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Abstract 

Syncope is a disorder of the autonomic regulation of postural tone. It is characterized 

by blood-pressure regulation failure resulting in hypoperfusion of the brain, which might 

lead to a transient loss of consciousness. Hence, a detection of the onset of the blood 

pressure decrease enables the patient to start counter-measures and avoid the faint. The 

damages of syncope are most of all related to falls and accidents as a consequence of the 

faint, having a greater impact on the elderly leading to possible fractures or bruises. In 

this way, it is increasingly necessary to develop a continuous blood pressure monitoring 

mechanism in order to anticipate and predict a syncope event. 

Another public health problem that society is forcing to lead with is the cardiac arrest, 

claiming every year more than 400 000 American adults’ lives. The duration of the 

resuscitation process and is a crucial factor of survival and of the sequelae that this event 

may cause. Manual palpation is the “golden reference” for pulse check during 

cardiopulmonary resuscitation, however, is an error prone procedure and often takes too 

long. The procedure consists of placing a finger above an artery close to the skin surface 

to feel pulsations. Therefore, taking into consideration the importance of the efficiency 

and velocity of the resuscitation process, it is extremely important to improve the 

mechanism for pulse assessment, not only in the case of cardiac arrest but whenever a 

person is unconscious with pulseless.   

Accelerometer sensor (ACC), placed above the carotid artery, may be an interesting 

approach with potential to help to solve both problems mentioned. However, they are 

highly prone to movement artifacts. Therefore, in the first phase of the thesis, the 

challenge was to design a solution using the accelerometer to identify motion artifacts 

properly. A computationally simple solution was investigated to develop a noise classifier 

for the identification of movement artifacts in accelerometer signals acquired from the 

carotid. In the second phase, the aim was to do an initial investigation of using a fusion 

approach between accelerometer signals (acquired from the carotid) and 

electrocardiogram (ECG) signals to reliably infer the pulse presence and pulse absence. 

For that, it was developed a classifier using a cross-correlation feature derived from the 

ECG and the ACC signals. Posteriorly, also from the cross-correlation between both 

signals, was inferred the pulse arrival time (PAT) as a blood pressure surrogate feature. 
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Regarding the noise classifier developed during the first phase it was demonstrated 

that is possible to use simple features and achieve an artifact detection sensitivity and 

specificity higher than 90%. Concerning the second phase, for accelerometer signals with 

high signal-to-noise ratio (SNR) the correlation coefficient revealed to be able to 

discriminate phases of pulse presence versus pulse absence, registering sensitivity and 

specificity also higher than 90%. However, this approach appeared to be highly 

susceptible to contaminations for the PAT extraction, which compromises the usability 

of this feature as a blood pressure surrogate. 

Keywords:  Accelerometer, Pulse Detection, Blood Pressure Regulation, Syncope, 

Cardiopulmonary Resuscitation. 
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Resumo 

A Síncope corresponde a uma desordem ao nível da regulação do tónus postural. Está 

associada a uma perda transitória de consciência, causada por uma hipoperfusão de 

sangue a nível cerebral resultante de uma insuficiência da regulação da pressão sanguínea. 

Assim, uma deteção precoce do início da diminuição da pressão sanguínea permite à 

pessoa realizar contramedidas de forma a minorar danos de um possível desmaio, ou até 

mesmo evitá-lo. Os danos relacionados com a síncope estão maioritariamente 

relacionados com quedas ou acidentes consequentes do desmaio, tendo especial impacto 

na população mais idosa, levando a possíveis fraturas ou contusões. Desta forma, torna-

se cada vez mais importante o desenvolvimento de um mecanismo de monitorização 

contínua de pressão sanguínea para antecipar e prever eventos de síncope. 

Um outro problema de saúde pública com o qual a sociedade é forçada a lidar são 

ataques de paragem cardíaca, que causam anualmente a morte de 400 000 Americanos 

adultos. A duração do processo de reanimação é um fator crucial de sobrevivência e de 

possíveis sequelas que possam surgir após o ataque. A palpação manual é o principal 

método para a verificação de pulso durante a ressuscitação cardiopulmonar, no entanto, é 

um procedimento propício a erros e muitas vezes bastante moroso. O procedimento 

consiste na colocação de um dedo acima de uma artéria próxima da superfície da pele de 

forma a sentir as pulsações. Assim, dada a importância da eficiência e rapidez do processo 

de reanimação, é extremamente importante melhorar o mecanismo de deteção de pulso, 

não só em casos de ataque cardíaco, mas sempre que um indivíduo esteja inconsciente e 

sem pulso. 

O sensor de acelerómetro (ACC), colocado ao nível da artéria carótida, poderá ser 

uma abordagem interessante e com potencial para auxiliar na resolução dos problemas 

mencionados. No entanto, este sensor é consideravelmente suscetível a artefactos de 

movimento. Assim, numa primeira fase da presente tese, o desafio passou por elaborar 

uma solução usando o acelerómetro para a identificação de artefactos de movimento 

apropriadamente. Um método computacional simples foi testado para a elaboração de um 

classificador de ruído que permitisse a identificação de artefactos de movimento em sinais 

de acelerómetro adquiridos a partir da carótida. Na segunda fase, o objetivo passou por 

uma avaliação inicial no uso de uma abordagem baseada na fusão entre os sinais de 

acelerómetro e eletrocardiograma (ECG) para inferir viavelmente a presença/ausência de 
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pulso. Para isso, foi desenvolvido um classificador baseado em propriedades extraídas a 

partir da correlação-cruzada entre os sinais de ECG e ACC. Posteriormente, recorrendo 

também à correlação-cruzada entre os dois sinais, inferiu-se o tempo de chegada do pulso 

(PAT) como parâmetro de substituição da pressão sanguínea. 

Relativamente ao classificador de ruído desenvolvido durante a primeira fase, foi 

demonstrado que, usando um modelo simples, é possível alcançar uma sensibilidade e 

especificidade de deteção de artefactos superiores a 90%. Quanto à segunda fase, para os 

sinais do acelerómetro com elevada relação sinal-ruído (SNR), o coeficiente de correlação 

revelou ser capaz de discriminar fases de presença e ausência de pulso, registando 

sensibilidade e especificidade também superiores a 90%. No entanto, essa abordagem 

pareceu ser altamente suscetível a contaminações para a extração de PAT, o que poderá 

comprometer a usabilidade deste parâmetro como substituto da pressão sanguínea. 

Palavras-chave: Acelerómetro, Deteção de Pulso, Regulação da Pressão Sanguínea, 

Síncope, Ressuscitação Cardiopulmonar.  
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Chapter 1  

Introduction 

1.1. Contextualization and Motivation 

The overall goal of this dissertation is to assess the use of low-intrusive, simple and 

cheap accelerometer sensors in two relevant medical applications: syncope prediction and 

cardiopulmonary resuscitation. For this end, technical solutions for real life application 

scenarios are introduced and their suitability and accuracy assessed. 

Syncope refers to a sudden and transient loss of consciousness with complete 

spontaneous recovery, resulting from a temporary blood hypoperfusion to the brain [1], 

[2]. Given that most syncope events could have been prevented, the impact that it has on 

the society, especially on the elderly population, and on health costs is huge. In Europe, 

0.9 to 1.2% of emergency department (ED) visits correspond to events related to syncope, 

and in the United States of America they account for 3% of ED, representing 1 to 6% of 

admissions of all hospitals in general [3], [4]. The incidence of syncope events is higher 

in the elderly, with a growing costs associated with increasing age [5], mainly due to the 

falls caused by fainting, leading to possible fractures or bruises. As an example, the 

United Kingdom government has expenses of over £ 1 billion per year, just with falls in 

elderly [6]. Thus, with a greater incidence in individuals over 45 years old, in an aging 

society, it is expected an increase on the present costs related to syncope, in the absence 

of countermeasures [4], [7]. In this way, it is increasingly necessary to develop a 

continuous monitoring mechanism in order to anticipate and predict a syncope event, so 

that the person can take countermeasures, such simple as lying or sitting down, 

minimizing possible injuries. 

Another public health problem that society is forcing to deal with is cardiac arrest. 

Cardiac arrest claims every year the lives of more than 400 000 American adults and 

represents a major cause of cardiovascular death [8]. The duration of the resuscitation 

process is a crucial factor of survival and of the sequelae that this event may cause, and it 

is defined as the set of two distinct intervals: the interval from the attack to the initiation 

of the cardiopulmonary resuscitation (CPR) and the interval from the beginning of the 
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CPR until a spontaneous circulation is restored or the resuscitation termination. It is 

demonstrated that a strong correlation is observed between the first interval of the 

resuscitation process and the survival status, with a survival rate lower than 1% if the 

duration of this interval exceeds 14 minutes. Thus, the longer the reaction period takes, 

the lower the survival status and the worse the sequelae suffered after the cardiac arrest 

event [9]. Therefore, it is extremely important to improve the reaction period and the 

efficiency of the resuscitation process, not only in the case of cardiac arrest, but whenever 

a person is unconscious without pulse. Manual pulse palpation is the most common 

procedure to assess pulse in unconscious patients. The procedure consists of placing a 

finger above an artery close to the skin surface such as the carotid, femoral or radial artery 

and to feel the pulsations. This is an error prone procedure and often takes too long. 

However, it is still the “golden reference” for pulse check during CPR [10]–[15]. 

Consequently, a reliable and automatic pulse detection technique should also be a priority 

in order to improve the responsiveness and the efficiency of the resuscitation process. 

An interesting and promising sensing modality for both problems is accelerometer 

(ACC) sensor. They are low cost, low power, small and inexpensive sensors but with high 

sensitivity [10], [16]. Therefore, the aim of this thesis is to assess whether the 

accelerometer sensor might be used as an information source for the development of 

reliable and viable mechanisms to support resuscitation techniques such as CPR and 

prediction of syncope events. 

 

1.2. Thesis Structure 

The current document is divided into the following chapters:  

- Chapter 2 – Physiological and Measurement Background - where it is 

described all the physiological background required for understanding 

syncope and CPR.  

- Chapter 3 – State of the Art - where previous work developed related to 

syncope prediction and cardiopulmonary resuscitation is presented and 

assessed with respect to limitations and challenges. 

- Chapter 4 – Artifact detection in Accelerometer Signals from the Carotid -  

corresponds to the first stage of the thesis, where a noise classifier for the 
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Accelerometer signals, based on simple energy features, is developed. It is 

tuned for the detection of high-frequency or high-intensity interferences.  

- Chapter 5 – Robust Carotid Pulse Detection Using Accelerometry and 

Electrocardiography and Pulse Arrival Time Extraction - reports the second 

and last stage of the thesis, where after a selection of the clean segments of the 

signal, there is also a selection of the segments with/without pulse presence 

and subsequent pulse arrival time extraction.  

- Chapter 6 – Conclusion and Future work - the final conclusions and the 

potential evolutions are described. 

 

1.3. Contributions and Publications 

This thesis has two main contributions: 

- A noise classifier algorithm for the accelerometer signals was developed and 

is described in Chapter 4. It has culminated with the elaboration of a scientific 

article entitled “Artifact detection in Accelerometer Signals acquired from the 

Carotid” and presented at the 39th Annual International Conference of the 

Engineering in Medicine and Biology Society (EMBC’ 17) of the Institute for 

Electrical and Electronics Engineers (IEEE), Seoul, South Korea, 2017 (see 

Appendix A). 

- A pulse presence detection algorithm with posteriorly Systolic Blood Pressure 

surrogate feature inference was introduced. It is described in the Chapter 5. 

Part of this work was described in another scientific article entitled “Robust 

Carotid Pulse Detection Using Accelerometry ad Electrocardiography”. This 

paper was submitted and accepted to be presented at the 3rd International 

Forum on Research and Technologies for Society Industry (RSTI 2017) of the 

Institute for Electrical and Electronics Engineers (IEEE), in Modena, Italy, 

2017 (see Appendix B). 
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Chapter 2  

Physiological and Measurement 

Background 

In this chapter, all the concepts concerning the physiological and measurement 

background necessary for a correct understanding and elaboration of the research work, 

are presented.  

 

2.1. Cardiovascular System 

The cardiovascular system is one of the most important systems in the human body, 

from which all other systems depend directly. It is responsible for the transportation of 

oxygen, nutrients, hormones and waste products from the cells metabolism. It also has a 

very active role on the human body temperature regulation and on the immune response 

[17]. 

 

Figure 1 - Schematic representation of the cardiovascular system and blood circulation [19]. 
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The cardiovascular system is composed by two components: the heart that is 

responsible for pumping the blood allowing capillary irrigation, and the blood vessels that 

define the closed system for the blood to flow. In a normal situation, the heart’s pumping 

leads to pressure gradients that force the blood to circulate in a unidirectional way. This 

cycle is divided in two interconnected different circulations: the pulmonary circulation 

and the systemic circulation (see Figure 1) [17]. In the pulmonary circulation, the blood 

is pumped from the right ventricle to the lungs for gas exchange. Here, the deoxygenated 

blood releases carbon dioxide and receives oxygen, returning to the heart through the left 

atria. In this circulation, the blood passes from venous blood (deoxygenate blood) to 

arterial blood (oxygenate blood). Simultaneously, on the systemic circulation, the arterial 

blood is pumped from the left ventricle to all the body tissues. Here it releases oxygen 

and receives carbon dioxide, as a result from the cells metabolism. The blood passes to 

venous blood and returns to the heart through the right atria [18]. 

An important fact to refer is that the vessels responsible for the transportation of the 

blood from the heart are the arteries. The veins are responsible to transport the blood to 

the heart again [18]. 

 

2.1.1. The Heart 

The heart is a muscular organ constituted by four separated chambers. Two atria, 

which are the superior receiving chambers and two ventricles, the inferior pumping 

chambers. Both ventricles are separated by a septum that prevents the mixing of venous 

blood with arterial blood, allowing to have the two types of circulation, and divides the 

heart in a right and left side (one ventricle and one atria on each side). On the right side 

of the heart, only venous blood does flow. The atria receives the blood from the Systemic 

circulation, and posteriorly the ventricle pumps it to the lungs. On the left side circulation 

is restricted to arterial blood. The atria receives the blood from the lungs and posteriorly 

the ventricle pumps it to the entire body. Consequently, the left ventricle is more robust 

than the right ventricle, because it has to pump the blood for the entire body, which 

requires more effort than just to pump the blood to the lungs [18].  

It is also important to mention that the unidirectional flow is only possible due to the 

presence of valves (mitral and tricuspid valves) between the atria and the ventricles. It 

prevents the blood returning to the atria when it is pumped (see Figure 2) [17]. 
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Figure 2 – Heart’s anatomy and circulatory flow represented by the blue a red arrows [20]. 

Behind all the movements of contraction and relaxation of the heart and its chambers 

is an efficient system of electrical stimulus. The conduction system of the heart regulates 

the contraction of the ventricles and atria in order to have the same contraction rates. This 

enables an efficient and functional blood circulation. Therefore, the heart beat is 

coordinated by nodal tissue. It has both muscular and nervous characteristics and is 

located in two different regions of the heart. On the right atria it is the sinoatrial node 

(SA), responsible for the initiation of the heartbeat and contraction of the atria. The 

atrioventricular node (AV) is located between the right atrium and right ventricle and 

causes the delay of the impulse transport, allowing the atria to finish their contraction 

before the ventricles start their contraction [17]. 

The cardiac cycle corresponds to all the events that occur during one heartbeat. 

Despite each half of the heart being responsible for different blood circulation, they have 

a close interaction. Both atria contract together, releasing the blood to the ventricles that 

also contract together, pumping the blood out of the heart. Thus, the cardiac cycle is the 

successive contractions (systole) and relaxation (diastole) movements that enables an 

effective circulation of the blood through the heart (see Figure 3) [17]. 
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Figure 3 – Cardiac Cycle. Adapted from [21]. 

 

2.2. Blood Pressure Regulation 

The blood circulation is based on a pressure gradient along the vessels caused by the 

pumping of blood by the heart, flowing from regions of higher pressure to region of lower 

pressure (the greater the pressure difference, the greater the blood flow). The pressure 

that the blood makes against a blood vessels wall is considered the Blood pressure (BP) 

[18]. 

The alternation of the heartbeat between systole and diastole, causes fluctuations on 

the BP characteristics and properties in the arterial system [17]. Thus, the arterial pressure 

(BP in the arteries) is pulsatile, oscillating between systolic blood pressure (SBP – 

pressure in the artery after a left ventricle contraction) and diastolic blood pressure (DBP 

– pressure in the artery before the left ventricle contraction) as is illustrated in Figure 4. 

Between successive ejections, in the systemic circulation the BP decays from 120 mmHg 

(SBP) to approximately 80 mmHg (DBP), while in the pulmonary circulation the BP 

decays from 25 mmHg to 10 mmHg [22]. 
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Figure 4 – The aortic blood pressure curve. Adapted from [23].  

As is depicted in Figure 5, as the blood moves away from the left ventricle during the 

systemic circulation, its pressure decreases. This decrease of pressure is very important 

for capillary exchanges to be successful. The BP reaches the lowest level before the blood 

flows into the right ventricle [18]. 

 

Figure 5 – Blood pressure evolution during the systemic circulation [18]. 

There are several physiological factors that influence the arterial blood pressure. The 

heart rate, the amount of blood ejected from the heart (more volume ejected leads to 

higher BP), the peripheral resistance (the friction between the walls of the vessel and the 

blood – the greater the resistance of the vessel, the greater the BP), the venous return (the 

blood volume that flows back to the heart through the systemic veins), are examples of 

those physiological factors [17], [18]. Besides these, the blood properties, as viscosity, 

also influence the BP. 

In order for there to be a constant balance between the needs of the body according 

to the different conditions to which it is subjected, there must be an effective and efficient 

BP control. Physical activity situations, for example, require a more optimized transport 

of oxygen to the cells. Through variation on the heart rate, vasodilatation or 

vasoconstriction, etc., the BP regulation can be made by a neural or hormonal control 

[17], [18]. 
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2.3. Carotid Artery 

As is illustrated in Figure 6, there are three major arteries that branch out of the aortic 

arch: the left subclavian artery, the brachiocephalic artery and the left common carotid 

artery. The brachiocephalic artery posteriorly divides into the right subclavian artery and 

the right common carotid [17]. Each carotid ramifies into the internal and external sub-

carotid. The carotid arteries are responsible for the supply of blood to the brain, face, eyes 

and also the neck [18]. Consequently, any injury on these arteries can lead to a very 

damaging situation, such as stroke.  

 

Figure 6 – Some of the major arteries form the body. Adapted from [17].  

The central location, the easy access, the large diameter of the carotid artery and the 

fact that is relatively close to the skin surface, makes this artery a prominent site to assess 

the presence and the strength of a person’s pulse [16]. 

 

2.4. Syncope 

Syncope, or fainting, is considered as a sudden, temporary loss of consciousness, 

followed by a spontaneous recovery, due to cerebral hyporperfusion [18], [24]. In some 

forms of syncope, symptoms such as nausea, weakness, light-headedness, sweating or 

visual disturbances, may be a precursor, warning that a syncope event is about to occur. 

However, it is very usual that it happens without any detectable precursor, being, 

consequently, a cause of many falls or other accidents. An estimation of the duration of 

this spontaneous episodes is also regularly inaccurately obtained, which makes it difficult 

for others to know how they can manage the situation. Nevertheless, the syncope recovery 

is usually with an almost immediate restoration of appropriate behavior and orientation 
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[2]. Additionally, it is important to notice that the consequences of a syncope episode, are 

different from person to person. In the elderly, the risk of serious injuries induced by falls 

is higher than in young people.  

Despite the different types of syncope, there is one common cause to all of them: a 

fall in systemic blood pressure accompanied by a decrease global cerebral blood flow, is 

in the basis for syncope. A cessation of just 6-8 seconds of blood flow into the brain is 

enough to cause a loss of consciousness, namely when the systolic blood pressure 

decreases to 60 mmHg or lower a syncope episode can occur [2]. Therefore, a 

physiological reflex causing bradycardia, cardiovascular problems as arrhythmias or 

structural disease including pulmonary embolism or hypertension and inadequate venous 

return, due to volume depletion or venous pooling, compose the main causes that define 

the three different types of syncope respectively: neutrally mediated syncope; cardiac 

syncope; syncope due to orthostatic hypotension [2], [24]. 

 

2.4.1. Neurally Mediated Syncope 

Neurally mediated syncope (NMS) or reflex syncope is the most common type of 

syncope and it refers to situations when the cardiovascular effector mechanisms that are 

usually useful in the blood circulation control become overactive and intermittently 

inappropriate in response to abrupt stimulus as post exercise condition or emotional 

stress. This can result in vasodilatation and/or bradycardia, which will lead to a fall in 

arterial blood pressure and decrease in cerebral perfusion, culminating in fainting [2], 

[24].  

Reflex syncope may be classified based on the efferent pathway or in the afferent 

pathway. On the efferent point of view, it can be classified as vasodepressor if the cause 

is the loss of the upright vasoconstrictor tone, predominating hypotension, as 

cardioinhibitory if bradycardia or asystole predominates, or as mixed if both mechanisms 

are present [2]. The afferent classification is based on which trigger caused the syncope´s 

event. Depending on the person, the triggering situations vary considerably. Thus, in an 

afferent point of view it can be classified as: vasovagal syncope, if it is preceded by 

prodromal symptoms of autonomic activation (sweating, nausea, pallor) and is mediated 

by orthostatic stress or emotion; situational syncope, is mainly caused by specifics 

circumstances as post exercise, gastrointestinal stimulation, micturition, etc.; Carotid 
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sinus syncope, it is a spontaneous rare form caused by mechanical manipulation of the 

carotid sinuses;  atypical form, describes the situations in which the trigger is uncertain 

or even apparently absent [2]. 

 

2.4.2. Cardiac Syncope 

The cardiac syncope can be caused by arrhythmias and structural cardiac disease. In 

both cases the syncope occurs due to a decrease in cardiac output (volume ejected from a 

ventricle in one minute [18]) [24]. Consequently, a decrease of it, leads to a decrease in 

BP and to a decrease in cerebral blood perfusion level.  

In this kind of syncope, the loss of consciousness, usually occurs between 20-120 

seconds later than the onset of the arrhythmia. Therefore, the BP drops slower, allowing 

the person to have enough time to proceed in order to minimize consequences such as 

injuries due to falls [24]. 

In the case where a structural disease is the cause of a syncope event, the circulatory 

demands outweighs the heart’s capability to increase its output. Accordingly, when the 

cardiac output is not enough to suppress the needs of the body, the cerebral blood 

perfusion is compromised, leading to the occurrence of syncope [2]. 

 

2.4.3. Syncope due to Orthostatic Hypotension 

The orthostatic hypotension is defined as an unnatural decrease in systolic blood 

pressure upon standing. Unlike neutrally mediated syncope, in autonomic failure the 

efferent activity is chronically impaired which mean that the vasoconstriction defective. 

As was mentioned, despite in a pathophysiological point of view NMS and autonomic 

failure being different, the symptoms of both are very similar, making it quite difficult to 

differential diagnosis [2]. 

Three successive stages characterize the evolution of this kind of syncope: the pre-

syncope phase, the loss of consciousness and the post-syncope phase. The pre-syncope 

phase, is the phase before syncope, and at this stage the person starts to feel symptoms 

such as nausea, weakness and abdominal discomfort, and it may last 30 seconds. This 

might provide enough time for the person to initiate counter measure in order to revert 

the situation and to avoid possible injuries.  The second phase is when the person loses 
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consciousness for a time between 5 and 20 seconds. Finally, the post-syncope phase, 

corresponds to the person’s recovery, still feeling some discomfort [2]. 

 

2.5. Cardiopulmonary Resuscitation 

In a situation where a resuscitation is needed, the efficiency and responsiveness of 

the resuscitation process can be decisive in the sequelae that may arise, or may even be 

the difference between life and death [25]. Therefore, any second matters. The 

cardiopulmonary resuscitation is a process that keeps the circulatory flow and 

oxygenation during cardiac arrest, through the execution of chest compressions and 

artificial ventilation. The CPR should be performed immediately on any person 

unconscious without pulse [25]. 

During cardiac arrest, the chest compressions allow the blood circulation by two 

different mechanisms: the cardiac pump and the thoracic pump. The cardiac pump occurs 

when the chest compressions squeezes the cardiac ventricles between the sternum and the 

spine. The blood flows through the aortic and pulmonic valves with a functional mitral 

and tricuspid valves. On the other hand, on the thoracic pump mechanism the chest 

compression causes a global rise in intrathoracic pressure that forces the blood to flow 

from the pulmonary vessels, through the heart and into the periphery. In this case, during 

the chest compression both mitral and aortic valves are open [26]. 

 

2.6. Contribution for the Accelerometer 

signal on the Carotid Artery 

An accelerometer is a sensor that measures the acceleration experienced by the sensor 

and, consequently, the acceleration of anything to which the sensor is attached to [27]. 

Therefore, in the context of this thesis, attaching the sensor to the neck, the primary signal 

of interest to detect is the momentum changes at the skin surface provoked by dilatation 

of the underlying carotid artery [28]. The ejection of blood by the heart generates a pulse 

wave that when crossing the carotid artery, causes a variation of its diameter.  
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As described previously, the accelerometer sensor is highly sensitive, consequently 

any kind of movement that affects the sensor will have repercussions on the detected 

signal. Thus, the signal measured from the accelerometer consists of three different 

components: a gravitational, a movement and noise [29].  

The gravitational component is visible as the offset of one or more sensor axes during 

static conditions or steady state non-rotational movement. It allows to detect the 

orientation of the sensor relative to the vertical plane [29], being useful to compare the 

changes of position of the patient with the changes of the signal’s morphology.  

Regarding the movement component, there are three different sources. The first one 

is, as mentioned and explained above, due to the dilatation of the carotid artery. This is 

the primary signal of interest. The other two are due to respiratory movements and 

ballistocardiogram [30], [31]. The movement of the thorax caused by the respiratory 

movements, induces vibrations on the body that can affect the ACC, and consequently be 

detected by the sensor [31]. Concerning the ballistocardiogram, it corresponds to the 

reaction (displacement, velocity or acceleration) of the body generated by the heart when 

it ejects blood at each cardiac cycle. Therefore, it is associated to all kind of movements 

of the blood inside the heart or in the arteries and the movement of heart itself [30]. It 

corresponds to the global body momentum changes due to the pumping of the heart [28]. 

Consequently, this reaction of the body interferes with the accelerometer, affecting the 

signal.  

The noise component, is any kind of movement that may interfere with the signal 

besides those described previously, as arms movements, rotation of the neck, swallowing, 

talking, etc. 

 

2.7. Conclusion 

In this chapter it was introduced an overview of the main physiological background 

required to understand the work developed in this thesis. This chapter also introduced 

basic information regarding syncope events, their relevance and their physiological 

implications, as well as the cardiopulmonary resuscitation process and the types of signal 

to expect during the extraction of an ACC sensor from the human body.  



 

 

15 

 

Chapter 3  

State of the Art 

This chapter seeks to contextualize and to show the state of the most recent/relevant 

developments and studies related with the area of interest of the present thesis. Therefore, 

different approaches for blood pressure assessment, syncope prediction and pulse 

assessment during cardiopulmonary resuscitation are reviewed and discussed. A brief 

description of devices used to capture information for these applications is also 

introduced.  

In this way, it aims to clarify the challenges that this work faced and the contributions 

to overcome the gaps of current state of the art approaches in the context of pulse 

assessment during CPR and syncope prediction. 

 

3.1. Photoplethysmogram and 

Electrocardiogram 

The photoplethysmogram (PPG) signal is obtained by an optical device that based on 

light intensity variation estimates the pulse pressure wave, represented in Figure 7, in the 

microvascular bed of tissues of a specific region of the body. It is formed by two waves: 

the systolic and the diastolic wave. It uses a source of light, typically Light-emitting diode 

(LED), and a photodetector [32]. 

 

Figure 7 - PPG signal with its characteristic parameters represented. x: systolic peak amplitude. y: diastolic peak 

amplitude. Adapted from [33]. 
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Despite its apparently simplicity (see Figure 7), PPG provides complex information, 

not just about the site where the measure is taken (usually on the finger tips), but also 

about heart and vessels dynamics [32]. Thus, is recurrently used in literature, not just for 

pulse assessment, but also for BP monitoring. 

Therefore, there are many different features related to cardiovascular phenomena that 

can be extracted from PPG, such as: 

- Pulse rate – PR – number of heartbeats per unit of time. It is measured using 

the time difference between the same point of two consecutive pulses [32].  

- Reflection index – RI – ratio between the amplitude of the diastolic peak (y) 

and the systolic peak (x). It is associated with the stiffness of the small arteries 

[32]. 

𝑅𝐼 =
𝑦

𝑥
 

(1) 

- Stiffness index – SI – ratio between the subject´s height and the time difference 

between the systolic and diastolic waves (δT) [33]. 

𝑆𝐼 =
𝐻

𝛿𝑇
 

(2) 

- Left Ventricular Ejection Time – LVET – period that takes for the blood to be 

ejected from the left ventricle (see Figure 8) [32]. 

 

 

Figure 8 - Representation of LVET and PEP (Pre-ejection period). LA – Left atrium; LV – Left Ventricle; AO – 

Aorta.  Adapted from [34]. 
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The Electrocardiogram (ECG) is a recording of the action potentials that propagate 

through the heart during the cardiac cycle. It consists of a set of waves. The P wave, the 

complex QRS and a T wave (see Figure 9). The P wave is referent to the atrial systole, 

the QRS complex is referent to the depolarization of the ventricles, signalizing that they 

are going to be in systole. Finally, the T wave represents the ventricles repolarization, 

signalizing their diastole [17], [18]. From the ECC signal several useful diagnostic and 

prognostic information might be extracted such as the instantaneous heart rate (HR) and 

arrhythmic state of the heart. The ECG might be combined with other signals in order to 

assess relevant cardiac function as well as hemodynamic variables such as the pre-

ejection period (PEP) and the pulse transit time (PTT) interval. 

 

Figure 9 - Representation of an ECG and its reference points [18]. 

 

3.2. Blood Pressure Assessment 

The continuous monitoring of BP has been a constant focus problem in the literature. 

Two examples of continuous BP measurement methods are the volume-clamp method 

and the arterial tonometry approach. They monitor the BP pressure continuously, based 

on the applanation of the radial artery to measure the pressure transmitted to the skin or 

based on the pressure necessary to maintain a constant vascular volume (clamp method) 

on the finger cuffs. In the case of the volume-clamp method, it has been already translated 

into commercial devices, although it has an inherent limitation. Given that it is based on 

the counter-pressure measurement made against the fingers in order to keep the vascular 
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volume constant (the higher the pressure inside the artery, the higher the counter-

pressure), in long-term it will induce disturbances in the finger´s blood circulation, 

making it unsuitable for prolonged applications. Regarding the arterial tonometry method, 

it is highly susceptible to movement contaminations, restricting its application to 

controlled environments [35]. 

 The complexity, cost, and the sensitivity to artifacts of current commercial wearable 

devices for monitoring the BP [36], leads to an investigation more centralized into BP 

surrogate features. An admittedly promising alternative is the pulse wave velocity (PWV) 

[37]. In this way, the correlation between PWV and BP can be done using the Moens-

Korteweg model or using the Bramwell-Hill [35].  

The Moens-Korteweg equation relates the pulse wave velocity with the elastic 

modulus of a thin walled, distensible, fluid-filled tube in which it is induced, and is given 

by: 

𝑃𝑊𝑉 =  √
𝐸ℎ

2𝑟𝜌
 

 

(3) 

where E is the elastic modulus of the arterial wall, h is the wall thickness, 𝜌 the density 

of the blood in an artery section and r is the vessel radius. It is expected that the main 

variation come from E. Posteriorly, Hughes established the connection between BP and 

PWV using: 

𝐸 = 𝐸0𝑒𝛾𝑃 (4) 

where 𝐸0 = 667 ± 382 mmHg for the descending thoracic aorta, 𝛾 ≈ 0.017 mmHg-1 

and 𝑃 = 𝑃𝑆 + 𝐾(𝑃𝑆 + 𝑃𝑑) corresponds to the mean aortic pressure (MAP), where 𝑃𝑆 and 

𝑃𝐷 are the systolic and diastolic blood pressure, respectively [35], [37]. 

The Bramwell-Hill equation, which was derived from the previous model, relates the 

pressure wave velocity with the vessel compliance or distensibility. It is given by: 

𝑃𝑊𝑉 = √
𝑉𝑑𝑃

𝜌𝑑𝑉
 

 

(5) 

with 𝜌 being the density of the blood and V being the aortic volume at pressure P [35]. 

Shaltis et al. [38] by modeling with a sigmoidal curve the pressure-volume relationship, 

proposed the following equation: 
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𝑉 =
𝑎

1 + 𝑒−𝑏𝑃
 

(6) 

where a and b are fitting parameters [37]. Rearranging the equations (5) and (6), with 

Taylor expansions, it is observed that: 

𝑃𝑊𝑉 = √
1 + 𝑒−𝑏𝑃

𝜌𝑏
≈

1

√𝜌𝑏

√2

1 −
𝑏𝑃
4

≡
1

𝑐𝑃 −
𝑐
4

 

 

 

(7) 

 

with c as a constant determined by experimental data fitting [37].  

In practice, the PWV is usually assessed recurring to the Pulse Transit Time by: 

𝑃𝑊𝑉 =
𝐿

𝑃𝑇𝑇
, where L is the distance that the pulse wave travels. PTT is defined as the 

time that it takes to go through that distance [35]. 

In this way, for the measurement of PTT, the pulse wave has to be recorded in two 

different locations. Typically, it is measured using the time difference between the R-

peak of the ECG and the beginning of the pulse wave registered by a PPG at a peripheral 

site. However, this measurement is just an approximation to PTT, being frequently 

designated by Pulse Arrival Time (PAT). PAT consists on the sum of PEP and PTT 

(PAT=PEP+PTT). It is frequently used as BP surrogate instead of PTT, once it contains 

PEP, which is highly correlated to BP, and can be more accurately measured [35], [37]. 

 

3.3. Syncope Prediction 

The syncope prediction has been a recurring theme in the literature during the last 

decade, largely due to the impact that it has on society, particularly in the elderly 

population. Although the proposed prediction approaches differ in purpose, methods or 

techniques applied, most of them are based on the use of the head-up tilt table (HUTT) 

test [37]. This test consists of lying the patient on a bed that is submitted to different tilt 

angles. While this occurs there is a continuous monitoring of BP, of the electrical 

impulses of the heart and of the oxygen level [39]. This test aims to induce fainting so 

that the variations of monitored properties can be analyzed and used to predict syncope 

in a real (not induced) situation. In case where no syncope occurs during the test, it is 

administered sublingually nitro-glycerin in order to trigger a hemodynamic response [16], 

[28]. 
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This type of test is highly intrusive, requires specialized personnel and does not allow 

for real-time assessment of impending syncope episode. Therefore, a significant research 

effort is observed in order to develop suitable approaches to predict impending syncope 

episodes in real-time. Virag et al.[40], proposed a method for syncope prediction, based 

on the continuous analysis of BP and HR (measured from the RR intervals of ECG) 

changes (see Figure 9). It consists on the assessment of a cumulative risk generated by 

the normalized HR and SBP trends and their variability represented by low frequency 

power, for further comparison with a predetermined syncope risk threshold. The 

algorithm was tested using 1155 patients, with a sensitivity (SEN) of 95% and specificity 

(SPE) of 93%. The prediction time had an average of 128 ± 216 seconds. Mereu et al. 

approach [41] is also based on BP and HR, although the features used were different. It 

was assessed the ability of HR, SBP, DBP, mean of BP (mBP), pulse BP (pBP), the ratio 

between HR and SBP and the first derivative of the ratios HR/SBP, HR/DBP, HR/mBP 

and HR/pBP, as possible predictors of syncope during tilt test. The algorithm was 

designed for clinical facilities in order to improve patient care. The study was performed 

in 145 patients achieving a SEN of 86.2%, a SPE of 89.1% and a prediction time of 

44.1±6.6 seconds. Both methods rely on continuous monitoring of BP which has currently 

several challenges and cannot be applied 24/7 [1]. The devices are expensive, complex, 

heavy and require a continuous recalibration and trained personal to operate [36]. 

Consequently, they are suited for short period of operation in hospital contexts, and are 

less applicable for uncontrolled environments such as home care scenarios [1]. Given this, 

more recent literature has been focused on techniques for a reliable estimation of BP 

through other features, commonly using the PPG and ECG. One example of these 

approaches is the one introduced by Muehlsteff et al. [42]. It is a threshold-based 

approach for syncope prediction using PAT from joint analysis of ECG and PPG as a BP 

surrogate feature. Several PAT values were extracted using different PPG reference 

points, i.e., the onset of the pulse, 20%, 50%, 80% of systolic peak amplitude, and the 

systolic peak. The detection of syncope onset was based on tracking of relative changes 

of PAT. The best performance was associated to the PAT extracted between R-peak and 

50% of the amplitude of systolic peak, with a SEN of 90.5%, a SPE of 83% and an average 

of prediction time of 82 ± 78 seconds using a database collected from 44 patients. 

A different approach was introduced by Couceiro et al. [43]. It achieved a better 

performance than the previous one, with SEN of 95.2%, SPE of 95.4% and a prediction 
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time of 116 ± 155.5 seconds using also the database collected from 44 patients. The 

algorithm applied a threshold-based classifier that uses a Minkowski distance metric. The 

most appropriate features for the prediction of syncope were selected, based on a feature 

selection score (FSS) metric. The features normalized that fed the classifier were derived 

from the HR (extracted from ECG), PAT (considered as time difference between ECG 

R-peak and 80% of the PPG systolic amplitude), LVET, SI and RI extracted from a joint 

between ECG and PPG. Additionally, in [44] Couceiro et al. also proposed an analysis of 

the variability of HR indexes as a new parameter to add to the algorithm aforementioned 

in [43]. This approach has resulted on the improvement of the performance with a SEN 

of 93.3%, SPE of 100% and a prediction time of 56.1 ± 36.8seconds. 

More recently, Pinheiro in [32], introduced a fully PPG-based algorithm for syncope 

prediction applied in 44 patients. The method was based on a threshold classification 

model that uses the Minkowski distance metric. The method was based on features 

extracted from the following parameters: PR, extracted as a difference between 

characteristics points of PPG pulse, LVET, SI, RI, several pulse rate variability (PRV) 

indexes, second derivative of the PPG, the systolic rise of the PPG pulse wave and the 

information dynamics of data [32]. From these parameters, a total of 92 different features 

were extracted and assessed according to a ranking based on a features selection score 

metric. Posteriorly, different algorithms setups were assessed, and the performance of the 

highlighted setup was a SEN of 100 %, a SPE of 85% and a prediction time of 243 ± 

226.9 seconds. 

Although the aforementioned approaches have achieved good performance, PPG has 

some shortcomings. Since PPG is placed, for signal measurement, on a peripheral site, it 

is sensitive to hydrostatic effects and it is affected by vasomotion which can compromise 

the peripheral pulsatile blood flow, compromising the accuracy of the device. 

Additionally, also because of its location, the sensor can be inconvenient for the patient 

to carry out their daily activities, being also very susceptible to movement artifacts [16], 

[28], [45]. Therefore, a potential alternative technique that has been studied, is based on 

the utilization of an ACC sensor placed on the skin surface of the neck, above the carotid 

artery. As has already been mentioned in the previous chapter, due to its central location 

and due to the fact that the carotid artery is a prominent location for the extraction of pulse 

reference, it is a natural choice for the placement of ACC sensor in order to capture 

information sources for syncope management [46]. Muehlsteff et al. [28] developed a 
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physical model that simulates the arterial dilation signals acquired from an ACC sensor 

located on the skin surface above the carotid artery. The model results were compared 

with ACC measurements during a HUTT test, using the maximum positive amplitude 

(MPA) of each pulse of both signals. It was obtained a Person-correlation coefficient of 

0.83. Besides this, in order to monitor the BP, it was tested MPA divided by HR2 as a BP 

surrogate feature, demonstrating a Person-correlation coefficient of -0.8. This shows the 

potential of ACC sensor to extract a BP surrogate feature, although the motion artifacts 

may compromise its extraction. The model starts by calculating the arterial pressure 

variation, induced by a passing wave, to estimate the area change of the vessel. From this, 

it calculates the time course of the artery radius and consequently the ACC simulated 

signal is obtained through the second derivative of the radius calculation. It has as input 

parameters the age, gender, externally applied contact pressure, HR, pulse pressure and 

SBP. 

Thus, although the ACC has been the target of some approaches for the extraction of 

signals from the human body (see e.g. [46], [47]) and these can sometimes be useful for 

syncope prediction, the use of this sensor directly to help solving this problem has not 

been fully and extensively explored. 

 

3.4. Cardiopulmonary Resuscitation 

Cardiopulmonary resuscitation has also been the subject of constant studies in the 

literature, since its efficiency and speed reveal a great importance in the sequelea that may 

arise from a cardiac arrest or loss of consciousness with pulseless. The way it is done can 

even be a deciding factor between life and death [9]. 

The “golden reference” for the assessment of the pulse presence during CPR is still 

manual palpation. However, it is error prone and often takes too long [10]. Hence, an 

optimization of the resuscitation process can start from a more efficient monitoring of 

pulse presence. 

According to what was found in literature, the only solution for pulse assessment that 

is currently commercially available to support aiders is the CPR Check (CardiAid, 

California, United Sates of America). It uses a resonant non-linear inductive-capacitive 

(LC) sensor to track pulse and respiration [10]. A LC-oscillating circuit allows the 
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acquisition of electrical signals originated by variation of distance between the sensor and 

region of interest, in this case the skin. Therefore, the pulse wave and respiration cause 

variation in the surface of the tissue that affect the resonance circuit and, consequently, 

generate a signal that allows the monitoring [48]. 

Wijshoff et al. [49] investigated the potential of PPG for pulse monitoring during 

CPR in a twelve pigs study. The PPG was extracted from the pigs’ nose simultaneously 

with arterial blood pressure signals, measured from the aortic arch, in order to validate 

the PPG results. The presence of spontaneous cardiac pulse was inferred based on PPG 

time traces and frequencies spectrograms. The results obtained, revealed that this 

approach could be promising to use for pulse monitoring during CPR. Nevertheless, the 

nose location (not representative of a good clinical practice) and the fact that it is an 

animal model, means that the results cannot be completely transposed for clinical cases. 

Another interesting approach is the one developed by Hubner et al. [50], it also uses PPG 

for pulse assessment, reinforcing its potential for CPR support. 

Currently, the pulse monitoring techniques established in clinical practice include 

PPG, bioelectrical impedance, ultrasonography and sphygmomanometry, all having gaps 

in terms of cost, size, accuracy and ease of application [16]. Additionally, the exclusive 

use of the ECG for pulse monitoring is also very limited, once its detection does not 

guarantee that the ventricular ejection of blood is enough to irrigate al the essential organs, 

namely the brain [16], [48]. A small heart contraction is sufficient to generate an ECG 

signal. Therefore, with high sensitivity and portability, low-cost, the use of the ACC 

sensor is an interesting approach for pulse presence monitoring during CPR [10]. 

Muehlsteff et al. in [16], developed an algorithm for pulse presence tracking, 

involving 27 patients submitted to HUTT test. The algorithm was based on activity level 

of the ACC signal, calculated based on its variance, and on the beats that fed a selectable 

either Linear or Support Vector Machine classifier that identifies the pulse presence in 

each 10 second periods. Placing the ACC sensor at the carotid artery, it was observed that 

the ability of this sensor to reliably track the pulse in a conscious patient may be 

compromised, since it is very susceptible to motion artifacts. Nevertheless, for a patient 

at rest, without any movement, the pulse presence was accurately monitored. Since during 

CPR the person is unconscious, it is legitimate to assume that this approach might exhibit 

potential for pulse presence detection during resuscitation. 
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A more direct approach to CPR was the one developed in [10] by Dellimore et al. 

The algorithm was applied in a database collected from patients undergoing CPR. It 

classifies the signals based on its activity level, using the standard deviation, periodicity, 

and the prominence of the largest peak in a 3 seconds autocorrelation window. Despite 

the good performance achieved for activity level classification, the periodicity assessment 

accuracy was low. However, it demonstrated that the principle had potential for CPR 

application.  

 

3.5. Conclusion 

In this chapter was introduced the main approaches found in literature for continuous 

blood pressure assessment, syncope prediction and pulse assessment during 

cardiopulmonary resuscitation, as well as the shortcomings of those approaches. It aimed 

to clarify the challenges that this work faced and the gaps that it addresses using an 

accelerometer sensor as an interesting and promising modality for pulse assessment 

during CPR and syncope prediction. 
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Chapter 4  

Artifact detection in Accelerometer 

Signals from the Carotid 

4.1. Introduction 

NMS patients suffer from hypotension and/or bradycardia, which result in cerebral 

hypo-perfusion and can finally lead to a sudden, transient loss of consciousness with 

spontaneous recovery [51]. As we have already mentioned, NMS is associated with a 

higher risk of falls, which is in particular a problem in the elderly. It compromises quality 

of life, is one of the root causes for injuries due to falls and therefore causes financial 

costs to the healthcare system [51]–[53]. Effective early warning systems for the 

management of high risk populations, which are able to predict an impending NMS event 

via the assessment of pulse strength and by monitoring trends in surrogate blood pressure 

parameters, is a highly relevant and interesting area for innovations. 

Regarding the cardiopulmonary resuscitation, manual palpation is still the most basic 

approach to check for pulse presence in an unconscious patient. The procedure consists 

of placing a finger above an artery close to the skin surface such as the carotid, femoral 

or radial artery and to feel the pulsations. Palpation which is still the “golden reference” 

for pulse check has been shown to be error prone and often takes too long during 

cardiopulmonary resuscitation [12]–[15]. Therefore, palpation-based pulse checks by 

layman are not recommended anymore in emergency care guidelines. Due to this fact, 

there is a need for a sensing modality, which is 1) easy to apply in demanding stressful 

situations, 2) can objectify and preferably quantify pulse presence and 3) can be 

understood by consumers for acceptance.  

Therefore, an interesting sensing modality for both problems mentioned is the 

accelerometer sensor, which has found widespread use in many consumer applications. 

Low cost, low power, small and inexpensive sensors with high sensitivity are available. 

They enable sophisticated signal processing techniques such as for noise and artifact 

reduction via signal fusion techniques [54], [55], for motion detection and classification 
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as required in many sports modalities (e.g., in swimming) [56], but also for vital sign and 

context measurements. An ACC sensor may provide a means of objectifying pulse 

palpation, which has been demonstrated in previous works on the basic feasibility of 

ACC-based pulse detection from signals acquired from the carotid artery [10], [16], [28], 

and also have potential for features extraction for syncope prediction. 

Despite of the aforementioned, the ACC signal is prone to various sources of error 

(e.g., motion artifacts), which can complicate the extraction of reliable vital sign 

parameters and compromise the utility of the ACC in healthcare applications. Thereby, it 

is very important to detect those sections of the signal, which are contaminated by artifacts 

in order to remove these sections from further processing. In this chapter, the goal is to 

assess the ability of different simple features to capture these artifacts in ACC signals 

obtained at the carotid. It is introduced a systematic analysis of the detection performance 

based on low computational complexity features that can be easily integrated into 

embedded systems as required in portable Health applications as well as in resuscitation 

systems. A simple threshold-based classifier is proposed to detect artifacts in ACC signals 

collected from the carotid. 

 

4.2. Methods 

4.2.1. Experimental Protocol and Setup 

To develop and test the methodology a data collection study was performed with 12 

healthy volunteers. The protocol was designed to capture typical artifacts to be expected 

during daily life activities (e.g., head and neck movements, talking, swallowing, etc.), but 

also extreme situations such as jumping (simulation of rapid body movements). 

Specifically, the protocol consisted of five phases without any noise (two in the supine, 

two in the seated positions and one in the standing position), and five phases characterized 

by a specific movement such as: arm movements in the horizontal position, speech, 

rotation of the neck, swallowing and jumping. Each of these phases had a duration of 20 

seconds and were separated from each other by a transition phase of 10 seconds.  
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Figure 10 - Description of the data acquisition protocol activities/phases and respective duration (seconds). 

The acquisition process for each subject had a total duration of 300 seconds (5 

minutes) as illustrated in Figure 10. One example of a signal stream generated by this 

procedure is shown in Figure 11. The Data was recorded from twelve healthy volunteers 

that provided informed consent. The age of the participant group was 29±11 (mean ± SD) 

years (from 22 to 49 years) and body mass index (BMI) was 23.28±2.02 kg.m-2 (mean ± 

SD). 

 

Figure 11 - Representation of a generated ACC signal (patient 12); segments signalized with the green arrows 

represent clean phases and segments signalized with the red arrows represent noisy phases. 

The accelerometer signals were acquired from the carotid with a multi-parameter, 

battery operated device called “SENSATRON” [57]. The three-axis ACC signals were 

collected with a sampling frequency of 62.5 Hz. The absolute value of the acceleration 

vector (Abs. ACC) was also extracted using (8), where ACCX, ACCY and ACCZ represent 

each of the individual accelerometer axis and n represents the sample index.  

𝐴𝑏𝑠. 𝐴𝐶𝐶(𝑛) = √(𝐴𝐶𝐶𝑋(𝑛))
2

+ (𝐴𝐶𝐶𝑌(𝑛))
2

+ (𝐴𝐶𝐶𝑍(𝑛))
2
 

(8) 

Simultaneously, an ECG was measured, sampled at 250 Hz. The location of the 

accelerometer and the “SENSATRON” layout can be observed in Figure 12. 



 

28 

 

 

Figure 12 - Location of the accelerometer (top left). The ECG sensors of the “SENSATRON” (bottom left and right). 

More details about the system can be found in [57]. 

 

4.2.2. Implemented Algorithm for Signal Classification 

 

Figure 13 - Scheme of the different steps of the algorithm. 

Figure 13 depicts the tested solutions for the artifacts detection in ACC signals. The 

classifier algorithm based on a classical training and testing approach was developed 

using six different features. The implemented processing stages comprise two distinct 

phases. In the first phase the extraction of the signal features was performed. In the second 

phase, a simple threshold-based classifier was applied, for which the optimal threshold 

was determined during a training phase based on a receiver operating characteristic 

(ROC) analysis. The performance of the classifier was evaluated using a test-data set. 

Furthermore, features relevance was assessed using a features selection score metric [43] 

in order to evaluate features providing complementary information to be integrated into 

a more robust multi-feature classifier.  
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1st Phase: in the first phase, each of the axis of the ACC signal was pre-processed for 

feature extraction using three different approaches depicted in Figure 13. It was filtered 

with three different high-pass filters. In the simplest pre-processing stage, a 5th order 

Butterworth high-pass filter with cut-off frequency of 0.5 Hz was applied in order to 

eliminate the DC component as well as frequencies related to respiratory cycle or 

vasomotion. In the others two pre-processing stages the rational was to isolate the noise 

content from the actual carotid pulse induced acceleration signal and to extract features 

from the former. Using the Singular Value Decomposition (SVD) approach, it was 

selected the less relevant portion of the signal defined by the data. Applying the high-pass 

filter with higher cut-off frequency it was selected the high-frequency noise component. 

This is based on the observation that movement artifacts tend to exhibit higher frequency 

components compared to the non-disturbed carotid signals, as it is clearly demonstrated 

in Figure 14. 

 

Figure 14 – Representation of the frequency spectrum of patient 8 in two different phase: noisy phase with the red 

label and a clean phase with the blue label. 

In the filter-based noise separation approach, the cut-off frequencies were determined 

using a simulation modelling radius variation of the carotid artery given a typical blood 

pressure of SBP = 120 mmHg and DBP = 80mmHg [22]. The heart rates considered as 

input in the model were at rest, 80 bpm (average value of the heart rate at rest [58]), and 

during the resuscitation, 240 bpm [59]. The pulse pressure wave was simulated using the 

model reported in [28], partially explained in the previous chapter. Basic blocks of the 

simulation model are depicted in Figure 15. Using this approach, the actual cut-off 

frequencies were determined as 5.4 Hz and 16.0 Hz given that these frequencies 
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correspond to the expected accelerometer signal bandwidth at 80 bpm and 240 bpm, 

respectively.  

 

Figure 15 - Scheme of the simulation model for 80 bpm. PA-arterial pressure; DBP-diastolic blood pressure; PP-

pulse pressure; HR-Hear rate; t-instant of the pulse. 

In the second noise separation approach the SVD method is applied in order to 

identify signal components related to noise. Let 𝐴 ≡ (𝑥𝑥, 𝑥𝑦, 𝑥𝑧) ∈ ℝ𝑛𝑥3 with 𝑛 the 

number of samples, be the matrix formed by appending the three axis of the accelerometer 

signal, decomposed in three matrix, according to the following equation:  

𝐴 = 𝑈𝑆𝑉𝑇 (9) 

where the columns of the matrix V and U consist of the right and left singular vectors, 

respectively, and the S is a 3𝑥3 diagonal matrix whose diagonal are the singular values 

of A [60]. Each singular vector represents one of the orthogonal vectors describing the 

space spanned by the signal. However, the relevance dimension to reconstruct or describe 

the signal is different. As Figure 16 illustrates, the first is significantly more relevant than 

the other two, representing during the entire extraction, the most part of the signal. The 

third one, is also less relevant than the second.  

The relevance was calculated according to: 
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𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒𝑖 =
𝑆𝑉𝑖

∑ 𝑆𝑉
 

(10) 

with SVi representing the ith singular value and ∑ 𝑆𝑉 the sum of the three singular values. 

 

 

Figure 16 – Representation of patient 8 singular values relevance during the extraction period. The first one with the 

black label, the second with the blue label and the third with the red label. Upper graphic: representation of the three 

singular values; Bottom graphic: representation of the second and third singular values. The green and red arrows 

represent the phases with/without noise, respectively. 

Therefore, assuming that the noise represents an uninteresting part of the signal, to 

isolate it, the two major singular values were zeroed and the matrix A recalculated 

according to formula (9). 

In a next step, from these pre-processed signals the 6 different features (Energy Mean 

- EM, Energy Variance - EV, Shannon Energy - SHE, Third and Fourth Statistical 

Moments to assess peakness and skewness of the signal distribution – SM3; SM4, and 

Teager Energy - TE), were extracted as defined in the following equations:  

𝐸𝑀 =
1

𝑁𝑠
∑ 𝑥(𝑛)2 

(11) 

𝐸𝑉 =
1

𝑁𝑠
∑(𝑥(𝑛)2 − 𝐸𝜇(𝑛))

2
 

(12) 

𝑆𝐻𝐸 = ∑[𝑥(𝑛)2𝑙𝑜𝑔(𝑥(𝑛)2)] (13) 

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑀𝑜𝑚𝑒𝑛𝑡 = ∑
𝑥(𝑛)𝑡

𝑁𝑠
  

(14) 

𝑇𝐸 =
1

𝑁𝑠
∑(𝑥(𝑛)2 − 𝑥(𝑛 − 1)𝑥(𝑛 + 1) ) 

(15) 
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where 𝑥 represents the signal, 𝑛 represents the sample index, 𝑡 represents the order of the 

moment (3rd or 4th) and 𝑁𝑠 the number of samples on the moving window. These features 

were calculated using a 1.5 seconds centered moving window with 99% of overlapping. 

All the features were normalized, by the mean of the signal amplitude acquired during 

the first lying down phase of the protocol. 

2nd Phase: in this phase, the threshold-based classifier was tuned using a training 

dataset to estimate the optimal threshold using a ROC-approach. Performance was 

evaluated using an independent test dataset. The signals collected from the volunteers 

were randomly divided into these two groups to form the aforementioned datasets, i.e., 

the training dataset was defined using the data collected from two thirds of the available 

individuals (8 subjects randomly selected), whereas the test dataset was constituted by 

the signals collected from the remaining individuals (4 subjects).  

As was already mentioned, a ROC-based approach was applied using the training 

dataset in order to obtain the optimal threshold for each feature, i.e., the selected threshold 

value is the one that optimizes the tradeoff between sensitivity and specificity (see Figure 

17). It should be noted that, in order to avoid influence of uncertainty during the prolonged 

transitions between adjacent phases in the protocol (e.g. due to slow reaction of the 

subject), the first and last 2 seconds of each phase have not been considered for 

classification performance assessment. Another important point to mention is that the 

ground truth of the signals was defined by manual classification according to the different 

phases of the protocol. This could affect the performance of the classifier. 

 

Figure 17 - Example of a ROC curve and the point associated to the best balance between Sensitivity and Specificity. 
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Finally, there was the ranking of the most convenient features for the classifier, based 

on FSS-score, that combines their relevance, by the area under the ROC curve (AUC), 

and redundancy, assessed by Spearman’s rank correlation coefficient (RCC) [43]. This 

allows to know which feature is more adequate to define a classifier, and also which 

features provide complementary information. Thus, the most suitable features for a multi-

feature classifier can be selected based on this ranking. It was calculated according to 

following formula: 

𝐹𝑆𝑆𝑖 = 𝐴𝑈𝐶(𝐹𝑖) −
|∑ 𝑅𝐶𝐶(𝐹𝑖, 𝐹𝑗)𝐹𝑗𝜖𝑆 |

|𝑆|
 

(16) 

with AUC(Fi) representing the AUC obtained by the ith feature, RCC (FTi, FTj) the 

Spearman’s RCC between the ith and jth feature, S representing the subset of selected 

features at each iteration and |S | its cardinality [14]. 

 

4.3. Results and Discussion 

4.3.1. Implemented Algorithm for Signal Classification 

Table I shows the best performance results to discriminate noise/no noise achieved 

using each of the individual accelerometer axis (ACCX, ACCY and ACCZ), the Abs. ACC 

and the classification approach outlined in the previous section.  

Table I - The best performance for the three different axis and the absolute value of acceleration. 

AXIS ACCX ACCY ACCZ ABS. ACC 

SEN (%) 82.1 76.2 91.1 88.7 

SPE (%) 93.5 94.3 91.3 92.2 

 

According to Table I, the component that provides the best performance for the 

classifier was the component on the direction z (perpendicular to the skin- see Figure 12). 

Looking into the performance of each patient of the test group, according to Table II, the 

most consistent and constant axis was ACCZ, always with values of SEN and SPE above 

80%. Even in the case of patient 2, the ACCX, ACCY and Abs. ACC had values of 

sensitivity of 43.5%, 47.3% and 68.3% respectively, whereas the ACCZ achieved 87.4% 

making this axis more reliable for noise discrimination according to the algorithm 

applied. 
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Table II –Algorithm performance for each patient of the test group. 

 PATIENT 2 PATIENT 6 

 ACCX ACCY ACCZ Abs. ACC 

 

ACCX ACCY ACCZ Abs. ACC 

 

SEN (%) 43.5 47.3 87.4 68.3 98.0 90.7 96.5 98.8 

SPE (%) 97.6 98.2 96.7 97.5 88.2 90.6 87.5 87.3 

 PATIENT 7 PATIENT 12 

 ACCX ACCY ACCZ Abs. ACC ACCX ACCY ACCZ Abs. ACC 

SEN (%) 98.4 90.0 100 99.8 88.4 86.8 80.4 88.1 

SPE (%) 91.5 93.0 83.8 87.1. 96.4 95.2 97.3 96.6 

 

In the following, taking into account the performance of each axis and the abs. ACC, 

only the results related to the z axis ACC and the absolute ACC value will be presented 

and discussed. In Figure 18, it is notorious the difference of energy between the various 

phases of the signal, where the contaminated segments exhibit much higher energy than 

the clean segments. As can be observed, interferences on the ACC signal are reflected as 

an increase of the signal energy. Specially, during the jumping phase, between the second 

220 and the second 240, where the movements are much more aggressive than in any 

other phase, the energy reaches considerably higher values.  

 

Figure 18 - Representation of Abs. ACC and ACCZ signals, and respective energy for patient 12. The green and red 

arrows represent the phases with/without noise, respectively. 
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Table III, summarizes the classification results in the test dataset achieved using the 

aforementioned noise detection approach for the various pre-processing configurations 

and derived features. Very similar results for the best feature were obtained using the z-

axis, with SEN=91.1% and SPE=91.3%, and using the absolute value of ACC signal, with 

SEN=88.7% and SPE=92.2%. 

Table III - Classifier performance for all features, for the dimension z selected and for the absolute value of the 

acceleration. 

PRE-PROCESSING 

TYPE\ FEATURE 

EM EV SM3 SM4 SHE TE 

SEN 

(%) 

SPE 

(%) 

SEN 

(%) 

SPE 

(%) 

SEN 

(%) 

SPE 

(%) 

SEN 

(%) 

SPE 

(%) 

SEN 

(%) 

SPE 

(%) 

SEN 

(%) 

SPE 

(%) 

DC-FILTER ACC 

   z 

80.2 92.0 74.6 89.7 70.6 90.1 72.3 91.1 75.1 89.5 83.6 93.3 

Abs. 

ACC 

88.2 91.0 73.2 92.5 82.5 91.0 71.8 94.0 71.5 94.0 81.9 94.0 

SVD ACC 

   z 

62.3 95.6 62.7 93.9 63.6 91.7 62.9 94.1 61.9 94.1 58.9 94.4 

Abs. 

ACC 

81.0 90.4 59.9 93.2 67.6 91.2 60.8 92.0 60.3 93.1 69.7 93.4 

NOISE-

FILTER 

fc=5.4 

Hz 

ACC 

   z 

91.1 91.3 73.7 91.9 74.8 86.5 78.1 91.6 77.5 91.6 88.8 91.5 

Abs. 

ACC 

88.7 92.2 75.9 91.9 83.8 92.0 78.8 92.2 78.1 92.3 85.2 92.4 

fc=16 

Hz 

ACC 

   z 

74.5 89.1 70.1 87.6 71.1 74.7 72.4 86.8 74.0 84.9 74.5 88.9 

Abs. 

ACC 

74.6 93.4 70.5 89.0 72.4 92.6 73.3 89.9 73.3 89.6 74.5 91.5 

 

Despite the relatively similar performance, as can be observed in Figure 6 (Chapter 

2), in fact the carotid artery in its extension, is almost entirely parallel to the necks surface, 

which suggests that movements of dilation and constriction by the artery are more 

pronounced in the direction perpendicular to the skin of the neck. Considering that the 

signals induced by these movements are those of interest to be detected by the 

accelerometer, the optimal direction to the extraction in order to have a better signal 

morphology with higher quality, is the direction of the axis z. Therefore, in order to avoid 

the influence of other axis contaminations, all the further considerations are about the 

ACCZ. 

As Table III depicts, for most of the features, the pre-processing that led to the best 

results were the one derived with a high-pass filter (fc=5.4 Hz), with significant 

differences of the performance between the two cut-off frequencies used. These 

discrepancies might be caused by the fact that acquired data were from healthy people 

only doing regular and low-intensity exercises, therefore, the heart rate was usually below 
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80 bpm. Although the difference between these two cut-off frequencies the energy mean 

feature tends to provide stable results for a significant range of cut-off frequencies, with 

sensitivity and specificity values above 85 % until frequencies around 10.5 Hz, as it is 

illustrated in Figure 19. 

A similar observation was found for TE. This feature exhibits good performance even 

when no noise filtering was applied, maybe due to the fact, that this feature is sensitive to 

both intensity and frequency of the signal, while all the others are more sensitive to the 

intensity. 

 

Figure 19 - Performance of Energy mean feature for different frequencies from 5.4 Hz to 16 Hz. 

In Table IV it is assessed the level of feature relevance using the FSS-score approach 

for the selected components. Although the TE exhibits a similar AUC value compared to 

the EM, it is ranked in a lower position compared to the SM3, due to its higher correlation 

with respect to the EM. Furthermore, only the EM and the SM3 feature exhibit a FSS-

score higher than 50%. This suggests that the remaining assessed features do not 

contribute with relevant added information to describe the problem’s domain. Therefore, 

they might be irrelevant if a more complex multi-feature classifier is to be designed for 

artifact detection in ACC signals measured at the carotid. 

Table IV - Feature selection rank, of the axis z, according to the FSS-score. 

FEATURE SCORE (%) AUC 

ENERGY MEAN 94.78 94.78 

3º STATISTICAL MOMENT 75.16 81.83 

TEAGER ENERGY 40.77 94.11 

4ºSTATISTICAL MOMENT 18.42 86.44 

ENERGY VARIANCE 10.17 85.71 

SHANNON ENERGY -0.0227 78.4 
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4.4. Conclusion and Future Work 

In this chapter it was investigated the application of low computational complexity 

features in the detection of movement artifact in accelerometer signals acquired from the 

carotid. Using a dataset collected from healthy subjects, it is shown that very promising 

results can be achieved with a simple feature as the first statistical moment of the signal 

energy, with sensitivity and specificity above 90%. However, it would be interesting to 

develop a more robust multi-feature classifier with the first and the third statistical 

moments, once they seemed to have a good complementarity.  

The axis that has revealed the best performance was the axis z, being this the most 

consistent, reliable and stable, however a similar performance was achieved with the 

absolute values of the ACC signal. 

Despite the similar performance, the signal of interest to extract is the movement of 

dilation and constriction by the carotid artery. Once these movements are more 

pronounced in the direction perpendicular to the skin of the neck, this direction is the 

optimal one to extract the signal with a better morphology and higher quality, which 

corresponds to the direction of axis z. Therefore, axis z seems to be the most propitious 

axis to use, although, the absolute value of the ACC signal also is an interesting 

alternative.  

The limitations imposed by the reduced database available in this work do not allow 

to draw definitive conclusions or to perform any kind of generalization. In this way, the 

conditions imposed, namely the noise threshold used might have to be recalculated after 

a change of the database. In spite of this, the methodology developed and tested, revealed 

optimistic results. Consequently, the next step would be to apply it in a more extensive 

dataset collected using the target population of the intended core applications. Other 

directions for future work comprise (i) the assessment of the ACC signal quality in terms 

of diagnostic value during artifact contamination and (ii) to explore disturbance of the 

quasi-periodic nature of pressure pulses in order to detect artifacts.  
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Chapter 5  

Robust Carotid Pulse Detection Using 

Accelerometry and 

Electrocardiography and Pulse 

Arrival Time Extraction 

5.1. Introduction 

This chapter builds on top of the developments introduced in the previous chapter by 

exploring the properties of the ACC sensors in order to move a step further to the 

resolution of the problems that CPR process and syncope prediction face. 

Due to the high costs in healthcare related to syncope, especially those caused by falls 

in the older population, and due to the impact it has on the quality of life of the population, 

an effective early warning system able to predict impending NMS event via the 

assessment of surrogate blood pressure parameters, is a highly relevant and interesting 

area for innovations. 

Regarding CPR, its efficiency and velocity are a crucial factor for the sequelea that 

may arise from a cardiac arrest or between life and death [9]. Hence, any phase of the 

resuscitation process must be optimized so the damages can be the least possible. Taking 

into consideration that, the method for pulse detection during CPR is unreliable and error 

prone, an automatically and reliable pulse presence detection mechanism is highly 

appropriated and needed [10], [16]. 

Therefore, knowing the potential of ACC sensors in both areas and taking into 

consideration the susceptibility of ACC signals for noise contamination, a noise classifier 

algorithm was developed in the previous chapter. After this, the next step should be the 

elaboration of an algorithm for pulse presence identification and subsequently BP 

surrogate features extraction for syncope prediction. Taking into account the 
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contaminated samples, the segments with pulse presence are detected, from which, the 

BP surrogate features are inferred. In this way, the aim of this study was to perform a first 

initial investigation of a signal fusion concept between ECG and ACC signals inspired by 

calculating a cross-correlation feature for discrimination of pulse presence/absence as 

described in [61] and to extract and infer PAT as a Blood Pressure surrogate feature using 

the ACC signal.  

 

5.2. Methods 

5.2.1. Experimental Protocol and Setup 

As in chapter 4, the data collection study was performed using the investigational 

device “SENSATRON” from Philips [16]. This bio-signal acquisition platform enables 

the synchronous measurement of ECG signals and multiple three-axis ACC signals. In 

this experiments, one of the ACC sensors has been positioned on the carotid (see Figure 

12 - Chapter 4). The three-axis ACC signals were sampled at 125 Hz, and the ECG signal 

at 250 Hz. Since the main interest is in the artery dilation signal, this analysis was focused 

just in the signal from ACC z-axis, as it is explained in Chapter 4. 

The analysis is based on a subset of data gathered during HUTT test involving 27 

patients with an unexplained history of syncope [16]. Data of 8 patients, 5 male and 3 

female, with an average age of (56  23) years and a BMI of (26.5  5.6) kg.m-2 were 

used in this work. These patients had different cardio-vascular conditions such as 

arrhythmias or structural heart diseases. 

Since HUTT test data typically does not include well-defined phases without pulse 

information, in order to have a ground truth of segments with/without pulse presence for 

the development of the pulse presence classifier, it was induced in the database segments 

of ACC signals without pulse information obtained during lab tests

This data set was collected using the ACC sensor of the “SENSATRON” device by (i) 

attaching the sensor on the back of a hand to simulate the absence or a low power pulse 

signal, and (ii) placing the ACC sensor on a table (sensor is not attached at all). These 

segments representing “Pulse absence” were placed randomly in the HUTT test dataset. 

Each “Pulse absent” phase has a duration of 5 minutes, in which any external disturbance 

was avoided. One signal stream generated by this procedure is shown in Figure 20. It is 



 

 

41 

 

important to notice that, this replacement of ACC signal segments was used just for the 

pulse presence classifier development. For the PAT extraction, the ACC was used without 

any kind of induced segments. 

 

Figure 20 - Representation of a generated ACC signal (patient 1); segments between the blue vertical lines represent 

phases with (green label) or without (red label) pulse. 

Not all available data for this study exhibited adequate characteristics for processing. 

It is observed that patient 2 experienced severe atrial fibrillation during the HUTT test 

collection procedure, resulting in ACC signals of low signal-to-noise (SNR). The ECG 

of patient 5 was considerably contaminated with power line noise and patient 8 contained 

Premature Ventricular Contractions (PVCs), reflecting on an ECG and ACC signals 

considerably affected, as shown in Figure 21. In the case of patient 7, the ACC signal is 

also considerably contaminated. In certain segments the pulse can be easily identified, 

but the morphology of the pulse had suffered significant interference, as occurs with 

patient 6, which may affect the cross-correlation (see Figure 22). These issues might 

compromise the performance of the algorithm, although illustrate the broad range of 

situations that the method will face and should be able to handle in a real-life application. 

 

Figure 21 - Premature Ventricular Contractions in Patient 8. 
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Figure 22 – Representation of the ACC signals of patient 6 (top) and patient 7 (bottom). 

Regarding the patients 1, 3 and 4, the signals had revealed a good quality signal with 

good morphology and high SNR.  

 

5.2.2. Implemented Algorithm for Pulse Presence 

Classification 

The proposed method for pulse detection is depicted in Figure 23. The main idea of 

the algorithm was to explore a signal fusion concept of the ACC and ECG signals in order 

to infer pulse presence during the ACC signals. The first stage of the algorithm identified 

noise due to body movement, speech and head movement using the method as reported 

in Chapter 4. This noise detection method was tuned for the presence of high-frequency 

or high intensity interferences in the carotid ACC signal. In the second processing stage 

a correlation feature from pre-processed ECG and ACC signals was derived from sliding 

windows [61]. Finally, in phase three, a simple threshold-based classifier was applied to 

detect pulses. The optimal threshold was identified using an ROC approach on the 

training data.  

 

Figure 23 - Main stages of the proposed algorithm. 
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These phases are described in detail below: 

1st Stage: This stage prepares the ECG and ACC signals for the correlation 

assessment. For this purpose, the ECG signal was resampled at 125 Hz to have the same 

sampling frequency as the ACC signal. Subsequently a 5th order Butterworth high-pass 

filter with a cut-off frequency of 0.5 Hz was applied in order to eliminate baseline noise. 

In a next step, two parallel procedures were implemented for the ACC signal: (i) the signal 

was high-pass filtered (details below) and (ii) the noise in the ACC signals was detected 

per sample and annotated in order to avoid further processing (see Figure 24). The 

percentage of signal contamination for each patient was calculated according to (17).  

𝐶𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 (%) =
|𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑑 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠|

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100 

(17) 

 

 

Figure 24 - Scheme of the different pre-processing steps, with fs representing the sampling frequency and fc the cut-

off frequency. 

The ACC signal was high-pass filtered using a 5th order Butterworth filter with a cut-

off frequency higher than 0.5 Hz to eliminate the DC component as well as any type of 

low-frequency contamination such as respiratory movements and vasomotion. 

Furthermore, an increase in the cut-off frequency highlighted the main peaks in the ACC 

signal, which were due to the carotid pulse and, therefore, improved the correlation with 

the ECG signal. As Figure 25 illustrates, applying a cut-off frequency of 5 Hz, contrasting 

to fc=0.5 Hz, the signal loses its low-frequency oscillations, presenting a morphology 

more similar to the ECG, which optimizes the cross-correlation and allows that more 

accurate results can be achieved. After this phase, the noise-contaminated sections of the 

ACC signal were identified, having little or no influence, for further processing.  
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Figure 25 - ACC signal of patient 6 after a high-pass filter has been applied. Upper diagram: ECG; middle diagram: 

ACC submitted to a high-pass filter with a cut-off frequency of 0.5 Hz; lower diagram: ACC submitted to a high-pass 

filter with a cut-off frequency 5 Hz. 

2nd Stage: In this stage, the correlation between the ACC and ECG was determined 

using a sliding window of width equal to 3 seconds and with 75% of overlap. From each 

window, the absolute maximum of the normalized correlation coefficients was extracted 

for further assessment of pulse presence (see Figure 26).  

 

Figure 26 - Example of the cross-correlation coefficients for a 3 seconds window. The green mark represents the 

coefficient used for pulse classification and the red mark the lag considered as PAT. 

In order to reduce noise interference, cross-correlation was only assessed if the 

percentage of contaminated samples in the analyzed window was below a pre-defined 

threshold L. After a careful and detailed analysis, it was observed that changes on the 

percentage L of contamination had only minor influence on the performance of the 
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algorithm and it was fixed to 20%, as it is observed in Table V. To minimize loss of 

samples, contiguous contaminated sections with less or equal to 10 samples were 

reconstructed using linear interpolation. For contiguous sections of contaminated ACC 

signals greater than 10 samples, the affected samples and their ECG counterparts were 

removed from further processing. For a better understanding, the process of how to deal 

with the noise during the cross-correlation features extraction is depicted in Figure 27. 

Figure 28 represents the correlation coefficients for two patients using the pre-processing 

steps discussed before.  

Table V – Performance according to the change of contamination tolerated L, for a cut-off frequency of the ACC 

filter of 5 Hz. 

L (%) 0 0.5 1 5 10 15 20 

SEN (%) 96.6 96.6 96.6 96.6 96.7 96.6 96.6 

SPE (%) 94.9 94.9 94.9 94.9 94.9 94.9 94.9 

 

 

Figure 27 – Process for noise treatment during the cross-correlation features extraction 

 

Figure 28 - Correlation coefficients extracted from the entire signal for two patients. Segments between the blue 

vertical lines represent the inserted “pulse absence” segments (Patient 1 - upper panel; Patient 5 - bottom panel; 

fc=5Hz; L=20%). 
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3rd Stage: In this stage, using an ROC-based approach, the optimal threshold was 

determined for a training dataset, i.e., the threshold that optimized the trade-off between 

sensitivity and specificity (see Figure 17 - Chapter 4), and then evaluated using an 

independent test dataset. The training and the test dataset were defined randomly at the 

patient level, i.e., two thirds of the patients in the database (5 subjects) were selected as 

part of the training group, and the remaining 3 patients formed the test group. The ground 

truth of these signals was defined by manual annotation.  

To assess the optimal cut-off frequency for the high-pass filter applied to the ACC 

signal, the mentioned 3 phase’s procedure, was applied for a range of frequencies between 

0.5 Hz and 8 Hz. The upper limit of the interval was defined when an increase in the cut-

off frequency was clearly reflected in a noticeable decrease of the algorithm’s 

performance. For each frequency, the performance associated to the optimal threshold 

was annotated and posteriorly, comparing all the performances and using an ROC 

analysis, the optimal cut-off frequency was selected.  

 

5.2.3. Implemented Algorithm for Pulse Arrival Time 

extraction 

After the method introduced in the previous section has been applied, the optimal cut-

off frequency for the ACC filtration and the optimal threshold for pulse classification 

were extracted, allowing the selection of the reliable signal segments for PAT inference, 

exploring the signal fusion concept of the ACC and ECG signals. Therefore, with 3 phases 

(see Figure 29), the present method also explores the ECG and ACC fusion to extract 

PAT and subsequently assess the relevance of this feature in a possible correlation with 

Systolic Blood Pressure. In the first phase, both ECG and ACC signals were high-pass 

filtered and the contaminated samples in the ACC signals identified. In the second phase, 

the correlation features from the pre-processed ECG and ACC signals were extracted, 

using sliding windows. In the last phase, the PAT extracted was filtered and then 

normalized for a subsequently correlation with SBP.   
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Figure 29 – Main stages of the presented method. 

These phases are described in detail below: 

1st Stage: in this phase, the signal was processed in an analogous way to the first 

phase of the previous method. The ECG was resampled at 125 Hz and high-pass filtrated 

with a cut-off frequency of 0.5 Hz, using a 5th order Butterworth filter. The ACC was also 

high-pass filtrated with the same type of filter, but the cut-off frequency used was the 

optimal one determined on the previous method. Afterwards, the contaminated samples 

were also identified.  

2nd Stage: in this phase, the correlation between the ACC and the ECG was 

performed using a window of 3 seconds and 75% of overlap, as explained in the 2nd stage 

of the previous method. From each window, the absolute maximum of the normalized 

correlation coefficients was extracted, as was the associated lag (see Figure 26). If the 

coefficient value was greater than the optimal threshold, determined in the previous 

method, then the PAT (corresponds to the lag) was accounted for, otherwise it was 

neglected. In order to avoid causality problems, it was defined that the extracted PAT 

corresponds to the final instant of the correlation window considered (this might induce 

a delay to the signal). At this stage, the signal processing procedures with respect to noise 

were also the same as in stage 2 of the above method, i.e., the cross-correlation was only 

assessed if the ratio of contaminated samples was below 20 % of the window considered. 

Additionally, in order to minimize the loss of samples, for contiguous sections of 

contaminated ACC signal lower or equal to 10 samples, those samples were reconstructed 

using linear interpolation, for contiguous sections greater than 10 contaminated samples 

those samples were removed from further processing (see Figure 27). 

3rd Stage: in this phase, after a complete extraction of the PAT, a 5th order 

Butterworth high-pass filter with a cut-off frequency of 0.005 Hz was applied, in order to 

smooth the signal, removing possible outliers. The value for the cut-off frequency was 

determined empirically based on which frequency better smooths and suits the signal (see 

Figure 30). Subsequently, it was normalized by the mean of the PAT value, during 1 

minute of the first standing position (PATref). Then, after the identification of the syncope 
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event, given as the minimum SBP peak, the correlation between PAT and SBP was 

performed. For this, the region of analysis considered was from 3 minutes before the SBP 

minimum peak and the minimum peak.  

 

Figure 30 – Representation of the influence of the cut-off frequency in PAT values extracted. 

In addition, 6 different reference values of PAT were analyzed since the moment that 

SBP began to decrease, until the SBP minimum peak (see Figure 31), in order to assess 

the changes in PAT values according to the SBP evolution. The reference values 

correspond to 0%, 5%, 20%, 50%, 80% and 100% (PAT0%, PAT5%, PAT20%, PAT50%, 

PAT80% and PAT100%, respectively) of the time between those two events [1]. 

It is important to note that both the onset of the SBP decrease and the timing of 

syncope have been manually annotated, which may induce some error. 

 

Figure 31 – Representation of the reference values used to the extraction of PAT values (0%, 5%, 20%, 50%, 80% 

and 100%), from the moment that Systolic Blood Pressure starts to decrease (0%) until the SBP minimum peak 

(100%). Based on [1]. 



 

 

49 

 

5.3. Results and Discussion 

5.3.1. Implemented Algorithm for Pulse Presence 

Classification 

Regarding the cut-off frequency, according to Figure 32 and Table VI, the optimal 

one that should be used to improve the performance of the present algorithm is 5 Hz. 

Although, for other frequencies within a certain range (2.5Hz-6Hz), the results were also 

very similar. Consequently, all results and conclusions presented in the reaming of this 

chapter are associated to a high-pass filter applied to the ACC signal with a cut-off 

frequency of 5 Hz.   

 

Figure 32 - Different performances associated to the change of the cut-off frequency of the ACC high-pass filter. 

Table VI – Performance of the algorithm for the different cut-off frequencies (fc) of the ACC high-pass filter. 

FC (HZ) 0.5 1.00 1.50 2.00 2.50 3 3.5 4 5 6 7 8 

SEN (%) 85.7 95.0 96.7 97.3 96.8 96.6 96.3 97.1 96.6 94.6 92.7 88.7 

SPE (%) 93.0 92.0 92.0 93.5 94.4 93.9 94.9 94.0 94.9 96.0 96.0 96.5 

 

Table VII shows the level of the ACC artifacts contamination of each patient 

identified by the noise classifier. As can be observed, the level of contamination was 

relatively small for most of the patients, but not for patients 5 and 7. A large portion of 

the acquired signals was lost for these two patients. 
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Table VII - Level of contamination identified on the ACC signal by the noise classifier for each patient. 

 CONTAMINATION LEVEL 

PATIENT 1 6.7% 

PATIENT 2 15.8% 

PATIENT 3 6.5% 

PATIENT 4 3.6% 

PATIENT 5 37.1% 

PATIENT 6 8.5% 

PATIENT 7 44.8% 

PATIENT 8 7.8% 

 

Table. VIII summarizes the average performance of the algorithm, evaluated with the 

test group, using the optimal threshold determined from the training data set. It was found 

very promising results, with SEN of 96.6% and SPE of 94.9% for this initial 

implementation. 

Table VIII - Performance of the algorithm and global results (entire dataset-8 patients; fc=5Hz; L=20%). 

 TEST GROUP GLOBAL 

SEN (%) 96.6 94.5 

SPE (%) 94.9 94.3 

 

In Table IX it is presented the results per patient using the best threshold to identify 

possible outliers as well as to verify if the performance of the algorithm in the referenced 

patients (2, 5, 6, 7 and 8) has been affected. For patient 2 and patient 5 the achieved 

sensitivity values were lower compared to the results for the other patients. The sensitivity 

for patient 5 is even lower than for patient 2. In the case of patient 8, the performance was 

good with SEN and SPE above 90%. This may have been due to the fact that, for pulse 

classification, the correlation between ACC and ECG was not significantly affected by 

PVCs. Regarding patients 6 and 7, the performance was also considerably good. This may 

suggest that despite the strange morphology that both signals had (see Figure 22), the 

algorithm was able to classify the pulse presence accurately.  

Table IX - Sensitivity and specificity for each patient when the optimal threshold was used. 

PATIENT 1 2 3 4 5 6 7 8 

SEN (%) 99.6 86.1 98.3 98.6 60.8 94.8 99.4 92.3 

SPE (%) 95.1 92.4 94.3 89.5 98.0 95.2 93.8 95.8 

 

The correlation coefficients of patient 5 shown in Figure 28 (bottom) exhibit a low 

contrast for phases of pulse absence versus phases with pulse presence. Also, it was 

observed large variations in the correlation coefficients, which might be caused by the 
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powerline interference in the ECG, as well as a low SNR of the ACC signal, as can be 

observed in Figure 33. This leads to a weak separation of pulse presence versus absence, 

being difficult to discriminate them solely using a simple thresholding approach. Hence 

a significant misclassification was obtained for patient 5. The same situation has 

happened with patient 2 due to the low quality of the signal. 

For ACC signals with a high SNR making a pulse easily observable, the correlation 

coefficient seams very well determined and able to separate phases of pulse presence 

versus pulse absence reliably. This is illustrated in Figure 28 (top) where periods without 

pulse have a correlation coefficient lower than 0.2, and where phases with pulse typically 

have a higher correlation coefficient. 

 

Figure 33 - Examples of Signals of Patient 5: (top) Filtered ECG; (bottom) filtered ACC fc=5Hz. 

 

5.3.2. Implemented Algorithm for Pulse Arrival Time 

extraction 

According to [37], PAT is influenced by the Pre-ejection Period and Pulse Transit 

Time. Regarding PTT, it has been subject to special interest in the medical and biomedical 

literature, due to its strong dependence on physiological variables such as peripheral 

resistance, arterial compliance and blood pressure [35]. Thus, assuming a constant PEP 

and taking into account that PAT=PEP+PTT, as referred in chapter3, it is expected that 

an increase of SBP be reflected in a decrease of PTT, which consequently is reflected on 

a decrease of PAT. On the other hand, a decrease of SBP leads to an increase of PTT, and 

subsequently to an increase of PAT. 
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Therefore, since syncope event is identified in this case by an abrupt decrease in SBP, 

it should correspond to an abrupt increase of PAT. 

 

Figure 34 – Representation of Systolic Blood Pressure and Pulse Arrival Time evolution for patient 1, 3 and 4. The 

region comprehended between the black vertical lines, defines the region of syncope (the blue and red signals 

correspond to the PAT before and after being filtered respectively). 

In Figure 34 the SBP and the extracted PAT are represented for patients 1, 3 and 4. 

Focusing just on the red signals, it is observed that the PAT variations followed the 
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expectations. Within certain limits of oscillations, for the 3 patients, the PAT remained 

relatively constant until the region where blood pressure regulation started to fail. Here, 

SBP began to decrease, which has disturbed the PAT levels significantly, with a 

considerable increase of its values. After SBP had returned to normal values (spontaneous 

recovery of the patient), the PAT decreased, stabilizing. Thus, for these patients, visually 

the variations of PAT were as expected. 

For the further analysis, only the mentioned 3 patients (patient 1, patient 3 and patient 

4) were considered. This was due to the fact that patient 7 and 8 did not suffer any syncope 

event (the SBP remained stable) and patient 2, 5 and 6 had a very questionable ACC 

and/or ECG signal quality. The PAT was very unstable with a very high number of 

outliers, not allowing any conclusions to be drawn about them (see Figure 35). 

Concerning patient 6, despite the good results achieved on the pulse presence classifier, 

the morphology proved to be a crucial parameter for a reliable PAT extraction using this 

approach (see Figure 22). 

 

Figure 35 – Representation of Pulse Arrival Time evolution for patient 2, 5 and 6 (the blue and red signals 

correspond to the PAT before and after being filtered respectively). 

Regarding the cross-correlation procedure, it was applied between a specific interval 

of the SBP and PAT signals. The interval was defined between 3 minutes before the SBP 

minimum peak until the minimum peak. Thereby, according to Table X, for all patients 

the correlation coefficient was negative, as it was predicted. Although, the absolute values 

were significantly low, having an average of 0.44 for the three patients. This can be, 

mainly due to the delay imposed to PAT at the moment of extraction by the 3 seconds 

correlation window, as mentioned before. 
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Table X – Correlation coefficient between PAT and SBP, since 3 minutes before the SBP minimum peak until the 

minimum peak. 

 PATIENT 1 PATIENT 3 PATIENT 4 

CORRELATION COEFFICIENT -0.64 -0.32 -0.36 

MEAN -0.44 

Therefore, another correlation process was made considering a delay between both 

signals, in order to find the optimal correlation position.  

Table XI - Correlation coefficient between PAT and SBP with delay tolerated, since 3 minutes before the SBP 

minimum peak until the minimum peak (Optimal delay <0 PAT anticipates SBP; Optimal delay>0  SBP anticipates 

PAT). 

 PATIENT 1 PATIENT 3 PATIENT 4 

CORRELATION COEFFICIENT -0.65 -0.91 -0.57 

OPTIMAL DELAY (S) -10 -86 -59 

MEAN -0.71 

 

In this way, Table XI represents the optimal correlation coefficients, and respective 

delay between PAT and SBP. The correlation coefficients remained negative, with an 

absolute value much higher than the previous one, with an average of 0.71. This confirms 

the inverse relation that characterizes both signals. 

Despite the good results, PAT extraction method just justifies possible delays around 

3 seconds, as mentioned. These delays, were much higher. The main cause of this delay 

is the number of outliers in the region (see Figure 34). This method of PAT extraction is 

very sensitive to the signals’ morphology (ACC and ECG). Any kind of variation in 

morphology, even the smallest one, can influence and be reflected in a PAT change. As 

Figure 36 depicts, the morphology change verified on the first pulse, was enough to create 

an outlier. This could be an advantage in the way that increases the accuracy of the 

method, but on the other hand, makes it very susceptible to contaminations and outliers.  

 

Figure 36 – Representation of the influence of the signal morphology in PAT extraction. Example of an outlier cause. 

Red circle shows the change of morphology in an ACC signal. 
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As can be observed in Figure 37, when the SBP began to decrease, the ACC quality 

worsened, which led to a large increase in the number of outliers in the syncope region. 

In this phase the patient tends to move a lot, compromising the best match between PAT 

and SBP.  

 

Figure 37 – Representation of the noise of the ACC signal that characterizes the syncope region. 

Concerning the extraction of PAT reference values, since the moment that SBP 

started to decrease (PAT0%) until the SBP reaches the minimum peak (PAT100%), the 

results were as expected. As can be observed in Table XII, for all of the 3 patients under 

analysis, there is a growing trend from PAT0% to PAT100%. Comparing with respect to 

PATREF, patient 1 shows an increase of 37%, patient 3 of 73% and in patient 4 shows also 

an increase of 109%. 

Table XII - Reference values used to the extraction of PAT values (0%, 5%, 20%, 50%, 80% and 100%), from the 

moment that Systolic Blood Pressure starts to decrease (0%) until the occurrence of syncope event (100%). All the 

values were normalized by PATREF. 

 PATIENT 1 PATIENT 3 PATIENT 4 

PATREF 0.09 0.12 0.13 

PAT Relative values 

PAT0% 1.17 1.83 1.46 

PAT5% 1.18 1.90 1.52 

PAT20% 1.20 2.05 1.68 

PAT50% 1.19 2.12 1.93 

PAT80% 1.21 1.98 2.06 

PAT100% 1.37 1.73 2.09 
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Therefore, all the results presented, reinforce the idea that PAT and the SBP vary in 

a completely opposite way, verifying an evident increase of PAT during a syncope event. 

 

5.4. Conclusion and Future Work 

In this chapter it was introduced a simple algorithm based on a signal fusion approach 

of synchronously acquired ECG and ACC signals to discriminate pulse presence/pulse 

absence and to further assess ACC-based PAT as a BP surrogate.  

The proposed method for pulse presence classification is simple and can be easily 

implemented in devices with low processing power: a similarity metric based on a simple 

linear correlation coefficient seems to provide a reasonable feature for pulse presence 

detection. A simple threshold-based classifier is applied to discriminate pulse 

presence/absence. Although the presented results have been assessed on a small database, 

these initial results are promising, with sensitivity and specificity above 90%, since it was 

found consistent performance even for patients with severe arrhythmia. It was evident the 

difference from segments with/without pulse presence, showing in the case of absence, 

considerably lower correlation coefficients.  

Regarding the method for PAT inference, it is also very simple to apply. Despite the 

good results for 3 patients, showing an evident correlation between SBP and PAT, the 

method proved to be very sensitive to any kind of contamination that the ACC or ECG 

signal may exhibit. This compromises the viability of this approach to use the 

accelerometer sensor as a wearable, once it is very susceptible to movement artifacts. 

Therefore, the next steps should be to evaluate these results using an extended database. 

A correlation between the PAT extracted from this method and PAT inferred between 

ECG and PPG should also be of interest, in order to verify/reinforce the conclusions 

drawn in here. 
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Chapter 6  

Conclusions and Future Work 

 The thesis explored the potential use of an ACC sensor placed over the carotid to 

accurately detect and characterize the carotid pulse as a means to develop syncope 

detection solutions as well solutions to support CPR. Regarding syncope, due to its huge 

impact on healthcare costs and in the quality of life, especially in elderly people, it was 

found a priority to find a continuous monitoring mechanism that was able to anticipate 

and predict a syncope event. Such a solution would allow people to take countermeasures 

in an eminent situation, preventing most part of syncope events. Cardiopulmonary 

resuscitation was also another area of interest due to the limitations of current approaches 

for pulse detection which are unreliable and error prone. Taking into consideration that 

the efficiency and responsiveness of the resuscitation process is preponderant for 

successful rescue, a reliable and automatic pulse detection technique should also be a 

priority. 

 Despite their potential, accelerometers are very susceptible to movement artifacts. 

Therefore, as a first challenge, it was designed an algorithm to handle with those artifacts 

properly. It was investigated the application of low complexity energy features (mean, 

variance, 3rd and 4th statistical moments and teager energy) in the detection of those 

contaminations. A simple threshold-based was applied to discriminate noise/no noise in 

healthy subjects. It is shown that very promising results can be achieved with a simple 

feature as the first statistical moment of the signal energy, with sensitivity and specificity 

above 90%. A complementarity between the first and the third statistical moments, should 

also be interesting for the elaboration of a more robust multi-feature classifier.  

The second challenge, after the noise classifier, was to develop a simple algorithm 

based on a signal fusion approach of synchronously acquired ECG and ACC signals to 

discriminate pulse presence/pulse absence and to assess whether ACC-based PAT 

inference might be used as a BP surrogate. The proposed method for pulse presence 

classification and PAT inference is based on a simple linear correlation features, between 

ECG and ACC signal, applied on a small database of patients submitted to HUTT test. 

For the pulse presence the amplitude of the maximum cross-correlation coefficient was 
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used and for the ACC-based PAT inference the lag relative to the aforementioned 

maximum was considered. A simple threshold-based classifier was applied to 

discriminate pulse presence/absence, achieving promising results, with sensitivity and 

specificity above 90%, even for compromised patients with severe arrhythmia. It was 

evident the difference from segments with/without pulse presence, showing in the case of 

absence, considerably lower correlation coefficients.  

Concerning the method for PAT inference, applied in a problematic database, with 

patients with poor quality signals, it proved to be very sensitive to any kind of 

contamination or morphology interference that ACC or ECG signals may exhibit. It 

showed to be adequate in just 3 of the 8 available patients in this study. The results 

associated to these patients were promising showing an evident negative correlation 

between SBP and PAT. Despite the good results for the aforementioned patients, this 

approach appeared to be highly susceptible to contaminations for PAT extraction, 

compromising the usability of this feature as a blood pressure surrogate.   

The limitations of a reduced database for both methods, do not enable to draw any 

kind of definitive conclusions or to perform any kind of generalization. In this way, the 

conditions imposed, namely the noise threshold and the pulse presence threshold used, 

might easily change once an extended or different dataset is applied. Consequently, the 

presented results in this thesis should be read with care. In spite of this, the methodologies 

developed and tested, revealed optimistic results. Therefore, regarding the first challenge, 

the next step would be to apply it in a more extensive dataset collected using an adequate 

target population, to assess of the ACC signal quality in terms of diagnostic value during 

artifact contamination and to explore disturbance of the quasi-periodic nature of pressure 

pulses in order to detect artifacts. With regard to the seconds challenge, the next steps 

necessarily comprise the extension of the available database in order to generalize both 

methods applied. A correlation between the PAT extracted from this method and PAT 

inferred between ECG and PPG should also be interesting to do, in order to 

verify/reinforce the conclusions obtained. 

 Given this, despite the heterogeneity of the achieved results and considering the 

limitation imposed by the small database available for this study, it is safe to say that the 

main goals of the thesis to contribute with new useful knowledge for the innovation CPR 

and syncope prediction mechanisms have been accomplished. 
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