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Resumo

Na Agricultura de Precisão (AP), a detecção e classi�cação de vegetação em culturas

herbáceas (e.g., vinhas e árvores) é um passo crucial para a de�nição de objectivos conse-

quentes, tais como a utilização de diferentes fertilizantes ou distintos níveis de hidratação.

Um Veículo Aéreo Não Tripulado (VANT) foi montado e testado com o objetivo de desen-

volver uma ferramenta de classi�cação (câmara �multiespectral�) para ser usada em diferentes

culturas. O sistema compreende uma plataforma aérea quad-rotor, capaz de voar até alturas

de 100 m acima do nível do solo. O presente trabalho desenvolve diferentes abordagens de

segmentação que resultam na identi�cação da Região de Interesse (RDI) e, posteriormente,

na sua classi�cação de acordo com a previsão fornecida por dois classi�cadores: Máquinas de

Vectores de Suporte (MVS) e Árvores de Decisão (AD). As imagens são capturadas por um

sistema composto por uma câmera (NoIR Raspberry Pi (RPi) - com um conjunto de cinco

�ltros ópticos acoplados à sua lente) conectada a um RPi, colocado no VANT para detecção

de vegetação. As imagens foram adquiridas através de voos sobre os seguintes campos agrí-

colas: três vinhas com diferentes variedades de casta e �orestas de cinco espécies de árvores

(eucaliptos, pinheiros, oliveiras, laranjeiras e magnólias). Os testes mostram o desempenho

dos dois classi�cadores, de acordo com a RDI identi�cada previamente por um algoritmo

baseado em thresholding através de valores fornecidos pelo índice de vegetação NDVI. Os dois

classi�cadores recebem dados de entrada fornecidos pelo cálculo de oito índices de vegetação.

O algoritmo gerou valores de exactidão de 72% e 73% (para o Sistema de Reconhecimento

de Padrões (SRP) associado ao conjuntos de dados #1 e #2, respectivamente, relaciona-

dos com as MVS) e 74% e 79% (para o SRP de acordo com os conjuntos de dados #1 e

#2, respectivamente, relacionadas com os AD). O algoritmo é totalmente automatizado e a

classi�cação é fornecida a partir do RPi para uma base de controlo, em tempo real, através

duma conexão por Wi-Fi.

Palavras-Chave: Agricultura de Precisão, Veículo Aéreo Não Tripulado, Índice de Vege-

tação, Raspberry Pi, Máquinas de Suporte de Vectores, Árvores de Decisão.
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Abstract

In Precision Agriculture (PA), detecting and classifying the vegetation in herbaceous

crops (e.g., vineyards and trees) is a crucial step prior to address further objectives, such as

specifying either di�erent fertilizers or distinguished hydration levels. An Unmanned Aerial

Vehicle (UAV) was assembled and tested with the aim of developing a classi�cation tool

(�multispectral� camera) for both types of vineyard and tree species. The system comprises

a quad-rotor aerial platform capable of �ying up to heights of 100 m above the ground level.

The present research work develops di�erent segmentation approaches which result in the

identi�cation of the Region of Interest (ROI) and afterwards their classi�cation according

to the prediction provided by two di�erent machine learning classi�ers: Support Vector

Machines (SVM)s and Decision Trees (DT)s. Along with the general description of the

procedure, remotely-sensed images captured with a sensor (a NoIR Raspberry Pi (RPi)

camera with a �ve optical �lters wheel attached) connected to an RPi and mounted on the

UAV, were applied for vegetation detection. Images were acquired while hovering above

both �elds of three vineyard species (with di�erent grape varieties) and forests of �ve tree

species (eucalyptus, pine trees, olive trees, orange trees and magnolias). The tests show the

performance of both classi�ers, according to the ROI identi�ed by a thresholding algorithm

based on Normalized Di�erence Vegetation Index (NDVI) measurements. The two classi�ers

receive input data provided by the computation of eight Vegetation Indices (VI)s. The

algorithm has led to accuracy values of 72% and 73% (for the Pattern Recognition System

(PRS) according to datasets #1 and #2, respectively, related to the SVMs) and 74% and

79% (for the PRS according to datasets #1 and #2, respectively, related to the DTs). The

entire algorithm is totally automated and the classi�cation output is provided from the RPi

to a ground station in real-time, by a Wi-Fi socket connection.

Keywords: Precision Agriculture, Unmanned Aerial Vehicle, Vegetation Index, Raspberry

Pi, Machine Learning, Support Vector Machines, Decision Trees.
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"Do not weep; do not wax indignant. Understand."

� Baruch Spinoza
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1 Introduction

Nowadays, most Precision Agriculture (PA)1 research is oriented towards the implemen-

tation of new sensors and instruments, able to detect crop patterns in real or quasi real-time.

Discrimination among crop species can be extremely important when one wants to di�eren-

tiate crop treatments, such as the use of fertilizers, herbicides or even the way crops should

be hydrated. Monitoring crops with an Unmanned Aerial Vehicle (UAV) can strongly help

farmers to improve their ability to manage vegetation treatments, once the identi�cation of

di�erent features can be computed on a daily basis and with results provided in real-time.

As a �rst step, the UAV should understand which is the species that it is looking at. The

main goal of this work is focused on this subject, mainly on the identi�cation of trees and

vineyards of di�erent species through the use of aerial images and the development of a Pat-

tern Recognition System (PRS) with these data. From the moment vegetation is classi�ed

among di�erent species, the �nal output can be used not only for territorial mapping, but

also to compute di�erent Vegetation Index (VI)s which can then be used to compare crop

vigour between vegetation that belongs to the same species.

Color spectrum is one of the fundamental properties that de�ne all matter. It is the

selective absorption of some electromagnetic wavelengths and the re�ection of others that

give all matter its characteristic color. Monitoring these visible and invisible wavelengths

provides insights into materials composition. An area where these principles are becoming

an increasingly important application is in the remote sensing of the Visible (V) and Near-

Infrared (NIR) radiation re�ected by cultivated crops, forests and other eco-systems.

Since di�erent species re�ect distinct radiation on the V and NIR wavelengths of the

electromagnetic spectrum, it was developed a low-cost �product�, composed by an Raspberry

Pi (RPi) NIR camera connected to an RPi and attached to the UAV. A Wi-Fi connection

is established between the RPi (attached to the UAV) and the ground station. Images are

captured on the UAV and then sent to the ground station, where a PRS is executed and

1PA is an approach to farm management that uses information technology to ensure that the crops receive
exactly what they need for optimum health and productivity [1].
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the �nal output is generated after a short time span (approximately 1 second). In contrast

to most related academic works (see chapter 2), the �nal output is not a classi�cation

mapping for the entire sample. Instead, for each sample, the Region Of Interest (ROI) is

identi�ed (de�ned by the crop to be assessed) and features (VIs) computed. Finally, these

features act as input data for the classi�cation task, being then post-processed (the �nal

crop classi�cation is output with an associated probability).

The process of pattern recognition is fully-automated and controlled by the ground sta-

tion which de�nes the exact moment samples should be captured and afterwards processed.

The user can choose between PRS execution during �ight or after UAV's landing. Before

classi�cation comes into play, the PRS takes care of the identi�cation of crops (set of pixels

which neither belong to the bare-soil nor to non-organic materials). It was assumed that a

particular sample (set of {V, NIR} or {Blue (B), Green (G), Red (R), NIR} images) entirely

belongs to the same crop species. Therefore, the UAV �ew over several farmlands of a single

crop species (vineyards and forests of either eucalyptus, pine trees, orange trees, olive trees

or magnolias).

Throughout this thesis, few academic works which have used UAVs, and/or Support

Vector Machine (SVM)s and Decision Tree (DT)s, for the detection and classi�cation of

vegetation were mentioned. Therefore, the description of the used Hardware (HW) was

highlighted, as well as a theoretical background which includes a brief explanation of the

deterministic and probabilistic machine learning models that were chosen for the classi�ca-

tion task. Subsequently, the PRS was clari�ed and its steps (sensing, segmentation, feature

extraction, classi�cation and post-processing) were identi�ed. Finally, experimental results

for di�erent segmentation techniques, classi�cation accuracy/precision and the best decision

for the choice of classi�ers parameters (based on a set of di�erent metrics) were shown.

As a new contribution to crop monitoring, a particular segmentation algorithm for low

Depth Of Field (DOF) aerial images was tested o�ine. Furthermore, it was tested a Wi-Fi

con�guration between the RPi located in a UAV and a ground station �xed on the ground,

which allows real-time classi�cation for the crop vegetation to be sampled, based on two

classi�ers.

During the course of this work it was exciting to operate with a UAV for the capture/test

of data, as well as to study the overall theory that underlies mathematical models for each

machine learning technique. Moreover, studying the mathematical core for a PRS using

Matlab and making the best of its source code when changing to a programming language

(i.e., C++), which allows the computation of real-time results, is always an interesting task.
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2 Related Work

This thesis can be extended to several topics, spinning o� discussions on a widely set of

cutting edge works. Therefore, a few academic works were identi�ed, which are associated

to the use of UAVs to detect/classify vegetation crops as well as to the usage of either SVMs

and/or DTs for the aforementioned subject.

2.1 Unmanned Aerial Vehicles on the Detection and Clas-

si�cation of Vegetation

The use of UAVs for PA was previously tested among distinguished crop classi�cations

(e.g., [2�14]).

D. Turner et al. developed an UAV capable of collecting hyper resolution visible, mul-

tispectral and thermal imagery for application in Precision Viticulture (PV) [2], sustaining

that mapping with UAVs has the potential to provide imagery at an unprecedented spatial

and temporal resolution. A thermal infrared camera is used to map soil moisture enabling

the assessment of irrigation e�ciency, and a six-band multispectral camera enables the cal-

culation of VIs (i.e., Normalized Di�erence Vegetation Index (NDVI), Simple Ratio (SR)

and Leaf Area Index (LAI)) that relate to vineyard vigour and health. The aim is to increase

the spatial resolution of data available from �conventional platforms� (such as satellites and

manned aircraft) from 20-50 cm/pixel to 1 cm/pixel, due to UAVs capability to �y much

lower and hence collect imagery at a higher resolution. This way, the sensory rig can be used

to di�erentiate vigour and health of vineyards.

A. I. de Castro et al. proposed an object-based approach for crop row characterization

from a list of color-infrared images taken with a UAV for weed management [3], identi�es and

classi�es (plant characteristics were measured through the dimension and spectral properties

- NDVI values - of the plant) the crop rows within a maize-crop-�eld. The ultimate objective

is to distinguish small weed seedlings at early stages for in-season site-speci�c herbicide

3



2.1. UNMANNED AERIAL VEHICLES ON THE DETECTION AND

CLASSIFICATION OF VEGETATION

treatment, by the execution of a PRS which is computed o�ine. The developed algorithm

has achieved satisfactory results for the rows' detection and count, when compared to on-

ground measures of weed emergence.

High resolution images were taken with two �onboard� cameras (Red Green and Blue

(RGB) and NIR) [14] providing unsupervised classi�cations which were performed in order

to test the algorithm's ability to distinguish between di�erent bushes and trees species. It

was proved that it is possible, with �low cost�1 instruments, to obtain a classi�cation of

di�erent crop vegetation species that can help in identifying speci�c variety.

Edoardo Fiorillo et al. assembled and tested a �exible UAV for PA with the goal of

site-speci�c vineyard management [5]. The system acquired 63 multispectral images during

10 minutes of �ight, which were then analyzed and classi�ed vigour maps were produced

based on NDVI.

Michaela De Giglio et al. analyzed cultivations of vineyards and tomatoes with a mul-

tispectral camera (mounted on a UAV) by the creation of �triband orthoimages�2 of the

surveyed sites [7]. Therefore, these data allowed the establishment of di�erent VIs (e.g.,

NDVI, Soil-Adjusted Vegetation Index (SAVI) and Green Normalized Di�erence Vegetation

Index (GNDVI)) to examine the vegetation vigour for each crop.

The water status variability of a commercial vineyard was assessed by thermal and mul-

tispectral imagery using a UAV [10]. Moreover, it was achieved a relationship with thermal

imagery and water status parameters that was combined with the computation of di�erent

VIs (e.g., NDVI) for mapping the spatial variability of water status within the vineyard.

The idea of detecting single trees was improved for an application on palm plantation [12],

by the creation of photogrammetric �point clouds�.3 These points were classi�ed based on

the geometric characteristics of the classes (i.e., palm, other vegetation and ground), leading

to results which can be seen with high capabilities for operation use, due to their accuracy on

the entire study area (which comprised densely scattered growing palms, as well as abundant

undergrowth and trees).

G. Bareth et al. deepened the idea of building a �mini� UAV (with a total weight lower

than 5 Kg - such as the one used in the present thesis) in such a way that the UAV can

be suited by a �mini� multispectral camera [13]. The main goal consists in the evaluation

1Still higher costs when compared to the work presented in this thesis.
2An orthoimage is an aerial photograph, geometrically corrected, such that the scale is uniform. The

photo has the same lack of distortion as a map [15].
3A Point Cloud is a set of datapoints in some coordinate system. For the case, points are de�ned in a

Three Dimensional (3D) coordinate system, with x, y and z coordinates [16].
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CHAPTER 2. RELATED WORK

Table 2.1: Di�erent technologies used to capture data.

Reference Sensor payload
[2] Tetracam MCA, Canon 550D and FLIR5

[3] Tetracam MCA
[14] Pentax Optio A40 and Sigma DP1 (with a Foveon X3 sensor)
[5] Tetracam ADC Lite
[7] Tetracam ADC Micro
[10] Tetracam MCA
[12] Panasonic Lumix G3
[13] Tetracam mini-MCA

of a sugar beet �eld experiment examining pathogens and drought stress. The classi�cation

method was based on the computation of the NDVI and the assessment of histograms related

to the di�erence among temperatures of distinguished sugar beet vigour.

Each one of the aforementioned studies has the main goal of classifying crops. Despite

classi�cation results are used for di�erent purposes, studies demonstrate that it is possible

to make such classi�cation from UAV images.

In conclusion, most of the studies exposed in table 2.1 requires the use of a �professional�

multispectral camera (e.g., Tetracam). Furthermore, even when multispectral data aren't

needed (e.g., [12]) or just two electromagnetic bands (e.g., V and NIR) are required (e.g.,

[14]), the overall cost remains much higher when compared to the one de�ned during this

thesis.

2.2 Support Vector Machines and Decision Trees for Crop

Classi�cation

A particular PA application motivated by the need to estimate crop yield during the grow-

ing session �classi�es�6 the structure of grapevines into three �classes� (i.e., leaves, branches

and fruit) [17], identi�ed from the color and shape of 3D point clouds. Furthermore, the

fruit class is then distinguished between grapes which are prior to ripening and grapes during

ripening, by the prediction provided by a SVM.

Arguing that forecasting the grape yield of vineyards is of critical importance to the wine

industry, the work [18] estimates which pixels do belong to grapes, by the assessment of

NDVI and the correlation between its values and crop yield. The classi�cation stage resorts

to the use of either RGB thresholding, color histogram or an SVM.

5See http://www.flir.com/aboutFLIR/ and http://www.tetracam.com/.
6Classi�cation which results from the segmentation process.

5
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2.3. MULTISPECTRAL FILTER WHEEL APPROACH

The use of SVMs was tested for crop classi�cation using hyperspectral images [19] and

di�erent conclusions were drawn: 1. SVMs yield better performances than neural networks;

2. training neural models is unfeasible when working with high dimensional input spaces.

A framework was developed based on SVMs for crop classi�cation using features provided

by a Synthetic Aperture Radar (SAR) [20]. A set of kernel functions (which includes linear,

polynomial and Radial Basis Function (RBF))7 was employed and compared for mapping

the input space into a higher dimension space, shown that RBF kernels increases the overall

accuracy in 3% in comparison to the use of linear kernel, and up to 1% in comparison to a

3rd degree polynomial kernel function.

The monitoring of sugarcane crops from �spectroradiometer� imagery [21] as well as

the assess of di�erent meteorological variables on the propagation of soybean asian rust

disease [22], were classi�ed resorting to DTs during the prediction stage.

A DT was used to identify crop types in an agricultural area, from multi-temporal images

[23]. The separability of sugar beet, tomato, pea, pepper, and rice classes was signi�cantly

improved with the use of additional bands (provided by a hyperspectral approach) by the

computation of di�erent VIs (e.g. NDVI).

Indeed, all the studies mentioned above are just examples of di�erent approaches using

either SVMs or DTs during the classi�cation task. As one can see from section 4.5, in this

thesis the �nal output (prediction) is de�ned taking into account the classi�cation provided

by the two machine learning classi�ers.

2.3 Multispectral Filter Wheel Approach

The combination of RGB and multispectral imagery for discrimination of Cabernet Sauvi-

gnon grapevine elements [24] was done by the construction of a custom-made sensory rig

that integrates a Charge-Coupled Device (CCD)8 camera and a servo-controlled �lter-wheel

for the acquisition of images during the experimental stage. It proposes a sequential masking

algorithm based on the K-means [26], for the classi�cation of image pixels into �ve clusters:

leaves, stems, branches, fruit and background.

The idea behind data acquisition (namely for the multispectral assembly) in the present

thesis was achieved by a similar approach to the one mentioned in [24].

7Set of kernels also tested during the present thesis.
8A CCD is a semiconductor sensor to capture images, formed by an integrated circuit containing an array

of capacitors. Each capacitor can transfer energy to another neighbor capacitor [25].
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3 Materials and Methods

3.1 Hardware Description

The UAV model (Sky Hero1 Little Spyder SK00-104-RTF) is manually controlled by a

Radio Control (RC) (FrSky Taranis X9D Plus 16CH RC Transmitter). The �ight controller

(3DR Pixhawk, aided by a 3DR GPS module) has got an external compass, and uses a

barometer which measures air pressure as the primary means for determining altitude. Lo-

cating the throttle stick inside the �mid-throttle deadzone� (40% ∼ 60% of throttle), the

quad-rotor maintains the altitude. Otherwise, outside this zone, the quad-rotor descends at

2.5 m/s (when the stick is completely down) or climbs at 2.5 m/s when it is located at the

very top. These values are obtained by the tunning of the following set of variables, changed

with the use of Mission Planner2 Application Programming Interface (API): Altitude Hold

P (converts the di�erence between the desired altitude and the actual altitude to a desired

climb or descent rate), Throttle Rate (converts the desired climb or descent rate into a

desired acceleration up or down) and Throttle Accel PID gain (converts the acceleration

into a motor output).

Quad-rotor's �rmware was downloaded from Mission Planner API. Furthermore, both

compasses (internal compass and the one provided by the 3DR GPS module) as well as

the RC were calibrated with Mission Planner API, by the use of �Mandatory Hardware

Wizard Setup� option, provided by this API. The RC has assumed a set of 6 di�erent

channels: 1. Channel 1 (Roll); 2. Channel 2 (Pitch); 3. Channel 3 (Throttle); 4. Channel

4 (Yaw); 5. Channels 5 and 6 are both called ��ight modes�. The set of Electronic Speed

Controller (ESC)s (T-Motor Air series 40 A, designed for operation on 2-6s Li-Po batteries)

was calibrated by a sequence of steps as follows: 1. Radio control is turned on; 2. Throttle is

set to maximum; 3. Li-Po battery is connected to power module (here, a cyclical pattern of

red, blue and yellow LEDs should appear on the �ight controller); 4. With the transmitter

1See http://www.sky-hero.com/en/.
2Software available at: http://ardupilot.org/planner/index.html
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3.1. HARDWARE DESCRIPTION

(a) Quad-rotor �tted with the

�multispectral� camera.

GPS and External 
Compass

Motor

Propeller
Carbon Frame

Flight Controller

Battery

Power Module

ESC (located 
inside the frame)

Safety Button
Buzzer

Landing Gear

Tellemetry Antennas

I2C port (for the
GPS connection)

(b) Quad-rotor's main components.

Figure 3.1: Illustration of the used UAV.

throttle stick still high, the battery should be disconnected and afterwards reconnected;

5. The safety button (which is connected to the �ight controller) should be pressed; 6. The

�ight controller should emit a musical tone composed by a regular number of beeps indicating

battery's cell count (i.e., 4 beeps) and then an additional 2 beeps signal to indicate that the

maximum throttle has been captured; 7. Transmitter's throttle stick should be pulled down;

8. The �ight controller should then emit a long tone indicating that the minimum throttle

has been captured; 9. Finally, the battery should be disconnected to exit ESC-calibration

mode.

The quad-rotor (see �gures 3.1 and 3.4a) is equipped with 4 motors (Sky Hero 2806, 950

kV) and it is power supplied by a 4S (four cells) (3700 mAh, 14.8 V, Zippy Compact 25C

Series) Li-Po battery. Batteries are charged with a synchronous balance charger/discharger

(iCharger 406 DUO), at a rate of 5C (5 × 3700 = 14.8 A), and the iCharger is supplied by

a switched-mode power supply (1 output, RSP-3000-24, Mean Well) which allows output

current up to 125 A. Depending on the farmland to be classi�ed (vineyards or crop forests),

the UAV has �own up to an height of either 3 or 20 meters, respectively, above the ground

level. The UAV's takeo� occurred in Stabilize �ight mode and so it remains until the moment

when the target altitude is reached. Here, the �ight mode is changed to Altitude Hold with

the speci�cations mentioned above. Each �ight, for data collection or even when tests were

done, occurred over time spans which didn't exceed periods of 5 minutes (for security reasons

the aim was to operate the UAV to a minimum of 60% of the batteries' power capacity).

The multispectral design (see �gure 3.3 for the �nal assembled structure) was based

on the concept of capturing di�erent radiation (di�erentiated wavelengths) with the use of

8
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(a) Sensor's spectral response.
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(b) V optical �lter.
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(c) NIR optical �lter.
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(d) RGB optical �lters.

Figure 3.2: Technical information (spectral responses) for di�erent optical �lters and cam-
era's sensor.

distinct optical �lters laid in front of the lens of an 8-MegaPixel camera board (Raspberry

Pi NoIR Camera Module v2 - Raspicam). The camera has got a SONY IMX219 sensor and

its spectral response can be seen3 in �gure 3.2a in terms of its Quantum E�ciency (QE).4

The Raspicam was calibrated with a Matlab application (Single Camera Callibration App)

in order to compute camera's intrinsic parameters (fx = 2768.2 pixels, fy = 2765.7 pixels).

Consequently, since the size s of each pixel is 1.12 µm×1.12 µm (sx = sy), the focal length,5

f , is (approximately) equal to 3.1 mm. Samples were captured by the use of either the

combination of RGB with NIR or V with NIR optical �lters (for the last option, RGB

channels were split by the camera itself allowing the capture of data as exempli�ed in �gures

3.4b and 3.4c). The selection of these �lters (see �gure 3.2 for spectral responses) is based on

the fact that all photosynthetic plants, including grapevines and trees, are characterized by

3From �gure 3.2a, one can see an estimation for the sensor's spectral response on the NIR band (dashed
line) suggested by [27].

4QE is the number of signal electrons created per incident photon (QE>100% when more than 1 electron
is created per incident photon [28]).

5The focal length (f ) is de�ned by:

{
fx = f × sx
fy = f × sy

.
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3.1. HARDWARE DESCRIPTION

Figure 3.3: Multispectral con�guration (view from di�erent sides).

a low re�ectance in red wavelengths ([570, 700] nm [29]) because chlorophyll absorbs much

of the incident energy for the photosynthesis. On the other hand, in the NIR wavelengths

([700, 950] nm [29]) photosynthesising plants re�ect large proportions of the incident sunlight

[30]. The remaining optical �lters (i.e., green and blue) were used to allow the computation

of di�erent features (i.e., VIs - see section 4.4).

The RPi is power supplied by a 2S (two cells - 850 mAh, 7.4 V Turnigy nano-tech) Li-Po

battery, where the voltage is adjusted by a module regulator (DC-DC LM2596 step down

adjustable converter). The Wireless Local Area Network (WLAN) is established by the use

of both an access point (Tube 2H, Alfa Network Inc., 150 Mbps, 2.4 GHz) and a USB Wi-Fi

(150 Mbps) adapter connected to the RPi. Finally, a servo (TowerPro SG90 Mini Gear Micro

Servo 9g) allows the �lters' wheel to rotate, according to Pulse-Width Modulation (PWM)

signals sent from the RPi.

Concerning the algorithms that were developed during this thesis, the RPi (1.2 GHz

quad-core ARMv8 CPU) hasn't got enough processing capacity to provide real or quasi

real-time results. Consequently, the main goal of using the RPi is only based on the way

data are collected and afterwards sent to the ground station (Personal Computer (PC) -

ASUS K450J, quad-core 2.4 GHz CPU) to be processed. However, an alternative to the

use of the RPi and its camera was considered. Here, the Odroid XU-4 (2 GHz Cortex-A7

octa-core CPU) was tested with a Kurokesu (USB camera C1) attached. Nevertheless, due

to the size of the Kurokesu camera (and subsequently the increase of the �lters' size), this

option was excluded from practice as well as the idea of processing data out of the ground

station.

10
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(a) UAV during �ight. (b) V image. (c) NIR image.

Figure 3.4: Set of images related to UAV's �ight.

Figure 3.5: Sequence of steps required before �ight.

Before any �ight session, the UAV, the RPi, and the ground station must be subjected to

di�erent con�gurations suggested by a set of 2 procedures which are illustrated on diagram

mentioned above (see �gure 3.5).

3.2 Theoretical Background for Classi�cation

The main di�culty of the classi�cation process results from the variability of the feature

values for objects in the same category, as well as the similar aspects among feature values for

11



3.2. THEORETICAL BACKGROUND FOR CLASSIFICATION

objects in di�erent categories. This work attempts to classify di�erent crop species, proving

that features mentioned in 4.4 provide reliable measurements to the problem mentioned

above.

In the broadest sense, any method that incorporates information from training samples

in the design of a classi�er requires learning. These pattern classi�cation algorithms were

taught by a supervised [31] learning model, providing a category label for each pattern in a

training set. Thus, a large set of images for di�erent classes (e.g., samples for several species)

is used to compute several VIs which are then used as the input for the classi�cation algorithm

during the training stage. ConsideringX as the set of input variables (e.g., VIs) for the entire

training dataset and Y as the set of output variables (e.g., crop's species), the output quality

of a supervised model is based on the learning of the mapping function, f , from the input

to the output (Y = f(X)). Learning stops when the algorithm achieves an acceptable level

of performance (as mentioned in section 3.2.3). On the other hand, unsupervised learning

models only have input data, X, and no corresponding output variables are generated. The

main objective is to model the underlying structure or distribution in the data in order to

learn more about it without being previously taught. Unsupervised learning can be further

grouped into clustering (where one wants to discover the inherent groupings in the data

- such as the de�nition of Object Of Interest (OOI) or non OOI by K-means algorithm,

mentioned during segmentation technique 4.3.2) and association problems (where one wants

to discover rules that describe large portions of data).

It is also important to clarify that the algorithm is not in continuous learning: after

the training stage, a pattern classi�cation method provides the �nal output, identifying, for

instance, the speci�c type of crop (testing stage) and not providing its result as a feedback

for future classi�cation.

3.2.1 Support Vector Machines

SVMs [31�33] (see table 3.1) rely on pre-processing the data to represent patterns in

a high dimension. They are based on the Structural Risk Minimization [33] principle from

computational learning theory. The idea of structural risk minimization is to �nd a hypothe-

sis, h, for which one can guarantee the lowest true error. The true error of h is the probability

that h will make an error in an unseen and randomly selected test example. Considering H

as the hypothesis space of which h belongs, SVMs �nd the hypothesis h which minimizes

the bound on the true error. One remarkable property of SVMs is that their ability to learn

12
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can be independent of the dimensionality of the feature space (F ). SVMs measure the com-

plexity of hypothesis based on the margin with which they separate the data. Indeed, SVMs

do not rely on measuring the complexity of hypothesis based on the number of features.

Therefore, one can generalize even in the presence of many features. In fact, classi�cation

performance was shaped according to the increase/decrease of several features (�nal results,

shown in chapter 5, are classi�ed according to the set of features mentioned in 4.4). Graph-

ically (see �gure 3.6a and example 1), one can see the concept of SVMs in the separation

of data into classes according to the plane which maximizes the margin between the classes'

closest points (hyperplane). The margin is optimized to reduce the number of weights that

are nonzero to just a few ones (called Support Vectors)6 that correspond to the important

features that matter in deciding the separating hyperplane.

Each instance in the training set contains one �target value� (i.e., the class labels) and

several �attributes� (i.e., the features). As discussed, SVM's goal is to produce a model

(based on the training data) which predicts the target values of the test data considering

only the test data attributes. In other words, a training set is composed by l pairs of (feature,

label), (x1, y1), ..., (xl, yl), where xi ∈ Rn, i = {1, ..., l} (n ≡ # of features ≡ # of VIs = 8,

see section 5.4) and y ∈ {1, ..., k} (k = {5, 3}, depending on the dataset used for the PRS

- see section 5.4) is the class of xi. The resulting output consists in a set of weights (wi),

one for each feature, whose linear combination predicts the value of y. The hyperplane

H0 (e.g., line for the Two Dimensional (2D) case and plane for a feature space with di-

mension greater than 2) and its margin (distance between H1 and H2) can be de�ned7

as suggested in equations (3.1), (3.2) and (3.3) (considering that F ∈ R2). Furthermore,

knowing that the distance (d) between H0 and H1 is represented as mentioned in equa-

tion (3.4), one should minimize ||w|| to maximize the margin (2× d) between classes.

H1 : x ·w + b = 1 (3.1) H0 : x ·w + b = 0 (3.2) H2 : x ·w + b = −1 (3.3)

d =
|x ·w + b|
||w||

=
1

||w||
(3.4)

Moreover, assuming that there are no data points between H0 and H1, the set of two

6These weights are called Support Vectors because they �support� the separating hyperplane.
7w · x ≡ wTx ≡< w, x >:= Inner product between vectors of weights and input features, respectively.
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3.2. THEORETICAL BACKGROUND FOR CLASSIFICATION

inequalities mentioned above can be simpli�ed as follows:

xi ·w + b ≥ 1, if yi=1

xi ·w + b ≤ −1, if yi=-1

 ≡ yi(xi ·w) ≥ 1

Table 3.1: Important terminology related to SVMs.

Terminology Description
Hyperplane Margin between classes' closest points.
Support Vectors Points lying on the boundaries.
Type of SVM Considering only multi-class classi�cation, SVMs can be either

of type C-SVM or nu-SVM. For the later type, a nu parameter
de�nes an upper bound on the fraction of margin errors and a
lower bound of the fraction of support vectors relative to the
number of training examples. Considering nu = x%, one guar-
antees that x% of the training examples are at most misclassi�ed
and x% of the training examples are at least support vectors.

Nonlinearity When one cannot �nd a linear separator, data points are pro-
jected into a higher-dimensional space where the data points
e�ectively become linearly separable (this projection is realised
via kernel techniques).

Kernel It is a similarity function, which enables SVMs to operate in
a high-dimensional implicit feature space, without computing
the coordinates of the data in that space but rather by simply
computing the inner products between the images of all pairs of
data in the feature space. For the case, one can choose between
linear, polynomial or RBF kernels (see table 3.2 and �gure 3.6b).

Overlapped Classes Data points on the �wrong� side of the discriminant margin are
weighted down to reduce their in�uence (soft margin).

Multi-class Classi�ca-
tion

Basically, SVMs can only solve binary classi�cation problems.
To allow for multi-class classi�cation, libsvm (SVM's library
chosen to work with during this thesis) uses the one-against-
one technique by �tting all binary subclassi�ers and �nding the
correct class according to a voting strategy.

One-against-one Assuming that k is the number of classes, there are Kc = k×(k−1)
2

di�erent ways of combining binary classi�cations. This technique
creates Kc classi�ers where each one is trained on data from two
classes. If8sign(f(x)) says x is in the ith class, then the vote for
the ith class is added by one (otherwise, the vote for the jth class
is increased by one).

This way, one should solve a quadratic9 minimization problem (which can be solved by

8sign(x) =


1 if x>0

0 if x=0

−1 if x<0
9Because it is quadratic, the surface is a paraboloid (avoid local minima).
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the Lagrangian multiplier method), as follows:

min
1

2
||w||2

subject to [yi(xi ·w)− b]− 1 = 0.

The idea is to �nd the intersection of two functions, f and g, at a tangent point (which is a

minimum or a maximum for f, subjected to the constraint g). Hence, one should look for the

solution of the following problem (L is a Lagrangian function which includes a new variable

α):

L(x, α) = f(x)− αg(x)

∇(x, α) = 0

≡ (in general) L(x, α) = f(x) +
∑
i

αigi(x),

Considering l training points, the primal form of the optimization problem can be seen as:

min L =
1

2
||w||2 −

l∑
i=1

αiyi(xi · w + b) +
l∑

i=1

αi.

∂Lp
∂w

= w −
l∑

i=1

αiyixi = 0 ≡ w =
l∑

i=1

αiyixi (3.5)
∂Lp
∂b

= w −
l∑

i=1

αiyi = 0 (3.6)

The Lagrangian method partially derivatives (see equations (3.5) and (3.6)) the primal

problem with respect to w and b. Accordingly, instead of minimizing over w and b (subject

to constraints involving α), one should maximize over α (subject to the relations obtained

for w and b). This way, dependencies of w and b are no longer required, and the problem

can now be solved by computing the inner products between xi and xj (features for the ith

and jth classes). The resultant dual optimization problem is represented as follows:

max L(αi) =
l∑

i=1

αi −
1

2

l∑
i=1

αiαjyiyj(xi · xj)

subject to
l∑

i=1

αiyiαi ≥ 0,∀i.
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(a) Illustration scenario.
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(b) The �Kernel trick�.

Figure 3.6: SVMs trivial scenario.

Finally, knowing αi, one can �nd the weights (w) for the maximal margin hyperplane

(training stage) as suggested in equation (3.5). The prediction of the class label (y) for a

given unknown data point u is computed by the assessment of sign(f(x)) (see description

for one-against-one in table 3.1), with f(x) de�ned according to equation (3.7).

f(x) = w · u+ b = (
l∑

i=1

αiyixi · u) + b (3.7)

However, when patterns are not linearly separable, data are mapped into a higher dimen-

sional feature space, through the use of Kernel functions, de�ned by: K(xi, xj) ≡ φ(xi)
Tφ(xj)

(see table 3.1 for the Kernel de�nition).

Table 3.2: Di�erent kernels used on the PRS, for the two datasets, as mentioned during
section 5.4.

Type of Kernel Formula10

Linear K(xi, xj) = xTi xj
Polynomial K(xi, xj) = (γxTi xj + r)d, γ > 0

RBF K(xi, xj) = e−γ||xi−xj ||
2
, γ > 0

10γ, r and d are kernel parameters (hyperparameters).
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Example 1. Imagining that in fact a pair of features from the set provided in 4.4 (e.g., NDVI

and GNDVI - xi ∈ R2) is a powerful tool when distinguishing (for instance) Eucalyptus

(•) from Pine trees (•). One should also take into account that the feature space is only

composed by these data. Thus, a trivial case for such classi�cation can be seen as the one

suggested in �gure 3.6.

3.2.2 Decision Trees

DTs [31,34,35] (see table 3.3) are a non-parametric11 supervised learning method. They

have their basis on classifying a pattern through a sequence of questions in which the next

question asked depends on the answer to the current question. This approach is particularly

useful for non-metric data, because all of the questions can be asked in a �yes/no�, �true/false�

or �value (property) ∈ set of values� style that does not require any notion of metric. Such

a sequence of questions is displayed in a DT, where the root (�rst) node is displayed at the

top (for the DT presented in �gure 3.7, the root node is displayed at the left just for the sake

of text formating), connected by successive links to other nodes that are similarly connected

until reaching the leaf nodes (which have no further links).

Considering once more a training set composed by l pairs of (feature, label) (xi ∈ Rn, i =

{1, ..., l} and y ∈ {1, ..., k} - see section 3.2.1), a decision tree recursively partitions the

dataset such that the samples with the same labels are grouped together. Let the data at

node m be represented by Q. For each split candidate, θ = (j, tm), consisting of a feature

j and a threshold tm (limit LIM , exempli�ed in �gure 3.7), the data are partitioned12 into

Qleft(θ) and Qright(θ) subsets:

Qleft(θ) = (x, y) | (xj <= tm),

Qright(θ) = Q \Qleft(θ).

The algorithm �nds the �best� split of data by the construction of binary trees using the θ that

yield the largest information gain at each node (i.e., which generate the most homogeneous

11Non-parametric (or distribution-free) refers to data which do not assume a speci�c distribution. Para-
metric data are de�ned by a normal distribution [36].

12A \B consists of all elements of A which are not elements of B (generic example).
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Figure 3.7: DTs trivial scenario.

branches). The impurity G at m is computed13 using an impurity function H:

G(Q, θ) =
nleft
Nm

H(Qleft(θ)) +
nright
Nm

H(Qright(θ)),

and the parameters (j∗, t∗m) are then selected, according to the ones that minimize the

impurity:

θ∗ = argminθG(Q, θ).

Until the maximum allowable depth is reached (or Nm reaches a state where its value is lower

than the minimum allowable samples at a leaf node) Qleft(θ
∗) and Qright(θ

∗) are recursively

computed. Taking on values {0, ..., k−1} for the di�erent classes at node m and representing

a region Rm with Nm observations, let

pmk =
1

Nm

∑
xi∈Rm

I(yi = k)

be the proportion of class k in node m. Finally, the two criterion chosen for measuring the

impurity were the gini and entropy de�ned, respectively, as follows:

H(Xm) =
∑
k

pmk(1− pmk),

H(Xm) = −
∑
k

pmklog(pmk).

Taking into account a similar scenario (for this case, xi ∈ R1) to the one illustrated on

13nleft, nright and Nm are, respectively, the number of nodes in the left and right subsets, and the sum of
the number of left and right nodes, according to the data at a particular node m.
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Table 3.3: Important terminology related to DTs.

Terminology Description
Root Node It represents the entire sample.
Splitting Process of dividing a node into 2 or more sub-nodes.
Decision Node Sub-node that is split into further sub-nodes.
Terminal Node Sub-node that is not split.
Impurity It is a measure of how often a randomly chosen element from

the set would be incorrectly labeled if it was randomly classi�ed
according to the distribution of labels in the subset.

Criterion De�nes how will attributes be selected for splitting.
Maximum Depth Parameter used to restrict the size of the DT (to prevent over-

�tting).
Maximum Features Maximum # of features to consider when looking for the best

split.
Minimum Samples
to Split or Minimum
Samples per Leaf

Minimum # of samples required to split a decision node.

example 1, a trivial case for DTs can be as similar as the one suggested in �gure 3.7. Here,

a set of 3 samples was considered for both Eucalyptus (•) and Pine trees (•).

3.2.3 Finding the Best Classi�er

Learning the parameters of a prediction function and testing it on the same data is a

methodological mistake. A model that would just repeat the labels of the samples that it has

just seen would have a perfect score but would fail to predict anything useful on yet-unseen

data (this is called over�tting [35]). To avoid it, it is common practice when performing a

supervised machine learning experiment, to hold out part of the available dataset as a test

set.

Di�erent estimators (such as SVMs and DTs) require an evaluation of several settings

(so-called hyperparameters [35]). For instance, C setting should be evaluated manually for

SVMs. Thus, there is still a risk of over�tting on the test, because the parameters can be

tweaked until the estimator performs optimally. To solve this problem, another part of the

dataset can be held out as a so-called validation set : training proceeds on the training set,

after which evaluation is done on a validation set and then, when the experiment seems to

be successful, �nal evaluation can be done on the test set. At this point, another problem

arises. For datasets which are not composed by a huge number of samples (for the case, just

a few hundred samples were used) and by partitioning the available data into 3 sets, one

drastically reduces the number of samples which can be used for learning the model, and the
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Figure 3.8: CV trivial scenario.14

results might depend on a particular random choice for the pair (train, validation) sets. A

solution to avoid this problem is a procedure called Cross Validation (CV) (see �gure 3.8). A

test set should still be held out for �nal evaluation, but the validation set is no longer needed.

For the k-fold CV approach (which was taken into account in this thesis), the training set is

split into k smaller sets. For each of the k folds, the following procedure is ensued:

1. A model is trained using k − 1 of the folds as training data;

2. The resulting model is validated on the remaining fold - i.e., it is used as a test set to

compute model's accuracy.

In conclusion, the performance measure reported by k-fold cross-validation is then the av-

erage of the values computed in the loop. Despite being computationally expensive (when

compared to the method where data are split into 3 sets), this procedure does not waste

too much data (which is a major priority in this work, due to the low number of available

samples). It is also important to report that CV was just used to better understand which is

the model that better suits the data provided for training stage. After achieving the �best�

hyperparameters for the model, test data come then into play. Both SVM and DT libraries

allow the inclusion of CV during training stage.

SVMs CV took into account the following speci�cations:

� Type: C-SVM (0) or nu-SVM (1);

� Kernel Type: Linear, (0) Polynomial (1) or RBF (2);

14Trivial example where k = 4 and just 2 classes considered.
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� Degree (D, for polynomial kernel);

� Γ (for polynomial or RBF kernels);

� Cost (C for C-SVM type) and nu (for nu-SVM type).

The following speci�cations were taken into account for DTs CV:

� Criterion: gini (0) or entropy (1);

� Maximum Depth: 5, 7, 9, 11 or None (N);

� Minimum Samples to Split : 1, 2, 3, 4 or 5;

� Minimum Samples per Leaf : 1 or 2.

The PRS was evaluated according to the following approaches:

� Scoring parameter (model-evaluation tool using CV - assessing of accuracy for CV):

� The k results from the folds are averaged to produce a single estimation for

accuracy.

� Metric functions (set of functions assessing prediction errors: precision, recall, accuracy

and Receiver Operating Characteristic (ROC) curve - relation between True Positive

Rate (TPR) and False Positive Rate (FPR)):

TPR = Recall =
Tp

Tp+ Fn
,

FPR =
Fp

Fp+ Tn
,

Precision =
Tp

Tp+ Fp
,

Accuracy =
Tp+ Tn

Tp+ Tn+ Fp+ Fn
.

These functions use the following set of statistical measurements for the computation

of metrics:

� True Positive (Tp): # of samples which belong to a class (e.g., class 1 ) and are

classi�ed as class 1 ;

� True Negative (Tn): # of samples which do not belong to class 1 and are classi�ed

as �not� class 1 (class 1);
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� False Positive (Fp): # of samples which belong to class 1 and are classi�ed as

class 1 ;

� False Negative (Fn): # of samples which belong to class 1 and are classi�ed as

class 1.

In conclusion, the �nal �optimized� models for the PRS were achieved according to the

following enumerated items (for item 1. it was assigned the highest priority when choosing

classi�er's con�guration, whereas item 3. has the lowest priority):

1. Choice of the minimum value for the Euclidean distance between the correspondent

point on the ROC curve and the sweet spot (TPR = 1,FPR = 0);

2. Choice of the con�guration which results on the best CV accuracy;

3. Choice of the con�guration which results on the best precision.

Finally, the accuracy was used to compute the probability associated to the output's

classi�cation (see section 4.5) during test predictions.
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4 Pattern Recognition System

This chapter describes how pattern classi�cation algorithms were developed, some math-

ematical background (namely for segmentation techniques and VIs computation) and how

the system processes the entire information (from sensing to post-processing). Deep clari�-

cations according to each element mentioned in �gure 4.1 are provided. It is also important

to clarify that pattern classi�cation di�ers from image processing. In image processing, the

input and output are both images and it often includes transformations which preserve all

the original information. On the other hand, feature extraction (such as the work done in

this thesis) loses information and preserves everything relevant to the task at hand.

4.1 Introduction

In describing a crop classi�cation system, distinctions were made among pre-processing

(identi�cation of the ROI), feature extraction, classi�cation and post-processing (assessing

of the �nal class according to the output provided by the two classi�ers). Figure 4.1 shows

a slightly more elaborate diagram of the components considered in a PRS. In fact, to design

such a system, some problems can emerge. To understand the problem of designing this

system, a short introduction to each component is considered.

Figure 4.1: The PRS.

When sensing, the input of this PRS is a camera. Here, the di�culty of the problem

depends on the camera characteristics, such as its resolution and the accuracy required by

its sensor to detect electromagnetic radiation within the required wavelength span. Since the
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idea was to develop a low-cost mechanism, it was very hard to �nd cameras on the market

which can be mounted into a multispectral mechanism.

Once images are taken, patterns need to be segmented. A way to distinguish vegetation

leaves from bare soil, non-organic materials, or even leaves which are from other plants, can

be extremely hard to do if the radiation captured is similar (radiation which belongs to iden-

tical wavelength bandwidths) among di�erent objects. Segmentation is one of the deepest

problems in pattern recognition and was the hardest point to cope with when elaborating

this work.

The concept boundary between feature extraction and classi�cation is somewhat arbi-

trary: an ideal feature extractor would yield a representation that makes the job of the clas-

si�er trivial; conversely, an omnipotent classi�er would not need the help of a sophisticated

feature extractor. The distinction is forced upon us for practical, rather than theoretical

reasons [31]. The main idea of feature extraction is to characterize an object in such a way

that its measurements can be used to distinguish it from non similar objects. For instance,

di�erent VIs were used during this work, which relate the di�erent radiation captured on the

same image (sample). Once the ROI is well segmented, each VI is computed. As a result,

their mean values are used as input data for the classi�cation task.

The post-processor uses the output of both classi�ers to assess which is the best decision

(i.e., which is the classi�cation that suits the higher probability). If all classi�ers agree

with a particular pattern, there is no di�culty. Otherwise, how could this combination of

classi�ers achieve the best decision (see section 4.5)?

4.2 Sensing and Data Collection

Data collection can surprisingly account for the large amount of the cost of a PRS de-

velopment. It may be possible to perform a preliminary feasibility PRS with a small set of

typical examples, but much more data are usually needed to ensure a good performance in

the �eld. In fact, a small dataset was used in the beginning, so that one can be able to test

the entire algorithm. Afterwards, more data were needed to achieve higher accuracies when

classi�cation occurred, since the algorithm training set has increased.

Throughout this work, two di�erent ways of capturing data were considered (i.e., Data

Collection #1 and Data Collection #2 ). Since the main goal consists in equipping a UAV,

the size of the �multispectral mechanism� became a crucial variable. On account of that and

despite being later described, Data Collection #2 was only used during an embryonic phase
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of the project. For both data collections procedures, a ground station (in the case, a PC)

establishes a Wi-Fi connection to either 1 or 2 RPi.

4.2.1 Data Collection #1

The purpose of this data collection (see �gure 4.2) is to use the least HW and at the same

time make it possible to collect the desired bands of the electromagnetic spectrum. This is a

non snapshot technique (a couple of seconds is needed) based on �lter shifting, providing a

total of N images per sample (N = {2, 5} depending on the segmentation algorithm used).

Computations based on data provided by either 5 optical �lters (B, G, R, NIR and V) or 2

optical �lters (V and NIR) were tested (namely during pre processing).

The ground station establishes a connection to 1 RPi via Secure Shell (SSH), over a

WLAN provided by a portable modem. The RPi is previously con�gured for booting with a

speci�c Internet Protocol (IP) address (192.168.4.194). A client-server interprocess commu-

nication is used between both the RPi and the PC, respectively. The client (RPi) establishes

a Transmission Control Protocol (TCP) socket connection to the server (PC), sending an

image stream from the RPi to the PC (socket A). Streaming is done according to a resolution

reducing factor of 1
16
(decreasing the amount of data to be transmitted which allows real-time

image transmission). At the same time and from another socket, a message is continuously

sent towards the ground station, saying whether the streaming is in high or low resolution

(socket B). This way, the ground station can choose in real-time between �streaming� (low

resolution) or capturing desired samples (high resolution). Every time the ground station

decides to capture a sample, the �lter which is attached in front of the camera's lens changes

its position, allowing the capture of the same sample in di�erent bands. This control is

based on PWM signals, sent by the RPi to a servo. For each sample, it is considered that

all images are overlapped with each other (remark DC1).

4.2.2 Data Collection #2

Data collection #2 was tested and aims to guarantee that images for the same sample

are matched correctly. Despite its implementation on the UAV was not considered when

data were collected, its description is mentioned since one can see it as an alternative for

Data Collection #1.

This data collection is reached by 2 RPi (e.g., RA and RB) and a ground station, all

connected to the same WLAN and both RPi give access to the ground station via SSH. One
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Figure 4.2: Data collection #1.

should also consider that a di�erent camera is connected to each RPi (stereo con�guration).

RA has a �V� camera (which has got a NIR block �lter between its sensor and lens) connected,

allowing RGB spectral data. On the other hand, RB has a �NIR� camera (which hasn't a

NIR block �lter) connected, with a short-pass �lter (blocks V and higher frequency radiation)

attached, allowing the capture of NIR data.

RA works with the same logic of RPi from data collection #1, working with both sockets

A and B. RB just streams data (high resolution NIR image) to the ground station (socket

C), when receiving that order. Both messages (orders to take photos) from ground station

to RA and RB are sent at the same moment.

Stereo calibration was made using Matlab (Stereo Calibration App). Once Data Collec-

tion #2 requires more HW and knowing that the �nal disparity between points on the left

and right cameras may lead to errors (which might not be smaller when compared to remark

DC1), Data Collection #2 was excluded from practice.

4.3 Segmentation

In this work, three segmentation processes were considered, which are either based on

color or frequency data, provided by each set composed by 2 or 5 images taken in each

sample.

1. Segmentation based on NDVI thresholding → Its goal is to reduce the number of thresh-

olds (as also the number of used optical �lters) and consequently to remove the empir-

ical weight from the algorithm. Furthermore, since samples were taken during �ight,

using just two optical �lters (i.e., V and NIR) increases the probability of generating

overlapped images (less �disparity�) for the di�erent bands, when compared to the use
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of �ve optical �lters.

2. Segmentation based on low DOF V image → This algorithm is seen as an alternative,

since it allows the extraction of the ROI based only on the image provided by the

V �lter. In spite of being computationally heavier when compared to the other two

techniques, it can be very convenient when low DOF samples are provided.

3. Segmentation based on RGB and Hue Saturation and Value (HSV) thresholding → It

was developed in order to use data (captured within speci�c bandwidths) provided by

the entire set of optical �lters. However, it has the drawback of being composed by a

huge set of empirically de�ned thresholds.

4.3.1 Segmentation based on Normalized Di�erence Vegetation In-

dex Thresholding

This segmentation (see �gure 4.3) is a multispectral remote sensing data technique, which

�nds the NDVI (described in section 4.4) for each sample. In contrast to 4.3.3, the algorithm

has recourse to 2 di�erent optical �lters (V and NIR). It turns out that NDVI can distin-

guish vegetation from either bare-soil or non-organic materials with considerable accuracy.

Accordingly, this technique can be extremely accurate for farmland which hasn't vegetation

beyond the one that belongs to the ROI.

Figure 4.3: Block diagram for the segmentation based on NDVI thresholding.

After the thresholding process, images are eroded in a �rst step, causing the removal

of small blobs which were not correctly segmented and subsequently dilated. Considering

particular sizes for erosion and dilation elements, each pixel, dst(x, y), of the destination

image (either eroded or dilated), can thus be seen in relation to the source image, src, as

suggested in equations (4.1) and (4.2), respectively (where x′ and y′ are the width and height,

de�ned by the element [37], [38]).
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Finally, images are again thresholded, according to the same values previously de�ned.

min src(x+ x′, y + y′)
(x′,y′): element(x′,y′)6=0

(4.1) max src(x+ x′, y + y′)
(x′,y′): element(x′,y′)6=0

(4.2)

4.3.2 Segmentation based on Low Depth of Field Visible Image

When moving the sensor in a digital camera in relation to its lens, the plane in object

that is sharply focused moves as well. From this perspective, the sensor can be moved by

a speci�c range, until the feature goes out of focus (i.e., when the width of the blurred

image of the feature has become larger on the sensor than the maximum allowed Circle Of

Confusion (COC) - an arbitrary value, often equalized to the width of a pixel [39]). Therefore,

when striking the sensor, objects which come to a focus too far in front of or behind the COC

(C1) will spread out to a size larger than the circle. Examining the lines that connect the

edges of the lens aperture to each side of the COC (see �gure 4.4), one can see that an object

gets out of focus, when positioned outside D1. The width of D1 (distance along the optical

axis) is called Depth Of Focus (DOFo). The position in the object space that corresponds to

the COC in the image space (C2) can be computed by Gauss' ray construction [40], based

on a mathematical treatment of refraction at the interface between two di�erent materials,

provided by Snell's law (where A and B correspond to the farthest and nearest �in focus�

points, respectively) [41]. Repeating on the object space an analogous procedure to the one

made on the image space of the lens, another COC is achieved (C2) and D2 is created.

Scene features inside D2 will focus to positions inside D1, leading to a blur which will not

be greater than one COC (i.e., features will appear �in focus� on the sensor). The width of

the object space D2 is called DOF [39]. Considering the lens aperture the variable N, the

DOF (width of D2, Z) can be approximately computed as equation (4.3) suggests [39]:

Z ≈ 2NCU2

f 2
(4.3)

With low DOF images, only the OOI is in sharp focus, whereas background and/or fore-

ground are �out of focus� (typically blurred). This technique is used to create a sense of

depth in two dimensional photographs. In fact, sharply focused objects have more details

within the object than the ones which are not �in focus�, leading to higher values of wavelet

coe�cients in the high frequency bands of the transform [42]. The high frequency energy is

then measured by the standard deviation and variance of wavelet coe�cients for those bands.

Discrete Wavelet Transform (DWT) represents an image as a sum of wavelet coe�cients,
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Figure 4.4: DOF illustration.

known as wavelets, with di�erent location and scale. It represents the data into a set of

high pass and low pass coe�cients [43]. For the case of 2D DWT, the input data are passed

through a set of both low pass and high pass �lters in two directions (rows and columns).

The outputs are then �downsampled� by 2 in each direction. To have a better understand-

Figure 4.5: Block diagram of 2D DWT.

ing of the basis behind Discrete Haar Wavelet Transform (DHWT), one can consider the

reasoning set below [44] and �gure 4.5.

De�ning h = (h0, h1) = (1
2
, 1
2
) as a �lter, one can see the convolution between two

discrete signals, y and x, as y[n] = h[n] ∗ x[n] =
∑1

m=0 h[m]x[m − n] = 1
2
x[n] + 1

2
x[n − 1].

Making z[n] = 1
2
x[n] − 1

2
x[n − 1], the sequence x[n] is de�ned as x[n] = y[n] + z[n] and

29



4.3. SEGMENTATION

x[n− 1] = y[n]− z[n]. In fact, the system's matrix form is represented as (4.4) suggests (H

and G are convolution matrices).

H
G

x =

y
z

 , H =



. . .

0 1
2

1
2

0 0

0 0 1
2

1
2

0
. . .

 G =



. . .

0 −1
2

1
2

0 0

0 0 −1
2

1
2

0
. . .

 (4.4)

To be able to recover x, some redundancy can be omitted (some rows in H and G). Indeed,

y[n] + z[n] = y[n+ 1]− z[n+ 1], leading to a downsample of the rows of H and G. De�ning

N as the size of 1D data x, one can de�ne DHWT, WN , as WN = [H G]T
√

2. Therefore,

to recreate x, one just need to compute: W T
N v = [HT | GT ] v. For the case of 2D data and

assuming X as an N × N matrix, with N even, the mathematical procedure is de�ned as

shown in equation (4.5).

WN X W T
N =

H
G

 X

H
G

T =

HXHT HXGT

GXHT GXGT

 =

 LL LH

HL HH

 (4.5)

HXHT averages along the columns of X and then along the rows of X, producing a blur,

β, of X. HXGT averages along the columns of X and then di�erences along the rows of

HX, producing vertical di�erences between β and X. GXHT di�erences along the columns

of X and then averages along the rows of GX, producing horizontal di�erences between β

and X. GXGT di�erences along the columns of X and then di�erences along the rows of

GX, producing diagonal di�erences between β and X.

The algorithm for the segmentation based on low DOF V images was developed with the

idea of being part of a target recognition process, which has as input images with low DOF.

Therefore, desired vegetation would be �in focus� whereas background and/or foreground

would be �out of focus�.

Throughout the dissertation, the idea of using a camera capturing low DOF images fell

through. However, the algorithm was developed and its results are exempli�ed in the next

chapter. This technique has its pseudo-code as an adapted version of [42]. The image

is partitioned into blocks, which are �classi�ed� as background or OOI, according to their

average intensity (feature 1) and their standard deviation and variance of wavelet coe�cients

of high frequencies (features 2 and 3, respectively). The Multi Resolution Segmentation

Algorithm (MRSA) comprises 2 sequential phases: r = 0 (Phase 1) and r > 0 (Phase 2)
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Figure 4.6: Block diagram for the segmentation based on low DOF V image.

Figure 4.7: Block diagram for the core of the segmentation based on low DOF V image.

(see �gure 4.6). During Phase 1, the image is partitioned into blocks of size S, and their

grayscale mean as well as their wavelet coe�cients are computed. Therefore, each block is

classi�ed as being an OOI or background, through K-means algorithm [26,45], according to

6 �sub-features� (variance and standard deviation of LH, HL and HH). At the end of this

stage, both clusters' centers for each �classi�cation� are computed and afterwards used in

Phase 2. Throughout Phase 2, objects are subdivided by a factor of 2, in each iteration.

Typically, S = 32 for r = 0, leading to 4 iterations in Phase 2 (r = 5 is despised as at

this iteration blocks shrink to the size of a pixel and so are likely to be smooth - variance

of wavelet coe�cients are no longer good features). De�ning R as the number of iterations

required to have objects with a size of a pixel, for each iteration r ∈ [0, R− 1], features 1, 2

and 3 are computed for every object. Depending on conditions speci�ed on the algorithm's

core, each object class is maintained or changed. Algorithm 1 speci�es the pseudo-code of

this technique. K-means algorithm used in 1 (Phase 1) splits the data from 6 di�erent sets
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(for all high frequencies - LH, HL and HH - standard deviation and variance are computed)

into a group of 2 clusters (Background and OOI). Random initial centers are selected at

a �rst attempt, for a total of 10 trials, or a di�erent number of attempts until accuracy

is achieved. This implementation of k-means algorithm is reached by repeatedly assigning

points to the closest centroid nearby using Euclidean [46] distance from data points to a

centroid. The algorithm's core is outlined on �gure 4.7 and its conditions clari�ed on table

4.1.

Algorithm 1 MRSA for low DOF images.

1: . r=0 (Phase 1)
2: procedure rEqualToZero(I) . I←grayscale low DOF image
3: S ← 32 . Size of each block
4: for i ∈ 1, ..., m

S
do . m←lines of I

5: for j ∈ 1, ..., n
S
do . n← columns of I

6: [rOI]← Rect[j ∗ S, i ∗ S, S, S] . Region of block (i,j)
7: [µ(i, j)]← mean[rOI] . Feature 1
8: [wC(i, j)]← haarWavelet[rOI] . Wavelet coe�cients
9: [σ(i, j),σ2(i, j)]← stdDevVar[wC(i, j)] . Features 2 and 3

10: end for
11: end for
12: [classes,clustersC]← kMeans[σ,σ2] . Classes and clusters' centers
13: return classes, clustersC, µ

14: end procedure
15: . r>0 (Phase 2)
16: procedure rGreaterThanZero(I, classes, clustersC, µ)
17: for r ∈ 1, ..., R− 1 do
18: S[r]← S

2r

19: for i ∈ 1, ..., m
S
× 2r do

20: for j ∈ 1, ..., n
S
× 2r do

21: [rOI]← Rect[j ∗ S[r], i ∗ S[r], S[r], S[r]]
22: [µ2(i, j)]← mean[rOI]
23: [wC(i, j)]← haarWavelet[rOI]
24: [σ(i, j),σ2(i, j)]← stdDevVar[wC(i, j)]

25: end for
26: end for
27: classes2← classes 1

28: [classes2]← core[classes2, µ2, µ, σ2, σ, clustersC, r, m
S
× 2r, n

S
× 2r]

29: classes← classes2 . Update classes
30: µ← µ2 . Update mean

31: end for
32: end procedure
33: . Core
34: procedure core(classes2, µ2, µ, σ2, σ, clustersC, r, iMax, jMax)

1Labels from classes2 (parents) are matched to classes (children), by a scale factor (each parent generates
4 children).
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35: for i ∈ r, ..., iMax− r do
36: for j ∈ r, ..., jMax− r do
37: if classes2(i, j) == 1 then . If block(i,j) is OOI
38: neighbor = {(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)}
39: if classes2(neighbor) == 0 then . At least 1 neighbor is Background
40: for k ∈ 1, ..., 4 do . Loop between all neighbors
41: flipBackground← 0
42: flipOOI ← 0
43: [lmn, cmn]← neighbor(k)
44: . Decision 1
45: d1[0]← µ2(lmn, cmn)− µ(lmn × 0.5, cmn × 0.5)
46: d1[1]← µ2(lmn, cmn)− µ(li × 0.5, ci × 0.5)
47: c1[0]← (σ2(i, j)− clustersC(1))2 < (σ2(i, j)− clustersC(0))2

48: c1[1]← (σ(i, j)− clustersC(1))2 < (σ(i, j)− clustersC(0))2

49: if d1[0] > d1[1] || c1[0] || c1[1] then
50: flipBackground← 1

51: end if
52: . Decision 2
53: d2[0]← µ2(i, j)− µ(i× 0.5, j × 0.5)
54: d2[1]← µ2(i, j)− µ(lmn × 0.5, cmn × 0.5)
55: c2[0]← (σ2(i, j)− clustersC(1))2 > (σ2(i, j)− clustersC(0))2

56: c2[1]← (σ(i, j)− clustersC(1))2 > (σ(i, j)− clustersC(0))2

57: if (d2[0] > d2[1] && |d2[1]| < T ) || c2[0] || c2[1] then
58: flipOOI ← 1

59: end if
60: . Change classes2
61: if !flipBackground && flipOOI then
62: classes2(i, j) = 0

63: end if
64: if flipBackground && !flipOOI then
65: classes2(lmn, cmn) = 1

66: end if
67: end for
68: end if
69: end if
70: end for
71: end for
72: return classes2
73: end procedure

Table 4.1: Conditions used to assess the change of class labels.

Condition Description (when condition veri�ed)
d1[0] > d1[1] Block (m,n) has its µ closer to OOI than to Background
c1[0] Block (i, j) has its σ2 closer to OOI cluster than to Background cluster
c1[1] Block (i, j) has its σ closer to OOI cluster than to Background cluster
d2[0] > d2[1] Block (i, j) has its µ closer to Background than to OOI
d2[1] < T Bounding condition of changing block (i, j) to Background
c2[0] Block (i, j) has its σ2 closer to Background cluster than to OOI cluster
c2[1] Block (i, j) has its σ closer to Background cluster than to OOI cluster
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4.3. SEGMENTATION

4.3.3 Segmentation based on Red Green Blue and Hue Saturation

Value Thresholding

The main target of this algorithm consists in �nding whether pixels belong to the ROI,

according to the data provided by 5 di�erent �lters: V, NIR, B, G and R. To achieve this

purpose, a set of thresholds was empirically de�ned, for some RGB and HSV data.

Table 4.2: Di�erent thresholds used in the segmentation based on RGB and HSV threshold-
ing.

Threshold
ID

Threshold name Brief description

1 thIR Threshold for NIR grayscale data
2 thRedMin Threshold for R RGB data (minimum value)
3 thRedMax Threshold for R RGB data (maximum value)
4 thGreenMin Threshold for G RGB data (minimum value)
5 thBlueMin Threshold for B RGB data (minimum value)
6 thIRMin Threshold for NIR RGB data (minimum value)
7 thVMax Threshold for V RGB data (maximum value)
8 thVHueMax Threshold for V HSV data (maximum value)

Thresholds mentioned in table 4.2 were obtained by an empirical process. For the �rst

N images, each value (threshold) was optimized, leading to ROIs which covered most of the

vegetation leaves. For example, for the assessment of each sample which corresponds to each

vineyard, 3 sets were de�ned, according to thresholds related to vineyards A, B and C. For the

same case, let Xijk be the mean of values for threshold i, for i = [1, 8], j = [1, 3] and k = Nj

(number of samples used in vineyards A, B and C, knowing that N =
∑3

j=1Nj). Considering

that Xijk follows a Gaussian distribution, each threshold can be de�ned as the mean (m) of

measurements taken from the related vineyard, within a Con�dence Interval (CI). A level

of con�dence of 0.95 for threshold i was considered, knowing that X ∼ N(m,σ), m, σ ∈ IR+

and seeing Z (equation (4.6)) as the core variable (T is the Student's distribution and Ŝ the

standard deviation - computed afterwards - in probability and statistics [47]):

Z =
Xijk −m

Ŝ√
Nj

∼ T (Nj − 1) (4.6)

Its block diagram is similar to 4.3, apart from the fact that threshold conditions are no longer

de�ned by the NDVI (the computation of NDVI is also despised) but by a set of thresholds

related to RGB and HSV data.
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CHAPTER 4. PATTERN RECOGNITION SYSTEM

4.4 Feature Extraction

The capacity for distinguishing features is a critical step and depends on the character-

istics of the problem domain. In selecting or designing features, one obviously would like to

�nd features that are simple to extract, invariant to irrelevant transformations, insensitive

to noise and useful for discriminating patterns in di�erent categories.

For PA, multiple VIs are powerful tools to describe di�erent features in herbaceous crops.

Spectral VIs reduce the multiple-waveband data at each pixel to a single numerical value

(index). Due to limitations on both the camera's sensor and optical �lters' spectral response,

computed features are composed by radiation between, approximately, 380 nm and 850

nm. NDVI (equation (4.7), [48], [49]), GNDVI (equation (4.8), [50]), Green-Red Vegetation

Index (GRVI) (equation (4.9), [49]), SAVI2 (equation (4.10), [49]), SR (equation (4.11), [50]),

Green Vegetation Index (GVI) (equation (4.12), [49]),Red Normalized Di�erence Vegetation

Index (RNDVI) (equation (4.13), [49]) and Excess Green (ExG)3 (equation (4.14), [51]), were

computed for each sample. Depending on the case, a sample is linked to a pair of V and NIR

photos or a set composed by B, G, R, NIR and V photos, depending whether it was chosen

segmentation 4.3.1/segmentation 4.3.3, or segmentation 4.3.2, respectively, to identify the

ROI. Then, their mean values are stored as future inputs for the classi�cation method.

Every VI mentioned above is related to the re�ectance that comes from electromagnetic

radiation with di�erent frequencies. Speci�cations for di�erent bands used during computa-

tions for each VI were mentioned in �gure 3.2.

NDVI =
IR− V
IR + V

(4.7) GNDVI =
IR−G
IR + G

(4.8)

GRVI =
IR
G

(4.9) SAVI =
IR− R

IR + R + L
× (1 + L) (4.10)

SR =
IR
R

(4.11) GVI =
G− R
G + R

(4.12)

RNDVI =
IR− R
IR + R

(4.13) ExG = 2× g − r − b (4.14)

This set of features is used not to distinguish healthy from ill crops, but to be a powerful

tool when one wants to di�erentiate crop species. For this reason, it was not considered the

relation between each VI and crop health condition.

2L = 0.5 for intermediate vegetation density.
3g = G

R+G+B , r =
R

R+G+B , b =
B

R+G+B
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4.5 Post-Processing

When performing classi�cation, the �nal decision is achieved by the correlation between

prediction of both classi�ers. Here, this decision (�nal prediction) is computed as an accuracy

function related to the two classi�ers:

� Accuracy → Each classi�er works on a testing dataset, with a total of N (N di�ers

between dataset #1 and dataset #2, as mentioned in section 5.3) di�erent unseen

and randomly selected samples. According to the achieved ratio between correct and

incorrect decisions, accuracies for both classi�ers are computed: accSVM and accDT

(considering SVMs and DTs, respectively).

Therefore, the �nal prediction of the unseen test (probability, prob, for crop class) is com-

puted as a probability measurement related to the accuracy of both classi�ers (equation

(4.15)):

prob = accSVM × accDT + accSVM × (1− accDT ) + accDT × (1− accSVM) (4.15)

This procedure is only considered in case the two classi�ers agree in the same class. Other-

wise, the �nal result is disregarded and a new test should be done.
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5 Experimental Results

5.1 Software Implementation

The pattern classi�cation algorithm described on chapter 4 was implemented and tested

in C++ programming language. Furthermore, the core of the algorithm (di�erent segmenta-

tion techniques as well as testing classi�cation libraries) was previously studied using Matlab

environment. Matlab was chosen due to its ease handling of data in the form of matrix as

well as allowing script implementations oriented to numerical programming.

Therefore, to create a real or quasi real-time algorithm, di�erent libraries were used in

C++ to manipulate data. Open Source Computer Vision Library (OpenCV) is (essentially)

a C++ (and C, Java or Python) API which provides several computer vision algorithms to

manipulate data. In short, its Mat object was used, allowing the storage of data in One

Dimensional (1D), 2D or 3D arrays, smoothing the transition from Matlab implementation

into C++. Furthermore, OpenCV allows the display of data in image format for di�erent

precision (e.g., 8, 32 or 64 bit). Every collected sample was provided according to particu-

lar con�gurations on the RPi camera. Such con�gurations (exposure, brightness, contrast,

saturation and gain) were optimized and changed according to the API provided by [52].

As far as classi�cations are concerned, two distinct libraries were used: SVM's library [53]

(libsvm) allows both C and nu SVM and supports multi-class classi�cation (source code

available for C++). DT's library [35] (scikit-learn) (Machine Learning in Python) has

simple and e�cient tools for data mining and data analysis and provides a particular class

(DecisionTreeClassifier) which is capable of performing multi-class classi�cation.

The pattern classi�cation algorithm is run on the ground station. Its backbone is de�ned

by an object named myAlgorithm, composed by the following public methods :

1. void setVariables() → Initializes a set of variables needed for segmentation algo-

rithms;

2. void readInfo(cv::Mat*,cv::Mat*,int,int,int) → Reads input images for both
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5.2. SEGMENTATION

V and NIR bands;

3. void segmenAndFExtraction(cv::Mat*,cv::Mat) → Depending on the chosen seg-

mentation algorithm, it identi�es the ROI and subsequently computes (considering the

ROI) the set of features mentioned in 4.4;

4. createTrainDataSVMandDT(int)/createTestDataSVMandDT(int) → Depending ei-

ther training or testing is selected, data are put in such a way that both libraries ( [53]

and [35]) are capable of reading data.

After the execution of this set of methods, data are then processed according to the executa-

bles svm-train (when training SVMs) or svm-predict (when testing SVMs), and Python

scripts decisionTreesTrainning.py (when training DTs) or decisionTreesTesting.py

(when testing DTs). Finally, data are post-processed as mentioned in 4.5.

5.2 Segmentation

The goal of any segmentation process is to distinguish the ROI from the rest of the image.

However, each segmentation method (4.3) presented in this thesis has di�erent accuracies,

depending on the conditions of the crop to be evaluated. During this chapter, classi�cation

results were obtained taking into account algorithms described during sections 4.3.1 and

4.3.2 for the segmentation process. Despite algorithm 4.3.3 was obtained considering a

probabilistic analysis, its results led to machine learning over�tted results (therefore, data

which are unknown for the algorithm - data that don't belong to the training dataset - were

not classi�ed with the desired accuracy). For this reason, segmentation 4.3.3 was discarded

from implementation tests. Figure 5.1 shows, step by step, the result of algorithm 4.3.1.

There, one can consider that the ROI was well de�ned. On the other hand, the samples that

captured undesired vegetation might introduce signi�cant distortions in what would be the

intended ROI, since NDVI cannot make that distinction. How to capture the desired ROI

when not wanted vegetation belongs to the camera's scene plane? Furthermore, one might

want to assess a particular region in the image even if other regions belong to the same �type�

of vegetation. At this point, algorithm 4.3.2 comes into play. In fact, by the manipulation

of the DOF during UAV �ights, one can obtain the ROI in sharp focus, whereas background

and/or foreground are out of focus. This work did not use HW capable of changing in

real-time the camera's focus. Nevertheless, in order to test the algorithm 4.3.2, data were
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CHAPTER 5. EXPERIMENTAL RESULTS

(a) Input V image. (b) Input NIR image. (c) NDVI computation.

(d) Thresholding with

NDVI.
(e) Erosion. (f) Dilation.

(g) Matching. (h) Final result.

Figure 5.1: Example of segmentation based on NDVI thresholding for the �entire� vineyard.

replicated and then changed by introducing blur for every region which does not belong to

the ROI. The results for this algorithm are shown, step by step, in �gure 5.2.

5.3 Feature Computation

Features were computed according to the identi�ed ROI (5.2). Further classi�cations tests

showed that variance for each VI was not a good indicator in distinguishing crop species.

In fact, variances were signi�cantly di�erent within classes, which led to their exclusion for

classi�cation input data. Data were then used for the same PRS concerning 2 di�erent

datasets:

� Dataset for Trees Classi�cation: distinguishing from pine trees, orange trees, olive

trees, eucalyptus and magnolias → Dataset #1;

� Dataset forVineyards Classi�cation: believing that grapevines from di�erent �qual-

ities� generate di�erent VIs, the PRS has the goal of distinguishing from 3 di�erent

vineyards → Dataset #2.
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5.3. FEATURE COMPUTATION

(a) Input V image. (b) r = 0. (c) r = 1.

(d) r = 2. (e) r = 3. (f) r = 4.

(g) Final result.

Figure 5.2: Example of segmentation based on low DOF V image for a �particular region�
of the vineyard.

A priori, olive trees and eucalyptus don't have signi�cant distinctions. Therefore, clas-

si�cation methods aim to build a recognition pattern for a feature space composed by this

set of mean values (see �gures 5.31 and 5.42) for the VIs shown above, which di�erentiates

even from classes that appear very similar at a �rst glance.

1489 samples: 121 Pine Trees, 114 Orange Trees, 93 Olive Trees, 91 Eucalyptus and 70 Magnolias. Both
segmentations (5.2 (•) and 5.1 (*)) were considered. Di�erent colors suggest distinguished tree species
whereas di�erent hues indicate distinct segmentations.

2635 samples: 215 for Vineyard 1, 256 for Vineyard 2 and 164 for Vineyard 3. Just segmentation 5.1 was
considered. Di�erent colors suggest di�erent vineyard �qualities�.
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(a) NDVI.
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(b) GNDVI.
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(c) GRVI.
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(d) SAVI.
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(e) GVI.
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(f) RNDVI.
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(g) SR.
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(h) Final result.

Figure 5.3: Mean values of each computed VI for trees classi�cation.
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(a) NDVI.
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(b) GNDVI.
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(c) GRVI.
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(d) SAVI.
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(e) GVI.
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(f) RNDVI.
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(g) SR.
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(h) Final result.

Figure 5.4: Mean values of each computed VI for vineyard classi�cation.
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5.4 Classi�cation

Test results were obtained considering segmentation 4.3.1: the main goal for this thesis

consists on a real or quasi -real time classi�cation (autonomous PRS) which can only be

reached using this approach (knowing that DOF images cannot be taken with the available

HW).

A set of 50 samples was used for the test of set #1, concerning the classi�cation of 5

di�erent trees (5 subsets of 10 images for each species). On the other hand, 175 samples

were taken for the classi�cation test when considering test set #2 (71 samples for Vineyard

1, 57 for Vineyard 2 and 47 for Vineyard 3).

For the considered metric functions for the assessment of the PRS, the entire data were

split which led to N (N = {5, 3}, depending on the dataset) binary classi�cations (see

example 2). For the two datasets, the PRS was tested according to 82 con�gurations for

SVMs and 80 for DTs, by the change of speci�c hyperparameters.

Example 2. For the PRS one should consider that a set of 50 samples (ai, bi, ci, di and ei,

i ∈ [1, 10]) needs to be classi�ed as being part of class 1, class 2, class 3, class 4 or class 5.

The ground truth3 for this set is de�ned as follows: ai ∈ class 1, bi ∈ class 2, ci ∈ class 3,

di ∈ class 4 and ei ∈ class 5. Therefore, 5 binary classi�cations are assessed (ai ∈ class 1

|| ai ∈ class 1, (...), ei ∈ class 5 || ei ∈ class 5) and their ROC is represented. For each

classi�er con�guration, its performance is computed and shown in the correspondent ROC,

concerning thresholds of 50% (which means that the classi�er de�nes the binary classi�cation

considering equal weights for both classes, during the decision moment). The �nal precision

is computed as the mean of the 5 di�erent precisions obtained for each binary classi�cation.

For dataset #1 and considering both SVMs CV and DTs CV, data were cross validated

with 10 folds. SVMs accuracy depends on the trade-o� between a high-complexity model

(which may over�t the data) and a large margin which will incorrectly classify some of the

training data in the interest of better generalization. Therefore, the number of support

vectors for the �nal SVM con�guration was taken into account (the greater the number of

support vectors, the greater the probability of over�tting). From table A.1 (see appendix)

and �gure 5.5, one can see that SVM's kernel can be de�ned by a RBF (Γ = 10) of type C-

SVM (C = 1000), o�ering a precision of 83% and a CV accuracy of 78% (where 144 support

vectors were identi�ed) (option #1). Indeed, option #1 provides the best ROC point for

3It is the standard to which the learning algorithm needs to adapt (i.e., it is a set of labels that �tells�
the machine learning algorithm what to learn).
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Figure 5.5: TPR FPR relationship for each class, according to dataset #1.
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Figure 5.5: TPR FPR relationship for each class, according to dataset #1 (cont).

the binary classi�cations of classes 1, 2 and 5 (see �gures 5.5a, 5.5b and 5.5e). Another

possibility might be de�ning the kernel by a polynomial function of 3rd degree (Γ = 1) of

type C-SVM (C = 1000) (option #2, which coincidentally computes the same number of

support vectors that option #1 does), since this con�guration o�ers the best position on

the ROC curve, for the binary classi�cations of classes 3 and 4 (5.5b and 5.5c). Options #1

and #2 led to testing accuracies of 72% (36/50) and 68% (34/50), respectively. With regard

to DTs, the training model can be con�gured with two di�erent sets of hyperparameters

(see appendix, table A.3). In fact, as mentioned for SVMs during PRS for training set

#1, a speci�c con�guration for DTs better suits data for classes 1, 2 and 5 (option #1,

see �gures 5.5a, 5.5b and 5.5e), whereas another con�guration achieves better performances

for classes 3 and 4 (option #2, see �gures 5.5c and 5.5d). These two options are de�ned,
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respectively, as follows: Criterion=entropy, Maximum Depth=5, Minimum Samples Split=4

and Minimum Samples per Leaf=2 (option #1, also de�ned by a precision of 87% and CV

accuracy of 77%) and Criterion=entropy, Maximum Depth=5, Minimum Samples Split=3

and Minimum Samples per Leaf=1 (option #2, also de�ned by a precision of 80% and CV

accuracy of 71%). These models led to testing accuracies of 74% (37/50) and 70% (35/50),

respectively.

As it was considered for dataset #1, input data for the two classi�ers (SVMs and DTs)

CV were cross validated with 10 folds during the training stage of the PRS for dataset#2.

From table A.2 (see appendix) and �gure 5.6, one can see that SVM's kernel can be de�ned

by a RBF (Γ = 1000) of type C-SVM (C = 1000), o�ering a precision of 97% and a CV

accuracy of 83% (where 199 support vectors were identi�ed). This model led to a testing

accuracy of (approximately) 73% (127/175). With regard to DTs (see appendix, table A.4),

the training model that better describes the dataset should be de�ned by the following set of

hyperparameters: Criterion=entropy, Maximum Depth=None, Minimum Samples Split=2

and Minimum Samples per Leaf=1, de�ned by a precision of 87% and CV accuracy of 77%.

This model led to a testing accuracy of (approximately) 79% (138/175).

As �gure 5.3 suggests, the feature space for the set of considered VIs is similar between

Eucalyptus and Olive trees. The radiation re�ected by these two tree species cannot be well

di�erentiated for the achieved electromagnetic radiation. For this reason, either SVMs or

DTs achieved better performances (for binary classi�cations) considering particular con�gu-

rations for the two tree species mentioned above. Nevertheless, both con�gurations for each

classi�er led to satisfactory predictions for the entire set of data (see both CV and testing

stage accuracy results for PRS related to dataset #1, as mentioned above), when multi-class

is considered.

On the other hand, the PRS for dataset #2 was trained for one particular con�guration

for each classi�er. The same set of hyperparameters was located near to the sweet spot for

all the three binary classi�cations. For this reason, it was chosen a speci�c con�guration for

training each learner, knowing that the closer a point follows the left-hand border and then

the top border of the ROC (sweet spot), the more accurate the test is. It is also important

to clarify that each precision and recall results mentioned among tables A.1, A.2, A.3 and

A.4 (see appendix), were computed as being an average among binary classes. This means

that their values are greater than any other metric. Indeed, these metrics are increased

by the correct distinction among samples from belonging or not to a speci�c class (binary

classi�cation), whereas CV accuracy's rate is only increased if the algorithm hits the correct
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Figure 5.6: TPR FPR relationship for each class, according to dataset #2.

47



5.4. CLASSIFICATION

class, from the entire set of possibilities (multi-class classi�cation). Hence, precision was

only considered as a measure to untie from di�erent con�gurations, after concluding the

assessment of both the ROC curves and CV accuracies for a particular con�guration (see

section 3.2.3).

Table 5.1: Final results obtained for the two PRSs according to SVMs.

SVMs con�guration CV Accuracy Precision Recall Accuracy
Dataset #1 (option #1) 78% 93% 86% 72%
Dataset #1 (option #2) 69% 82% 78% 68%
Dataset #2 83% 97% 94% 73%

Table 5.2: Final results obtained for the two PRSs according to DTs.

DTs con�guration CV Accuracy Precision Recall Accuracy
Dataset #1 (option #1) 77% 87% 88% 74%
Dataset #1 (option #2) 71% 80% 82% 70%
Dataset #2 77% 87% 90% 79%

The performance for the classi�cation of the PRS according to dataset # 2 was compared4

to the relationship between TPR and FPR of three di�erent studies. One can see such binary

classi�cations from �gure 5.6:5 1. [18] classi�es pixels which belong to grapes, according to

di�erent color spaces and bin sizes during the �segmentation� process (performance de�ned as

W2 in �gure 5.6); 2. [17] di�erentiates vines prior to ripening from grapevines during ripening

(performance de�ned as W1 in �gure 5.6); 3. [24] sustains that a classi�cation of image pixels

into �ve clusters (leaves, stems, branches, fruit and background) can be accurately measured,

and achieves its best results for the identi�cation of stems (performance de�ned as W3 in

�gure 5.6).

In conclusion, the correct choice of kernel parameters was crucial for obtaining good re-

sults, which practically means that an extensive search should be conducted on the parameter

space before results can be trusted.

4Performances labeled as W1, W2 and W3 in �gure 5.6 are related to approximated values presented in
references [17], [18] and [24], respectively.

5Figure 5.6a was magni�ed for the purpose of comparing data points on the top left corner.
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6 Conclusion and Future Work

Results for both datasets showed that one can classify farmland with a low-cost camera

and a UAV. The algorithm has achieved better performances in the distinction between

vineyards species (dataset #2). Indeed, learning which is the type of grape present in

a vineyard could provide insights for a farmer in order to decide the best way to treat

these crops. Moreover, during the harvest process farmers might desire to di�erentiate from

grapevine varieties to increase vine's quality. Here, segmentation 4.3.1 can be extremely

accurate. In fact, datasets for each vineyard were collected for farmlands composed by just

one variety. Therefore, there's no need to identify the ROI with low DOF samples. The

PRS for dataset #1 has shown serious di�culties when distinguishing between olive trees

and eucalyptus. Notwithstanding, the overall classi�cation task has resulted in satisfactory

results. The UAV is now capable of �ying over farmlands of �ve monocultures and predict

what is the class of which it is part of (see tables 5.1 and 5.2 for classi�cation accuracy

according to the two classi�ers).

The ability to discriminate crops is signi�cantly a�ected by the imagery spectral (type

of camera), spatial (�ight altitude) and temporal (the date of the study) resolutions. As a

future work and in order to increase the classi�cation accuracy, data might be caught with

a multispectral camera allowing the capture of radiation of greater wavelengths. The more

widely a camera's sensor bandwidth is, the more potentially accurate a PRS for farmland

would be, once the number of features increases as well. Another interesting idea would be

the use of GPS signals to create a territorial analysis (map) according to the classi�cation

predictions provided by the PRSs. Finally, the Mission Planner API allows the creation of

grid maps to de�ne what should be the �ight plan for the UAV. However, the user is subject

to application limitations. Therefore, the manipulation of the GPS information gathered by

the �ight controller would enable the user to program �ight plans totally automated.

This work was partially submitted as a paper to the IEEE International Conference on

Autonomous Robot Systems and Competitions [54].
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A Classi�ers Cross Validation

A.1 Support Vector Machines Con�guration

Table A.1: Settings for the con�guration of SVMs related to dataset #1.

Type Kernel C nu D Γ CV Accuracy
# of Support

Vectors
Precision

1 2 � 0.05 � 1 0.44 144 0.45

1 2 � 0.1 � 1 0.62 183 0.47

1 2 � 0.15 � 1 0.68 195 0.71

1 2 � 0.2 � 1 0.72 208 0.84

1 2 � 0.05 � 10 0.66 189 0.77

1 2 � 0.1 � 10 0.73 215 0.80

1 2 � 0.15 � 10 0.77 221 0.87

1 2 � 0.2 � 10 0.78 240 0.87

1 2 � 0.05 � 100 0.72 265 0.68

1 2 � 0.1 � 100 0.73 287 0.60

1 2 � 0.15 � 100 0.74 307 0.75

1 2 � 0.2 � 100 0.76 315 0.75

1 2 � 0.05 � 1000 0.67 398 0.49

1 0 � 0.05 � � 0.35 103 0.28

1 0 � 0.1 � � 0.37 148 0.40

1 0 � 0.15 � � 0.43 193 0.60

1 0 � 0.2 � � 0.5 225 0.66

0 2 1 � � 1000 0.66 408 0.58

0 1 1 � 1 1 0.57 387 0.33

0 1 1 � 1 10 0.68 338 0.68

Continued on next page
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A.1. SUPPORT VECTOR MACHINES CONFIGURATION

Table A.1 � continued from previous page

Type Kernel C nu D Γ CV Accuracy
# of Support

Vectors
Precision

0 1 1 � 1 100 0.734 298 0.81

0 1 1 � 1 1000 0.75 255 0.80

0 1 1 � 2 1 0.67 338 0.64

0 1 1 � 2 10 0.75 261 0.79

0 1 1 � 2 100 0.77 204 0.81

0 1 1 � 2 1000 0.8 157 0.76

0 1 1 � 3 1 0.72 312 0.76

0 1 1 � 3 10 0.78 209 0.80

0 1 1 � 4 1 0.75 280 0.81

0 1 1 � 4 10 0.79 173 0.85

0 1 1 � 5 1 0.77 246 0.79

0 1 1 � 6 1 0.78 219 0.77

0 1 1 � 7 1 0.76 218 0.80

0 2 10 � � 1 0.7 325 0.78

0 2 10 � � 10 0.76 269 0.85

0 2 10 � � 100 0.75 302 0.80

0 2 10 � � 1000 0.66 399 0.49

0 1 10 � 1 1 0.68 338 0.68

0 1 10 � 1 10 0.69 325 0.81

0 1 10 � 1 100 0.73 299 0.80

0 1 10 � 1 1000 0.75 255 0.80

0 1 10 � 2 1 0.76 243 0.80

0 1 10 � 2 10 0.79 224 0.78

0 1 10 � 3 1 0.76 267 0.81

0 1 10 � 4 1 0.78 237 0.78

0 2 100 � � 1 0.76 266 0.82

0 2 100 � � 10 0.78 218 0.84

0 2 100 � � 100 0.75 288 0.66

0 2 100 � � 1000 0.66 398 0.53

0 1 100 � 1 1 0.73 298 0.82
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Table A.1 � continued from previous page

Type Kernel C nu D Γ CV Accuracy
# of Support

Vectors
Precision

0 1 100 � 1 10 0.75 255 0.80

0 1 100 � 1 100 0.76 244 0.80

0 1 100 � 2 1 0.75 261 0.79

0 1 100 � 2 10 0.78 244 0.81

0 1 100 � 3 1 0.79 234 0.78

0 2 1000 � � 1 0.78 144 0.93

0 2 1000 � � 10 0.78 197 0.89

0 2 1000 � � 100 0.73 274 0.71

0 2 1000 � � 1000 0.66 398 0.53

0 1 1000 � 1 1 0.75 255 0.80

0 1 1000 � 1 10 0.76 245 0.80

0 1 1000 � 2 1 0.79 224 0.78

0 1 1000 � 3 1 0.69 144 0.82

0 0 1 � � � 0.57 387 0.33

0 0 10 � � � 0.68 338 0.68

0 0 100 � � � 0.73 298 0.81

0 0 1000 � � � 0.75 255 0.80

0 0 10000 � � � 0.76 245 0.80

1 1 � 0.05 1 1 0.62 398 0.28

1 1 � 0.05 1 10 0.64 200 0.38

1 1 � 0.05 1 100 0.61 148 0.20

1 1 � 0.05 1 1000 0.63 193 0

1 1 � 0.05 2 1 0.68 225 0.39

1 1 � 0.05 2 10 0.67 408 0.27

1 1 � 0.05 2 100 0.63 397 0.18

1 1 � 0.05 3 1 0.64 338 0.64

1 1 � 0.05 3 10 0.7 298 0.24

1 1 � 0.05 4 1 0.69 255 0.26

1 1 � 0.05 4 10 0.75 338 0.53

1 1 � 0.05 5 1 0.66 261 0.33
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Table A.1 � continued from previous page

Type Kernel C nu D Γ CV Accuracy
# of Support

Vectors
Precision

1 1 � 0.05 6 1 0.65 204 0.39

1 1 � 0.05 7 1 0.69 197 0.45

Table A.2: Settings for the con�guration of SVMs related to dataset #2.

Type Kernel C nu D Γ CV Accuracy
# of Support

Vectors
Ratio

1 2 � 0.05 � 1 0.5 118 0.73

1 2 � 0.1 � 1 0.64 170 0.69

1 2 � 0.15 � 1 0.73 192 0.71

1 2 � 0.2 � 1 0.78 230 0.78

1 2 � 0.05 � 10 0.8 186 0.70

1 2 � 0.1 � 10 0.83 200 0.82

1 2 � 0.15 � 10 0.84 214 0.84

1 2 � 0.2 � 10 0.85 246 0.87

1 2 � 0.05 � 100 0.81 215 0.97

1 2 � 0.1 � 100 0.82 236 0.95

1 2 � 0.15 � 100 0.81 254 0.92

1 2 � 0.2 � 100 0.82 272 0.90

1 2 � 0.05 � 1000 0.75 450 0.97

1 0 � 0.05 � � 0.51 82 0.56

1 0 � 0.1 � � 0.48 138 0.50

1 0 � 0.15 � � 0.62 174 0.49

1 0 � 0.2 � � 0.7 204 0.62

0 2 1 � � 1000 0.77 463 0.95

0 1 1 � 1 1 0.67 417 0.79

0 1 1 � 1 10 0.72 376 0.73

0 1 1 � 1 100 0.74 359 0.74

0 1 1 � 1 1000 0.76 330 0.74

0 1 1 � 2 1 0.72 374 0.74
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Table A.2 � continued from previous page

Type Kernel C nu D Γ CV Accuracy
# of Support

Vectors
Precision

0 1 1 � 2 10 0.77 332 0.78

0 1 1 � 2 100 0.85 251 0.78

0 1 1 � 3 1 0.74 369 0.75

0 1 1 � 3 10 0.85 253 0.77

0 1 1 � 3 100 0.82 131 0.82

0 1 1 � 4 1 0.76 357 0.75

0 1 1 � 4 10 0.86 187 0.82

0 1 1 � 5 1 0.78 329 0.76

0 1 1 � 6 1 0.8 292 0.76

0 1 1 � 7 1 0.85 258 0.78

0 2 10 � � 1 0.74 356 0.78

0 2 10 � � 10 0.79 124 0.78

0 2 10 � � 100 0.79 271 0.78

0 2 10 � � 1000 0.75 454 0.90

0 1 10 � 1 1 0.72 376 0.96

0 1 10 � 1 10 0.74 359 0.73

0 1 10 � 1 100 0.76 330 0.74

0 1 10 � 1 1000 0.77 289 0.74

0 1 10 � 2 1 0.74 364 0.69

0 1 10 � 2 10 0.82 285 0.74

0 1 10 � 3 1 0.76 345 0.76

0 1 10 � 4 1 0.8 308 0.73

0 2 100 � � 1 0.77 316 0.77

0 2 100 � � 10 0.82 241 0.78

0 2 100 � � 100 0.82 233 0.82

0 2 100 � � 1000 0.83 199 0.97

0 1 100 � 1 1 0.74 359 0.98

0 1 100 � 1 10 0.76 330 0.74

0 1 100 � 1 100 0.77 290 0.74

0 1 100 � 2 1 0.77 332 0.69
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Table A.2 � continued from previous page

Type Kernel C nu D Γ CV Accuracy
# of Support

Vectors
Precision

0 1 100 � 2 10 0.85 249 0.74

0 1 100 � 3 1 0.81 298 0.78

0 2 1000 � � 1 0.82 273 0.76

0 2 1000 � � 10 0.87 196 0.78

0 2 1000 � � 100 0.82 207 0.87

0 2 1000 � � 1000 0.75 449 0.97

0 1 1000 � 1 1 0.76 330 0.98

0 1 1000 � 1 10 0.77 290 0.74

0 1 1000 � 2 1 0.86 208 0.68

0 1 1000 � 3 1 0.84 251 0.77

0 0 1 � � � 0.67 417 0.78

0 0 10 � � � 0.72 376 0.80

0 0 100 � � � 0.74 359 0.73

0 0 1000 � � � 0.76 330 0.74

0 0 10000 � � � 0.78 291 0.74

1 1 � 0.05 1 1 0.73 256 0.56

1 1 � 0.05 1 10 0.72 245 0.53

1 1 � 0.05 1 100 0.73 278 0.29

1 1 � 0.05 1 1000 0.70 199 0.46

1 1 � 0.05 2 1 0.69 210 0.55

1 1 � 0.05 2 10 0.66 230 0.28

1 1 � 0.05 2 100 0.69 235 0.14

1 1 � 0.05 3 1 0.71 260 0.38

1 1 � 0.05 3 10 0.74 225 0.61

1 1 � 0.05 4 1 0.75 231 0.67

1 1 � 0.05 4 10 0.72 267 0.51

1 1 � 0.05 5 1 0.68 238 0.34

1 1 � 0.05 6 1 0.67 198 0.43

1 1 � 0.05 7 1 0.68 198
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A.2 Decision Trees Con�guration

Table A.3: Settings for the con�guration of DTs related to dataset #1.

Criterion
Maximum

Depth

Minimum

Samples to Split

Minimum

Samples per Leaf

CV

Accuracy
Precision

0 5 2 1 0.54 0.59

0 5 3 1 0.6 0.61

0 5 4 1 0.58 0.62

0 5 5 1 0.59 0.63

0 7 2 1 0.62 0.55

0 7 3 1 0.63 0.58

0 7 4 1 0.63 0.64

0 7 5 1 0.64 0.49

0 9 2 1 0.63 0.68

0 9 3 1 0.63 0.67

0 9 4 1 0.64 0.47

0 9 5 1 0.65 0.70

0 11 2 1 0.61 0.52

0 11 3 1 0.59 0.61

0 11 4 1 0.63 0.58

0 11 5 1 0.6 0.63

0 N 2 1 0.6 0.70

0 N 3 1 0.59 0.54

0 N 4 1 0.63 0.66

0 N 5 1 0.6 0.71

0 5 2 2 0.59 0.63

0 5 3 2 0.62 0.66

0 5 4 2 0.58 0.43

0 5 5 2 0.6 0.68

0 7 2 2 0.61 0.60

0 7 3 2 0.6 0.66

0 7 4 2 0.61 0.55
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Table A.3 � continued from previous page

Criterion
Maximum

Depth

Minimum

Samples to Split

Minimum

Samples per Leaf

CV

Accuracy
Precision

0 7 5 2 0.61 0.64

0 9 2 2 0.6 0.66

0 9 3 2 0.61 0.62

0 9 4 2 0.61 0.58

0 9 5 2 0.6 0.61

0 11 2 2 0.59 0.54

0 11 3 2 0.6 0.69

0 11 4 2 0.59 0.50

0 11 5 2 0.58 0.61

0 N 2 2 0.56 0.65

0 N 3 2 0.59 0.63

0 N 4 2 0.6 0.69

0 N 5 2 0.64 0.60

1 5 2 1 0.61 0.55

1 5 3 1 0.71 0.58

1 5 4 1 0.62 0.55

1 5 5 1 0.58 0.62

1 7 2 1 0.6 0.64

1 7 3 1 0.63 0.69

1 7 4 1 0.64 0.57

1 7 5 1 0.6 0.55

1 9 2 1 0.6 0.56

1 9 3 1 0.64 0.63

1 9 4 1 0.59 0.60

1 9 5 1 0.63 0.71

1 11 2 1 0.62 0.55

1 11 3 1 0.62 0.73

1 11 4 1 0.59 0.57

1 11 5 1 0.59 0.59

1 N 2 1 0.63 0.58
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Table A.3 � continued from previous page

Criterion
Maximum

Depth

Minimum

Samples to Split

Minimum

Samples per Leaf

CV

Accuracy
Precision

1 N 3 1 0.6 0.61

1 N 4 1 0.63 0.57

1 N 5 1 0.67 0.65

1 5 2 2 0.63 0.54

1 5 3 2 0.6 0.52

1 5 4 2 0.77 0.87

1 5 5 2 0.57 0.70

1 7 2 2 0.61 0.57

1 7 3 2 0.58 0.74

1 7 4 2 0.62 0.55

1 7 5 2 0.63 0.65

1 9 2 2 0.63 0.54

1 9 3 2 0.58 0.64

1 9 4 2 0.61 0.65

1 9 5 2 0.62 0.52

1 11 2 2 0.61 0.54

1 11 3 2 0.63 0.64

1 11 4 2 0.58 0.57

1 11 5 2 0.59 0.69

1 N 2 2 0.58 0.53

1 N 3 2 0.61 0.56

1 N 4 2 0.63 0.56

1 N 5 2 0.62 0.61

Table A.4: Settings for the con�guration of DTs related to dataset #2.

Criterion
Maximum

Depth

Minimum

Samples to Split

Minimum

Samples per Leaf

CV

Accuracy
Precision

0 5 2 1 0.63 0.81

0 5 3 1 0.64 0.73
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Table A.4 � continued from previous page

Criterion
Maximum

Depth

Minimum

Samples to Split

Minimum

Samples per Leaf

CV

Accuracy
Precision

0 5 4 1 0.61 0.80

0 5 5 1 0.68 0.73

0 7 2 1 0.64 0.85

0 7 3 1 0.65 0.88

0 7 4 1 0.64 0.86

0 7 5 1 0.65 0.88

0 9 2 1 0.63 0.93

0 9 3 1 0.65 0.93

0 9 4 1 0.64 0.92

0 9 5 1 0.67 0.93

0 11 2 1 0.64 0.98

0 11 3 1 0.67 0.95

0 11 4 1 0.62 0.96

0 11 5 1 0.63 0.92

0 N 2 1 0.64 0.98

0 N 3 1 0.64 0.98

0 N 4 1 0.64 0.96

0 N 5 1 0.65 0.95

0 5 2 2 0.67 0.80

0 5 3 2 0.67 0.82

0 5 4 2 0.65 0.77

0 5 5 2 0.63 0.80

0 7 2 2 0.67 0.83

0 7 3 2 0.66 0.78

0 7 4 2 0.66 0.85

0 7 5 2 0.67 0.85

0 9 2 2 0.63 0.85

0 9 3 2 0.64 0.84

0 9 4 2 0.65 0.89

0 9 5 2 0.66 0.92
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Table A.4 � continued from previous page

Criterion
Maximum

Depth

Minimum

Samples to Split

Minimum

Samples per Leaf

CV

Accuracy
Precision

0 11 2 2 0.66 0.93

0 11 3 2 0.66 0.94

0 11 4 2 0.66 0.96

0 11 5 2 0.65 0.90

0 N 3 2 0.63 0.93

0 N 4 2 0.65 0.93

0 N 5 2 0.64 0.94

1 5 2 1 0.64 0.94

1 5 3 1 0.69 0.82

1 5 4 1 0.67 0.78

1 5 5 1 0.61 0.73

1 7 2 1 0.68 0.87

1 7 3 1 0.64 0.86

1 7 4 1 0.67 0.85

1 7 5 1 0.64 0.86

1 9 2 1 0.62 0.87

1 9 3 1 0.66 0.86

1 9 4 1 0.64 0.94

1 9 5 1 0.65 0.86

1 11 2 1 0.66 0.87

1 11 3 1 0.66 0.94

1 11 4 1 0.67 0.97

1 11 5 1 0.60 0.96

1 N 2 1 0.77 0.87

1 N 3 1 0.67 0.98

1 N 4 1 0.65 0.96

1 N 5 1 0.68 0.95

1 5 2 2 0.68 0.95

1 5 3 2 0.65 0.77

1 5 4 2 0.68 0.81
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Table A.4 � continued from previous page

Criterion
Maximum

Depth

Minimum

Samples to Split

Minimum

Samples per Leaf

CV

Accuracy
Precision

1 5 5 2 0.64 0.77

1 7 2 2 0.67 0.69

1 7 3 2 0.66 0.84

1 7 4 2 0.63 0.87

1 7 5 2 0.67 0.85

1 9 2 2 0.64 0.82

1 9 3 2 0.65 0.90

1 9 4 2 0.65 0.86

1 9 5 2 0.66 0.87

1 11 2 2 0.66 0.89

1 11 3 2 0.64 0.92

1 11 4 2 0.65 0.92

1 11 5 2 0.65 0.93

1 N 2 2 0.65 0.92

1 N 3 2 0.64 0.94

1 N 4 2 0.67 0.91

1 N 5 2 0.63 0.90
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