, access to the data processed by the CEP engine will be pro-

vided only to users whose session is validated.
Rationale Only authorized users should have access to secure information.

TABLE 4.26: QR06 - Validated User access

4.4.4 Scalability

ID QR07
Priority Must
Description The system must be capable of splitting workload across available pro-

cessing nodes.
Rationale Given that it is expected for event quantity fed into the system to in-

crease, the Data Processing Engine should be capable of splitting work-
load and take advantage of processing data in parallel workflows if
required.

TABLE 4.27: QR07 - Distributed workload over cluster

ID QR08
Priority Must
Description The chosen technologies must be capable of horizontal scaling.
Rationale Given that it is expected for event quantity fed into the system to in-

crease, the new system components should be capable of scaling hori-
zontally to make it easier to cope with the platform’s growth down the
line.

TABLE 4.28: QR08 - Horizontal scaling of technologies

4.5 Change Log

This section documents changes made to the requirements during the course of the
project with the accompanying reasoning.

• Added QR08 (4.28): This requirement was added to specify that scalability con-
cerns apply to new technologies added as part of the project’s scope. The rationale
behind QR07 (4.27) was rephrased to distinguish it from QR08.
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Chapter 5

Supporting Technologies

While the architectural patterns have some differences, there are sets of common func-
tionalities that form the core components of all three.

This section servers as a follow up to the previous one by specifying the most impor-
tant components of Event Processing solutions and listing feasible technologies for each
one.

5.1 Data Ingestion

In CEP, message brokers are used as a middleware mechanism between event pro-
ducers and event consumers. As such, the technology responsible for this must be capa-
ble of receiving data from multiple sources and serving it to the CEP Engine with high
throughput and low latency.

5.1.1 Apache Kafka

FIGURE 5.1: Apache Kafka logo

Apache Kafka[30] is a distributed streaming platform, providing publish-and-subscribe
capabilities while assuring very high throughput, making it ideal for Event Stream Pro-
cessing use-cases. Kafka also assures durability by using persistent storage and sharding
across nodes, reducing the risk of loss of data in case of a node going under.

While Kafka can also be used as an Event Processing Engine, it is not meant for Com-
plex Event Processing. It can, however, be used for pre-processing events if the need
arises.

Kafka uses Apache Zookeeper[31] for quorum and as a point of discovery, synchro-
nization and leader election for brokers in the cluster. Zookeeper is a centralized service
for maintaining configuration information, naming and providing group services.

Benchmarks of scaled deployments also promise that horizontal scalability is a well
developed feature, as can be seen in the benchmark conducted by LinkedIn[32].
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5.1.2 Redis

FIGURE 5.2: Redis Logo

Redis[33] is an in-memory data structure store commonly used as a database, cache
and message broker. Thanks to its low level API and in-memory storage it is capable
of very high performance. It also supports first synchronization, replication and auto-
reconnection out of the box, making it painless to deploy.

5.2 Event Processing Engine

The Event Processing Engine will be responsible for processing the events that enter
the system. The technologies researched natively feature or can be extended with CEP
functionalities. All of them feature fully programmable Processing Pipelines and can be
horizontally scaled to take advantage of distributed pools of resources.

5.2.1 Apache Storm

FIGURE 5.3: Apache Storm logo

Apache Storm[27] is a Distributed Real-time computation system, making it easy to
reliably process unbounded steams of data like event streams. Storm topologies are com-
posed of Spouts that serve as the source for the data streams and Bolts that process them.

Storm guarantees that every tuple that enters the system will be fully processed by
the topology by tracking the tree of tuples triggered by every Spout and determining
whether each tree has been successfully completed or not. Every topology has a "message
timeout" which, when triggered by a tuple, causes the engine to fail the tuple and replay
it later.

Topologies are executed across one or more Worker processes. However, preparing
a Storm topology isn’t a simple task, requiring care and understanding of the sample
Spouts and Bolts provided with the tool.

Storm also provides native APIs to interface with common message brokers and data
sources such as Kafka.
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FIGURE 5.4: Apache Spark logo

5.2.2 Apache Spark

Apache Spark[34] is a generalized distributed platform for computing and data pro-
cessing, providing libraries for a diverse set of purposes, from Machine Learning to
Stream Processing.

Spark operates on RDDs (Resilient Distributed Datasets), a general collection of data
partitioned across multiple machines, which makes it fit for batch-processing. Due to
that same fact, Spark isn’t a true event stream Engine, and while that isn’t condemning,
it decreases its usefulness and versatility for Complex Event Processing.

5.2.3 Apache Flink

FIGURE 5.5: Apache Flink logo

Apache Flink[28] is a Streaming Distributed Dataflow Engine that provides data dis-
tribution, communication and fault tolerance for distributed computations over data
streams. It is built from the ground-up as a true Event Stream Processing Engine, al-
though it is also capable of processing events in batches.

Flink implements a lightweight checkpointing mechanism, ensuring exaclty-once se-
mantics for the state in presence of failures while retaining high throughput rates. It also
natively supports flexible streaming windows over time and count, which is an impor-
tant factor for the definition of rules used in Complex Event Processing.

Implementation of a Dataflow in Flink is declarative, and can be achieved by writing
a Java or Scala program. The engine takes care of compiling and optimizing the program
for executing in a Dataflow executed in a cluster or cloud environment. The Dataflow
is executed as Tasks on Worker processes across the available cluster, with all Workers
being able to potentially fulfill all required tasks as necessary. Thanks to that, the engine
itself is capable of distributing workload across the available resources.
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The framework and APIs provided are also simple to use and fairly well documented,
even including a CEP library and DataStreaming APIs to consume and produce data
directly for multiple sources, including Apache Kafka.

5.3 Persistent Data Storage

A Data Storage solution for both Portolan and the CEP Module needs to be scalable,
fast and flexible enough to permit adding new information with little effort. For those
reasons only NoSQL storage solutions were considered.

Portolan already has an immutable data backend. However, research was still con-
ducted to ensure that it was adequate for its purpose and to store the events generated
by the CEP Module. One alternate Data Storage solution was found that offered enough
advantages to consider implementing, with the Product Owner voicing some interest for
replacing the current solution at some point.

5.3.1 ElasticSearch

FIGURE 5.6: ElasticSearch logo

ElasticSearch[35] is a distributed, RESTful search and analytics engine based on Apache
Lucene. It provides a distributed full-text search engine with HTTP web interface and
schema-free JSON documents, serving as both a DataBase and full-fledged, highly cus-
tomizable SearchEngine.

ElasticSearch is highly scalable and features high throughput. Data is organized in
Types, which are grouped into Indexes. When in a multitenant deployment, Indices can
be divided into multiple Primary and Replica shards, which are automatically rebalanced
across the cluster.

The data model can be heavily customized on a Type-by-Type basis to optimize the
performance of the search engine. All fields added into ElasticSearch become full-text
searchable by default. Field data and queries are subject to customizable transformations
to make them easier to match. However, it also requires extra maintainability, as addi-
tions or changes to existing data may need to be thoroughly examined and demand extra
configuration to make sure nothing is lost during the data field transformations or that
queries behave as expected.
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It is developed alongside Logstash[36], a data collection and log parsing engine, and
Kibana[37], an analytics and visualisation platform. The three products can be used to-
gether as a complete solution or isolated as modular components in alternate architec-
tures.

5.3.2 MongoDB

FIGURE 5.7: MongoDB logo

MongoDB[38] is a free, open-source NoSQL Document-oriented database. Mongo
achieves high performance by making use of RAM and indexing fields with primary and
secondary indices.

Data entries are saved as schema-free Documents in BSON, a binary representation
of JSON with more high-level datatypes. A Collection is a group of Documents, and a
Database groups Collections.

MongoDB supports replication and sharding.
Replication is primarily used to ensure high availability, although it can also be used

for horizontal scaling of Read operations. Using additional MongoDB instances as Replica
Sets involves the existence of a Primary and one or more Secondary Nodes, on which data
is replicated. The Primary Node receives all write operations and propagates them asyn-
chronously to the Secondary Nodes. If the Primary Node fails to communicate with the
other members of the set for a period of time, the Secondary Nodes elect a new Primary
from the remaining active Nodes. When performing a Read operation, the client can
opt to send the operation to a Secondary Node, lowering the load on the Primary. The
asynchronous nature of the replication can cause Secondaries to return data that does not
reflect the state on the Primary, however.

Sharding was later added to distribute data across multiple machines for horizontal
scaling. Since MongoDB makes very intensive use of RAM and struggles whenever it
needs to swap memory from Disk, this solution makes it much more adaptable to high
throughput operations or very large datasets. It uses a combination of Shard servers to
store the divided collections and Routing servers to direct clients to the correct server.
Each Shard server is responsible for managing writes related to its share of the data,
making distributed reads and writes possible.

If a Shard server becomes unavailable so does the data it holds, although the remain-
ing shards can continue to function, so the cluster can handle partial read/write opera-
tions. Sharding and Replication can be combined to make a distributed, high availability
setup.

5.4 User Interface

The User Interface is the means by which the User views the results generated by the
CEP Module. Portolan already features a Web GUI for Data Browsing and high level
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management, developed in HTML and JavaScript, which interacts with the Data Storage
through Django.

Instead of creating a whole new interface, the Product Owner wished for the new
View to examine the CEP Module’s results to be integrated into the existing User Inter-
face.

Research was conducted to better understand the Django framework and Javascript,
along with the libraries and apps used in the existing product.

5.4.1 Django

FIGURE 5.8: Django logo

Django[39] is a free, open-source web framework developed in Python. Its main sell-
ing point is accelerating development through taking care of much of the hassle usually
associated with Web development.

The core Django web framework is an implementation of the Model-View-Control
paradigm.

• Model: It fulfills the functions of an Object-Relational Mapper (ORM), mapping
data models defined as Python classes into tables and entries in a Relational Database
backend. While Django’s ORM is meant to be used with Relational backends,
Django Apps consist of arbitrary code, which makes it possible for Portolan to use
MongoDB through the PyMongo driver.

• View: It processes HTTP requests and can generate views from page templates.

• Control: The Control layer is where Django affords most of its flexibility. Django
provides a regular-expression based URL dispatcher, which allows the definition
of static and dynamic endpoints. A valid endpoint ends in a Class or function call,
and the request is then processed by arbitrary Python code. The request data is
available during processing, making it possible to bring about different behaviors
depending on the type of request, data in the request itself, URL arguments, etc.

Django can be extended with Django Apps, Python packages that add extra func-
tionalities. Each Django app has its own internal URL mapping, and the root Django in-
stance must have a base URL mapping for each app. Some Apps are available as part of
the Django release, providing solid solutions for general use cases such as User Manage-
ment and Authentication, Session Management, serving an Administration Dashboard
and Security (mitigating typical web attacks such as SQL injection, cross-site scripting
and cross-site request forgery).

To aid development efforts it also has an interface to Python’s built-in unit test frame-
work, validating a newly added or updated app before it is deployed or on demand.
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Chapter 6

Architecture

This chapter details the Architecture Design of the CEP Module. It was designed
taking into account all the conceptual and component-related data presented in chapters
3 and 5, in fulfillment of the requirements listed in Chapter 4.

First, the Architectural Styles identified previously are compared and one is chosen
as the model paradigm for this project.

Then, a contextual view of the whole system is presented, showing where the newly
made CEP Module fits and how it interacts with the Stakeholders and existing system.

Finally, a component is chosen for each available slot and the container view of the
CEP Module is presented.

6.1 Architectural Style

As detailed in Chapter 3, there are currently 2 standard Architectural Patterns for
Data Processing systems: the Lambda and Kappa Architectures.

The main tradeoff between them is the existence of a layer dedicated to Batch Process-
ing in the Lambda Architecture, with the Stream Processing layer used to provide results
in-between executions of Batch Processing. The Kappa Architecture, however, features
only Stream Processing.

That makes the Lambda Architecture generally more indicated towards generating
Business Intelligence. In cases where the volume of data is too large, or accurate compu-
tations require all historical data to be reprocessed, Stream Processing may simply not be
an alternative to Batch Processing, as the entire context of the data may be required for
producing the final views and it cannot generate the same kind of results. One example
of such a case is the training of business oriented Machine Learning algorithms, which is
often done through Batch jobs with complete Datasets.

The Kappa Architecture is more lean, since it doesn’t have two kinds of Processing
engine. It is a simpler codebase to maintain, and a lighter technical stack. It still retains
the capability of reprocessing historical data if required, and the Processing Frameworks
researched are capable of maintaining multiple dataflows at once. It is indicated for gen-
erating time-sensitive results, which makes it ideal for decision support and Operational
Intelligence.

Both Architectures are based off of microservices, making it so components can be
individually scaled according to necessity. As stated previously, the core components
that are expected to take the heaviest load (Data Ingestion, Processing Engine and Data
Storage) are scalable by design.

Taking the above tradeoffs into account, and the fact that this system is to be used
for supporting operational teams during research and incidents, data has to be available
readily (with top latency of a few seconds) the best fit for this system is the Kappa Archi-
tecture.
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6.2 Context View

The CEP Module is a new addition to the pre-existing architecture. The Context View
represents the neighboring systems and components, the contextual placement of the
CEP Module and its additions and the interactions between them and the stakeholders.

FIGURE 6.1: Context View

6.3 Components

6.3.1 Data Ingestion

As can be seen in table 6.1, the main differences between Kafka and Redis reside in
their storage media and clustering capabilities.

For the CEP Module to be a success and comply with the requirements defined in
Chapter 4, the system must be horizontally scalable to grow in response to collected data
growth. As such, the component responsible for Data ingestion must be capable of high
throughput. Both Redis and Kafka qualify, although Redis is faster due to being mainly
memory-based.

However, RAM is not cost-effective and is much harder to scale up. Plus, it is volatile,
meaning data is lost in case of a failure, and Redis’ solution for data persistence is an
eventual dump to disk, which may lead to lost data. On top of that, Redis does not
enforce order guarantees, meaning that events may be delivered out of order. That is not
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Kafka Redis
Data is persisted on disk, so some speed is
sacrificed in exchange for extra storage ca-
pacity.

Memory-based. Very fast, but highly limit-
ing if records are large or in enough volume.
Persistence can be enabled, but is not as reli-
able as Kafka and decreases performance.

Can hold records for a longer retention pe-
riod thanks to cost-effective storage media in
case events need to be reused.

Short retention period due to being limited
to RAM.

Messages are stored as streams of bytes,
which permits Kafka to have more control
over the structures on disk and increase per-
formance.

Can handle high-level data structures
(Strings, Hashes, Lists, among others) to
increase effectiveness in memory access and
usage.

Partitions and replicates Topics over multi-
ple servers, allowing distributed, parallel ac-
cess and high availability setups.

Only capable of Master-Slave replication,
with no parallel access to the data.

Kafka has strong order guarantee, meaning
that messages will be delivered in the same
order they are received.

Redis does not ensure order, making use
of eventual consistency to increase perfor-
mance.

TABLE 6.1: Main differences between Kafka and Redis

acceptable in this context, since the CEP Engine will require events to be delivered as
orderly as possible and may require reprocessing recent events when a dataflow is newly
developed or created. It is expectable for there to be multiple dataflows consuming the
same type of events, which favours Kafka further due to its capability for parallel access.

Kafka has the additional overhead of requiring Apache ZooKeeper to store and syn-
chronize configurations and state (even in standalone mode). In exchange, ZooKeeper
eases the deployment of a Kafka cluster by taking care of synchronizing state and leader
election for a simple implementation of a robust High-Availability setup, which is an
acceptable tradeoff.

While Kafka puts the system under a heavier load than Redis, it boasts features more
adequate to the use-case than Redis while maintaining performance and scalability[40].

For the reasons stated above, Kafka was considered the best choice for data ingestion
and distribution.

6.3.2 Data Processing

The Complex Event Processing (CEP) Engine is the main component of the system,
as it is responsible for the vast majority of Data Processing for enriching, correlating and
generating complex events based on the input data.

The three technologies fit this purpose. All three are highly scalable, capable of high
throughput, and programmable, allowing data to be processed in arbitrarily complex
ways.

Part of the Problem Statement is that events are delivered in a Stream. While they
could be collected into DataSets to work with Spark Streaming, comitting to a Batch-only
Engine would cause a number of issues. Each new batch would cause the scheduling of
a whole new job, which would be exacerbated by the small size and increased frequency
of micro-batches; in cases where each Event generates an individual output, the size of
the results would be tied to the size of each batch; keeping state between batches can be
an issue, which makes pattern matching through CEP difficult; due to each batch being
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Flink Storm Spark
Processing
Model

Event and Batch Event Micro-batch

API Declarative Compositional Declarative
State Man-
agement

Distributed Snapshot State Acknowledgment Checkpoints

Strictest
Guarantee

Exactly-once At-least-once Exactly-once

Out of order
Processing

Yes Yes No

Latency Milisecond to second Milisecond to second Seconds
Autoscaling No No Yes
Well Doc-
umented
API

Yes No Yes

Strong native
framework

Yes No Yes

TABLE 6.2: Main differences between Flink, Storm and Spark

self-contained, taking advantage of time-windows would be complicated, as they would
largely be restricted to the time interval of events available in each batch.

For the above reasons, Spark was no longer considered a viable solution.
The decisive differences between Flink and Storm are the quality of the documenta-

tion and the functionalities offered natively by the framework itself.
At the time this decision was made, Flink had considerably better documentation,

which was expanded with the functionalities added in major releases since then. Storm,
however, was poorly documented. It was enough to get started, but did not give a sufi-
cient overview of the system, its functionalities and inner workings, making developing
and optimization difficult.

Both were capable of keeping state while processing, but Storm had been designed
primarily for ESP, and its acknoledgement system for stateful processing greatly de-
creased its performance. Flink, however, was designed from the beginning to be capable
of keeping state. When it comes to stateful computation, Flink boasts better performance
with its distributed snapshots than Storm with acknowledgements enabled, as can be
verified in Data Artisans’ extension of the Yahoo benchmark[41]. Losing stateful pro-
cessing in exchange for better performance was not a viable option, so Storm’s better
performance with acknowledgements turned off was not an important factor.

Finally, Flink features optional APIs for CEP, graph analysis (Gelly) and machine
learning (FlinkML), all of which make use of native capabilities. An API was added
in version 1.3.0 to make Storm Topologies compatible with Flink Streaming and allow
reusing code that was initially implemented for Storm. It is still in an early stage, but al-
lows both the use of Storm Bolts/Spouts in a Flink Streaming program and the execution
of a whole Storm Topology with minor changes.

Those reasons made Flink the most adequate choice for the CEP Engine.

6.3.3 Data Storage

While ElasticSearch offers a fresh array of functionalities characteristic of a Search
Engine, the automatic optimizations performed by ElasticSearch to ease full-text search
could result in unexpected errors or loss of data, meaning it would require additional
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planning and meticulous configuring. It was thus deemed that replacing MongoDB
would require too much effort and time budget, so it was considered out of scope. It
could have been used exclusively for the CEP Module, but even then Elastic requires
considerable effort to optimize and would lead to an addition to the technical stack of the
product.

Furthermore, not all deployments of Portolan are large enough to justify the deploy-
ment of a completely separate DBMS for a module.

For those reasons, the Data Storage solution chosen for use by the CEP Module was
MongoDB. However, care was taken to make sure the Data Storage can be switched in
case an alternate solution is developed later on, making change easier in the future.

6.4 Container View

FIGURE 6.2: Container View

In accordance with the Requirements specified in Chapter 3, the CEP module will
make use of open-source components. This view shows the component structure and the
flow of data between components.

The Component distribution and interaction follow the Kappa Architecture design
pattern.

Each component is individually capable of horizontal scaling, and the Microservices-
style Kappa Architecture ensures that each component is detached enough from the oth-
ers to ensure that changes to one do not directly affect the others.

There was need to research and experiment with configurations for each component,
establishing interfaces between them and define the Data Models used for communica-
tion between components, storage and presentation.
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Chapter 7

Implementation

This chapter addresses the implementation process and the steps involved in setting
up, working with and managing the CEP Module, its components and User Inteface. The
Implementation of the system was performed in the Second Semester of the Internship.

Through this Chapter the reader should understand how the system components
were deployed, how they interface with each other and the issues that were encountered
and solved.

Unlike most, this Internship focused heavily on the design and implementation of
an architectural solution, integrating multiple different components into a microservices-
based architecture instead of the development of a particular artifact. As such, most of the
code developed for the Data Processing section serves to bridge and test the components’
interfaces.

7.1 Overview

The Implementation process can be divided in two main phases, the implementation
of the Data Processing Module and the development of the User Interface and its inter-
actions with the Data. The definition of the Data Model was a process of its own, done in
parallel with both phases.

In accordance with the initial Chronogram for the Second Semester depicted in Chap-
ter 2, the Implementation phase had an initial buffer to set up the Development environ-
ment and Testing details. However, due to the delay in obtaining the Virtual Machine for
development, those actions were delayed until it was made available.

As part of the mitigation plan, all actions relating to the Development environment
were delayed in favour of those that could be achieved solely with the available work-
station.

First, auxiliary tools for data exploration, generation and testing of the final system
were developed. Using the tools to explore the data currently gathered by Portolan, a
compatible Data Model was defined to store the results from the CEP Module. The Data
Model suffered alterations during the User Interface phase to make presenting data in a
useful manner possible without extra input from the User.

Implementing all the necessary components required an extra phase of study to achieve
proper configurations for the expected setups.

When deploying the components, achieving a setup that balanced the available re-
sources between components adequately was made a priority. Resource mismanagement
in a live deployment could lead to severe bottlenecking. To avoid that, each component’s
effect in the machine’s resources was studied to identify what could lead them to perform
poorly.

There was a short time interval after which all components except Flink were ready
for an initial system test, but the Virtual Machine wasn’t available yet. During that time
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the Intern studied Apache Flink and the front-end technologies necessary for the User
Interface phase.

After the VM was made available Apache Flink was deployed and configured. Next
came the development of a Dataflow for data aggregation requested previously by the
Product Owner, along with modules to allow data to be ingested from Kafka and later
commited to MongoDB.

The User Interface phase required the Intern to read and understand the pre-existing
code for Portolan’s Django apps in order to use matching coding patterns (to ensure
maintainability by company developers) and avoid duplicating code. The Data Model
also suffered adjustments to allow viewing records with arbitrary fields in a single inter-
face, which made this phase take longer than expected.

7.2 Hardware

This section details the different environments involved in this Project and their spec-
ifications.

7.2.1 Development

The Development Environment consisted of a single Virtual Machine supplied by
Dognædis in company infrastructure, according to available hardware. While its specifi-
cations are lower than the ones in a Deployment environment, they are significant in the
validation of the Module. The Non-Functional Requirements specified in Chapter 4 ap-
ply to the superior Deployment Environment, and the research conducted by the Intern
(including the component benchmarks referred in Chapter 5) suggested that they were
achievable with the Hardware made available by the company (as can be seen in Chapter
8).

Next follow the specifications of the Virtual Machine.

• CPU: 4x vCPU

• RAM: 10GB

• Storage: 256GB

7.2.2 Deployment

The Deployment Environment consists of the specifications expected to be available
to this Module in a full deployment, as stated by the Product Owner. The target environ-
ment consists of one or more dedicated Virtual Machines in an enterprise infrastructure,
with access to and accessible by the machines used by the Database and Web Server com-
ponents of Portolan.

• CPU: 16x vCPU

• RAM: 64GB

• Storage: At least 256GB
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7.2.3 Cluster

In a clustered setup, machine specifications can be adjusted to the individual require-
ments of the component. For each component, a clustered setup ensures high availability
and parallelism. These hardware configurations correspond to the minimum suggested
specifications for a single instace of each component in an enterprise-level deployment.

• Apache Kafka

– CPU: 4x vCPU

– RAM: 8GB

– Storage: 128GB, in dedicated storage devices

• Apache Zookeeper

– CPU: 1x vCPU

– RAM: 2GB

– Storage: 64GB, in dedicated storage devices

– High availability: At least 3 instances in separate machines.

• Apache Flink

– CPU: 4-16x vCPU, according to task requirements

– RAM: 16GB

– Storage: 64GB

– High-availability: State storage backend in a shared filesystem such as HDFS[42].

7.3 Auxiliary Tools

The auxiliary tools developed at the start of the Second semester served multiple
purposes.

In order to fully understand the data to be processed by the system, the Intern needed
an understandable view of its scope and variability. The first tool to be developed pro-
duced a list of all event sources, the data fields of all events and on a source-by-source
basis, and the number of occurences of each field. This provided an overview of the data
available, its nature and the fields that could be used for processing later on. The current
Dataflow and suggestions for Future Work are based on this data.

A dummy event generator was developed afterwards. It generates a specified num-
ber of events, according to a provided initial schema, to aid in load tests.

Finally, three tools were developed to perform read and write operations on Apache
Kafka and MongoDB individually and in a single iteration. They take an Event dataset
as source and benchmark the read and write speed of each component, and were used to
perform these components’ benchmarks mentioned in Chapter 8.

7.4 Data Model

Data is exchanged between components in JSON format. During processing in Apache
Flink, the Events are deserialized into custom-made Java Objects to ease data manipula-
tion and automate serialization and deserialization.
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Defining a Data Model for complex event storage was a significant challenge. Since
complex events generated by the Module can have a variety of fields and data, creat-
ing a hard schema was not viable without greatly reducing the flexibility of the system.
However, being completely unable to predict the data in a record made it impossible to
present to the user without significant computing power spent on just-in-time parsing
and make future approaches to dynamic correlation impossible.

To solve this issue, a number of field names were declared as reserved, seeing as how
they are common or predictable enough to ensure the same data model.

• _ id: This field stores a unique ID to the object. It can be used to directly reference
the record from an alternate source. It is already a reserved field in MongoDB, but
considering that the Data Storage solution can be changed if required, having a field
set as unique identifier avoids issues raised in the User Interface from a change in
Data Storage.

• events: This field holds a list of the simple events from which each complex events
was derived. This provides a common point of correlation between complex events.

• ip: This field holds one or more IPv4 addresses related to the complex event. It
was singled out to take advantage of an IP masking feature that already exists in
Portolan, discovered during the study of the core Portolan Django App.

If a record had one of those fields, the interface would be capable of presenting and
performing queries correctly. It mimics a light enforcement of schema, which is an ac-
ceptable tradeoff for keeping a vast majority of flexibility afforded by MongoDB. In or-
der to differ between complex events, each type is saved in its own MongoDB collection,
grouping similar events together. All complex events are stored in the same MongoDB
Database.

This solution proved to be enough until the User Interface phase. The next chal-
lenge encountered was presenting useful data to the User. Since MongoDB is NoSQL, no
schema is enforced by the DBMS. When browsing and querying a collection of complex
events in the UI, the User would be presented with a paged list of resulting events. Under
the previous Data Model, presenting fields in that list involved either forcing a static set
of fields, which decreased usefulness, or dynamically parsing every returned object and
capture every field’s name, without a way of knowing how valuable it was to the user to
begin with.

The solution devised was the creation of an additional MongoDB collection called
CEPSchema to store an array containing the names and types of the most relevant fields
per complex event collection. That made data easily presentable to the User without
additional stress on the Django app or browser-based Javascript and ensured that the
User Interface is agnostic to the kind of data being presented, as long as the relevant
fields are specified.

Images depicting the User Interface developed for the CEP Module can be found in
the User Interface section of this Chapter.

7.5 Data Ingestion

Implementing the Data Ingestion layer involved the configuration of two technolo-
gies, Apache Kafka and Apache Zookeeper.

Zookeeper was deployed with minimum changes in default configuration, limiting
memory usage to 1GB as a conservative estimate. This value was verified with load tests
on Kafka.
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Kafka needed a point of integration with the Data Gathering Pipelines from Portolan,
which act as the Event Sources. The pipelines themselves are modular, and can make
use of connectors to interface with other components, which led to the development of
a connector using the kafka-python[43] client. The Connector sends the JSON events
created by the pipeline into a configurable Kafka topic.

A Kafka topic named "CEP_ Input" with 4 partitions was created in Kafka to serve
as the general event input queue. That approach was selected over individual topics
per input type to mirror the current way Portolan stores all events in a single MongoDB
collection. Additionally, considering the potential diversity in Dataflows in the Data Pro-
cessing Layer and the scalability afforded by Kafka, sending all current events through
a single topic is a viable choice in throughput and complexity. Replication Factor was
set at 1 due to using only a single machine. This setting can be changed later on when a
clustered setup is needed.

Docker[44] containers were created to simplify the deployment of both Kafka and
Zookeper. The containers make use of a common isolated software-defined network to
communicate between each other if deployed in the same machine. In remote deploy-
ments Kafka and Zookeeper expose listen ports through a configurable network inter-
face. A URL to a custom configuration file can be provided as an argument when starting
the Zookeeper and Kafka containers.

7.5.1 Resource Management

RAM usage was estimated according to the size of the Dataset. Kafka keeps records
for a period of two days, after which it starts to clear older records out.

In the Development environment, 1GB of RAM was given to Zookeeper, and 2 GB to
Kafka. This was more than enough for Kakfa to handle a month’s worth of event data
(approximately 193MB) in a single iteration without performance losses.

7.5.2 Best Practices

• Parallel Reads: If Kafka Consumers have different IDs, they are capable of reading
the same topic without issue. To have Consumers with the same ID reading from
the same topic, the topic should have as many or more partitions than the number
of consumers, as partitions are divided between consumers with the same ID.

• Parallel Writes: Similarly to reading, Parallel Writing can be achieved by partition-
ing a topic. Write operations can be applied to each partition independently. Since
the system could not exhaust Kafka’s throughput, the current topic with 4 partitions
offers parallelism without adding overhead. In testing, overhead due to excessive
partitioning was only severely noticeable (over 10 miliseconds of difference) past 8
partitions.

• Replication: In a single machine deployment, having a topic with replication factor
greater than 1 serves no purpose, as the extra replicas will just be stored in the
same Broker. However, in a clustered setup, replicas are spread over the cluster.
The number of replicas should be at most the number of Brokers in the cluster to
avoid duplicating data in the same Broker instance.

• Avoiding Contention: Kafka and Zookeeper should be deployed in separate ma-
chines, or at least write to separate storage devices. Since both make heavy use
of persistent storage, their performance is expected to decrease due to contention
between them.
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• High-Availability: For high-availability setups, a Zookeeper cluster should be com-
posed of an odd number of nodes, with a minimum of 3. In a distributed setup
of N+1 nodes, Zookeeper can tolerate the failure of N/2 instances. A Kafka topic
should have a replication factor greater than one. With a replication factor of N and
a minimum of N Brokers available, a Kafka topic remains entirely functional if up
to N-1 Brokers are lost.

7.6 Data Storage

The resulting complex events are stored in a MongoDB instance in accordance with
the Data Model defined earlier.

The configurations of MongoDB were not explored in detail, as it already is a de-
ployed part of Portolan. However, it was tested for performance purposes, as can be
seen in Chapter 8.

7.6.1 Integration with Apache Flink

Integrating MongoDB and Apache Flink required the development of a custom Data
Sink, due to the lack of an official one.

Apache Flink provides RichSinkFunction, a class to serve as base for user-developed
Data Sinks. That class was extended to create 4 different sinks using the MongoDB Java
Driver. Two of the sinks are general purpose and just write the received Document objects
to a specified collection. The other two sinks were developed to be used with a Dataflow
that correlates events by IP and Domain Name, which require Upsert operations instead
of simple writes.

Experiments were made with 2 Synchronous and 2 Asynchronous sinks to assess
performance and operational differences. MongoDB writing performance is below par,
which adversely affected the Data Processing layer’s performance. This issue was ex-
plored, and a solution had to be devised to ensure the complex events were not lost in
case of failure while making sure data could be written to the database without seriously
affecting the entire Dataflow.

The performance benchmarks that identified this issue are presented in Chapter 8,
along with the benchmark of the solution.

Synchronous Writing

• MongoDBSinkSync: This Sink writes records synchronously, one at a time.

• MongoDBUpsertIPDomainSinkSync: This Sink synchronously upserts the com-
plex events generated by the first Dataflow developed to aggregate multiple events’
data in fewer, more informative records.

The synchronous sinks proved detrimental to performance. The writing speed of
MongoDB is superior when multiple records are written in bulk instead of individu-
ally, as the current MongoDB setup does not permit parallel writing. However, in case
the Dataflow fails (for example, the Apache Flink Taskmanager crashes), the Dataflow
progress can be fully recovered through the Flink Checkpointing system, ensuring exactly-
once execution per record.
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Asynchronous Writing

• MongoDBSink: This Sink writes records asynchronously. The MongoDB Asyn-
chronous Driver creates a thread that gathers records in bulks and writes them
asynchronously, communicating success through a callback function.

• MongoDBUpsertIPDomainSink: Like its Synchronous counterpart, this sink was
customized to upsert complex events for the IP-Domain correlating Dataflow.

The asynchronous driver showed a slight improvement in performance. However, it
breaks the Checkpointing system, as the Sink task ends before the record is confirmed as
being written.

Solution

This issue was solved by using Apache Kafka as a middleware solution for records
written by Apache Flink. Instead of having the main Dataflow write directly into Mon-
goDB, it instead writes records to Kafka at a highly increased rate. This solution caps the
Data Processing Engine’s performance, and Kafka is capable of delivering and ingesting
events at a rate higher than they can be processed.

Another Dataflow was developed solely to read records from a newly created "CEP_
Output" Kafka topic and write them to MongoDB. In case of failure, the finished events
are persisted by Kafka and the bottleneck imposed by MongoDB on the Dataflow is
avoided.
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7.7 Stream Processing

This section describes the functioning of Apache Flink, the developed Dataflows and
their purpose.

7.7.1 Management

Flink offers a Web Interface for management purposes.

FIGURE 7.1: Flink Dashboard

The main dashboard shows an overview of the framework’s state, listing the total and
available number of Taks Slots, Running and Completed jobs and their state.

FIGURE 7.2: Flink Job List
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A full list of running and past jobs can be obtained, and its details can be consulted
as necessary, showing a graphical representation of the Dataflow and statistics such as
elapsed time, received and sent data, among others.

FIGURE 7.3: Running Flink Job details

Jobs can be submitted to Flink through the Web UI, a CLI utility or a REST API end-
point.

FIGURE 7.4: Uploading jobs to Flink

When submitted through the Web UI, the Job’s Jar is stored by the Job Manager
and can be executed from the UI. Arbitrary parameters can be specified at will, and the
Apache Flink Java Library provides a Parameter Parser. Parallelism and Entry Class are
parameters native to the framework. An alternate Savepoint path for the Checkpoints
can be specified, if there is a need to store Checkpoints in any specific path or shared
filesystem.
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FIGURE 7.5: Submitting an uploaded Job for execution

7.7.2 Resource Management

FIGURE 7.6: Job Manager Resources

Flink operates with two main management processes.
The active Job Manager handles Job submission and distributes tasks across Task

Managers with free slots. Any extra Job Managers in the cluster take a backup role, with
only a single one being active at any time. When the active Job Manager fails, the ones in
backup duty hold a Leader Election and one becomes the new active leader.

Task Managers receive tasks to be executed in available task slots. The number of task
slots in a Task Manager is configurable, but to the Job Manager Task Managers and Slots
serve as a global resource pool.

In the Development Environment setup, Flink has a single Job Manager and Task
Manager. Approximately 6.5GB of RAM are managed by Flink. 6GB are used by the Task
Manager due to the fact that it performs the Data Processing jobs. The Job Manager does
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FIGURE 7.7: Task Manager Resources

not require much RAM and can handle this setup with 512MB of memory. This was done
due to the fact that MongoDB requires RAM to function properly, so the entirety of the
machine’s remaining RAM could not be reserved for Data Processing in Development.

7.7.3 Monitoring

The status of the active Job Manager and available Task Managers can be monitored
through the menus shown previously. All Task Managers are listed and can be consulted
separately.

FIGURE 7.8: List of Task Managers in the cluster

For running jobs, the Web UI offers a number of statistics, with accompanying graph-
ics.
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FIGURE 7.9: Graphic metrics on a running Job

Finally, Flink has a REST API from which the status of the entire cluster can be
checked in detail. In accordance with standard practice, REST API calls return JSON
objects.

7.8 IP-Domain Correlation Dataflow

FIGURE 7.10: IP-Domain Correlation Dataflow

This Dataflow consumes JSON Events from a general input Kafka topic, deserializes
them, and then splits the records over two separate branches, one for records with an IP
field and the other for records with a Domain Name or URL. Each branch uses a filter to
discard unwanted records. The validity of the IP address and Domain Name is checked,
and then a complex event is created as a Java Object, based on the data of the initial
record.

Finally, the event is then fed into an output Kafka topic in JSON format to be later
inserted in the Database by another Dataflow.

This Dataflow went through multiple iterations and served as the base to test Flink’s
performance with various constructs. The most expensive operations in it are the de-
serializations and serializations. However, they are unavoidable in order to maintain
interoperability between systems and ease integration with other systems later on.

The setup with best performance had the Kafka Source with no parallelism and the
remaining tasks with Parallelism 4, making maximum use of the 4 vCores available to
process data in parallel. The Kafka topic used to store the resulting complex events was



7.9. Database Storage Dataflow 59

created with 4 partitions, allowing the 4 instanced Kafka Sinks to write simultaneously.
This configuration exhausted the Data Processing layer, causing it to apply backpressure
on the Kafka Source to lighten the event influx. The resulting throughput exceeded the
minimum event throughput specified in Chapter 4, as can be seen in the benchmarks
referred in Chapter 8.

7.9 Database Storage Dataflow

This Dataflow was implemented to grab data from Kafka and write it into a specified
MongoDB Database.Collection. It was created because MongoDB’s writing speed did not
meet the throughput requirements. This way the architecture becomes more generalistic,
the events can be reused if need be (for example, for a Dataflow that monitors network
connections in search of suspicious IPs or Domains), and the Data Processing Dataflows
avoid being bottlenecked by a slow sink. The throughput and latency requirements for
the Data Processing component are also fulfilled.

The current event throughput is still incapable of stressing the resources available to
Apache Kafka, and this means that the system, in the inferior Development Environment,
is fully capable of processing the Event volume corresponding to a full month in about
10 seconds.

7.10 User Interface

The User Interface for interacting with the results produced by the CEP Module was
developed in Django and JavaScript (JQuery and Bootstrap) by extending the existing
Portolan interface, both in views and functionality.

FIGURE 7.11: Complex Event Search menu

This interface is meant for the User to query events within a specified timespan. As
specified in the Data Model section, complex events are split over multiple collections.
All collections in the CEP Database are listed in the drop down menu, and the User can
select which Collection he wishes to query. The Filter Expression textbox allows the user
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to specify additional filters through binary operators. The validity of the expression is
verified in JavaScript.

FIGURE 7.12: CEP data being presented to the User

When the User performs a search, a request is made to an endpoint in the Web Server
with the Query Parameters. The query is then executed by the Django Control layer
through the PyMongo driver.

Instead of querying for the full set of fields, the Mongo query uses the $project Mon-
goDB operator to present only those specified in the CEPSchema collection.

FIGURE 7.13: Details of a complex event in the Web UI

The DrillDown button allows the user to see an event in Detail, listing all of its fields
in JSON format. Additionally, this menu crosses information with the raw event Data
and allows the User to browse the simple events related to the active complex event.

The user interface is deployed as a Django App. It can be added or removed from
Portolan with no consequences to pre-existing parts of the product.
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The CEP App shares dependencies with the core Portolan App for parsing queries
and page templates.
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Chapter 8

Verification and Validation

This chapter will contain the verification and validation of the system.
Verification consists of making sure that the artifact produced was properly devel-

oped through testing, collection and analysis of metrics and management of technical
debt.

Validation means confirming whether or not it serves the purpose it should, analysing
which Functional Requirements were fulfilled and unfulfilled, if the Quality Attributes
were satisfied and their overall impact on the end result.

It should be noted that all tests were conducted in the Development Environment
described in Chapter 6, as an equivalent to the Deployment Environment was not a pos-
sibility. This was already an expected occurrence since the Requirements phase, so all
Performance-related requirements were designed with that in mind.

In order to be representative both in volume and content, the Data used during testing
was the data gathered by Portolan in September, totalling 311.792 Events of assorted
variety (blacklist entries, vulnerability reports, etc.) in JSON format.

In cases where extra events were required, such as the more extreme load tests, the
Dummy Event Generator detailed in Chapter 7 was used to create new events, which
were then appended to the representative Dataset. The generated events included enough
data to make sure they were processed by the IP-Domain Correlation Dataflow. This was
done to show that the system is capable of handling high volumes of Data, even in hard-
ware with lower specifications than the expected deployment environment.

8.1 Verification

Since the development process chosen was heavily iterative, Verification consisted of
a number of tests during and after each development phase, according to necessity and
components affected.

The results obtained are referenced and discussed in this section. More details can be
consulted in Appendix B.

8.1.1 Data Sources

Since they are external to the system, the Data Sources were not subjected to testing.
For the testing of other components, they were replaced by injecting the test Dataset
directly into the system.

8.1.2 Apache Kafka

Apache Kafka was subjected to a Performance Benchmark, Broker Failure Simulation
and Zookeeper Failure Simulation. More detailed information can be found in B.
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Performance Benchmark

This Performance Benchmark serves the purposes of ensuring that this component
performs well enough to make complying with the Requirements set by the Performance
Quality Attribute possible (QR01 and QR02) and knowing the practical throughput limits
achievable. The Kafka Consumer provided by Apache Flink can be configured the same
way as the official Kafka Consumer written in Python, so the configurations tested can
be used in an Apache Flink Dataflow.

All tested configurations exceeded the expectance of 20000 set in QR01 by a large mar-
gin, capping at an average of 46123 events per second. Similarly, response time proved
staggeringly below the maximum threshold, averaging as low as 0.009 milliseconds when
consuming a single event at a time. Latency increased with the time interval allowed for
polling but did not surpass 3 milliseconds in testing.

From these results it can be concluded that, even in non-ideal conditions, the current
Kafka setup does not bottleneck the system and complies with the Performance Quality
Attributes.

Broker Failure Simulation

This test involved simulating the shutdown and failure of the Kafka Broker, both in
standalone and cluster setup. The test was conducted for a single Apache Kafka Broker in
a standalone setup and two clustered Brokers. This test aims to test the data persistence
and availability concerns of Kafka.

In a single-Broker deployment, data that has been received and flushed to disk is
persisted and is not lost upon Broker failure. It should be noted that the flush interval
can be customized. A flush can be triggered at periodic intervals and by receiving a
configurable number of messages before the time interval has passed.

The cluster setup shows that Kafka can handle a failure of a broker, as long as an
alternate Broker with a replica of the target topic is available. Consumer and Producer
instances become aware of the cluster layout after initializing a connection and are ca-
pable of switching Brokers according to the cluster’s health, mitigating the effects of a
Broker failure.

The message broker did not lose committed data, and in a clustered setup managed
to continue serving it as long as a partition was available in another Broker in the cluster.
While the test was executed on a small cluster, Kafka’s mechanisms for data management
ensured that data confirmed as delivered was not lost and can remain available even with
the failure of the Broker instance with leadership status for a partition.

Zookeeper Failure

As the backbone of Kafka, a Zookeeper failure can be catastrophic. Without an avail-
able Zookeeper instance, Kafka is not capable of updating its own data, such as cluster
layout, configuration changes, locating Topic partitions and Leader Election, all of which
are vital.

The tests for Zookeeper failure involved a standalone and clustered setup for Zookeeper,
a single and two Broker cluster setup for Kafka, and the Consumer/Producer Java Pro-
gram. They were meant to assess the impact of Kafka losing connectivity with a func-
tioning Zookeeper instance.

The results show that a Zookeeper ensemble can resist node failures as advertised, as
long as over half of the total expected nodes remain available. Both Zookeeper and Kafka
showed no problems in this situation.
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In the case of a failure of the Zookeeper ensemble, the Kafka Cluster still retains the
capability for receiving, serving and persisting data. This limited functionality mode af-
fords extra time to address the issue. This method of failure also ensures that an ensemble
cannot be split into two clusters functioning separately with conflicting information.

Zookeeper nodes can reconnect to an existing ensemble to restore it to an healthy state
or recreate it if it was down. Asides from Zookeeper instances needing external interven-
tion (manual or tool-assisted) to restart, a cluster is self-healing as soon as connections
are established.

These results show that, according to the technology’s specifications, Zookeeper be-
comes more reliable with the addition of independent nodes. In case of failure, Kafka is
robust enough to retain some functionality, even if just to buy time while the Zookeeper
ensemble is brought up.

8.1.3 Apache Flink

Apache Flink was submitted to Performance Benchmarking and Manager Failure
Simulation.

The custom-developed modules of the Dataflows were only submitted to Unit Tests
due to their individual simplicity.

Performance Benchmark

The Performance Benchmark serves to prove that the Processing Pipeline complies
with the Quality Attributes QR01 and QR02, defined in Chapter 4.

The developed Dataflow read events from a Kafka topic with a single partition, preloaded
with the monthly event Dataset made available by Dognædis. The processing pipeline
was parallelized, for a total of 4 concurrent pipelines. The Data Source was configured
with parallelism 1, so that all 4 pipelines would draw events from the same Kafka Source.
A different setup was tested for each Data Sink available: the custom-developed Data
Sinks for Mongo (synchronous and asynchronous) and the provided Kafka Sink.

Both MongoDB sinks proved slow and ended up bottlenecking the rest of the Dataflow.
The synchronous version was capable of writing an average of 4344 records per second,
while the asynchronous version raised the value to 6632. The number of events entering
the processing pipeline was greater, averaging 5196 and 8036 respectively. The Data Sink
received less events due to a previous task that discards unwanted events. However, both
values fall short of the established Performance Requirements, and analysis of the data
made available by Flink showed that the Data Sinks were responsible for backpressuring
all previous tasks, forcing the pipeline to slow down its event consumption and process-
ing rate to avoid overloading the MongoDB Sinks. The latency in event processing was
minimal, respectively averaging at 0.23 and 0.15 milliseconds.

Using a Kafka Sink proved much more effective. The Sink was capable of writing
an average of 26920 events per second to Kafka, while the Processing tasks achieved a
throughput of 32356 events per second. Unlike the Mongo Sinks, this setup caused the
Processing tasks to backpressure the Kafka Source. The system reached its maximum pro-
cessing capabilities and had to stifle the volume of incoming events to avoid overloading
the processing tasks. The latency in event processing averaged at 0.05 milliseconds.

Failure Tolerance

The tests for failure tolerance were performed with an active Dataflow and were
meant to test the resilience of Task Managers. To simulate a failure, the Task Manager
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process was forcibly shut down, since closing it properly would cause it to deregister
from the list of available resources before shutting down.

Shutting down a Task Manager with occupied Task Slots caused Flink to keep the
interrupted task on hold. If a suficient number of Task Slots became available, whether
immediately or eventually, the Task was restarted from the latest available Checkpoint.

These tests show that Apache Flink is capable of handling the failure of worker nodes
without affecting any other part of the system. Both the Task and its state were kept by
the Job Manager, and could be restored if assigned Task Slots failed. In the final product,
Tasks are possibly expected to run with no foreseeable endpoint. The system’s capabil-
ity to redistribute the Task across available slots is important, as it reduces the need for
manual intervention and ensures that the processing is stateful, even through failures.

8.1.4 MongoDB

MongoDB was subjected to a Write Performance Benchmarking. Initially, this test was
not planned. However, since MongoDB was revealed as a bottleneck in the Development
Environment, a short study was conducted to find the engine’s limits in this kind of setup
and means to get better performance.

Write Performance Benchmark

MongoDB shows considerably better speed when writing in Bulk, averaging nearly
15.000 records written per second. The major problem when writing into MongoDB as
part of the Dataflow is that records are written one by one, which has the considerably
lower speed of about 5.000 records per second.

Still, both methods of writing are off of the desired Performance Requirement for
the Data Processing Engine, which is why the alternative method of writing detailed in
Chapter 7 was devised.

8.2 Validation

This section serves to list the Requirements fulfilled by the system.

8.2.1 Functional Requirements

The fulfilled requirements and validation can be consulted in tables 8.1, 8.2 and 8.3.
Each table contains the ID, Title and reasoning for the Validation of the Requirement.
Unfulfilled Requirements are not listed.

All Must Have requirements were fulfilled, meaning that the System has the mini-
mum set of capabilities required by the Project Owner and that the Project is a success.
Some Should and Could have requirements were also fulfilled, either afforded through
the choice in component technologies, architecture or care in the development process.
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ID FR01
Title Event Aggregation
Validation As shown in Chapter 7, the DrillDown view in the CEP Web

Interface shows the User which simple events make up a com-
plex event.

ID FR02
Title Correlated Event Navigation
Validation The DrillDown view in the CEP Web Interface allows the user

to view the details of each simple event related to the active
complex event.

ID FR03
Title Complex Event Search
Validation The Web Interface provides the User with the capability of

querying the CEP data with the aid of logical operators, which
can be applied to data fields.

ID FR04
Title Capability to add new rules
Validation New jobs can be developed and submitted as required, and

will be executed as long as there are enough Task Slots avail-
able.

ID FR05
Title Modular Architecture
Validation This requirement is validated by the architecture detailed in

Chapter 6. None of the system’s other functionalities were al-
tered, making the CEP Module an entirely optional addition
to Portolan.

ID FR06
Title Programmable Dataflows
Validation Apache Flink’s data processing Dataflows are fully pro-

grammable and very extensible. Creating a new Dataflow is
functionally identical to developing a Java or Scala program,
with the only caveat being having to make use of Apache
Flink’s Dataflow API.

ID FR07
Title Data Manipulation
Validation With Dataflows being fully programmable, data can be ma-

nipulated at will as long as it can be deserialized from its orig-
inal state. As a proof of concept, the IP-Domain Correlation
Dataflow deserializes the JSON data and fits it into new Java
Objects, with all the functionalities of Object Oriented Pro-
gramming.

ID FR08
Title Streaming Windows
Validation Streaming Windows are natively supported by the Flink API,

which includes tumbling, sliding, session and global win-
dows.

ID FR09
Title Health Monitoring
Validation Apache Flink provides both a Web Dashboard and a REST API

that can be consulted to check the current status of the system,
its job history, job details and Manager status. The Dashboard
is immediately accessible and currently viewed as part of the
CEP Module.

TABLE 8.1: Validation of Must Have Requirements
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ID FR11
Title Reusable Dataflow Components
Validation Dataflows are modular by design. The components developed

for the IP-Correlation Dataflow were created with reusability
in mind, and as such represent general functionalities. The
only case where that was not as possibility were the Mon-
goDB Sinks for upserting data. To mitigate that issue, base
Synchronous and Asynchronous sinks were developed first,
and the Sinks capable of upserting are OOP extensions of those
classes.

textbfID FR12
Title Peformance Monitoring
Validation Job statistics can be consulted through Apache Flink’s REST

API or through Metric Graphs in the Web Dashboard.

TABLE 8.2: Validation of Should Have Requirements

ID FR15
Title GUI Dataflow Deployment
Validation As shown in Chapter 7, jobs can be submitted and started

through the Web Dashboard.

textbfID FR12
Title Performance Monitoring
Validation Job statistics can be consulted through Apache Flink’s REST

API or through Metric Graphs in the Web Dashboard.

TABLE 8.3: Validation of Could Have Requirements
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8.2.2 Quality Attributes

Quality Attributes are validated in the tables 8.4, 8.5, 8.6 and 8.7.
All Quality Attributes were fulfilled.

ID QR01
Description The system must be capable of enduring a load of 20000 events

per second
Validation Validated in the Verification section of this Chapter. The sys-

tem achieved an average throughput of 32356 events per sec-
ond while outputting data to a Kafka Topic.

textbfID QR02
Title The system can have latency of no more than 5 seconds
Validation The highest latency accumulated by a record going through

the system was slightly over 3 milliseconds if the Dataflow’s
Kafka Source consumed events in batches and used one of the
MongoDB Sinks, the slowest setup encountered during test-
ing.

TABLE 8.4: Validation of Performance Attributes

ID QR03
Description The system will use stable, upgradable technologies.
Validation Both Kafka and Flink have been updated with major releases.

However, both also had bug fix updates to previous releases.
The new versions retain backwards compatibility and any
deprecations and removals are well documented in the release
notes to prevent mistakes. Both technologies have a docu-
mented upgrade process and are capable of rolling upgrades
as an alternative to bringing down an entire cluster at once.

textbfID QR04
Title The system will support checkpointing
Validation Kafka stores the Consumer Offset so that a consumer can re-

ceive unread messages from a topic. Flink supports Check-
pointing natively in the form of Distributed Snapshots.

TABLE 8.5: Validation of Reliability Attributes
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ID QR05
Description In the GUI, input fields will be treated to avoid injection.
Validation The Expression text field of the CEP Web Interface supports

a limited set of logical operations, which are later translated
to MongoDB operations. Furthermore, since in MongoDB a
database operation is identified by the "$" prefix, the symbol is
removed from every token previously to submitting the query,
avoiding injection. The only control given to the user over the
query are the filter expression and which Collection to query.
The Database to query is set in the Django configuration file,
out of the User’s reach.

textbfID QR06
Title In the GUI, access to the data processed by the CEP engine will

be provided only to users whose session is validated.
Validation Validated through the use of the Django Session Management

app. Both the Interface and API Endpoints respond only to
connections with an active, valid session.

TABLE 8.6: Validation of Security Attributes

ID QR07
Description The system must be capable of splitting workload across avail-

able processing nodes.
Validation Validated by Apache Flink. The framework uses a resource

pool of Task Slots which can be made available by multiple
Task Managers over a cluster of different machines and are
used for jobs by the Job Manager.

textbfID QR08
Title The chosen technologies must be capable of horizontal scaling.
Validation Kafka and Flink were purposefully built with clustering ca-

pabilities in mind, taking advantage of multiple machines
for horizontal scaling. MongoDB is capable of Sharding and
Replication, which also make use of a cluster.

TABLE 8.7: Validation of Scalability Attributes
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Chapter 9

Conclusion

9.1 The Project

The Project proved to be an interesting challenge to the Intern. It required the use
of every aspect of Software Engineering learned over the course of the Master’s Degree,
from planning to validation. It also took a great deal of research, as the subject matter
was foreign to the Intern, who studied the necessary concepts and technologies as part
of the Internship. This kind of solution and components are a recent addition to the field,
and making the correct choices was paramount.

The development team at Dognædis were instrumental to understanding Portolan
as a product, from both a conceptual and technical point of view. Their involvement
in the initial phase was vital in detailing how Portolan operates, its intended use and
the additions requested as part of this Project, which pointed the Intern’s initial research
efforts in the correct direction.

The problem was not trivial and required a careful, planned approach. There was the
possibility of a bad decision in an early phase, such as choosing technologies or setting
requirements, only being identified as such in a much later phase. This Project required
a methodical approach and proved to be an exercise in Methodology. The iterative ap-
proach proved to be a good choice, as it afforded enough flexibility to change the task
layout due to the delay without adversely affecting the process.

9.2 Future Work

The core CEP Module was developed to address the immediate concerns of the prod-
uct and Operational Teams. However, the system was purposefully planned to be heavily
extensible, and the modular nature allows even whole components to be swapped in and
out. New ideas and features were considered, but not implemented due to being out of
scope.

New Dataflows can be developed and deployed with minimal effort, and are expected
to become the main additions to the system over time. Thanks to being source-agnostic,
the CEP Module can also receive internal events and process them along with the ones
gathered externally by Portolan, adding a more personalized layer of security to the
client.

One feature requested by the Project Owner but deemed possibly out of scope was
the graphical representation of events and their relations.

Another possible development is the addition of components capable of facilitating
search and analytics, such as the previously mentioned ElasticSearch.
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9.3 Conclusion

The CEP Module adds a new layer of stateful Data Processing to Portolan. By achiev-
ing the objectives and requirements set in the first phase of the Internship, the platform
is now capable of more than collecting and basic enriching individual events: it can now
analyze them in context, storing and updating information obtained from a global view
of the data as it is collected. The flexiblity of programmable dataflows can allow a set
of circumstances or stimuli (such as identifying a known suspicious event pattern or an
invulgar sequence of network connections to addresses in a concurrently updated list of
reported malware servers) to raise an alarm or even elicit an automated response from
one or more systems (separating the suspect machine from the network, block the con-
nections or redirect them to a sinkhole for further investigation by the Incident Response
team).

This new addition marks the evolution of Portolan to meet the increasing demand
for systems capable of growing with the ever-expanding amount of vulnerabilities and
attack vectors that currently characterize digital systems. In these last few months the
number and variety of Cyber Attacks has increased and taken a greater hold of public
awareness. As other systems fail, vulnerabilities and compromised machines and ad-
dresses are reported, Portolan’s potential pool of information grows. Now, the platform
has the means to analyze this information in a much larger scope and, with enough re-
sources, in a much smaller timespan.
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Appendix A

Gantt Charts

A.1 1st Semester
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Appendix B

Verification Details

B.1 Apache Kafka

B.1.1 Performance Benchmark

This Performance Benchmark serves the purposes of ensuring that this component
performs well enough to make complying with the Requirements set by the Performance
Quality Attribute possible (QR01 and QR02) and knowing the practical throughput limits
achievable. The Kafka Consumer provided by Apache Flink can be configured the same
way as the official Kafka Consumer written in Python, so the configurations tested can
be used in an Apache Flink Dataflow.

These tests were conducted to benchmark Apache Kafka’s throughput with the cho-
sen configurations and the effect of the number of polled records on throughput and
latency.

Table B.1 shows the results obtained. Latency is measured in milliseconds and total
time in seconds.

Polled Records Throughput Latency (ms) Total Time (s)
1 36889.73 0.009 8.452
25 44490.867 0.132 7.008
100 45239.698 0.499 6.892
200 46123.077 0.895 6.76
450 46508.353 1.814 6.704

TABLE B.1: Apache Kafka Performance Benchmark

Apache Kafka shows better performance when polling multiple records at a time. An
increase in records polled caused higher latency. However, both latency and throughput
are adequate for the intended use and Quality Attributes defined as part of this Project.

B.1.2 Broker Failure

This test involved simulating the shutdown and failure of the Kafka Broker, both in
standalone and cluster setup. The test involved one Apache Kafka Broker in the stan-
dalone setup and two when clustered.

The standalone failure test was conducted to verify that data and Queue offsets per-
sisted even if the Broker was shut down orderly, and then forcibly. In order to verify
the Queue offsets an auxiliary test program was written in Java to consume messages
preloaded into a topic. As expected, the data remained available when the Broker was
brought back up, and the consumer kept reading from where it had left off, so the current
offset was correct.
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The cluster test aimed to show that a topic with replication factor greater than 1 re-
mains accessible even in case the current Broker leading that topic fails, and that con-
sumer offset is not lost. The setup for this test involved the use of two Kafka Brokers,
distinguished by their IDs, respectively 0 and 1. A topic named KafkaBench01 was cre-
ated with replication factor 2 and a single partition to make sure that there would be only
two replicas for the partition, each in a different Broker.

This test was split into two phases: one with the Topic preloaded with Messages
and the Consumer Java Program, and another with one instance of the Java Program
producing new messages and another instance Consuming them.

The Java Program used Broker 1 as the initial connecting point to the Kafka cluster,
which also served to test if a consumer is capable of switching to a new Partition Leader
while consuming messages despite, at launch, not having any information related to the
address of an alternate Broker. It was then tested with the address of Broker 0, and finally
with a comma-separated list containing the addresses of both Brokers.

A CLI tool was used to discover that Broker 1 was the Partition Leader, which was
then forcibly shut down while a Java program read from the Topic.

Upon shutting down Broker 1, the Consumer Program suffered a short interruption,
after which it continued receiving responses with no further issue. The Partition Leader
changed to Broker 0. This test was executed for a clean and forced shutdown (using kill
-9).

Attempts to create a new connection to the cluster proved unsuccessful, as the con-
figured bootstrap server, Broker 1, was down. Switching it to Broker 0’s address solved
that issue, and the Consumer was capable of reading messages once again.

The test was redone with the only difference being Broker 0 serving as the entry point.
The results were identical, with the exception of, upon trying to reconnect with Broker 1
down, the connection was successful. Finally, both Broker 0 and 1’s addresses were listed
as bootstrap-servers. The Consumer was able to connect to the cluster from a total restart
without any intervention after Broker 1 had been brought down. To fully confirm the
hypothesis, Broker 1 was brought up and, after synchronizing, Broker 0 was shut down.
The Consumer was, again, able to connect and read messages.

To finalize, a new instance of the Java Program was used to Produce messages. This
time, the Producer instance generated messages and sent them to the previously used
Kafka Topic, while the Consumer instance polled them. The test battery was repeated
with a message Producer and Consumer. The results were identical, with the Producer
also capable of switching Brokers dynamically. It can also be started with a list of multiple
bootstrap servers, like the Consumer.

These tests prove the reliability of Apache Kafka. In a single-Broker deployment, data
that has been received and flushed to disk is persisted and is not lost upon Broker failure.
It should be noted that the flush interval can be customized. A flush can be triggered at
periodic intervals and by receiving a configurable number of messages before the time
interval has passed.

The cluster setup shows that Kafka can handle a failure of a broker, as long as an
alternate Broker with a replica of the target topic is available. Consumer and Producer
instances become aware of the cluster layout after initializing a connection and are ca-
pable of switching Brokers according to the cluster’s health, mitigating the effects of a
Broker failure.

B.1.3 Zookeeper Failure

As the backbone of Kafka, a Zookeeper failure can be catastrophic. Without an avail-
able Zookeeper instance, Kafka is not capable of updating its own data, such as cluster
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layout, configuration changes, locating Topic partitions and Leader Election, all of which
are vital.

The tests for Zookeeper failure involved a standalone and clustered setup for Zookeeper,
a single and two Broker cluster setup for Kafka, and the Consumer/Producer Java Pro-
gram. They were meant to assess the impact of Kafka losing connectivity with a function-
ing Zookeeper instance. The Zookeeper instances all ran in the same machine, but for the
purpose of these tests causing an instance to fail is a simulation of a machine failing.
Server failures are caused by shutting down the processes forcibly.

Trying to launch a Kafka Broker without a connection to a functioning Zookeeper
node causes the Broker to report error messages and shut down after a configurable num-
ber of tries.

All tests that follow use Kafka instances launched with an active Zookeeper connec-
tion. All disruption is caused after the Broker instance has finished the startup process.

On a single node deployment for both Zookeeper and Kafka, shutting down the
Zookeeper node caused Kafka to keep reporting errors while trying to connect to Zookeeper.
However, the Broker did not shut down, still managed to receive and send messages and
keep track of Consumer offsets. From this point, there were two experiments: run the
Zookeeper instance to see if Kafka would reconnect and bring everything up to date, and
forcibly shut down Kafka to verify if there was data loss without a Zookeeper instance.

After restarting Zookeeper, the Kafka instance reconnected without issues and per-
sisted the new offsets and topic metadata. After restarting both components, the state
remained the same.

Trying to do a clean shutdown of Kafka before a Zookeeper instance is available
causes the message broker to repeatedly try to connect to a Kafka instance, looping end-
lessly until then. If a Zookeeper instance recovers, Kafka completes the shutdown pro-
cess. Otherwise, the process has to be forcibly closed. Upon being launched again, with
connection to a functioning Zookeeper instance, it recovers the state it had before being
killed and does not lose data.

On a clustered deployment of 2 Kafka Brokers, shutting down the Zookeeper node
causes both Brokers to report errors while trying to reconnect to it. However, sent mes-
sages and consumer offsets are still synchronized between them, so the Kafka cluster
retains some functionality. If the Zookeeper instance recovers, the Brokers reconnect and
the situation is corrected.

If a Broker fails while Zookeeper is unavailable, it cannot rejoin the cluster, as it sim-
ply does not launch without a ZK instance. If the Broker was a Partition Leader, the clus-
ter can no longer serve or receive data for that partition, as Leader Election is achieved
through Zookeeper.

The system exhibits a dangerous behavior if the entire system is restarted and the Bro-
kers are not synchronized (if one Broker failed while the other kept receiving or sending
messages, for example). The first Broker to connect to Zookeeper becomes the elected
Leader for all of its Partitions. As such, its state is imposed as the truth. If the Broker
that kept operating then connects to Zookeeper, it matches its state to the Leader’s, los-
ing all extra operations that were not synchronized. This situation is extremely unlikely.
Kafka and Zookeeper do not fail often, and it would require an extremely remote set of
circumstances for this to happen. Plus, a setup with two Brokers and a single Zookeeper
instance does not ensure availability, as all that is required for the system to break down
is the single Zookeeper instance or machine failing. Still, unlikely and result of poorly
planning as it is, this situation must be pointed out to avoid serious mistakes.

Finally, in a clustered 3 machine setup Zookeeper was capable of handling the failure
of a single node. The Brokers suffered no issues. The failure of another node would cause
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the remaining Zookeeper instance to stop functioning, leading the Brokers to raise errors
as detailed on the standalone node failure test.

B.2 Apache Flink

B.2.1 Peformance Benchmark

The Performance Benchmark serves to prove that the Processing Pipeline complies
with the Quality Attributes QR01 and QR02, defined in Chapter 4.

The developed Dataflow read events from a Kafka topic with a single partition, preloaded
with the monthly event Dataset made available by Dognædis. The processing pipeline
was parallelized, for a total of 4 concurrent pipelines. The Data Source was configured
with parallelism 1, so that all 4 pipelines would draw events from the same Kafka Source.
A different setup was tested for each Data Sink available: the custom-developed Data
Sinks for Mongo (synchronous and asynchronous) and the provided Kafka Sink.

• Mongo Synchronous Sink:

– 4344 records outgoing sink per second
– 4344 records outgoing processing pipeline into sink per second
– 5196 records going into processing pipeline per second
– 6472 records outgoing source per second
– 5196 records outgoing source per second after backpressure kicks in
– Data Processing and Source were backpressured, meaning Sink couldn’t write

into Mongo fast enough
– Latency: 0.23 ms

• Mongo Asynchronous Sink:

– 6632 records outgoing sink per second
– 6632 records outgoing processing pipeline into sink per second
– 8036 records going into processing pipeline per second
– 8036 records outgoing source per second
– Data Processing and Source were backpressured, meaning Sink couldn’t write

into Mongo fast enough
– Latency: 0.15 ms

• Kafka Sink, same instance as read:

– 26920 records outgoing sink per second
– 26920 records outgoing processing pipeline per second
– 32356 records going into processing pipeline per second
– 32356 records outgoing source per second
– Source was backpressured, meaning source was capable of ingesting data faster

than it could be processed
– Latency: 0.05 ms

It should be noted that there is a constant ratio of 1.2 between events entering and
leaving the Processing Engine in all tests, meaning that the only difference is the overall
throughput. That is due to events being filtered out if they have no data fields used by
the Dataflow.
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B.2.2 Failure Tolerance

The tests for failure tolerance were performed with an active Dataflow and were
meant to test the resilience of Task Managers. To simulate a failure, the Task Manager
was forcibly shut down.

The first setup made use of a single Task Manager. After shutting down the process,
the Dataflow stopped to execute, and the Job Manager stopped reporting any available
Task Managers. Restarting the Task Manager caused the Job Manager to reassign the
interrupted Job, and it resumed from the latest checkpoint available.

The second setup used two Task Managers. The second Task Manager was added
to the available pool after the Dataflow started processing to distinguish both Managers
and make sure that shutting one down would stop the Job. Causing the working Task
Manager to fail caused the Job Manager to try and restart the Job. After the Task Manager
timed out, the Job Manager reassigned the job to the remaining Task Slots in the other
Task Manager, resuming the Job from the latest checkpoint.

B.3 Mongo DB

MongoDB’s write speed was summarilly benchmarked to understand its poor per-
formance. The test was conducted with a Java Program that submitted the event Dataset
in configurable bulks to a MongoDB Collection.

Bulk Size Throughput
20000 14501.547
10000 15120.120
5000 14948.317

1 4354.351

TABLE B.2: MongoDB writing throughput

As can be seen in table B.2, MongoDB performs considerably better when writing in
bulk than when writing event-by-event. This issue caused the poor processing speed of
Apache Flink when using MongoDB directly as a Data Sink.
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