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Esta dissertação pretendeu estudar e avaliar a pressão sanguínea estimada, de uma 

forma continua e não invasiva, a ser implantada durante cirurgias, dependendo apenas 

de parâmetros extraídos de modalidades não-invasivas (Fotopletismografia e 

Eletrocardiografia). Da Fotopletismografia, parâmetros foram extraídos através dos 

seus componentes pulsáteis e não-pulsáteis, assim como a segunda derivada 

correspondente da componente pulsátil. Nomeadamente, a Amplitude da componente 

pulsátil, a Amplitude da componente não-pulsátil, o ratio entre as amplitudes pulsáteis 

e não-pulsáteis, a Amplitude do nó dicrótico, o Índice de reflexão, o Intervalo de 

batimento cardíaco e o ratio entre as amplitudes da forma de onda da segunda derivada 

da Fotopletismografia (ondas “a” e “b”). Duas implementações diferentes do Tempo de 

chegada do pulso foram também calculadas (de acordo com [65] e [17]) e incluídas 

neste conjunto de parâmetros, o que por sua vez exigiu a consideração da 

Eletrocardiografia nesta experimentação. A relação entre os nove parâmetros extraídos 

destes dois biosinais foi quantificada em termos do desempenho da correlação com 

quatro outros aspetos diferentes da Pressão sanguínea: a Pressão sanguínea sistólica, a 

Pressão sanguínea diastólica, a Pressão do pulso e a Pressão arterial média. Esta análise 

destacou a forte correlação entre o ratio das amplitudes das ondas “a” e “b” e o Tempo 

de chegada do pulso (calculado em [17]), e as Pressões sistólica, diastólica e arterial 

média, para todos os pacientes. Os coeficientes da correlação spearman variaram entre 

71% e 90% para o parâmetro anterior e entre 75% e 91% para o posterior. Por outro 

lado, o Intervalo do batimento cardíaco mostrou apenas correlações negligenciáveis 

com os parâmetros da pressão sanguínea. Os coeficientes da correlação de spearman 

variaram entre 4% e 58%.  

Além disso, os aspetos sob investigação da Pressão sanguínea foram estimados 

à parte da combinação dos nove parâmetros previamente mencionados, através da 

modelação de regressões lineares múltiplas, para cada paciente, e confirmados de 

acordo com a validação cruzada “leave-one-out”. Diferentes modelos foram propostos 

e experienciados de modo a avaliar a contribuição de quatro grandes aspetos para os 

parâmetros da pressão sanguínea estimada. A influência da inclusão do Tempo de 

chegada do pulso (e consequente utilização de sensores extra de Eletrocardiograma) e 

da Componente não-pulsátil da Fotopletismografia nos modelos definidos foi tida em 
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consideração. Os biosinais foram também segmentados e calculou-se, para cada 

segmento, o coeficiente da correlação de spearman entre os parâmetros da pressão 

sanguínea estimada e os parâmetros extraídos da Eletrocardiografia e da 

Fotopletismografia. Os segmentos associados a correlações (muito) fortes (coeficiente 

da correlação de spearman acima dos 70%) foram reunidos para definir o grupo de 

treino da validação cruzada. Isto permitiu testar a influência, nos modelos construídos, 

da inclusão de segmentos de biosinais fortemente correlacionados ao invés de biosinais 

na sua totalidade. Por fim, a influência do processo de calibração implementado, tanto 

no início da cirurgia (através da computação de um método recursivo dos mínimos 

quadrados), como durante a mesma (incluindo uma derivação do Tempo de chegada de 

pulso) foi estudada. Estes modelos foram validados à luz dos protocolos da British 

Hypertension Society e da Association for the Advancement of Medical 

Instrumentation, que são considerados os sistemas de medição automatizados standard 

na avaliação da pressão sanguínea. Estes protocolos dependem da distribuição das 

diferenças entre o valor real e o estimado da pressão sanguínea. O sistema de medição 

aceite no protocolo da British Hypertension Society requer que pelo menos 50%, 75% 

e 90% das diferenças mencionadas estejam entre 5, 10 e 15 mmHg, respetivamente, 

enquanto que a Association for the Advancement of Medical Instrumentation exige que 

o desvio-padrão e média das diferenças sejam iguais ou inferiores a 8 mmHg e 5 mmHg, 

respetivamente. 

O modelo com melhor desempenho e de acordo com os protocolos implicados 

não exigiu nem sensores de eletrocardiograma extras nem as calibrações 

implementadas. Isto corrobora o papel fundamental dos parâmetros da 

Fotopletismografia incluídos. A estimativa da Pressão do pulso foi a única a satisfazer 

as exigências de ambos os protocolos, enquanto que as estimativas da Pressão 

sanguínea diastólica e da Pressão arterial média apenas preencheram as exigidas pela 

British Hypertension Society. Por fim, a estimativa da Pressão sanguínea sistólica não 

preencheu nenhum dos requisitos dos protocolos.  

De um modo geral, a forte relação entre Pressão sanguínea e Fotopletismografia 

foi corroborada pelos dados obtidos. Maiores populações heterógenas teriam de ser 

testadas de modo a poderem ser apresentadas conclusões fiáveis em relação à estimativa 

contínua e não-invasiva da Pressão sanguínea, baseadas unicamente na 

Fotopletismografia.  
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This dissertation aimed to study and evaluate the estimation of Blood pressure, 

on a continuous and non-invasive basis, to be deployed during surgeries, relying only 

on extracted features from non-invasive modalities (Photoplethysmography and 

Electrocardiography). From the Photoplethysmography, features were extracted by 

means of its pulsatile and non-pulsatile components, as well as the corresponding 

second derivative of the pulsatile component. Namely, the Pulsatile component 

amplitude, Non-pulsatile component amplitude, Ratio of pulsatile and non-pulsatile 

amplitudes, Dicrotic notch amplitude, Reflection index, Heart beat interval and the 

Ratio between amplitudes of the second derivative waveform of Photoplethysmography 

(“b” and “a” waves). Two different implementations of Pulse arrival time were also 

computed (according to [65] and [17]) and included in this feature pool which in its 

turn required the consideration of Electrocardiography in this experimentation. The 

nine extracted features from these two biosignals had their relationship quantified in 

terms of the correlation performance with four different Blood pressure features: 

Systolic blood pressure, Diastolic blood pressure, Pulse pressure and Mean arterial 

pressure. This analysis highlighted the strong correlations of the Ratio of “b” and “a” 

waves amplitudes and Pulse arrival time (computed from [17]) with Systolic, Diastolic 

and Mean arterial pressures for all patients. The spearman correlation coefficients 

varied between 71% and 90% for the former and between 75% and 91% for the latter 

feature. In contrast, Heart beat interval only showed negligible correlations with the 

blood pressure features. Spearman correlation coefficients varied between 4% and 58%. 

Furthermore, the Blood Pressure features in investigation were separately 

estimated from the combination of the nine features previously mentioned through 

multiple linear regression modelling, for each patient, and confirmed according to a 

leave-one-out cross validation. Different models were proposed and experimented in 

order to evaluate the contribution of four major aspects on the estimated Blood pressure 

features. The influence of the inclusion of Pulse arrival time (and consequent usage of 

extra electrocardiogram sensors) and Photoplethysmography’s non-pulsatile 

component in the arranged models was taken into account. The biosignals were also 

segmented and had the spearman correlation coefficient calculated, for each segment, 
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between the estimated Blood pressure features and the pooled features from 

Electrocardiography and Photoplethysmography. The segments associated to (very) 

strong correlations (spearman correlation coefficients above 70%) were assembled to 

define the training group in the cross validation. This enabled to test the influence, in 

the built models, of the inclusion of strongly correlated segments of the biosignals, 

instead of the entire biosignals. At last, the influence of the implemented calibration 

procedure both in the beginning of the surgery (through the computation of a recursive 

least squares method) and during the surgery (including a derivation of Pulse arrival 

time) was studied. These models were validated within British Hypertension Society 

and Association for the Advancement of Medical Instrumentation protocols, which are 

considered to be the standards on the evaluation of blood pressure automated measuring 

systems. These protocols depend on the distribution of the differences between the real 

and the estimated Blood pressure values. The measuring system to be accepted within 

the British Hypertension Society protocol requires that at least 50%, 75% and 90% of 

the mentioned differences to be within 5, 10 and 15 mmHg, respectively, while the 

Association for the Advancement of Medical Instrumentation demands the standard 

deviation and the mean of the differences to be lower than or equal to 8 mmHg and 5 

mmHg, respectively.  

The best performing model according to the implied standard protocols didn’t 

require neither extra electrocardiogram sensors nor the implemented calibrations. This 

corroborates the key role of the included range of Photoplethysmography features. 

Pulse pressure estimation was the only to fulfill the two protocols’ requirements while 

Diastolic blood pressure and Mean arterial pressure estimations only met British 

Hypertension Society recommendations. At last, Systolic blood pressure estimation 

didn’t meet neither British Hypertension Society nor Association for the Advancement 

of Medical Instrumentation protocols.  

Overall, the strong relationship between blood pressure and 

Photoplethysmography was corroborated for this data. Larger heterogeneous 

population would have to be tested in order to be presented reliable conclusions on the 

continuous and non-invasive Blood pressure estimation solely from 

Photoplethysmography. 
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“In many respects anaesthesia is more an art than a 
science; most anaesthesiologists believe it is easy to 
recognize but difficult to define.” 

 

Leslie Jameson 
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Surgery was defined as any procedure occurring in the operating room involving the 

incision, excision, manipulation or suturing of tissue that usually requires regional or 

general anaesthesia or profound sedation to control pain. Adverse painful events were 

shown to affect 3% to 16% of all hospitalized patients, when more than half were 

known to be preventable [1]. 

“Assuming a 3% perioperative adverse event rate and a 0.5% mortality rate 

globally, almost seven million surgical patients suffer significant complications 

each year, one million of whom die during or immediately after surgery“ [1] 

Anaesthesia experts reviewed other industries known as high-reliability 

organizations (aviation, nuclear power, for instance) and to meet the same demanding 

level, acknowledged the persistence of human error in the anaesthesia depth assessment 

[1]. This propelled the improvement of anaesthesia depth understanding (both analgesic 

and hypnotic components) in terms of physiological dynamics. 

Through the autonomic nervous system (ANS) a response is delivered when some 

noxious stimulus is inflicted. This stimulus is detected by peripheral sensory neurons, 

known as nociceptors. Then, it is encoded and processed, in a process known as 

nociception [2]. 

The induction of general anaesthesia (GA) prevents nociceptive events to trigger 

an ANS response. The GA requires a continuous control over the analgesics (most 

commonly opioids) and hypnotic drugs administration, throughout the surgery. These 

substances are responsible for the decrease of the ANS reactivity to the nociceptive 

stress (through the blockage of the sensory neurons activity) and for the induction of a 

sleeping state, respectively. Altogether, this reaction is known as antinociception. [1] 

expressed the complexity and the consequent implications that an improper 

monitorization of anaesthesia might have, which can even lead to a paradoxical 

hyperalgesia situation.  

Nevertheless, none of the administrated drugs has full potential to cover all the 

needs by itself and protect the patients from the undesirable cardiovascular 
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(bradycardia, hypotension) or respiratory suppression (and consecutively, hypoxia) 

events [1]. This means that a wise combination of anaesthetics is required, which 

depends not only on the specific surgical characteristics, but also on the properties of 

each drug wherein it needs to be considered medication reactions and interactions.  

From the lack of physical response to stimulation, it doesn’t follow that the 

homeostasis is in control. This obliges the anaesthetist to follow the evolution of basic 

hemodynamic parameters controlled by ANS such as Heart Rate (HR), Systolic Blood 

Pressure (SBP) and Pulse Oximetry [3]. For the time being, in order to complement the 

traditional monitoring, it might be integrated some available regulatory index [4]. So 

far, no index has been yet standardized given the inexistence of a ‘‘gold standard’’ 

objective score that suits as an intra-operative nociception reference for further reliable 

validation. 

On the one hand, the permanent perioperative reactivity (including reflex responses 

to noxious stimulation, but also somatic, autonomic and endocrine reflexes) or post-

operative side-effects (related with recovery) exhibits the emergent need to create a 

holistic feedback system which is able to quantify all these events, in terms of their 

implications towards the patient’s homeostasis.  

On the other hand, it is required a standard real measurement on the nociceptive 

stress during anaesthesia or, in other words, a certified reference to validate the final 

predictions on the patient’s homeostasis, here denominated as surgical stress scale 

(SSS). 

So, in order to further explore this subject, it was initiated a dissertation, involving 

both Coimbra’s university and Patient Care & Measurements Philips Research 

department, in Eindhoven.  

 

Currently, the most basic approach used in the regulation of the patients’ 

homeostasis is based on Pulse rate and Blood pressure measurements monitoring. 

However, the refinement of this reference has been attempted. The very first SSS didn’t 

fully reflect the nociception scope. For instance, [5] elaborated an SSS which was based 
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on comparison to clinical scores for adequacy of the hypnotic component of 

anaesthesia, such as Observer assessment of awareness and sedation score (OAA/S 

score) [6,7]. Unfortunately, these scores no longer apply to anaesthesias given the 

changes that the surgeries agendas suffered, where the new introduced drugs led to the 

patient’s response loss of verbal and physical stimuli [8]. 

More recently, this SSS concept was further developed by combining nociceptive 

stimulus to the analgesic drug effects in an antinociception-nociception balance (ANB). 

For instance, both [8] and [9], created an SSS which are based on linearly combined 

stimulus intensity (nociception) and analgesic concentration (anti-nociception) scales. 

On the one hand, the stimulus level was based on experienced anaesthesiologists 

expertise and on the other hand the analgesic level depended on the effect-site 

concentration of opioids. 

Despite none of the existing SSS is yet fully explanatory, various indexes have 

been implemented and tested in particular conditions that depict as close as possible the 

surgical events. These indexes aim to regulate homeostasis based on the behaviour of 

certain vital signs or biosignals, such as Photoplethismography (PPG) and 

Electrocardiography (ECG), and their corresponding features while fulfilling surgical’s 

requirements (e.g. ease to acquire, constrain of the medical procedure). Although there 

are some promising results, they are always specific to the physiological characteristics 

of the tested population and tend to fail when applied to a more heterogeneous 

population. Another aspect that’s holding back further progress is the currently attained 

idea of nociception. It needs to move from a merely binary process to a phenomenon 

with intermediate levels [5], where various clinically relevant end-points (e.g. loss of 

consciousness, recovery of consciousness, postoperative recall) are likely to occur at 

different thresholds [10]. These drawbacks are very difficult to address in practice 

though, given the medical expertise it requires. 

However, not all biosignals have been fully inspected so far. The absence of Blood 

Pressure (BP) from the existing solutions is notorious. Even though it reflects the 

cardiovascular status and consequent patient’s awareness [11], a reliable continuous 

and non-invasive measurement of BP hasn’t been yet provided. For this end, and 

inspired by a relevant waveform similarity [12], PPG features were found to have some 

degree of correlation with BP features which could contribute for BP estimation. For 
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instance, PPG pulsatile component (AC) and BP share a strong relationship with the 

same cardiovascular physiological manifestations [13]. Also, the second derivative of 

the PPG waveforms (APG) are known to be an indicator of the acceleration of the blood 

in the finger. It reflects some characteristics such as arterial stiffness to which BP 

measurements are dependent on [14].  

Within Philips research group of 'Patient Care and Measurements' department, Dr. 

Jens Muehlsteff reported some events where the variations in BP weren’t corresponded 

with the physiologically expected response from PPG. For instance, figure 1 depicts 

one situation where an increasing Mean arterial pressure (MAP) is accompanied by a 

simultaneous unexpected increase in the AC amplitude (ACA) while the expected 

relationship would be the opposite [15]. The implications of this counter intuitive 

scenario are that these features’ measurements, being both markers of the vascular 

system homeostasis, are complementary. So, they are not able to separately provide the 

sufficient information to express the vascular system activity. In other words, the fact 

that both these signals describe the same physiological structures but sometimes present 

characteristics that behave differently means that there are some physiological factors 

which influence one of the signals but not the other. Therefore, the introduction of BP 

in a surgical scenario becomes decisive.  

 

 

 

 

 

 

Figure 1: Reported increase in ACA (upper panel) accompanied by an unexpected increase in MAP. HR 

and MAP were used as references for the depicted observations. Adapted from Dr.Jens Muehlsteff 

previous reports. 
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This corroborates the hypothesis that BP continuous readings could become useful 

to the issued nociception problem. This premise has already been taken into account in 

some previous studies. [8] showed that the introduction of non-continuous BP helped 

to improve the proposed Surgical stress index (SPI) correlation with ANB through the 

reduction of the residual error. Also, the possible contribution of continuous and non-

invasive BP measurements, acquired from a single finger probe, was considered in the 

multiparameter nociception index (NoL) [9]. However, its validation hasn’t been tested 

yet given that the current technology does not allow reliable BP measurements from a 

finger probe.  

 

So, motivated by these facts, an inspection towards the validation of the correlation 

between BP and PPG features was proposed in order to include an easily acquired BP 

continuous estimation, using PPG properties, in the evaluation of ANB. The 

assumption that the reported inconsistencies by Dr. Jens Muehlsteff might have had 

disturbed the estimations were also taken into account. In a second stage, the ECG was 

also considered in order to inspect the usefulness of Pulse arrival time (PAT) in this 

estimation. Over the past recent years, this feature has been highly addressed with 

success regarding the estimation of SBP. Therefore, it is a good point of comparison 

with any other feature.  

The fact that PPG and ECG are already being collected during surgeries gives room 

to the exploitation of their potential, easing up also the final index deployment in the 

real situation and its acceptance in the medical community. The integration of these 

biosignals in a reliable continuous and non-invasive BP estimation solution would be a 

great asset in the improvement of some already existing index or in the creation of a 

new one. Nevertheless, its continuous and non-invasive measurements would already 

be clinically rewarding instead of being either dependent to the typically available 5 

min intervals of BP measurements which hardly provide insights in the short-term 

responses (to noxious stimuli) or any existing invasive solution which is harmful for 

the patient. 
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The main disruptive contribution in this dissertation is the presence of the non-

pulsatile (DC) measurements which is thought to have a vast potential to be explored 

in terms of its correlation with BP features, namely the scarcely reviewed Pulsatile and 

Non-pulsatile components amplitudes’ ratio (
ACA

DCA
). PAT is also highlighted given the 

large number of associated reviews in this subject which use it to reach a BP 

measurement. 

Overall, BP had SBP, Diastolic blood pressure (DBP), Pulse pressure (PP) and 

MAP inferred based on a multiple linear regression (MLR) model, combining PAT, 

ACA, DC amplitude (DCA), 
ACA

DCA
, Dicrotic notch amplitude (DN), “b” and “a” waves 

amplitudes’ ratio (
B

A
), Reflection index (RI) and Heart beat interval (HBI).  

 

In terms of structure, at first all the implied biosignals and indexes in the ANB 

solving as well as the strongly correlated features between PPG and BP will be 

reviewed in the state of the art.  

This will be followed by the data & methods chapter where patients’ information 

is given, and SPI and ANI are reviewed, based on the implementation which was carried 

out in the initial phase of this dissertation. It is also explained which features from each 

biosignal were used and all the processing they went through. The final consequent 

analysis of the relationship between both PPG and ECG features with BP features is 

followed by the final BP assessment.  

After this, all the results are presented and interpreted in the results and discussion 

chapter. In the conclusion, it is suggested some of the future work that could to be done.  

.  
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Currently, there is an effective struggle in what concerns to the reliable and 

continuous monitoring of perioperative hemodynamic instability by anaesthetists. In its 

turn, this instability is associated with adverse cardiovascular events which have been 

statistically shown to contribute to postoperative morbidity. The management of BP 

and HR has been standardized as the key factor for maintenance of surgical setting. 

Nevertheless, it lacks a precise control of the depth of anaesthesia, considering the 

interindividual variability which is observed in response to different stimuli and 

administered drugs [15,10]. In a broader scale, it is required a system which measures 

the effective anaesthetics dosage according to the nociceptive stress.  

First, in order to proceed with the analysis, it is necessary to clarify the difference 

between nociception and pain, which can be done by analysing the predominantly 

involved neuroanatomical structures from Figure 2. Nociception refers to the 

stimulation of any of the central nervous system (CNS) structures (through which 

peripheral stimuli is transmitted) that precede cortex, whereas pain can only be 

experienced when nociception is translated in the cortex. 

 

Figure 2: Key anatomic structures of the CNS in the nociception and pain perception. Source: [7] 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=FIGURE 2-1. Anatomical distribution of nociception and pain.&p=BOOKS&id=32659_ch2f2-1.jpg
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The management of nociception avoids the occurrence of any main changes in the 

pain pathways, which can lead to cronic states, so that patients under anaesthesia can 

stay out of danger [5]. 

Nociception is evoked when the primary afferent nociceptors detect potentially 

harmful stimuli such as pressure or temperature extreme variations. In its turn, 

nociceptors can be characterized by their capacity to tolerate that same variations. 

Physiologically, this characterization depends on two references: pain threshold and 

pain tolerance. The former outlines when the body first perceives stimulae as harmful 

and it is surpassed by the latter which establishes the maximum level of pain that a 

person is able to tolerate. Eventhough the relationship between these two references is 

easy to understand, there are various types of specialized receptors which are activated 

through different sensory modalities. Also, the way the sensory information is sent to 

the brain depends on the frequency of the action potentials and the number of activated 

receptors. Ultimately, the intensity discrimination of the arising stimulus results from a 

non-linear perceiving process by the brain [17]. 

Furthermore, the resulting stress response is characterized by an activation of the 

ANS. ANS is responsible for the control of breathing, cardiac activity, vasomotor 

activity and certain reflexes such as coughing, sneezing, swallowing and vomiting. 

Therefore, the manifestation of nociceptive stress can be noticed through variations in 

physical signs, heart beats, vasomotor tone, stroke volume, blood pressure, respiration 

rate, body temperature [18]. In order to avoid the patient from awakening in a surgical 

scenario, it is required to inhibit the stress response. In other words, the aforementioned 

pain tolerance can’t be exceeded. 

For that end, GA is induced through hypnotics and analgesic agents which induce 

an altered state of consciousness and abolish the nociceptive responses, respectively, 

while operating in the cortex and thalamic areas of the brain. They must be carefully 

used according to both patients’ needs and the other anaesthetic agents which they are 

being combined with. 

At this point, the knowledge of the minimal effective doses of the anaesthetics to 

be administrated throughout the operation (accordingly to the patient’s homeostasis) is 

still missing. An underdosing can lead on to intraoperative awareness (whose causing 

https://en.wikipedia.org/wiki/Coughing
https://en.wikipedia.org/wiki/Sneezing
https://en.wikipedia.org/wiki/Swallowing
https://en.wikipedia.org/wiki/Vomiting
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events might even be recalled afterwards) whereas an overdosage might lead to delayed 

recovery. The exact mechanism by which these drugs lead to an anesthetic state is not 

yet fully understood. Some of the administered drugs during the perioperative period 

have a cardiovascular modulating potential and may act through different mechanisms 

(activation or depression) which contribute to the mystification of the entire process 

[7]. Therefore, the measurement of the depth of anaesthesia is still a complex concern 

for the anaesthetists. 

The first generally accepted classification system to detect states of inadequate 

analgesia was Guedel Classification. It depended on the eyelash reflex, respiration, 

eyeball movements, pupillary size, and muscular movements among others physical 

signs. Similarly, Visual analog scales provide a 0-100 pain scale which is generally 

completed by patients themselves or sometimes used to elicit opinions from health 

professionals, at every specific interval. With the introduction of muscular relaxants 

and the combination of multiple drugs, these systems became obsolete [4], given to the 

physical signs absence which arose from the patient’s non-responsiveness.  

To augment their expertise regarding the analgesia suitability, clinicians started to 

continuously monitor mainly breathing and circulation. To do so, they inspect 

fluctuations on HR and BP measurements which are displayed on any current 

monitoring device [1,10]. However, the subjectivity that relies upon any clinical 

decision, while interpreting the latter specified information, is always associated to 

some percentage human error. A complementary quantitative solution towards the 

nociceptive stress awareness is demanded. 

 

The ANS activity concerning nociception and GA drugs effects may be 

inspected through the Electroencephalography (EEG). It supplies the clinician with a 

direct measurement of the brain's electrical functioning. In its turn, in order to read the 

useful information provided by EEG, features have been extracted in the frequency or 

time domain. However, in this specific situation, EEG complex analysis, poor signal 

quality and patient discomfort undermine its interpretation in an operating room.  
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Meanwhile, the ANS manifestation can be depicted through other available 

biosignals which bring together many more favourable characteristics. 

Electromyography (EMG) enables to regulate nociceptive stress from the variations in 

muscular electrical activity to predict patients’ movements when the induced 

anaesthesia is inadequate. Then, PPG provides the monitoring of the peripheral vascular 

system where the standard waveform may be regarded in two phases. The first phase 

concerns the systole while the second phase concerns the diastole and waves’ 

reflections from the periphery. Furthermore, ECG is intimately associated with the heart 

functioning and enables the extraction of HR (standard reference for the clinician). 

When GA is well stabilized, the RR series (extracted from ECG) is only modulated by 

Respiratory Sinus Arrhythmia which allows the appearance of a ventilatory pattern at 

regular intervals. When stimulated, this pattern changes. Also, Skin conductance (SC) 

has been addressed given that it is associated with the skin sensors’ activity. Skin 

resistance is known to vary with the state of sweat glands in the skin. All these options 

are described in table 1 in terms of their useful features and consecutive perceivable 

physiological activity and characteristics which are known to be manifestations of 

nociceptive stress. 

All the considered biosignals in table 1 relate to the ANS misbalance through 

the respective physiological characteristics they report about. Also, the listed features 

are more useful when combined, to form indexes, which allow a better insight on the 

ANS activity. However, not all biosignals have been concerned in the existent indexes’ 

implementations due to some limitations. For instance, BP is known to be desirable 

either in surgical procedures or intensive care units, however it still lacks a reliable non-

invasive continuous measurement of BP [19,20,21]. Also, the implementation of a 

worldwide standardized ANB monitoring solution needs to consider some human and 

equipment restraints.  

 

Some of the most evaluated indexes was set up together and characterized: Wavelet 

transform cardiorespiratory coherence (WTCRC), Bispectral index (BIS), CARDEAN, 

SPI, ANI, SC algesimeter (SCA) and NoL. 
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Table 1: List of Biosignals described accordingly to their mainly reported features and the corresponding physiological characteristics and activity they have been associated 

to 

Biosignal Physiological characteristics/activity Features 
PPG Stroke volume, systemic vascular resistance and compliance [22,23] ACA 

Average blood volume [23] DCA 

Systemic vascular resistance and compliance, wave reflection [14] RI 

Arterial stiffness and systemic vascular resistance [14] Arterial stiffness index (SI) 

Vasomotor tone [22] DN 

Systemic vascular resistance [14] Pulse width 

Heart beating activity [14] HBI 

Arterial stiffness [14,24] B

A
 

Pulmonary activity [25] Respiration rate 

ECG Heart beating activity, cardiac output [7,18] HR 

Respiratory sinus arrhythmia [10] HRV 

EMG Number of recruited motor unities [26] Root mean square 

Changes on the motor unities which are being recruited [26] Power spectral density 

EEG Energy shift from higher to lower frequencies in EEG activity [7] (Alpha waves ratio) - (Beta waves ratio) 

Thalamocortical pathway activity [7] Bispectral analysis 

Percentage of isoelectric EEG activity [7] Burst suppression ratio 

BP Cardiac output, systemic vascular compliance and resistance [27] SBP 

Vascular tone [27] DBP 

Ventricular ejection volume and rate, systemic vascular compliance 

[27] 

PP 

Cardiac output, systemic vascular resistance [27] MAP 

SC Electrical conductance variation (promoted by sweat production) 

[10,28] 

Number of fluctuations of SC (NSCF) (e.g. 

peaks/sec) 

Basal level of electrical conductance [29] SC level 

Respiration Respiratory distress, cardiac arrest [30] Respiratory rate 
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Firstly, the computation complexity of each index influences its real-time 

monitoring performance, by delaying the estimation process. For instance, EEG holds 

complex waveforms which require the exploration of combined computationally heavy 

features in order to assess the different kinds of drug interaction [7]. Although this 

information hasn’t been provided for all the considered indexes, it is assumed that the 

real-time feature is assured at least for those indexes which are already commercially 

available. 

Then, it is also concerned the drawbacks of the implementation settings of the 

monitoring system and whether the used sensors are already clinically available in a 

standard anaesthesia monitoring. For instance, SPI only requires a PPG finger probe 

whose design is a perfect fit given the size, sensitivity, reliability and reproducibility 

requirements [14], whereas WTCRC is dependent on both ECG electrodes and 

capnometer which are uncomfortable for the patient [31]. Although both of these 

biosignals are already measured in a typical surgery, other indexes require specific 

sensors which are not available in every operating room (e.g. CARDEAN). This has 

implications in a major scale when the implementation and standardization of a new 

surgical assessment tool is attempted, given the economic feasibility the solution 

demands. Therefore, if the indexes involve biosignals which are already clinically 

available in a standard anaesthesia monitoring, it is preferable. Physiological artifact, 

reported relationship breaches with ANB and anaesthetics are also comprehended for 

the current biosignals, in table 2.  

From a clinical point of view, an ideal index immediately detects any ANB 

misbalance, it is easily installed and interpreted, assisting the anaesthesiologists with a 

ranged scale, and its implementation makes no harm to the patients (e.g. non-invasively 

measured). Some technologies are already commercially available such as SPI, SCA, 

ANI, BIS, others are still under development such as CARDEAN, WTCRC, NoL [32]. 

The combination of multiple nociception related parameters, which is thought to have 

more ability to read the synergistic physiological functioning [33], demonstrated 

stronger relationships with ANB when compared with any single-parameter based 

approach [8,9]. Even though all these tools have proven ability to evaluate the ANB, 

none has been accepted as the gold standard yet. The permanence of some limitations 
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such as the limited number of highly homogeneous patients in validation and the limited 

drug combination depreciates these indexes against the standardized control of HR and 

BP (and the human errors it brings) [33,7]. 

Currently, the monitoring tools are mainly used on those situations where the 

limitation of sedation is beneficial to the patient. According to the clinical context, 

whether it is important to limit the opioid administration, the postoperative pain, the 

patient movements or hemodynamic reactivity, the anaesthesiologist chooses one of the 

available indexes to complement and support his decisions [32]. Otherwise, there is no 

need to invest in extra equipment or training (e.g. nurses don’t handle this equipment 

on a general basis) since no significant improvement for the anaesthesia adequacy is 

visible [7,34]. 

 

From the previously reviewed indexes, all of them involve non-invasive 

techniques. This helps to expose the patients to a minor infection risk and other adverse 

effects such as distal ischemia, bleeding, which are associated to increased morbidity 

and costs [35,36]. From table 1, the only biosignal which doesn’t meet these 

measurement requirements is BP. Reliable continuous BP measurements are only 

available in an invasive way. For instance, arterial tonometry measures BP on a 

continuous and non-invasive basis, however it is dependent on the optimal placement 

of the measuring device on the artery. Therefore, in order to enhance the current ANB 

assessment, it was proposed to include a BP estimation in the nociception assessment 

problem.  

Numerous attempts have been made to estimate BP from derived features of other 

biosignals in different experimental settings, though with some associated drawbacks.  
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Table 2: List of the most reported and tested nociception evaluating indexes in terms of their features and corresponding computational complexity, their main limitations 

(implementation settings, physiological artifacts, reported relationship breaches with ANB and anaesthetics) and the type of sensors and whether they are available in a typical 

operating room  

 

INDEX 

Features 

(computational 

complexity) 

Limitations Sensors 

(available in typical 

surgery) 
SPI HBI, DCA 

 

 

• Physiological artifact: vasoconstriction, hypovolemia or hypothermia and a history of 

chronic elevated blood pressure [37] 

• Unable to differentiate stimulus intensities [5] 

• Inter-individual variability [5] 

• Requires initial calibration through specific procedure [8] 

PPG finger clip sensor 

(YES) 

ANI HRV high frequencies 

(Prolonged calculation time 

period [3]) 

• Wearing the ECG electrodes for quite longer duration lead to patient discomfort [31] 

• Physiological artifact: arrhythmia, apnea or low respiratory frequency [37] 

• Premature ventricular and atrial contraction are misunderstood with noxious stimuli  

• Validated threshold on hemodynamic reactivity [38] 

3 electrodes (for ECG lead) 

(YES) 

BIS Burst suppression Ratio 

(time parameter), Relative 

beta 

Ratio (frequency parameter) 

and SynchFastSlow (higher 

order statistical parameters) 

(computationally heavy 

parameters) 

• Poor contact with electrode [7] 

• Dependent on manufacturer’s recommendations; 

• Corrupted by routine intraoperative events (activation of electromagnetic devices, 

administration of depolarizing muscle relaxants) [10] 

• Physiological artifact: hypoxia, hypotension, cerebral ischaemia or hypoperfusion, 

muscular activity [7,10] 

• Insensitive to commonly used anesthetics (ketamine) [37] 

• Insensitive to analgesic component [17] 

• Dysfunctional behaviour when the patient’s EEG activity is approximately null 

• Lacks an underlying physiological model on the brain functioning and awareness 

generation [39] 

• No absolute threshold has been found that could be predictive of amnesia or recall 

Head covered by mob cap of 

electrodes 

(ALMOST NEVER) 

SCA NSCF 

(Computationally light 

parameters [5]) 

 

• Stretching of wires [5] 

• Electrode dislocation [5] 

• Environmental temperature [5] 

• Physiological artifact: coughing, deep respiratory movements, sneezes, excess sweating 

[5,28,40]; 

• Insensitive to commonly used anaesthetics (atropine) [10] 

• Small correlation with opioids [5] 

3 self-adhesive electrodes in palmar or 

plantar skin  

(ALMOST NEVER) 
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Table 2 (continuation): List of the most reported and tested nociception evaluating indexes in terms of their features and corresponding computational complexity, their main 

limitations (implementation settings, physiological artifacts, reported relationship breaches with ANB and anaesthetics) and the type of sensors and whether they are available 

in a typical operating room. 

 

 

INDEX 

Features 

(computational 

complexity) 

Limitations Sensors 

(available in typical 

surgery) 
CARDEAN SBP, HRV 

 
• Electrodes are uncomfortable (if worn for a long time) [31] 

• Finapres BP sensor requires intervaled calibration [33] 

• movements blunted with sympathetic bursts [41] 

• designed for movement prediction on non-paralyzed patients 

• Reports only the hypertension-tachycardia balance [41] 

Non-invasive continuous BP sensor 

(Finapres medical systems) and 3 

electrodes (for ECG lead) 

(ALMOST NEVER) 

NoL HR, HRV, PPGA, SC level, 

NSCF and SC derivatives 

 

• The effects of hypnotics on NoL need to be investigated [9] 

 

 

 

PPG finger clip sensor and SC 

electrodes regrouped in the finger 

sensor PMD-100TM (Medasense 

Biometrics) 

(ALMOST NEVER) 

WTCRC HR and respiration CO2 

waveform 

(Computationally 

inefficient with real time 

delay [32]) 

• Electrodes are uncomfortable (if worn for a long time) [31] 

• Capnometer is uncomfortable and interferes with normal breathing  

• Affected by arrhythmia or apnea [37] 

• Imprecise [32] 

3 electrodes (for ECG lead) and 

capnometer 

(YES) 
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The relationship between vessels’ volume and pressure expresses itself through 

PPG and BP approximated waveforms [12]. This similarity brought into attention a 

possible solution for the noninvasive beat-to-beat measurement of BP which hasn’t 

been reached yet because of absent standardized equipment and understanding of the 

underlying physiology of the PPG [15]. [21] devised a wearable device based on two 

PPG sensors which estimates BP from pulse wave velocity (PWV) in peripheral 

arteries. This method is based upon the high correlation between PWV and BP. 

However, the concerned relationship requires initial calibration. [42] proposed an 

estimation of BP from raw PPG signals, employing a deep learning technique. 

However, the model was computationally intensive and tested in patients with a stable 

BP recording (absence of abrupt BP variations which are the most difficult to monitor).  

The derivatives of PPG were also exploited against BP derived features. The APG 

waveform offers more information than the 1st derivative and so it has been more 

oftenly used [14]. [43] concluded that the measurement of SBP is improved when the 

data is divided in several classes, according to their APG derived “b” and “d” waves, 

and evaluated separately. Subsequently, these features were considered to be related 

with cardiovascular peculiarities. Furthermore, APG derived features are also used as 

ratios. [24] studied the influence that age and SBP exert on 
B

A
, which in its turn 

correlated negatively with both. Despite both studies focused on people with specific 

characteristics (60-year-old subjects and above [43] and hypertensive patients [24]), the 

results for this kind of methodology were promising.  

Other works have presented alternative solutions towards the BP assessment 

which require the usage of multiple biosignals. For instance, the variations in BP have 

been shown to be correlated with the PAT.  

[19] estimated SBP from PAT during a cardiovascular surgery but it required 

an intermittent calibration obtained with the auscultatory method. Furthermore, [44] 

reported a method for estimation of DBP and SBP through PAT supported by two 

confounding factors: HR and arterial stiffness. This method was evaluated in surgical 

and unconstrained scenarios where the confounding factors were proved to improve the 

PAT based BP assessment. However, a complex initial calibration was required.  
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[12] estimated SBP from ECG and PPG based features during a 40 minutes 

exercise where a relevant role was attributed to PAT which improved the final results. 

However, the reference was not invasively measured (which is not as accurate), the 

controlled conditions of the tests suppressed typical motion artefacts and a time 

consuming initial calibration was also required. [45] depicted the monitoring of BP 

from PAT in unconstrained scenarios. The significant effects that posture change has 

on PAT measurements didn’t allow a reliable BP inference where the importance to 

access context is emphasized (e.g. the subject’s posture), given the unsupervised 

monitoring. [46] characterized the syncope reflex mechanisms and BP changes from 

the analysis of non-invasive modalities (ECG, PPG and impedance cardiogram). 

Bradycardia and hypotension were observed to result in syncope. The significant 

increases of PAT, Pulse transit time and Stiffness index, preceding these syncope 

occurrences as well, suggested the suitability of these features as surrogates for SBP. 

 

According to the literature, two groups of features were proposed: the ECG and 

PPG group of features (PEF) and the BP group of features (BPF).  

On the one hand, features from PPG biosignals were pooled. The waveform and 

reflected physiological characteristics that PPG has in common with BP makes it the 

most adequate option for this task. The less reviewed ratio 
ACA

DCA
 was added to the set, in 

order to explore its potential. The large quantity of projects on the BP estimation from 

PAT, based on their strong relationship, led to the introduction of PAT in the range of 

features as well. This required the involvement of ECG. In general, none of these 

features requires complex calculations. On the other hand, it was extracted MAP, PP, 

SBP and DBP from the BP. 

The 3 implied biosignals were carefully chosen not only because they reflect ANS 

activity but most importantly because ECG and PPG continuous non-invasive 

measurements are available in every operating room. The latter eases up the 

implementation of the BP estimation method in the surgical scenario. The implicit 

features are summarized in the next chapter.  
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The assessment consisted of performing MLR through computation of the linear 

least-squares estimates of the regression coefficients. It is a straightforward and simple 

parameter estimator. More advanced models could be used (such as random forest, 

linear ridge or support vector regression) which deal better with the non-linear 

complexity of the ANS but the results were expected to be very similar, though. The 

concerned small sample size usually leads to overfitting, independently of the used 

regression techniques [9,12]. Also, this experimentation was not the main target of this 

dissertation  



2. State of the art 

 
 

22 

 



 
 

 

 

 

 

3.1. Datasets 

3.2. Methods 

3.2.1.SPI and ANI computation 

3.2.2.Pre-processing 

3.2.3.Features extraction 

3.2.4.Manual noise detection 

3.2.5.Moving average 

3.2.6.Strength relationship between BPF and PEF 

3.2.7.BP assessment 



3. Datasets and Methods 

 

24 

 

The dissertation analysed the data from a total of 3 individuals (patient 1,3 and 5) 

which was made available by Philips. For each subject, it was continuously collected 

non-invasive ECG and infrared PPG and invasive BP measurements (figure 3), during 

surgical scenarios, in the Tilburg hospital of Eindhoven. The sampling rates of ECG, 

PPG and BP was 250 Hz, 125 Hz and 125 Hz respectively. Data’s annotations by the 

clinicians, such as intubation and incision events, are very rare and not fully 

synchronized (until 1 min delay). If the noxious stimuli are not precisely registered in 

a time scale, their subjective identification is of low value. Instead, the entire procedure 

was divided in the following stages: firstly, it was induced anaesthesia. This anesthetic 

state was maintained throughout the entire surgery with ventilation. It had to pass some 

time from the beginning of ventilation until the surgical period started. The analysis 

that follows considered only the surgical period which was of 2h24min, 3h1min and 

3h17min for patient 1, 3 and 5, respectively. Signal processing and statistical analysis 

were carried out using MatLab. 

 

This dissertation started with the ambition to infer BP variations in a continuous 

and non-invasive way, using the PPG, to offer beneficial information for the 

nociception evaluation. Since it is difficult to precisely quantify hemodynamic 

reactivity in terms of BP variations, and any attempt to define such cases would be 

always subjective, the main goal became the inference of BP in a continuous and non-

invasive way.  

Firstly, both ANI and SPI were computed according to the publically provided 

information on these two algorithms, so that a more proper knowledge of two of the 

best performing and more validated nociception indexes could be acquired and 

interpreted. On the one hand, ANI depends on HRV which can be measured from the 

RR series computation. It considers moving windows of 64 seconds, where each RR  
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Figure 3: Representation of the entire signals (PPG, BP and ECG), with discriminated surgical period, 

for patient 1,3 and 5 in (a), (b) and (c) respectively. 

a) 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
c) 
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sample is normalized within that window (equation 1). Real time calculation provides 

ANI values every 4 seconds.  

RRi’ = 
𝑅𝑅𝑖

𝑆
                                                           (1)  

, where S =
1

N
∑ (RRi)

N
i=1 ; RRi= RR samples values (after being resampled and mean 

centered); N= number of samples in the window 

After the normalization, the RR series is band pass filtered between 0.15 and 0.5 

Hz (high frequencies). From the resulting series, it is drawn a lower and an upper 

envelope between minimum and maximum detected points, respectively, so that the 

area between these envelopes could be measured in 4 sub-windows of 16 seconds each 

(figure 4). The sub-window with the smallest area allows to derive ANI (equation 2). 

More computation details in [47]. 

ANI=
5.1∗𝐴𝑈𝐶𝑚𝑖𝑛+1.2

12.8
∗ 100                                                (2) 

 

 

Figure 4: Measurement of RR series in a 64 seconds window during general anaesthesia concerning an 

adequate analgesia (upper panel) and in the case of surgical stimulus (lower panel). Source: [48]  

 

On the other hand, SPI depends on two derived features from PPG: PPG amplitude and 

Heart beat interval. These two features were normalized according to a histogram 

transformation which returns the percentage of the measured values smaller than or 

equal to the transformed value (0% to 100% scale). Initially, this transformation implies 
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the apriori knowledge of the distribution of each feature (PPGA and HBI) in a large 

training group. With the increasing amount of collected data from the patient, this group 

distribution is combined with the individual distribution of the features (from the patient 

under anaesthesia). The weight of the individual transformation increases with the 

amount of collected data (figure 5). After 5 min, the weight of the individual 

distribution is fixed to 70% (which corresponds to a weight of 30% for the group 

distribution within the combination). The combination of the distributions is modelled 

as being normal. Also, while its standard deviation is fixed, the mean corresponds to 

the mean of the collected data. 

 

 

Figure 5: Example with the representation of the group distribution, individual distribution and the 

resulting combination of these two. The lower panel depicts the transformation function (cumulative 

distribution). xx-axis: input value of the parameters. Source: [8] 

 

After this normalization procedure, each parameter is combined (equation 3). More 

computation details in [8]. 

SSI = 100 – (0.7*𝑃𝑃𝐺𝐴𝑛𝑜𝑟𝑚 + 0.3*𝐻𝐵𝐼𝑛𝑜𝑟𝑚)                         (3) 

The goal of this stage was solely to evaluate qualitatively the behaviour of these 

indexes and depict any good figures concerning their relationship with the BP. These 

tests were made with the publicly available database MIMIC II.  
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This stage was followed by the inclusion of a continuous and non-invasive 

estimation of BP in the ANB assessment, as the figure 6 depicts with a blocks diagram. 

The aforementioned multi-step methodology in figure 6 can then be described: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Firstly, a pre-processing in PPG is required, in order to separate the baseline drift, 

which corresponds to the DC of the biosignal, from the remaining pulsatile component 

(AC). DC energy is said to be located within 0.1 Hz and 0.5 Hz range in the frequency 

domain [49]. So, in order to remove it, the raw biosignal was high pass filtered with a 

cut-off frequency of 0.5 Hz by a digital infinite impulse response filter with an order of 

5.  

PPG ECG BP 

Pre-processing 

Features extraction 

Manual noise detection 

Moving average 

Features Strength Relationship: BPF vs PEF 

BP assessment 

Figure 6: Proposed BP assessment approach 

 



3. Datasets and Methods 

 
 

29 

After the DC removal, an yy-axis flip of the biosignal was done in order to consider 

it as a representation of blood volume change instead of collected light by the sensor. 

The obtained component corresponds to AC, from which all the PPG features will be 

extracted (except for DCA).  

The BP was low pass filtered with cut-off frequency at 10 Hz by a digital infinite 

impulse response filter with an order of 5, so that high frequency noises could be 

removed. 

Considering all the present concerns in the table 1 (from the state of the art), 

different BP and PPG features were described from a physiological point of view. 

Given the similarities in terms of the reflected ANS functions, on the one hand SBP, 

DBP, PP (equation 5) and MAP (equation 4) were extracted from BP (BPF) and on the 

other hand, HBI, ACA (amplitude “x” in figure 7.a), DCA, 
B

A
, RI (equation 6) and DN 

were extracted from PPG. While HBI, DCA and 
B

A
 are negatively correlated with BP; 

RI, DN and ACA are expected to be positively correlated with BP. From chapter 2.4., 

PAT was also highlighted given the numerous reviews which have emphasized its 

relationship with BP features whose underlying mechanisms define that BP increases 

as PAT decreases. Also, 
ACA

DCA
 was proposed in order to explore its response in such 

inconsistent situations as those reported by Dr. Jens Muehlsteff. It was expected a 

positive correlation between BP and 
ACA

DCA
. Therefore, PEF assembled HBI, ACA, DCA, 

B

A
, RI, DN, 

ACA

DCA
, and PAT. Only the last variant obliged the inclusion of ECG 

information.  

MAP = 
SBP+2∗DBP

3
                                        (4) 

PP = SBP−DBP                                                     (5) 

RI = 
y

x
                                                              (6) 

, where y and x are represented in figure 7.a) 
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Exclusively, PAT was implemented in two different ways:  

• PAT1: computed according to [46] which considers the time interval 

between the apex of the R wave of ECG and 20% of the ACA (during the 

upstroke of the PPG pulse), in the same heart beat;  

 

• PAT2: computed according to [19], the same calculation of PAT1 was 

regarded which in its turn was used to achieve an SBP estimation (SBPe). This 

estimation is showed in equation 7, where SBPb is the result of a linear 

interpolation from the discrete measured points at a regular calibration interval 

of 5 minutes, ∆T is the change in PAT1, φ is a fixed coefficient equal to 0.016, 

Tb is the PAT corresponding to the SBPb. PAT2 is considered to be equal to 

SBPe.  

SBPe = SBPb − 
2

φ∗Tb
∗  ∆T                                          (7) 

Contrarily to the PAT definition in the state of the art, the onset of PPG was not 

considered. Its precise location is difficult to identify given the wideness of the valley 

it is in. The alternative method was to use the mentioned percentage amplitude which 

has a minor error associated to the detection of its location in every event (similar to 

PATderivative in figure 7.c . Meanwhile the R peak in ECG was detected using Pan 

Tompkins algorithm implemented by Dr. Xavier L. Aubert. The two implementations 

were integrated in the set of PEF. 
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The two implementations were integrated in the set of PEF. 

Undesirable loss of contact with the sensor or movements led to the appearance of 

noisy or absent regions in the collected signals. Also, PPG is subject to sudden 

amplitude changes due to the automatic gain controller in the amplifier of the PPG 

sensor [14]. So, in order to remove these low-quality segments, a strict manual analysis 

of the biosignals was performed. Since the automatic clearance of the biosignals was 

Figure 7: Explored biosignals waveforms with corresponding features representation (a) PPG AC 

component, (b) APG waveforms, (c) PAT different approaches and (d) BP waveform. Images 

adapted from [14], [50] and [51]. In (a), “y” corresponds to the amplitude of the diastolic peak 

(approximately equal do DN amplitude). 

 

 

 

   

(b)
(d)

(c) 
 (a) 

 

 



3. Datasets and Methods 

 

32 

not the main goal of this dissertation, the visual inspection was considered enough 

(figure 8). 

Figure 8: example of (a) noisy region in ECG and (b) absent and (c) low amplitude PPG at different 

times, for patient 1. 

 

The biosignals might still be blurred by motion resulting in high frequency 

artefacts. These artefacts’ frequencies overlap with the PPG frequency range which 

results in significant relationships (between features) cover-up. So, in order to reduce 

it, moving average methods can be used [21]. This moving average was based on a 

causal filter, where each output depends on the past and present inputs. This means that 

each new sample will be the result of the average of the samples within the time span 

(which corresponds to the filter size) that precedes it (past inputs), including the sample 

in the issued time (present input). Figure 9 provides a graphical exemplification of this 

process for ACA. 

The filter’s specifications might positively influence the expression of either steep 

or smooth features’ variations throughout time. For instance, its size can neither be too 

small nor too big. Also, some percentage overlapping provides a greater number of 

measured samples and an adequate adaptation to the upcoming information, without 

(a) 
 
 
(b) 
 
 
 
(c) 
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unwanted fluctuations. Therefore, it was defined windows of 10 seconds length with 

50% overlapping. 

 

In order to inspect the relationship between BPF and PEF with more detail, the 

entire BP, ECG and PPG signals were segmented into fixed length non-overlapping 

windows or segments. Then, each window had the Spearman correlation coefficient 

(SCC) and linear regression coefficient (LRC) calculated for each variant from PEF 

against BPF. Figure 10 illustrates this situation with an example. 

The correlation strength was evaluated according to the rule of thumb (table 3). 

LRC was instantiated in order to perceive if the prevailing variation in each window 

was positive (LRC>0) or negative (LRC<0).

The size of the considered windows has influence on the measurement of any 

existing strong relationship (depicted by SCC). On the one hand, each window has to 

be long enough so that it assembles a minimum number of samples that allow a valid 

Figure 9: 27 BP events with the systolic points detected (upper panel) and SBP after moving average 

(lower panel). The filter’s size is 10 seconds with an overlapping of 50%. As expected, the 30 seconds 

which are represented originate 7 samples, given the 5 seconds shift of the filter. 
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SCC calculation. On the other hand, excessively big windows need to be avoided, given 

that they might conceal any important pattern within features’ comparative behaviour. 

So, values of 30 seconds, 1, 2 and 3 minutes were experimented  

 

 

 

 

 

 

 

 

Figure 10: Three resulting consecutive windows with a length of 2 minutes each. (a) SCC, (b) LRC, (c) 
ACA

DCA
 and (d), (e), (f), (g) BPF evolution (in mmHg). Each window appears separated by vertical pink 

dashed lines in (a) (labelled as “end”). Remark: the features’ regions without dots (e.g. between minutes 

61 and 62) correspond to excluded regions which were not regarded in the correlation in chapter 3.2.4.  

 

Table 3: Correlation interpretation according to the rule of thumb. Source: [52] 

 

 

Furthermore, in order to analyse any determinant occurrences, every relationship 

had inspected the windows with an SCC above 70% (W70a). These segments manifest 

a (very) strong correlation, according to [52]. When compared with other segments 

(a) 

 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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which possess an SCC below 70%, the probabilities of possessing interferences and no 

visible patterns are lower for W70a (figure 11).  

 

 

 

 

Figure 11: 5 consecutive windows with a length of 2 minutes each, separated by the vertical dashed lines 

(labelled as “end”). 
ACA

DCA
 and respective SCC against MAP, SBP, DBP and PP are plotted. In this situation, 

only the third window in the depicted image approximately between 101 min and 103 min) was excluded 

from the analysis given that SCC<70% for SBP, MAP and DBP. 

 

Under GA, BP and PPG are expected to behave as figure 12 depicts. The reported 

incoherencies in introduction between ACA and MAP were inspected given the 

underlying information on ANB it might bring. In this situation, it was verified whether 

any of the concerned W70a had an SCC with an opposite signal from the majority of 

the windows. For instance, if the majority of the concerned W70a had a positive SCC 

but a small percentage exhibited a negative SCC, the segments corresponding to that 

small depicted percentage were put together and studied. 

The exclusion from this analysis of other available segments showing unexpected 

relationships with weaker SCC was assumed. Only the strongly correlated segments 

were analysed given that they are associated to a more consistent relative evolution of 
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each pair of features. In other words, the depicted incoherencies are better delineated, 

correlated and less constrained by irrelevant sources of error.  

The main objective of these reports was solely to highlight the existing 

inconsistencies separately for DCA and ACA. In its turn, the inclusion of 
ACA

DCA
 was meant 

to test the influence that it could exert in these considered regions by combining the 

characteristics of DCA and ACA in a single feature. The fact that these incoherencies 

might weaken the correlations between PPG and BP was assumed. 

 

 

 

 

 

 

 

 

 

 

 

Evaluation and comparison of the relationship of PEF against each feature from 

BPF. This performance assessment was divided in two stages.  

On the one hand, it was calculated the SCC between each separate feature from 

BPF and the corresponding PEF, for each patient. It was considered the extracted 

features from the entire surgical procedure. This enabled the general inspection of the 

relationships between the different features.  

Figure 12: The graphs show the baseline waveforms of BP and PPG under anaesthesia (upper panel) 

and after loss of 1L of blood (lower panel). The lower graph depicts a small increase in the ACA and 

a small decrease in MAP, as expected. Source: [15] 
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On the other hand, due to the small number of patients and in order to address the 

varying correlation performance between features throughout the entire procedure, it 

was considered the segmentation of the biosignals (in 2 minutes segments). This was 

followed by the calculation of the SCC for each segment between PEF and BPF. It was 

separately assigned for each patient the relationship which could provide the bigger 

number of strongly correlated segments to each BP feature. The selected relationship 

was addressed in the BP assessment stage that follows. Boxplots of the full set of SCCs 

were drawn and the corresponding Median, Interquartile range (IQR) and disparity of 

the outliers were registered for each evaluated relationship. These metrics are not as 

influenced by outliers as other performance indicators, such as the Mean. This means 

that a bigger Median and smaller IQR provide an unbiased big quantity of strongly 

correlated segments to be assembled. 

It is required to announce beforehand that in this stage the same segmentation 

of the biosignals was done and that the size of each window was set to 2 minutes, in 

order to enable further analysis. 

Regarding the methodology itself, firstly a normalization of all features was 

done by computing z-score. This scaling procedure subtracts the mean of the full range 

of values from those values and divides this difference by their standard deviation. If 

the features’ scales are wildly different, this might have a knock-on effect on the model. 

Then, it was tested the ambiguity among the PEF, based on the Kruskal wallis test. Its 

null hypothesis states that the concerned features come from the same distribution. If 

this is rejected, it means that there are significant differences among the features and 

that they can be incorporated as assets in the features’ set. This validates the non-

ambiguity in PEF. 

Furthermore, based on a leave-one-out cross validation, it was assessed the BP 

for the full time of the surgical period in the one patient that represents the validation 

set. For that end, parameters were arranged, for each feature from BPF, through MLR, 

as the equation 8 illustrates for MAP assessment: 

MAP=cte + p1*
ACA

DCA
 + p2*ACA + p3*DCA + p4*HBI + p5*DN + p6*

B

A
 + p7*RI + p8*PAT1 + p9*PAT2 …(8) 
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, where pn, n∈[1:9] are the resulting parameters from MLR and cte is a constant. 

Regarding the computed models, different characteristics were explored. Each 

model held a distinguishing characteristic, compared to the “reference” computed 

Model (M1), in order to evaluate the influence of its inclusion in the concerned model. 

Firstly, the influence that the selection of certain parts of the biosignals (instead 

of the full biosignals) could have on the model was addressed (M2). For this end, it was 

regarded “every window with an SCC>70%, concerning the variant from BPF that is 

being assessed and the associated best correlated variant from PEF” (W70b), according 

to the performed task in chapter 3.2.6.2. To exemplify this situation: if 
ACA

DCA
 is the best 

performing variant against MAP, the model on the MAP assessment will assemble 

every segment of the biosignal whose SCC, concerning MAP and 
ACA

DCA
, is above 70%. 

Parameters were also arranged without PAT2 in order to test its influence (M5). 

PAT2 holds a great performance review but still requires an ongoing intervaled 

calibration throughout the entire procedure which is not time-effective. This might have 

effects on the surgical agenda.  

Also, to avoid the extra setting of ECG electrodes (for PAT estimation) a model 

was elaborated and evaluated without the PAT1 and PAT2 (M6). The implementation 

of its sensors takes essential operational time.  

When it comes to reduce the influence that interpatient variability has on similar 

BP estimation’s systems, initial calibrations are usually addressed. These calibrations 

are associated to a small period of time (before surgery begins) where the models’ 

parameters are updated with the collected data from the patient under surgery. This 

procedure delays the beginning of the surgery. Therefore, an initial calibration 

procedure was suggested and its influence was addressed on the BP assessment in two 

models (M3 and M4). Here, the built model involved two separate stages. Firstly, MLR 

was implemented on the training set data (similarly to the previous situations). Then, 

the resulting parameters from the first stage were modified on the calibration 2 minutes 

period (a total of 23 features samples) through a recursive least squares (RLS) method 

(equation 9). This algorithm is recognized for its fast convergence rate. The selected 

estimation method of RLS was the forgetting factor (). The smaller is, the more 

sensitive to recent samples the filter is, which causes more fluctuations in the filter 

coefficients. In practice, is usually between 0.98 and 1, so it was selected 0.99. [53]   
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𝑦(𝑡) = 𝑎1 ∗ 𝑢(𝑡) + 𝑎2 ∗ 𝑢(𝑡 − 1)                                     (9) 

, where u(t) and y(t) are the real-time input and output data, respectively. a1 and a2 are 

the parameters for the real time and past inputs, respectively. 

Overall, the disregard of ECG and calibrations streamlines the entire clinical 

procedure and contributes for patient comfort.   

The major role that 
ACA

DCA
 might have in BP assessment was also tested through 

the implementation of a model to which was removed 
ACA

DCA
 (M7). The performance of 

the considered models was evaluated in a two-steps procedure. All the implemented 

and tested models are described in figure 13. 

The built models were separately evaluated for each patient through the 

computation of the SCC and RMSE between the estimated BPF (in the considered 

models) and the real BP measurements. The undertaken interpretation was meant to 

highlight the model which met the best SCC and RMSE values for all the BPF, if 

possible. The small used dataset allowed this more exhaustive individual analysis of 

each patient. Then, it was calculated the mean SCC and mean RMSE, regarding the 

three patients, which enabled to decide what the best implemented model was. 

Moreover, the agreement between the real and estimated BPF was measured 

based on two different protocols of requirements from the British Hypertension Society 

(BHS) and the Association for the Advancement of Medical Instrumentation (AAMI) 
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Figure 13: Schematic description of the different implemented models. 

  

• A reference from which different characteristics
were studied in the other models. is provided.

M1

Entire biosignals from the 2 
patients in the training set 

•The influence to consider W70b, instead of the
entire biosignal, in the implemented model is
evaluated.

M2

Every W70b from the 2 
patients in the training set 

•The influence of the inclusion of the initial
calibration period (2 minutes collected data from
the patient in the validation set) in the implemented
model is evaluated.

M3

Entire biosignals from the 2 
patients in the training set 
and the initial 2 minutes 
from the left-out patient 

•Correlation strength of the concerned 2 minutes
window in calibration (supplied by the patient in
the validation set) is evaluated in the implemented
model. Different W70b were experimented at
random, to inspect whether the selected period of
calibration has any influence on the outcome.

M4

Entire biosignals from the 2 
patients in the training set 
and a random W70b from 

the left-out patient 

•The exclusion of PAT2 states the influence of the
inclusion not only of the PAT2 calcularion process
but also the ongoing intervaled calibration this
feature requires, within the included range of
features in the model.

M5

Entire biosignals from the 2 
patients in the training set, 

excluding PAT2

•The exclusion of PAT1 and PAT2 states the
influence of the inclusion of ECG features within
the included range of features in the model.

M6

Entire biosignals from the 2 
patients in the training set, 

excluding ECG based 
features

•The exclusion of
𝐴𝐶𝐴

𝐷𝐶𝐴
and DCA states the influence

of the inclusion of the DC within the included
range of features in the model.

M7

Entire biosignals from the 2 
patients in the training set, 

excluding DC based 
features 
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Firstly, based on the BHS protocol for evaluating (semi-) automatic blood pressure 

recording systems, a nonparametric method (BHSnp) is recommended. It avoids the 

negative impact that extreme discrepancies between measurements might have [38]. 

According to BHSnp, any measurement system may be classified as A, B, C, D 

depending on the percentage of the differences between the real and the estimated BPF 

values (DIFF) that fall within 5,10,15 mmHg, as the table 4 shows.  

 

 

 

 

 

 

 

This classification grading requires all the three percentages from table 4 to be 

exceeded or at least matched, being A the best grade to be reached. So, for example if 

a device is A graded, it means that the percentages of the DIFF within 5, 10 and 15 

mmHg were equal to or bigger than 60%, 85% and 95%, respectively.  

The mean DIFF (𝐷𝐼𝐹𝐹̅̅ ̅̅ ̅̅ ̅) and standard deviation of DIFF (SD) were also determined 

in order to assess whether the implemented model is within AAMI recommendations 

which require 𝐷𝐼𝐹𝐹̅̅ ̅̅ ̅̅ ̅ ≤ 5 mmHg and SD ≤ 8 mmHg. 

To assist the analysis, the Bland-Altman plots were drawn for each estimated BP 

feature [54,22]. The best performer is selected within these standards which have been 

validated as such in the scientific community. 

  

Table 4: Grading of the BP assessment system according to the non-parametric approach of BHS. 

Source: [54] 
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4.1. SPI and ANI computation 

4.2. Features extraction 

4.3. Incoherent relationships between BPF and ACA, 
𝐀𝐂𝐀

𝐃𝐂𝐀
, DCA 

4.4. PEF performance assessment 

4.5. Kruskal Wallis 

4.6. Models’ evaluation in terms of SCC and RMSE 

4.7. Models’ evaluation within AAMI and BHS protocols 
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In the end, no reliable correlation was obtained between the BP features and any 

of the computed indexes. These negligible correlations might have been related with 

both implementation and data quality challenges.  

Both SPI and ANI implementations demand the acquisition of the processed 

algorithm from the manufacturer. The publicly available information on these 

algorithms is ambiguous and scarce when it comes to the concerned details of 

calculation. Namely, both these indexes require a normalization procedure which is not 

totally explained in the original documentation. On the one hand, the feature scaling of 

the obtained RR series values between -0.1 and 0.1 are not referred. A min-max 

normalization was implemented as alternative. On the other hand, SPI histogram 

transformation concerns a combination of both group and individual distributions 

which is considered to be misleading. Its mean arrangement’s description (“mean of 

the distribution is defined as the mean of the measured data” [8]) seems to dismiss any 

information from the group distributions (contrarily to the weighted combination 

referred in chapter 3.2.1.). In this situation, the mean of the combined distribution was 

a result of the weighted means of each distribution, as referred in chapter 3.2.1. . Even 

though the obtained negligible correlations couldn’t clarify any sort of relationship 

between these indexes and BP, the alternative solutions were considered to devaluate 

the resulting conclusions. 

Regarding SPI training group, the smaller number of included patients in this initial 

study (18), compared with the 72 from [8], is more predisposed to cause overfitting. 

This problem wasn’t verified for ANI since it is not dependent on any training group.  

Besides the implementation’s struggles, the data from MIMIC II was also 

associated with some drawbacks such as missing data, patient movement, human and 

transmission errors and sensor degradation which were observed in practice [55].  

In order to confirm the origin for the obtained negligible correlations between BP 

and the computed ANI and SPI, both implementations should be validated against the 

certified algorithms. Once again, the absence of any results in this stage doesn’t 
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compromise the proposed objectives since this dissertation wasn’t meant to reach any 

conclusive results about the performance of SPI and ANI.  

 

The peaks’ detection was visually inspected and successfully validated. Figure 14 

depicts a singular event, for each biosignal, with all the corresponding peaks in the 

expected locations, as it was generally observed. On the rare occasions it failed (due to 

PVC, for example), that part of the biosignal was removed from the analysis.  

SBP and DBP corresponding peaks were detected based on their concavity. They 

are highest and lowest values, respectively, in a BP event. AC systolic peak and DC 

diastolic and systolic peaks were also detected given their prominence in a single event. 

The AC systolic and diastolic peaks detection enabled to pinpoint the location of 20% 

AC amplitude, computed according to the provided method of [46]. The “diastolic” 

peak, as [14] denominates it (depicted in figure 14 for AC), was determined based on 

the APG and its approximation to 0 (with the apriori knowledge that its location is 

expected to be after the DN). “b” and “a” waves from APG were detected based on the 

provided information by [56] which explored their concavity. According to DN and “e” 

wave share the same position (according to [57]). Therefore, the concavity of the “e” 

wave enabled DN precise identification. 
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Figure 14: Patient 1 (a), 3 (b) and 5 (c) DC, AC, ECG, and BP (from left to right) with the respective 

detected points and corresponding labels. These detected points are on the basis of the PEF and BPF 

calculation. 

 

(a) 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
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During the validation of the features extraction, some variability was observed in 

the waveforms of AC which might have consequences in the stages that follow. In 

patients 1 and 5, a better delineated dicrotic notch was noticeable, when compared with 

patient 3 (figure 14). On this topic, the vessels’ stiffness was reported to increase with 

age and cardiovascular peculiarities [58,14], namely through observations of the 

shortening of the reflected PPG wave’s arrival time. In its turn, this is responsible for a 

less clear DN location in aged people when compared with young and middle-aged 

patients which complicates its precise detection (figure 15). It is possible to observe the 

close relationship in the AC waveforms on the one hand between both patients 1 and 5 

and the depicted PPG event in figure 15.a and on the other hand between patient 3 and 

the depicted event in figure 15.b. 

 

 

Figure 15: Representative recordings of one PPG, and corresponding APG (SDPTG in the figure), event 

waveform from 39-year-old (a) and 82-year-old subjects (b). Source: [24] 

 

APG is also known to correlate with age (and corresponding cardiovascular 

health), whose waveform changes accordingly (figure 16). This relationship can be 

comprehended through the variant 
B

A
 [24,14]. In [42], 

B

A
 was reported to be negatively 

correlated with age. So, in order to explain the differences in the waveforms, that same 

analysis of 
B

A
 was done. The 

B

A
 mean values from patient 1 and 5 were 0.83 and 0.75, 

respectively, which in its turn were higher than those from patient 3, equal to 0.35. 
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These results combined with the AC waveform similarities description confirms the 

literature. 

 

 
Figure 16: APG waveform associated to good circulation (A) and bad circulation (G), with the in-

between intermediate states. It is noticeable the decreasing amplitude of the “b” wave (from (A) to (G)). 

Source: [14] 

 

 

As reported by Dr. Jens Muehlsteff, inconsistent behaviour between BP and PPG 

was observed. After the inspection of the biosignals for the 3 patients, the W70a with 

inconsistent behaviour were depicted in terms of percentages, from the entire collected 

biosignals (table 5). For patients 1, 3 and 5, the entire biosignals correspond to 64, 84 

and 67 segments (of 2 minutes each), respectively. 

 

Table 5: Percent representation of the depicted W70a with unexpected relative behaviour between BP 

features and ACA, 
ACA

DCA
 and DCA., for each patient.  

 Patient 1 Patient 3 Patient 5 

ACA 5 % 1 % 15 % 

DCA 0 % 7 % 0 % 
ACA

DCA
 5 % 4 % 9 % 

 

Focusing on the comparative inspection of ACA, DCA and 
ACA

DCA
, DCA null 

percentage values for patients 1 and 5 depict not only the consistency of this feature but 
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also the fact that all the regions that contributed to the observed unexpected behavior 

from 
ACA

DCA
 were due to ACA (since no synergetic effect was observed). Also, the percent 

decrease from ACA to 
ACA

DCA
 in patient 5 shows the decisive improvements that the latter 

brings when compared to the former. These associations were not depicted for patient 

3, though. However, the percentage of W70a (from the entire biosignals) depicting the 

expected relationships between features for patient 3 was much lower than those values 

presented for patients 1 and 5. After analysis of all BPF, these percent values for patient 

3 varied between 25% and 48% while for patients 1 and 5 these percentages ranged 

between 70% and 86% and between 60% and 90%, respectively. So, the associated 

results to patient 3 in this chapter lost their relevance. 

An example, from patient 5, of the inconsistent behaviours between features is 

shown in figure 17. Both for 
ACA

DCA
 and ACA, nearby minutes 26 and 29, it is observed a 

curve with positive concavity, whereas for SBP, DBP and MAP it is notorious a curve 

with negative concavity. Also, from minute 30 and in the 3 minutes that follow it, BPF 

decrease is accompanied by an ACA and 
ACA

DCA
 increase. The depicted occurrences 

resulted in a strong negative correlation (SCC < -0.7), which is inconsistent with the 

mainly observed positive correlation in the entire biosignal.  

In minute 25, it is depicted a situation where the 
ACA

DCA
 outperforms ACA in terms of 

correlation performance. The observed unexpected curvy event for ACA led to an SCC 

close to -0.8 with MAP, DBP and SBP. However, this curve was softened for 
ACA

DCA
 which 

enabled the decline of the observed correlation (first window of figure 17.a and 14.b). 

The representation of the SCC between 0.7 and 1 in figure 17.c for the same considered 

time period in figure 17.a and 17.b depicts no unexpected relationships for DCA. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 

Figure 17: set of 4 consecutive W70a, in the same time span, concerning BPF against 
ACA

DCA
 (a), ACA (b) 

and (c) DCA. It is hereby depicted an unexpected relationship of ACA and 
ACA

DCA
 with MAP, SBP and DBP 

which is not followed by DCA.  
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So, it is considered that DC exerts a positive influence towards BP assessment 

whereas the observed unexpected relationships between AC based features and BP 

rather point out for a complementary action towards the systemic vascular activity 

description. The 
ACA

DCA
 allowed to avoid only 6% of the observed inconsistencies for ACA 

Also, the possibility that these incoherencies weaken the relationship between PPG 

and BP was disregarded. Even though the observed incoherencies varied between 5% 

and 15% for ACA and 
ACA

DCA
 in patients 1 and 5, for DCA the percentage values remained 

null for both patients as well which in its turn is considered to compensate.  

Further and more precise explanations for these inconsistent events can’t be 

extrapolated based on the scarce existing information on the surgical procedure (e.g. 

description of events) as well as the complexity of this system. Also, in order to have a 

more extensive statistically valid understanding of these dynamics, more patients 

should be involved or new requirements should be established (e.g. consider segments 

with SCC > 50% instead of the W70a) in order to assemble a bigger number of use 

cases. 

 

From the drawn boxplots, it is noticeable the number of several outliers (red dots 

after the end of the whiskers in figure 18, which correspond to the segments whose SCC 

is detached from the vast majority (within the whiskers). Nevertheless, the reduction of 

their influence by addressing median and IQR was assured. Once again, the estimation 

of these metrics’ values had the only purpose to find for each patient, the features from 

PEF with the biggest number of well correlated segments with each feature from BPF.  

For instance, in patient 1, 
𝐴𝐶𝐴

𝐷𝐶𝐴
, ACA, DCA and DN had some visible outliers. 

However, their high median and small IQR show the relatively small percentage that 

these outliers represent, within the entire set of segments. In this sense, the mentioned 

features provide a larger amount of strongly correlated segments than PAT2 which has 

a smaller SCC and higher IQR. A more validated metric could have been used, such as 

the SCC, but an unbiased result wouldn’t be obtained. For example, even though for 

patients 1 and 5 the features PAT2 and 
𝐵

𝐴
 were shown to be strongly correlated with 
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most of the BPF (91>SCC(%)>70), the associated high IQR values (0.63>IQR>1.22) 

demonstrates the broad range of obtained segments. 

In order to have a more accurate reading of the median and IQR values, table 6 was 

elaborated with the precise corresponding values for each patient. From this analysis, 

it was chosen for each patient the feature from PEF which was the best related with 

each feature from BPF, as previously mentioned. The selected features presented the 

highest median and the lowest corresponding IQR values. Therefore, in patient 1 the 

BPF were associated with 
ACA

DCA
. Patient 3 had MAP, SBP and PP associated with 

B

A
, and 

DBP with ACA. Patient 5 had MAP, SBP and DBP associated with DCA and PP with 

ACA

DCA
.  

In terms of the calculated SCC, patient 3 only presented strong correlations for 

PAT2 and 
B

A
 (except for PP3) while the remaining features from PEF had negligible to 

moderate correlations. The good performance of these two features, which is observed 

across all patients, needs to be highlighted since their relationship with BP features 

surpasses the identified physiological differences from patient 3 to patients 1 and 5. 

Firstly, based on the relationship that 
B

A
 is known to have with arterial stiffness, it is 

corroborated the decisiveness of this physiological characteristic on the differentiation 

of the patients. Even though the relationship between BP and PAT is known to be 

dependent on vascular properties (e.g. vessel radius, vasomotor tone) [19], the frequent 

calibration of PAT2 managed to overcome this dependency. In contrast, the bad 

performance from PAT1, which doesn’t hold any calibration, emphasizes this aspect. 

 

.  
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Figure 18: boxplots of BPF set of SCCs (yy-axis) against PPG and ECG features (xx-axis). For patient 

1,3 and 5, it was assembled 64, 84 and 67 segments (of 2 minutes each), respectively. The boxplots 

were based on the set of these segments. 

   Patient 1                                 Patient 3                              Patient 5 
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Furthermore, in patient 3, the SCC of ACA and 
ACA

DCA
 actually had opposite signals 

when compared with patients 1 and 5. This corroborates the previously raised 

inconsistent behaviour of ACA and 
ACA

DCA
 for patient 3 in chapter 4.3.. Therefore, in the 

analysis that follows, it is always inspected how relevant the exclusion of patient 3 is 

for the results. 

Furthermore, for both patients 1 and 5, HBI was the worst performing feature, 

with both positive (SCC (%) <16) and negative (SCC (%) <58) negligible to moderate 

correlations. These poor results are due to the fact that changes in HBI are known to be 

associated with the heart activity rather than the vascular properties to which BP is 

intimately related with. PAT1 was strongly correlated only for patient 1 while the 

vascular conditions of patient 5 might have contributed for the less successful 

correlation performance of this feature. Apart from HBI and PAT1, in general, the 

correlation performance of PEF with any of the features from BPF was strong, with the 

only exception for PP. For instance, both PP5 and PP1 was outperformed in terms of 

their SCC with PEF by the other BP features.  

At last, concerning the highlighted features in this dissertation, PAT1 and PAT2 

had similar correlational performances to 
ACA

DCA
 and DCA with BPF for patient 1 but 

couldn’t manage to follow that same accuracy for patient 5. PAT1 was fairly 

inconsistent (12 < SCC (%) < 76) while PAT2 was outperformed by 
ACA

DCA
 in terms of 

SCC for all the BPF. 
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Table 6: Median (IQR) of the set of segments (1-
𝐴𝐶𝐴

𝐷𝐶𝐴
, 2-ACA, 3-DCA, 4-PAT1, 5-PAT2, 6-HBI, 7-RI, 8-DN, 9-

𝐵

𝐴
). MAPx, SBPx, PPx, DBPx where x is the number of the 

patient. 

 

 

Table 7: SCC considering the entire signal (1-
𝐴𝐶𝐴

𝐷𝐶𝐴
, 2-ACA, 3-DCA, 4-PAT1, 5-PAT2, 6-HBI, 7-RI, 8-DN, 9-

B

A
). MAPx, SBPx, PPx, DBPx where x is the number of the patient. 

 MAP1 SBP1 PP1 DBP1 MAP3 SBP3 PP3 DBP3 MAP5 SBP5 PP5 DBP5 

1 0.86 0.86 0.79 0.85 -0.32 -0.3 -0.23 -0.33 0.9 0.93 0.77 0.86 

2 0.79 0.79 0.74 0.79 -0.54 -0.53 -0.43 -0.52 0.84 0.9 0.8 0.79 

3 -0.92 -0.9 -0.8 -0.92 -0.57 -0.57 -0.42 -0.56 -0.86 -0.79 -0.48 -0.89 

4 -0.83 -0.87 -0.92 -0.78 -0.38 -0.43 -0.47 -0.34 -0.23 -0.41 -0.76 -0.12 

5 0.9 0.9 0.86 0.88 0.82 0.82 0.6 0.8 0.76 0.8 0.7 0.71 

6 -0.55 -0.51 -0.41 -0.58 0.11 0.04 -0.16 0.16 0.09 -0.05 -0.37 0.16 

7 0.8 0.79 0.71 0.8 0.56 0.55 0.4 0.57 0.80 0.70 0.34 0.84 

8 0.79 0.79 0.73 0.78 0.33 0.28 0.06 0.37 0.91 0.93 0.73 0.88 

9 -0.91 -0.9 -0.83 -0.9 -0.81 -0.77 -0.48 -0.82 -0.77 -0.75 -0.51 -0.77 

 MAP1 SBP1 PP1 DBP1 MAP3 SBP3 PP3 DBP3 MAP5 SBP5 PP5 DBP5 

1 0.9 (0.19) 0.93 (0.13) 0.9 (0.19) 0.86 (0.23) -0.57 (0.47) -0.55 (0.51) -0.41 (0.64) -0.59 (0.5) 0.88 (0.46) 0.89 (0.28) 0.83 (0.27) 0.82 (0.64) 

2 0.9 (0.2) 0.92 (0.13) 0.89 (0.23) 0.85 (0.26) -0.66 (0.4) -0.62 (0.48) -0.46 (0.56) -0.69 (0.44) 0.83 (0.65) 0.88 (0.47) 0.81 (0.3) 0.79 (0.76) 

3 -0.89 (0.15) -0.92 (0.14) -0.89 (0.22) -0.83 (0.22) -0.49 (0.93) -0.46 (0.96) -0.39 (0.91) -0.47 (0.88) -0.9 (0.16) -0.91 (0.15) -0.79 (0.37) -0.87 (0.18) 

4 -0.78 (0.42) -0.79 (0.36) -0.67 (0.46) -0.7 (0.34) -0.61 (0.59) -0.59 (0.65) -0.48 (0.78) -0.56 (0.59) -0.84 (0.31) -0.86 (0.26) -0.83 (0.28) -0.81 (0.35) 

5 0.73 (0.76) 0.74 (0.76) 0.66 (0.9) 0.62 (0.86) 0.55 (0.85) 0.61 (0.85) 0.6 (0.83) 0.47 (0.77) 0.51 (0.93) 0.62 (0.92) 0.71 (1.02) 0.45 (0.89) 

6 -0.61 (0.53) -0.45 (0.59) -0.18 (0.67) -0.65 (0.5) -0.27 (0.84) -0.19 (0.79) -0.1 (0.79) -0.29 (0.77) -0.63 (0.4) -0.57 (0.46) -0.32 (0.66) -0.67 (0.37) 

7 0.73 (0.47) 0.75 (0.39) 0.76 (0.47) 0.67 (0.52) 0.19 (0.66) 0.23 (0.65) 0.27 (0.65) 0.14 (0.65) 0.41 (1.19) 0.38 (1.16) 0.46 (0.94) 0.39 (1.2) 

8 0.84 (0.28) 0.89 (0.25) 0.89 (0.28) 0.8 (0.34) -0.05 (0.51) -0.02 (0.54) 0.05 (0.58) -0.1 (0.54) 0.79 (0.59) 0.84 (0.49) 0.83 (0.32) 0.73 (0.67) 

9 -0.86 (0.68) -0.87 (0.71) -0.73 (0.74) -0.8 (0.63) -0.69 (0.56) -0.72 (0.67) -0.65 (0.78) -0.66 (0.69) -0.58 (1.22) -0.5 (1.22) -0.37 (1) -0.62 (1.19) 
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In order to better perceive the outcome of this test, the results are hereby 

graphically represented in figure 16 for each patient. Two group means are significantly 

different (and non-ambiguous) if their intervals are vertically disjoint; which means the 

implied null hypothesis from this test is rejected. The three graphs from figure 19 show 

that none of the considered features was ambiguous, for any of the patients. Therefore, 

all the extracted features from PPG and ECG were used in the regression model. 

 

(a) 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
(c) 

Figure 19: Kruskal wallis test graphical representation for patient 1 (a), 3 (b) and 5 (c). The function 

that enabled to plot these graphs was provided by MATLAB and didn’t allow to zoom in. yy-axis: BP 

studied features.  

 



4. Results and discussion 

 
 

57 

 

Regarding figures 20 and 21, the various addressed models were compared in terms 

of the resulting SCC and RMSE between the estimated and the real BPF. First of all, 

for patient 3, all the models presented at best a moderate SCC. Despite M4 indicated 

strong correlations for DBP, SBP and MAP, their RMSE was distinctively high. For 

the same patient 3, M3 had a moderate SCC for all BPF but an inconsistent behavior 

for patients 1 and 5. On the one hand, for patient 1, the estimation of PP was strongly 

correlated with the real PP (SCC between 0.85 and 0.9), on the other hand, for patient 

5, PP was the worst feature to be assessed (SCC close to 0.2), but SBP, DBP and MAP 

clearly improved (SCC > 0.8). The small quantity of data provided from the patient in 

the validation set (23 samples) might have been one of the reasons for the reported 

inconsistent results. In terms of the studied models, each BP estimated feature was 

separately considered for each patient. In this scenario, the best performer couldn’t be 

visually perceived since the SCC and RMSE values were very similar. If it had to be 

highlighted one model though, M2 would be the selected, with the lowest RMSE from 

all the models for the estimated BPF. From the BPF, analyzing each patient 

individually, PP estimation could be distinguished in terms of its RMSE which was the 

lowest amongst the other features.  

Besides all the posed comparisons, in table 8 the decisive selecting metrics 

(mean SCC and mean RMSE, for all patients) for each model were addressed (SCC1 

and RMSE1). M4 had the highest SCC but also the highest RMSE, which is not 

desirable. Together with the general weak and moderate SCC that are observed in table 

7 for patient 3, the mean values SCC2 and RMSE2, which excluded patient 3, were also 

calculated. As a result, the metrics’ performance increased substantially for all the 

considered models. Given this inconsistent behaviour from the patient 3, SCC2 and 

RMSE2 were taken into account as the decisive factors on the selection of the best 

performing model. M2 was considered to combine the best SCC2 and RMSE2 values. 

Although the best SCC2 belonged to M4, its RMSE2 was more significant, compared 

with M2. M6 was also analysed given the implementation’s advantage it brings 
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(compared with M2) where it only depends on PPG based features, dismissing any 

information from ECG.  

Table 8: Mean SCC and Mean RMSE for each one of the seven considered models regarding 

patients 1,3 and 5 (SCC1 and RMSE1) and also solely patients 1 and 5 (SCC2 and RMSE2) 

 

 

 

 

 

 

 

 

 

 

  

 SCC1 RMSE1 SCC2 RMSE2 

M1 0.77 11.70 0.88 10.06 

M2 0.70 11.31 0.88 9.09 

M3 0.56 10.81 0.65 9.94 

M4 0.87 21.52 0.91 10.30 

M5 0.74 11.92 0.87 10.16 

M6 0.72 12.14 0.85 10.25 

M7 0.67 12.05 0.86 10.14 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
(c)  

PP                                    SBP                                   DBP                                 MAP  

Figure 20: Graphical representation of the resulting SCC from the BPF estimation, concerning every 

considered strategy for patient (a) 1, (b) 3 and (c) 5. Xx-axis: BPF. Yy-axis: SCC 
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 PP                                    SBP                                     DBP                                 MAP  

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c)  

Figure 21: Graphical representation of the resulting RMSE from the BPF estimation, concerning 

every considered strategy for patient (a) 1, (b) 3 and (c) 5 Xx-axis: BPF; Yy-axis: RMSE  
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Considering the percentage DIFF for the 3 patients in table 9 and the BHSnp 

requirements, M2 is A graded for PP estimation and C grade for SBP, DBP and MAP 

estimations. Given the comparison made on table 8, a counter-intuitive better 

performance was observed for M6 which was A graded for PP estimation, B graded for 

DBP and MAP estimations and C graded only for SBP estimation. According to 

BHSnp, the achievement of the grade A or B allows any measuring system to be 

recommended for clinical use [22]. This means that only SBP could not be effectively 

measured in M6, while M2 only succeeded to measure PP. 

 

Table 9: Percent DIFF values within the ranges 5, 10 and 15 mmHg using 4970 points (entire 

biosignals of the 3 patients). M2 in dark grey and M6 in light grey. 

 Differences between real and estimated values 

 ≤5 ≤10 ≤15 ≤5 ≤10 ≤15 

PP 73 91 98 67 90 97 

SBP 48 74 86 42 73 86 

DBP 45 79 90 53 83 91 

MAP 48 79 90 53 81 90 

 M2 M6 

 

For this data, the exclusion of PAT actually helped to slightly enhance the results 

of the implemented measuring system, namely for DBP and MAP estimation. Several 

reasons may account for this observation. One might be related with the selective 

process which is exerted in the model of M2 that neglects useful information. To 

explore whether any of the other models could improve the estimation performance, 

they were also classified according to BHSnp. Nevertheless, no significant differences 

were found. This means that the previously reported varying vascular properties 

amongst the subjects were suppressed by the other features. This indicates that in future 

studies, it should be given more relevance to them, starting with 
𝐵

𝐴
 due to the reviewed 

literature and the good reported performance in table 7. 
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𝐷𝐼𝐹𝐹̅̅ ̅̅ ̅̅ ̅ and SD were also determined in order to assess whether the implemented 

model is within AAMI recommendations. This time, given the results from BHSnp, only 

M6 was evaluated. Firstly, the corresponding Bland-Altman plots were drawn for each 

feature from BPF in order to allow the inspection the general distribution of DIFF (figue 

kl). 𝐷𝐼𝐹𝐹̅̅ ̅̅ ̅̅ ̅ was fixed in zero (solid horizontal line) for every BP feature. This shows the 

consistency of the bias whose adjustment only requires the subtraction of the 𝐷𝐼𝐹𝐹̅̅ ̅̅ ̅̅ ̅ 

from the estimated values. The bias is related with the tendency for one method to 

exceed the other which is perceived from the estimated 𝐷𝐼𝐹𝐹̅̅ ̅̅ ̅̅ ̅ and SD [54]. After this 

operation, and since the 𝐷𝐼𝐹𝐹̅̅ ̅̅ ̅̅ ̅ values are equal to 0 mmHg, the inspection of the SD 

values was made. For PP, SBP, DBP and MAP the SD was of 6.48, 11.55, 8.25 and 

8.97 mmHg. This means that only PP estimation is approved within AAMI 

recommendations (SD ≤ 8 mmHg), though DBP and MAP estimations associated SD 

values (of 8.25 and 8.97 mmHg, respectively) were not far from that approval. 

From figure 22, the associated variability to the range of BP measurements is 

noticeable. On one hand, for SBP, DBP and MAP estimations, the spreading out of 

DIFF values with increasing magnitude is shown, mainly depicted for pressure values 

associated to hypertension. On the other hand, for PP estimation, a negatively 

proportional relationship for DIFF values was observed which is related to a 

proportional error. However, for PP it is observed a lower density of points to contribute 

to this adverse effect. In general, it is reasonable to agree that these outlying readings 

were the reason for a worse performance.  

Overall, the best BPF to be measured was PP which respected the restrictions from 

both accepted protocols. Nevertheless, MAP and DBP were accepted according to 1 of 

the 2 protocols. SBP estimation was not as accurate which implies it might not be the 

easiest feature to keep track of within the pool of highlighted PPG features. 
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Figure 22: Bland and Altman diagrams of SBP (a), MAP (b), DBP (c), PP (d). The upper-case and 

lower-case abbreviations of BPF correspond to the real and estimated values, respectively. Dashed 

horizontal line = mean±1.96*SD. A total number of 4970 samples are here graphically represented (from 

all patients). 
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The present dissertation has corroborated the strong relationship between PPG 

and BP features. M2 (which considered only W70b in the training set) was considered 

the best performing BPF estimation model, in terms of the obtained mean RMSE and 

SCC, between BP estimated and real measurements, of all patients (9.09 and 0.88, 

respectively). When validated within BHS protocol, M2 was able to estimate PP 

according to the imposed requirements (A graded) while M6 (which disregarded the 

extra usage of ECG sensors) was able to estimate PP, DBP and MAP according to the 

imposed requirements (graded with A, B, B, respectively). This provides an indication 

that the PPG considered features in this dissertation might have compensated the 

exclusion of both PAT features in M6, for this data. However, the small number of 

patients doesn’t allow to state that PAT is not a good marker for BP estimation. Also, 

the implemented calibration didn’t contribute for the improvement of the estimation 

performance of the studied patients. Despite PP estimation was the only to be validated 

within the two most recognized standards for evaluating BP measurement automatic 

systems (AAMI and BHS), DBP and MAP estimations only failed to meet AAMI 

requirements, though their SD values (of 8.25 and 8.97 mmHg, respectively) weren’t 

much bigger than the imposed SD of 8 mmHg by AAMI. Solely SBP assessment failed 

to meet any of the imposed criteria.  

Further work can be done on testing this system in the context of larger 

populations. Moreover, the observed heterogeneity of the population has to be 

addressed towards an improved model and estimation of the BP features. There are 

many factors that influence the BP waveform, such as sex, heart rate, diabetes 

hypertension which have already been physiologically interpreted and framed 

[59,43,51]. In fact, the categorization of people based on standard parameters has 

already been evaluated. The aforementioned relationship between age and 

cardiovascular peculiarities with 
𝐵

𝐴
 was one of the validated formal findings on this 

subject [24]. In a similar study, the division of the considered patients in the experiment 

according to their age allowed a better performance towards BP estimation rather than 

when no categorization was implied [43]. Visually, BP waveforms were also 

successfully characterized in healthy aging, according to the corresponding RI [60]. 

Therefore, future studies on the exploration of such patterns are suggested. These might 

provide the standard parameters, preferentially extracted from easily measured 
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biosignals, for the sought categorization. In an equally ambitious perpective, it is 

suggested further exploration on BP estimation through PPG features which have been 

positively associated to BP characteristic waveform such as 
𝐵

𝐴
 and RI. 
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