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Resumo
Fusão seletiva a laser, que é baseada no princípio de fabricação de

objetos por adição sucessiva do material, é reconhecida como uma tec-
nologia de fabrico muito promissora. Esta tecnologia é adequada para o
fabrico de objetos com elevada complexidade geométrica que seria impos-
sível por outras formas. Esta tecnologia tem um ponto fraco relacionado
com o acabamento superficial, portanto, há uma necessidade de fresar-se
o objeto para a remoção do excesso do material ou seja a rugosidade.
Para o efeito e com o objetivo de otimizar as sucessivas fases aditivas
e subtrativas, propusemos o uso do eixo médio e suas extensões como
uma forma prática de resolver o problema e obter um ótimo acabamento
superficial. A noção do eixo médio está relacionada com a teoria dos di-
agramas de Voronoi e já foi proposto em diversos processos de fresagem.
É neste contexto que precisamos encontrar a melhor técnica que melhor
se adequa à nossa situação para determinar exata ou aproximadamente
o eixo médio.

Palavras Chave: Fusão selectiva a laser, diagram de Voronoi, eixo médio, eixo

médio truncado, fresagem

Abstract
Selective laser melting, which is based on the principle of material

incremental manufacturing, has been recognised as a promising additive
manufacturing technology. The technology is suited for creating geome-
trically complex components that can not possibly or feasibly be made
by any other means. Since this technique has a weak point related to
the surface finishing, there is a need to use techniques such as milling to
remove the surplus material. To plan and optimize the successive additive
and subtractive phases, we propose to use the medial axis and certain
extensions of it, as a practical way of determining the best possible fi-
nishing quality of the produced object. The notion of medial axis is
closely related to the theory of Voronoi diagrams, and has been proposed
in several milling applications that involve motion planning. To that end
we have to find which of the available construction strategies best suits
our needs to determine exactly or approximately the medial axis.

Keywords: Selective Laser Melting, Voronoi diagrams, medial axis, truncated

medial axis, milling
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Chapter 1

Introduction

The emergence of new technologies in different scientific areas has been boosting

and deeply changing the industrial world. Globalization and associated demand

have been exposing the industry to a very competitive market. The clients are

increasingly demanding and selective, which compels the industry to seriously invest

in high-end technologies in order to be more efficient, economically sustainable and to

be able to satisfy its clients. In recent years the mould industry has been investing

in new technologies, such as Fused Deposition Modeling (FDM), Selective Laser

Sintering (SLS), Electron Beam Melting (EBM), Selective Laser Melting (SLM).

Their differences are essentially in mechanical details (for more details about these

technologies see [31]).

In this work we are concerned with the SLM technology which is nowadays con-

sidered one of the most important technologies for metal processing. It is an additive

manufacturing technique that uses digital information to produce a 3D metallic ob-

ject with a laser from a metal powder. This technique is characterized by a successive

addition of material to a specific area, layer by layer, in opposition to what happens

in the traditional manufacturing. In the last years there has been an increasing in-

terest in the use of this technique, mainly because it offers a relative freedom in the

geometry of the objects to be manufactured, giving the possibility of producing ob-

jects that would be difficult or even impossible to produce using other techniques (see

Figure 1.1). Furthermore, the fact that the SLM technology produces objects with

high geometric complexity, gives more possibilities to produce personalized objects,

with low volume or even economically inviable with convectional manufacturing.
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Chapter 1 Introduction

Figure 1.1: Objects produced with SLM technology.

Usually a machine of SLM technology has a computer interface that gives to the

operator the possibility of taking control of the production process inside the machine

(in Figure 1.2 is shown a machine of SLM technology). To use the SLM technology,

it is compulsory to have first a 3D digital model of the object to be produced. The

object is then vertically produced regarding a choice of z axis, layer by layer, and

therefore it is necessary to know the geometry of each layer, in particular, its contour.

(a) Chamber of the machine (b) SLM Machine

Figure 1.2: Machine of SLM technology and the chamber where the objects are

produced.

Assume that a figure is given in three dimensions in the x, y, z axes, where the z

axis is the height. Let us cut the figure with the planes z = zn, zn ≥ 0. We call slice

to each layer between z = zn and z = zn+1. In Figure 1.4 we display sections of the

object shown in Figure 1.3. The idea is to build the object slice by slice with the

thickness of each slice being a parameter of the additive process. The thickness is

usually small enough so that the slices can be considered flat for practical geometric

purposes.

2



1.0

Figure 1.3: An example of an object to be produced with SLM technology. This is

a nose and due to its geometry it is expected to be difficult to produce such object.
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Figure 1.4: Sections related to the object shown in Figure 1.3.

One of the limitations of this technology is related with the efficiency in surface

finishing. For that reason, some objects need to be machined to remove the rough-

ness. Therefore, after a first phase of the production it is often applied a second

phase that consists in a subtractive process. It is in this context that the industry is

searching to bring together both processes, additive and subtractive, to be executed

in just one process step by step, or layer by layer.

The additive process gives the desired form to the object, see an example in

Figure 1.6, and then the subtractive process removes the surplus material as shown

in Figure 1.5.

3



Chapter 1 Introduction

Figure 1.5: Subtractive process. It is necessary to machine a cube to construct the

contours that give the form to the object to be designed.

Figure 1.6: Production of an object by the additive process. In contrast to subtrac-

tive process, it gives form to the object in the first time it is produced.

One should notice that the surface finishing of an object is an important issue,

because it can influence the cost of production. Many mistakes that sometimes

culminate in high costs, are due to the need of the surface finishing process. The

main goal of this work is to use mathematical tools to construct algorithms that will

help us control part of the production process.

The milling cutters have a fixed length and thickness, and if the object has

deep cavities it may not be easy to mill the deepest regions after the fabrication is

complete. To avoid this problem, one solution is to interrupt the additive process

while it is still possible to reach such regions with the milling cutters. After the

partial object has been milled, it returns to the additive process from the last quota

where it was interrupted. These interruptions are expensive and time-consuming

and therefore it is important to decide how many interruptions we need and when

4
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should we have them, in order to minimize the costs.

We assume that the object is given in STL format, and this kind of files stores

the geometry of the surface as a set of connected triangles. Therefore the contour of

each section is polygonal. More details about these files and its slicing can be found

in [11]. For a milling cutter to machine a section two things need to be taken into

consideration: the length of the milling cutter must be sufficiently long to reach the

section in question, and the diameter sufficiently small in order that the disk defined

by the horizontal section of the milling cutter can approximately cover all the points

in the polygon. Here, we assume that the milling cutter is cylindrical, therefore its

sections are disks. The covered region will be called reachable region or area.

In the next chapters we discuss the theory that is useful to determine or approx-

imate the area in a polygon that can be reached by the milling cutters of a fixed

radius. More precisely, in Chapter 2 we introduce the theory of Voronoi diagrams

for a finite number of points in the plane and discuss some of its properties and algo-

rithms for its computation. In Chapter 3 we generalize the Voronoi theory to a finite

set of bounded objects. We discuss the theory of the medial axis of a planar object

and its relationship with the Voronoi diagrams. We also introduce the concept of

truncated medial axis that will be the main tool to determine the reachable region

in a polygon and then we present some algorithms for the medial axis and truncated

medial axis computations. Finally, in the last chapter we talk about the application

of the theory presented throughout this work to the original problem and reach some

conclusions.
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Chapter 2

Voronoi Diagrams

In this chapter we introduce a mathematical theory that will help solve the problem

of covering a polygon with circles (disks) of some fixed radius. This theory is based

on Voronoi diagrams. The theory of Voronoi diagrams is not a new tool and it has

been applied in many different areas, for example, in Biology it has been used for

developing an algorithm for the rapid, fully automated location and characterization

of molecular channels, tunnels, and pores [24]. And in demographics it is used to

test wether more homogenous exposure areas can be generated to reduce ecological

bias [15]. We start with an introduction on Voronoi diagrams by giving its definition

and some properties. Then, we discuss the construction of the Voronoi diagrams and

some applications.

2.1. Definitions and properties

Given a set of points in the plane, that we call sites, the Voronoi diagram is a

subdivision of the plane in polygonal regions. Each site is associated to exactly one

region. Each region is the locus of points in the plane that are closer to this site

than to any other site. An example can be seen in Figure 2.1. Let us first define the

Voronoi region.

Definition 2.1. Let P = {p1, p2, . . . , pn} with n ≥ 2, be a set of points in R2, called

sites. The Voronoi region V(pi) of a site pi ∈ P is given by

V(pi) = {x ∈ R2 : dist(x, pi) ≤ dist(x, pj), j = 1, . . . , n}.

The Voronoi regions can be defined in high dimensions and with other norms,

but the most usually studied case is the planar one with the euclidian norm.

Lemma 2.1. A Voronoi region is polygonal.

Proof. We can characterize a Voronoi region through a semi-plane intersection pro-

cess. Let pi and pj be two sites of P and h(pi, pj) the semi-plane defined by the

7



Chapter 2 Voronoi Diagrams

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2.1: Planar Voronoi diagram with 12 sites. The red points are vertices or

Voronoi nodes.
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Figure 2.2: Degenerate Voronoi diagram because there exists a node that is an

intersection of more than three edges.

bisector of the straight line segment joining these two sites and that contains pi.

Thus, the region V(pi) =
∩

pj∈P\{pi}
h(pi, pj) is a polygon.

The vertices of a Voronoi region are called Voronoi nodes or Voronoi vertices

and its segments are called Voronoi edges. An edge is always on a bisector of two

sites and, therefore, the points on an edge are always equidistant to two points of P .

In Figure 2.1 the blue lines are Voronoi edges and the red points are Voronoi nodes.

We will call Voronoi diagram to the union of Voronoi edges and nodes. The Voronoi

diagram of the set P is denoted by V(P ).

Some properties of the Voronoi diagram are presented in this section. The proofs

are based on the bibliographic references [22, 23, 25, 29]. In most cases, each node

belongs to three edges. However, in some cases, as depicted in Figure 2.2, a node

can belong to more than three Voronoi edges. To ensure that each node belongs to

exactly three edges we consider the following hypothesis.

Hypothesis 2.1. In P there are no four co-circular points.

Each Voronoi region has one site pi that defines it and this site belongs to this

region. Thus, every point pi ∈ P has a nonempty Voronoi region. The semi-plane

h(pi, pj) contains the region V(pi) and the semi-plane h(pj , pi) contains the region

8



2.1 Definitions and properties

Figure 2.3: Voronoi edges incident to a Voronoi node v.

V(pj). The intersection of these semi-plans is just a line. Hence, we can surely state

that the interiors of the Voronoi regions of two distinct sites are disjoint. An edge

always belongs to two Voronoi regions and it separates the regions of two neighbor

points.

Theorem 2.1. If the hypothesis 2.1 holds, then every Voronoi node is an intersection

of exactly three edges and it is equidistant to the three sites of Voronoi regions for

which it belongs.

Proof. A node is an intersection of a set of edges. Let e1, e2, . . . , ek, for k ≥ 2, be a

sequence of edges incident in a node v given clockwise as shown in Figure 2.3. The

edge ei is an intersection of the polygons V(pi−1) and V(pi) for i = 2, 3, . . . , k and

e1 is common to V(pk) and V(p1). By definition of Voronoi diagram, the node v is

equidistant to pi−1 and pi because it belongs to the edge ei. By the same reason, v

is equidistant to pi and pi+1, and so on. Therefore, v is equidistant to p1, p2, . . . , pk.

This means that p1, p2, . . . , pk are co-circular, which contradicts our hypothesis when

k ≥ 4. Hence, we have k ≤ 3.

Now suppose that k = 2, then e1 is common to V(p2) and V(p1), and so is e2.

These two edges belong to the bisector of the segment p1p2, which means that they

do not intersect the node v, and that is a contradiction. Hence k = 3.

Theorem 2.2. The polygon V(pi) is unbounded if and only if pi is a boundary point

for the convex hull of the set P .

Proof. If pi is in the interior of the convex hull of P , then it belongs to the interior

of the triangle p1p2p3, with p1, p2, p3 in P . Let us consider the circles C12, C23 and

9
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(a) (b)

Figure 2.4: Illustration of the proof of Threorem 2.2.

C13 with finite radius passing through the point pi and through the pairs {p1, p2},

{p2, p3} and {p1, p3}, respectively (see Figure 2.4a). The arc A12 is the one between

p1 and p2 that does not contain pi. Similarly, we define the arcs A23 and A13. Any

point of A12 is closer to p1 or p2 than to pi. Let C be a circle that contains C12, C23

and C13. We are going to show that any point v outside C is closer to p1, p2 and p3

than to pi. The segment vpi intercepts one of the sides of the triangle p1p2p3. Let

such side be p1p2, then this segment also intercepts the arc A12 at point u. Either

p1 or p2 are closer to u than pi, since it belong to the shorter upi arc.

Let u be closer to p2, then dist(pi, u) + dist(u, v) ≥ dist(p2, u) + dist(u, v). By

the triangular inequality we get dist(p2, u) + dist(u, v) ≥ dist(p2, v) which means

that v is closer to p2 than to pi. Hence, any point v outside the circle C is closer

to p1, p2 or p3 than to pi. Thereby, the polygon V(pi) is contained in the circle C,

and consequently it is bounded. Conversely, we suppose that the polygon V(pi) is

bounded and let e1, e2, . . . , ek, k ≥ 3 be the sequence of edges of the boundary. Each

edge ek belongs to a bisector of the segment pip′h, p
′
h ∈ P (see Figure 2.4b). It can

be seen that pi is in the interior of the polygon p′1p
′
2 · · · p′k which means it is not a

boundary point for the convex hull of P .

Since only unbounded polygons can have rays as edges, the rays of the Voronoi

diagram correspond to pairs of adjacent points of P on the convex hull. Next, we

consider the dual of the Voronoi diagram, i.e., the graph with vertex set P and edges

joining the sites of P whose Voronoi polygons share an edge. Each Voronoi edge

corresponds to an edge in the dual graph that is called dual edge (see the Figure

10
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Figure 2.5: Delaunay triangulation and its vertices.

2.5).

Theorem 2.3. If we assume Hypothesis 2.1, then the dual graph of the Voronoi

diagram is a triangulation of P and is called the Delaunay triangulation denoted by

D(P ).

Proof. Immediate consequence of the Theorems 2.1 and 2.2.

In Figure 2.5 the Voronoi diagram is displayed in black and the associate De-

launay triangulation is in blue. The points highlighted in red are sites, that is, are

vertices of the Delaunay triangulation.

Lemma 2.2. Assuming Hypothesis 2.1, the Voronoi diagram of n sites has at most

2n − 5 nodes and 3n − 6 edges. The Delaunay triangulation of n sites has at most

3n− 6 edges and 2n− 4 faces.

Proof. Each dual edge corresponds to a unique edge in the Voronoi diagram and by

Theorem 2.3 it is a triangulation. Therefore, the Delaunay triangulation is a planar

graph of n vertices. Let us consider the Euler’s formula for a planar graph

nv − na + nf = 2, (2.1)

where nv, na, nf denote the number of vertices, edges and faces, respectively.

In this case nv = n. If we count the number of edges in the Delaunay triangulation

using the faces we get a maximum of 3nf edges, because each triangle comprises three

edges. On the other hand, since each edge is shared by two triangles the edges are

counted twice, that is, we obtain the inequality
3nf

2
≤ na. Substituting into the

Euler’s formula it is easily seen that na ≤ 3n− 6 e nf ≤ 2n− 4.

Thus we can state that the Delaunay triangulation has a maximum of 3n−6 and

2n − 4 faces and hence the number of Voronoi edges is at most 3n − 6. Each face

of the Delaunay triangulation dualizes to a Voronoi node and vice-versa. However,

11
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there exists an unbounded face in the Delaunay triangulation that do not dualize.

Hence we have at most 2n− 5 nodes.

The number of edges for each Voronoi region depends on the way the sites are

distributed. A Voronoi polygon (region) has at most n− 1 edges. Since the Voronoi

diagram has n polygons and at most 3n − 6 edges, where each edge is shared by

exactly two polygons then the average is at most six. For more details about the

calculation of the average see [9, 10].

2.2. Construction of the Voronoi Diagram

Before discussing the construction of the Voronoi diagram, we discuss the idea of

the algorithm divide and conquer. The essence of this algorithm is to split a given

problem into two subproblems approximately equal and solve them recursively. At

the end, the solutions are joined together to get just one solution for the original

problem. Generally, the reduction of the original problem to two subproblems is

simple but the step of concatenating the solutions is more demanding and tricky.

Preparata and Hong [26] were the first to apply the divide and conquer technique to

the problem of finding the convex hull of a given number of points.

We now introduce the following definition that will be necessary for the theorems

throughout the text.

Definition 2.2. Let f(n) and g(n) be two numerical sequences. It is said that

f(n) = O(g(n)) if exists a constant M > 0 such that

f(n) ≤Mg(n), n→∞.

If g(n) = nk we say that f(n) is of order k. In particular if k = 1, f(n) is said

to be linear.

Now, we need to assume the following:

Hypothesis 2.2. There are no three collinear points or two points on a vertical line.

In this case we can construct the following algorithm for finding a convex hull of

a finite number of points, in R2.

Algorithm 2.1 (Convex hull).

Input: A finite set P .

Output: The convex hull H(P ).

Steps:

12



2.2 Construction of the Voronoi Diagram

1. Organize the points in ascending order relative to the coordinate x;

2. Split the set P of points into two sets P1 and P2, each one containing half of

the points;

3. Find the convex hull H(P1) of P1 and H(P2) of P2 recursively;

4. Combine H(P1) and H(P2) in order to obtain H(P1 ∪ P2).

The step 1 ensures that the sets P1 and P2 are separated by a vertical line and

there is no superposition of points. This step simplifies the step 4. The steps 2, 3

and 4 are repeated recursively until n ≤ 3. If n = 3, the convex hull is a triangle by

the assumption of non collinearity. The major difficulty is on step 4. Suppose that

the convex hulls are H1 = H(P1) and H2 = H(P2). Then H(P1∪P2) = H(H1∪H2).

We want to find two tangent lines to both hulls located on the upper and bottom

parts. Let T be a line segment that connects the rightmost point of H1 and the

leftmost point of H2. We move downward the extremities of the segment T in an

alternating way, first on one hull and then on the other until the bottom tangent is

reached (see Figure 2.6). The upper tangent is obtained similarly, thus we take in

total a linear time O(n) to determine the convex hull of the two sets.

Figure 2.6: Illustration of how to find the bottom tangent line of two convex hulls.

Thus we have the following result.

Theorem 2.4. The divide and conquer algorithm for the convex hull of n points

takes at most O(n log n) time.

Proof. The binary tree of the algorithm has O(log2 n) levels each taking O(n) time.

13



Chapter 2 Voronoi Diagrams

Now, let us consider the divide and conquer algorithm to construct the Voronoi

diagram for n sites. Let P = {p1, p2, . . . , pn} be the set of sites, we call it generator

set. We assume that the elements of P are in ascending order regarding the x axis

and that the Hypotheses 2.1 and 2.2 hold.

Algorithm 2.2 (Divide and conquer method).

Input: The generator P with its points in ascending order.

Output: Voronoi diagram for P .

Steps:

1. If n ≤ 3, then construct the Voronoi diagram directly and go to step 3.

2. Else do:

(a) Split P into two subsets with half of the points, PE left half and PD right

half.

(b) Construct the Voronoi diagrams VE = V(PE) and VD = V(PD).

(c) Concatenate V(PE) and V(PD) and obtain a unique Voronoi diagram V

of P .

3. Return V(P ).

As in the convex hull computation, we need to pay special attention to the

concatenating step.

Algorithm 2.3 (Concatenating two Voronoi diagrams).

Input: The Voronoi diagrams VE e VD.

Output: Voronoi diagram V = VE ∪ VD.

Steps:

1. Construct the convex hulls HE and HD of PE and PD, respectively.

2. Find the common bottom holder (bottom tangent line) of HE and HD, denoted

I(PE , PD) and let b(pE , pD) be the bisector of the bottom holder.

3. Define w0 as the point at infinity on the ray b(pE , pD), and i← 0.

4. While I(PE , PD) is not superior (upper), repeat the following:

(a) i← i+ 1.

14



2.2 Construction of the Voronoi Diagram

(b) Find a point aE (different from wi−1) that is an intersection of b(pE , pD)

with the boundary of V(pE).

(c) Find a point aD (different from wi−1) that is an intersection of b(pE , pD)

with the boundary of V(pD).

(d) If aE has its ordinate less than aD then,

wi ← aE and

pE ← the generator on the other side of the Voronoi edge that contains

aE

else wi ← aD and

pD ← the generator on the other side of the Voronoi edge that contains

aD.

5. m← i.

wm+1 ← a point in the upper infinity of b(pE , pD).

6. Add the polygonal line (w0w1, w1w2, . . . , wmwm+1), and erase from VE and VD

the unnecessary lines on the right and left sides of the polygonal line. Return

the Voronoi diagram.

The Figures 2.7 and 2.8 depict the execution of the Algorithm 2.3.

15



Chapter 2 Voronoi Diagrams

Figure 2.7: Concatenation of Voronoi digrams. In (a) are shown two Voronoi dia-

grams to be joined together and (b), (c) and (d) show the following iterations when

the concatenating algorithm is applied.

Figure 2.8: Concatenation of Voronoi digrams. In this diagram the construction lines

highlighted in red must be erased to obtain the desired diagram.

Theorem 2.5. The divide and conquer algorithm takes an optimal time of O(n log n)

to construct a Voronoi diagram V(P ) of P with n sites.

Proof. The proof is similar to the previous theorem.

2.3. Largest empty circle

Consider the problem of the largest empty circle, that is, we want to find the largest

empty circle whose center is in the convex hull H(P ), given n sites. A circle is said

to be empty if it contains no site in its interior and is said to be largest if there is no

other empty circle with strictly larger radius.

Let f(p) be the function defined as the radius of the largest empty circle centered

on p where p is any point in the plane inside H(P ). We want to find a maximum

16



2.3 Largest empty circle

Figure 2.9: Center p inside the convex hull.

for this function regarding the variable p in the convex hull of P . Seemingly, there

exist an infinite number of candidate points to be a maximum, but making use of

Voronoi diagrams we will turn this infinity into a finite number and in this way we

can efficiently solve the problem.

Let p be a point that is in the interior of the convex hull H(P ). Suppose that we

inflate a circle from p in H(P ), the circle of largest radius that contains a site of P is

the circle of radius f(p). If at the radius f(p) the circle contains just one site pi then

f(p) can not be a maximum of the radius function. Notice that moving the point p

a way from p to p′ along the radius pip we get f(p′) that is greater than f(p). Thus,

p can not be a local maximizer of f because there exists p′ in the neighborhood of p

where f(p′) takes a larger value (see Figure 2.9).

Next, consider f(p) in a way that exactly two sites pi and pj (i ̸= j) are contained

in the circle. Again f(p) can not be a maximizer because when p is moved to p′ along

the bisector of pipj and away from pipj we get that f(p′) increases. Hence, only when

the circle touches exactly three sites can the radius f(p) be maximum. If the circle

includes three sites in a way that they span more than a semicircle (see Figure 2.10)

then the translation of p to any direction approaches p to a certain site decreasing the

radius f(p), otherwise we could translate it a little and increase f(p). Consequently,

we have proven the following lemma.

Lemma 2.3. If the center p of a largest empty circle is strictly interior to the convex

hull H(P ) then it coincides with a Voronoi node.
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Figure 2.10: The circle with the radius f(p) containing three sites.

Finally, consider the center p on the boundary of H(P ). For this case we are

going to use a different argument because moving p towards p′ may exit the convex

hull. We will use a more intuitive approach. Suppose that f(p) is a maximum with

p lying on the boundary of H(P ) and that the circle contains just one site. It is

seen that p can not be a vertex of H(P ) because the vertices of H(P ) are sites also,

which means that f(p) = 0. Thus p is in the interior an edge ek of H(P ). Therefore,

when moving p a long ek its distance to p′ must increase. If the circle centered at p

contains two sites pi and pj , then it is possible that the direction along the bisector of

both sites leads outside the convex hull. Thus, we get that f(p) is a local maximum

(see the Figure 2.11). As a consequence the following lemma holds.

Lemma 2.4. If the center p of the largest empty circle lies on the boundary of the

convex hull H(P ), then it lies on a Voronoi edge.

Considering these last two lemmas, we restrict ourselves to a finite number of

candidates. We just look at the Voronoi nodes and the intersections of the boundary

of the convex hull of P with the Voronoi edges.

Observation 2.1. In general:

• It is not true that every Voronoi node is a local maximizer of f .

• Not all Voronoi nodes need to be inside the convex hull H(P ) of their corre-

sponding sites (see Figure 2.5), therefore it is necessary to check if the node is

inside H(P ).

• The largest empty circle defined in this section is also called Delaunay disk.
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2.3 Largest empty circle

Figure 2.11: The center p on the boundary of the convex hull.

We have obtained an efficient Voronoi theory based algorithm to find the largest

empty circle centered in a convex hull of a finite set of points, as quantified in next

the result.

Lemma 2.5. Let P = {p1, p2, . . . , pn} be a set of n points in the plane. The problem

of determining the largest empty circle centered inside the convex hull H(P ) can be

solved in O(n log n) time.
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Chapter 3

Medial axis

In the previous chapter we have introduced the notion of Voronoi diagrams associated

to points in the plane. They will play a fundamental rule in the study of another

object, the medial axis. To see this, we first introduce the concept of medial axis

and then discuss the relation between the medial axis and Voronoi diagrams.

In Section 3.1 we define the medial axis of a planar shape, describe its main

features and present some of its applications. Then, in Section 3.2, we generalize the

Voronoi theory and discuss its relationship with the medial axis. In Section 3.3 we

introduce the concept of truncated medial axis which is going to be the important

tool for finding the reachable region for each slice to be milled. Then in Sections

3.4 and 3.5 we discuss exact and approximated algorithms to obtain the medial axis,

studying the main theoretical properties.

3.1. Definitions and properties

The medial axis was first introduced by Harry Blum applied to biological shapes

in 1967 [5]. Intuitively, the medial axis is often defined using the classical example

called grass fire. Imagine starting a fire at the same time everywhere on the boundary

of a shape in the plane, the fire spreads into the shape at constant speed in every

direction. The medial axis is the set of points where the wavefront of the fire meets

itself.

Mathematically, the medial axis is the set of all points in the plane that have at

least two closest points on the boundary of the shape. The medial axis can be defined

in Rn and thus, it will be of dimension n − 1. In the plane it is a one dimensional

object. We exemplify it in Figure 3.1. The blue line is the medial axis of the shape

in which it is enclosed.
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Figure 3.1: The blue line is the medial axis.

There have been many applications for the medial axis. In robotics for motion

planning, it is used to find a free path (free in the sense that there is no obstacles

in it) to move a point, a circle, a segment or a polygon in the plane [16, 23]. In

Solid Modeling the medial axis transform is helpful to generate 3D polyhedral solids

of arbitrary genus without cavities. In image processing, the medial axis is used for

image analysis and mathematical morphology of objects reducing shapes into short

caricatures [28]. In Geo-spatial Information System it is a fundamental tool for the

evaluation of spatial relationships and it is useful in the extraction of features from

digitized or scanned data. Terrain and runoff modeling, especially from contours, can

be described using medial axis extraction [12, 33]. The medial axis has been pro-

posed in virtual endoscopy as a tool for automated path planning for this procedure

[4]. In general, medial axis extraction is a strong tool in several visual computing

applications because it provides a more compact representation of solid models while

preserving their topological properties and features.

We are interested in using the medial axis to find a region that can be reached by

a milling cutter in a polygon. Before we discuss algorithms we need a solid theory

about the medial axes and their main features.

Let us start by defining the Hausdorff distance. Given two sets in the plane, say

A and B, the distance from A to B is the Hausdorff distance if

d(A,B) = inf{||x− y||2 : x ∈ A, y ∈ B}. (3.1)

If A and B are points then the Hausdorff distance is equivalent to the euclidian one.

Let X be an object in the plane and assume that X is a compact set, connected

but not necessarily simply connected and that is equal to the closure of its interior.

A set with these characteristics will be called a compact body.

Definition 3.1 (Medial axis). Let X be a compact body. The medial axis of X is

the set of points in X that have at least two closest points on the boundary of X and
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3.1 Definitions and properties

we denote it by M(X).

Alternatively, we can attempt to define the medial axis of X using maximal closed

disks inside X. A disk Br(x) ⊆ X is said to be maximal if it is not enclosed in any

other disk inside X. Formally, we define the set of centers of maximal disks in X,

Bmax(X), as the set of points x for which there is an r > 0 such that for any x′ ∈ R2

and r′ > 0, Br(x) ⊆ Br′(x
′) ⊆ X implies that x = x′ and r = r′.

Proposition 3.1. Let X be a compact body in the plane, then

M(X) ⊆ Bmax(X).

Proof. Let x ∈M(X). Then there exist p1, p2 ∈ ∂X, p1 ̸= p2 such that

d(x, p1) = d(x, p2) = min
p∈∂X

d(x, p).

This means, there is a disk Br enclosed in X with radius r = min
p∈∂X

d(x, p) centered

at x. Each disk in X containing Br is equal to Br, i.e. Br is a maximal disk. Thus,

x ∈ Bmax(X), which means

M(X) ⊆ Bmax(X).

Example 3.1. In this example we show that the medial axis is not topologically a

closed line, that is, M(X) ̸= M(X). Consider the ellipse in Figure 3.2. The blue line

is the medial axis of this ellipse but it does not contain its endpoints. Each endpoint

is a center of an osculating disk touching the ellipse on just one point (vertex of the

ellipse) and they are also maximal disks, thus, these endpoints do not belong to the

medial axis.

Figure 3.2: The red disks are osculating disks (maximal disks) in the ellipse. Their

centers do not belong to the medial axis (blue line) because they touch the ellipse

on just one point.
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Chapter 3 Medial axis

Example 3.2. The set Bmax(X) does not need to be closed as can easily be seen in

a triangle whose medial axis does not contain the vertices. But is the set Bmax(X)

closed relative to the interior of X? The answer is still negative. See Figure 3.3, the

limit point B of the triangles does not induce a limit dendrite on the set Bmax(X).

Figure 3.3: The limit point B of the triangles does not induce a limit dendrite on

the set Bmax(X).

Proposition 3.2. Let X be a polygonal compact body, then

M(X) = Bmax(X). (3.2)

Proof. The inclusion

M(X) ⊆ Bmax(X)

follows directly from the Proposition 3.1. Now we show that

Bmax(X) ⊆M(X).

Consider x ∈ Bmax(X), that is, x is a center of a maximal disk in X. A maxi-

mal disk in a polygon touches the boundary on at least two points and the distance

d(x, ∂X) is its radius. Furthermore, the radius d(x, ∂X) is minimum because other-

wise the disk would not be contained in X, hence x ∈M(X) and

Bmax(X) ⊆M(X).

The result of Proposition 3.2 is not true for general compact bodies as can be

seen in Example 3.1. It can, however still be generalized into the case where X is a

compact body if we make suitable adaptations. The following result was proven by

G. Matheron [19].
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3.2 Generalized Voronoi diagrams

Proposition 3.3. Let X be a compact body. Then,

M(X) = Bmax(X). (3.3)

Let Brmax(x) be the largest disk that is contained in P with center at x ∈M(P )

and R(x) = min
y∈∂P
{||x− y||2. R(x) is the radius of the disk Brmax(x).

Theorem 3.1. Let P be a polygon. Then,

P =
∪

x∈M(P )

Brmax(x). (3.4)

Proof. The set of disks in a polygon P containing a given point p in the interior

of P is nonempty and partially ordered regarding the inclusion relation. Any chain

{Di}i∈I of disks in this partial order, i.e. a collection of disks that is totally ordered,

has a supreme, namely,
∪
i∈I

Di which is a disk. By Zorn’s Lemma, any partially

ordered set for which all chains have a supreme has a maximal element. This gives

us a maximal disk containing p, so the point p is contained in a maximal disk. Since

P is the closure of its interior the result follows.

From this theorem, we conclude that the polygon P can be reconstructed by the

union of maximal disks with radius R(x). The medial axis preserves the topology

(shape) of the original object in which it is enclosed. If the object is connected

the medial axis is also connected and the object has the same number of holes as

its medial axis. For more properties and applications of the medial see [8, 21]. In

Figures 3.4 some polygons with the corresponding medial axes are shown.
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(b) Polygon with two holes

Figure 3.4: Medial axes of polygons with holes.

3.2. Generalized Voronoi diagrams

In general, the medial axis is closely related to generalized Voronoi diagrams. We

will first give a brief introduction to generalized Voronoi diagrams [17, 18, 30].
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Chapter 3 Medial axis

The concept of Voronoi diagrams can be generalized in different ways. In this

work we will consider that the generator L can be a set comprising bounded objects

in the plane, such as, straight line segments, a chain of straight line segments or

circles. Let us suppose that L = {L1, . . . , Ln} ⊆ R2(1 ≤ n < ∞) where Li is a

bounded set. We assume that the elements of L do not intercept one another and

we define a Voronoi region associated to Li as

VR(Li) = {p ∈ R2 : d(p, Li) ≤ d(p, Lj), i ̸= j, j ∈ In = {1, 2, . . . , n}}. (3.5)

If Li, i ∈ In are all points, it easy to see that V(Li) will be exactly the one defined

in Section 2.1.

Definition 3.2. Let L = {L1, L2, . . . , Ln} ∈ R2 be a generator set. The set VD(L) =
n∪

i=1
∂VR(Li) is a generalized Voronoi diagram generated by L.

If Li, i ∈ In are points, we obtain the Voronoi diagram defined in Section 2.1.

The Figure 3.5 shows a planar line Voronoi diagram generated by two segments.

0 0.5 1 1.5 2 2.5
1

1.5

2

2.5

3

3.5

4

4.5

Figure 3.5: The blue line is the Voronoi diagram generated by two segments.

The dominance of Li over Lj , for i ̸= j, i, j ∈ In can be defined as

Dom(Li, Lj) = {p ∈ R2 : d(p, Li) ≤ d(p, Lj)}. (3.6)

The dominance is a closed region bounded by a bisector that is not necessary a

straight line. From the definition of dominance we can conclude that

VR(Li) =
∩

j∈In\{i}

Dom(Li, Lj). (3.7)
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3.2 Generalized Voronoi diagrams

Also, when Li are not all points the associated Voronoi regions V(Li) are not

necessarily convex polygons. Since the boundary ∂P of a polygon P is a chain of

straight line segments we can find its Voronoi diagram. We will consider the vertices

of a polygon P to be defined as the endpoints of straight line segments constituting

its boundary and the edges to be open segments that are obtained by deleting the

endpoints of the segments constituting the boundary of P . We consider the generator

L comprising the edges and vertices of P , i.e. L = {ei}, i ∈ In where ei is a point or

an open segment. Taking the Voronoi diagram of this generator set we will further

prune it, considering for any element ei only the part of its Voronoi region that is

contained in P . We get in this way a new diagram, VD(P ), that is said to be the

Voronoi diagram of the polygon P . In Figure 3.6 is shown an example of Voronoi

diagram of a polygon.

Figure 3.6: The lines inside the polygon V1,V2,V3,V4,V5,V6 make its Voronoi dia-

gram.

In the example, the Voronoi region of the open segment (V6,V5) is the quadrangle

V6,A,B,V5,V6 and the Voronoi region of V5 is the region V5,B, C,D,V5.

A polygon is called simple if it is homeomorphic to a disk. Simple polygons have

connected boundaries, particularly, they contain no holes. Each vertex Vi belongs

to an internal angle in the polygon. If the internal angle is convex we say that the

vertex is convex and we say it is reflex otherwise.

Lemma 3.1. The Voronoi region of a convex vertex is the vertex itself and the

Voronoi diagram of a segment or a reflex vertex is a two dimensional set.

Proof. Consider a polygon given by its elements {ei} where ei is a vertex or an open

segment. We divide the proof into three steps.
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Chapter 3 Medial axis

First, let ei be a convex vertex and suppose that VR(ei) has other point u in

the polygon that is different from ei. By the triangular inequality any point in the

segment eiu must be in VD(ei). But a point in that segment sufficiently close to ei,

is closer to the adjacent edges than to ei itself. That means u must be equal to ei

and VR(ei) contains no other point in the polygon different from ei.

Next, let ei be a segment. If ei−1 and ei+1 are the adjacent elements then we

consider the bisectors b(ei−1, ei) and b(ei, ei+1), see Figure 3.7. The planar region

bounded by b(ei−1, ei), b(ei, ei+1) and ei is a set of points closer to ei than to ei−1

and ei+1. On the other hand, there is a positive distance from ei to any other non-

adjacent site of the polygon and we denote the minimum of these distances by ε.

Now we construct a line segment that is parallel to ei at the distance
ε

2
from ei and

with endpoints on the bisectors b(ei−1, ei), b(ei, ei+1). The set of points bounded by

this segment, b(ei−1, ei), b(ei, ei+1) and ei is a two dimensional region contained in

VR(ei), thus VR(ei) is also a two dimensional region.

(a) (b) (c)

Figure 3.7: Second case: ei is an open segment.

Finally, if ei is a reflex vertex then the bisectors b(ei−1, ei), b(ei, ei+1) intercept

each other on ei, see Figure 3.8, forming an angle greater than zero. We also know

that there is a positive distance from ei to any other non-adjacent site of the polygon

and we denote the minimum of these distances by ε. Now we construct circular arc at

the distance
ε

2
from ei and with endpoints on the bisectors b(ei−1, ei), b(ei, ei+1). The

set of points bounded by this arc, b(ei−1, ei), b(ei, ei+1) and ei is a two dimensional

region contained in VR(ei), hence VR(ei) is also a two dimensional region.
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3.2 Generalized Voronoi diagrams

Figure 3.8: Third case: ei is a reflex vertex.

Definition 3.3. A Voronoi vertex is a point of intersection of at least three Voronoi

regions. A segment or curve that belongs to two Voronoi regions and with Voronoi

vertices as endpoints will be referred to as Voronoi edge.

In Figure 3.6 the points A,B, C,D, E are Voronoi vertices and the segments V1A,

and the arc B̂C are examples of Voronoi edges.

Proposition 3.4. Let P be a polygon. Then M(P ) ⊆ VD(P ).

Proof. Consider a point x ∈ M(P ), then x is a center of a maximal circle inscribed

in P . Each maximal circle in P is tangent to at least two points on the boundary of

P , i.e., x is equidistant to at least two different sites. Thus x ∈ VD(P ).

From the Proposition 3.4 and the definition of dominance we can also conclude

that the medial axis is a union of straight line segments and parabolic arcs.

Theorem 3.2. Let P be a simple polygon. Consider the set Er(P ) of internal

Voronoi edges incident to reflex vertices. Then,

M(P ) = VD(P )− Er(P ). (3.8)

Proof. The Voronoi diagram of a polygon P consists of edges that are incident to

convex vertices, edges incident to reflex vertices and others that are not incident to

any vertex. Let us suppose that x is on a Voronoi edge that is incident to a convex
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Chapter 3 Medial axis

vertex ei, then x is on a bisector of segments ei−1 and ei+1 adjacent to ei. Therefore,

there exists a maximal disk in P centered at x. That is, x ∈M(P ).

Next, suppose that x is on an edge that is not incident to any vertex of P .

Then it is equidistant to two non-adjacent sites of the polygon and belongs to two

Voronoi regions generated by these sites. This means that its minimum distance to

the boundary is attained once in each site, consequently, x ∈M(X).

Finally, consider x that is only on an edge that is incident to a reflex vertex ei.

Furthermore, consider the disk centered at x with the radius d(x, ei). This disk is

not maximal. Indeed, it is tangent on the polygon in just one point ei and moving

the center a bit a way from ei along that incident edge and keeping the tangent point

we get a disk that contains the previous disk. This means x /∈M(X).

For the convex case since there are no reflex vertices we get the following simplified

statement.

Corollary 3.1. If P is a simple convex polygon then,

M(P ) = VD(P ). (3.9)

Suppose that a polygon P is not simple, that is, it contains holes in its internal

region. We assume that the boundary of the hole is a polygon P ′. Furthermore, we

suppose that P ′ is strictly enclosed in the internal region of P . The region of interest

will be the one bounded by ∂P and ∂P ′ and let us denote it by P ∩ P ′c.

Theorem 3.3. Let P be a non-simple polygon and Er(P ∩ P ′c) denote the set of

internal Voronoi edges incident to a reflex vertex of P ∩ P ′c. Then,

M(P ) = VD(P ∩ P ′c)− Er(P ∩ P ′c). (3.10)

The proof of this theorem is analogous to that of Theorem 3.2.
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3.3 Truncated medial axis

3.3. Truncated medial axis

To solve the original problem presented in Chapter 1, we can not use milling cutters

of arbitrarily small radius, since each milling cutter is of some fixed radius. This is

the reason why we will introduce the concept of truncated medial axis, which we are

then going to use to find the reachable region in a polygon. The reachable region

in a polygon P , is the set of points of this polygon that can be covered by disks of

some fixed radius s > 0 contained in P , and we will denote by Rs.

Definition 3.4. Given a disk of fixed radius s, we define a truncated medial axis,

Ms(P ), of a polygon P to be the set of points in the medial axis that are centers of

maximal disks with radius greater or equal to s.
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Figure 3.9: The blue lines are the original medial axes and the magenta lines are the

truncated medial axes for each polygon in which they are contained.

In Figure 3.9 we have depicted in magenta the truncated medial axes for each

polygon whereas the original medial axes are in blue. We aim to find the reachable

region. Thus, we consider the following theorem.

Theorem 3.4. The region of a polygon that can be reached by a milling cutter of

radius s is

Rs =
∪

x∈Ms(P )

Brmax(x).

Proof. If a point is covered by a disk of radius s, then it is covered by some maximal

disk of radius greater or equal to s. On the other hand, any disk of radius greater

or equal to s can be covered by disks of radius s.

An example of a reachable region in a polygon is shown in Figure 3.10. The red

area is the reachable region for the corresponding polygon. Notice that gaps on the

reachable region correspond to truncated parts of the medial axis.
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(a) (b)

Figure 3.10: The red area is the region in the respective polygon that can be reached

by a milling cutter of some fixed radius.

Thus, with this technique we can identify in each section that is created when

the additive process is interrupted the reachable region, hence finding the area that

can be reached by the milling cutter for the corresponding slice.

Observation 3.1. The truncated medial axis does not need to be connected. In

Figure 3.10b the image shows a disconnected truncated medial axis corresponding to

connected reachable region.

3.4. Algorithms

There are several efficient algorithms for computing the medial axis. These algo-

rithms can be generally classified in two classes: continuous methods and semi-

continuous methods. In the continuous methods, also called exact methods, a con-

tinuous shape is known and the exact medial axis is extracted from the full boundary,

for instance, by using generalized Voronoi diagrams. In the semi-continuous methods

the boundary is approximated by a sample of points which are then used to compute

an approximated medial axis. For more details about algorithms for computing the

medial axis methods see [14, 30]. For the purposes of this work we will focus on the

semi-continuous methods, due to their flexibility and ease of implementation. They

will be covered in detail in Section 3.5. In this section, for the sake of completeness

we will provide a brief idea of the exact approaches.

Determining the medial axis with exact methods is only feasible for some geo-

metrical shapes. A general class of shapes for which it is theoretically possible to

compute the medial axis exactly are the semi-algebraic sets [32]. These sets are

unions of the sets of solutions of finite systems of polynomial equations and inequal-

ities. It can be seen that the medial axis of such a set is itself semi-algebraic and

can be computed with tools from theoretical computational algebra, see [2]. These
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3.5 Medial axis approximation

algorithms are however not implementable in the real world and in practice only

algorithms for more restricted shapes are available.

A first approach to compute the medial axis is to generalize the divide and

conquer algorithm introduced in Section 2.2 to compute the classic Voronoi diagram

to more general shapes. This can be done efficiently for polygons or regions bounded

by straight line segments and arcs of circles, (see [13]). We can in this way obtain a

O(n log n) accuracy. We can then make use of Theorem 3.3 to compute the medial

axis. These algorithms are however typically hard to implement and not stable.

A second, more stable approach, is based on domain decomposition. It works for

shapes bounded by circular arcs and spline curves, and it is based on the following

decomposition theorem proven by Choi [7].

Theorem 3.5. Let X be a compact body whose boundary comprises circular arcs,

spline curves and D be a maximal disk for X with center x. Then, if X1, X2, . . . , Xα

are connected components of X \D, then

M(X) =
α∪

i=1

M(Ai ∪D), (3.11)

{x} =
α∩

i=1

M(Ai ∩D). (3.12)

Using this result, a divide and conquer algorithm can be implemented until a

finite number of basic cases is reached. This is more stable and easier to implement

than the Voronoi based algorithm but it has a worst case complexity of O(n
3
2 ).

However in practical instances it is often the case that O(n log n) can be achieved,

and for more about this approach see [1, 3].

3.5. Medial axis approximation

In this section we review the semi-continuous methods based on the Voronoi dia-

grams. We discuss some basic theory that sustains the correctness of the approxima-

tion following [27], and exploit the theory of the Voronoi diagrams of a set of points

that was treated in Section 2.1. Note that the boundary of a planar continuous

shape can be approximated by a set of equally spaced points lying on that boundary.

This set of equally spaced points is called sample or sampling of that boundary and

will formally be defined later. Computing the Voronoi diagram of this sample we

get that the Voronoi vertices inside the shape converge to an inner approximation of
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Figure 3.11: Approximation of the medial axis by Voronoi vertices.

the medial axis of this shape, in this section we give the proof of this statement but

only for polygons. In Figure 3.11a, the blue points are Voronoi vertices and as their

density increases we can see that they tend to approximate the medial axis. This

approximation of the medial axis may not recover it in its entirety. This can be true

even if we restrict ourselves to the polygonal case. In Figure 3.11b we can see an

example of a polygon where the approximation works while in Figure 3.13c we can

see one where it does not .

To analyse the convergence of the semi-continuous methods we need to introduce

some topological tools. Let us denote by H the set of the closed sets of R2 for

the usual topology. We can endow H with a topology T , the hit or miss topology,

generated by the neighborhoods

{F ∈ H : F ∩K = ∅, F ∩Gi ̸= ∅}

where K is a compact set and Gi, i = 1, 2, . . . , k is a finite family of open sets in R2.

With this topology H is compact, Hausdorff and separable.

In terms of the convergence of sequences of closed sets, T can be interpreted as

follows.

Property 3.1. A sequence {Si}i∈N of closed sets converges towards S if and only if

the following two criteria are simultaneously verified:

1. For all x ∈ S, there exists xi ∈ Si such that xi converges towards x as i goes

to infinity.

2. Let {Sik}ik∈N be a subsequence of {Si}i∈N and xik ∈ Sik . Then, if xik converges

towards x, x ∈ S.
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3.5 Medial axis approximation

The pointwise convergence used is with the usual topology in R2. We proceed to

define the lower and upper limits of sequences of closed sets.

Definition 3.5. Let {Si}i∈N be a sequence of closed sets. Then

1. The lower limit of {Si}i∈N (lim inf Si) is the set of all limits of sequences of

points xi ∈ Si, that is, it is the greatest closed set verifying the criterion 1 of

Property 3.1.

2. The upper limit of {Si}i∈N (lim supSi) is the set of all cluster points of se-

quences of points xi ∈ Si. It is the smallest closed set verifying the criterion 2

of Property 3.1.

Particularly we have that Si converges towards S if and only if lim supSi =

lim inf Si. These notations are important to understand the approximation results

that are treated in this section. The convergence of a sequence of closed disks in H

is characterized in the following property.

Property 3.2. Let {Bi = B(xi, ri)}i∈N be a convergent sequence of disks in H.

Then, Bi converges towards B(x, r) in H if and only if xi converges to x and ri

converges to r. Otherwise, {Bi}i∈N converges towards a generalized disk, i.e., either

the empty set or a closed half-plane or R2.

Definition 3.6. A set S of points pi, i = 1, 2, . . . , k, on the boundary ∂X such that

for every x ∈ ∂X there is some pi within a maximum distance of ρ from x is called

a set of points of density ρ. We will usually call such a set a sample or sampling of

X.

An example of a sample set for a given polygon is shown in Figure 3.12.

Now consider a sequence of points {pi}i∈N sufficiently dense on the boundary

of X. It is already known that the Delaunay triangulation of a point set S yields

a tessellation with triangles of its convex hull and that the circumcircle of each

triangle is centered at a Voronoi vertex and does not contain any other point of S,

such circumcircles are called Delaunay disks, see Section 2.2.

The following proposition is one of the most important results that motivates the

use of Voronoi diagrams to approximate the medial axis. It states that each sequence

of centers of Delaunay disks converges to the center of a maximal disk, i.e, to a point

of the medial axis of the polygonal compact body X.
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Figure 3.12: The image in (b) shows a sample of the image in (a).

Proposition 3.5. Let X be a polygon, Si be a sequence of samples with density

decreasing to zero and {Bi}i∈N be a sequence of Delaunay disks. If B is a cluster

point of Bi, then B if maximal in X or in Xc. That is, if Vi is the set of Voronoi

vertices associated to Si then

lim
i−→∞

supVi ⊆ Bmax(X).

Proof. Let {Bik} be a subsequence of {Bi} converging to B. It is known that Bi =

B(xi, ri) is a Delaunay disk and Si is a sample of ∂X whose density is ρi, thus the

disk B(xi, ri − ρi) does not intercept the boundary ∂X. That means B(xi, ri − ρi)

is included into X or Xc. We now consider a subsequence {B(xik , rik − ρik)} and

we assume that it is totally contained in X or Xc. It is clear by Property 3.2 that

{B(xik , rik −ρik)} converges to B and since inclusions are preserved by taking limits

we get that B ⊆ X or B ⊆ Xc. Now let us suppose that B ⊆ X and let B′ be such

that B ⊆ B′ ⊆ X, we will show that B = B′ which proves that B is maximal in X.

Denote by (v0ik , v
1
ik
, v2ik) the vertices of the triangle which Bik circumscribes. Ex-

tracting a subsequence, if necessary since the boundary of X is compact, we can

assume that (v0ik , v
1
ik
, v2ik) converges to (v0, v1, v2) in ∂X. They also belong by con-

struction to B.

Now, suppose that two of these limits are different. Since they are on ∂X, B and

B′ that are contained in X, they must be on the boundary of B and B′. Given any

two points any two disks that are tangent to them are uncomparable unless they are

the same. Since B ⊆ B′ we have B = B′, thus B is maximal in X.

Finally, suppose that these limits are all equal to v, then v is a vertex of the
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3.5 Medial axis approximation

polygon X. If v is convex vertex then the radius of B′ is zero and because B ⊆ B′

we get that B = B′. Note that v can not be a reflex vertex otherwise the sequence

of Delaunay disks would not be in X. For Xc it is proven similarly.

We have proven this proposition for a polygonal compact body X, however it is

valid assuming some regularity on the boundary ∂X. One can be tempted to think

that

lim
i−→∞

inf Vi ⊇ Bmax(X),

but, in general, this is not true. When the boundary of X is a polygonal line it is

possible that the approximation of its medial axis through the Voronoi nodes of the

Voronoi diagram of the samples fails, see Figure 3.13. In fact, it is also possible to

assume some kind of regularity on the boundary of X that make this reverse inclusion

hold, see [6, 27].
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Figure 3.13: The image (a) is the original polygon. In image (b) we have the sample

and Voronoi nodes or centers of Delaunay disks. The image (c) shows two non-

connected curves that were found using the Voronoi nodes, but do not represent the

medial axis.

Recall that if the polygon is connected its medial axis is also connected. In Figure

3.13 the line obtained with the Voronoi nodes is not connected, this is because no

Delaunay disks can be found in some neighborhood of two opposite reflex vertices

defined as in this polygon.

Observation 3.2. The curve obtained in the approximation presented in Figure 3.13

is not a truncated medial axis. The non-connectivity comes from the failure of the

approximation.

The situation reported in Figure 3.13 can be solved using the following result,

that can be found in [20].
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Figure 3.14: Approximation of medial axis using Voronoi edges and nodes. The

magenta line approximates the original medial axis.

Theorem 3.6. Let P be a polygon and Si a sample with density ρi converging to

zero. The medial axis M(P ) is the limit of the edges and vertices of VD(Si) that are

entirely contained in P .

We exemplify this theorem in Figure 3.14. After we have sampled the polygon

we find the Voronoi diagram that is in blue. The Voronoi edges and nodes inside the

polygon approximate the original medial axis for a chosen density ρ, thus, the line

highlighted in magenta is the approximation of the original medial axis.

Summarizing this section, to approximate the medial axis we follow the following

steps.

1. We sample the polygon boundary guaranteeing that the distance between two

consecutive points is no bigger than some fixed ρ.

2. We construct the Voronoi diagram of the sample points.

3. We keep the edges and vertices of the Voronoi diagram that are contained in

the original polygon and discard the remaining.

What we get is an approximation of the medial axis, obtained in O(nρ log(
n
ρ ))

time, that tends to the medial axis as the space between sample points, ρ, gets closer

to zero. To find the truncated medial axis we just need the radius s of the milling

cutter to be used and then to remove the points in the medial axis associated to the

maximal disks with the radius less than s. For every vertex of the Voronoi diagram,

checking if the maximal disk associated to it has radius less than s is very quick, and

if that is the case we discard the vertex and the edges adjoining it. The only other

thing to check is the edges that come from reflex vertices of P , such as the longer
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3.5 Medial axis approximation

edge in Figure 3.14. These tend to be longer than the other edges, since they will not

be broken in pieces by the discretization, and can have both vertices respecting the

radius property while some middle points do not. A fast way to study these edges is to

check only for edges with length above a certain tolerance threshold, verify if they are

formed by reflex vertices and, if so, look at the vertices of the polygon that generate

them and see the distance between them. If it is larger than 2s, the entire edge is

kept, if it is lower, some quick computation can determine where the edge should be

cut, and what portion remains. It can be shown that if we treat in this manner the

results attained by the medial axis discrete approximation, we get an approximation

to the truncated medial axis that will converge to the true truncated medial axis as

ρ converges to zero as intended. For each ρ the corresponding approximate reachable

region can easily be computed and will be an inner approximation to the true region.

From the truncated medial axis one can immediately read the points on the boundary

that will not be reached by the milling process, and hence get a measure on the

attainable finishing quality for the slice. Other measures of quality, such as the area

of the non-reachable surface, the topology of the reachable region (making sure that

no crevice or hole is unreachable) can easily be implemented.
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Chapter 4

Conclusions and considerations

The application of the medial axis technique gives us the reachable region for each

section. We then are left with the question of how to go from applying this technique

to each section to applying it to the original problem of determining where the

additive problem should be interrupted. A first possible approach is to consider

all fabrication slices, study each of them to determine the maximum tool diameter

permitted in order to get an acceptable quality and also to find the maximum depth

that such tool can reach. At each slice we obtain some stop restrictions that must be

verified and we can find an optimal fabrication strategy to satisfy them all. Schema-

tically, consider the object shown in Figure 4.1a and with its sections Figure 4.1b.

We will study each section, as shown in Figure 4.1c, to scan for delicate details with

our automatic procedure.
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Figure 4.1: The image (a) is the object to be produced. In image (b) we have some

sections of the object and in image (c) the red area represent some reachable regions

for each section

There are however some simplifications that can be made, due to the framework

we are considering. Since moulds need to be monotonous (meaning that the sections

of the solid decrease in size when the height increases, without the creation of over-

hangs) one section being reached means all the above sections are reached, unless

there is some change in the topology of the section (shallower details appear at cer-

tain heights). This allows us to not study every section but only those where there
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Chapter 4 Conclusions and considerations

are interesting changes in the topology, something that can also be easily detected

by the use of medial axis. Some future work to be developed is the possibility of

the desired finishing quality to be specified a priori by an operator and differ for dif-

ferent parts of the piece. Another point where improvements need to be introduced

is on the handling of spherical drills, necessary to satisfactorily drill edges that are

not vertical. However it is our belief that the properties of the medial axis make

it again a perfect tool for handling these cases, possibly even by dealing with the

3-dimensional case by the direct use of the 3-dimensional structure of the medial

axis of a polyhedron. In conclusion, in this work we propose the use of the medial

axis and a variation of it to quickly deal with questions of access of a drill to a given

surface. This allows us to measure finishing quality or even feasibility, and use it to

plane the interruptions for a hybrid additive and subtractive fabrication method.
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