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Abstract

Traffic incidents kill about 1.3 million people per year and the number of deaths
has been rising for the past decade. Our contributions in the field of detecting
and profiling a driver behavior represent an attempt to positively impact this
problem.Current state of the art is untested in real usage. To tackle this problem,
we developed a simulator that is capable of replicating real usage. This dissertation
is the result of an internship at Sentilant. They are looking to improve their current
driving behavior detection algorithm by incorporating machine learning into the
existing system in order to improve the feedback given to the users. Our findings
suggest that taking into consideration not only past samples but also look ahead
samples results in an increased performance on supervised algorithms. A set of
well engineered samples was all it took to go from mediocre results to having the
model behaving as expected when oriented vertically. A novel balancing technique
is here presented and demonstrated to rival oversampling but without increasing
the size of the dataset, achieving lower training times. Our best model is capable
of achieving 74% precision for acceleration, 49% precision for brakes and 18%
precision for turns. In real validation trips, the algorithm behaved as expected
when the phone was placed vertically, despite the sensibility it demonstrated to
turns. This was only possible because we devised a new post-processing mechanism
that only allows a model to classify a sample as aggressive behavior after the same
event has appeared consecutively a pre-defined amount of times.
Keywords: driving behavior, driving profiling, driving event detection
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Chapter 1

Introduction

According to the World Health Organization [29], road injuries are the seventh
cause of death and has increased over 30% in the last decade, killing about 1.3
million people and harming between 20 to 50 million per year. Road injuries do
not only cause suffering to the victims and people around them, but they also have
an impact on the countries’ economy. It is estimated that 3 to 5% of the gross
national product of each country is used to take care of such injuries [28]. These
numbers show that the research field of detecting a driver’s behavior is of great
importance.
From a psychological standpoint, there was no guarantee that the user would listen
and follow guidelines provided by a digital system until an article in the Journal
of Organizational Behavior Management was published [12]. The authors of this
article conducted an experiment to determine if being monitored had any effect on
the driving behavior of truck drivers, whose driving skills and performance impact
their job. The study reached significant results and managed to find a positive
association between being monitored and less aggressive behaviors.
Car insurance companies are starting to look at machine learning techniques to
classify a driver’s behavior and use the score given by the algorithm, along with
other factors, to determine the insurance rate [33] not only for professional drivers
but also for the day to day driver.
The problem with current solutions that monitor the driver’s behavior is that they
are expensive and require a lot of sensors. Recently, there has been an emerging
interest to transition from such expensive systems to smartphones because of their
availability and low cost. This type of solutions are only now being considered due
to the exponential increase of computational power that smartphones have seen in
the last years [5] and improvements in the sensors carried by them.

7
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1.1 Context

This dissertation is the result of an internship at Sentilant, a company established
in Instituto Pedro Nunes, in Coimbra. The work presented here is part of an
ongoing effort by the company to continuously study innovative and disruptive
ways to use mobile devices. Currently the following products:

• Drivian - a personal driving coach platform that has an application for smart-
phones which offers realtime feedback regarding safety, economy and on the
road alerts as well as driving insights that show the user driving style progress
over past trips.

• Drivian Tasks - an operation and fleet management platform that provides
insights on transportation and logistics, security services, retail and com-
merce, services and operations.

The work produced here may be used in the Drivian Software Development Kit,
which will influence the Drivian and Drivian Tasks platforms by providing en-
hanced event detection and promote road safety.

1.2 Goals

Sentilant is looking to improve their current driving behavior detection algorithm
by incorporating Artificial Intelligence (AI), more specifically, Machine Learning
(ML) into the existing system in order to improve the feedback that the existing
system is providing to the user. We studied three behaviours that we think consti-
tute the basics of driving: accelerating, braking and turning. In more detail, the
goals of this dissertation are the following:

1. The algorithm shall achieve the best results possible. For the first semester
we focused on recall because that was the only metric we could extract
from the current system. Recall is the ability to correctly detect a driving
pattern. For the second semester, our focus was on precision, which is the
metric that matters the most for the company. A high precision value is
desirable because feedback should only be given when we are certain that
an aggressive maneuver actually happened. Precision gives us information
about false positives, which is what we want to minimize;

2. The algorithm developed must be platform agnostic (no distinction between
Android and iOS);
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3. The software produced shall be able to achieve results that do not differ on
the performance metric (check Chapter 3 to see the chosen metric and why
we chose it) on multiple hardware configurations, namely on the Android
platform where not all the sensors are mandatory (we were concerned about
the lack of a gyroscope because it is an important sensor for the current
system);

1.3 Contributions

The contributions laid out in this dissertation can be summarized as follows:

1. The available dataset had four highly unbalanced classes and with simple
random oversampling or undersampling we ran into multiple problems. To
leverage all the available data without running into those problems, we de-
vised a new class balancing algorithm. Our approach was to first encode
our labels as binary (normal and aggressive behaviour), do random under-
sampling, and then decode them back to the original multiclass problem.
We show that this method, for our problem, gave results similar to random
oversampling while being more time efficient;

2. We used previous research by Sentilant to create a new set of features, dif-
ferent from the current literature, and combined them with state of the art
machine learning techniques to achieve promising results;

3. To prevent the occasional misclassification we introduced post-processing as
one more layer of logic. In post-processing we constrain our model to classify
a set number of consecutive samples as one unique abnormal event before
outputting it;

4. To test our contributions we implemented a framework. The framework de-
veloped allowed us to test many things quickly and introduce new changes
with minimal intervention. Common steps such as choosing a classifier, fea-
ture scaling, feature engineering and feature selection, among other settings,
became easy to change and test;

5. We intent to publish a paper. For now we have in mind two conferences
and/or two journals. The conferences are the International conference on
Communication Systems and Networks, COMSNET and the European con-
ference on Machine Learning & Principles and Practice of Knowledge Dis-
covery in Databases, ECML PKDD. The journals we are debating are the
IEEE Transactions on Intelligent Transportation Systems and the Interna-
tional Journal of Computer Applications.
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1.4 Remaining structure

The remaining dissertation is structured as follows. Chapter 2 presents the current
state of the art in the field of vehicle telematics from a user behavior perspective
and is restricted to work that uses mobile devices only. Chapter 3 details the
research proposal, the study of the existing system and the research methodology
followed. Chapter 4 presents the current work done and statistical validation for
it. Chapter 5 specifies the work plan stipulated for the thesis, a risk analysis and a
mitigation plan. Chapter 6 contains a summary of our findings and contributions.



Chapter 2

State of the art

In this chapter the relevant work for this dissertation is summarized and critically
analyzed with the purpose of gathering knowledge and methods that use machine
learning in the field of driving security based on driver behavior feedback, particu-
larly approaches that focus on smartphones. Section 2.1 contains brief descriptions
of the terms that will be used throughout this thesis and whose understanding is
important for the comprehension of the work here presented. In Section 2.2 and
Section 2.3 we introduce related work on the two major different approaches to
this problem, Distance based classification and Machine learning algorithms, re-
spectively. In Section 2.4 we present a summary of all referred work and make a
critical analysis of the field as a whole. Note that the current system from Senti-
lant is not described due to privacy and confidentiality concerns.

2.1 Background

Here are described the essential sensors, techniques and terms present in this the-
sis, so that the reader can better understand the following sections.

Data acquisition

The following subsections briefly summarize all the sensors commonly used in the
industry that can potentially offer insightful sensory information about the car or
the surrounding environment.

Accelerometer: sensor that measures the acceleration in 3 axis. It can be use-
ful to measure changes in velocity (acceleration is the first time derivative of the

11
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velocity) and changes in position by integrating the signal. However, integrating
the signal adds an ever increasing amount of noise to the final result, making this
device only useful for short term positioning correction.

Magnetometer: measures the force of the Earth magnetic field. It can be used
as a compass in the north, east, south and west axis.

Gyroscope: measures changes in the 3-axis orientation vector (yaw, pitch and
roll) of the mobile phone. In conjunction with the magnetometer it can use the
Earth axis instead of the phone axis.

Global Navigation Satellite System: it gives the location of an object on the
Earth surface, including longitude, latitude, altitude and velocity. Some of our
devices support the American system (Global Positioning System (GPS)) and the
Russian (Global Satellite Navigation System (GSNS)).

Controller Area Network-bus: the Controller Area Network (CAN) is a stan-
dard protocol used in vehicles that allows messages to be transmitted between
multiple micro-controllers without the need of a computer. It is possible to inter-
cept these messages and retrieve the state of several car sensors such as: speed,
steering wheel angle, air conditioning on/off, engine temperature and other sensors
that the car is equipped with.

Driving profiling approaches

The research community has taken two different approaches to our problem. Ini-
tial attempts focused on carefully collecting a small sample of isolated events that
were then compared against batches of time series containing the sensory infor-
mation of a person’s driving using a similarity measurement. When the similarity
measurement would reach a pre-defined threshold, usually found empirically, the
algorithm would classify the time series being analyze as containing an aggressive
event. We denominate this class of classification as distance based classification.
Recently, there has been an increasing number of use for algorithms that adapt
their decision boundaries according to the data provided. This algorithms require
more data than the previous approach but tend to yield more accurate models.
Our work focus on the latter. For a more in depth analysis of each algorithm
please refer to [11].
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Distance based classification

We call algorithms that use a similarity metric to measure how correlated two
time series are distance based classifiers. A brief explanation of the techniques
considered is presented in this subsection.

Dynamic Time Warping
Dynamic Time Warping (DTW) is an algorithm to measure the similarity of two
time series. It warps them non-linearly and tries to find an optimal match between
them in order to determine their similarity. As expected, due to non-linear trans-
formations involved, it does not guarantee the triangle inequality [25], meaning
that the sum of the differences sample wise is not guaranteed to be the final result.
A low value means a high correlation, because the distance between the two signals
being compared is small. This is what algorithms that compare reference patterns
to driving episodes are looking for.

K-Nearest Neighbor
K-Nearest Neighbor (K-NN) is a method that receives two parameters, the metric
used to compute the distance between two samples and the number of neighbors
to consider. This classifier simply outputs the majority result of the K-Nearest
Neighbor that surround the input variables.

General machine learning terms

Here we give a brief definition of important terms that will be used in the next
chapters that the reader should get familiar with before proceeding. These are the
common terms involved in a machine learning project.

Supervised learning
Supervised learning is a class of algorithms that use labelled data to infer a func-
tion that maps input variables (features) to output variables.

Unsupervised learning
In unsupervised learning, the task of the algorithm is to infer the structure of the
unlabelled data and classify each sample. There are many types of unsupervised
learning but for this thesis, we are only interested in clustering methods.

Data collection
This is the first step in any machine learning project. It involves the compilation
and collection of enough data to have a statistically valid model. The amount of
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data collected is typically a result of many factors, such as processing power (if
we do not possess computational power then it might not be worth to have huge
amounts of data), financial constraints or data availability. In supervised learning,
for an algorithm to be able to translate the results obtained during the learning
phase to the inference phase, it needs to be trained on data that is similar to the
real world scenario, hence, different amounts of data are necessary, depending on
the complexity of the task.

Pre-processing
The second step is to pre-process all the compiled data from the previous step into
a standard format that is easy to handle for the researcher. In this step, the data
can be normalized and new features can be added.

Training, validation and test sets
The data compiled before is split in training, validation and test sets. A common
approach is to split it in 70/15/15, meaning that 70% of our data goes into train-
ing, 15% into validating our model and fitting hyper parameters and the rest into
testing. Note that the values given here are not applicable to all scenarios, check
[26] for more information.

Feature selection
Feature selection is the process of using techniques to eliminate or compose the
input data so that there is no redundant information being given to the classifier.
This step helps produce simpler models, shorter training times and reduce overfit-
ting, thus, helping with generalization.

Overfitting
When an algorithm suffers from overfitting, it means that the algorithm is creat-
ing decision boundaries that fit the training set too much and is not capable of
inferring on new situations given to it by the validation set.

Machine learning algorithms

The next section exposes the techniques and algorithms that are capable of ad-
justing their internal parameters using data. This type of approaches differ from
distance based classification because this methods are data-driven.

Fuzzy logic systems
Fuzzy logic addresses uncertainty in a different way from probability theory. It
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deals with subjective probabilities, using the concept of fuzzy set membership the-
ory to answer how much a variable belong to a given set (i.e., how much is the
property of being round in a given object? [not round, a little, a lot]). It is capable
of creating simple hard science with IF-THEN rules. More complex rules can also
be achieved by adding disjunctive or conjunctive (“and” or “or”) elements to the
rules.

Decision Trees
The algorithm creates a decision tree based on the information gain that each
feature provide according to the entropy. To build the tree the algorithm com-
putes the normalized information gain ratio that would be obtained by splitting
it, for each attribute. The feature with the highest information gain defines a new
decision node. With the use of recursion, the algorithm can be applied as many
times as possible until all the attributes are placed in nodes. An open source im-
plementation of the C4.5 decision tree algorithm can be found in Weka [37] under
the name J48.

Random Forest
Random forests are an ensemble technique that use multiple decision trees built
randomly to classify a given task. The degree of randomization is introduced in
feature selection and in the number of samples used for training. Ensembles of de-
cision trees tend to provide a higher degree of generalization than a single decision
tree [18].

Bagging classifier
A bagging classifier is an ensemble of classifiers where each estimator is trained
on random subsets of the original dataset and their prediction comes from the
outcome of an internal vote.

Gradient boosting classifier
Boosting is a technique used in machine learning to create an ensemble of weak
classifiers. The construction of a boosting classifier is done iteratively. At each
iteration the weight of the samples is updated according to misclassifications and
correct predictions. This way, new weak classifiers can be trained on samples that
are getting the worst results, therefore improving the accuracy of the overall esti-
mator over time. The type of weak classifiers is assumed to be a decision tree.

Hidden Markov model
Hidden Markov models have hidden states, events or actions that can not be
observed directly, and observations. Each state represents a measurement or an
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action. To go from one state to another, the process is not deterministic but rather
probabilistic. A typical representation of HMM is shown below in Fig. 2.1, where
the X’s represent a random variable at time t and the Y’s represent the observed
measurements/conditions at time t.

Figure 2.1: Typical Hidden Markov model representation.
Source: http://iacs-courses.seas.harvard.edu/courses/am207/blog/hmm.png

Bayes Classifier
Using Baye’s Theorem and the conditional probability it is possible to compute
the posterior probability of an event happening given the prior probability, the
likelihood and some evidence. For the equation below, x = (x1, ..., xn), represents
the n number of features. Ck represents class number k.

p(Ck|X) =
p(Ck) ∗ p(X|Ck)

p(X)

Support Vector Machine
Support Vector Machine (SVM) try to find the hyperplane vector that maximizes
the distance between the set of points that is closer to the hyperplane. This only
gives a linear SVM of hard margin. Because not all data sets are linearly separable
we can introduce a loss function with a hyper-parameter that can be controlled.
Moreover, to obtain a non-linear classifier, a kernel trick can be applied, mapping
the inputs to a higher dimension, where they are linearly separable and mapping
them back to the original dimension, returning the final class label.

2.2 Distance based classification

For this section, we provide a summary of all the articles found to be insightful for
our work in order to provide some context of what is happening right in the field.
In the end of each summary there is a brief critical analysis where we discuss some
topics about the article, whether it flaws in the study or important insights.
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According to a study published by Banerjee et al., ”How’s My Driving? A
Spatio-Semantic Analysis of Driving Behavior with Smartphone Sen-
sors”, [1], driving is a skill heavily influenced by the ambient context. The authors
distinguish between two types of contexts: a static and a dynamic one. They are
described as follows:

1. Static Context: includes attributes that remain mostly unchanged through-
out a substantial amount of time and over multiple trips.

2. Dynamic Context: includes parameters that change frequently, across the
same path and several trips.

The author comes up with a definition for good and bad driving behavior so that
later he can determine the influence of the ambient context on the driving behav-
ior. To demonstrate the need to consider the surrounding context, an experiment
was conducted using Dynamic Time Warping to compare good and bad templates
against the driving episode. The results show that under different conditions, dif-
ferent speeding profiles exist.
This led the author to consider three groups of attributes: road network (straight,
turns, roundabout, bends), road neighborhood (school, traffic signal, market place,
no label) and road surface condition (smooth, bump, pothole). To get this rich
environment, a couple of third party information providers were used, mainly open
source projects.
All the data available was fused to bring rich road segments to the cross-trip ma-
jority voting algorithm. This voting system clusters the GPS data points into two
clusters: smooth and bumpy road. For every point that is near each other and
from different trips, they cast a vote on each other. This voting mechanism is able
to find static points on road segments, reducing false positives and reducing user
induced noise. In the end, density based clustering is employed on the resultant
road segment found before discovering different driving profiles.
This article tried to prove that in chaotic road settings, like the ones in India,
the ambient context assumes a highly relevant importance for supervised learning
methodologies.
The precision achieved is close to random, [50-60%], but the recall values are much
higher [80-90%], which means that this algorithm is an aggressive method where
most of the abnormal behaviors are identified at the cost of false positives.

The car and phone model are mentioned, however, it lacks phone variety, driver
variety, code and data publicly released. This study introduces a new feature that
most other studies do not consider: ambient context. This feature was important
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to determine the driving profile of a driver. It also introduces two branches (anal-
ysis of dynamic and static context) for further research, with only static context
being studied here and the other left for a future work. The intermediate step
of enriching the map with augment information is valuable but due to time con-
straints it will not be applied in this thesis.

In this article, ”A Comparison of Driving Behaviour Prediction Algorithm
Using Multi-Sensory Data on a Smartphone” [31], the authors point that
the large majority of accidents on the highway come from vehicle condition, hu-
man error and road condition. In Thailand, 75% of highway accidents come from
improper lane change. The proposal of the author is to provide warning signs that
are low cost and can serve a large amount of the population, and for those reasons,
smartphones seem to be the logical choice.
The first step is to collect sensory data from the user smartphone and reference
pattern. To get the sensory data of the user two sampling frequencies are used, 5
Hz for the accelerometer, gyroscope and magnetic sensor and 1Hz for the GPS.
The second step is to reduce noise from raw data, caused by the vibration of the
vehicle or the roughness of the highway. A simple moving average is employed
to solve this problem with the added benefit of providing the trend direction of
the data. The third step is to compute the standard deviation in the raw data
and if the result is greater than a pre-defined threshold, it triggers the pattern
matching algorithm. While the algorithm is not triggered, new data is collected.
Next, Dynamic Time Warping is used on each feature to determine which refer-
ence pattern looks similar to the detected driving episode. The reference patterns
are data collected from a previous experiment. To differentiate between multiple
matches a table with threshold values and simple logic is pre-defined with values
that best suited the data set. If in the end, there is still more than one match, the
algorithm chooses the result according to the accuracy of each sensor.
The driving events being monitored are brake, sudden brake, acceleration, sudden
acceleration, left turn, sudden left turn, right turn, sudden right turn, left lane
change, sudden left lane change, lane change right and sudden change right.
The data for the study was collected in a car with four people. Three people were
assessors and their job was to mark events during the ride. If two or more people
agreed on an event, then the event was recorded. The fourth person was the driver.
The total distance of the route was 71.3 Km, divided into urban, traffic jam and
highway roads around the University of Thammasat.
The results vary from 81% accuracy, using only the accelerometer to 71% using
all the sensors.

This paper leaves crucial information out. There is no mention of the phone model
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or its position inside the car nor on how/when or even if it is necessary to reset the
raw data collection window if no event is detected. It was assumed that the phone
must be in a fixed arbitrary position. It is also mentioned that the algorithm does
not need to process all the sensory data in order to be effective but no experimen-
tal validation is shown or the sentence proven. The reference driving patterns are
said to be collected from an experiment but there is no reference pointing to it.
The final results are unexpected. With an increase in the number of features, we
predict the accuracy of the algorithm to also rise, specially if the features added
are expected to contain relevant information, but this does not happen and the
authors do not address this subject. Although the study has some flaws, it can
help us understand how to achieve good results using only the most common sen-
sors available, which is a big goal of this thesis.

The authors of this article, ”Driving Style Recognition Using a Smartphone
as a Sensor Platform” [14], demonstrate the same motivation as we do related
to whether or not the driving behavior is safer when people are being monitored
and feedback is provided about potentially aggressive moves. This concern is an-
swered by the Journal of Organizational Behavior Management in [12].
To collect the data necessary, the latest generation smartphones were considered
because of the multiple sensors embedded in them such as: multiple cameras, mi-
crophones, 3-axis accelerometer, 3-axis gyroscope, proximity, ambient light, touch,
magnetometer and GPS available to them. During the data collection trips, the
phone was mounted on the car to prevent any rotation that might influence the
data.
The detection was divided into two categories, lateral (T) and longitudinal (L)
movements. By convention the gyroscope has G = {gx, gy, gz} in rad/s, accelerom-
eter A = {ax, ay, az} in m/s2, the device Euler angle E = {ex, ey, ez} in radians,
T = {gx, ay, ex} and L = {gy, az}. The types of events detected are right turns, left
turns, U-turns, aggressive right turns, aggressive left turns, aggressive U-turns, ag-
gressive acceleration, aggressive braking, aggressive swerve right, aggressive swerve
left, device removal and excessive speed. Non aggressive lane changes(swerve) are
not being detected because the force exerted on the device was not enough to
distinguish it from noise.
An iPhone 4 was used because it contained all the sensors that the study targeted.
GPS is used only to determined speed and event location. The application has
two modes: active and passive.
In active mode, the system monitors the driving episodes but only records sensor
and video when potentially-aggressive behaviors are detected. Before storing the
event, the user needs to confirm that an event happened and classify it. A speech
synthesizer is used to make alerts audible via software and warn users of their be-
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haviour. A driver is considered aggressive if he/she exceeds an arbitrary number
of aggressive events over a predetermined time window.
In passive mode, the system records all data for further analysis, segments it into
5 minutes windows and synchronizes the video with the sensors to allow for later
testing.
One worry the authors had about using smartphones to collect information was
that the shaking motion of the car could affect the quality of the data. To dismiss
this matter, the authors compared the correlation between the same trips recorded
used an iPhone and the CAN bus of the vehicle. They found no statistical dif-
ference between both time series, indicating that smartphones are, statistically, as
good as the CAN bus to record data.

Data from accelerometer and gyroscope was sampled at 25 Hz. To detect the
beginning of a event, a simple moving average of the rotational energy in the
x-axis for a window of size k for the current sample i was used as follows:

SMA =
gx(i)2 + gx(i− 1)2 + ... + gx(i− k − 1)2

k

If the simple moving average is greater than a threshold tu then the window consid-
ered has an event observed inside. Events detected are then compared to reference
patterns using DTW. From the moment an event is detected, the algorithms keeps
concatenating new frames until the moving average is less than a threshold tl and
just to prevent severe failure, if the length of a window exceeds 15 seconds, the
event is discarded.Gx is used because prior experimentation showed that rotation
is easier to distinguish than accelerometer on all the recorded events.
This system was used in three different vehicles, with three different drivers, re-
sulting in 200 events in urban, rural and highway roads.
In the end, the accuracy of A, G and T feature sets were computed, achieving 77,
79 and 91%, respectively. This shows that a combination of the x-axis rotation
rate, the y-axis accelerometer and pitch are the signals that best suit this algo-
rithm.

The baseline defined in the study established that a smartphone is an approach
that should be considered as it can replace on board expensive sensors.This is a
study that employed sensor fusion and feature selection to reach very good results
in the end. Although the article only mentions one phone model being used, the
approach employed seems general enough to be used in multiple models, but fur-
ther analysis is required.
General clues for feature selection are retrieved from this study for analysis in the
2nd half of this thesis.
When the authors describe what type of events are being monitored, they mention
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”device removal” but they never explain what they mean by it, how to detect it
or provide any other references for the reader.

2.3 Machine Learning algorithms

This section follows the same structure as the previous one. For each article that
was insightful for our work we present a summary and a critical analysis, always
in this order.

In the work developed in ”Driver Behavior Profiling Using Smartphones:
A Low-Cost Platform for Driver Monitoring” [2], we see that profiling the
driving behavior of the general public in a cheap way has received an increase
relevance for a variety of application domains such as fleet management and car
insurance. To do so, detected events are combined with environmental factors to
score a certain amount of points obtained through a scoring function.
The sensors used are GPS, accelerometer, magnetometer and gravity sensor. The
internal linear accelerometer is used to compute the jerk, which is the rate of
change of the accelerometer with respect to time. Kalman filters were used in an
attempt to distinguish between longitudinal and lateral movement. However it
was not possible to distinguish longitudinal nor lateral movements of the car from
raw accelerometer data, so the only accelerometer feature considered was the mag-
nitude. This limitation makes the accelerometer axis indistinguishable but allows
the rotation and manipulation of the device without any constraint.
The orientation vector includes yaw, pitch and roll and serves to describe the ro-
tation of the vehicle around the Earth axis. The yaw rate is the only measure
considered as it gives the steering of the vehicle on the earth surface. However this
measurements come with the high cost of having electromagnetic interference and
device vibration. To overcome this problem, the raw data of the motion sensors
are fused with GPS data to improve accuracy and reduce noise.
In order to deal with different sampling sizes the window slices considered have a
fixed duration of 1 s. The final features are the speed variation (accelerometer),
the bearing (angle between the magnetic North and the vehicle) variation, the
average yaw rate and the jerk standard deviation. The jerk standard deviation is
considered to mitigate the effects of a phone vibrating.
To detect the events, a fuzzy system was built. The fuzzification phase contains
the feature described above and the rules are obtained manually by analyzing the
different input variables in a controlled scenario.
To make this process independent of the device and vehicle, a calibration phase is
necessary to adjust the fuzzy membership functions of the jerk and yaw rate be-
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cause speed variation and bearing rate can be fixed regardless of the smartphone
or the vehicle (combustion or electric engine). The values set for the adaptive
features are obtained by getting the last percentile of the cumulative distribution
function of the samples.
The environmental variables considered are weather information, speed limit and
time of day in relation to sunrise and sunset.
The system scores each trip with 100 points at the start and removes an arbitrary
number of points when it detects an aggressive behavior. The number of points
deducted is based on the number of accidents that happen due to environmental
factors [24] and the type of aggressive behavior detected. The deductions values
are 2, 4, 6 and 8, according to the environment (low, medium, high and extreme
probability of accident). After an arbitrary 0.5 Km without any event, the score
increases by one point.
The experimental phase started by determining what is the effect of calibrating
the fuzzy sets using different time periods. It was verified that after 17 minutes
of calibration, the number of false positives was below 10% but the number of
false negatives was still relatively high, at 20%. However as time went by, all the
metrics mentioned before decreased to 1% and 10%, respectively, after 30 minutes.
All of this caused the raise of the true positive ratio from around 75% to 90%.
A full factorial experiment was conducted, this means that all the possible combi-
nations of scenarios were recorded while varying all the variables (weather, speed
limit, time of day and aggressive behavior type). Twenty five minutes was the
calibration time frame chosen, which is equivalent to n=1500 samples. One lap in
the chosen path was done to calibrate and two to record events, the first one being
calm and the second one being aggressive.
With a sample size of 10, it is observable that the final score always managed to
distinguish by at least 17 points, in a scale of 0-100. By overlaying the location
and quantity of aggressive behaviors on a map, it can be observed that there are
some areas that are more prone to aggressive behaviors, indicated by red spots on
the heat map.
In the end, the participants were asked to rate subjectively their score from 1 to
5, with 1 being high risk and 5 being the safest behavior. When the results are
clustered across 5 centers using K-means it is easy to see that as the score increases
so does the safety rank. There was a 90% match between the predicted subjective
score (1-5 range) and the clustered score if the match distance considered was ±1.
For the experiment two phones were tested and it was noticeable that, although
the performance and sampling rate of both phones is very different, the number
of events detected is very similar, after calibration.
It is recognized by the authors that an obvious problem with this approach is
the use of a non representative calibration phase, which distorts the fuzzy mem-
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bership functions. The solutions suggested involve using a dynamic calibration
process that stops after a given condition or to continually calibrate.

New domains for the use of driving behavior profiling are suggested and this study
focus on those domains by quantifying the risk that each driver takes in its ev-
eryday life by analyzing aggressive maneuvers while taking into consideration the
environmental factors. Obvious limitations of the approach are considered and
possible solutions, are suggested. The experiment analyses all the variables con-
sidered and reaches compelling evidence despite the small sample size, although it
is much bigger than most studies in the field, which prevents the author to have a
statistically strong conclusion.
For the final application that will integrate the company product, a scoring func-
tion may be necessary. Although the domain application is different, the scoring
function serves the same purpose.
The reflection of this article closely matches the intention behind this thesis and
as such it has a greater relevance than other studies. In here the authors also
describe what techniques were tried before reaching a successful implementation.
This is important because it allow us not to repeat the same path in our line of
research and possibly achieve better results in a shorter amount of time.

In this article, ”Estimating Driving Behavior by a Smartphone” [8], a sys-
tem using Bayes classification is proposed to determine a driver behavior. The
algorithm records data continuously from the accelerometer, gyroscope and mag-
netometer. The data gathered is sliced into smaller windows of size m, where the
energy of the signals is computed for each sample.
If the energy E of one window is higher than an empirically determined fixed
threshold, then the window is discarded. Signals that are discarded in this step
proceed to the next.
The signals from the various sensors are forwarded to a DTW module in order to
calculate the best matching template, chosen according to the test data manually.
For this study, the accelerometer provides position and speed, while the gyroscope
measures lane departure and turning events. Data from accelerometer comes in
range [-1, 1] while the data from the gyroscope ranges between [-180°, 180°]. A
high pass filter is then applied to it in order to highlight sudden variations:

Rx,y,z = accel.(x, y, z) ∗ filtsbt + Rx,y,z ∗ (g − filtsbt) ∗ (accel.(x, y, z))

where accel.(x,z,y) is the accelerometer data, g is the gravitational accelerometer,
which is constantly g=1 and filtsbt, which is the frequency rate of the gravity.
The classifier adopts Bayesian inference with two classes, safe and unsafe driving
for each template output by the DTW algorithm. The final output is based on the
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maximum posteriori estimate across all the events considered, based on the fact
that our previous Bayes classification gave us probabilities based on the steering
wheel angle, accelerometer, slowdown and lane change. The classification is done
on the signal that results from a moving average filter.
To test the experiment, 15 drivers were recruited, 5 of which were experienced
drivers, 5 novice and 5 others randomly chosen. Each driver drove two times in
order to experience different weather and road conditions. All the experiments
have lane change, instant accelerometer and braking, left and right turns and sus-
picious behaviors.
For the task of binary classification (safe or unsafe trip), the proposed algorithm
achieved 93.3% accuracy on the test set and took 3.6 seconds to classify the entire
trip. This result is compared against others present in earlier work. The algo-
rithms considered were: Random Forest [23], J48 [23] and HMM [27]. Note that
HMM use features directly extracted from the car.
Random forests got 93% correctly classified instances in 24.4 seconds, J48 obtained
90.6% accuracy in 78.8 seconds while HMM got 85.7% of the instances in an un-
known time. The time reported in the this article refers to the time each algorithm
took to classify the entire trip.

As the route taken is only shown in a map, people unfamiliar with the city where
the tests were conducted don’t know the road conditions, traffic or other environ-
mental constraints. There is also no mention about what car was driven. The
author says that the results are applicable to more brands of phones but the use
of different sensors was not a subject of this study, which leaves the claim unproven.

In this work, ”Leveraging Sensor Information from Portable Devices to-
wards Automatic Driving Maneuver Recognition” [32], the authors state
that despite new laws prohibiting the use of mobile devices while driving, new
applications and uses for such devices have been rampant, making them a big
cause car accidents. Due to the difficulty and challenges in accessing the CAN bus
of a car, the use of smartphones for this domain has been in increasing demand.
To help passengers and drivers become more secure, the goal of this study is to
detect dangerous maneuvers for drivers. This test attempts to verify if the results
reported by a cheap smartphone are the same as other expensive equipment.
This experiment compares the accuracy of data retrieved from an instrumented
vehicle to that of a portable device. The instrumented car has multiple cam-
eras, a microphone array, a second microphone, GPS, optical distance sensor,
gas/ brake pedal pressure sensor, CAN bus OBD II and a data acquisition unit
to synchronously record data. The portable device has front and back camera,
microphones, GPS, 3-axis accelerometer, 3-axis gyroscope, digital compass (mag-
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netometer), ambient light and proximity sensor.
The route selected for test drives is driven in both directions and is big enough
to contain all the events tested: right turn, left turn, right lane change, left lane
change, right road curve, left road curve, straight and stop.
The device is mounted on the windshield, placing it in a position that aligns the
vehicle axis with the phone/tablet axis. To label events, video recordings are being
taken and synchronized with sensor information.
From the CAN bus signals it was possible to extract and decrypt vehicle speed,
steering wheel angle, engine RPM and gas/brake pedal pressure.
For the portable device, a series of features can be extracted using raw sensor
data and fusion information, which gives 8 sets of features: 3-axis accelerometer,
3-axis gyroscope, GPS, 3-axis magnetometer, 3-axis orientation, 3-axis gravity, 3-
axis linear accelerometer (similar to accelerometer data but without the gravity
component) and 3-axis rotation vector, which measures the orientation of the de-
vice relative to a fixed orientation. All these sensors and derived information are
captured at 50 Hz and down sampled to 1 Hz to reduce noise.
Combining the 5 signals from the CAN bus with the sensory information of the
mobile phone we have a total of 28 signals, each having 16 features: difference
between the maximum and the mean, difference between the mean and the min-
imum, the median, the mean, the minimum, the max, the difference between the
maximum and the minimum, standard deviation, variance, root mean square, am-
plitude of the difference between the first and last sample, variance of error in a
10h order linear prediction analysis, entropy, direct current value and energy. This
gives a total of 700 features, of which 125 are from the CAN bus and 575 from the
portable device.
To test if the loss in accuracy from portable devices (when compared to the CAN
bus) had any impact on the output two algorithms were used. The first one is the
k-nearest neighbour and the second one are support vector machines, in this case,
using a Gaussian radial basis kernel in a one-versus-all strategy.
For the experiment, all maneuvers were classified using either SVM or k-NN and
with the use of linear discriminant analysis (LDA) or sequential feature selection
(SFS) or none. The best results for the CAN bus and the portable device are 74%
and 89% accuracy, respectively. The best configuration for information extracted
from the CAN bus is a combination of LDA plus k-NN while the best methodology
for smartphones is only to use a SVM.

This study reports results that indicate that approaches using smartphones can be
at least as good as directly retrieving information from the car. Two supervised
algorithms (K-NN and SVM) are compared against each other while also employ-
ing feature selection and feature reduction, something that few articles mention
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or use. This and other articles using SVM indicate that RBF SVMs should be
used initially in the preliminary work. The results suggest that using an external
device (smartphones) to collect data is better than using the internal CAN bus of
the car. Despite this interesting information, there is no analysis of this result.

In this paper ”D3: Abnormal Driving Behaviors Detection and Iden-
tification Using Smartphone Sensors” [6], the sensors used were a 3-axis
accelerometer and 3-axis orientation sensor. The vehicle axis and the phone axis
were aligned manually. Twenty drivers were recorded for four months in their daily
driving activity with five different phones, placed arbitrarily in the vehicle or in a
fixed position with the phone axis aligned with the vehicle axis. This allowed to
experiment on the axis correction procedure, which revealed a decrease in accuracy
by 2%.
The author uses a Radial Basis Function (RBF) SVM with 16 features on 6 months
of driving data only to classify the behavior of drivers as abnormal or normal. Then
the approach was refined to classify 6 maneuvers that are considered dangerous:
weaving, swerving, sideslipping, fast U-turn, turning with wide radius and sudden
braking. See Fig.2.2 for an illustration of the maneuvers. Although each feature
is not separable from all the others, every pair of events has separable features.
The average accuracy was 95.36% for the fine-grained system and 99.41% for the
2 class classification task.

Although an axis correction method is mentioned, there is no explanation on how
to apply it nor any reference to an external article. The sample size and time
recorded provide a huge data set with multiple phone models, cars and roads and
thus introduces more variety on the input features than most studies and so, it
has proven to be generalizable. This study emphasizes the use of SVMs as a valid
verification algorithm for the preliminary work.



State of the art 27

Figure 2.2: Six types of abnormal driving behaviors: (a) Weaving, (b) Swerving,
(c) Sideslipping, (d) Fast U-turn, (e) Turning with a wide radius, (f) Sudden
braking.

Source: D3: Abnormal Driving Behaviors Detection and Identification Using
Smartphone Sensors [6]

2.4 Summary of aforementioned work

In this section we will take a look at the results mentioned previously in Section 2.2
and Section 2.3. The summary ends with Table 2.1. Afterwards, there is a critical
analysis that applies to all the work revised here. We conclude the chapter by
expressing known limitations brought to our work by the flaws presented earlier.
The accuracy of the studied methods ranges from 71% to 95.36% with one article
not available for direct comparison (it uses other performance metrics) [1]. The
papers that achieve high accuracy (90%+) consistently all use machine learning.
From this analysis it appears that approaches based on Machine Learning yield
the best results and supports the use of Artificial Intelligence in our work.
SVMs have performance indicators close to or above 90% and because of the low
variance (6%) between multiple studies, it was the algorithm of choice for the pre-
liminary work.
As for the devices used, five out of eleven studies do not reveal what kind of phone
was used (Android or iOS). Four out of eleven use Android and from these, one
specifies the API level while the others do not. The remaining two are iOS devices
without any API level described. The device usage can be seen to approximately
mirror the market share [36].
Four out of eleven rows mention the use of only one feature set that was achieved
either through logical reasoning about real world scenarios or simply an agglomer-
ate of the most used sensors (GPS + magnetometer + gyroscope). The remaining
seven rows in the table test more than one feature set in a search for the most
descriptive features.
As for the number of unique devices and cars reviewed, it is visible in the table
that seven out of eleven use a single device for their studies, two out of eleven are
not available while the rest collected data uses multiple devices. Four out of eleven
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drove in one car and tests were conducted in a defined path; seven drove multiple
cars. It can be seen that having a variety of devices and drivers/cars might lead to
an accuracy increase for predicting the user driving behaviour, as all studies with
multiple phones/cars have 89%+ accuracy. Notice that the last row in the table
is the only experiment that uses a multitude of drivers and cars and is the article
that has achieved the greatest accuracy, beating the closest algorithm by 2.36%,
with 95.36% accuracy.

Table 2.1: Summary of all mobile-only approaches con-
sidered.

N events Algorithm OS ver-
sion

Sensor N unique
devices/
cars

Ref. Metric

2
Cross Trip
Voting +
DBSCAN

Android
API- NA

GPS + ac-
cel.

1/1 [1]
55% prec.
85% recall

12 DTW NA accel. NA/3 [14] 77% acc.
12 DTW NA gravityx

+ accel.y
+ Eulerx

NA/3 [14] 91% acc.

12 DTW NA accel. 1/1 [31] 81% acc.
12 DTW NA accel. +

GPS +
gyroscope

1/1 [31] 71% acc.

12 DTW NA accel. +
magne-
tometer
+ GPS +
gyroscope

1/1 [31] 71% acc.

4 Fuzzy
Inference
System

Android
Api- NA

accel. +
magne-
tometer +
GPS

1+/1+ [2] 90% acc.

2 Random
Forest

iOS
Api- NA

light +
gyroscope
+ accel.
+ GPS

1/15 [8] 93% acc.
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2 J48
iOS

Api- NA
light +
gyroscope
+ accel.
+ GPS

1/15 [8] 90.6% acc.

8 RBF
SVM

Android
Api- 11-15

accel. +
gyroscope
+ GPS
+ magne-
tometer

1/100+ [32] 89% acc.

6 RBF
SVM

Android
Api NA-

accel. +
gyroscope

5/20 [6] 95.36%
acc.

*NA- Not available; N- number; prec. - precision; accel.
- accelerometer; acc.- accuracy

Artificial intelligence is going through a phase of open access articles and code,
as it is wildly recognized that half the work nowadays is spent collecting and
pre-processing useful data [10]. As such, it would be extremely useful to know
the amount of data each study has collected. However, what is observed is that
the majority of the papers do not present a description regarding the raw data
collected, much less the ratios used for the train/test/validation sets. This is a
worrying trend as this data is fundamental to reproduce all studies. If the data is
not public, at least the magnitude of data used should be specified.
The lack of a standard benchmark dataset for this field of research makes the re-
sults presented above slightly less relevant and not directly comparable between
each other or to this thesis. This will cause a limitation on the evaluation of our
work because we will not have a direct measure against other state of the art
algorithms, only against the baseline system, defined in Section1.2. Despite the
limitations, we plan to contribute to this field by improving the detection and
prediction over the current state of the art.
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Chapter 3

Research goals and methodology

The following chapter defines the research goals. We are aware that more research
goals exist and those are identified later in this dissertation for future work. Next,
we describe our methodology to achieve the research goals. This includes a de-
scription of how we collected new data, how it was pre-processed into a tabular
format and all the machine learning steps that came afterwards.

3.1 Research goals

The major goal is to get the best model possible that has a similar performance
on a multitude of situations, including, but not limited to, multiple drivers, cars,
devices and road surfaces. One of the conclusions to take from analyzing the
state of the art in Chapter 2 is that a Machine Learning model should be used. A
Machine Learning approach can have several steps such as: pre-processing, feature
engineering, feature selection, feature scaling, data balance and the choice of the
classifier. We did not find any research on a few topics such as feature scaling or
how to balance the data.
From the related work present in Chapter 2 it is visible that multiple factors affect
the performance of the algorithm. As important factors we have identified the
number of unique devices and the number of cars with unique characteristics. For
this thesis, the following was investigated:

1. First, we tried to produce a model that could take data from iOS and An-
droid devices during the training process and produce similar results during
the test/validation phases.

• A sub-goal was to know the differences between models that were trained
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with data collected by multiple devices and models trained with data
collected by a single device. For this comparison, it was important to
distinguish between different operating systems (iOS and Android) to
determine if the operating system and underlying hardware specifica-
tions had any impact on the performance of the models.

• Another sub-goal is to try to remove the features provided by the gy-
roscope with minimal impact on the accuracy of the system as the
majority of the Android phones still do not have a gyroscope. To test
this sub-goal a smartphone without gyroscope should be used instead
of just removing the features provided by it. This is because the inter-
mediate calculations done by Android to provide some of the features
used are different based on the sensors available.

From this goal we are going to determine if there is a device or devices whose
importance is crucial for capturing relevant information during future data
gathering sessions.

2. Secondly, we studied the impact of having smartphones placed in different
positions. We recorded data while having them placed on the floor, on our
hands, vertically and horizontally. We attempted to study if one model could
recognize driving events correctly without aligning the smartphone axis with
the car axis.
Achieving this goal would mean that our model could be delivered to smart-
phones without a gyroscope, which is something desirable for the Android
market.

Due to lack of data, it was not possible to study nor produce models that take
into consideration multiple drivers and multiple cars characteristics.

3.2 Methodology

Before diving into a detailed explanation of what we did let us take an overview of
what happened. For the first half of our work, the data used for in this dissertation
was provided by Sentilant. It contained data recorded by two smartphones in a
fixed position. As the labelling process was producing incorrect labels, we tried
to fix it by using unsupervised learning. Although this method seemed to work
in that particular dataset, it later proved to not generalize to other datasets. A
major milestone for the first half of our work was to determine what techniques
should be applied to pre-process the dataset, how to balance it, what classifiers
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looked promising and start feature engineering.

The second half of this thesis was mostly focused on feature engineering, collecting
new data on multiple devices with smartphones in different positions, validating
the approach in real scenarios using a simulator and developing a simple post-
processing mechanism to improve the algorithm classification performance under
continuous usage.

We will now be detailing our methodology, starting by describing the way used
to acquire new data followed by how we managed to balance the dataset, how we
produced new features and what classifier we ended up testing by describing the
different approaches that could have been taken at each step including their pros,
cons and our final choice. Each one of the following subsections is a crucial step
necessary to understand the solution developed.

3.2.1 Events monitored and data collection

For the number of events monitored, the literature provided several choices. The
granularity of events detected should depend on the final application that the
model will integrate. D. Banerjee and Eren et al. in their work, ”How’s My Driv-
ing? A Spatio-Semantic Analysis of Driving Behavior with Smartphone Sensors”
[1] and ”Estimating Driving Behavior by a Smartphone” [8] respectively, consid-
ered a binary approach to the problem. This approach has demonstrated results
that achieve high accuracy (above 90%) even when using a single phone to acquire
data. One study [6] reports 99.41% accuracy when using multiple devices and
drivers for binary classification vs 96.36% for classifying six types of events.

The remaining approaches that use Machine Learning support a number of differ-
ent maneuvers ranging from four to eight unique events. There is limited research
but studies suggest that for the same setup, having fewer classes to predict leads
to an increase in accuracy. Hence there is a trade-off to chose between the number
of events and the accuracy of the model. Sentilant specified the number of events
to be detected in the first half of the work as four: normal behaviour, sudden
acceleration, sudden braking and sudden turns (no distinction between left and
right).

The majority of papers use a smartphone in a fixed position to acquire their data.
No one ever mentions how they control and account the human factor during their
recordings. It would have been helpful to know how they avoided the problem of
the temporal disparity between the labels and the actual event. This approach



Research goals and methodology 34

has clear downsides as it requires precise human intervention, something that can
not be guaranteed to always work.
The other method involved the use of cameras, the CAN bus, placeholders for
smartphones and specially designed cars to hold all this equipment. In this ap-
proach only the driver is required to be in the car as the labelling process is done
afterwards by driving experts.
Both approaches have upsides and downside: on the one hand we have a method
to gather data that is inexpensive, and requires almost no setup, but might get
inferior labelling results. On the other hand we have a more expensive and harder
to setup method, that provides more accurate labels. We discussed with Sentilant
both approaches, and decided to go with the former, i.e., using a more inexpensive
but easy to setup method for data acquisition.

The data used in the first half of our work was collected by Sentilant [34], with
the phone in a horizontal position, screen always facing up and events labelled on
the spot with the help of an event recording application. Once the application
receives a command to start recording, it starts to collect information from the
sensors available at the fastest frequency possible to that phone and writes that
data to a text file. In the end we get a large text file where each row is the infor-
mation of one sensor.
On the car used to acquire raw data from the smartphones were at least two peo-
ple: one driver and the assistants. The task of the driver was to make dangerous
moves on purpose and tell the assistant which move he was about to make before
executing it. The task of the assistant was to hold one or several devices in a po-
sition agreed before the beginning of the trip. One of the assistants was in charge
of indicating to the application that an event was happening. In the application
there are several buttons, one for each aggressive event studied, with two modes,
on or off. After the driver tells that he is about to make an aggressive maneuver,
the assistant in charge of labelling the events would select the appropriate button,
corresponding to the event that is about to take place, on the recording applica-
tion. The beginning and the end of an event are defined by the labelling assistant.
There would occasionally be mistakes such as pressing the wrong button, pressing
a button when no event was happening or other human errors. Additionally, due
to the high frequency of readings by the sensors, we can see in the data a dispar-
ity between the pressing of the button and the actual event happening. In the
first half of our work we tried to correct this temporal disparity with unsupervised
learning but latter, learned that the results were much worse than manual labelling.

The data contained all kinds of roads: urban, rural, highways and variants such as
traffic congestion and speed bumps. For a given timestamp, if no event is labelled,
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we assume that the driver is expressing a driving pattern that is considered ”nor-
mal”. The threshold to what is considered a sudden event is controlled implicitly
in the labelling process.

The dataset that we were working with is composed by 22 features:

• The acceleration exerted on the phone in the x, y and z axis;

• The force of gravity in the x, y and z axis of the smartphone;

• The rotation of the device around the x, y and z axis of the smartphone;

• The speed, course, altitude, longitude and heading of the vehicle, as reported
by the GSNS;

• The yaw, pitch and roll of the device;

• The timestamps in which each measurement was recorded;

• The acceleration being exerted on the phone without the gravity component
in the x, y and z axis;

For the second half of our work we considered the addition of more events to match
the state of the art, but new trips revealed problems with our approach and we
decided to stick with the previous three maneuvers. During this time new data was
collected in April and June using the same method as before. We did not change
the way any feature was calculated with the exception of the timestamp, which
was determined by the GPS, with a resolution of one second, during the first half
of our work but for the second half it became determined by the accelerometer,
which has a much higher resolution. Starting with the second dataset, we devel-
oped features that were using timestamps for their calculations. This rendered the
first dataset acquired in the first unfit for use. The data for the first few trips of
the second half of this dissertation were acquired in April and real world validation
was done in June.
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Table 3.1: Summary of the datasets used for this dissertation

3.2.2 Pre-processing

Although the majority of the papers reviewed used a method similar to ours when
collecting their data, no one mentions how they deal with the errors caused by the
human assistant when labelling. For the first half of the work, we tried a novel
way to approach this problem.

In this step we were looking to automatically correct the temporal disparity in-
troduced on the labels during our data collection trips. For the duration of each
event, we are guaranteed to have only two labels, normal and aggressive behaviour.
The normal behaviour is also guaranteed to be in the beginning and at the end of
each consecutive event labelled.
This two assumptions give us the number of clusters to find within each event,
which is two, one center for normal behaviour and another for aggressive. For this
task we employed k-means, with k = 2 and run the algorithm independently on
each aggressive maneuver. K-means was the clustering algorithm of choice because
the number of centroids was known. The centroid of each cluster was in the end
defined as the average of each centroid for all the aggressive driving maneuvers
labelled. This technique was correctly modifying some segments in the beginning
and at the end of some labelled maneuvers for the dataset used in the first half of
our work. This hinted that the process may be working well but without ground
truth labels to compared it was hard to be sure.

Although this technique seemed to work for the first dataset, it was failing to cor-
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rectly work for the remaining. The technique proved to not generalized to all our
datasets. With the trips from April we realized that a delay caused by the GSNS
signal was making our labelling process more erratic than the human component.
The delay of this signal was enough to make an aggressive behaviour displaced by
dozens of samples, causing the model to not learn what it was suppose to. An
unsupervised approach could not work without major modifications. Our labels
were mere clues about when an event took place.

Since the moment this problem was understood, the temporal disparity introduced
on the labels by the way we collect data was corrected manually by one person. By
only having one person correct the labels of the datasets, it introduced a clear bias
to what constitute an aggressive behaviour as noticed by Sentilant when testing
the algorithm in real scenarios.
In the future, multiple people should be in charge of the labelling process to avoid
such bias. We would recommend an odd number of people and the use of a ma-
jority voting mechanism to decide which label should a sample get.

3.2.3 Balancing the dataset

After we have our data on a tabular format and correctly labelled to the best of
our ability, we tackled the problem of balancing the dataset. As no one in the
literature reviewed mentions how they balanced their dataset, there is no starting
point for this problem, on this specific domain.
A first look at the data reveals that the dataset is imbalanced, as seen in Fig 3.1.
This issue needs to be addressed or it will cause the classifier to favor one type of
events over the others, reducing the generalization of the algorithm and perform-
ing worse on data that it has never seen (test and validation sets). The outcome
of evaluation metrics that do not take this imbalance into consideration produce
results that are skewed towards the class that has greater representation.
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Figure 3.1: Support for each
class of the dataset provided by
Sentilant.

Figure 3.2: Support for each
class of the dataset acquired in
April.

Generally we can have three approaches to this problem. We can either use over-
sampling, downsampling or a mixture of both using a variety of techniques.
If one would apply oversampling techniques on our datasets the computational
cost of doing that process would be immense because the process of generating or
sampling points from the least represented classes would need to be repeated until
they reach the same support as the most represent class. Because our dataset has
a wide disparity between each class support this technique is costly. The conse-
quent cost of training a model with such a huge amount of points would make
the training time of the model unbearable. Nevertheless, the first experiment had
random oversampling as one of parameters subjected to study.

Undersampling also has the ability to balance our dataset but applying down-
sampling when our least represented class only has 127 points (Figure 3.2) would
exclude too many instances from our training data. The obvious advantage of
reduced training time comes at the cost of inferior performance from the model.
Despite the observed pitfalls we also included random downsampling on our first
experiment.

To overcome some of the problems identified we devised a new technique that
attempted to undersample the most represented class while keeping all of the in-
stances for the dangerous maneuvers (least represented classes) intact. We also
wanted this technique to retain the model performance of oversampling and the
training time as low as possible but avoid the pitfalls of both techniques.
To achieve this we start by mapping our labels to a binary state, as shown in Step
1 of Figure 3.3 while retaining their original state in a temporary variable. The
class corresponding to normal behaviour was left intact while the least supported
classes were temporarily agglomerated into a single class representing aggressive
maneuvers. At this point our labels represent normal and aggressive behaviour, as
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exhibited in the box containing Step 2. To reach Step 3, we apply random down-
sampling and the result we get is 50% of the training data with normal behaviour
and the other 50% containing all the aggressive maneuvers recorded during the
data acquisition trips. The final step is to map to their original values the labels
that were classified as aggressive into their original event (acceleration, brakes and
turns). We denominated this technique binary undersampling.

Figure 3.3: Illustration of the process used to balance our datasets.

For random undersampling and binary undersampling, we need to devise a new
way of doing validation because of the low support in the class least represented
(brake with 166 samples for the first dataset, or approximately 10 seconds, given
that, on average, 16 samples were collected per second). Splitting the dataset in
the traditional 70% for training, 15% for testing and 15% for validation would
leave an accuracy resolution of 100

166/16
, which is approximately 4%. This means

that every sample in the brake class is worth approximately 4% during test and
validation. As Andrew NG. argues in the seventh chapter of his book [26], small
test and validation sets might not be able to account for improvements in the
model. To overcome this we decided to use a different seed per run on the data
balancing step of the process in order to sample the dataset in different random
ways. This is known as Monte Carlo cross-validation and allow us to split the
dataset in only two ways, training and test, with a distribution of 70% of samples
for training and 30% for testing.

3.2.4 Choosing a classifier

In the first experiment we tried to assess which algorithm or set of algorithms
looked promising for our task on our dataset. Note that as mentioned in the end
of Section 2.4, the lack of a standard benchmark test makes direct comparison
with state of the art difficult. However, we see that SVM and decision trees (or
ensembles) have received some attention from the research community. On the one
hand. because SVM work based on the minimization of a distance (the distance
between the hyperplane separating each pair of classes), it is sensitive to data
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transformations [13]. On the other hand, decision trees and ensembles of decision
trees do not require feature scaling. Because the performance of SVMs are affected
by data transformations, there is a need to run a small experiment to test a some
approaches. Three approaches were taken in consideration. The first method is to
simply skip this step, the second is to rescale to a specific range, in our case it was
[0-1], using a MinMaxScaler and the third option is to standardize the features by
removing the mean and scaling to unit variance ([-1,1]).

Based on the current state of the art we have decided to experiment with SVM,
K-NN, and a few ensemble methods including gradient boosting, a bagging of de-
cision trees and random forests for the first experiment.

For SVMs to work with multiclass problems we need to reduce the problem to a
series of binary problems. We considered a one-vs-one and a one-vs-all strategy in
our experiments. A one-vs-all (also known as one-vs-rest or one-against-all) ap-
proach trains one classifier per class. During the training process the samples from
that class are marked as positive and rest as negative. In a one-vs-one strategy we
train N(N-1)/2 classifiers, with N being the number of classes. For the training
process we provide a pair of classes and the classifier learns to distinguish between
only these two classes.

3.2.5 Feature engineering

The literature provided three different approaches to feature engineering. The
first is the easiest, we simply give raw data as input to the classifier. Given a
sufficiently high amount of data, some models have been able to achieve state of
the art performance on a multitude of tasks in different domains by using raw
data. Unfortunately for this field, the data tends to be confidential and not shared
among peers, which makes it hard to collect big amounts of data. For our first
experiment we also fed the classifier raw data.

The second approach is to engineer new features based on domain knowledge. This
tends to be a cumbersome method for finding useful features to feed the classifier.
It tends to be a hit or miss approach in which we have no guaranteed of succeed.
From Chapter 2, papers using this technique tend to achieve higher results than
by simply inputting raw data into the classifier.

The third and last way to create new features that appears in the literature is to
agglomerate consecutive instances and produce new features from these small time
series. The features derived from this approach can come from signal processing,
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averages, medians and other mathematical formulations that can capture relevant
information from time series. This is the technique used by authors of the best
paper reviewed in Chapter 2 to get their results.

Sentilant decided to go with the second approach for this internship. Adding to
the 23 raw data features present in the dataset, 94 more features were added. This
features can be consulted in Appendix F. They all are either the difference between
the current value observed and the value recorded the past designated time frame
(e.g. the difference between the current registered speed and the speed recorded
two seconds ago), cumulative sum of a given feature for the past designated time
or the value of a given feature observed in a designated time period (e.g. the value
of the speed registered on the smartphone 2 seconds ago).
If we add to the algorithm a buffer that holds the information recorded in the
last couple seconds and delay the initial inference steps just a few iterations we
can do inference for the sample that sits in the middle of the buffer and use
what we denominate look ahead samples to help classify, as illustrated on Figure
3.4. Although this technique prevents the method from being used in real time
applications, given that current smartphones sample data at high frequencies the
time it takes to buffer four samples, which the maximum amount of look ahead
points currently being used, is 80 ms, considering the accelerometer is sampling at
50 Hz.

Figure 3.4: Illustration of the process used to predict an arbitrary instance. On
the left we have the current approach described on the literature. On the right we
have our proposed approach. The color blue denotes samples that are available to
the algorithm. Red stands for the sample currently being classified.
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3.3 Applying post-processing on top of a simu-

lator

To test our model as if it were in a production environment, a simulator was de-
veloped. This simulator is capable of grouping consecutive labels with the same
value and produce some statistics for it. With this it was possible to analyze a
model on a event by event case. At the end of each trip the simulator outputs
some statistics about the whole trip (i.e. confusion matrix, F1 scores, precision,
recall, accuracy) and the events (e.g. the precision of the classifier for each event).
By the end of this thesis, when we were validating the algorithm with the simulator
previously developed, it was noticed that occasionally a sample would be misclas-
sified but the samples around it would have the right value, like shown on the left
side of the first case presented in Image 3.5. To correct this mistakes and increase
the precision of the algorithm (at the cost of lowering the recall), we introduced a
constraint on the classifier.

As shown in Case 2 of the Image 3.5, the classifier is allowed to classify a sample
as aggressive behaviour if that same label appears consecutively a specific number
of times. Because we are working with three aggressive maneuvers, we had to
define three thresholds, one per class. The threshold for each event was found by
grid search on a discrete space in the interval [0-35] to find the best precision, the
performance metric that matters to Sentilant. A threshold of zero means that as
soon as an event is detected, the classifier can present that result immediately. A
threshold higher than zero means that the classifier needs to get x more times the
same label consecutively, with x being the number of samples.



Research goals and methodology 43

Figure 3.5: Illustration of a misclassified event being corrected in Case 1. Case
2 displays the threshold function. The height of the bars is proportional to the
number of consecutive labels necessary to achieve the threshold set for that event.
The color blue denotes normal behaviour and red aggressive behaviour.
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Chapter 4

Experimental setup and results

In this chapter we take a look at the experiments and report their results. For each
experiment there is a description of the purpose of conducting the study followed
by the experimental setup. We finish the description by discussing and reporting
the results. All the result in this chapter were measured in the testing set using
the Monte Carlos methodology described in Chapter 3.

The purpose of the first experiment was to test our class balancing method as well
as the pre-processing technique with several existing classifiers.
The second experiment was done to cover some tests not done in the first one. This
study introduces a new classifier, three different ways to scale the data and tests
the impact of removing the features that are captured by the gyroscope. After the
second experiment, we acquired new data.
For our third experiment, on the new dataset, the impact of the phone position
was the study subject.
Then there was another study conducted to test how different devices impacted
the results.
The fourth experiment was conducted to test a new set features. The number of
features and modifications done when compared to the last iteration of the previ-
ous feature set is quite drastic. The new feature set has an increased concentration
of features that provide information about the samples around it, as described in
Section 3.2.5. The last experiment was done to study the impact of feature selec-
tion on a real world scenario, provided by the developed simulator.

45
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4.1 Experiment 1

For our first experiment we wanted to start discarding techniques that did not
look promising. The goal of this study was to see how our new techniques would
compare to the approach taken by the majority of the authors in Chapter 2.
Because the dataset provided had labels that do not correspond to the their true
value, we tried to approximate it by using our label correction mechanism, as de-
scribed in Subsection 3.2.2.

Sentilant revealed three features from it’s own research: delta speed, delta
course and delta timestamp, all referring to the difference between the cur-
rent state and the previous state of the car/device. This experiment tests the
original 22 features and adds the three features previously explained, making a
total of 25. Therefore, there are two sets of features, which we will denominate by
original feature set, composed of 22 features and modified feature set “A”, with
25. The “A” stands for addition, meaning that to the original set of features a
few more were added. A comparison between each feature set can be found in
Appendix A.
For SVMs we had to reduce our multiclass problem to a series of binaries classifi-
cation problems, as described in the Methodology, Chapter 3. This test was run
with 30 different seeds using the Monte Carlos approach to split the dataset in
70% training and 30% testing sets. The performance baseline for this experiment
is the current Sentilant system. To compare any model with that system the met-
ric adopted was recall as that was the only metric possible to extract from the
system. The remaining setup can be found in the following tables:

Table 4.1: Detail of the dataset used in Experiment 1

Dataset Description

Dataset Provided by Sentilant
Smartphone position Horizontal

Table 4.2: Detail of Experiment 1

Process Parameter

Label correction mechanism None, K-means
Feature set used original, “A”
Classifiers SVM(OVO), SVM(OVA), bagging decision trees,

gradient boosting, K-NN, random forests
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Class balacing Random oversampling, random undersampling, bi-
nary undersampling

Feature scaling Only on SVMs, MinMaxScaler range [0-1]
Post-processing None

4.1.1 Results of Experiment 1

To compare the results between each model we used the average F1 score of all
the identifiable maneuvers i.e, we compact the F1 score obtained by the normal,
acceleration, brake and turn classes into one number, using the following math-
ematical formulation: F1normal+F1acceleration+F1brake+F1turn

4
. When deemed necessary

we will look at other metrics.

To analyze the results that concern our data balancing technique we will use SVM
(OVO) and random forests. The results of the remaining classifiers are either the
same or approximately equal to those of random forests, so we analyze those at
the end considering the best scenario we found for SVMs and random forests.

We will start by analyzing how our balancing strategy compares against random
oversampling and random undersampling when using only the original 22 features.
From Figure 4.1 and Figure 4.2, it can be seen that random undersampling always
produces the worst results, no matter the pre-processing mechanism. In all the
tests, binary undersampling always performed better, on average, than random
undersampling. When comparing to random oversampling, binary undersampling
was able to stay just a couple of percentage points away in three out of the four
scenarios illustrated. In the other, the performance was comparable to random
undersampling.
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Figure 4.1: Average F1 score for SVM
(OVO) trained with 22 features. The
colors represent the class balancing
technique used. Blue for random un-
dersampling, red for random oversam-
pling and green for our technique, bi-
nary undersampling.

Figure 4.2: Average F1 score for ran-
dom forests trained with 22 features.
The colors represent the class balanc-
ing technique used. Blue for random
undersampling, red for random over-
sampling and green for our technique,
binary undersampling.

From the pictures above and the confusion matrices in Figure 4.3 and Figure 4.4,
showing the best SVM and the best random forest, it is visible that random forests
outperform SVMs in all the scenarios present here, in fact, random forests were
able to accurately predict the entire test set.

Figure 4.3: Normalize confusion ma-
trix of the best performing SVM
shown in the above graph.

Figure 4.4: Normalized confusion ma-
trix of the best performing random
forest in the above graph.
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Now we will analyze how our balancing strategy compares against random over-
sampling and random undersampling when using the original 22 features plus the
3 engineered, giving us a total of 25 features. Figures 4.5 and 4.6 show a vastly
different landscape. Here SVMs always achieve a perfect score independently of
the method used to balance the dataset. Random forests also achieve good results
except when combining random undersampling and our pre-processing mechanism,
where the F1 score drops to 96%.

Figure 4.5: Average F1 score of SVMs
trained with 25 features. The la-
bels on the x axis identify the pre-
processing mechanism and the color
distinguishes the different balancing
strategy.

Figure 4.6: Average F1 score of ran-
dom forests trained with 25 features.
The labels on the x axis identify
the pre-processing mechanism and the
color distinguishes the different bal-
ancing strategy.

From this analysis we decided that it would be best to discard some techniques.
To balance our dataset we decided to keep only our method, binary undersampling.
With the right features it was able to match random oversampling and always be
better than random undersampling. This decision also greatly reduces the training
time of the models.
The use of 25 features also proved to be valuable as it allow us to use binary un-
dersampling and still achieve the perfect score on the test set. In all the explored
scenarios, the addition of the three engineered features improved the average F1
score, unless it was already at 100%.

Upon deciding the best scenario based on two different classifiers, Figure 4.7 shows
a comparison of all the classifiers used in the experiment when running under the
previously described scenario. Since all classifiers performed equally well on this
scenario we decided to keep random forests and SVM (OVO). The reason for this
choice is because those are the classifiers that appear more often in the literature.
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Figure 4.7: Average F1 score of all the classifiers tested. To balance the dataset we
used binary undersampling and the number of features was 25. The color denote
different pre-processing mechanisms.

On the current dataset, as shown previously, the models here produced are capable
of achieving a perfect score on the test set. As seen in Table 4.3, ML models are
already outperforming the current system from Sentilant. The great results of this
experiment can probably be attributed to the lack of diversity portrayed on the
dataset in conjunction with the fact that the same trips were used for training and
testing can be the reason that explain this results.

Table 4.3: A comparison of the recall of the current sys-
tem vs our best model so far.

Event Sentilant (%) Our model (%)

Normal NA 100
Acceleration 92.3 100
Brake 27.8 100
Turn 60.9 100
Average 60.3 100

*NA- Not available.
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4.2 Experiment 2

For our second experiment we introduced a new classifier, extreme gradient boost
(also known as XGBoost), a different implementation of the gradient boosting
trees used in Experiment 1.
The impact of feature scaling, not covered in the previous experiment, is tested
here with three different methods. As the purpose of this experiment was to verify
the first sub-goal of the research goal number one, the features calculated by using
the gyroscope were also a study subject. The baseline for this experiment is the
best result obtained in Experiment 1.

This gives us three feature sets to test. The previous set of features “A”, and two
new sets. The new sets are the original and modified sets without the features
that are obtained by the gyroscope, which we denominate by modified feature set
“no gyroscope” and “no gyroscope- A”, respectively. The detailed features used
can be consulted in Appendices B and C.

This experiment was run with the same 30 seeds as before using the Monte Carlo
technique to split the dataset in two ways: 70% for training and the remaining
30% for testing.

Table 4.4: Details of the dataset used in Experiment 2

Dataset Description

Dataset Provided by Sentilant
Smartphone position Horizontal

Table 4.5: Details of Experiment 2

Process Parameter

Label correction mechanism K-means
Feature set used “A”, “No gyroscope”, “No gyroscope-A”
Classifiers SVM(OVO), XGBoost, random forest
Class balacing Binary undersampling
Feature scaling None, MinMaxScaler , StandardScaler
Post-processing None
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4.2.1 Results of Experiment 2

This experiment had three variables: the method used to rescale the feautres,
which features to use and three classifiers. By using some color when plotting,
just three graphs are enough to analyze the results.

As suggested in a paper published by Chih-Wei Hsu et al. [13], SVMs were sensible
to feature scaling. Excluding the outliers, the best performing SVM, as shown in
all scenarios (Figure 4.8, 4.9 and 4.10), used the suggested method: a MinMaxS-
caler to rescale the data to be between the interval [0-1].

As expected, the ensembles methods produce results completely identical indepen-
dently of the scaling technique used.

It should be noted that both tree ensembles outperformed the SVM when the
features dependant on the gyroscope were removed. Between the ensembles, XG-
Boost always achieved 100% on the score F1 for all the maneuvers while random
forests get 100% based on the value of the seed.

Figure 4.8: Average F1 score for SVMs, XGBoost and random forests trained with
feature set “A”. The colors stand for the scaling method used.
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Figure 4.9: Average F1 score for
SVMs, XGBoost and random forests
trained with feature set “no gyro-
scope”. The colors stand for the scal-
ing method used.

Figure 4.10: Average F1 score
for SVMs, XGBoost and random
forests trained with feature set “no
gyroscope-A”. The colors stand for
the scaling method used.

From this experiment we can take a couple of conclusions. If the smartphone is in
a fixed horizontal position, then without the gyroscope, there is a model that can
correctly classify all the samples on the testing dataset. This result was expected
because, according to related work, the utility provided by the gyroscope is to
change the axis of the information being measure, so that for example, instead of
working with the axis the device we can work with axis of the vehicle.
XGBoost also demonstrated to be quite good at fitting the training data we pro-
vided, always outperforming SVMs and being marginally better on the average
F1 score of the random forests. Extreme gradient boosting was also fitting the
training data faster than SVMs. Since there was no downgrade on the baseline
scenario from Experiment 1 and a substantial improvement on the scenarios de-
fined in Experiment 2, XGBoost will be the classifier used for future experiments.
The second sub-goal of the first goal defined in the Chapter 3 was partially ac-
complished. It is still necessary to test the model on a different dataset. Note
that, as explained in the conclusions of the previous experiment, this results are
very optimistic because the dataset lacks diversity in many domains, such as the
number of drivers, cars or devices.
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4.3 Experiment 3

The purpose of Experiment 3 was to test how the models would perform to posi-
tions they had never seen before, which is the second goal written in Chapter 3.
For this experiment we had to collect more data. The dataset acquired in April
was used here. The labels were corrected manually by one person.

A person had to correct the labels manually because the k-means technique was not
working properly. It simply was not changing enough values on the new dataset.
To confirm this issue the person manually labelling implemented a script to check
the number of different labels between the manually corrected April’s dataset and
the unsupervised approach. The unsupervised approach probably worked in the
Sentilant’ dataset because the events were loosely marked while in the April’s
dataset we tried to have tighter labels. For the April’s dataset it is visible that
the delay caused by the GSNS is enough to cause an event to not be labelled
correctly for maneuvers that do not last for long, such as braking. This will be
the last experiment containing the dataset from Sentilant as it contains to much
uncertainty on the labels.

Because of the low amount of samples for the classes that represent aggressive
behaviour in the April’s dataset we decided to keep the data from previous exper-
iments.

Due to the interest in studying the position of the smartphone, the April dataset
was split in three ways, according to the position of smartphone: held in the hand,
horizontal and vertical.

The training procedure for this experiment always contained data from the dataset
provided by Sentilant and from the April dataset. For each dataset the method
used to split the data in training and testing was same as previously explained,
using the Monte Carlos technique to split the dataset in two ways with 70% of
the samples, from each dataset, used for training and the remaining samples for
testing purposes, as indicated in Table 4.9.

Table 4.6: Details of the dataset used in Experiment 3

Dataset Description

Dataset 1 Provided by Sentilant (70% for training, 30% for test)
Dataset 2 Acquired in April (70% for training, 30% for test)
Smartphone position Horizontal, Vertical, held in hand
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The number of features increased by three. To the previous three features sets, we
added a delta course, the norm of the acceleration, the cosine of course in
radians and the delta cosine course. The delta features are simply the differ-
ence between the current state of the variable and the last sample. The radians
of cosine of the course were introduced to prevent a drastic change in values when
the course changed from 360º to 0º. This second iteration of the feature set is
denominated “A2”, to which we can add the remaining restrictions, such as the
removal of the features that depend on the gyroscope. For a complete list of the
features used in each set check Appendices D and E for the feature sets of “A2”
and “no gyroscope-A2”, respectively.

Table 4.7: Detail of Experiment 3

Process Parameter

Label correction mechanism K-means for Sentilant’ dataset. Manual for April’s
dataset.

Feature set used “A2”,“no gyroscope-A2”
Classifiers XGBoost
Class balacing Binary undersampling
Feature scaling None
Post-processing None

4.3.1 Results of Experiment 3

Surprisingly, adding data from the April’s dataset always reduces the average F1
score for the Sentilant dataset. One would expect that training a model with a
higher degree of diversity would increase results. This might not have happened
because the labels in of the Sentilant’ dataset do not have the correct value.

No matter the feature set used, classifying a maneuver with the smartphone placed
in a different position than those trained does not yield good results. However,
classifying events with the smartphone in one of the positions used to train gives
results close to 70%. To further proceed we should mix all the available positions
and validate with new data, from different trips.
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Table 4.8: Results in tabular form for Experiment 3. Colors have different mean-
ings, green represents the horizontal position, yellow vertical and grey the hand.
The gradient from red to green represents the average of the average F1 score.
Values closer to green are better. The last column contains the feature set used,
blue for “A2” set and orange for “no gyroscope-A2”set.

4.4 Experiment 4

For our fourth experiment we collected more data. We named it June’s dataset.
The purpose of this experiment is to validate the hypothesis raised in Experiment
3 about mixing all the available positions in a single model and validate it with
new trips. The dataset used to train the model was the April’s dataset. For vali-
dation we used the dataset acquired in June.

Table 4.9: Details of the dataset used in Experiment 3

Dataset Description

Dataset used for training April’s dataset
Dataset used to validate June’s dataset

The number of features dramatically increases for this experiment, going from 26
to 94. We named this set of features “1-gyroscope-A3”. The one in the name is
the number of features that depend on the gyroscope and A3 simply means the
number of iterations in which we have increased the number of features. Here is
where we apply the procedures described of the subsection “Feature Engineering”,
located in Chapter 3. A detailed list can be consulted in Appendix F. The new set
of features does not only add new features, it also removes absolute values, such
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as absolute longitude or latitude and converts it to relative values.

Table 4.10: Detail of Experiment 4

Process Parameter

Label correction mechanism Manual
Feature set used “A2”,“1-gyroscope-A3”
Classifiers XGBoost
Class balacing Binary undersampling
Feature scaling None
Post-processing None

4.4.1 Results of Experiment 4

We see a massive increase in the average F1 score, jumping from 0.4% to 0.8%, in
Figure 4.11 for the iOS platform when the phone is vertical. As for the android
platform, the phone was positioned horizontally as performance does not even
reach 0.3% F1 score. With so little trips to validate our model it is not possible
to reach any significant conclusions. The gap observed between platforms can be
either because of the hardware, the software or the position of the phone. Further
research is necessary.

Looking at Figure 4.13, it can be seen that the model using the old feature set
is classifying most samples as normal behaviour and can not distinguish between
normal and aggressive behaviour. The massive amount of features is therefore
beneficial to our model for the iOS platform.
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Figure 4.11: Average F1 score for XG-
Boost on two different feature sets for
the iOS platform on a vertical posi-
tion.

Figure 4.12: Average F1 score for XG-
Boost on two different feature sets for
the Android platform on a vertical po-
sition.

Figure 4.13: Confusion matrix for
the best performing xgboost model on
iOS using the “A2” feature set.

Figure 4.14: Confusion matrix for
the best performing xgboost model on
iOS using the “1-gyroscope-A3” fea-
ture set.

The model that uses the feature set “1-gyroscope-A3” classifies most classes well
except for the turning event. Manually labelling turns is not a easy task as there
is no apparent feature that can tell exactly when a turn is occurring.
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4.4.2 Running our model on real scenarios

To test real scenarios we used the simulator developed. The only trip worth look-
ing in detail are the ones that used a smartphone oriented vertically, as Figure
4.12 reveals that the Android platform, at least when placed horizontally requires
further research.
Without using our post-processing technique we obtain the results in Table 4.11.
By applying the post-processing technique the model increases the desired perfor-
mance metric that is desirable to Sentilant, precision. The results in Table 4.12
show an increase in the precision of accelerations but at the cost of lowering recall.
This is fine because for Sentilant applications, not giving false positives to the user
is of much importance.

Table 4.11: Performance report on iOS trip used to vali-
date the model, without post-processing

Precision Recall F1-Score Support

Normal 0.94 0.71 0.81 14233
Accel 0.52 0.79 0.62 763
Brake 0.45 0.84 0.59 419
Turn 0.19 0.59 0.28 1297
avg / total 0.85 0.71 0.75 16712

Table 4.12: Performance report on iOS trip used to vali-
date the model, with post-processing

Precision Recall F1-Score Support

Normal 0.88 0.85 0.86 14233
Accel 0.74 0.27 0.40 763
Brake 0.49 0.31 0.38 419
Turn 0.18 0.35 0.24 1297
avg / total 0.81 0.77 0.78 16712

During the trip to iPark, located in Antanhol, Coimbra, our model detected the
events shown in Figure 4.15, when using a iOS device. All the accelerations and
brakes that were aggressive got well identified, i.e., when someone swerved to our
lane and forced us to suddenly stop, on top of bridge. We discussed with Sentilant
and turns may be too sensitive but this might be because it was only a single
person correcting the labels, which might have introduced a bias. Nevertheless,
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this is something that can be fine tuned in future work.

Figure 4.15: Identified events on iOS during a trip to iPark, located in Antanhol,
Coimbra. Green markers symbolize turns, red markers brakes and dark purple
accelerations.

The android device was oriented horizontally during the trip to iPark. All the
identified aggressive maneuvers did not happen. This orientation needs more re-
search.
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Figure 4.16: Identified events on an Android during a trip to iPark, located in
Antanhol, Coimbra. Green markers symbolize turns, red markers brakes and dark
purple accelerations.

The phone was oriented vertically, like the iOS device and it worked perfectly on
the trip tested. We should have the same trip with an Android and a iOS device
with the same orientation to compare both on equal terms. We do not have this
kind of data but it appears that phones placed vertically are behaving as expected.
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Figure 4.17: Identified events on an Android during a trip Cernache. Green mark-
ers symbolize turns, red markers brakes and dark purple accelerations.

To conclude, data from real trips, on different roads never before seen by the
model seem to suggest that when placed vertically, our classifier is identifying well
the aggressive maneuvers, apart from turns, which seem to be too sensitive. The
events identified were always in the correct place and at the right time. For other
orientations we need more data to make strong arguments, but the data available
seem to suggest that when the phone is oriented horizontally, the system does not
perform as expected.

4.5 Experiment 5

Our last experiment dealt with feature selection. Recursive feature elimination was
performed on the training set of the dataset acquired in April. It was determined
that 10 features was the minimum amount of features that one could retain before
the classifier started to lose performance on the average F1 score. The following
features were deemed the most important during this process:

• speed;

• cumSum accelNorm – Cumulative sum of norm of acceleration;
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• cumSum delta speed 1 – Cumulative sum of the differences in the current
speed and the speed observed 1 second ago;

• speed look 6 – Value of the speed observed 6 samples ago;

• accelNorm look 6 – Value of the norm of the acceleration as observed 6
samples ago;

• courseCosRads look 6 – Cosine of course, in radians, as observed 6 samples
ago;

• cumSum delta speed 1 look 24 – Cumulative sum of the differences in the
current speed and the previous speed value, as observed 24 samples ago;

• delta courseCosRads 1 look -4 – Difference between the current cosine of
course, in radians, and the previous cosine value, as observed 4 sample ahead;

• cumSum absDelta courseCosRads 1 look 14 – Cumulative sum of the abso-
lute difference between the current cosine of the course, in radians, and the
observed 14 samples ago;

• cumSum absDelta courseCosRads 1 look 18 – Cumulative sum of the abso-
lute difference between the current cosine of the course, in radians, and the
observed 18 samples ago;

When ran through the simulator, without post-processing enabled we obtained the
results in Table 4.13. When comparing to the results in Table 4.11, it is visible
that removing features reduces both precision and recall for all aggressive maneu-
vers while retaining features that depend on the GSNS. Feature selection should
be excluded in this situation because it brings no benefit.

Table 4.13: Performance report on iOS trip used to vali-
date the model, with post-processing

Precision Recall F1-Score Support

Normal 1.00 1.00 1.00 396874
Accel 0.35 0.46 0.40 426
Brake 0.12 0.27 0.16 127
Turn 0.15 0.48 0.23 223
avg / total 1.00 1.00 1.00 397650
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Chapter 5

Work Plan and risk analysis

This thesis is based on the innovation of a product, achieved through research and
development. Here we detail the work plan created during our first meeting and
analyze the risks involved in that plan.

5.1 Work plan

During the first half of the work here produced, the focus was to on study the
state of the art, analyze the provided dataset, run preliminary experiments and
devised a plan to solve or lessen the effect of the identified issues on the final model,
as shown in Fig. 5.1. We followed a basic machine learning approach where we
implemented techniques we thought would work the best for our task and then
proceeded to validate our ideas.
In machine learning it is hard to define boundaries as to when a phase is finished
because there might be a need to revisit any step of the process (modify pre-
processing, pos-processing, features or classifiers) and that is why we see overlaps
in our Gantt chart.

Figure 5.1: Gantt chart of the tasks done in the first half of this dissertation.
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In the second half of the work here developed, we finished the research on the first
dataset, which was lacking some tests on feature scaling. New data was acquired
to validate the model so far developed. When trying to validate the model we ran
into some issues with a risk identified below where our pre-processing mechanism
was not doing it’s task correctly. During the next couple of months we tried to
modify it but to no success. We ended up doing manual label correction. While
this validation was still ongoing we built a simulator to test how the model would
work in real scenarios. We kept on developing new features for the simulator while
doing feature engineering to improve the model. This was not enough and we had
to implement a post-processing technique to achieve the desirable results. We once
again acquired new data and validated our model. The last couple of weeks were
dedicate to the writing of the report.

Figure 5.2: Gantt chart of the tasks scheduled for the second half of the work.

5.2 Risk analysis

Over the last few chapters we have been identifying some of the risks that can pose
an obstacle to the success of this thesis. In this section we make a comprehensive
list of the risks that we encountered or could have met.

1. Lack of reproducibility- as mentioned at the end of Chapter 2, the repro-
ducibility of state of the art techniques is hard to achieve in machine learning
because there is no access to the data used in every study. For the subject
of this dissertation, there is no standard benchmark to compare our results
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against the most advanced algorithms. This problem is not easy to solve as
it depends on the community of researchers that are studying this field. Our
comparisons will be made against our own models and the current produc-
tion environment;

2. Long training times- our experiments can take up to two weeks to be fully
complete. This can severely delay our work plan. As a countermeasure, we
have used our custom data balancing class, presented in Chapter 3, to iterate
over our models faster at the cost of potentially lower accuracy;

3. Lack of generalization- this risk arises from the first step of our process, the
data collection. The dataset available was recorded with one car and with
few Android devices. Although the Android specification dictates a range
for all the properties of a sensor, some of the specifications are optional. The
risk of recording the events we monitor with just one car is that our model
does not have data of other types of automobiles. To mitigate this risk, more
data should be collected. We need variety and not only quantity.
We are also at risk when using our pre-processing mechanism because it is a
novel approach, not proven to work on a multitude of datasets. The mitiga-
tion strategy for this problem is to simply correct the value of the labels by
hand, even if takes a lot of time;

4. Lack of data- the lack of was a constant struggle throughout the thesis. It
severely hindered progress. A contingency plan for this problem is to col-
lect more diverse data and to devise new strategies to overcome this problem.
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Chapter 6

Conclusions

Profiling the behavior patterns of a driver is of great importance because it can
help save human lives. According to [12], the success of this work will help drivers
reduce their over speeding and aggressive incidents. As a consequence of reducing
the number of accidents on the road, this product has the potential side effect of
reducing the public spending on health care, as pointed out in [28].

Commercially, the final model here developed is ready to be tested on the field.
The data seem to suggest that more research may be necessary to make the al-
gorithm work on all possible orientations of the device. By making our model
almost independent of hardware (no gyroscope necessary) and software (iOS and
Android) we are increasing the number of people that can have a satisfactory
experience with the resultant applications that use a version of the Drivian Core
Software Development Kit (SDK) containing our models. By incorporating AI into
a core product of the company and improving a driver’s profiling, we are provid-
ing a solution that has direct application in key areas such as: fleet management,
business-to-consumer (B2C) and insurance, among others. All of this is going to
be provided while still respecting the business requirements.

Scientifically, our most important contributions are the proposed techniques to
balance the dataset and our feature engineered. The novel balancing technique
here proposed is a new way to look at the dataset and the features here engineered
represented a breakthrough to generalize the models here investigate, as seen dur-
ing real usage. Binary undersampling was specifically created to tackle this task
and was demonstrated to rival with over sampling but without artificially increas-
ing the size of the dataset. The lack of a public dataset means that the results
claimed here are only comparable to the current production environment. The
lack of data makes our scientific conclusions weak as they should be verified in
more scenarios.
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Data suggests that the research goal one might have been accomplished for a
restrictive scenario, the phone must be vertically oriented. As for the others po-
sitions the phone could take there was not enough data to validate our model in
that realm. Goal number one was partially successful as it verified in the last
experiment that when placed vertically, phones from different platforms behave as
expected. The sub-goal number one can not be validated either because we lack
two phones in the same position in our validation set. Sub-goal number two was
not attained as we could not remove one last feature that depends on the GSNS.



Appendix A

Comparison of the original
feature set with the modified
feature set “A”

Table A.1: Comparison of the original feature set and
the feature set ”A“.

Feature Feature set “A”

Raw acceleration on the x-axis of the phone Not modified
Raw acceleration on the y-axis of the phone Not modified
Raw acceleration on the z-axis of the phone Not modified
Gravity on the x-axis of the phone Not modified
Gravity on the y-axis of the phone Not modified
Gravity on the x-axis of the phone Not modified
Rotation of the device around the x-axis Not modified
Rotation of the device around the y-axis Not modified
Rotation of the device around the z-axis Not modified
Speed of the device Not modified
Course of the device Not modified
Altitude Not modified
Latitude Not modified
Longitude Not modified
Heading Not modified
Pitch Not modified
Yaw Not modified
Roll Not modified
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Timestamp of the measurement Not modified
Acceleration on the x-axis of the vehicle Not modified
Acceleration on the y-axis of the vehicle Not modified
Acceleration on the z-axis of the vehicle Not modified
Delta speed Added
Delta course Added
Delta timestamp Added
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Comparison of the original
feature set with the modified
feature set “no gyroscope”

Table B.1: Comparison of the original feature set and the
“no gyroscope” feature set.

Feature “No gyroscope” feature set

Raw acceleration on the x-axis of the phone Not modified
Raw acceleration on the y-axis of the phone Not modified
Raw acceleration on the z-axis of the phone Not modified
Gravity on the x-axis of the phone Removed
Gravity on the y-axis of the phone Removed
Gravity on the x-axis of the phone Removed
Rotation of the device around the x-axis Removed
Rotation of the device around the y-axis Removed
Rotation of the device around the z-axis Removed
Speed of the device Not modified
Course of the device Not modified
Altitude Not modified
Latitude Not modified
Longitude Not modified
Heading Removed
Pitch Removed
Yaw Removed
Roll Removed
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Timestamp of the measurement Not modified
Acceleration on the x-axis of the vehicle Removed
Acceleration on the y-axis of the vehicle Removed
Acceleration on the z-axis of the vehicle Removed



Appendix C

Comparison of the original
feature set with the modified
feature set “no gyroscope-A”

Table C.1: Comparison of the original feature set and the
“no gyroscope-A” feature set.

Feature “No gyroscope-A” feature set

Raw acceleration on the x-axis of the phone Not modified
Raw acceleration on the y-axis of the phone Not modified
Raw acceleration on the z-axis of the phone Not modified
Gravity on the x-axis of the phone Removed
Gravity on the y-axis of the phone Removed
Gravity on the x-axis of the phone Removed
Rotation of the device around the x-axis Removed
Rotation of the device around the y-axis Removed
Rotation of the device around the z-axis Removed
Speed of the device Not modified
Course of the device Not modified
Altitude Not modified
Latitude Not modified
Longitude Not modified
Heading Removed
Pitch Removed
Yaw Removed
Roll Removed
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Timestamp of the measurement Not modified
Acceleration on the x-axis of the vehicle Removed
Acceleration on the y-axis of the vehicle Removed
Acceleration on the z-axis of the vehicle Removed
Delta speed Added
Delta course Added
Delta timestamp Added
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Comparison of the original
feature set with the modified
feature set “A2”

Table D.1: Comparison of the original feature set and
the feature set ”A2“.

Feature Feature set “A2”

Raw acceleration on the x-axis of the phone Not modified
Raw acceleration on the y-axis of the phone Not modified
Raw acceleration on the z-axis of the phone Not modified
Gravity on the x-axis of the phone Not modified
Gravity on the y-axis of the phone Not modified
Gravity on the x-axis of the phone Not modified
Rotation of the device around the x-axis Not modified
Rotation of the device around the y-axis Not modified
Rotation of the device around the z-axis Not modified
Speed of the device Not modified
Course of the device Not modified
Altitude Not modified
Latitude Not modified
Longitude Not modified
Heading Not modified
Pitch Not modified
Yaw Not modified
Roll Not modified
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Timestamp of the measurement Not modified
Acceleration on the x-axis of the vehicle Not modified
Acceleration on the y-axis of the vehicle Not modified
Acceleration on the z-axis of the vehicle Not modified
Delta speed Added
Delta course Added
Norm of the acceleration Added
Cosine of the course, in radians Added
Delta course cosine, in radians Added
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Comparison of the original
feature set with the modified
feature set “no gyroscope-A2”

Table E.1: Comparison of the original feature set and the
“no gyroscope-A” feature set.

Feature “No gyroscope-A” feature set

Raw acceleration on the x-axis of the phone Not modified
Raw acceleration on the y-axis of the phone Not modified
Raw acceleration on the z-axis of the phone Not modified
Gravity on the x-axis of the phone Removed
Gravity on the y-axis of the phone Removed
Gravity on the x-axis of the phone Removed
Rotation of the device around the x-axis Removed
Rotation of the device around the y-axis Removed
Rotation of the device around the z-axis Removed
Speed of the device Not modified
Course of the device Not modified
Altitude Not modified
Latitude Not modified
Longitude Not modified
Heading Removed
Pitch Removed
Yaw Removed
Roll Removed
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Timestamp of the measurement Not modified
Acceleration on the x-axis of the vehicle Removed
Acceleration on the y-axis of the vehicle Removed
Acceleration on the z-axis of the vehicle Removed
Delta speed Added
Delta course Added
Delta timestamp Added
Norm of the acceleration Added
Cosine of the course, in radians Added
Delta course cosine, in radians Added
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Description of all the features
engineered

When using all the features from the table below, we denominated that set of
features by “1-gyroscope-A3”. This is the last iteration of our feature engineering
work. The one on the name is the number of features that depend on the gyroscope
and A3 simply means that this is the third iteration of feature engineering where
we add more feature.

Table F.1: Description of each feature engineered.

Feature name Description

location timestamp Unix timestamp of the row, as given by
the accelerometer.

speed Speed, as given by the Global Satellite
Navigation System.

cumSum accelNorm Cummulative sum of the norm of the
acceleration for the last second.

delta speed 1 Difference between the current speed
and the speed registered one second ago.

cumSum delta speed 1 Cummulative sum of the differences be-
tween the current speed and the speed
registered one second ago.

delta courseCosRads 1 Difference between the current course,
as given by the GSNS and the course
registered one second ago, in radians.
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cumSum delta courseCosRads 1 Cummulative sum of the differences be-
tween the current course, as given by
the GSNS and the course registered one
second ago, in radians.

delta accelNorm 2 Difference between the current norm of
the acceleration and the norm of the ac-
celeration registered two second ago.

cumSum delta accelNorm 2 Cummulative sum of the differences be-
tween the current norm of the acceler-
ation and the norm of the acceleration
registered two seconds ago.

absDelta courseCosRads 1 Absolute difference between the current
course and the course registered one sec-
ond ago, in radians.

cumSum absDelta courseCosRads 1 Cummulative sum of the absolute dif-
ferences between the current course and
the course registered one second ago, in
radians.

speed look -4 Speed registered 4 sample ahead (uses
our look ahead sample strategy).

speed look -2 Speed registered 2 sample ahead (uses
our look ahead sample strategy).

speed look 6 Speed registered 6 sample ago.
speed look 10 Speed registered 10 sample ago.
speed look 14 Speed registered 14 sample ago.
speed look 18 Speed registered 18 sample ago.
speed look 24 Speed registered 24 sample ago.
accelNorm look -4 Norm of the acceleration registered 4

samples ahead (uses our look ahead
sample strategy).

accelNorm look -2 Norm of the acceleration registered 2
samples ahead (uses our look ahead
sample strategy).

accelNorm look 6 Norm of the acceleration registered 6
samples ago.

accelNorm look 10 Norm of the acceleration registered 10
samples ago.

accelNorm look 14 Norm of the acceleration registered 14
samples ago.



Description of all the features engineered 83

accelNorm look 18 Norm of the acceleration registered 18
samples ago.

accelNorm look 24 Norm of the acceleration registered 24
samples ago.

cumSum accelNorm look -4 Cumulative sum of the norm of the ac-
celeration as registered 4 samples ahead
(uses our look ahead sample strategy).

cumSum accelNorm look -2 Cumulative sum of the norm of the ac-
celeration as registered 2 samples ahead
(uses our look ahead sample strategy).

cumSum accelNorm look 6 Cumulative sum of the norm of the ac-
celeration as registered 6 samples ago.

cumSum accelNorm look 10 Cumulative sum of the norm of the ac-
celeration as registered 10 samples ago.

cumSum accelNorm look 14 Cumulative sum of the norm of the ac-
celeration as registered 14 samples ago.

cumSum accelNorm look 18 Cumulative sum of the norm of the ac-
celeration as registered 18 samples ago.

cumSum accelNorm look 24 Cumulative sum of the norm of the ac-
celeration as registered 24 samples ago.

courseCosRads look -4 Course, in radians, as registered 4 sam-
ples ahead (uses our look ahead sample
strategy).

courseCosRads look -2 Course, in radians, as registered 2 sam-
ples ahead (uses our look ahead sample
strategy).

courseCosRads look 6 Course, in radians, as registered 6 sam-
ples ago.

courseCosRads look 10 Course, in radians, as registered 10 sam-
ples ago.

courseCosRads look 14 Course, in radians, as registered 14 sam-
ples ago.

courseCosRads look 18 Course, in radians, as registered 18 sam-
ples ago.

courseCosRads look 24 Course, in radians, as registered 24 sam-
ples ago.
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delta speed 1 look -4 Difference between the current speed
and the speed registered 4 samples
ahead (uses our look ahead sample
strategy).

delta speed 1 look -2 Difference between the current speed
and the speed registered 2 samples
ahead (uses our look ahead sample
strategy).

delta speed 1 look 6 Difference between the current speed
and the speed registered 6 samples ago.

delta speed 1 look 10 Difference between the current speed
and the speed registered 10 samples ago.

delta speed 1 look 14 Difference between the current speed
and the speed registered 14 samples ago.

delta speed 1 look 18 Difference between the current speed
and the speed registered 18 samples ago.

delta speed 1 look 24 Difference between the current speed
and the speed registered 24 samples ago.

cumSum delta speed 1 look -4 Cumulative sum of the differences be-
tween the current speed and the speed
registered 4 samples ahead (uses our
look ahead sample strategy).

cumSum delta speed 1 look -2 Cumulative sum of the differences be-
tween the current speed and the speed
registered 2 samples ahead (uses our
look ahead sample strategy).

cumSum delta speed 1 look 6 Cumulative sum of the differences be-
tween the current speed and the speed
registered 6 samples ago.

cumSum delta speed 1 look 10 Cumulative sum of the differences be-
tween the current speed and the speed
registered 10 samples ago.

cumSum delta speed 1 look 14 Cumulative sum of the differences be-
tween the current speed and the speed
registered 14 samples ago.

cumSum delta speed 1 look 18 Cumulative sum of the differences be-
tween the current speed and the speed
registered 18 samples ago.
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cumSum delta speed 1 look 24 Cumulative sum of the differences be-
tween the current speed and the speed
registered 24 samples ago.

delta courseCosRads 1 look -4 Difference between the course, in ra-
dians, observed 1 second ago and the
course registered 4 samples ahead (uses
our look ahead sample strategy).

delta courseCosRads 1 look -2 Difference between the course, in ra-
dians, observed 1 second ago and the
course registered 2 samples ahead (uses
our look ahead sample strategy).

delta courseCosRads 1 look 6 Difference between the course, in ra-
dians, observed 1 second ago and the
course registered 6 samples ago.

delta courseCosRads 1 look 10 Difference between the course, in ra-
dians, observed 1 second ago and the
course registered 10 samples ago.

delta courseCosRads 1 look 14 Difference between the course, in ra-
dians, observed 1 second ago and the
course registered 14 samples ago.

delta courseCosRads 1 look 18 Difference between the course, in ra-
dians, observed 1 second ago and the
course registered 18 samples ago.

delta courseCosRads 1 look 24 Difference between the course, in ra-
dians, observed 1 second ago and the
course registered 24 samples ago.

cumSum delta courseCosRads 1 look -
4

Cumulative sum of the difference be-
tween the course, in radians, observed
one second ago and the value observed
4 samples ahead (uses our look ahead
sample strategy).

cumSum delta courseCosRads 1 look -
2

Cumulative sum of the difference be-
tween the course, in radians, observed
one second ago and the value observed
2 samples ahead (uses our look ahead
sample strategy).
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cumSum delta courseCosRads 1 look 6 Cumulative sum of the difference be-
tween the course, in radians, observed
one second ago and the value observed
6 samples ago.

cumSum delta courseCosRads 1 look 10 Cumulative sum of the difference be-
tween the course, in radians, observed
one second ago and the value observed
10 samples ago.

cumSum delta courseCosRads 1 look 14 Cumulative sum of the difference be-
tween the course, in radians, observed
one second ago and the value observed
14 samples ago.

cumSum delta courseCosRads 1 look 18 Cumulative sum of the difference be-
tween the course, in radians, observed
one second ago and the value observed
18 samples ago.

cumSum delta courseCosRads 1 look 24 Cumulative sum of the difference be-
tween the course, in radians, observed
one second ago and the value observed
24 samples ago.

delta accelNorm 2 look -4 Difference between the norm of the ac-
celeration observed two seconds ago and
the value observed 4 samples ahead
(uses our look ahead sample strategy).

delta accelNorm 2 look -2 Difference between the norm of the ac-
celeration observed two seconds ago and
the value observed 2 samples ahead
(uses our look ahead sample strategy).

delta accelNorm 2 look 6 Difference between the norm of the ac-
celeration observed two seconds ago and
the value observed 2 samples ago.

delta accelNorm 2 look 10 Difference between the norm of the ac-
celeration observed two seconds ago and
the value observed 10 samples ahead.

delta accelNorm 2 look 14 Difference between the norm of the ac-
celeration observed two seconds ago and
the value observed 14 samples ahead
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delta accelNorm 2 look 18 Difference between the norm of the ac-
celeration observed two seconds ago and
the value observed 18 samples ahead

delta accelNorm 2 look 24 Difference between the norm of the ac-
celeration observed two seconds ago and
the value observed 24 samples ahead

cumSum delta accelNorm 2 look -4 Cumulative sum of differences between
the norm of acceleration observed two
seconds ago and 4 samples ahead (uses
our look ahead sample strategy).

cumSum delta accelNorm 2 look -2 Cumulative sum of differences between
the norm of acceleration observed two
seconds ago and 2 samples ahead (uses
our look ahead sample strategy).

cumSum delta accelNorm 2 look 6 Cumulative sum of differences between
the norm of acceleration observed two
seconds ago and 6 samples ago.

cumSum delta accelNorm 2 look 10 Cumulative sum of differences between
the norm of acceleration observed two
seconds ago and 10 samples ago.

cumSum delta accelNorm 2 look 14 Cumulative sum of differences between
the norm of acceleration observed two
seconds ago and 14 samples ago.

cumSum delta accelNorm 2 look 18 Cumulative sum of differences between
the norm of acceleration observed two
seconds ago and 18 samples ago.

cumSum delta accelNorm 2 look 24 Cumulative sum of differences between
the norm of acceleration observed two
seconds ago and 24 samples ago.

absDelta courseCosRads 1 look -4 Absolute difference between the course
observed one second ago and the value
observed 4 samples ahead (uses our look
ahead sample strategy).

absDelta courseCosRads 1 look -2 Absolute difference between the course
observed one second ago and the value
observed 4 samples ahead (uses our look
ahead sample strategy).
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absDelta courseCosRads 1 look 6 Absolute difference between the course
observed one second ago and the value
observed 6 samples ago.

absDelta courseCosRads 1 look 10 Absolute difference between the course
observed one second ago and the value
observed 10 samples ago.

absDelta courseCosRads 1 look 14 Absolute difference between the course
observed one second ago and the value
observed 14 samples ago.

absDelta courseCosRads 1 look 18 Absolute difference between the course
observed one second ago and the value
observed 18 samples ago.

absDelta courseCosRads 1 look 24 Absolute difference between the course
observed one second ago and the value
observed 24 samples ago.

cumSum absDelta courseCosRads 1 look -
4

Cumulative sum of the absolute dif-
ferences between the course observed
one second ago and the value observed
4 samples ahead (uses our look ahead
sample strategy).

cumSum absDelta courseCosRads 1 look -
2

Cumulative sum of the absolute dif-
ferences between the course observed
one second ago and the value observed
2 samples ahead (uses our look ahead
sample strategy).

cumSum absDelta courseCosRads 1 look 6Cumulative sum of the absolute differ-
ences between the course observed one
second ago and the value observed 6
samples ago.

cumSum absDelta courseCosRads 1 look 10Cumulative sum of the absolute differ-
ences between the course observed one
second ago and the value observed 6
samples ago.

cumSum absDelta courseCosRads 1 look 14Cumulative sum of the absolute differ-
ences between the course observed one
second ago and the value observed 6
samples ago.
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cumSum absDelta courseCosRads 1 look 18Cumulative sum of the absolute differ-
ences between the course observed one
second ago and the value observed 6
samples ago.

cumSum absDelta courseCosRads 1 look 24Cumulative sum of the absolute differ-
ences between the course observed one
second ago and the value observed 6
samples ago.
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Appendix G

List of seeds used

The seeds in this list were randomly generated using atmospheric noise from the
website random.org.

Table G.1: List of seeds used.

Number Seed

1 96336637
2 39505458
3 55459387
4 12771562
5 11459385
6 90037278
7 92467704
8 77648643
9 5269032
10 840601
11 81112458
12 64232047
13 41929190
14 87618330
15 4386231
16 2132609
17 4777222
18 78775539
19 47624036
20 23045465
21 77250062
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22 51536209
23 81081104
24 14651079
25 37770447
26 30854037
27 71537772
28 71591351
29 82543978
30 69428507
31 3562973
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