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Abstract

Epilepsy is a neurological disease affecting millions of people worldwide. About one

third of them are pharmaco-resistant and cannot be submitted to surgery; their

disease is called refractory epilepsy, and a seizure can happen any time, anywhere.

These refractory patients would benefit from seizure prediction devices, but the

current methods for seizure prediction are not good enough for clinical applications.

We present and evaluate the capacity of two types of deep artificial neural networks

architectures to learn how to predict seizures with data extracted from electroen-

cephalogram (EEG): Long Short Term Memory (LSTM) and Convolutional Long

Short Term Memory (C-LSTM). To demonstrate clinical usefulness of our models,

they are evaluated using long and continuous out of sample records. The study

considers 105 patients from the European Epilepsy Database, 87 with scalp record-

ings and 18 with invasive recordings. The data includes: 1087 seizures, from which

203 are used for out-of-sample evaluation, and a total recording duration of 19959

hours, from which 3991 hours are used for out-of-sample evaluation. We extracted

22 univariate features based on 5 second windows from the EEG signal.

For all patients, scalp and invasive, our LSTM models achieved an average sensitivity

of 29.28% and an average FPR of 0.58/h. We predicted 52 out of 203 (25.62%)

seizures on the testing set. It is observed that for 5 out of 105 (4.8%) patients,

optimal test performance with sensitivity ≥ 50% and FPR ≤ 0.15h−1 was achieved.

Perfect performance with 100% sensitivity and 0 h−1 FPR was achieved for 2

(1.9%) patients.

For all patients, scalp and invasive, our C-LSTM models achieved an average

sensitivity of 28.17% and an average FPR of 0.64/h. We predicted 54 out of 203

(26.60%) seizures on the testing set. It is observed that for 2 out of 105(1.9%)

patients, optimal test performance with sensitivity ≥ 50% and FPR ≤ 0.15h−1 was

achieved. Perfect performance with 100% sensitivity and 0 h−1 FPR was achieved

for 0 (0.0%) patients.
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The results were not satisfactory, we achieved worse results when making a compar-

ison with a study using the same database but based on support vector machines

(SVMs). Given that, in theory, the LSTMs are a method expected to perform

better than the SVMs when sequential data is involved, we were expecting the

opposite.

In the future we expect to experiment with raw EEG signal. We expect that the

LSTMs will be able to capture better temporal dependencies on raw signal, since

compacting 5 seconds of information into a single value leads to a great loss on

information. A better approach for selecting training data, in a way that it covers a

full day/night cycle to better capture intra day variations, will also be considered.
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Chapter 1

Introduction

1.1 Motivation

Epilepsy is one of the most common neurological diseases, characterized by the

constant occurrence of spontaneous seizures. Epilepsy affects around 50 million

people, from which 30% of the patients suffer from drug refractory epilepsy, that is,

their epilepsy is not completely controlled by drug administration.[1] Of those, only

the ones that have a well localized focus in an area outside of the eloquent cortex

are good candidates for surgical treatment. [2] An alternative method for seizure

prevention, such as electric stimulation before the seizure onset, could be explored

if there was some way to predict seizures. Alternatively, warning devices could be

manufactured since the quality of life of a patient could substantially increase just

by being alerted of the upcoming seizures.

Seizure prediction is traditionally based on time series data, therefore it is wise

to choose a model for prediction able to learn temporal dependencies. Recurrent

Neural Networks (RNN) are able of such feat. Long Short Term Memory networks

[3] (LSTM), a special kind of RNNs, are better at capturing long-term dependencies

than the standard RNNs, and they are the current state-of-the-art for many difficult

problems involving sequential data. This includes handwriting recognition [4] and

generation [5], language modeling [6] and translation [7], acoustic modelling of

1
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speech, [8], speech synthesis [9], analysis of audio [10], and video data [11] among

others.[12] LSTMs have also been successfully applied to seizure detection.[13]

Being the current state of the art for many problems involving sequential data, we

choose LSTMs to solve our problem. Zhou et al. (2015) [14] presented the concept

of combining a one dimensional convolution network with a LSTM network, with

the purpose of extracting higher-level representations of the sequential inputs. They

obtained satisfactory results on a text classification problem involving sequential

data. This motivated us to experiment with a Convolutional Long Short Term

Memory architecture.

1.2 Goals

The goals of this project are:

• development of models, specialized in seizure prediction, based on two types

of deep learning architectures: Long Short Term Memory and Convolutional

Long Short Term Memory. The models will be trained with data from the

EPILEPSIAE database.

• Presentation of results obtained on realistic conditions, i.e., on out of sample

data and extensive continuous EEG recordings.

• Integration of a LSTM module on the EPILAB toolbox, which will enable

its users to train LSTMs.

1.3 Document structure and organization

Chapter 2 exposes the reader to the background concepts related to epilepsy and

the methods used to predict seizures.

In Chapter 3 an overview is made of the methods that have been applied to seizure

prediction and the results they provide.
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Chapter 4 contains information about the data used for this project. It also

explains the experimental methods used, including which programming languages

and toolboxes were considered.

In Chapter 5 we present and discuss the obtained results.

Chapter 6 contains the conclusion and and perspectives for future work.



Chapter 2

Background Concepts

2.1 Epilepsy

Epilepsy is a complex symptom caused by a variety of pathological processes in

the brain. It is characterized by the occasional but recurrent occurrence of seizures.

From the physiological point-of-view, a seizure it is characterized by an excessive

and disorderly discharging of neurons.

Based on clinical and EEG information, seizures can be classified in two types:

• Focal seizures - Start in a particular region in the brain, affecting the part of

the body controlled by that brain region.

• Generalized seizures - Occur in the whole brain, therefore affecting the whole

body.

Epilepsy, depending on the type of seizures suffered by the patient, can also be

classified in the categories:

• Focal epilepsy

• Generalized epilepsy

4
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• Focal and generalized epilepsy

In our study we will use data from patients suffering from focal epilepsy, i.e., their

epilepsy is characterized by the occurrence of focal seizures.

Focal epilepsy can also be categorized according to the region of the brain where

the seizures occur:

• Focal lobe epilepsy

• Temporal lobe epilepsy

• Central lobe epilepsy

• Occipital lobe epilepsy

• Parietal lobe epilepsy

Typical treatments for epilepsy are drug administration and surgical treatment.

About 30% of the patients with epilepsy do not benefit from drug administration

for seizure contention. Those are said to suffer from refractory epilepsy. For those

suffering from refractory epilepsy, surgical treatment is another option, but only

10% of those meet the requirement for such treatment,i.e., a well localized focus in

an area outside of the eloquent cortex. [15]

2.2 Electroencephalogram (EEG)

EEG is a monitoring method that measures voltage fluctuations resulting from

ionic current within the neurons of the brain. This information can be captured

by electrodes that can either be placed along the scalp (non-invasive) or in direct

contact with the brain (invasive). To ensure that the naming and location of

electrodes is consistent across laboratories, naming and location are typically

specified by the International 10-20 system (figure 2.1).
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Figure 2.1: Electrode placement according to the 10-20 system.

Signal sampling is typically done at 256-2000 Hz and the EEG signal, for humans,

has an amplitude ranging from 10 µV to 100 µV for scalp recordings.[16]

EEG can be used to diagnose and characterize neurological diseases, including

epilepsy, which causes abnormalities in EEG readings (figure 2.2).The EEG is a

helpful diagnostic tool in the investigation of a seizure disorder. It confirms the

presence of abnormal electrical activity, gives information regarding the type of

seizure disorder, and discloses the location of the seizure focus.

Figure 2.2: Abnormalities on EEG recording during the occurrence of a seizure.
[17]
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2.3 Seizure Prediction

Seizure prediction is an active area of research because researchers hypothesize

that specific EEG patterns occur during the pre-ictal period. [18]

If such hypothesis is true, then those patterns might be detected in EEG recordings,

signalling a future seizure. Seizure prediction algorithms make use of features

extracted from EEG data. Prediction can be made by generating alarms when a

given feature crosses a certain threshold, or by using multiple features as the input

for a discriminative classifier.

In the literature, different names have been attributed to the different brain periods

of an epileptic brain. The ictal period is the period during which the seizure

actually occurs. The post-ictal period is the time immediately after a seizure, and

the preictal the one immediately before. The interictal period is the time between

seizures, during which the brain is well-functioning.

Figure 2.3: Different brain periods of an epileptic patient.

If the pre-ictal state does exist, then its duration might vary from patient to

patient and even from seizure to seizure. Its duration is usually chosen in order

to maximize the predictors performance. This period is often called the seizure

occurrence period (SOP).

2.4 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a learning algorithm which had in the

anatomy of the brain the inspiration for its origin. Its basic computational unit is
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the artificial neuron. Figure 2.4 depicts the similarities between the real(left) and

the artificial(right) neurons. The biological neuron works as follows, information

from axon terminals of several other neurons is received into its dendrites, which

is in turn processed and outputted through its axon terminals into other neurons.

A synapse is a structure that permits a signal to be passed between neurons. In

the artificial model, the different signals received from other neurons are called

the inputs (e.g. x) and the synapses are the weights (e.g w). All the information

received by one neuron can then be combined into one value using equation 2.1.

n = wTx + b (2.1)

where b is a constant, named bias, intrinsic to each neuron. This value n is then

the argument of a function f :

a = f(b) (2.2)

producing a, the neuron output. This function f is called the activation function,

is intrinsic to each neuron, and it can take many forms. Some commonly used

activation functions are the sigmoid and hyperbolic tangent function, given by

equations 2.3 and 2.4, respectively.

σ(x) =
1

1 + e−x
(2.3)

tanh(x) =
ex − e−x

ex + e−x
(2.4)

2.4.1 Feedforward ANN Architectures

Neurons can be stacked to form one layer of neurons, and ANN architectures can

have multiple layers. The most basic ANN architecture is the feedforward ANN,
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Figure 2.4: Biological neuron(left), Artificial neuron(right). [19]

depicted in figure 2.5. The input layer (blue) is an array defined as p ∈Rd, where

d is the number of inputs (features) of the network. The middle layers (green) are

called the hidden layers while the last one (red) is the output layer, it produces

the final output of the network. Formally, each layer j can be characterized by the

following items:

• W j,j−1 ∈Rs×r, where s is the number of neurons of that layer and r is the

number of neurons of the previous layer, or, if j = 1, the number of inputs

of the network. W contains in each row, the weights associated with each

neuron.

• bj ∈Rs, where s is the number of neurons of that layer. b contains in each

row, the bias associated with each neuron.

• f j, the activation function.

The output of layer j is then given by the equations:

aj = f j(W j,jp + bj) = f j(nj), if j = 1 (2.5)

aj = f j(W j,j−1aj−1 + bj) = f j(nj), if j > 1 (2.6)
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Figure 2.5: Feedforward Artificial Neural Network Architecture.

2.4.2 ANN for Classification

When performing classification, the number of neurons of the output layers is

typically equal to the number of classes of the problem, so we can associate each

class to one output neuron. By analysing the outputs of the network for a single

case(pattern), we can make a classification. What the values of the outputs

represent depend on the activation function of the output layer. If the activation

function used is, for example, the Softmax, then the value of an output neuron

represents the probability of a given pattern belonging to the class associated

with it, which is why the Softmax function is typically used in the context of

classification.

Mathematically, the Softmax function is given by equation 2.7m where σ(n)j is

the probability of a given pattern belonging to the class associated with output

neuron j and K is the number of output neurons (classes).

σ(n)j =
enj∑K
k=1 e

nk

(2.7)

2.4.3 Learning

The word learning, in the context of ANNs, means finding the set of weights and

biases that deliver the optimal performance. Performance is measured by a loss

function, and, the optimal performance is achieved at its global minimum. An
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example of a loss function is the mean squared error (2.8), where N is the number

of cases, Ŷ is the predicted value and Y is the true value.

L = MSE =
1

N

N∑
i=1

(Ŷi − Yi)2 (2.8)

Any combination of weights will be associated with a particular loss measure, then,

the task of training an ANN is simply finding the set of weights that minimizes

the loss. This task can be accomplished with the backpropagation algorithm [20],

one of the most used algorithms for training. The goal of the backpropagation is

to compute, for every training pattern i, the partial derivatives, ∂Li

∂w
and ∂Li

∂b
, of

the loss function Li with respect to any weight w or bias b in the network, which

can be averaged over all the training patterns and used to update of the weights

and bias. The backpropagation algorithm can be performed any number of times

(epochs).

The updates are performed, in the simplest case, by means of a gradient descent

approach:

wt+1 = wt − η
∂L̄

∂w
(2.9)

bt+1 = bt − η
∂L̄

∂b
(2.10)

where L̄ is the average loss over all patterns, t is the time step and η is the learning

rate, a parameter that has to be tuned for each problem in order to achieve loss

convergence. More complex functions can be used to update the parameters.

2.4.4 Recurrent Neural Networks

Recurrent Neural Networks(RNNs) are a class of ANNs containing loops in their

structure, as shown in fig 2.7. They are typically good at solving problems when

sequential data is present, like a time series for example. They are good at those
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Figure 2.6: Loss function represented in the weight space. In this case the loss
function is convex with a global minimum, but generally the function contains

many local minimums.

kind of problems because since they have inner loops they can pass information

from pattern to pattern, making the network able to learn temporal dependencies.

The vanilla RNN is depicted in fig 2.7. This network has the so-called state h

state h. As seen in equation 2.11, this state, at each timestep t, is a function of

the current inputs, xt and the state at the previous time step, ht−1, which have

associated weight matrices W and U , respectively. The network state can be

used to compute the output at any given time step (2.12), V is the weight matrix

associated with the state h when computing the output.

When a RNN is unrolled in time it becomes similar to a standard ANN with many

layers, except that for the RNNs the weights are shared across layers.

ht = f(Wht−1 + Uxt) (2.11)

at = f(V ht) (2.12)
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Figure 2.7: Unrolled Recurrent Neural Network.[21]

2.4.5 Vanishing Gradient Problem

To update the weights, for each timestep the error has to be backpropagated across

layers until we reach the layer corresponding to the beginning of time. The act of

backprogatating from layer to layer implies the multiplication of the derivatives

of the activation functions of each layer. If we look at one common activation

function, the sigmoid function, given by σ(x) = 1
1+e−x , its derivative has the shape

shown in figure 2.8, it is observed that its maximum value is 0.25. Since the

contribution to the weights update of one layer located n time steps behind is

proportional to (dσ
dx

)n, assuming that the sigmoid function is used in every layer,

and since max(dσ
dx

) = 0.25, we can conclude that the contribution from previous

layers approaches zero the more we go deeper. This is called the Vanishing Gradient

Problem. [22]

Figure 2.8: Derivative of sigmoid function.
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2.4.6 Long Short Term Memory (LSTM)

To overcome the Vanishing Gradient Problem, Sepp Hochreiter and Jürgen Schmid-

huber [3] proposed an innovative RNN architecture. These networks are capable of

learning long-term dependencies.

Traditional RNNs have the aspect shown in figure 2.9. Typically the state ht is a

function of ht−1 and xt, the previous state and the current inputs. The architecture

of the LSTMs is seen in figure 2.10. The main thing to notice is that instead of

existing just one type of state ht that passes information from one timestep to

another, now there is another type of state called the cell state Ct. The cell state

acts like a conveyor belt that allows information to just flow along without changes,

if needed. Information can be removed or added to the cell state by means of

structures called gates. Mathematically, the LSTMs are represented by equations

2.13-2.18. The operator ◦ represents point-wise multiplication.

ft = σ(Wf .[ht−1,xt] + bf ) (2.13)

it = σ(Wi.[ht−1,xt] + bi) (2.14)

C̃t = tanh(WC .[ht−1,xt] + bC) (2.15)

Ct = ft ◦Ct−1 + it ◦ C̃t (2.16)

ot = σ(Wo.[ht−1,xt] + bo) (2.17)

ht = ot ◦ tanh(Ct) (2.18)

Taking a closer look at 2.16, the equation for the computation of the cell state, we

observe two terms. The first one is responsible for removing information from the

cell state, while the second one is responsible for adding information.

The equation 2.18 is the one responsible for the computation of the network state

ht.
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Figure 2.9: Simple RNN architecture.[21]

Figure 2.10: LSTM architecture.[21]

2.4.7 Many to one Classification

It has been stated that RNNs have memory, but it is not feasible to to retain

information since the beginning of time. On the training phase it would imply that

as time increases there would be an increment in the number of layers through which

the algorithm has to backpropagate. This would translate in a infeasible training

time. Moreover, retaining information since information since the beginning of

time might not bring any improvement to our model. In our project we are dealing

with long-term EEG recordings, the information from one day might not be useful

in the next. These are the reasons why we have to create finite sequences from our

data. We define a sequence length and at any timestep t we only backpropagate

through the sequence. Figure 2.11 exemplifies how one output is computed from a

sequence. Creating sequential inputs implies the addition of another dimension to

the feature matrix. Instead of having a feature matrix with dimensions n× d we

will have a matrix with dimensions n× l × d, where n is the number of patterns, l

is the sequence length and d is the number of features.
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Figure 2.11: Many to one classification: The red rectangle represent sequential
inputs and the purple rectangle represents the output. The green rectangles
represent the state of the network, during each time step the state of the network
depends on the previous state as well as on the current input. The output

depends only on the state at the last time step.

2.5 One dimensional convolution

One dimensional convolution can be used to extract higher-level features from a

sequence. It involves a filter vector sliding over a sequence and detecting features at

different positions. Let x ∈Rl×d denote the input sequence where l is the sequence

length and d the number of features; xi ∈Rd denote the ith input of the sequence;

m ∈Rk×d denote the filter of length k for the convolution operation. For positions

1, . . . , l − k + 1 in the sequence, we have a window vector wj ∈Rk×d denoted as

wj = [xj,xj+1, ...,xj+k−1] (2.19)

where commas represent row vector concatenation. A filter m convolves with the

window vectors in a way to generate a feature map c ∈Rl−k+1; each element cj of

the feature map for window vector wj is produced as follows

cj = f(wj ∗m + b) (2.20)

where b ∈R is a bias term, * is matrix convolution and f is a non-linear transfor-

mation function.
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For m filters with the same length, the generated m feature maps can be rearranged

as feature representations for each window wj,

W = [c1; c2; ...; cm] (2.21)

Here, semicolons represent column vector concatenation and ci is the feature map

generated with the i-th filter. The resulting W ∈ R(l−k+1)×m is a higher-level

sequence of features that can be fed into the LSTM.



Chapter 3

State of the Art

3.1 Introduction

Up until 1975, neuroscientists believed that the transition between normal brain

function and an epileptic seizure was instantaneous, that is, they thought that an

epileptic seizure appeared with no previous traces of its incoming. Viglione and

Walsh (1975) [23] had visionary ideas and believed that maybe there was a transition

state, between the normal and epileptic states, that could be detected. A detection

of that state would imply the ability to predict seizures. Using linear approaches,

such as pattern detection and spectral analysis, they performed experiments with

five patients, yielding 90% of correct separation between pre-seizure and non-pre-

seizure EEG epochs in the training set. They even patented an electronic warning

device, but it produced many false-positive results. Eventually, they stopped

research because they were very limited by the computational resources available

at the time.

With the advance of technology, many experiments have been made in the field, and

even thought each experiment may use different methods, most of the published

studies were based on the use of the EEG. Features can be linear, non-linear,

univariate (computed using a single channel) or multivariate (computed using

multiple channels). Furthermore, features can be categorized in the time, frequency,

18
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or time-frequency domains. It should also be noted that seizure prediction can be

made through feature thresholding or machine learning methods.

3.2 Databases

Most of the studies we are going to review use data from the Freiburg or EPILEP-

SIAE databases. We will briefly outline their contents.

3.2.1 Freiburg database

The Freiburg database contains invasive EEG recordings from 21 patients suffering

from medically intractable focal epilepsy. The EEG data was acquired using a

Neurofile NT digital video EEG system with 128 channels, 256 Hz sampling rate,

and a 16 bit analogue-to-digital converter.

Although this database provided data of a higher quality than ever before it has

flaws: it contains discontinued data and only contains 50 minutes of preictal data

per patient, which might not be enough to represent the intra-patient pre-ictal

state variations.

3.2.2 EPILEPSIAE database

The EPILEPSIAE database was the first database to provide continuous long-term

records, turning the Freiburg database obsolete. It contains recordings of 275

patients collected at the University Hospital Freiburg, Germany, of the University

Hospital of Coimbra,Portugal, and of the Hopital de la Pitié-Salpêtrière in Paris,

France. To be more precise, it contains surface recordings from 225 patients and

invasive EEG recordings from 50 patients. The scalp EEG data was recorded

with scalp electrodes placed according to the international 10-20 system with a

referential montage, and the invasive EEG was recorded with stereo-tactically

implanted depth electrodes, subdural grids and/or strips. The recording of the
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electrocardiogram (ECG) is also present for all the patients. This database contains

almost 2031 days of EEG recordings including 2702 seizures. [24] [25]

3.3 Past studies on Seizure Prediction

Sackellares et al., (2006) [26] used convergence in short-term maximum Lyapunov

exponent(STLmax), a measure of the local chaoticity in a dynamical system, to

track preictal changes. For a prediction horizon of 30min, the average sensitivity

reached 80% and the false prediction rate was 0.56/h, however, the value dropped

to 0.12/h when the prediction horizon was set to 150min.

Schelter et al. (2006) [27] applied time series analysis techniques for seizure

prediction. Using invasive EEG data of four representative patients suffering from

epilepsy, they demonstrated the performance of a seizure prediction method based

on a quantity measuring phase synchronization. They used a random predictor to

decide if their method provides prediction better than chance, and only for two

of the four patients the performance of their method was superior to a random

predictor.

Mirowski et al. (2008) [28] wrote one of the first articles where machine learning

techniques were applied to epileptic seizure prediction. The methods used were

logistic regression, SVMs and Convolutional Neural Networks. They made use of

four different types of bivariate features computed based on 5s windows. They

claim that, for each patient on the Freiburg EEG dataset, at least one method

predicts 100% of the seizures on average 60 minutes before the onset, with no false

alarm. All results were statistically validated.

Chisci et al. (2010) [29] applied Auto-Regressive models with SVMs for seizure

prediction. SVMs had already been applied in the past but they proposed the

association of the standard SVM with a Kalman Filter to regularize the continuous

variable used for classification, and thus, to significantly reduce the number of false
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alarms. Their methods exhibited 100% sensitivity and high values of specificity on

the Freiburg EEG dataset.

Kuhlmann et al. (2010) [30] investigated a single feature, the bivariate synchrony.

They analysed all available channels from long-term invasive recordings from 6

patients with intractable focal epilepsy. Four threshold techniques using fixed and

dynamic threshold values were used to generate alarms. For each patient, the best

sensitivity ranged from 50% to 88%, while the false prediction rates ranged from

0.64/h to 4.69/h.

Park et al. (2011) [31] proposed an algorithm for seizure prediction using multiple

EEG power spectral features and cost-sensitive SVMs, which they trained and tested

using data from 18 patients from the Freiburg database. A Fisher discriminant

kernel analysis was used to determine the best feature set for testing. The output

of the classifier was smoothed using a Kalman filter to decrease the number of

false positives. They achieved an average sensitivity of 98.3% and an average false

positive rate of 0.27/h. Prediction above chance was attained for all the 18 patients.

This study demonstrated that low computational cost linear features can provide

good results. It was also the first study to demonstrate above-chance performance

in out-of-sample data.

Williamson et al. (2012) [32] presented a method based on a patient-specific SVM

classifier. They used a total of 488 features based on the eigenspectra of space-delay

correlation and covariance matrices computed at multiple delays. The feature

space was reduced using a principal component analysis(PCA), where the top 20

components were used as inputs to the SVMs. The algorithm achieved an average

sensitivity between 86% and 95% with the proportion of time spent under false

warning between 9% and 3%.

Aarabi and He (2012) [33] presented a patient-specific algorithm based on the

combination of non-linear univariate and bivariate features. The authors used

invasive EEG datasets from 11 patients selected from the Freiburg database. The

univariate features used were: correlation dimension, correlation entropy, noise level,

Lempel-Ziv complexity and largest Lyapunov exponent, while a single bivariate
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measure was used, the nonlinear interdependence. Alarms were generated using 4

threshold values and a set of combination and integration rules. For two seizure

prediction horizons, 30 and 50min, an average sensitivity of 79.9% and 90.2%,

an average false prediction rate of 0.17 and 0.11/h were achieved, respectively.

The results were statistically validated. By analysing the performance of each

feature individually, the authors concluded that the combination of univariate and

bivariate features contribute to a better algorithm performance.

Li et al. (2013) [34] investigated the rate of epileptic spikes in invasive EEG as

a measure for seizure prediction on the Freiburg dataset. They found that the

spike rate was significantly different for the interictal, preictal, ictal and postictal

segments. Alarms were generated when the spike rate of any channel crossed a

patient-specific threshold. The algorithm achieved 56% sensitivity and a false

prediction rate of 0.15/h for a prediction horizon of 30 min and 72.7% sensitivity

and a false prediction rate of 0.11/h for a prediction horizon of 50 min. All these

results were demonstrated to be above chance level.

Gadhoumi et al. (2013) [35] presented an algorithm based on measures of similairty

between preictal and interictal states derived from wavelet entropy and energy.

The algorithm was tested on long-term intracerebral EEG from 17 patients from

the Montreal Neurological Hospital. For 7 out of the 17 patients, the algorithm

predicted seizures above chance. The average sensitivity was higher than 85% and

the average false prediction rate was below 0.1/h.

Teixeira et al. (2013) [36] reported the first largest study on long-term EEG

recordings. The data used was the outcome of the European project EPILEP-

SIAE (http://www.epilepsiae.eu) [24] [25], which was created with the purpose

of providing the research and clinical communities with data that eliminates the

problems of short-term discontinuous data segments and the low number of pa-

tients. In this study they reported the performance of three different models on

the new dataset: multilayer perceptron neural networks(MLP-ANN), radial basis

neural networks(RBF-ANN) and SVM. Only six electrodes were used for the

computation of twenty-two univariate features, using 5s windows without overlap.
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One innovation presented was the concept of firing power, a filter used to reduce

the number of false alarms. For each patient, the best predictor was chosen by

its proximity to the optimal predictor (100% of sensitivity, 0h−1 of FPR). They

achieved an average sensitivities of 74% and 68%, and average false positive rates

of 0.28 and 0.37 for scalp and invasive patients, respectively.

Eftekhar et al. (2014) [37] presented a method for detecting and predicting seizures

using the Freiburg database. The method was based on N-gram modelling. The

N-gram algorithm looks for repeating patterns using a 1-min sliding window. The

sequence of the repeating patterns counts was used to generate alarms through

threshold crossing. Three channels corresponding to the seizure onset were analysed.

The authors performed what appears to be a cross-validation on the dataset and

reported the average performance across iterations and channels.The authors

reported a sensitivity of 67% and a false prediction rate of 0.04/h for temporal

lobe cases, and a sensitivity of 72% and a false prediction rate of 0.61/h for frontal

lobe cases. All results were statistically significant, by comparison with a random

predictor.

Zheng et al. (2014) [38] used a method based on the mean phase coherence (MPC),

originally proposed by Mormann et al.(2000). The original MPC predictive power

did not exceed random levels. A bivariate empirical mode decomposition of EEG

channels was then used to improve performance. Data from 10 patients of the

Freiburg database was used to optimize and test the method. The performance was

assessed by using a cross-validation on the dataset. For a maximum false prediction

rate of 0.15/h, the average sensitivity ranged between 25 and 70%. Performance

was higher than the performance presented by a random predictor.

Bandarabadi et al. (2015) [39] presented an algorithm based on spectral power

rations. They used data from 24 patients of the EPILEPSIAE database. Channels

from 3 electrodes in the seizure onset area and other 3 not related with the focus

were analysed. For each channel, the normalized spectral power in the conventional

EEG frequency bands(Alpha, Beta, Delta, Theta and Gamma) was computed based

on 5s windows. The authors introduced the ratio between normalized spectral
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powers to track preictal changes. The ratio was computed for all combinations of

channels and frequency bands, giving a total of 435 features. A new feature selection

method based on the maximum difference in amplitude distribution histograms

(MDADH) of preictal and non-preictal samples were considered(Teixeira et al.,

2011). The prediction was made using a SVM classifier, using the first 3 seizures

for training and the remaining ones for testing. Four seizure prediction horizon

values were tested: 10, 20, 30 and 40 minutes. A method based on the ”firing

power” filter (Teixeira et al., 2011) was applied to the classifier’s output, aiming to

generate alarms before seizures and at the same time minimizing the number of

false alarms. For the 8 patients with invasive EEG, an average sensitivity of 78.36%

and a false positive rate of 0.15/h were achieved. The results for the scalp data

were similar, however, the authors reported that the number of features selected

was smaller for invasive than for scalp data, concluding that invasive EEG contains

clearer and more localized epileptogenic information than scalp EEG.

Direito et al. (2016) [40] presented a study based on SVMs, using 216 patients

from the EPILEPSIAE database. Six electrodes were used for the computation

of twenty-two univariate features, using 5s windows without overlap. The ”firing

power” filter was used to reduce the number of false alarms. The validation

procedure included a k-fold cross validation procedure that lead to the attainment

of a best model that was used in out-of-sample data. They achieved an average

sensitivity of 38.47% and an average false positive rate of 0.2/h. The results were

statistically for 11% of the patients.

3.4 Deep learning approaches for seizure detec-

tion

Another topic of importance is how the features are extracted from the EEG data.

One study has shown that features extracted from EEG signal using convolutional

networks might outperform human engineered features for seizure detection.
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Thodoroff et al. (2016) [13] proposed a recurrent convolutional architecture designed

to capture spectral, temporal and spatial patterns representing a seizure. First,

they project the multi-channel EEG signal into an image representation, second,

a recurrent convolutional neural network is trained to predict whether or not

the corresponding image contains a seizure. Their image-based representation of

the EEGs is a method that makes use of the knowledge of the electrodes spatial

montage. The recurrent convolutional neural network used can be separated into

two types of neural networks: convolutional and recurrent. The architecture of the

convolutional neural network (CNN) used was inspired by a model that achieved

state of the art on the ImageNet competition [41]. The CNN has the ability

to automatically extract features, thus, replacing the need for complex feature

engineering that was used in previous works on seizure detection and prediction.

The recurrent neural network (RNN), which feeds on the automatically extracted

features by the CNN, is one of the type Long Short Term Memory (LSTM), a

type of RNNs which have the ability to retain information for longer periods of

time than normal RNNs [3]. They claim that their model has obtained state of

the art performance on patient specific detectors, and, unlike earlier models, it has

the ability to learn a general representation of a seizure, which leads to significant

improvement in cross-patient detection performance.

3.5 Discussion

Almost all studies presented in this review used the Freiburg database, however,

as mentioned previously, it contains discontinued data and only 50 minutes of

preictal data per patient. Lehnertz et al. (2007) [42] stated that to demonstrate

the clinical usefulness of a seizure prediction method, it should be evaluated on

long term, continuous and uninterrupted EEG data covering all possible states

and conditions of the patient. Having this in mind, we will use data from the

EPILEPSIAE database, which overcomes all the limitations of its predecessor.
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Since one of the goals of our study is to compare the performance of LSTMs with

other methods, we will use the set of features used by Direito et al. (2016) in their

work, which was based on SVMs. We choose to compare our work with the one by

Direito et al. (2016) because we consider it to be the most realistic up to date, in

a way that it provides out-of-sample results for 216 patients of the EPILEPSIAE

database.

Thodoroff et al. (2016) have successfully applied feature extraction algorithms to

improve the results of seizure detection, but the same has not yet been applied

to seizure prediction. This motivated us to also experiment one dimensional

convolution, a type of network able to extract features from data.

In table 3.1 are summarized the results of the reviewed studies.
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Chapter 4

Data and Methods

4.1 Data

From the EPILEPSIAE database, we selected data from 87 patients with scalp

EEG recordings, and from 18 patients with invasive recordings. The data includes:

1087 seizures, from which 203 are used for test, and a total recording duration of

19959 hours, from which 3994 are used for test.

Detailed patient characteristics are presented in Appendix B.

4.1.1 Scalp data

The scalp data includes: 874 seizures, from which 161 are used for test, and a total

recording duration of 14867 hours, from which 3089 are used for testing.

The distribution of gender, age, seizure localization and lateralization, and number

of testing seizures, for the scalp patients, is available in figures 4.1, 4.2, 4.3, 4.4

and 4.6, respectively.

28
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Figure 4.1: Histogram of genders for scalp patients.

Figure 4.2: Histogram of ages for scalp patients.

4.1.2 Invasive data

The invasive data includes: 213 seizures, from which 42 are used for test, and a

total recording duration of 5092 hours, from which approximately 905 are used for

testing.

The distribution of gender, age, seizure localization and lateralization, and number

of testing seizures, for the invasive patients, is available in figures 4.7, 4.8, 4.9, 4.10
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Figure 4.3: Histogram of seizure localization for scalp patients.

Figure 4.4: Histogram of seizure lateralization for scalp patients.

and 4.12, respectively.
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Figure 4.5: Histogram of number of seizures for scalp patients.

Figure 4.6: Histogram of number of test seizures for scalp patients.
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Figure 4.7: Histogram of genders for invasive patients.

Figure 4.8: Histogram of ages for invasive patients.
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Figure 4.9: Histogram of seizure localization for invasive patients.

Figure 4.10: Histogram of seizure lateralization for invasive patients.
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Figure 4.11: Histogram of number of seizures for invasive patients.

Figure 4.12: Histogram of number of test seizures for invasive patients.
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4.2 Raw Data Pre-Processing

Following a standard procedure for EEG pre-processing [43], we used a 48-52 Hz,

fourth order Notch Butterworth infinite impulse response (IIR) filter to remove

the noise related to the power line.

4.3 Feature Extraction

For each EEG channel, 22 univariate features were computed based on 5s windows

with no overlap. We choose this set of features because they are computationally

efficient, with potential for real-time implementation.[40] They were also used in

[40], which is our work of reference.

AR Modelling predictive errors

An autoregressive model was used to predict the EEG signal. The mean squared

error between the predicted and original signals was then used as a feature. The

prediction error has been suggested for seizure prediction [44], it is claimed that as

seizures approach, the EEG signals become more predictable.

The autoregressive model of order p is given by 4.1

Yt = c+

p∑
i

φiYt−i + εt (4.1)

where Yt is the predicted value for instant t, φ1, ..., φp are the parameters of the

model, c is a constant, and εt is white noise. An AR model with order 10 and the

Burg maximum entropy method was used.

Decorrelation time

The decorrelation time corresponds to the first zero crossing of the autocorrelation

function and is an indicator of how data differs from random noise, the bigger
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the decorrelation time, the more random is the time series. The autocorrelation

function of time series xn, n = 1, ..., N can be defined as 4.2.

cxxk =

∑N−k
i=1 xixi+k

(N − 1)σ2
(4.2)

where xi is the ith value of the time series and σ is the standard deviation of the

time series.

A decrease on the power of the lower frequencies during the preictal period results

in an increase on the decorrelation time. [45]

Hjorth Mobility and Complexity

Hjorth Mobility [46] is a quantification of the variance of the slopes of a time series

normalized by the variance of its amplitude distribution.

Hjorth Complexity [46] is the variance of the rate of the slope changes having an

ideal sinusoid as their reference.

Mathematically, Hjorth Mobility is given by 4.3 and Hjorth Complexity by4.4.

HM =

√
σ2(x′n)

σ2(xn)
(4.3)

HC =

√
σ2(x′′n)× σ2(xn)

(σ2(x′n))2
(4.4)

x′n and x′′n are the first and second derivatives of the time series xn. σ represents

the standard deviation.

A decrease on the power of the lower frequencies during the preictal period implies

an increase in the Hjorth Mobility and Complexity.[45]

Relative spectral power
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Considering the main spectral frequency bands defined in classical EEG analysis: δ

(0.5-4Hz), θ (4-8Hz), α (8-13Hz), β (13-30Hz) and γ (>30Hz), the relative spectral

power in each frequency band corresponds to the average of the square fast Fourier

transform (FFT) coefficients in that frequency band divided by the total spectral

power. It was reported that during the preictal period, a shift of EEG power from

the lower to the higher frequencies occurs.[45]

Spectral edge frequency and power

Most of the spectral power is comprised in the 0.5-40Hz band. We define spectral

edge frequency as the frequency below which 50% of the total power of the signal

is located. The spectral edge power is the value of the power existing below the

spectral edge frequency.

Statistical moments

Four statistical measures were used as a feature: mean, variance, skewness and

kurtosis, given by equations 4.5, 4.6, 4.7 and 4.8, respectively. It was reported

that the variance and kurtosis vary significantly in the preictal phase. A decrease

in variance and an increase in kurtosis were observed in the preictal time when

compared with interictal data [47].

µ =

∑N
i=1 Yi
N

(4.5)

σ2 =

∑N
i=1 Yi − µ
N

(4.6)

S =

∑N
i=1(Yi − µ)3

Nsσ3
(4.7)

K =

∑N
i=1(Yi − µ)4

Nσ4
(4.8)
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In the above equations, N is the number of samples of the time series, Yi is the

value at time i and σ is the standard deviation.

Accumulated Energy

Accumulated Energy is measure of the signal which has shown promising results[48].

For a time series xn, n = 1, ..., N it is defined as the mean of the squared values.

4.9.

Energy =

∑N
i=1 x

2
i

N
(4.9)

Energy of wavelet coefficients

The signal was decomposed into six decomposition levels using the wavelet transform.

The EEG signal was decomposed in six levels by considering a Daubechies-4 wavelet

(DB-4).[49] DB4 signal decomposition was successfully used in the past for seizure

detection. [50]

The energy (4.9) of the wavelet coefficients of the various levels was used as a

feature.

4.4 Feature Pre-Processing

4.4.1 Normalization

To prevent numerical errors that might arise during computations due to round-off

and truncation errors, each dimension of the data went through a unit variance

and zero mean normalization, also known as z-score normalization.

4.4.2 Electrode Selection

In this study, for each patient only data from 6 electrodes was used to train the

models. The reason for the choice of a small number of electrodes is that only a
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small percentage of patients would consider using an ambulatory device with a

complete array of scalp electrodes [51]. Other studies have also suggested that

six electrodes might be appropriate for seizure prediction.[52][53][27] With this in

mind we expect that six electrodes are enough to provide enough information while

at the same time providing comfort for the patients. For each patient we selected

three electrodes as close as possible to the focal region and other three in regions

far from the focal region.

4.5 Labelling

We considered seizure prediction as a two-class problem. Every sample in a certain

period preceding a seizure, called the seizure occurrence period (SOP), was labelled

as pre-ictal, while all the other samples are labelled as non-pre-ictal, which include

all the samples that belong to the interictal, ictal and postictal states.

4.6 Data division

Each patient dataset was divided in three blocks: train, validation and test. The

train block contains 60% of the seizures, while the validation and test sets contain

20% each. A visual representation of the division can be seen in figure 4.13.

Figure 4.13: Data division method.

Furthermore, to prevent class bias when training due to class imbalance, we

randomly removed non-preictal patterns from the training set until the number of

patterns of the non-preictal and preictal classes was equal.
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4.7 Training

For each patient, several models were trained, the differences being in the choice

of architecture and parameters of the models. The diferent free parameters are

presented in section 4.7.5.

4.7.1 Architectures

For each patient, we experimented with two types of architectures: Long Short

Term Memory (LSTM) and Convolutional Long Short Term Memory (C-LSTM).

The LSTM architecture as the name implies, is a succession of LSTM layers. The

C-LSTM architecture consists of the inputs passing through a one dimensional

convolutional network which feeds its outputs into a LSTM network.

4.7.2 Overfitting Control

The methods used to avoid overfitting were: L2 regularization, dropout and early-

stopping.

4.7.2.1 L2 Regularization

Regularization techniques are used to reduce overfitting. One of the most commonly

used regularization technique, and which used to train the models is the L2

regularization. L2 regularization works by adding a term to the loss function,

resulting in equation 4.10.

E =
1

N

∑
i

Li + λ
∑
w

w2 (4.10)

The first term of 4.10 is the average loss over all patterns, the second term is the

regularization loss. In the second term, the sum is done for all the weights of the
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model, and the parameter λ is called the regularization strength, it has to be tuned

for each problem. The effect of regularization is to make the network learn small

weights evenly spread, instead of having a portion of weights with large values

while another portion has small values. It has been shown that regularization

reduces overfitting. [54].

4.7.2.2 Dropout

Dropout [55] is another technique used to reduce overfitting. The idea is that

during each training epoch, each neuron has a probability d of not being used for

the output computation, having no contribution during the backpropagation of the

errors. This implies that while using dropout multiple architectures are explored

during training. Because the weights are shared between the different architectures,

they becomes regularized.

4.7.2.3 Early Stopping

Early stopping keeps track of the loss on the validation set as the learning proceeds,

and stops training as validation loss does not decrease after n epochs. The weights

of the model are then reverted to the ones that provided the lowest loss.

In our set up, we kept n equal to 7.

4.7.3 Optimizer

Adaptive Moment Estimation (Adam) [56] was the optimization algorithm used to

update the networks weights at each iteration.

Adam is a method that computes adaptive learning rates for each parameter. It

stores an exponentially decaying average of past gradients mt (first moment), and

an exponentially decaying average of past squared gradients vt (second moment).
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Figure 4.14: Early stopping: the red line represents the validation loss and
the blue line the training loss, during each training epoch. The weights of the

model are reverted back to the early stopping point.

mt = β1mt−1 + (1− β1)gt (4.11)

vt = β2vt−1 + (1− β2)g2t (4.12)

where gt are the actual gradients. mt and vt are initialized as vectors of 0’s, which

causes them to be biased towards zero during the initial time steps and when the

decay rates β1 and β2 are small. To correct these biases, a second computation of

the moments is performed:

m̂t =
mt

1− β1
(4.13)

v̂t =
vt

1− β2
(4.14)

m̂t and v̂t are then used to update the network weights and bias:
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wt+1 = wt −
η√
v̂t + ε

m̂t (4.15)

bt+1 = bt −
η√
v̂t + ε

m̂t (4.16)

The authors propose default values of 0.9 for β1, 0.999 for β2, and 10−8 for ε. We

choose this optimizer because it was shown empirically that it compares favourably

to other optimizers. [56]

4.7.4 Loss function

We selected the cross entropy as the loss function to minimize during training. It

is given by

L = −
N∑
i=1

1

N
log2(ŷi) (4.17)

where N is the number of samples and ŷi is the probability, given by the network,

that sample i belongs to its true class.

4.7.5 Parameters Overview

Overall our models had the following free parameters:

• d - dropout probability

• λ - regularization strength

• n - number of epochs, without a decrease of the validation loss, necessary for

the termination of training

• η - learning rate
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• SOP - seizure occurrence period

• l - length of the sequence of inputs

• units - number of neurons per hidden layer

• layers - number of hidden layers of the network

• k - number of filters of the one dimensional convolution network.

4.8 Post-Processing

Considering binary classifiers that classify electroencephalogram epochs in preictal

vs non-preictal, the concept of firing power is applied to reduce the number of false

positives. The equation of the firing power [36] is presented in 4.18.

fp[n] =

∑n
k=n−τ o[k]

τ
(4.18)

where o[k] is the classifier output for sample k. If fp[n] = 1 it means that the

classifier output for the previous τ patterns was positive, in the opposite way, if

fp[n] = 0 all the outputs are zero. Each pattern is classified as pre-ictal only if

fp[n] is over a certain threshold θ.

When an alarm is generated, we consider that no alarm can occur for the following

seizure occurrence period (SOP).

4.9 Performance Measures Model Selection

Several models are tarined for each patient. Afterwards, for each model,the firing

power filter (4.18) was applied to the output of each model on the validation set,

using different combinations of the parameters θ and γ. θ is the threshold for fp[n]

at which an alarm is generated. γ is the threshold for σ(n)ictal (2.7) at which a

pattern is classified as preictal.
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After applying the firing power filter multiple times to each model, we select the

model and combination of θ and γ, for each patient, that perform the best on the

validation set. Performance is measured by the distance d to the optimal prediction

performance (4.19), which is 100% sensitivity and 0 FPR.

d =
√
FPR2 + (1− sensitivity)2 (4.19)

FPR is computed by dividing the number of false positives by the non-pre-ictal

time minus the number of false positives times the seizure occurrence period.

FPR =
FP

tnon−pre−ictal − FP × SOP
(4.20)

The reason why we subtract FP × SOP from the denominator is because when

an alarm is generated we consider that a seizure is approaching, therefore, for a

period SOP no false alarms can occur.

Sensitivity is simply the ration between the number of correctly predicted seizures

and the total number of seizures.

sensitivity =
#predicted seizures

#seizures
(4.21)

4.10 Model Evaluation

After selecting the best model for each patient, the final performance of each model

was accessed on the test set. The final performance is measured by the sensitivity

(4.21) and false positive rate (4.20).
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4.11 Statistical Validation

To statistically validate our results, we follow a method proposed by Schelter et

al. (2006) [27]. The method computes the sensitivity of a random predictor that

generates alarms following a Poisson process. It is then possible to statistically

validate the results of a model by comparing its sensitivity with the one of the

random predictor.

Considering K seizures in the test set, k the number of predicted seizures and

z the number of independent models selected for testing. The probability Pk of

predicting k seizures by means of at least one of the d models is

Pk = {k;K;PSOP} = 1−

(∑
j<k

(
K

j

)
P j
SOP (1− PSOP )K−j

)d

(4.22)

PSOP is the probability of emitting an alarm within the SOP .

Considering a significance level α, the upper sensitivity of the random predictor

can be defined as

upper = max
k

(Pk{k;K;PSOP} > α)× 100% (4.23)

A model is statistically validated only if the obtained sensitivity is superior the the

upper sensitivity of the random predictor.

In our study only one model is evaluated on the testing set, therefore we used d

equal to 1. We considered a significance level α of 5%.

4.12 Implementation

A framework for training and evaluating models was written in Python. The

framework has the following functionalities:
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• Read csv files containing the features and the targets.

• Normalize the data.

• Create sequential inputs. (2.4.7)

• Separate the data by choosing the percentage of seizures included in each set.

• Train models and save models. The number of layers and neurons per layer

are a free parameter.

• Perform a grid search for the regularization and dropout.

• Evaluate models on the validation and test sets.

The framework is available on https://github.com/rodrigomfw/framework

Training of the LSTMs was done using the Keras library, a high-level neural

networks API, written in Python and capable of running on top of Theano, a

Python library which allows the use of GPU acceleration.

The computer used to train the models had the following specifications:

• RAM - 20 Gb

• CPU - Intel i7 975 @ 3.33GHz

• GPU - NVIDIA GeForce GTX 1080 8Gb

We was also integrated a module for training LSTMs in the EPILAB toolbox

(appendix C).

https://github.com/rodrigomfw/framework


Chapter 5

Results & Discussion

In this chapter we present and discuss the obtained results using both architectures:

LSTM and C-LSTM.

Detailed results are presented in appendix A

5.1 LSTM

We trained a patient-specific model for each combination of parameter values

presented in table 5.1. Preliminary experiments were done to obtain the best

interval for each parameter.

Table 5.1: Values, for each parameter, used during training.

Parameter Values
η 0.001
p 0.6, 0.7, 0.8
λ 0.001, 0.01, 0.1
n 7

sop(min) 10, 20, 30, 40
l 50

units 200, 400, 600
layers 2, 3

48
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We selected, for each patient, the best model by its proximity to the optimal

predictor on the validation set (4.19).

We analysed the influence of a variety of factors on performance (sensitivity and

FPR). The factors are: recording type (scalp or invasive), gender, age, seizure

localization, seizure lateralization, recording sampling frequency, number of test

seizures and SOP.

We used the Kruskal-Wallis test of significance to statistically validate the differences

in performance. The choice of this test, a non-parametric one, comes from the fact

that the results do not come from a normal distribution. We verified normality of

results using the DAgostino Pearson test.

In all our tests we considered a significance level of 5%, and our null hypothesis is

that a factor has no influence on performance.

For all patients, scalp and invasive, our LSTM models achieved an average sensitivity

of 29.28% and an average FPR of 0.58/h. We predicted 52 out of 203 (25.62%)

seizures on the testing set. It is observed that for 5 out of 105 (4.8%) patients,

optimal test performance with sensitivity ≥ 50% and FPR ≤ 0.15h−1 was achieved.

Perfect performance with 100% sensitivity and 0 h−1 FPR was achieved for 2

(1.9%) patients.

Performance was superior to a random predictor for 7 (6.67%) patients (5 with

scalp recording and 2 with invasive).

In table 5.4 it is present the results obtained for each factor mentioned. It is also

included the p-values of the Kruskal-Wallis test.

Although scalp patients present a higher average sensitivity and a lower average

FPR than invasive patients, these differences were not statistically significant

according to a Kruskal-Wallis test.

We observe that the average values for sensitivity and FPR are very similar for both

genders. We also verify that the box plots for each gender are very similar (Figure
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5.2). The statistical test confirms that the influence of gender on performance is

not significant.

Those with ages superior to 40 have a higher average sensitivity and a lower average

FPR, when comparing with the other two groups of an inferior age. However, those

differences in performance are not statistically significant.

Seizure localization induce significant changes only in FPR, therefore affecting

performance. Looking at figure 5.4 it is observed that those with an undefined

seizure focus have higher FPRs, which can be explained by the fact that our models

use data from 6 electrodes, 3 of them in the focal region. If there is no focus then

it is not possible to select 3 electrodes in the focal region, which should contain

essential information for prediction. It is also observed that for the patients with

frontal lobe seizures the average sensitivity is significantly higher comparing with

other focal regions, while having a low average FPR of 0.21/h.

Analysing figure 5.5 we verified that the box plots of the sensitivities are almost

identical for all the seizure lateralizations, however, observing the box plots of the

FRPs it is clear that those with an undefined lateralization have higher FPRs.

This can also be explained by the fact that by having an undefined lateralization it

is difficult to place 3 electrodes in the seizure focus, loosing valuable information.

The differences in the FPR were, however, not statistically significant.

Comparing the sampling frequencies of 1024Hz and ≤256Hz we observe that the

former has higher sensitivity and a similar FPR, therefore providing a better

performance. This behaviour is expected since a higher sampling frequency implies

a better signal quality. However, when comparing the sampling frequencies of

1024Hz and 2500Hz we find that the latter performs worse, but considering that

only 6 patients have a sampling frequency of 2500Hz, we can not make a solid

conclusion about this fact. Observing the p-values of the Kruskal-Wallis test we

found that none of the differences induced by the sampling rate were statistically

significant.
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The number of test seizures seems to have no impact on performance. Even thought

the group with only one test seizure has a slightly higher sensitivity it comes at the

expense of a higher FPR, therefore no conclusions can be made. The statistically

test also proves that the differences in performance are not significant.

In our study we considered four SOP values: 10, 20, 30, 40. After choosing the

best SOP for each patient we observe an average SOP of 30.57 minutes, with the

upper values, 30 and 40, being selected for 71% of the patients. This indicates that

higher SOPs lead to better results, which is in agreement with previous studys [36]

[40]. It is also observed that a SOP of 40 minutes produces the highest sensitivity

and the lowest FPR. The differences in the sensitivity were found to be statistically

significant.

Figure 5.1: Boxplots of FPR and sensitivity for scalp and invasive patients.
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Figure 5.2: Boxplots of FPR and sensitivity for all patients grouped by gender.

Figure 5.3: Boxplots of FPR and sensitivity for all patients grouped by age.
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Table 5.2: Influence of the different factors on performance. ”Rec. Type” is
the recording type, scalp or invasive; ”Gen.” is the gender, ”M” is male and
”F” is female; ”Age” is the patient age during the recording; ”Loc.” is the
seizure localization: ”F” - frontal, ”T” - temporal, ”C” - central, ”H” - whole
hemisphere, ”Und” - undefined localization; ”Lat.” is the seizure lateralization;
”S.F” is the sampling frequency of the recording; ”SOP” is the best seizure
occurrence period found for the patient; ”# Pat.” is the number of patients;
”Avg. SS” is the average sensitivity; ”Std. SS” is the standard deviation of the
sensitivity; ”Avg. FPR” is the average false positive rate; ”Std.FPR” is the
standard deviation of the false positive rate; ”p-value” is the p-value obtained

using the Kruskal-Wallis test.

#Pat. Avg. SS(%) Std. SS(%) Avg.FPR(h−1) Std.FPR(h−1)

Rec. Type Scalp 87 29.59 40.82 0.57 0.88
Invasive 18 27.78 42.78 0.62 0.75
p-value 0.78 0.59

Gen. M. 53 28.28 40.64 0.59 0.92
F. 52 30.29 41.66 0.57 0.79

p-value 0.58 0.68

Age ≤ 20 13 29.46 43.11 0.62 1.04
]20,40] 55 26.2 38.5 0.58 0.88
> 40 37 33.78 44.36 0.56 0.76

p-value 0.80 0.78

Loc. F 14 42.86 47.46 0.21 0.29
T 72 26.03 40.27 0.58 0.83
C 2 25.0 35.36 0.1 0.13
H 3 16.67 28.87 0.33 0.06

Undefined 14 35.71 41.81 1.09 1.23
p-value 0.60 0.01

Lat. Right 48 27.42 42.17 0.47 0.7
Left 37 31.97 41.08 0.46 0.66

Bilateral 8 28.13 41.05 0.89 1.29
Undefined 12 29.17 40.31 1.19 1.3

p-value 0.91 0.54

S.F.(Hz) ≤ 256 45 22.96 36.29 0.5 0.8
400 13 34.62 47.37 0.77 1.01
512 18 36.11 44.74 0.62 0.81
1024 23 32.96 44.84 0.58 0.88
2500 6 30.5 40.02 0.63 1.13

p-value 0.83 0.72

# T. Sz. 1 39 33.33 47.76 0.65 1.05
[2,3] 58 26.71 36.27 0.55 0.73

[4,5,6] 8 28.13 41.05 0.46 0.62
p-value 0.98 0.46

# SOP(min) 10 12 20.83 39.65 0.61 1.08
20 18 27.78 42.78 0.86 1.22
30 27 8.63 23.27 0.52 0.8
40 48 43.56 43.71 0.5 0.63

p-value 0.003 0.55
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Figure 5.4: Boxplots of FPR and sensitivity for all patients grouped by seizure
localization.
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Figure 5.5: Boxplots of FPR and sensitivity for all patients grouped by seizure
lateralization.
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Figure 5.6: Boxplots of FPR and sensitivity for all patients grouped by
sampling frequency.
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Figure 5.7: Boxplots of FPR and sensitivity for all patients grouped by number
of test seizures.
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Figure 5.8: Boxplots of FPR and sensitivity for all patients grouped by SOP.
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5.2 C-LSTM

We used a one dimensional convolution neural network to feed a LSTM network.

While maintaining the best parameters found for the LSTM part of the network,

we performed a grid search to tune the parameters the convolutional network (5.3).

Table 5.3: Values, for each parameter, used during training.

Parameter Values
d 0.6, 0.7, 0.8
λ 0.01, 0.1, 1, 10

layers 2, 3
units 200

k 10,20,30

We selected, for each patient, the best model by its proximity to the optimal

predictor on the validation set (4.19).

For all patients, scalp and invasive, our C-LSTM models achieved an average

sensitivity of 28.17% and an average FPR of 0.64/h. predicted 54 out of 203

(26.60%) seizures on the testing set. It is observed that for 2 out of 105(1.9%)

patients, optimal test performance with sensitivity ≥ 50% and FPR ≤ 0.15h−1 was

achieved. Perfect performance with 100% sensitivity and 0 h−1 FPR was achieved

for 0 (0.0%) patients.

Performance was superior to a random predictor for 6 (5.7%) patients.

In table 5.4 is the sensitivity and FPR obtained for the LSTM and C-LSTM net-

works. LSTMs presents higher sensitivities and lower FPRs, although the difference

is not statistically significant. However, optimal and perfect test performances, as

well as performance above random, was achieved for fewer patients, concluding

that using the C-LSTM architecture might actually decrease performance.
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Table 5.4: Influence of architecture type on prediction performance. ”Avg. SS”
is the average sensitivity; ”Std. SS” is the standard deviation of the sensitivity;
”Avg. FPR” is the average false positive rate; ”Std.FPR” is the standard

deviation of the false positive rate.

Avg. SS(%) Std. SS(%) Avg.FPR(h−1) Std.FPR(h−1)

Arch. Type LSTM 29.28 40.96 0.58 0.85
C-LSTM 28.17 40.23 0.64 1.11
p-value 0.51 0.86

5.3 Studies comparison

In Table 5.5 we have a comparison between our results using the LSTM architecture

and the results of the study by Direito et al. (2016), which was based on SVMs.

There is a clear difference in performance, they achieved a significantly higher

sensitivity and lower FPR. They also achieved a higher percentage of patients

with statistically significant results. This indicates that the LSTMs do not provide

better results than SVMs. We were expecting the opposite since LSTMs are, in

theory, a method expected to perform better than the SVMs when sequential data

is involved. However, this is not a solid conclusion as the experimental conditions

were not exactly the same. Even though we used data from the same database

we only experimented with 105 patients, less than half the patients they used.

Our training methods were also different, while they followed a cross-validation

approach, we used one single block for training and another for validating.

Table 5.5: Comparision of performances achieved in our study and the study
by Direito et al.(2016). ”# Pat.” is the number of patients considered in the
study; ”Avg. SS” is the average sensitivity; ”Std. SS” is the standard deviation
of the sensitivity; ”Avg. FPR” is the average false positive rate; ”Std.FPR” is
the standard deviation of the false positive rate; ”# Stat. Sig” is the number of

patients with statistically significant results.

Study #Pat. Avg.SS(%) Avg.FPR(h−1) # Stat. Sig.
Direito et al. 216 38.47 0.20 24 (11%)

Ours 105 29.28 0.58 7 (6.67%)



Chapter 6

Conclusion and Future Work

In our study we achieved performance above chance for 6.67% of the patients.

Although this is a small percentage, if other studies achieve statistically significant

for the same subset, it is sign that they could be users of a clinical application.

We analysed the influence of a variety of factors on prediction performance, but

only the seizure localization and SOP were found to have a statistically significant

impact on performance.

Using the C-LSTM architecture as an attempt to extract a higher-level sequence

of features came down as a failed experience, achieving worse results than with the

LSTM architecture.

We achieved worse results when comparing our results with a study using the same

database but based on SVMs. We conclude that it is not worth to use LSTMs, at

least with current features, since they are a more computationally expensive model

that does not provide better results. However, the number of patients and training

methodologies considered were not the same. In a future study, experimental

conditions should be identical to make a solid conclusion.

In the future we expect to experiment both the LSTM and C-LSTM architectures

with raw EEG signal. We expect that the LSTMs will be able to capture better

temporal dependencies on raw signal, since compacting 5 seconds of information into
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a single value leads to a great loss on information. Furthermore, the convolutional

networks are also typically used on raw data to extract features. A better approach

for selecting training data will also be considered, instead of selecting the first 60%

seizures we will select data in a way that covers a full day/night cycle, to better

capture intra day variations.



Appendix A

Results

A.1 LSTM

Table A.1: Results obtained, in the testing set, for scalp patients and using
the LSTM architecture. ”ID” is the patient identification; ”# Test Seiz.” is
the number of seizures present in the testing set; ”Test Duration” is the total
duration of the EEG recording used for testing; ”True Alarms” is the number of
correctly raised alarms; ”FPR” is the false positive rate; ”Sens.” is the sensitivity
(percentage of correctly predicted seizures); ”C. Sens.” is the critical sensitivity
of the random predictor; ”p-value” is the p-value of the test that determines if

performance is above chance

ID SOP # Test Seiz. Test Duration # True Alarms FPR(h−1 Sens.(%) C. Sens.(%) p-value

70702 20 1 43.1 0 0.0 0.0 0.0 1.0

1306903 30 2 38.7 0 0.0 0.0 0.0 1.0

6700 40 1 7.1 1 1.07 100.0 100.0 0.51

102 40 2 24.8 1 0.19 50.0 50.0 0.22

70202 40 1 9.7 0 0.0 0.0 0.0 1.0

1314803 40 2 10.7 1 0.25 50.0 50.0 0.28

32702 20 1 23.4 0 0.18 0.0 100.0 1.0

71202 30 2 17.8 0 0.2 0.0 50.0 1.0

111902 40 2 71.3 0 0.01 0.0 0.0 1.0

30802 30 2 28.4 0 0.25 0.0 50.0 1.0

72602 10 2 50.7 0 0.47 0.0 50.0 1.0

1235103 40 1 41.4 0 0.19 0.0 100.0 1.0

71802 40 1 17.1 0 0.73 0.0 100.0 1.0

70502 30 2 31.0 0 1.34 0.0 100.0 1.0

73002 10 1 28.1 0 0.07 0.0 0.0 1.0

93902 40 2 21.2 0 0.05 0.0 50.0 1.0

98202 30 2 8.6 0 0.5 0.0 50.0 1.0
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70302 40 3 56.8 0 0.08 33.0 33.33 0.15

1316503 20 1 6.2 0 0.62 0.0 100.0 1.0

1330203 30 1 83.5 1 0.16 100.0 100.0 0.08

400 40 2 39.3 2 0.59 100.0 100.0 0.11

72702 30 2 41.7 0 1.17 0.0 100.0 1.0

72402 30 3 38.9 0 1.07 0.0 100.0 1.0

114902 40 2 85.6 2 0.62 100.0 100.0 0.11

110602 40 2 17.9 2 0.86 100.0 100.0 0.19

5800 20 2 21.9 0 0.26 0.0 50.0 1.0

11002 30 2 28.3 0 0.4 0.0 50.0 1.0

51002 40 2 16.9 1 1.13 50.0 100.0 0.78

71102 10 2 22.4 0 0.0 0.0 0.0 1.0

70402 10 1 39.7 0 0.21 0.0 0.0 1.0

53402 40 2 5.3 0 0.31 0.0 50.0 1.0

8100 40 1 53.8 0 0.32 0.0 100.0 1.0

109502 40 1 65.9 0 0.08 0.0 100.0 1.0

72502 40 2 29.4 2 0.75 100.0 100.0 0.15

1329503 20 1 5.6 1 0.2 100.0 100.0 0.06

101702 40 1 53.9 1 0.02 100.0 0.0 0.01

1314703 40 1 16.0 0 2.73 0.0 0.0 1.0

7300 40 2 78.7 2 0.1 100.0 50.0 0.0

1316403 30 2 19.2 1 0.4 50.0 50.0 0.33

115102 30 2 42.3 0 0.02 0.0 0.0 1.0

81102 30 3 46.7 0 0.31 33.0 66.67 0.37

70602 20 2 48.6 0 3.76 0.0 100.0 1.0

5900 40 1 67.0 0 0.0 0.0 0.0 1.0

1307503 30 3 9.7 0 0.28 0.0 33.33 1.0

1306003 40 1 33.3 1 0.54 100.0 100.0 0.3

202 20 2 31.8 1 0.24 50.0 50.0 0.15

103802 30 1 7.4 0 3.85 0.0 100.0 1.0

6200 30 2 13.7 0 0.27 0.0 50.0 1.0

52302 40 1 71.6 0 0.23 0.0 100.0 1.0

1234303 30 1 29.6 0 0.0 0.0 0.0 1.0

1321803 20 1 7.3 1 2.75 100.0 100.0 0.6

1306203 10 3 29.9 0 0.03 0.0 0.0 1.0

81402 40 2 8.2 1 0.16 50.0 50.0 0.19

1325103 30 2 40.1 1 0.33 50.0 50.0 0.28

7800 20 1 43.0 1 3.74 100.0 100.0 0.71

1325903 40 2 69.4 2 1.01 100.0 100.0 0.24

3600 30 6 14.9 0 0.09 0.0 16.67 1.0

26102 20 2 70.6 1 0.35 50.0 50.0 0.21

6000 30 1 59.3 0 0.19 0.0 100.0 1.0

1300003 10 1 12.8 0 0.0 0.0 0.0 1.0

7302 10 2 61.6 0 0.15 0.0 0.0 1.0

94402 40 1 89.1 0 0.18 0.0 100.0 1.0
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70902 10 2 59.9 1 2.88 50.0 100.0 1.0

1312703 10 1 27.7 1 0.39 100.0 100.0 0.06

1321903 40 1 6.1 1 0.89 100.0 100.0 0.45

200 20 2 35.1 0 0.15 0.0 50.0 1.0

70102 40 1 41.7 1 0.05 100.0 0.0 0.03

6500 40 3 42.1 0 0.23 33.0 66.67 0.37

2300 20 2 37.0 0 0.59 0.0 50.0 1.0

112402 30 2 21.0 0 0.16 0.0 50.0 1.0

80702 40 2 41.5 0 0.2 0.0 50.0 1.0

70802 40 3 24.4 2 0.84 67.0 100.0 0.39

1330903 40 2 65.5 0 0.3 0.0 50.0 1.0

95202 40 2 7.9 0 0.67 0.0 100.0 1.0

1307103 40 2 93.7 1 0.24 50.0 50.0 0.27

72302 40 2 24.4 0 0.14 0.0 50.0 1.0

113902 40 4 7.0 0 0.37 0.0 50.0 1.0

100002 30 4 22.9 0 0.15 0.0 25.0 1.0

72202 40 3 70.6 0 0.11 33.0 33.33 0.2

1328603 40 3 10.8 0 2.89 0.0 100.0 1.0

72802 10 1 9.5 1 0.22 100.0 0.0 0.04

71002 10 1 75.3 0 0.0 0.0 0.0 1.0

6100 40 4 17.0 3 1.9 75.0 100.0 0.68

96002 30 2 78.2 0 0.23 0.0 50.0 1.0

1313003 20 1 29.6 0 0.0 0.0 0.0 1.0

22602 40 1 4.3 1 0.0 100.0 0.0 0.0

2900 30 2 27.4 0 0.08 0.0 50.0 1.0

Table A.2: Results obtained, in the testing set, for invasive patients and using
the LSTM architecture. ”ID” is the patient identification; ”# Test Seiz.” is
the number of seizures present in the testing set; ”Test Duration” is the total
duration of the EEG recording used for testing; ”True Alarms” is the number of
correctly raised alarms; ”FPR” is the false positive rate; ”Sens.” is the sensitivity
(percentage of correctly predicted seizures); ”C. Sens.” is the critical sensitivity
of the random predictor; ”p-value” is the p-value of the test that determines if

performance is above chance

ID SOP # Test Seiz. Test Duration # True Alarms FPR(h−1 Sens.(%) C. Sens.(%) p-value

1259203 20 1 28.8 1 0.75 100.0 100.0 0.22

1308903 30 2 85.7 0 1.79 0.0 100.0 1.0

1310403 30 1 44.2 0 0.0 0.0 0.0 1.0

1235903 20 1 48.1 0 0.25 0.0 100.0 1.0

13902 30 1 16.7 0 0.66 0.0 100.0 1.0

1311203 40 3 146.6 3 0.73 100.0 100.0 0.06

52303 10 1 10.8 0 2.94 0.0 100.0 1.0

107702 20 2 35.9 0 0.06 0.0 0.0 1.0

38402 40 2 22.8 2 0.0 100.0 0.0 0.0

112502 40 3 112.4 0 0.75 0.0 100.0 1.0
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97002 40 4 31.5 2 0.29 50.0 50.0 0.14

54802 40 6 11.3 0 0.0 0.0 0.0 1.0

1322903 20 1 29.5 0 1.01 0.0 100.0 1.0

44202 40 2 39.3 1 0.88 50.0 100.0 0.69

92202 40 4 13.5 4 0.21 100.0 50.0 0.0

1324503 20 5 135.0 0 0.66 0.0 60.0 1.0

62002 40 1 59.8 0 0.07 0.0 0.0 1.0

1272703 30 2 33.3 0 0.03 0.0 0.0 1.0

A.2 C-LSTM

Table A.3: Results obtained, in the testing set, for scalp patients and using
the C-LSTM architecture. ”ID” is the patient identification; ”# Test Seiz.” is
the number of seizures present in the testing set; ”Test Duration” is the total
duration of the EEG recording used for testing; ”True Alarms” is the number of
correctly raised alarms; ”FPR” is the false positive rate; ”Sens.” is the sensitivity
(percentage of correctly predicted seizures); ”C. Sens.” is the critical sensitivity
of the random predictor; ”p-value” is the p-value of the test that determines if

performance is above chance

ID SOP # Test Seiz. Test Duration # True Alarms FPR(h−1 Sens.(%) C. Sens.(%) p-value

70702 20 1 43.1 0 0.0 0.0 0.0 1.0

1306903 30 2 38.7 0 0.17 0.0 50.0 1.0

6700 40 1 7.1 0 0.0 0.0 0.0 1.0

102 40 2 24.8 1 1.12 50.0 100.0 0.78

70202 40 1 9.7 0 0.0 0.0 0.0 1.0

1314803 40 2 10.7 1 0.84 50.0 100.0 0.67

32702 20 1 23.4 0 0.29 0.0 100.0 1.0

71202 30 2 17.8 0 0.06 0.0 50.0 1.0

111902 40 2 71.3 0 0.0 0.0 0.0 1.0

30802 30 2 28.4 2 0.39 100.0 50.0 0.03

72602 10 2 50.7 0 0.0 0.0 0.0 1.0

1235103 40 1 41.4 0 0.37 0.0 100.0 1.0

71802 40 1 17.1 0 1.03 0.0 100.0 1.0

70502 30 2 31.0 0 1.53 0.0 100.0 1.0

73002 10 1 28.1 0 0.0 0.0 0.0 1.0

93902 40 2 21.2 0 0.17 0.0 50.0 1.0

98202 30 2 8.6 0 0.31 0.0 50.0 1.0

70302 40 3 56.8 2 0.96 67.0 100.0 0.46

1316503 20 1 6.2 0 2.0 0.0 100.0 1.0

1330203 30 1 83.5 0 0.61 0.0 100.0 1.0
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400 40 2 39.3 1 0.75 50.0 100.0 0.63

72702 30 2 41.7 1 1.3 50.0 100.0 0.73

72402 30 3 38.9 0 0.59 0.0 66.67 1.0

114902 40 2 85.6 0 0.32 0.0 50.0 1.0

110602 40 2 17.9 2 0.72 100.0 100.0 0.15

5800 20 2 21.9 1 1.1 50.0 100.0 0.52

11002 30 2 28.3 0 0.0 0.0 0.0 1.0

51002 40 2 16.9 0 0.78 0.0 100.0 1.0

71102 10 2 22.4 0 0.0 0.0 0.0 1.0

70402 10 1 39.7 0 0.0 0.0 0.0 1.0

53402 40 2 5.3 1 0.0 50.0 0.0 0.0

8100 40 1 53.8 0 0.32 0.0 100.0 1.0

109502 40 1 65.9 0 0.0 0.0 0.0 1.0

72502 40 2 29.4 0 0.0 0.0 0.0 1.0

1329503 20 1 5.6 1 0.2 100.0 100.0 0.06

101702 40 1 53.9 1 0.32 100.0 100.0 0.19

1314703 40 1 16.0 0 0.07 0.0 0.0 1.0

7300 40 2 78.7 2 1.06 100.0 100.0 0.26

1316403 30 2 19.2 2 0.57 100.0 100.0 0.06

115102 30 2 42.3 0 0.02 0.0 0.0 1.0

81102 30 3 46.7 0 2.07 0.0 100.0 1.0

70602 20 2 48.6 0 0.76 0.0 100.0 1.0

5900 40 1 67.0 1 1.46 100.0 100.0 0.62

1307503 30 3 9.7 0 0.0 0.0 0.0 1.0

1306003 40 1 33.3 1 0.54 100.0 100.0 0.3

202 20 2 31.8 0 0.0 0.0 0.0 1.0

103802 30 1 7.4 1 5.44 100.0 100.0 0.93

6200 30 2 13.7 0 0.17 0.0 50.0 1.0

52302 40 1 71.6 0 0.8 0.0 100.0 1.0

1234303 30 1 29.6 0 0.04 0.0 0.0 1.0

1321803 20 1 7.3 0 0.0 0.0 0.0 1.0

1306203 10 3 29.9 0 0.0 0.0 0.0 1.0

81402 40 2 8.2 1 0.16 50.0 50.0 0.19

1325103 30 2 40.1 1 0.44 50.0 50.0 0.36

7800 20 1 43.0 1 6.86 100.0 100.0 0.9

1325903 40 2 69.4 2 0.51 100.0 100.0 0.08

3600 30 6 14.9 1 0.0 33.0 0.0 0.0

26102 20 2 70.6 0 0.0 0.0 0.0 1.0

6000 30 1 59.3 1 0.54 100.0 100.0 0.24

1300003 10 1 12.8 0 0.0 0.0 0.0 1.0

7302 10 2 61.6 0 0.0 0.0 0.0 1.0

94402 40 1 89.1 0 0.32 0.0 100.0 1.0

70902 10 2 59.9 0 0.0 0.0 0.0 1.0

1312703 10 1 27.7 0 0.0 0.0 0.0 1.0

1321903 40 1 6.1 1 1.48 100.0 100.0 0.63
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200 20 2 35.1 0 0.0 0.0 0.0 1.0

70102 40 1 41.7 0 0.0 0.0 0.0 1.0

6500 40 3 42.1 0 0.37 33.0 66.67 0.52

2300 20 2 37.0 0 0.0 0.0 0.0 1.0

112402 30 2 21.0 0 0.11 0.0 50.0 1.0

80702 40 2 41.5 0 0.26 0.0 50.0 1.0

70802 40 3 24.4 2 0.47 67.0 66.67 0.18

1330903 40 2 65.5 1 0.53 50.0 100.0 0.51

95202 40 2 7.9 1 1.6 50.0 100.0 0.88

1307103 40 2 93.7 0 0.16 0.0 50.0 1.0

72302 40 2 24.4 0 0.2 0.0 50.0 1.0

113902 40 4 7.0 1 0.37 25.0 50.0 0.63

100002 30 4 22.9 0 0.0 0.0 0.0 1.0

72202 40 3 70.6 0 0.16 33.0 33.33 0.27

1328603 40 3 10.8 0 2.89 0.0 100.0 1.0

72802 10 1 9.5 0 0.0 0.0 0.0 1.0

71002 10 1 75.3 0 0.0 0.0 0.0 1.0

6100 40 4 17.0 3 1.27 75.0 100.0 0.43

96002 30 2 78.2 0 1.14 0.0 100.0 1.0

1313003 20 1 29.6 0 0.0 0.0 0.0 1.0

22602 40 1 4.3 1 1.81 100.0 100.0 0.7

2900 30 2 27.4 0 0.31 0.0 50.0 1.0

Table A.4: Results obtained, in the testing set, for invasive patients and using
the C-LSTM architecture. ”ID” is the patient identification; ”# Test Seiz.” is
the number of seizures present in the testing set; ”Test Duration” is the total
duration of the EEG recording used for testing; ”True Alarms” is the number of
correctly raised alarms; ”FPR” is the false positive rate; ”Sens.” is the sensitivity
(percentage of correctly predicted seizures); ”C. Sens.” is the critical sensitivity
of the random predictor; ”p-value” is the p-value of the test that determines if

performance is above chance

ID SOP #Test Seiz. Test Duration #True Alarms FPR Sens.(%) C. Sens.(%) p-value

1259203 20 1 28.8 1 0.86 100.0 100.0 0.25

1308903 30 2 85.7 0 2.32 0.0 100.0 1.0

1310403 30 1 44.2 0 0.0 0.0 0.0 1.0

1235903 20 1 48.1 0 0.15 0.0 0.0 1.0

13902 30 1 16.7 1 1.03 100.0 100.0 0.4

1311203 40 3 146.6 3 0.26 100.0 66.67 0.0

52303 10 1 10.8 0 1.39 0.0 100.0 1.0

107702 20 2 35.9 0 0.0 0.0 0.0 1.0

38402 40 2 22.8 2 0.05 100.0 50.0 0.0

112502 40 3 112.4 0 0.33 0.0 66.67 1.0
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97002 40 4 31.5 3 0.58 75.0 75.0 0.1

54802 40 6 11.3 0 0.0 0.0 0.0 1.0

1322903 20 1 29.5 1 5.92 100.0 100.0 0.86

44202 40 2 39.3 1 0.7 50.0 100.0 0.61

92202 40 4 13.5 4 0.21 100.0 50.0 0.0

1324503 20 5 135.0 0 1.68 0.0 80.0 1.0

62002 40 1 59.8 0 0.56 0.0 100.0 1.0

1272703 30 2 33.3 0 0.0 0.0 0.0 1.0



Appendix B

Patients characteristics

Table B.1: Patients characteristics for scalp patients. ’ID’ is the patient
identification; Gender - ’m’ = male, ’f’ = female; Age is the patient age at
the time of the recording; Electrodes is the number of EEG electrodes used
during the recording; ’Loc.’ is the seizure localization - ’f’ = frontal region, ’t’
= temporal region, ’c’ = central region, ’o’ = occipital region, ’p’ = parietal
region, ’h’ = complete hemisphere, ’-’ = impossible to define a cerebral region;
’Lat.’ is the seizure lateralization - ’r’ = right hemisphere, ’l’ = left hemisphere,
’b’ = bilateral, ’-’ = impossible to define a lateralization; ’Seiz.’ is the number of
seizures on the recording; ’Rec. Duration’ is the recording duration in hours;

’Samp. Freq.’ is the sampling frequency in Hertz.

ID Gender Age Eletrodes Loc. Lat. Seiz. Rec. Duration (h) Samp. Freq. (Hz)

70702 m 26 33 f r 8 168.0 250

1306903 m 42 27 t l 12 292.02 512

6700 m 35 29 t r 6 117.52 1024

102 m 36 24 c l 11 165.41 256

70202 f 29 25 t l 6 138.0 250

1314803 f 23 27 f l 9 214.55 512

32702 f 62 25 t l 6 164.43 256

71202 m 41 25 t l 8 101.0 250

111902 m 42 28 c l 8 158.99 256

30802 m 28 25 t r 9 159.28 256

72602 m 55 24 t r 9 96.0 250

1235103 m 19 27 t b 7 173.79 400

71802 f 46 24 - - 6 72.95 2500

70502 m 18 35 t l 11 138.0 250

73002 m 32 25 t l 6 162.12 2500

93902 m 50 24 t r 9 406.9 256

98202 m 39 28 t r 9 171.87 256

70302 m 18 33 t r 14 164.28 2500

1316503 m 36 27 t r 7 283.91 512
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1330203 f 31 27 t r 6 161.05 400

400 f 36 27 t l 8 115.54 512

72702 f 56 22 - - 11 163.0 250

72402 f 36 25 - - 17 99.0 250

114902 f 16 24 t l 12 161.64 256

110602 m 56 24 t r 8 136.76 256

5800 f 26 29 t b 9 117.25 1024

11002 m 41 22 t r 8 620.33 256

51002 f 46 24 t l 9 133.88 256

71102 f 31 25 t r 8 93.22 2500

70402 f 37 25 t r 7 185.0 250

53402 m 39 24 t r 8 95.24 256

8100 m 16 29 t b 6 189.88 1024

109502 m 50 32 t r 10 161.12 256

72502 f 60 24 t l 11 126.0 250

1329503 f 18 27 f r 7 93.5 400

101702 m 52 24 t l 6 96.61 256

1314703 m 32 27 t l 6 59.62 512

7300 m 18 29 - - 12 118.13 1024

1316403 m 27 27 h b 11 240.02 512

115102 m 31 24 f r 15 163.98 256

81102 m 41 24 t r 13 98.35 256

70602 m 35 33 t r 8 162.0 250

5900 f 27 29 t r 7 117.71 1024

1307503 f 24 27 h r 17 48.02 512

1306003 m 29 27 t r 7 218.44 512

202 m 24 24 - l 8 95.45 256

103802 f 17 22 - - 10 98.0 256

6200 f 37 29 t l 11 118.66 1024

52302 f 61 24 t l 7 161.02 256

1234303 m 30 27 t l 7 234.59 400

1321803 f 27 27 t r 7 91.01 512

1306203 m 47 27 f r 14 238.92 512

81402 f 65 32 f l 15 214.24 256

1325103 f 37 27 t r 8 284.16 400

7800 m 55 29 t b 6 118.22 1024

1325903 m 41 27 f r 9 646.77 400

3600 m 10 29 - - 28 90.32 1024

26102 m 65 23 t l 8 134.93 256

6000 m 16 29 t l 7 97.42 512

1300003 f 22 27 t r 6 313.37 512

7302 f 52 24 f l 8 448.24 256

94402 f 37 32 t r 11 243.72 256

70902 f 28 32 - - 8 110.95 2500

1312703 f 54 27 t r 6 70.39 512
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1321903 m 41 27 t l 11 215.25 512

200 f 53 27 t r 12 120.93 1024

70102 f 46 22 t r 8 208.46 2500

6500 m 27 27 - - 19 118.76 1024

2300 m 49 27 t l 13 117.22 512

112402 f 32 30 f r 16 164.8 256

80702 f 22 32 t b 9 115.72 256

70802 f 45 25 - - 19 168.0 250

1330903 m 36 27 h l 10 231.66 400

95202 f 50 24 t l 14 163.04 256

1307103 f 37 27 t l 10 336.14 512

72302 m 21 37 t l 28 92.0 250

113902 f 29 24 t r 25 121.97 256

100002 m 35 24 - - 24 185.71 256

72202 f 27 25 t l 33 162.0 250

1328603 m 42 27 t l 22 191.71 400

72802 f 36 33 - - 10 95.48 250

71002 f 30 25 t r 10 164.0 250

6100 f 27 29 t b 24 107.01 1024

96002 m 58 24 t r 9 160.39 256

1313003 f 44 27 t l 8 257.59 512

22602 m 26 24 f l 22 115.47 256

2900 f 21 27 f b 21 119.16 1024

Table B.2: Patients characteristics for invasive patients. ’ID’ is the patient
identification; Gender - ’m’ = male, ’f’ = female; Age is the patient age at
the time of the recording; Electrodes is the number of EEG electrodes used
during the recording; ’Loc.’ is the seizure localization - ’f’ = frontal region, ’t’
= temporal region, ’c’ = central region, ’o’ = occipital region, ’p’ = parietal
region, ’h’ = complete hemisphere, ’-’ = impossible to define a cerebral region;
’Lat.’ is the seizure lateralization - ’r’ = right hemisphere, ’l’ = left hemisphere,
’b’ = bilateral, ’-’ = impossible to define a lateralization; ’Seiz.’ is the number of
seizures on the recording; ’Rec. Duration’ is the recording duration in hours;

’Samp. Freq.’ is the sampling frequency in Hertz.

ID Gender Age Eletrodes Loc. Lat. Seiz. Rec. Duration (h) Samp. Freq (Hz)

1259203 m 30 47 - l 3 328 400

1308903 f 29 64 t r 8 475 1024

1310403 m 26 74 t r 4 503 1024

1235903 f 21 58 t r 7 472 400

13902 f 53 37 t l 6 172 512

1311203 f 48 66 t r 13 503 1024

52303 m 36 40 - - 6 302 400
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107702 f 29 121 t r 9 185 1024

38402 f 50 94 f r 15 139 1024

112502 f 11 62 t r 14 158 1024

97002 m 15 98 t r 19 204 256

54802 m 17 84 t l 31 143 1024

1322903 f 23 47 t r 6 553 400

44202 m 21 70 t r 22 81 1024

92202 m 39 84 f l 30 114 1024

1324503 f 43 57 f r 31 358 1024

62002 m 42 38 t r 7 249 1024

1272703 f 23 49 t r 11 153 400



Appendix C

EPILAB

EPILAB is a MATLAB toolbox that enables its users to train and validate seizure

prediction models. We have incorporated a LSTM module into the EPILAB neural

network section (figure C.1).

With our implementation, users are able to train and evaluate LSTM networks

trough the EPILAB toolbox.

The module is available at The framework is available on https://github.com/

rodrigomfw/EPILAB

When training LSTMs using our module, the following parameters can be modified

:

• Optimization algorithm

• Number of layers

• Neurons per layer

• Sequence length

• Learning rate

• Regularization strength
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• Dropout

• Number of epochs

• SOP

• Early detection time - minimum time necessary between an alarm and seizure

for the seizure to be classified as predicted.

• Number of classes ([preictal, ictal, postictal, interictal] or [preictal, non-

preictal])
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