
Master in Informatics Engineering
Internship
Final report

Desenvolvimento de módulos para
plataforma Intranet especializada em
contexto universitário

Diogo Gonçalves Costa
diogogc@student.dei.uc.pt

DEI Supervisor:

Prof. Dr. Filipe Araújo

Streamline Supervisor:

Eng. Francisco Maia

Date: 03 September 2017

Abstract

The current web platform Backoffice from the Department of Electrical and Computer
Engineering (DEEC) of University of Coimbra is used by all the people in the department,
mostly for academic purposes. However, it has been noted that it has some flaws, mostly
in terms of design and code structuring. It also does not meet the current necessities of
the department.

Therefore, in this document we present the planning of a new backoffice that will replace
the current one. To do that, we have defined new requirements and a new architecture,
extending upon the old database for data consistency and backwards compatibility.

We will show how we make use of recent technologies such as Node.js, the LoopBack
framework and AngularJS to provide a rich and backwards-compatible experience to all
of the students and professors of DEEC. We also make use of other recent web technolo-
gies.

Keywords: Web application; Backoffice; LoopBack framework; AngularJS; Node.js

Acknowledgments

This was a long year of constant work that would not be possible without the help and
support of some people.

First, I would like to thank my supervisors Prof. Dr. Filipe Araújo for his precious advice
and Eng. Francisco Maia for the opportunity of developing a platform to be used by an
academic community.

Second, I would like to thank all my friends that really supported me through this process,
in special a big thanks to João Ricardo Lourenço for revising this document.

Third, to my family, I would like to thank them for giving me the opportunities in life
and for always being there when I need them.

Last, but not least, to my girlfriend, that despite the long distance, can always bring a
big smile to my face and motivation to continue. Thank you!

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 1
1.3 Goals . 2
1.4 Document organization . 3

2 State of the art 5
2.1 Web applications background . 5
2.2 Summary of the technologies that must be used 7

2.2.1 Node.js . 7
2.2.2 LoopBack . 8
2.2.3 AngularJS . 9
2.2.4 LoopBack + AngularJS SDK . 10

2.3 Comparison of front-end frameworks . 11
2.3.1 Bootstrap . 11
2.3.2 Foundation . 12
2.3.3 Materialize . 12

2.4 Web Communication . 12
2.4.1 WebSocket . 13
2.4.2 Socket.io . 13

2.5 Comparison of web servers . 13
2.6 Node.js Process Managers . 15

3 Planning 18
3.1 Tasks performed in the first part of the project 18
3.2 Life cycle . 19
3.3 Development plan . 19

3.3.1 Effort estimation . 19
3.3.2 Schedule . 20
3.3.3 Work done in the second half . 20

3.4 Risk management . 21

4 Current platform 24
4.1 Current features . 24
4.2 Overall architecture . 25
4.3 Database structure . 26
4.4 Flaws of the old system . 28

5 Requirements analysis 31
5.1 New needs . 31
5.2 System Actors . 33
5.3 Use Cases . 34
5.4 Prioritization . 39
5.5 Functional requirements . 39
5.6 Quality attributes . 40

5.6.1 QA01 - Platform Availability . 40
5.6.2 QA02 - Platform Scalability . 41

5.6.3 QA03 - Security (Code Injection) 42
5.6.4 QA04 - Security (Cross-Site Request Forgery) 43
5.6.5 QA05 - Security (Broken Access Control And Session Management) 44
5.6.6 QA06 - Security (Missing Function Level Access Control) 45
5.6.7 QA07 - Ease Of Module Development 45

5.7 Wireframes . 46
5.7.1 Login screen . 46
5.7.2 Basic navigation menus . 47
5.7.3 Dissertation list screen . 47
5.7.4 Course creation screen . 48
5.7.5 Building view screen . 48
5.7.6 Screen flow . 49

6 Architecture 52
6.1 Architecture overview . 52
6.2 Server architecture . 53
6.3 Client architecture . 57
6.4 Modularization . 59
6.5 Database . 59

7 Implementation 63
7.1 Database . 63

7.1.1 Migrating data . 63
7.1.2 Database encoding . 64
7.1.3 Integration with the card management database 64

7.2 API Server . 64
7.2.1 Making the LoopBack Framework modular 65

7.3 Handling authentication . 66
7.3.1 Handling dynamic authorization 67

7.4 Web application . 68
7.4.1 AngularJS and ES6 . 68
7.4.2 Dealing with authorization . 68
7.4.3 Multiple language support . 69
7.4.4 Location selector and browser . 70
7.4.5 Monitor web application usage and statistics 71

7.5 Notifications server . 73
7.6 Content server . 73
7.7 Overall performance . 74

7.7.1 Optimizing build file sizes . 74
7.7.2 Web server configurations . 75

7.8 Deployment . 76
7.9 Web application showcase . 77

8 Testing and results 85
8.1 Functional testing . 85
8.2 Usability testing . 85
8.3 Performance testing . 86
8.4 Availability testing . 88
8.5 Security testing . 89

8.6 Platform usage and statistics . 90

9 Conclusions 94

Appendices 101

A Detailed requirements 101

B Functional tests to the API 119

Acronyms

API - Application programming interface

CSS - Cascading Style Sheets

DEEC - Department of Electrical and Computer Engineering

DPI - Dots per inch

HTTP - Hypertext Transfer Protocol

HTTPS - Hyper Text Transfer Protocol over SSL

JSON - JavaScript Object Notation

LDAP - Lightweight Directory Access Protocol

MVC - Model–view–controller

ORM - Object Relational Mapping

REST - Representational state transfer

RFID - Radio-Frequency IDentification

SPA - Single Page Application

TCP - Transmission Control Protocol

URI - Uniform Resource Identifier

URL - Uniform Resource Locator

UUID - Universally Unique IDentifier

XHR - XML HTTP Request

XLSX - Microsoft Excel Open XML Spreadsheet

WWW - World Wide Web

List of Figures

1 Number of modules available by different package managers through the
years. 8

2 LoopBack data flow [1] . 9
3 Requests per second by number of concurrent users [2]. 15
4 Schedule of the tasks performed in the first part of the project 18
5 Overview schedule of the tasks to be done on the second part of the project 20
6 Tasks performed on the second part of the project 21
7 Current login page of the DEEC Backoffice 24
8 Current architecture used by the DEEC Backoffice. 26
9 Old database Entity Relationship (ER 27
10 Key request authorization process . 32
11 Key request lending process . 32
12 Use cases for the unauthenticated user 34
13 Use cases for the authenticated user . 35
14 Use cases for the student . 35
15 Use cases for the professor . 36
16 Use cases for the secretary . 37
17 Use cases for the key manager . 37
18 Use cases for the dissertation manager 38
19 Use cases for the system administrator 38
20 Login screen wireframe . 47
21 Basic navigation menus wireframe . 47
22 Dissertation list screen wireframe . 48
23 Course creation screen wireframe . 48
24 Building view screen wireframe . 49
25 Flow between all the application screens 50
26 Architecture overview . 52
27 Proposed server architecture . 54
28 API architecture . 55
29 Notifications Server architecture . 56
30 Content server architecture . 57
31 Proposed web application client architecture 58
32 Modules of the system . 59
33 New tables to be added to the database 60
34 User interface for the dynamic authorization feature. 67
35 Coordinates normalization visualization. 71
36 Analytics page. 72
37 Web application size details . 75
38 Login final screen. 77
39 Dashboard final screen. 78
40 Dissertations final screen. 78
41 Dissertation details final screen. 79
42 Authorization management final screen. 79
43 Card management final screen. 80
44 Card rules final screen. 80
45 Key request final screen. 81

46 Location browser final screen. 81
47 Profile final screen. 82
48 Notifications final screen. 82
49 Dissertations final mobile mobiledissertations. 83
50 Performance test setup. 86
51 Global statistics for the web application, taken from the analytics screen. 91
52 Percentage of view per hour of the day, taken from the analytics screen. . 91
53 Amount of views per page, taken from the analytics screen. 92

List of Tables

1 Front-end frameworks comparison . 12
2 Web server usage statistics of the top 4 web servers [3]. 14
3 Node.js process managers comparison . 16
4 Risk - Unfamiliarity with the technologies used 22
5 Risk - Migraion of the database . 22
6 Risk - Integration with third party database 22
7 Important database tables . 28
8 System actors . 33
9 QA01 - Availability . 41
10 QA02 - Platform Scalability . 42
11 QA03 - Security (Code Injection) . 43
12 QA04 - Security (Cross Site Request Forgery) 44
13 QA05 -Security (Broken Access Control And Session Management) . . . 44
14 QA06 - Security (Missing Function Level Access Control) 45
15 QA07 - Ease Of Module Development . 46
16 Performance test results (100 requests per second) 87
17 Performance test results (500 requests per second) 87
18 Performance test results (1000 requests per second) 87
19 Performance test results (5000 requests per second) 88
20 Performance test results (10000 requests per second) 88
21 Use case specification 01.01 - Login . 101
22 Use case specification 01.02 - Logout . 101
23 Use case specification 02.01 - Assign user to a role 101
24 Use case specification 02.02 - Create role 102
25 Use case specification 02.03 - Delete role 102
26 Use case specification 02.04 - Change role permissions 102
27 Use case specification 03.01 - List dissertations 103
28 Use case specification 03.02 - View dissertation details 103
29 Use case specification 03.03 - Insert/edit dissertation 104
30 Use case specification 03.04 - Delete dissertation 104
31 Use case specification 03.05 - Toggle dissertation visibility 104
32 Use case specification 03.06 - Clone dissertation 105
33 Use case specification 03.07 - Apply to dissertation 105
34 Use case specification 03.08 - Accept applied student 105
35 Use case specification 03.09 - Update eligible students 106
36 Use case specification 03.10 - List applications 106
37 Use case specification 03.11 - List owned dissertations 106
38 Use case specification 03.12 - View assigned dissertation 106
39 Use case specification 03.13 - Submit dissertation suggestion 107
40 Use case specification 03.14 - Read dissertation suggestions 107
41 Use case specification 04.01 - Manage card access groups 107
42 Use case specification 04.02 - Edit card rules 108
43 Use case specification 04.03 - Create a new card 108
44 Use case specification 04.04 - Delete user’s card 108
45 Use case specification 04.05 - View unauthorized card accesses 109
46 Use case specification 04.06 - View user’s last accesses 109

47 Use case specification 04.07 - View door’s last accesses 109
48 Use case specification 04.08 - View/export list of whom has access to which

door . 110
49 Use case specification 05.01 - View courses 110
50 Use case specification 05.02 - Manage courses 111
51 Use case specification 06.01 - View personal information 111
52 Use case specification 06.02 - View organization contacts 112
53 Use case specification 06.03 - View building information 112
54 Use case specification 06.04 - Email notifications 112
55 Use case specification 06.05 - Web notifications 113
56 Use case specification 06.06 - Read notification 113
57 Use case specification 07.01 - Create new user 113
58 Use case specification 07.02 - Edit building information 114
59 Use case specification 07.03 - Edit personal information 114
60 Use case specification 07.04 - Upload user photo 114
61 Use case specification 07.05 - Insert external activity 115
62 Use case specification 07.06 - View external activity 115
63 Use case specification 08.01 - Be another user 115
64 Use case specification 08.02 - System logging 116
65 Use case specification 08.03 - Change language 116
66 Use case specification 09.01 - Request key 116
67 Use case specification 09.02 - Change the status of a key request 117
68 Use case specification 09.03 - Directly lend a key 117
69 Tests for the User model. 119
70 Tests for the AuthRule model. 120
71 Tests for the AuthRole model. 120
72 Tests for the AuthRoleMapping model. 121
73 Tests for the Feature model. 121
74 Tests for the AccessCard model. 122
75 Tests for the AccessRule model. 122
76 Tests for the AccessHolder model. 122
77 Tests for the AccessAlarm model. 123
78 Tests for the AccessEvent model. 123
79 Tests for the AccessDoor model. 123
80 Tests for the Dissertation model - part I. 124
81 Tests for the Dissertation model - part II. 125
82 Tests for the ExternalSupervisor model. 125
83 Tests for the InternalSupervisor model. 126
84 Tests for the DiApplication model. 126
85 Tests for the Eligible model. 127
86 Tests for the Proposal model. 127
87 Tests for the Specialization model. 127
88 Tests for the Place model. 128
89 Tests for the ExternalActivity model. 128
90 Tests for the Log model. 128
91 Tests for the KeyRequest model. 129

1 Introduction

This report represents the work done along this year in the the context of an internship
at Streamline [4]. In this chapter we will begin by giving the context of the project,
explaining the motivation and defining the goals we want to achieve. Finally we outline
the structure of this document.

1.1 Context

Streamline currently provides a set of system information services to the Department
of Electrical and Computer Engineering (DEEC) of University of Coimbra. Included
in those services, is the DEEC Backoffice platform [5] (we will refer to it as the old
backoffice / old platform / old system). This platform was developed in its major
part by another company that then transferred its rights to Streamline. The web platform
is used by every person in the department. It is mainly used for academic purposes
(dissertation management, view information) and is also used by the secretary and system
administration to perform administration and some maintenance tasks.

This internship’s main goal is to develop a new backoffice from scratch to replace the
current one. This was a decision made by Streamline and is the reason this project
exists. We present in this report the steps taken to come up with new requirements
that reflect the necessities of the department and the architecture that will power its
functionality. All of this by taking advantage of new technologies and good practices.
This includes the analysis of the old platform to identify its flaws and necessities. A main
concern of the project is backwards-compatibility, thus leading us to find ways to keep
the new system side-by-side with the old data.

The new bacoffice will be called MyDEEC. This was decided in conformity by Streamline
and DEEC directors.

1.2 Motivation

When an old software needs new features to be implemented, it can become an extremely
hard task, and sometimes even harder than developing a new software. Reasons for
that are the lack of code knowledge (lack of documentation, outdated documentation),
code not well structured (no separation between business and view logic for example).
Outdated and deprecated technologies that compromise the normal system operation and
security are also an obstacle to new development.

The old backoffice is included in that group of unmaintainable software. It was its many
flaws (both functional and non functional) that led to the Streamline’s decision of devel-
oping a new backoffice.

One of the motivations for developing a new backoffice from scratch was simple: using
well known frameworks to develop the software will help future developers maintain the
code by following the rules and patterns defined by those frameworks. One of the major
problems when the old backoffice was developed was the lack of a framework. For a project
of this size that is always in constant change, it makes sense to make use of existing (and

1

stable) frameworks, this will ensure that features can be implemented faster and are more
maintainable.

There are many features not used in the old backoffice. But most important are the
features that are not included but are in demand. Such features include a card access
management system, key request system, a new authorization mechanism, new disserta-
tions management system, and many other small features as we will see. Almost all the
new features to be implemented are new or are a redefinition of an old feature.

Other problems in the old platform include the fact that the interface of the current
platform is not modern and not responsive [6] (adjusts to various screen sizes). Various
security issues where also detected in the old platform and must be adressed in the new
backoffice.

To end our motivation, we also must state the fact that the old backoffice does not pro-
vide an Application Programming Interface (API). For example right now, if Streamline
decided to develop a mobile application, the server code would not be prepared to com-
municate with the mobile application. This is because the server logic directly renders
the views and there is no abstraction of server logic. This is another point that motivates
the need of developing a new platform.

1.3 Goals

As said before, the main goal of this project is to develop a new backoffice that will
replace the old one. We will make extensive use of modern technologies but have to make
sure we use them wisely to produce one software that is organized and maintainable.
Those technologies alone do not solve our problem. They will sure make development
much easier but problems will arise and we have to make sure we implement all the
requirements.

Furthermore, we want to maintain compatibility with the old backoffice because both
platforms will be running at the same time (while needed features from the old backoffice
are not implemented in the new one). We have to solve the problem of data consistency
between both platforms and make sure that we can use the data from the old backoffice
in the new one (user accounts and information, department information, already existing
dissertations). Information cannot be lost nor modified in the migration process.

In terms of performance, we want to make a platform that can support a large amount
of concurrent users and has a delivery of content with minimum latency and maximum
availability. Although the department does not have a large amount of users, it is good
practice to plan the software to scale if needed. The software must also be modular by
allowing new developers to easily create new modules.

To achieve all these goals, we first have to analyze the current platform. This includes
its available features, architecture and its flaws.

Having gathered information about the system, and considering that the platform is al-
most 10 years old, we will have to analyze the necessities that are not currently fulfilled
and specify the new requirements. With new requirements, we must design an architec-
ture for the platform and implement and test it.

2

1.4 Document organization

This document is organized in the following chapters:

• Chapter 2: State of the Art - In this chapter we present information related to
web applications and technologies that we must use. We also compare and select
other technologies.

• Chapter 3: Planning - In this chapter we will present the work done on the first
half of the project and the planning for the second half. This includes estimates
and risk management.

• Chapter 4: Study of the current platform - We present the features and
architecture of the current DEEC Backoffice.

• Chapter 5: Requirement analysis - In this chapter we present use cases, their
requirements and a an overview of the overall aspect of the application.

• Chapter 6: Architecture - In this chapter we will explain in detail how the
platform will be structured and how components will be integrated.

• Chapter 7: Implementation - It is the chapter were we explain how we imple-
mented the architecture and the problems we have faced while trying to achieve
it.

• Chapter 8: Testing and results - In this chapter we present how we tested and
validated or software. This includes functional, performance and security testing.
To end this chapter we also show some usage statistics of the new platform.

• Chapter 9: Conclusions - In this brief chapter, we give our final thoughts on the
work done.

3

2 State of the art

Before diving into the planing of the new system, it is necessary to know the technologies
that will be used. And then combine it with the knowledge that will be obtained analysing
the current deployed system and come with a new solution.

We will first present the background in web applications, then summarise the technologies
that must be used in this work, and last, present and select some technologies that we
will be using to develop and deploy the new system.

2.1 Web applications background

The Beginning

When in 1991, the World Wide Web [7] opened to the public, several companies started
to launch their own websites. At this time, only Hypertext Markup Language (HTML)
[8] was used. It is still used today as the base for every website. HTML is a markup
language that is utilized to structure the contents of a web page. Text, images, sound
and other types of media can be loaded to a page using HTML tags [9].

Technologies

At this time, serving dynamic web pages was hard to achieve because there were no stan-
dards or suitable languages to handle server logic. That was until 1995, when languages
such as Java [10] and PHP [11] appeared. This was just the beginning of backend de-
velopment. Since then a vast amount of backend languages has been released with more
and more features.

When it comes to the frontend, two of the largest technologies that are broadly used
today were also introduced in the 90’s decade. They are the Cascading Style Sheets
(CSS) [12] and JavaScript [13].

• CSS - A language that is used to change the appearance of a web page. That
change is achieved by assigning an ID and/or CLASS to an HTML tag. Then,
using the CSS language, we can define the style for each ID and CLASS (styles can
be also defined to tags, this way all tags will have that style). It is important to
note that an ID is supposed to identify only one element on the page in contrast to
a CLASS that can identify various elements. A simple example of the CSS syntax
is available bellow.

/∗ s t y l e f o r e lements a s s i gned with id example−id−1∗/
#example−id−1{

background−c o l o r : red ;
c o l o r : b lue ;
width : 150px ;

}

/∗ s t y l e f o r e lements a s s i gned with c l a s s example−c l a s s −1∗/
. example−c l a s s −1{

font−f ami ly : Verdana ;

5

}

/∗ t h i s i s the s t y l e f o r an HTML tag , in t h i s case
the body o f the document∗/
body{

background−c o l o r : white ;
}

• JavaScript - A scripting language that is generally used on the client side to enable
dynamic and interactive web pages. It can also be run in server-side through a
JavaScript engine (see section 2 of this chapter). JavaScript can modify the elements
and styles of the page. Styles are changed by accessing the CSS attributes of the
elements. Here is an example JavaScript code:

document . body . s t y l e . backgroundColor = ’ red ’ ;

a l e r t (’ This i s an important message ! ’) ;

f o r (var i = 1 ; i < 10 ; i++){
document . getElementById (’ example−id −1 ’) . innerHTML = ’The

↪→ t ex t o f t h i s element has changed ’ + i + ’ t imes . ’ ;
}

Web browsers and security

Various web browsers were released during the decade of 90’s, being the first developed by
Tim Berners-Lee and named WorldWideWeb. Other web browsers like Internet Explorer
and Netscape were also released later on this period. The spreading of the WWW enabled
companies to expand their business to the Internet, thus the number of e-commerce
platforms have greatly increased.

In 2000, encryption was added to the HTTP protocol, in the form of HTTPS (HTTP
over TLS) [14]. This empowered companies with a much more secure communication
with their customers. With HTTPS, clients can verify the authenticity of the website
though certificates. By encrypting all the communications, man-in-the middle attacks
are nearly impossible.

Devices and the modern web

Given the fact that the devices used to access web sites have been having their processing
power increased, most of the presentation logic has been transferred from the servers to
the clients. That means that the servers only handle the business logic and generally
expose the functions through an API. Passing the presentation tasks to the client has no
arm to the business logic and does not compromise the data if correctly done.

The introduction of HTML5 [15] was a big step. It enabled web pages to use audio,
video and graphics drawing without the use of external plug-ins. It also added new
tags that enabled the development of more semantic pages (this is important for search
engines).

6

2.2 Summary of the technologies that must be used

Here we are going to present the technologies that we must use. These technologies are
being strongly utilized by Streamline and the system to be developed must use them in
order to provide a coherent and homogeneous set of services.

Currently, they use technologies such as Node.js [16], LoopBack [1] and AngularJS
[17]. Next, we will summarize those technologies. They are the base for what we are going
to build so we must be familiar with all the features they can offer and what obstacles
we can face.

2.2.1 Node.js

Node.js [16] is an open-source runtime environment that interprets JavaScript code. It
is based on Chrome V8 engine [18] by Google. Node.js is cross-platform and can either
run server or client applications. Its main advantage is that it has asynchronous input
and output and is event driven. That means that the development of real-time scalable
applications is much easier. There is no need to maintain an asynchronous workflow with
threads. Node.js will handle that for us and every time there is some sort of input, it will
throw an event that can be handled through a callback function in the main code.

Node.js was first introduced in 2009, and since then, it has been updated several times,
being now in version 7. The use of this technology has been increasing every year [19]
by developers and is being adopted by several companies such as eBay, PayPal [20] or
LinkedIn [21].

Node.js functionality can be extended by installing new modules. Thousands of them
exist for Node.js. Even whole application frameworks are available. Such is the case of
LoopBack that we will present in the next section.

The package manager used for installing new modules is npm [22]. In Figure 1 we can
see that there are many more modules available in npm than in other package managers
from other languages [23].

7

Figure 1: Number of modules available by different package managers through the years.

There are some drawbacks using Node.js. The fact that it is an interpreted language,
intensive computational tasks may take much time and block the execution of the appli-
cation. To resolve this issue, most of the times, heavy CPU tasks are offloaded to a micro
service developed in another language.

2.2.2 LoopBack

LoopBack [1] is an open-source framework that runs on Node.js. It is developed by
StrongLoop that was acquired in 2015 by IBM [24].

This framework allows the fast development of Application program interfaces (APIs).
Behind that API is also an Object Relational Mapping (ORM) framework. It can be
configured to connect to diverse data sources (i.e. databases, files, other APIs) using
connectors. It then maps those sources into JavaScript objects and generates an API
that handles all the data.

LoopBack comes with a set of base models that can be used and extended to simplify the
development of the API. For example, user authentication can be achieved by extending
the base user model. This way, LoopBack automatically handles all authentication.

Controlling the authorization to the API endpoints is also available through the use of
Access Control Lists [25]. This way, we can specify that a certain role is allowed or denied
to do some type of action (read, write, custom function) in the API. Roles can be easily
assigned to a user when authentication is performed or when the user tries to access some
data.

8

All configurations can be changed by editing JSON files. All aspects of the API are
configurable. If there is the need to create a custom function for the API, we can add a
JavaScript function to the model we want.

Since LoopBack is built on top of the Express framework [26] , it can access its features.
Middleware is one of those features [27]. Middleware is a intermediate step that can be
executed between other two steps. Those can be middleware too. For example, when a
user tries to insert some data, an intermediate step can be called before the insertion to
verify if the data is valid.

In Figure 2 we can see the general architecture of a LoopBack API [1]. All the red dots are
where we can intercept data and add new features. When a request is made to the API,
it first enters the HTTP server, then the API checks the authorization through ACLs.
Then, the data is validated using the validations defined for each model, and finally the
operation is performed recurring to the datasource (typically a database). Data is always
passed as JSON objects.

Figure 2: LoopBack data flow [1]

Because the framework is new and is not broadly used, the documentation is poor and
sometimes non existent. It may be necessary sometimes to dive into the source code to
discover some undocumented functionality.

2.2.3 AngularJS

AngularJS [17] is a JavaScript framework intended to be used for the development of
frontend single page applications. It extends the functionality of HTML by providing
new tags and attributes.

This framework introduces the following features:

• Module - Modules can be used to delimit all the components inside an application.
For example, a global application can be divided in smaller ones, being each one a
Module. Each controller has various Controllers and Views.

9

• View - Views are generally HTML pages with the presentation of the data passed
by the controller.

• Controller - Controllers make the bridge between Services and the Views. It is
used for small component logic.

• Service - A Service can be used by various Controllers, and is intended to carry the
business logic of the client side application. It should handle the communication
with external sources such as APIs. All the global application data should be stores
in Services.

• Directive - Directives are attributes or tags that when applied to HTML code,
extend its functionality. AngularJS already provides many directives (ng-repeat,
ng-bind, ng-click...) but new ones can be created using simple JavaScript code.

When developing Single Page Applications (SPA), it is important to ensure that when a
new section of the website is loaded, there is no refresh. That would break the concept of
a SPA. With this in mind, Angular provides a special functionality that enables routing
in the application without refreshing each time the user clicks an URL. We can define
for each URL, what view it will redirect and what controller will be responsible for that
view. The URL will take the form of https://website.com//section. The / can be removed
using the HTML5 mode with the routing functionality. But in order for this to work,
the browser has to support HTML5 history [28] and rules have to be added to the web
server to redirect all URLs to the index.html.

One drawback in using this framework is that it is not search engine optimized. That
means that certain search engine bots will not be able to retrieve content from all the
pages since they are rendered in the client-side using JavaScript. But since our application
will be private, and to view any part of the website the user must be authenticated, this
issue will not impact the development.

Being one of the most used frameworks, brings the advantage of the large amount of
libraries available to extend AngularJS functionality. And also, because it is developed
by Google, the documentation is very rich.

2.2.4 LoopBack + AngularJS SDK

By using LoopBack and AngularJS together, we can take advantage of one feature that
LoopBack offers: the AngularJS SDK. That means we can abstract the concept of the
API on the client side and access it by calling simple SDK functions. We do not need to
directly make HTTP requests to the API. Instead, the SDK handles that for us.

The SDK is simply a set of AngularJS services that are automatically generated by
LoopBack and include call functions to the API. Data in those calls is passed as JSON
objects.

One of the features that the SDK handles for us is the authentication management. API
endpoints are most of the times protected and need users who access it to be authenti-
cated. When a user signs in using the application made with AngularJS and the SDK,
it will create an access token that will identify the session created. The SDK will store
that access token and will send it in every request made to the API. The access token can

10

contain various information: user id, user name, session expiration time and any custom
data we need in our application.

2.3 Comparison of front-end frameworks

The visual appearance and usability of an application is becoming more and more im-
portant every day. Users want to feel that their actions have instant feedback and their
experience is somehow visually attracting. Along with those design aspects, it is also re-
quired that visual interfaces support today’s use of various screen sizes. Today, we have
a variety of devices that are used to access web applications: computers, smartphones,
tablets, smart TVs and even VR headsets. All those devices vary in size, aspect ratio,
dots per inch (dpi). So we must make sure that when developing a web application it
will be adjustable to those different characteristics.

To help us develop a modern interface for the web application we will be using a visual
front-end framework. Usually those frameworks make use of CSS and JavaScript. In this
section we will compare three modern frameworks and decide the one that better suits
our needs.

First, we have to present the concept of pre-processed styles. CSS can be coded directly
using its own syntax. But that syntax most of the times can be very verbose and thus
time-consuming. So, to overcome some difficulties, CSS styles can be written in either
Less [29] or Sass [30]. These are two different pre-processed languages for CSS that
enable the use of variables, functions and a better code organization. Less and Sass code
are processed when building the application using their respective pre-processor. At this
time, they are transformed in vanilla CSS code.

2.3.1 Bootstrap

Bootstrap [31] was first released in 2011 and is one of the first front-end frameworks re-
leased. It was originally developed by Twitter and is the most popular front-end frame-
work.

It has various pre built components that can be used simply by assigning one of the defined
Bootstrap classes to an element. Components include alerts, dropdowns, navigation
bars, icon buttons, etc. Themes can be created for Bootstrap, overriding the default
theme.

Bootstrap is responsive. It adapts the visual to different screen sizes. If a screen is small,
elements are scaled down to fit the screen or even get hidden. The way elements scale or
hide in different resolutions, is configurable by assigning classes to the intended element.

It supports both Sass and Less pre compilers in order to override default styles. It may
be useful to change some of the code in order to get more performance.

11

Bootstrap also has JavaScript elements that provide extended functionality. JavaScript
is not required for base Boostrap elements to work, but is recommended.

The documentation for this framework is very rich and has lots of examples.

2.3.2 Foundation

Foundation [32] is an open-source framework developed by a company called ZURB. It
can be used both for styling websites and emails. This framework is also responsive and
has various components that can be imported separately to minimize download times.
Its documentation is very good.

2.3.3 Materialize

Materialize [33] is based on Google’s Material Design [34]. The focus of Materialize is
the user experience. As such, it gives the user feedback for every action in a way that
the user feels connected with the application. Material Design is used by Google on the
Android devices. Because of that, users may feel more comfortable with it

Like the other frameworks, it is also responsive and has various components that can be
used right away with minimal effort. It is developed using Sass pre compiler but there
are tools to enable the use of Less to change the source.

Changes can be made to the appearance overriding the default theme variables.

Feature Bootstrap Foundation Materialize
Open-source Yes Yes Yes
Responsive Yes Yes Yes
Prepocessors Sass, Less Sass Sass
Themable Yes Yes Yes
Grid system Yes Yes Yes
Import separate components Yes Yes No

Table 1: Front-end frameworks comparison

As we can see in Table 1, all three frameworks offer a similar set of features. We chose
Materialize because of its simplicity and modern appearance. Having a mobile like visual
is a plus because users can access the platform in any device and have a seamless expe-
rience. The fact that it does not support the import of separate components will not be
a problem. Most of the components will be used therefore there is no need for separate
imports.

2.4 Web Communication

There is a need for web notifications on every application that deals with important
information. When a message is received or a pending action is resolved, users have to be

12

notified about that. So in this section we will present and discuss technologies to enable
real-time communication within a web application.

2.4.1 WebSocket

WebSocket [35] is a protocol that enables the real-time communication between an web
application running in a browser and a server. This protocol uses the HTTP proto-
col to initiate the connection between the client and the server. This is known as the
Handshake. If the handshake is completed successfully, the connection is upgraded to
the WebSocket protocol over the TCP transport layer and functions has a full-duplex
channel.

To connect to a server using WebSockets, it is used an URI like:

”ws : ” ”//” host [” : ” port] path [”?” query]

The use of ws means the connection is not encrypted. To use an encrypted connection,
wss must be used.

After the handshake, both server and client can communicate with each other at any
time. This solves the problem of older technologies that used polling to the server, where
the client had to send requests every x seconds to the server to check for updates.

Because not all browsers support the use of WebSockets, we will next show a framework
that deals with the connection establishment and checks for the best method for client-
server communication.

2.4.2 Socket.io

Since we are using Node.js for the development of the platform, we can take advantage of
the modules that exist for it. Socket.io [36] is a server and client library that implements
real-time connections. It can run on any browser (desktop or mobile).

The connection between the client and server is established with XMLHttpRequests
(XHR). Then, if the connection is successful, it tries to upgrade the connection to use
WebSockets. If WebSockets cannot be used it stays with XHR. This way, there is no
need to implement web sockets from scratch because protocol establishment and han-
dling is already implemented by the library and compatibility with older browsers is also
handled.

2.5 Comparison of web servers

We have presented, discussed and selected the frameworks that we will be using. Now it
is appropriate to decide what software will be used to serve the web application.

Although Node.js can act as a web server using the HTTP module [37], there may be the
need for load balancing or reverse proxy. To ensure a robust way of hosting and serving
the web application it may be more suitable to choose an HTTP server.

13

The servers we will compare are Apache HTTP Server [38] and NGINX [39]. Both of
them are open source and the most used globally [3]. We can see that in Table 2.

Name Top 10 000 sites Top 100 000 sites Top million sites Entire Web

nginx 3,877 35,538 298,351 35,826,971

Apache 3,697 38,824 374,559 69,775,578

IIS 1,848 18,533 123,618 58,881,364

Varnish 1,319 5,949 25,816 2,509,979

Green means that the usage has increased in the period of 27/08/2017 -
3/08/2017. Red means the usage has decreased in that period.

Table 2: Web server usage statistics of the top 4 web servers [3].

In terms of features they offer, we analyzed both solutions and observed that they can
perform the most usual tasks, so both of them are suitable for delivering our web appli-
cation.

Because both servers have the most used features, the key point for choosing them is
the performance. The huge difference between Apache HTTP Server and NGINX is that
the former uses threads for each client and the later uses an asynchronous event-driven
approach. That means that on NGINX, all connections are handled in the same thread.
When there is activity in a connection, that action is scheduled into a FIFO queue and
processed as soon as other actions are dispatched. This way NGINX does not suffer
the problem of spawning many threads and overflowing the CPU with thread switching
[40].

14

Figure 3: Requests per second by number of concurrent users [2].

We can see in the graph of the Figure 3 that NGINX clearly outperforms Apache HTTP
Server [2]. This is the reason why we will use NGINX as our web server and will try to
make extensive use of its features.

2.6 Node.js Process Managers

Because we are going to use Node.js, we feel that we must use a process manager. A
process manager is a piece of software that will be responsible for running and managing
or server application when on a production environment. If the application crashes, the
process manager makes sure that it will restart again automatically and if we want to
deploy a new version of the application it will make sure that at least one instance of the
application is running to prevent disruption of service.

We analyzed and tried three process managers to decide the one to use in the deployment
of our application. All process managers run on top of Node.js and are the following:

• Modemon [41] - This is a simple manager that auto reloads applications when it
detects file changes or the application crashes.

• StrongLoop Process Manager [42] - It is a process manager developed by Stron-
gLoop, the same developers as LoopBack. It is best suitable to use together woth
applications made with the LoopBack framework. As a lot of features such as ap-
plication monitoring, metrics capturing, cluster support (running various instances
of the same application), load balancing.

• PM2 [43] - PM2 is developed by Keymetrics.io and is intended for generic usage.
It can run applications outside the Node.js environment, like python for example.

15

it also has a vast number of features like the StrongLoop Process Manager.

Features Nodemon
StrongLoop

Process Manager

PM2

Auto reload application Yes Yes Yes

Cluster mode No Yes Yes

Scale number of

nodes in a cluster

- Yes Yes

Load balancing in a cluster - Configurable Default only

Saves metrics No Yes Yes

Saves logs No Yes Yes

Integrates with external

monitoring services

No DataDog, Graphite, Splunk Keymetrics.io only

Table 3: Node.js process managers comparison

We can see in Table 2.6 that LoopBack offers the most features, there are many other
features that are not mentioned here for sake of simplicity. Nodemon clearly does not
suit our needs, due to lack of features, it is intended for development only.

Upon trying these process managers we felt that PM2 is the best choice to our needs.
Of course LoopBack Process manager provides us with more features, but it is harder
to configure than PM2. Furthermore, PM2 documentation is significantly better and we
think it has the exact features we need.

Considering the Nodemon’s ease of use, we will use it for our development environment
and will use PM2 for our production environment.

16

3 Planning

This chapter presents the planning of all the work performed for this project. The project
was divided into two semesters of work. On the first semester we studied the technologies
and the old platform, planned the new platform and its architecture. We also developed
a small prototype to help increase our knowledge about the technologies. The second
semester was mostly dedicated to the implementation and validation of the proposed
platform.

3.1 Tasks performed in the first part of the project

As said before, the first semester served as the foundation for the work performed on the
second semester.

There was not a rigid plan for this first part. We just had monthly sessions where we
defined the work for the next month. We can see the Gantt chart of the work carried in
the first semester in Figure 4.

Figure 4: Schedule of the tasks performed in the first part of the project

It should be noted that the developed prototype was of great importance for the success of
the project. It helped us to have a better knowledge of the technologies and also showed

18

what problems we would face when developing the real platform. We learned a lot from
this prototype and think it was essential for the development of the final platform.

3.2 Life cycle

There are some aspects to take into consideration for choosing the proper life cycle:

• The scope of our project was well defined and we had solid requirements.

• We were transitioning from an old platform to a new one.

• Presenting the platform to a small set of users first, can help us to improve the plat-
form and have a better feedback. Thus, delivering features as they are implemented
will ensure users can use them as soon as possible.

These aspects made us think that using the Waterfall model with Staged Deliveries
was the best way to accomplish our goals. Because requirements were well defined, we
estimated the time required to implement and test them. And we also defined delivery
dates as when a major set of requirements would be implemented. Having delivery stages
throughout our project is important because this way we will be releasing the stable
version to the public and receive important feedback. This feedback can be used to
improve the user experience.

3.3 Development plan

We defined our development plan based on the MoSCoW prioritization of each require-
ment and the relevance of the requirements. For example, a feature that does not exist
in the old backoffice is given a high priority and will be developed before the features
already in production. Another aspect is the requirements that are tangent to all the
platform (e.g. role management, log system). Tangent requirements must be developed
before all others, because they will be required by the rest of the application.

First, we performed the effort estimations and then we combined them with priorities to
get a schedule of the work of the second half of the project.

3.3.1 Effort estimation

Estimating the effort required for this project was a very important step to take. This
ensured that we planed an optimal schedule for the implementation process.

We chose to use a bottom up strategy to estimate time required where the implementa-
tion process is subdivided into smaller tasks. Because completed requirements are what
define the final product, we use them as the smaller tasks and estimate the time required
for each of them. Implementation of the requirements already includes the testing
time.

We produced an average estimate for each task by estimating the effort for best and
worst case scenarios. To have a more realistic view of the time required, we added a slack

19

variable to the time. That increases the estimated time for each task and ensures that
the scheduling of tasks to be more realistic.

Because we had already developed a prototype using the required technologies, we had a
better insight of the times required for each task.

The result of the estimations can be seen in the next section, where we present the
schedule for the implementation part of this project.

3.3.2 Schedule

In Figure 5 we present the schedule for the second part of the project in a form of a Gantt
chart. This is an overview of the scheduled plan.

The project delivery stages can be marked as the following:

• 21/03/2017 - The card access management can be used by the system adminis-
trators.

• 13/04/2017 - The dissertations are operable and can be used by students and
professors.

• 25/04/2017 - Information features are available and can be used by any user.

• 5/05/2017 - Management of the information is available.

• 19/05/2017 - All features are implemented.

• 2/06/2017 - Release with visual optimizations and final adjustments.

Figure 5: Overview schedule of the tasks to be done on the second part of the project

3.3.3 Work done in the second half

In Figure 6 we show the actual work done on the second half of this project. We can clearly
see that there was a 2 week delay in the final part of the implementation process. As in all
software development projects, the estimations were not 100% correct, but nevertheless
we could manage to implement all the features planned. To note that there was a change
in the requirements, where the Courses feature was replaced by the Key Request feature.
The Courses feature remains as requirement but with a low prioritization.

20

Since the first deployment, we started to gather information from the users through
meetings that occurred along the semester involving Streamline, directors and professors.
There were 3 main meetings along the process, but we were always in contact to ensure
the project was in its right way.

Figure 6: Tasks performed on the second part of the project

3.4 Risk management

In a project, it is best practice to identify the risks that can occur during their lifetime.
After identifying them, a good mitigation plan must be produced.

For this project, a risk management assessment was made, and is presented in the fol-
lowing tables. We classify risks according to their likelihood and impact. Likelihood
and impact are classified as Low, Medium or high. Then, a brief mitigation plan is
presented.

21

Risk Unfamiliarity with the technologies used

Description Unfamiliarity with the technologies used can lead to delays
in the development process

Likelihood Medium

Impact Medium

Mitigation plan This risk was mitigated by developing the prototype on the
first half of the project

Table 4: Risk - Unfamiliarity with the technologies used

Risk Migration of the database

Description When migrating the data from the database, that can lead
to data inconsistency

Likelihood Medium

Impact Medium

Mitigation plan
This risk was mitigated by testing the migration scripts us-
ing a copy of the real database and having a backup if any-
thing would go wrong

Table 5: Risk - Migraion of the database

Risk Integration with third party database

Description Integration with the the card management database can lead
to inconsistency and errors

Likelihood Medium

Impact High

Mitigation plan We mitigated this risk by comparing the results of our solu-
tion with the results from the third party software

Table 6: Risk - Integration with third party database

22

4 Current platform

The old backoffice (DEEC Backoffice) has been in production for nearly 10 years now. It
was partially developed by Streamline and is the main platform used to view/manage
dissertations, view academic information, manage personal data, view and edit other
types of information related to the department. It is used by everyone in the department,
including students, professors, secretary and administration. In Figure 7 we can see the
login page of the platform. To note that in order to access the rest of the website, it is
necessary to be authenticated using a valid email and password. The authorized emails
are from the domain @alunos.deec.uc.pt for the students and @deec.uc.pt for all
other people.

Figure 7: Current login page of the DEEC Backoffice

Next we will study the platform we are going to migrate and the technologies being used
by it. Also, we will explain the architecture of the old system and how the components
interact between each other.

4.1 Current features

Currently, the following main features are provided:

• Academic management - Course information and its related materials that are
available to the students. Includes also dissertation management (insertion, jury
assignment). Students can apply to a dissertation and professors can accept them.

• Documentation archive - People from the department’s administration can view
old documents.

• Personal data - Possibility to view and edit personal data by the administration.

• Building - Information to all the people about the places that exist in the depart-
ment.

• Communication - Administration can add news about the department.

24

• System administration - Several utilities used to perform tasks by the system
administrators (Streamline). Diverse software configurations can also be seen here.

• Inventory - Insertion and listing of inventory items. Reports about the inventory
can be consulted here.

• Contacts - Information about the most relevant areas of the department. Including
people contacts of the different areas. Can be viewed by all people.

Most of the features are deprecated or not being used anymore. Such is the case of the
courses material. Students in the department use the platform Inforestudante [44] that
is used across all University of Coimbra, so there is no need to provide materials in two
separate platforms. Another feature not being used in the platform is the insertion of
news. This has been moved to a new service developed by Streamline named Corpo-
rateTV. Other functions such as the document viewing will be moved to a cloud file
system. We have few features that are actually being used by the users: dissertation
management, building information, contacts, personal data. Although being used, they
do not match the actual needs, thus they need to be redefined.

4.2 Overall architecture

As we can see in Figure 8, the current platform runs on a virtual machine running CentOS
[45]. That machine runs Apache HTTP Server and has about 30 virtual hosts. Most
of those hosts are small websites that have very few requests per day.

The DEEC Backoffice is developed in PHP (without the use of any frameworks) and is
totally served by this machine.

There are 3 more services that are accessed by the Backoffice to support its operation.
They are:

• DEEC Database - The database that contains most of the data present on the
Backoffice. It runs MySQL 5 [46]. We show the most important tables below in the
database structure section.

• DEEC Email Server - This service is used by the Backoffice to send notification
emails about important actions that occur on the platform.

• DEEC LDAP - Lightweight Directory Access Protocol (LDAP) stores all cre-
dentials from all the accounts. It is used for authorization. When a login in the
Backoffice occurs, it checks on the LDAP server if the password is associated with
the email and the account is valid.

25

Figure 8: Current architecture used by the DEEC Backoffice.

Currently, because all pages are rendered by PHP and few JavaScript is used client side,
there is no much interactivity. Users have to wait for the full page reload each time they
want to perform an action. With the power that user devices today offer, we can take
advantage to provide a more interactive user experience. So, we have to make sure that
we combine the power of the servers with the power of the clients to provide a good
experience to the users.

With regards to the business logic, the Backoffice does not provide an API. This means
that if for example a mobile application needs to be built, all logic has to be built from
scratch, and that would mean that there would not exist a central logic. By providing
a central API that can be used by several applications, the development time of new
platforms and tools can be drastically decreased. This is one of the reasons the building
of a new system with an API is so important.

4.3 Database structure

As said before, all the DEEC Backoffice data is stored in a MySQL database. It currently
has 125 tables. We can view all the tables in Figure 9. We will have to deal with this
amount of tables to maintain compatibility and consistency between the new and the old
platform.

26

Figure 9: Old database Entity Relationship (ER
diagram.

The problem with this data model is that many of the tables are not used and some of
them have no data stored. Some tables have the same purpose because they belong to
different versions of the old backoffice. We will have to conduct some migrations changes
to support the new backoffice (more on this later).

27

Table Description

aluno Contains all the students of the department

pessoas Contains all the non-student persons of the department

especialidade Contains the course specializations

didados Contains all the dissertations

diorientadores Maps a person who is a professor to a dissertation

local Contains the several places of the department and their
information

bo tiposlocal Contains the several types of places

aluno ramo Maps a student to a specialization. Contains informa-
tion about the student in that specialization.

disciplinainfo Contains the information about all the courses

bo doc Contains names and paths to several administrative doc-
uments

Table 7: Important database tables

From all the tables, 45 are not being used and 10 of them do not even contain any data.
Analysing dates of insertion in other tables gave us a notion of features that have not
been used a long time ago like for example the insertion of course materials.

This database schema has a significant problem: it does not have relations between
tables and no primary keys in most of the tables. The relations are managed by
the PHP code. So, when a query is performed on the MySQL database it will not take
advantage of the performance it would have if records where indexed.

Giving the fact that the database has several tables that are not being used, some relations
do not exist and the need for new tables there is a strong need for changing the database
structure. In chapter 5 we describe the changes we will make in order to support the new
features we intend to deliver.

4.4 Flaws of the old system

Apart from the problems already mentioned (deprecated technologies, unfulfilled needs,
unstructured code, no separation between logic and presentation layers, no responsive

28

interface) we tested the software for vulnerabilities and errors.

By running simple tests, we verified that the system is vulnerable to code injection [47]
both SQL Injection and Cross-Site Scripting [48]. We will describe these vulnerabilities
later when defining quality attributes for the new platform. We identified the source for
this problem being that data is not being properly escaped and methods for saving data
to the database are deprecated.

29

5 Requirements analysis

Now that we explained the current backoffice, it is time to come up with the requirements
for the new platform. We will be taking the current features and improve them, resulting
in a updated set of requirements. Also, we have to consider the new needs that the DEEC
has. Because of that, new requirements must be implemented.

5.1 New needs

Next, we will present the new features that must be implemented. Some of them are
improvements of the current platform and others are result of the emergent necessities of
the department.

Role management

Authorization of every function of the platform must be strictly controlled through roles.
A role can have various rules that grant or deny access to a specific function. Currently,
one person can have only one role and the only way of changing that is by editing the
database. With the new system, we will have to ensure that users can have multiple roles
and a way to edit them in the platform.

Card access management

The department has a new door access system. Every person in the department can have
cards associated with them (cards use RFID [49] to be identified). Those cards enable
their owners to access the several doors of the department according some rules. Cards,
rules, doors and users can be managed using the software acquired when the system
was installed. The problem with this software is that it has very poor performance
(102̃0 seconds delay between operations) and only works using Microsoft Windows [50]
operating systems. We thought that there must be a better way of managing the cards,
providing the card managers with a better client software. Upon a brief analysis of the
software, we discovered it uses a database where all the information is stored. We will
then, use that database and access it using the new backoffice to provide card managers
with a better and faster interface that can be used anywhere and in any operating system.
Of course the card software has many features, but most of them are not being used. As
such, we will only implement a subset of those features in our platform.

Displaying of information

Currently, the displaying of information and contacts of the different areas of the de-
partment is very basic and not very well structured. We will have to ensure that a
information browsing page where users can search and view relevant information is im-
plemented. That page must be modern and organized.

Physical keys management

Currently, the key management is made without the aid of any software. When a person
wants to request a key, they must fill a request paper and give it to the administration that
will decide if the request is authorized or not. Then, if the request is accepted, the person

31

who requested must go to the key holders show the signed authorized request and get the
key. This process is represented as a Business Process Modeling and Notation (BPMN)
diagram in Figure 10 (authorization process) and Figure 11 (lend/return process).

Figure 10: Key request authorization process

Figure 11: Key request lending process

Our objective is to include this process in our platform, allowing any authenticated user
to request a key, key managers to authorize/deny those requests and to mark them as
lent/returned. If key are overdue, notifications must be shown to alert users that they
must return the key. The system also must be able to show who has a certain key,
occupied keys and free keys.

Logging system

In every system there is a need to store important information about actions that occur.
The platform we are going to develop is no exception. In order to help system adminis-
trators to better know what is happening, we need to implement a simple logging system

32

that allows simple configurations such as the level of log detail. The integration of this
logging system with the rest of the application must be easy.

5.2 System Actors

Actors will interact with the system through the web application. The actors we present
here are going to be (most of the times) the roles of our Role Management feature. Those
actors are presented in Table 5.2.

Actor Description

Unauthenticated user Any user that is not authenticated.

Authenticated user A user that is authenticated with a DEEC email and
password.

Student Any student of the department that is authenticated.

Professor Any professor of the department that is authenticated.

Dissertation manager Any person (excluding students) that is responsible for
managing dissertations and critical information about
them.

Secretary Any person beloging to the secretary functions.

Key managers This includes persons who have authoritative impact on
the key requests and the key holders.

System administrator People that are system administrators. Typically people
from Streamline.

Table 8: System actors

Through the use of the Role Management feature, more roles can be added. So these
actors will change with the evolution of the platform. They will be modified throughout
the platform lifetime.

All the actors presented, except the unauthenticated user, must be authenticated. That
means that every student, professor, dissertation manager, secretary and system admin-
istrator are able to perform the actions designated to the actor authenticated user. This
will simplify the presentation of use cases because there are many features that all au-
thenticated users can perform.

33

5.3 Use Cases

We decided to subdivide use cases in 9 types. This will make it easier to present the
information in a more organized way.

• Authentication - Use cases related to the authentication in the system.

• Authorization - Use cases related to the management of the several user roles.
This includes the association or disassociation of a person to a role.

• Dissertations - Use cases related to dissertation viewing, appliance, insertion and
overall management.

• Card access management - Use cases related to the insertion of access roles,
association of cards to persons, role permissions management.

• Academic - Use cases related to academic purposes (viewing details of the courses,
edit them).

• Information - Use cases related to the showing and edition of useful information
to the users.

• Information management - Use cases related to the management of important
information related to the department and its users.

• Utilities - Use cases related with the management of the system (most of the times
used by the system administrators).

• Key request - Use cases related with the request, authorization and lending of
physical keys.

The use cases we present here are separated for each actor. This simplifies their organi-
zation.

Figure 12: Use cases for the unauthenticated user

Figure 12 shows that the only task an unauthenticated user can perform is the login.

34

Figure 13: Use cases for the authenticated user

Every authenticated user can read all public information within the platform. And par-
ticular information to them such as notifications and personal information. Also can
perform the logout. This is shown in Figure 13.

Figure 14: Use cases for the student

For now, students will only be allowed to apply to dissertations and view the dissertation

35

they are assigned to, as shown in Figure 14.

Figure 15: Use cases for the professor

As shown in Figure 15, professors will only have access to dissertation actions such as
insertion and assigning students to them.

36

Figure 16: Use cases for the secretary

Secretaries can edit all the information about the department including user details and
course information. This is shown in Figure 16.

Figure 17: Use cases for the key manager

As shown in Figure 17, key managers are responsible for authorizing/denying key requests
and to actually lend the keys.

37

Figure 18: Use cases for the dissertation manager

As shown in Figure 18 dissertation managers assign juries to a dissertation and edit the
students who are eligible to apply to a dissertation.

Figure 19: Use cases for the system administrator

System administrators manage the cards of the users, assign users to roles and have access

38

to some administration tools as shown in Figure 19.

5.4 Prioritization

Given the amount of requirements that the application will have, it was decided that we
will be using a prioritization method. This will ensure that we focus first on the most
important requirements and then we continue to the least important.

We opted for using the MoSCoW method [51] because it is very simple and enables us
to separate requirements in four categories:

• Must have - Those requirements are the core of the application. If one of them is
not correctly implemented, the project is not successful.

• Should have - Those requirements are also important and should be included in
the application. But they are not as important as the core ones.

• Could have - These requirements are not so important but they would improve
the application.

• Won’t have - These requirements are not important and are not included in the
planning of the project (material for future work).

For labeling each requirement, we analyzed the most used features of the current platform.
The most used ones will be the first to be implemented and the least used will be the
last to be implemented.

The use of the Won’t have category will make the requirement be included in the plat-
form roadmap. It will be a feature of future work and will not be addressed on the
implementation section of this document.

5.5 Functional requirements

After having all the use cases, we defined the requirements having the following attributes
for each one:

• ID - Identification of the use case, used to identify it thorough the document.

• Requirement title - The title representing the goal of the use case

• Primary actors - Who will be the main user/group of users performing the action

• Secondary actors - Who will be affected by the action

• Description - Description about the requirement, can include special cases that
can occur

• Flow - The flow of action. What the primary actors will follow when performing
the action

• Pre-conditions - Conditions that have to be met for the action to happen

39

• Post-conditions - What is changed after the action takes place

• Priority - The priority of implementation has described before.

• Specificity - The level of detail of the defined requirement.

• Source - The category where the use case belongs to (is one of those 9 types we
showed before)

Because we have so many requirements, we thought it would be better suitable to show
them in Appendix A. This ensures that we don’t have so many tables in the middle of
the document.

5.6 Quality attributes

To make sure that users can perform the actions we have just presented, we must guar-
antee a certain degree of quality of the software. This quality is often measured based
on the quality attributes. These attributes are composed of metrics that evaluate the
software in terms of performance, security and many other keys in the a way a system
works. We will now present the quality attributes for the new platform.

5.6.1 QA01 - Platform Availability

Being used by all the people of the department, our platform must guarantee a minimum
availability. Users must be able to access it any time they need, so we have to have a
service that is always running and is able to recover after a malfunction occurs. This
availability will be measured in the components we will develop, we have no control over
the whole department network so we have to architecture it with the means we have.

40

ID 01

Title Platform Availability

Stimulus source Requests to our server components

Stimulus A component crashes due to some malfunc-
tion

Conditions Component was running

System elements Server components

System response System continues its normal operation and
a new instance of the component is started
to substitue the faulty one

Metrics Percentage of time the platform is up dur-
ing a certain period of time; Time to restart
server node after failure

Table 9: QA01 - Availability

5.6.2 QA02 - Platform Scalability

The second quality we must address is the fact that our platform must be able to support
large amounts of user requests. At least, the system must be able to handle a minimum
of 500 requests per second with less than 100ms delay of response. We think this is
enough for all the users in the department. But of course we want it to be able to scale
if we expand it to other departments or other user types.

41

ID 02

Title Platform Scalability

Stimulus source Requests to our server components

Stimulus Large amount of requests per second

Conditions -

System elements Server components

System response The system is able to maintain a minimum
response time and produce minimum errors

Metrics Average response time (ms). Average er-
rors per total requests (%)

Table 10: QA02 - Platform Scalability

5.6.3 QA03 - Security (Code Injection)

We will now address the security of our platform, starting by code injection. Code
injection is one of the top vulnerabilities according to the OWASP TOP 10 Project [52].
This vulnerability enables malicious users to inject code in a page/API endpoint and
execute that code on the server or other users machines. From that code execution can
result the loss or modification of information, account hijacking (stealing user credentials)
and many other things that compromise the normal functioning of the system. This is
of course a major issue that must be addressed and we must make sure that it cannot
happen in our entire platform.

We will address the main code injection vulnerabilities: Cross-Site Scripting (XSS) vul-
nerability [48] (injection of JavaScript code) and the SQL Injection [47] (execution of
SQL queries on the database).

42

ID 03

Title Security (Code Injection)

Stimulus source Malicious user

Stimulus Injection of malicious code

Conditions -

System elements Server and client components

System response The platform escapes the code and pre-
vents it from running in the server and web
application

Metrics Number of successful code injection at-
tempts

Table 11: QA03 - Security (Code Injection)

5.6.4 QA04 - Security (Cross-Site Request Forgery)

Continuing with the security aspect of our platform, another vulnerability we must con-
sider is the Cross-Site Request Forgery (CSRF) [53]. This vulnerability enables a mali-
cious user to make other users perform actions on the platform without their knowledge
or consent. The simplest case is when a malicious user posts online an image where
the source is an URL to an action on the targeted platform. If the the platform is not
protected, when a regular user tries to load that image it will load the actual URL and
perform an action on the server. This issue must be addressed and we must make sure
we protect against this type of attack.

43

ID 04

Title Security (Cross Site Request Forgery)

Stimulus source Malicious user

Stimulus Request from an untrusted source

Conditions -

System elements Server API

System response The API refuses to run that action and the
action is logged

Metrics Number of successful CSRF attacks

Table 12: QA04 - Security (Cross Site Request Forgery)

5.6.5 QA05 - Security (Broken Access Control And Session Management)

Now we enter in the authorization part of the application, the Broken Access Control
And Session Management vulnerability[54] comes from a poor authentication mechanism
with lack of encryption where credentials are passed and stored non-encrypted. We must
insure that user credentials (like passwords and access tokens) must not be accessible by
no one other than the user to whom they belong. We must also have a way to invalidate
user sessions.

ID 05

Title Security (Broken Access Control And Ses-
sion Management)

Stimulus source Malicious user

Stimulus Stealing user credentials (email and pass-
word and/or access token)

Conditions -

System elements All components

System response Data is protected

Metrics Number of credentials stealed

Table 13: QA05 -Security (Broken Access Control And Session Management)

44

5.6.6 QA06 - Security (Missing Function Level Access Control)

Another vulnerability related to authorization that we must avoid is the Missing Function
Level Access Control vulnerability [55]. Having a strong authorization mechanism that
does no allow access to actions that do not are meant for certain user groups is one of top
priorities. To avoid this we also must only show users the actions they can perform.

ID 06

Title Security (Missing Function Level Access
Control)

Stimulus source Malicious user

Stimulus Trying to access forbidden API endpoints

Conditions User does not have privileges to perform an
action

System elements Server components

System response Action is denied and logged

Metrics Number of unprotected actions performed

Table 14: QA06 - Security (Missing Function Level Access Control)

5.6.7 QA07 - Ease Of Module Development

One of the key aspects that based the decision of developing a new platform is the fact
that the old system one was not properly structured and modularized. This was affecting
the development of new features. By designing a new system, we want to make it modular
and make sure it is easy to add and remove modules.

45

ID 07

Title Ease Of Module Development

Stimulus source Development

Stimulus Adding or removing a module on the sys-
tem

Conditions -

System elements All server components and web application

System response Other modules continue their operation
normally

Metrics Time taken to develop a new module. Time
taken to remove a module from the system

Table 15: QA07 - Ease Of Module Development

5.7 Wireframes

With all the requirements defined, we designed some wireframes made with the purpose
of visualizing the interface we wanted to obtain.

A wrireframe is a sketch of a screen or portion of it that intends to represent the layout
and item placement of the final application interface. it will serve to guide us in the
interface design process. This is an important step because the interface will be used
by many people every day. We had to ensure that a proper and coherent interface was
delivered.

Taking the most important screens that we will implement, we will define an adequate
design for each of them. To note that the interfaces here presented are not final and can
be changed at any time when user feedback justifies it.

5.7.1 Login screen

In Figure 20 it is shown the login screen for any user that is not authenticated. It is only
a form where users can input their email and password. It is in fact the only page an
unauthenticated user can view.

46

Figure 20: Login screen wireframe

5.7.2 Basic navigation menus

In Figure 21, we show the basic navigation menus. The side bar is where all URLs to
the features of the platform are. The user name and logout button are also on the side
bar. On the top bar the current page name is shown. There is also a button to access
the notifications (if there are unread notifications the number of notifications is shown
on the icon). Finally the language selector is on the upper left side.

The page content is where the current page is displayed. For simplicity, the wireframes
after this one will not include these navigation menus.

Figure 21: Basic navigation menus wireframe

5.7.3 Dissertation list screen

In Figure 22, we can clearly see the filters on the top of the screen. It is supposed that
they are always visible. The number of the dissertations on the screen is supposed to
vary according to the screen size of the user’s device.

47

Figure 22: Dissertation list screen wireframe

5.7.4 Course creation screen

In Figure 23, we can see the form for the insertion of a new course, including all the fields
with attributes of the pretended course.

Figure 23: Course creation screen wireframe

5.7.5 Building view screen

In Figure 24 we can see the aspect of the building view. Here is where users can view
information about the department building. There is the plant of the building and im-
portant points such as rooms and elevators are marked with green dots. When users
hover a dot, details about that location are shown.

Important places can be searched and users can change the floor they are viewing.

48

Figure 24: Building view screen wireframe

5.7.6 Screen flow

Because the fact that the web application will have so many screens, in Figure 25 we
present all the application screens and the flow between them. There are important
aspects when viewing this diagram:

• The flow usually starts at the Login screen (if the user is not authenticated) or
the Dashboard screen (in case the user is already authenticated)

• Screens colored with blue are accessible from any part of the application

• The Logout function is accessible from any part of the screen

49

Figure 25: Flow between all the application screens

50

6 Architecture

A suitable architecture is a must for a solid system. We have defined what the new
platform will do. Now we will define how we will achieve that.

In terms of architecture, we will first focus on the server components, next on the client
application and finally on the database.

6.1 Architecture overview

We will first start by giving an overview of the architecture we chose. We were inspired
by the C4 Model [56] in order to design our architecture representations, but it was not
followed at its full extent.

As we can see in Figure 26, all users will interact with the platform using a web applica-
tion, built with the AngularJS framework. This web application communicates with the
server components (built with the LoopBack framework) to obtain and manipulate data.
Our server components also communicate with other external services such as databases,
LDAP, mail servers.

Figure 26: Architecture overview

Ensuring the security of all the user data is one relevant point when developing the ar-
chitecture. One way to ensure that is to have all the communications between the web
application and the server encrypted (HTTPS). Furthermore, communication with exter-
nal services must also make use of secure protocols. A digital certificate was generated
for our server my.deec.uc.pt and its purpose is to let users check the server authenticity
of messages and allow us to use the HTTPS protocol.

52

6.2 Server architecture

Our server architecture is composed of the components we have to develop and have
control (Server Components) and the components whose technologies already exist and
we have no control (External Components).

To ensure our components can be accessed by our users we have the NGINX web server
routing all traffic to our components. Our main component is the API and is this com-
ponent that deals with all business logic. The Notifications Server component enables us
to send web notifications and email notifications. The Content Server is a platform to
store and retrieve files (upload photos by the users).

In theory all the Web Server Components should be deployed into different machines (like
it is shown in the image), also including machine replication and load balancing using
NGINX. But because of restrictions for this project we have no control over the physical
layer and can only deploy them all in one single machine.

We use the already described tool PM2 to ensure that our components are always available
to our users and to provide us with a better server monitoring. This tool also allows us to
scale the instances of each component according to the user demand. At least 2 instances
of the same component must run at the same time to maintain availability in case of
failure of on of the instances.

All of the Server Components will run on the already created virtual machine beta.deec.uc.pt.

53

Figure 27: Proposed server architecture

In Figure 27 we can clearly see the different components our platform is composed of.
There are two new external components that we will interact with:

• Database dc1.deec.uc.pt - This database stores all the information related with
the new card access management software of the department. We use it to provide
a better, better and intuitive way of dealing with the card management from within
the new backoffice.

• Sentry [57] - Sentry is a service that aims to record problems of the software.
When an error occurs in our production environment, its information is sent to the
Sentry servers where we can analyze errors and manage them.

The other components were already explained and are intended to be maintained with
the new backoffice.

We will now describe in detail the architecture of each component developed. Implemen-
tation details will be presented in the next chapter.

REST API

The REST API is the main component of the platform. This API is developed using
the LoopBack framework. Some API endpoints were automatically generated by the
framework and the remaining were developed by us to provide extra functionality. And

54

of course we had to perform several validations to the automatic generated endpoints to
ensure that the API is properly secured.

Our API communicates with the database as shown in Figure 27 to map the tables to
LoopBack models. It also communicates with the LDAP server to perform user authen-
tication.

For authenticating a user on the API, the credentials received on the Login endpoint are
sent to the LDAP server to verify if they match. Then, by using the LoopBack built
authentication features, an access token is generated for that specific user.

For authorization management we used the LoopBack default authorization mechanism
and extended it to allow dynamic assignment of roles and rules.

Figure 28: API architecture

In Figure 28 the details about the API are shown. When a request is made, it first
reaches the endpoint specified, then checks the authorization, then the data is validated,
and finally the desired action is performed on the model. The entry point for any unau-
thenticated user is the authentication method. It connects with the LDAP server to check
the credentials of the user.

Notifications Server

55

This component is responsible for managing email and web notifications. When an im-
portant action takes place in the platform, the API send a notification request to the
Notifications Server. Every notification is associated with at least a user and contain
relevant data for the correct displaying of the notification. There are two types of notifi-
cations:

• Email notifications - Notifications directly sent to a user email. They are sent
through the DEEC email server (email.deec.uc.pt).

• Web notifications - Notifications sent to a specific user browser through the
Socket.io framework.

Web notifications are sent to users if they are online, otherwise they are stored to be
sent later when the user becomes online. Notifications will always be stored in the
database.

Figure 29: Notifications Server architecture

In Figure 29 we show the architecture of the Notifications Server. When a notification
has to be sent, the request is received by the request listener. The listener is an HTTP
endpoint and the request is a POST request to that endpoint.

Notifications are stored in the database using the LoopBack ORM.

To send emails we use Mailgun [58] which is a library that connects with the email
server and helps with the protocol of sending an email. Templates were created to make
email organization simpler.

Content Server

The Content Server is the component that enables the upload of files by the users and
allows the download of those same files. When for example a user wants to upload a
profile photo, that photo is uploaded to the REST API by the web application. Then,

56

the API gets the uploaded file and sends it to the Content Server. In the Content Server,
the file is validated and converted if necessary. Finally it is stored on the file system and
its meta data is saved to a NoSQL database.

In Figure 30 the architecture of the content server is defined. This solution is based on
he prototype we have developed in the first half of this project.

Figure 30: Content server architecture

6.3 Client architecture

The client is a web application that will run on any modern browser (including mobile
browsers). Users interact with the application and are allowed to perform all the actions
they are authorized.

We took advantage of the Angular Model-view-controller (MVC) architecture and the
LoopBack SDK. The interface is developed using the Materialize framework. In Figure
31 we show the several types of components of the web application.

57

Figure 31: Proposed web application client architecture

LoopBack SDK Services

These are the services that are generated by the LoopBack framework. They are strongly
used by our application to interact with all the API endpoints to get and modify data.

Notifications Service

This service is responsible for the communication with the notifications component on
the server. When the user successfully authenticates on the web application, the notifi-
cation service will also authenticate with the server. After that, it listens for incoming
notifications and passes them to the other components of the application.

Other services

Other services were developed to provide two types of functions:

• Data storing: temporary data store of the results obtained by the API. This ensures
that the API is not overloaded with requests. Not all results can be stored, because
they constantly change and must be always updated.

• Global methods: methods that are used across all the application are provided by
our custom services.

Controllers

Controllers are responsible for interacting with the services and also interact with the
application views and control their data. Our objective is that a controller is assigned to
only one view and control only its data.

Views

58

Views are where our interface is defined. Each screen we showed earlier is a view in this
architecture. Views get the variables from the controllers and draw the interface using
them. Views usually contain HTML tags and AngularJS directives.

Rendered pages

The rendered pages are actually the result of the rendering process of the AngularJS
framework. It is the final result of a view and the page that the user sees. Because they
are the result of the views, rendered pages must reflect the wireframes we have shown
before.

6.4 Modularization

One of the purposes in developing a new system was to make it modular. We had to
make sure that when developing the client and server, the code would be well organized
in modules.

A module has a set of features that share a common context. There are modules that
are the base of the application and modules that add features to the application.

Modules include client and server code. So when a module is deployed, it has to be done
in the client and server. This is a must to ensure that the module is well deployed. In
Figure 32 we present the modules of the platform. Blue modules are the base of the
system.

Figure 32: Modules of the system

6.5 Database

To implement the new requirements we have to make some changes to the database. The
old backoffice database serves its purpose, but as we saw before, it has several tables that

59

are not in use. So, it does not make sense to continue with those tables in the database.
We will remove them.

Because we have two distinct user tables (aluno and pessoas) we feel that it is necessary
to create a table named user. This table is the base user table that has the aluno and
pessoas as children. This way, when there are features that are used by both aluno and
pessoas (e.g. authorization, access cards), we can reference them by their user id.

Primary keys were added to each table and relations were also established.

Figure 33: New tables to be added to the database

In Figure 33 we show the ER diagram of the proposed database structure. Those are the
tables required to implement the proposed features. The tables that already exist are
omitted except the table aluno and pessoas. There are some tables missing: those that
are related to the card management software we described before. We will not show them
here because although we will be using them, they do not actually belong to us.

60

When the old Backoffice is no longer active, all table names and their columns can be
normalized to be in the same language and follow the same patterns. The way LoopBack
maps tables into JavaScript objects will ensure that if a table or its columns change
their name, only the model configuration file has to be changed in order to reflect those
changes.

61

7 Implementation

In this section we will describe in detail the steps taken to implement all the components
in our platform. These steps include the decisions taken and the problems we had to
solve in order to build the software proposed in the last chapters.

From all the development performed, we chose some of the most interesting and chal-
lenging decisions/problems we had and how we solved. We will begin by presenting
the process of the database migration, then describe how we developed the different
components, performance optimizations made and finishing of by showcasing the final
application.

7.1 Database

The database we used is the one being used by the old backoffice. It is a MySQL 5
Database and stores all the data we need, but of course we had to make some changes.
We started by migrating the data we wanted and creating new tables according to the
ER in Figure 33. We then checked for problems in the database and solved them.

7.1.1 Migrating data

As said before, we had to use the database already being used by the old backoffice. We
already defined what are going to be the new tables and what changes we have to make.
So, we created a migration script to run the first time the API server starts, and checks
if any migration is needed in order for the system to run properly. The script follows the
next steps:

• Check the need of migrations - Verify if the users table exists and has any data
(if does no exists, means it will have to migrate data)

• Create new tables - The new tables defined in the ER presented on the last
chapter are created, using SQL scripts.

• Map persons and students to the users table - Data (name, email) from tables
pessoas and aluno is merged in the User table and saves the user id in each of
those tables(person, student). When developing the script, we had to manually
check every person account to assign them a role. Hence, when the migrator runs,
it will automatically assign them the role. For the students, we assigned them all
the student role.

• Migrate supervisors - Since the table containing the dissertations data now con-
tains the supervisor id, the script gets the supervisor id from the supervisors table
and fills it in the dissertations table.

We also created several triggers in the database. When a person or student account is
created, it automatically creates a user in the user table, and vice-versa.

We had to test this a few times to make sure it would not break the production database.
We tested it using cloned data from the production database. We even tested that if it

63

stoped at the middle of a migration he would then continue where it had stopped causing
no consistency problems.

7.1.2 Database encoding

When we started to analyze the database and the data it contained to develop the mi-
gration script, we noticed that the database and the tables had the Latin1 (ISO8859-1
[59]) encoding. This was oddly strange, because when displaying that same data in a
web page it was correctly shown, even though the page encoding was Unicode (UTF-8
[60]). To try and solve this problem, we followed a method [61] to discover if we needed
to convert our entire database data from Latin1 to UTF-8. We discovered that in fact
the data was already stored in UTF-8 format. We only changed the encoding in all the
tables and database using their respective settings. The explanation for this ”problem”
is that even though the table settings were telling us the data should be stored in Latin1,
the old backoffice was storing new information in UTF-8 and the database did not force
the encoding, thus leading to encoding inconsistencies.

7.1.3 Integration with the card management database

Having to use a third party database by another software was necessary to implement
the card management feature. The database uses Microsoft SQL Server [62] and had
to be integrated in our API, by importing the tables we needed into LoopBack models.
This process took some time due to the analysis of the card management software and
its database. We had to make some tests in order to be sure which tables we had to use
(the database has almost 200 tables). For example when adding a new card or changing
its rules in the card management software, we would verify which tables it would change.
The same for adding new users to the software.

We had to get a way to relation our user model in our API to the card access user model
using a foreign key. To do this we used the user number (person identification number
assigned by University of Coimbra). We could not use the backoffice user id in this case,
because there were already users created in the card access database and it would cause
inconsistencies.

7.2 API Server

As said before, for the API Server, we used the LoopBack Framework. It makes the
API development process easier due to its automatic generation of models, default API
endpoints (GET, POST, PATCH, DELETE) and its ORM. When we developed the
prototype in the first half of the project, we noticed that due to the large amount of
models and methods we had to implement, it would not scale well in terms of code
structure and maintainability. We researched for solutions for this problem, but did
not find reliable methods to solve it. We had to implement a set of solutions to make
the development process easier and to help the future developers. Those solutions are
presented in the following sections.

64

7.2.1 Making the LoopBack Framework modular

The Loopback framework we are using provides us with a great set of features. Never-
theless, it lacks the concept of modules. Upon researching for solutions for this problem,
we could not find a one for this particular problem, we found some extensions to the
framework, but they lacked documentation. For that reason, and to make our applica-
tion modular, it was necessary to implement the concept of modules on top of the stack
we are using. The fact that we can divide the application into modules and features helps
the development process and as we will see ahead, it also makes it easier to handle the
dynamic authorization that is an important part of this platform.

The first step taken was the analysis of the framework and identification of the points
were the application logic is usually implemented. We have that for each model (User,
AccessToken, Dissertation, etc) there is its associated logic. For smaller platforms it
fits the purpose well. However, since we have some complex logic involving more than
one model at the same time, we think that is better suited and makes more sense to
have modules involving various models. In addition, a model has several types of Access
Control Lists. As an example, we can specify that a particular type of user can create a
new instance of a model.

The proposed approach to this issue was to create a module loader. This module loader
is responsible for, at the very beginning of the boot process of the API server, loading all
the detected modules.

Every model is a directory that contains a configuration file and the its features. The
configuration file contains the module name, a flag stating if the module is public our
private and all the features the module has. A public module means that its features can
be accessible though the API, private means that the features can only be accessible by
other models within the server.

Each feature is represented by a name and all the ACLs that it needs to operate. This
is where this approach makes sense, because we are stating that a given method can
interfere with various models and perform different actions on them. An example of a
configuration file is shown bellow:

{
”name ” : ” cardAccess ” ,
” isNavbar ” : true ,
” i s P u b l i c ” : true ,
” d e s c r i p t i o n ” : ”Module r e s p o n s i b l e f o r the card ac c e s s

↪→ management . ” ,
” f e a t u r e s ” : [
{

”name ” : ” viewUnauthorizedAccess ” ,
” run ” : f a l s e ,
” i s P u b l i c ” : true ,
” isNavbar ” : true ,
” d e f a u l t R o l e s ” : [
] ,
” a c l s ” : [

65

{
”model ” : ” accessAlarm ” ,
” accessType ” : ”READ” ,
” permis s ion ” : ”ALLOW”

}
]

}
] ,
” dependenc ies ” : [” a p i U t i l s ”]

}

When the API boots, the module loader will check the modules directory for all the
modules. For each of them it checks if it has dependencies and then loads them according
to their priority (assures that a module dependency is load before the dependant module).
When loading a module it will create the ACLs defined and perform some init actions
(if applicable). All the features are saved in a in-memory object to easily be retrieved at
any time by the API.

7.3 Handling authentication

Authorization on the platform is performed by checking the user credentials on an LDAP
server that contains all DEEC accounts. Default LoopBack authentication is performed
over a database that contains all user account details (emails, usernames, passwords).
At first we tried to use a connector named passport-ldapauth [63] to perform the
authentication, but it required a large amount of configuration and we could not manage
to make it work. So we decided to override the default LoopBack authentication method.
The default authentication method is the login function on the User model. The login
method we implemented is the following:

1. Check if the credentials are valid - Check if the email and password are not empty.

2. Search the database for an account with that email - If an account is not found,
that means the credentials are invalid and the process return with a status code of
401.

3. Get the account username. The username is the first half of the email (the local-
part).

4. Perform a bind to the LDAP server (using the library ldapjs [64]) that bind uses
the username retrieved before and the password the user sent.

5. If that bind returns a result, that means the password is correct and we can au-
thenticate the user.

6. An access token (64 byte length) is created using the default LoopBack method.
That access token is created with an expiration time of 2 weeks.

7. The access token is sent to the user and is used in future request to identify the
user.

66

An user can have multiple access tokens. That means they can have sessions open in
various devices at same time. Sessions can be closed at any time by logging out on the
device they want. When performing a log out, the access token is deleted which means
that session terminated.

7.3.1 Handling dynamic authorization

The main goal of having dynamic authorization is that we can have a better control in
who can access the features. This dynamic authorization was thought to be a simple
way of letting the system administrators to manage the authorization of the application
without the need to change the source code of the platform. Simply put: users belong
to one or more roles and roles have as many rules as required. One rule dictates if the
associated role has access to a certain feature.

We made a user interface within the web application that can be accessed by System
Administrators to modify rules regarding roles, users and rules. When any change is
made, it the API receiving the modified rules, signals other API nodes to reload the
propagated to all API nodes, ensuring that consistency is maintained. In Figure 34 we
can see the page where system administrators can modify the features a certain role can
perform.

Figure 34: User interface for the dynamic authorization feature.

By assigning roles to features through rules we also solve the problem of users knowing
what can they perform. For example: when the web applications opens, what features will
it show for that particular user? The solution was to have an endpoint (/api/allowed)
in the API that when requested, will reply with the features available for that user.
This endpoint is always requested at launch of the web application, ensuring that the
users always see the actions they can perform. If the user is not authenticated the
endpoint replies with features available for the $unathenticated role (default LoopBack
role). We discuss the web application authorization methods in detail in section 7.4.2 of
this chapter.

67

7.4 Web application

As said before the web application was developed using the AngularJS framework for
the front end logic and Materialize for the front end interface and visual. After all
development we have developed about 47 controllers, 16 services and 24 directives. The
number of controllers essentially matches our number of functional requirements, this is
because we assumed that one controller is responsible for one requirement and directly
matches its flow. These controllers communicate with the services that old the temporary
data in the browser and are responsible for communicating with the server to manipulate
it. The amount of services also reflects the amount of modules we have. Of course we
divided some modules in two, helping us have a more organized source code.

We now explain some of the challenges when developing the web application.

7.4.1 AngularJS and ES6

When we started developing the prototype web application we were a bit disappointed
by having to use an old JavaScript version. This was because browsers typically do not
support the recent versions as soon as they are released. For example, classes are not yet
supported by Internet Explorer 9 [65]. We felt that implementing a full web application
without recent features would make our code much less readable and structured.

Thus, after researching, we decided to use two tools that we think helped us a lot to
organize the code: Babel [66] and Webpack [67].

• Babel - Babel is a tool that transpiles code into another version of the language. For
example, translating ES6 JavaScript into older versions of the language, supported
across all the browsers.

• Webpack - Webpack bundles a set of source files into a single one. It can also apply
minification/obfuscation to the code. Used together with Babel, it can transform
all our JavaScript/CSS/HTML files into a single bundle that will be supported
by all browsers. This bundle is tipically a JavaScript file that is loaded when the
application starts and then unpacks all the necessary files and runs them in the
browser. We also used the minification plugin included in the Webpack workflow,
this allowed us to decrease the bundle size from about 6 Megabytes to about 1Mb.
This will be addressed in the optimization section (7.7.1).

7.4.2 Dealing with authorization

We explained how we handle the authorization on the API. But we also had to address it
on the web application. As we saw, there is an endpoint were the allowed features for an
user can be retrieved. So, we made a mechanism that when the web application starts,
the first thing it does is to retrieve those allowed features from the server. Then, when a
user clicks and URL to change to another page, it will check if that page belongs to an
allowed feature. If it is not authorized, it will redirect the user to the dashboard page, or
to the login page if the user is not authenticated.

68

We also made sure that the navigation bar only displays features the user can perform.
We implemented a way to configure the navigation bar using a configuration file written
in YAML [68]. This configuration file defines the menus and sub menus, their order,
icons, colors, what feature they represent, and what is the state they go when clicked.
Below we can see a simple example:

− name : Dashboard
icon : dashboard
standa lone : t rue
s t a t e : app . dashboard

− name : Contacts
i con : people
s t a t e : app . in format ion−viewContacts
s tanda lone : t rue

− name : D i s s e r t a t i o n s
i con : s choo l
s u b s e c t i o n s :

− name : L i s t D i s s e r t a t i o n s
module : d i s s e r t a t i o n s
f e a t u r e : l i s t D i s s e r t a t i o n s
s t a t e : app . d i s s e r t a t i o n s−l i s t D i s s e r t a t i o n s
i con : l i s t

When the web application gets the allowed features from the server, it then generates the
menu bar based on the configuration file defined.

7.4.3 Multiple language support

Since our application must support at least the Portuguese and English language, we have
made a simple Angular filter to translate the required parts of the application depending
on the language the user uses. Those language preferences are saved only on the client
side and persist in the local storage of the browser.

Translations are stored as YAML objects that are then converted to JavaScript objects.
Every translation has a token and its corresponding translation. Tokens are then used
across the application views.

At some point when developing the web application we noticed that it was hard to keep
track of the tokens that need to be translated. This is because we did not translate
while we developed. As such, lots of tokens where being left without translation. We
know that this was a problem that could be avoided if from the begging we kept track
of the translation tokens. To solve this problem, we have built a simple tool that helps
translators find untranslated tokens and prompts for the correct translation. The way it
works is by traveling all our web application source files and using regular expressions
(JavaScript RegExp [69]) to discover translation tokens. It then compares the tokens

69

discovered with the already translated to verify if a translation must be created. If a
translation is created, it is automatically stored in the translations file.

7.4.4 Location selector and browser

Information about the building locations already exists in the DEEC database but we
wanted to make it more visual to users. The idea presented in the requirements chapter
was that locations would be placed in a map for easy visualization. We decided to add
Cartesian coordinates to the Location model. The point (x,y) indicates the point the
location is on a map from the top left corner. Both values range from 0 to 1. We chose
to normalize the coordinates to allow us to render the map in different screen sizes.

To exemplify this explanation, we can see in Figure 35, three cases where we map a
point into a map. The red dot indicates the point and has its real and normalized
coordinates. When the user clicks the map to select a location, it will get the real
coordinates using the JavaScript mouse event coordinates relative to the map image.
Those coordinates are then normalized using the formulas x = real x / image width
and y = real y / image height . These normalized coordinates are the ones being saved
in the database. The reverse process is when a user wants to view the locations. The
normalized coordinates are converted to real coordinates following the formulas real x
= x * image width and real y = y * image height . This method ensures that a
point is always in the same place, independently of the image scaling or ratio as Figure
35 shows.

70

Figure 35: Coordinates normalization visualization.

7.4.5 Monitor web application usage and statistics

This next part does not correspond to any functional requirement but is big helper to
monitor the web application usage. We know the log system can help to monitoring too,
and it helps, but it only displays actions that happen on the server side (data changes,
errors, important actions). We want to have a better understand at the users behaviour
(the pages they visit the most, time spent at the pages, number of users, etc).

For this particular feature we used AngularJS interceptors to detect when a user goes
from on page to another. We store that page change in our servers as an event, containing
relevant information (page name, timestamp and a UUID [70]). The information is sent to
the server using the web socket communication between the browser and the notifications
server. We used this connection because it is always available, and this way we do not
saturate the API server with requests. Although this method of getting user behaviour
on the web application works when using the AngularJS, it cannot be used by other
frameworks. If in the future the developers switch to another framework or develop a
mobile application for MyDEEC, they must make an interceptor for that new setup.
Despite that, the server logic will remain the same.

71

Only system administrators have access to this analytics feature, but because our ar-
chitecture supports the dynamic role management we could have created a role called
analytics supervisor that could use this feature. Figure 36 shows the analytics feature
where statistics are presented. In the next chapter we will analyze the obtained results
for the actual platform.

These statistics are retrieved from the server. They are generated when requested and
follow a simple statistical algorithm that analyzes the events occurred between two dates
specified. The results are then returned and displayed using charts. There are 5 types of
metrics the data is represented:

• Views per page - This is simply the amount of events that transition to that page.

• Average time per page (in seconds) - To calculate this metric, the algorithm first
has to calculate individual times for each page. For example: if a user goes from
page A to B and from B to C, then there are three events (entering page A, entering
page B and entering page C). Each event has its time of occurrence, so we calculate
the time at page A by subtracting the time of the transition to page B, minus the
transition for page A. Adding all the times for that page A from the various users
we get the total time for the page, then we divide it by the total number of views
for that page.

• Views per hour of the day (in percentage) - Calculated by verifying the hour of the
day at which the events occurred and dividing by the total event count.

• Views per day of the week (in percentage) - Calculated by verifying the day of the
week at which the events occurred and dividing by the total event count.

• Views per day of the month (in percentage) - Calculated by verifying the day of
the month at which the events occurred and dividing by the total event count.

Figure 36: Analytics page.

The algorithm also uses the data to calculate paths users ussually follow to navigate
though the web application. For example, what page is more probable to be visited next

72

if a user is in the dashboard page.

7.5 Notifications server

Developing a notification system that would be easy to send notifications to users was
one of the requirements to be implemented.

The Notifications Server developed provides a simple API where it expects requests to
send notifications. Authentication is made by using a pre shared access token. This
ensures that only our API nodes can communicate with the Notifications Server and send
messages. The endpoint /send receives a notification request object that contains:

• Notification type - This must be one of the notification types configured in the
Notifications Server (e.g. key requested notification, dissertation assigned requet)

• User ids - An array containing the ids of the destination users.

• Is email notification - If the notification is to be sent by email.

• Is web notification - If the notification is to be sent by web. To note that
notifications can be sent by both email and web at the same time.

• Data object - Object containing the data that the notification needs to be ren-
dered.

When a user launches the web application, it will try to connect to the Notifications
Server and perform authentication. The communication is performed in the following
way:

1. Web application tries to communicate with the Notifications Server using web sock-
ets.

2. Web application sends user authentication to be checked.

3. The Notifications Server checks the authorization using the access token and search-
ing it on the database.

4. Web application asks for the last notifications.

5. The server gets the notifications for that particular user.

A global object is used in the server to save the users online. This object is used when
a notification has to be sent to verify if the destination user is online. If the user is in
the global object, notification is directly sent, otherwise it is saved in the database for
sending as soon the user comes online. Even if the user is online, the notification is saved
on the database. When the web application closes and the connection is finished, the
user is removed from the global object.

7.6 Content server

To enable platform users to upload files and download them, we created a simple content
server. We use Express to serve the files over HTTP/HTTPS and a simple NoSQL

73

database to store the metadata about the files. We also use ImageMagick to convert
image files.

Users do not upload files directly to this content server, they upload the files to the API
Server and then it uploads to this server. Our API Server is the only allowed to change
any data on this server. Authentication is made using a pre shared access token. That
access token is sent in requests that change files.

Using the Express framework, we developed a simple API that enables the file manage-
ment:

Each file has a static name and optionally a dynamic name. The static name is the real
file name on the file system. The dynamic name is the name that the uploader assigns to
that file when uploading. The dynamic name also contains the name of the folder that
the file is in.

• /upload/ (required authentication) - This method allows the upload of a new file
to an existing folder. We will discuss the upload process ahead.

• /createFolder/ (requires authentication) - This method creates a new folder that
can be used in future request to upload files.

• /delete/ (requires authentication) - This method deletes a file from the server.

• /d/* - Downloads a file by its dynamic name.

• /s/* - Downloads a file by its static name.

7.7 Overall performance

From the beginning of this project we wanted to make sure we had an optimized platform.
We now show some of the optimizations we made to our platform.

7.7.1 Optimizing build file sizes

As we said before, we are using Webpack to generate our application’s build file. It is
this bundle of a single JavaScript file that is being transferred to the client browser.

The first builds we made were between 5Mb and 6Mb. Downloading a file with such size
would be no problem in fast connections, but for clients with slow connections (less than
1 Mbps) or even for those who have limited data plans, it would make a huge difference.
That was the reason we started to minify or entire source code using a Webpack plugin.
Of course we had to change a few things in our source code (make sure libraries would
still be available, injection of services in AngularJS was made in the right way). After
this minification, the file’s size was about 1Mb. This was a considerable drop in size. But
we tried even harder to drop that size.

We started searching for files where we could reduce some code. The first place to look
was obvious: the code we made. Although, it had no repeated code and even if we could
optimize some parts, it would not make a big impact in the total bundle size. We then
proceeded to the libraries (AngularJS, Materialize, and other smaller ones). We could

74

remove things that were not being used, but this would require to much knowledge of the
source code of those libraries. And if in the future we updated one of those libraries, we
would have to remove again unnecessary code.

At this point we started a search for tools that could help us discover any file that was
making our bundle to have such file size. We found an extremely helpful tool [71] that
allowed us to analyze our bundle and view the sizes of the several source files of our
bundle. In Figure 37 we can see the composition of our bundle (without minification).
Inside the green square is all the code we have developed. Inside the red square are all
the libraries used by our code. And inside the blue square is the code generated by the
LoopBack framework to use with AngularJS. We knew it was a big file, but because our
application had grown so much in terms of features and modules, that file also grown to
be about 30% of our entire application code.

We started to analyze the file lb-services.js and discovered several patterns. There was
a lot of repeated code with only slightly changes (there was all the information relative to
the API endpoints). We came up with a solution that generates the original lb-services.js
file from a simple set of configurations when the application starts.

We also made a generator for that configuration file. The generator travels each model,
and saves its endpoints configurations to an output file. It is that output file that is used
at the beginning of the web application to generate the Angular services used to access
out API.

This solution allowed us to reduce the size of the API services from 400kb to about 18kb
by generating the services at run time. It has minimum impact in the web application
performance but has a significant impact in the file size.

Figure 37: Web application size details

7.7.2 Web server configurations

To optimize the delivery of content to the users, we had to make some configurations in
our web server. The following configurations were made:

75

• Activating compression - We activated gzip compression in the delivery of static
files. This made our web application JavaScript bundle decrease its size from 1
Megabyte to about 400 Kilobytes.

• Activating cache - We activated cache in all the static files (HTML files, JavaScript
bundle, images, fonts, icons). To the HTML files (particularly the index.html) we
defined a expiration of about 1 day, this ensures that if we release a new version of
the application, the browsers download it.

• Bundle size versioning - Because we are caching our bundle, when we updated
the bundle file, it would not be served to the user browser unless that file was
expiered in the user’s browser. This is not a big issue, but to ensure our users
always have the last web application version available, we assigned a file version to
each bundle that is automatically assigned when the application is built. When we
reference the file in the code we asign it a version. For example: bundle.js?v=3.
The browser interprets this as a file change and forces to download it again, thus
downloading the updated file.

7.8 Deployment

We used nodemon in our development environment, as it really improved the development
process by providing hot reloading of the components. Although, we had to configure a
deployment mechanism that allowed us to run the components in production mode to
use production databases and other servers like LDAP and mail server.

To start a component in development, production or test mode, we pass them an envi-
ronment variable that states the environment we are running the component in. Since
we use PM2 to manage the components on the server, we made configurations that can
easily be launched through a script.

For each component we created a script that does the following:

1. Runs npm install to install the dependencies needed for that component

2. Sets the NODE ENV environmental variable to production

3. Calls PM2 to run the component in cluster mode

PM2 is configured to automatically restart a cluster node in case of failure. It is also
configured to wait for a node startup in order to actually consider it running. This
allows us to reload a component at any time (for redeploying reasons) without having
any downtime. When reloading the component, PM2 shuts down one cluster node at a
time to ensure that at least one node is available, thus preventing downtime (gracefully
reload).

We can use the PM2 logging system to check for component errors at any time by running
pm2 logs <component name. This is not related with the logging system we made, that
is a different feature intended to log the actions performed by users in the platform.

76

7.9 Web application showcase

Application screens were developed accordingly with the wireframes designed in chapter
5. We made extensive use of the Materialize CSS framework to maintain the same visual
interface and behaviour. We will now show examples of the interfaces developed for our
web application.

We now present some final screens of the web application.

Figure 38: Login final screen.

Figure 38 shows the login page that every user sees when is not authenticated.

77

Figure 39: Dashboard final screen.

Figure 39 shows the dashboard that users see when they log in on the platform.

Figure 40: Dissertations final screen.

Figure 40 shows the list of dissertations that any user can see.

78

Figure 41: Dissertation details final screen.

Figure 41 shows the dissertation details screen that users see when they click a dissertation
from the list.

Figure 42: Authorization management final screen.

Figure 42 shows the authorization screen where system administrators can change roles
information such as rules and users.

79

Figure 43: Card management final screen.

Figure 43 shows the screen where card managers can view information about a user.
Including user’s cards and last events. Here, card managers can also create new cards
and delete user cards.

Figure 44: Card rules final screen.

Figure 44 shows the screen where card managers can change rules to a card. Each switch
represents a rule that is on or off.

80

Figure 45: Key request final screen.

Figure 45 shows the screen where users can request a key, they have to choose the room
they want to have access, the period when they need the key and justify the request.

Figure 46: Location browser final screen.

Figure 46 shows the location browser where users can search for places and their location
on the department.

81

Figure 47: Profile final screen.

Figure 47 shows the profile page that provides information about the user.

Figure 48: Notifications final screen.

Figure 48 represents a portion of the screen where notifications can be seen. Notifications
have representative images, for example they can have an image representing an action
or a photo from the user that performed the action that triggered the notification.

82

Figure 49: Dissertations final mobile mobiledissertations.

Figure 49 shows the dissertations page on a mobile screen. We enhanced the most im-
portant pages so they adjust to screen sizes.

83

8 Testing and results

Having done all the development of all the components, it is time to verify that they match
the proposed requirements and actually meets the needs of its users. We will start with
the functional testing, then continue with nonfunctional testing (performance, security)
and finally we present and discuss the obtained results of the platform usage.

8.1 Functional testing

Due to the scope of the project and the iterative nature of development required to reach
our end goals within the proposed timeframe, the initial testing of the web application
was performed informally, with several scenarios designed and tested based on the current
userbase of the plaform and its expected behaviour. The lack of formal test specification,
while in some ways a disadvantage, allowed for faster development, and was put to the test
when the application entered production. This transition to production showed that the
testing process, although informal, had been successful. The web application was stable
and, although the userbase has not yet reached its peak, most issues have been minor (e.g.
when exporting assigned dissertations, selecting the semester would not do anything) and
fixed quickly due to our error reporting tools (e.g. sentry) and statistics APIs. Taking
into account that the application and API are now stable, we are confident that going
forward a test suite can be developed to further enhance our test robustness.

To test the API server we used Postman[72] to perform requests. We used it in our
development process and think it is also useful for the testing part. It allows us to
simulate HTTP requests to the API and analyze the responses. Due to the large amount
of test cases we could not automate them. However Postman saves the requests we make
so they can be used later. This way, we don’t have to always input the test data. In
Appendix B we show in detail the tests performed. They were performed along the
development process and were recorded so they can be used when needed.

8.2 Usability testing

A formal usability test was not made for the measuring usability of the platform. We
believe that for a platform of this size, there should be a formal usability test. But it is
hard to gather a significant number of users to test the platform. We instead conducted a
series of meetings with professors and department directors to gather feedback and have
their perspective about the platform. Because we launched the platform early in the
development phase to be used by some users in the department, we could manage to get
feedback from those users from those meetings.

• The first meeting was the day 13/04/2017 and served to verify the overall design
and if it matched the intended by the direction of the department. The first modules
where also demonstrated in detail.

• The second meeting was the day 02/05/2017 focused on the dissertations module
and the navigation between pages. For example the suggestion of some go back
buttons was given there.

85

• The last meeting was on 19/07/2017 and served to verify if the final platform
met the requirements it had and if it was visually uniform. From this meeting,
resulted the decision to open the platform to the all users of the department. The
platform’s divulgation started day 21/07/2017 by sending an email to all the users
on the platform.

8.3 Performance testing

To test the performance of our solution we designed a test experience where we vary the
number of API nodes in the server and the amount of requests per second. The test setup
is shown in figure 50. We used two machines linked to each one with a Gigabit ethernet
cable. This ensures the tests are not throttled by the network. Both machines have 4
CPU cores that run at 2.30GHz and 8GB of ram each.

For this performance test, database access is simulated using an in memory database
provided by LoopBack. We created a custom method for this test, it checks for autho-
rization and then performs dummy calculations to simulate access to database. Most of
the operations in our platform are based on reading data, so this is what we are testing
for.

Figure 50: Performance test setup.

We used Apache JMeter[73] to simulate the user requests to the server. Each test has
a duration of 1 minute and was run 5 times. In the end the average of the results was
calculated and are presented in the following tables. We choose to vary the number of
nodes of the API because they are the main component in our architecture. Because our
nodes are basically Node.js applications and are single threaded, we chose to test for 1,
2, 4 and 8 nodes. The nodes are in a cluster and are load balanced by PM2 like in our
architecture. We also vary the number of requests per second. We started by testing
with a small amount of requests per second and incremented them to test the maximum
amount of requests our API server can support. We started by 100 requests per second,
then tested 500, 1000 and 5000 requests per second. The last number of requests tested
was 10000, that was when the application started to produce errors. Because this is a
local network, there is no network delay, hence the small values for the average time
requests take.

In Tables 8.3, 8.3 and 8.3 we can see the results for 100, 500 and 1000 requests per
second. The delay remains low for all these requests. We have to consider that the
database is in memory so there is no latency of transferring data and there is almost 0
latency between the two machines. In a production scenario, there is an inherent latency
when accessing the database. If we consider that there are on average 3 database accesses
(check authentication, check authorization, perform the intended action) and that each
request takes approximately 5ms (based on real usage of the production database) to be
processed, we can conclude that an average request should take about 17 ms (5× 3 = 15

86

ms database latency, 2 ms service operation) and add it to the client-server latency.
This value fits our goals for MyDEEC, 1000 requests per second are equivalent to 333
concurrent users performing 3 requests per second, a scenario far beyond our expected
usage.

Name # Nodes Average time (ms) Deviation (ms) % Error Throughput (req/s)

1.1 1 1 1.5 0 100.8

1.2 2 1 1.55 0 100.8

1.3 4 1 1.57 0 100.8

1.4 8 1 2.25 0 100.7

Table 16: Performance test results (100 requests per second)

Name # Nodes Average time(ms) Deviation (ms) % Error Throughput (req/s)

2.1 1 2 7.52 0 497

2.2 2 1 1.8 0 498

2.3 4 2 4.17 0 497

2.4 8 2 3.23 0 498

Table 17: Performance test results (500 requests per second)

Name # Nodes Average time(ms) Deviation (ms) % Error Throughput (req/s)

3.1 1 4 2.43 0 988

3.2 2 3 2.33 0 990

3.3 4 6 5.15 0 987

3.4 8 7 3.62 0 989

Table 18: Performance test results (1000 requests per second)

87

Name # Nodes Average time(ms) Deviation (ms) % Error Throughput (req/s)

4.1 1 66 133.09 28.54 4441

4.2 2 9 11.43 0 4574

4.3 4 12 35.7 0 4561

4.4 8 23 47.14 0 4461

Table 19: Performance test results (5000 requests per second)

Name # Nodes Average time(ms) Deviation (ms) % Error Throughput (req/s)

5.1 1 80 181.84 45.92 6161

5.2 2 54 99.44 14.77 6046

5.3 4 98 128.84 2.76 6378

5.4 8 309 500.1 48.9 2267

Table 20: Performance test results (10000 requests per second)

In Tables 8.3, 8.3 we can clearly see that the latency increased as it is expected. Errors
started to happen at 10000 requests per second which means that it cannot handle that
amount of requests. The server CPU was running at 100% during the 10000 requests per
seconds experiment. We think that for large amounts of requests, it is better to have 4
nodes running at the same time, it has a higher latency but the percentage of errors is
lower.

8.4 Availability testing

To test the availability of our platform, we tested two different scenarios:

• Failure of API nodes - Failures may occur at any time. This scenario simulates
various failures on the API nodes and measures errors in normal requests.

• Reload of the entire API cluster - When we need to redeploy the API server we
have to tell PM2 to reload our API server. This scenario simulates a redeploy and
measusures errors in normal requests happening at that time.

For both tests, we used a cluster of 4 nodes, this was based on the performance tests
presented before.

Failure of API nodes

We created two special testing endpoints for this scenario:

88

• /api/availability/get/ - This is a regular endpoint that makes dummy calcula-
tions and responds with an HTTP 200 status.

• /api/availability/failure/ - This endpoint triggers a process exit signal that
abruptly terminates the node.

We modeled a traffic source in JMeter that simulates a normal usage, by accessing the
/api/availability/get/ endpoint (500 requests per second). We also modeled a traffic
source that makes requests to the /api/availability/failure/ endpoint and causes a
failure. These requests occur in intervals of 5 to 15 seconds. We run the test 10 times
for 2 minutes each. The uptime of the cluster was 100%, there was always a node to
respond to requests, but there was a small percentage (0,02%) of request errors. The
reason for this is that nodes would automatically shutdown and requests being processed
would produce an error.

Reload of the entire API Server

This test is similar to the previous one. But this time we are directly telling the system to
reload all the nodes. This reload is managed by PM2 and as we saw in the last chapter it
reloads it gracefully to ensure there is no downtime. This time we only modeled a traffic
source that simulates normal usage by accessing the /api/availability/get/ endpoint, also
performing 500 requests per second.

There was 100% uptime, The percentage of errors obtained indicates that there is no
downtime when reloading the API server.

8.5 Security testing

Because this is a platform that will be used by the public, it is our duty to verify its
security and that it will not be compromised at any point. We studied the top vulner-
abilities in the the OWASP TOP 10 Project [52] and then, how we could test them in
our platform. We will explain the vulnerabilities tested, how we tested and the results
obtained. Unfortunately we did not use automation tools for this task. We knew that
for the technologies we used (LoopBack and AngularJS) we would spend to much time
integrating the tools and then interpreting the data. So, for the most part where we
would inject code, we injected it manually, testing all the places were users can input
data like input fields and url queries.

We know that the tests performed by us are simple. We believe that for testing a system
like this, a team of professionals is a must, as they try to breach the security of the
application at any means with tools and experience acquired through several years of
work.

SQL Injection

This type of vulnerability is already covered by the LoopBack framework. But nonetheless
we tested each point where users can insert text. As we expected, no SQL could be
injected, thus the database cannot be changed nor users can read them by inserting SQL
queries in the application.

Cross Site Scripting

89

For this vulnerability we discovered an issue where JavaScript code could be run on the
web application. The feature in question was the log viewing feature. For example, if
anyone would insert a dissertation with JavaScript code in the title, it would run when an
administrator was viewing the logs. This was a high risk vulnerability that we investigated
as soon as we discovered and identified that the problem was due to a library used to
highlight search words. The library was removed from the project (thus removing the
highlight functionality) but the issue was solved.

Cross Site Request Forgery

To test this vulnerability we only needed to try to make requests (GET, POST) to
our API from another web page. Because the API checks the HTTP headers for the
access token that identifies the user and the way we manage authorization is by sending
that access token in the HTTP headers, pages from other websites cannot simulate an
authorized access to our API. The access token is only accessible by pages in the domain
my.deec.uc.pt, that is our web application. So only our web application can access that
token and send it in the HTTP headers.

Broken Access Control And Session Management

As said before, we use access tokens for authentication. They are managed by the Loop-
Back Framework. Sessions are initialized by authenticating in the LDAP server, this
server is only available for the server components, so it is protected from external at-
tacks. All user credentials are sent by secure connections (HTTPS) and no passwords are
stored in our server, so attackers cannot have access to them. We performed the following
tests:

• Remote access to the LDAP server - We attempted to connect to the LDAP server
from outside the server network. We could not manage to access it, the department’s
firewall blocks outside connections.

• Use an nonexistent access token to access the API and Notifications Server. In both
cases the server rejected the request. The API gave HTTP status 401 (Unautho-
rized) and the Notifications Server responded with a NOT OK status.

• Use an expired access token to access the API and Notifications Server. As the
previous test, both servers rejected the request and deleted the expired access token
from the database.

Missing Function Level Access Control The base access control (authorization) is
provided by the LoopBack framework trough the use of ACLs. But we also have to
consider the dynamic authorization feature we implemented. We expect that when rules
change, they are applied automatically as soon as they reach the API.

8.6 Platform usage and statistics

In the past chapter we mentioned the analytics feature we developed. Unfortunately we
only had the idea of developing the feature in the end of July, so we only have data from
the month of August. According with Figure 51, during this month, we had 63 unique
users that made a total of 151 sessions and viewed 1876 pages. This is is not much, but
we should note that during this month, most of the people are in holidays and do not

90

perform academic activity. Hence, we think these are really good values and we think
that during the month of September (when the new academic year starts) usage of the
platform will tend to increase.

Figure 51: Global statistics for the web application, taken from the analytics screen.

In Figure 52, usage per hour is shown. We can clearly see that the period comprehended
between 9h and 18h is where most of the activity takes place, afternoon being the most
active part of the day. It makes sense, as these are the active hours of the day.

When we analyzed this information, the activity at midnight was high. It was strange
and we had to look up the real recorded events to discover if it was an error causing that
amount of views at midnight. Those views actually correspond to users and are valid, we
even checked if the view times per page made sense. It is really strange due to the trend
along the day, but are valid views.

Figure 52: Percentage of view per hour of the day, taken from the analytics screen.

Knowing what pages users view is important to have notion of what is really happening
in the platform. Figure 53 shows the views per page. The login page is not shown here,
we only record this information for authenticated users. Dashboard being the first page
a user sees when entering the platform, makes it being the most viewed page, followed
by the dissertations listing and viewing, and the contacts. Other features tend to be less
used in this month, but for example the card management module was strongly used
during the other months, when people wanted to created cards. It will sure continue to
be used when the new year starts.

91

Figure 53: Amount of views per page, taken from the analytics screen.

92

9 Conclusions

Reaching the end of this document, we can say that the goals were met. We have a stable
platform that is being used right now for users of the entire DEEC department. We hope
that more users will start to use the platform as soon as the new academic year starts.
And that the future developers of the platform can take advantage of all the work done
to make the development process easier.

The implementation part was the process that consumed the most time on this project.
From the extensions we had to do to the LoopBack framework and the optimization we
had to make to have a better application, it all was worth it. We feel that maybe more
time could have been invested in testing the platform. But nevertheless, we think that
we have a stable platform. And now, the functional tests presented in this document can
be formalized to ensure that in the future, testing will be more easier and simple.

Personally, I am happy that the goals were met. Of course some things like automated
testing were not implemented. But working so many hours on this project and having it
actually being used by people in the department brings me a sensation of accomplishment.
I learned so many new things, not only on the technical level, but also on the social level.
and that is all that knowledge that really matters.

94

References

[1] StrongLoop. LoopBack. http://loopback.io/. (Last access date: 12/01/2017).

[2] DreamHost. Web server performance comparison. https://help.dreamhost.com/hc/
en-us/articles/215945987-Web-server-performance-comparison. (Last access date:
02/01/2017).

[3] Built With. Web servers usage statistics. https://trends.builtwith.com/web-server.
(Last access date: 02/08/2017).

[4] Streamline. Streamline. http://streamline.pt/. (Last access date: 19/01/2017).

[5] Streamline. Deec backoffice. https://backoffice.deec.uc.pt/. (Last access date:
15/01/2017).

[6] W3Schools. Responsive web design. http://www.w3schools.com/html/html
responsive.asp. (Last access date: 20/01/2017).

[7] T. Berners-Lee. World wide web rfc. https://www.ietf.org/rfc/rfc1630.txt, 1994.
(Last access date: 14/09/2016).

[8] T. Berners-Lee. Hypertext markup language. https://tools.ietf.org/html/rfc1866,
1995. (Last access date: 17/01/2017).

[9] W3 schools. Html tags. http://www.w3schools.com/tags/. (Last access date:
18/01/2017).

[10] Oracle. Java. https://www.java.com. (Last access date: 22/09/2016).

[11] The PHP Group. Php. https://secure.php.net/. (Last access date: 22/09/2016).

[12] Network Working Group. The text/css media type. https://tools.ietf.org/html/
rfc2318, 1998. (Last access date: 30/09/2016).

[13] Network Working Group. The text/css media type. https://tools.ietf.org/html/
rfc4329, 2006. (Last access date: 29/09/2016).

[14] E. Rescorla. Http over tls. https://tools.ietf.org/html/rfc2818, 2000. (Last access
date: 20/09/2016).

[15] Mozilla Developer Network. Html5 -web developer guides. https://developer.mozilla.
org/en-US/docs/Web/Guide/HTML/HTML5. (Last access date: 10/01/2017).

[16] Node.js Foundation. Node.js. https://nodejs.org. 12/01/2017.

[17] AngularJS team. Angularjs. https://angularjs.org/. (Last access date: 18/01/2017).

[18] Google. Chrome V8. https://developers.google.com/v8/. (Last access date:
26/12/2016).

[19] W3Techs. Usage statistics and market share of node.js for websites. https://w3techs.
com/technologies/details/ws-nodejs/all/all, 2017. (Last access date: 18/01/2017).

96

http://loopback.io/
https://help.dreamhost.com/hc/en-us/articles/215945987-Web-server-performance-comparison
https://help.dreamhost.com/hc/en-us/articles/215945987-Web-server-performance-comparison
https://trends.builtwith.com/web-server
http://streamline.pt/
https://backoffice.deec.uc.pt/
http://www.w3schools.com/html/html_responsive.asp
http://www.w3schools.com/html/html_responsive.asp
https://www.ietf.org/rfc/rfc1630.txt
https://tools.ietf.org/html/rfc1866
http://www.w3schools.com/tags/
https://www.java.com
https://secure.php.net/
https://tools.ietf.org/html/rfc2318
https://tools.ietf.org/html/rfc2318
https://tools.ietf.org/html/rfc4329
https://tools.ietf.org/html/rfc4329
https://tools.ietf.org/html/rfc2818
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
https://nodejs.org
https://angularjs.org/
https://developers.google.com/v8/
https://w3techs.com/technologies/details/ws-nodejs/all/all
https://w3techs.com/technologies/details/ws-nodejs/all/all

[20] StrongLoop. Why Node.js? https://strongloop.com/node-js/why-node/. (Last
access date: 28/09/2016).

[21] Todd Hoff. LinkedIn Moved From Rails To Node: 27 Servers Cut
And Up To 20x Faster. http://highscalability.com/blog/2012/10/4/
linkedin-moved-from-rails-to-node-27-servers-cut-and-up-to-2.html. (Last ac-
cess date: 28/09/2016).

[22] npm. npm. https://www.npmjs.com/. (Last access date: 11/01/2017).

[23] Erik DeBill. Module counts. http://www.modulecounts.com/, 2013. (Last access
date: 18/01/2017).

[24] IBM. Ibm acquires strongloop to extend enterprise reach using ibm cloud. https:
//www-03.ibm.com/press/us/en/pressrelease/47577.wss, 2015. (Last access date:
29/09/2016).

[25] StrongLoop. LoopBack - Controlling data access. http://loopback.io/doc/en/lb2/
Controlling-data-access.html. (Last access date: 17/11/2016).

[26] Express. Express. http://expressjs.com/. (Last access date: 27/12/2016).

[27] Express. Using middleware. http://expressjs.com/en/guide/using-middleware.html.
(Last access date: 29/08/2016).

[28] AngularJS. Using $location. https://docs.angularjs.org/guide/$location, 2017. (Last
access date: 30/09/2016).

[29] Less Team. Less. http://lesscss.org/, 2009. (Last access date: 19/10/2016).

[30] Sass team. Sass. http://sass-lang.com/, 2006. (Last access date: 19/10/2016).

[31] Bootstrap Core Team. Boostrap. https://getbootstrap.com/. (Last access date:
12/10/2016).

[32] ZURB. Foundation. http://foundation.zurb.com/. (Last access date: 13/10/2016).

[33] Materialize. Materialize. http://materializecss.com/. (Last access date:
19/01/2017).

[34] Google. Material design. https://material.google.com. (Last access date:
14/10/2016).

[35] Inc. A. Melnikov Isode Ltd. I. Fette, Google. The websocket protocol. https://tools.
ietf.org/html/rfc6455, 2011. (Last access date: 20/10/2016).

[36] Socket.io. Socket.io. http://socket.io/. (Last access date: 20/10/2016).

[37] Node.js. Node.js http module. https://nodejs.org/api/http.html. (Last access date:
30/09/2016).

[38] Apache Software Foundation. Apache http server. https://httpd.apache.org/. (Last
access date: 27/12/2016).

[39] NGINX Inc. Nginx. https://www.nginx.com/. (Last access date: 16/01/2017).

97

https://strongloop.com/node-js/why-node/
http://highscalability.com/blog/2012/10/4/linkedin-moved-from-rails-to-node-27-servers-cut-and-up-to-2.html
http://highscalability.com/blog/2012/10/4/linkedin-moved-from-rails-to-node-27-servers-cut-and-up-to-2.html
https://www.npmjs.com/
http://www.modulecounts.com/
https://www-03.ibm.com/press/us/en/pressrelease/47577.wss
https://www-03.ibm.com/press/us/en/pressrelease/47577.wss
http://loopback.io/doc/en/lb2/Controlling-data-access.html
http://loopback.io/doc/en/lb2/Controlling-data-access.html
http://expressjs.com/
http://expressjs.com/en/guide/using-middleware.html
https://docs.angularjs.org/guide/$location
http://lesscss.org/
http://sass-lang.com/
https://getbootstrap.com/
http://foundation.zurb.com/
http://materializecss.com/
https://material.google.com
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc6455
http://socket.io/
https://nodejs.org/api/http.html
https://httpd.apache.org/
https://www.nginx.com/

[40] Jesse Storimer. How many threads is too many? http://www.jstorimer.com/blogs/
workingwithcode/7970125-how-many-threads-is-too-many, 2013. (Last access date:
03/01/2017).

[41] Remy Sharp. Nodemon. https://nodemon.io/. (Last access date: 25/08/2017).

[42] OStrongLoop. Strongloop process manager. http://strong-pm.io/. (Last access date:
25/08/2017).

[43] PM2 Team. Pm2 - advanced, production process manager for node.js. http://pm2.
keymetrics.io/. (Last access date: 03/01/2017).

[44] Universidade de Coimbra. Inforestudante. https://inforestudante.uc.pt. (Last access
date: 19/01/2017).

[45] The CentOS Project. Centos. https://www.centos.org/. (Last access date:
25/08/2017).

[46] Oracle Corporation. Mysql. https://www.mysql.com/. (Last access date:
15/12/2016).

[47] Open Web Application Security Project. Injection vulnerability. https://www.owasp.
org/index.php/Top 10 2013-A1-Injection. (Last access date: 20/08/2017).

[48] Open Web Application Security Project. Cross-site scripting (xss) vulner-
ability. https://www.owasp.org/index.php/Top 10 2013-A3-Cross-Site Scripting
(XSS). (Last access date: 20/08/2017).

[49] Technovelgy. Radio-frequency identification. http://www.technovelgy.com/ct/
technology-article.asp. (Last access date: 15/11/2016).

[50] Microsoft. Microsoft windows operating systems. https://www.microsoft.com/
en-us/windows/. (Last access date: 10/08/2017).

[51] DSDM Consortium. Moscow prioritisation. https://www.agilebusiness.org/content/
moscow-prioritisation-0. (Last access date: 20/11/2016).

[52] Open Web Application Security Project. Owasp top 10 project. https://www.owasp.
org/index.php/Category:OWASP Top Ten Project. (Last access date: 20/08/2017).

[53] Open Web Application Security Project. Cross-site request forgery (csrf) vul-
nerability. https://www.owasp.org/index.php/Top 10 2013-A8-Cross-Site Request
Forgery (CSRF). (Last access date: 20/08/2017).

[54] Open Web Application Security Project. Broken authentication and session man-
agement vulnerability. https://www.owasp.org/index.php/Top 10 2013-A2-Broken
Authentication and Session Management. (Last access date: 20/08/2017).

[55] Open Web Application Security Project. Missing function level access control vul-
nerability. https://www.owasp.org/index.php/Top 10 2013-A7-Missing Function
Level Access Control. (Last access date: 20/08/2017).

[56] Simon Brown. C4 model. http://www.codingthearchitecture.com/2014/08/24/c4
model poster.html. (Last access date: 9/08/2017).

98

http://www.jstorimer.com/blogs/workingwithcode/7970125-how-many-threads-is-too-many
http://www.jstorimer.com/blogs/workingwithcode/7970125-how-many-threads-is-too-many
https://nodemon.io/
http://strong-pm.io/
http://pm2.keymetrics.io/
http://pm2.keymetrics.io/
https://inforestudante.uc.pt
https://www.centos.org/
https://www.mysql.com/
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
http://www.technovelgy.com/ct/technology-article.asp
http://www.technovelgy.com/ct/technology-article.asp
https://www.microsoft.com/en-us/windows/
https://www.microsoft.com/en-us/windows/
https://www.agilebusiness.org/content/moscow-prioritisation-0
https://www.agilebusiness.org/content/moscow-prioritisation-0
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_(CSRF)
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
http://www.codingthearchitecture.com/2014/08/24/c4_model_poster.html
http://www.codingthearchitecture.com/2014/08/24/c4_model_poster.html

[57] Inc. Functional Software. Sentry. https://sentry.io. (Last access date: 25/08/2017).

[58] Nodemailer. Nodemailer. https://nodemailer.com/. (Last access date: 05/01/2017).

[59] W3Schools.com. Html iso-8859-1 reference. https://www.w3schools.com/charsets/
ref html 8859.asp. (Last access date: 20/08/2017).

[60] W3Schools.com. Html unicode (utf-8) reference. https://www.w3schools.com/
charsets/ref html utf8.asp. (Last access date: 20/08/2017).

[61] José Ribeiro Witesmith. Mysql encoding hell: How to export utf-8 data from a
latin1 table. https://www.whitesmith.co/blog/latin1-to-utf8/. (Last access date:
12/08/2017).

[62] Microsoft. Sql server technical documentation. https://docs.microsoft.com/en-us/
sql/sql-server/sql-server-technical-documentation. (Last access date: 9/08/2017).

[63] Ldap Passport Developers. Ldap passport. https://github.com/vesse/
passport-ldapauth. (Last access date: 4/08/2017).

[64] Ldapjs. Ldapjs. http://ldapjs.org/. (Last access date: 9/08/2017).

[65] kangax. Ecmascript compatibility table. https://kangax.github.io/compat-table/
es6/. (Last access date: 19/08/2017).

[66] Babel team. Babel, javascript compiler. https://babeljs.io/. (Last access date:
19/08/2017).

[67] Webpack team. Webpack module bundler. https://webpack.js.org/. (Last access
date: 19/08/2017).

[68] Oren Ben-Kiki Clark C. Evans, Ingy döt Net. Yaml. http://yaml.org/. (Last access
date: 19/08/2017).

[69] Mozilla Developer Network (MDN). Javascript regexp. https://developer.
mozilla.org/en/docs/Web/JavaScript/Guide/Regular Expressions. (Last access
date: 20/08/2017).

[70] M. Mealling Refactored Networks R. Salz DataPower Technology P. Leach, Mi-
crosoft. Common format and mime type for comma-separated values (csv) files.
https://tools.ietf.org/html/rfc4122, 2005. (Last access date:20/08/2017).

[71] Chris Bateman. Webpack visualizer. https://chrisbateman.github.io. (Last access
date: 12/08/2017).

[72] Inc Postdot Technologies. Postman. https://www.getpostman.com/. (Last access
date: 25/08/2017).

[73] Apache Software Foundation. Apache jmeter. https://jmeter.apache.org/. (Last
access date: 25/08/2017).

[74] Inc. Y. Shafranovich, SolidMatrix Technologies. Common format and mime type for
comma-separated values (csv) files. https://tools.ietf.org/html/rfc4180, 2005. (Last
access date:01/08/2017).

99

https://sentry.io
https://nodemailer.com/
https://www.w3schools.com/charsets/ref_html_8859.asp
https://www.w3schools.com/charsets/ref_html_8859.asp
https://www.w3schools.com/charsets/ref_html_utf8.asp
https://www.w3schools.com/charsets/ref_html_utf8.asp
https://www.whitesmith.co/blog/latin1-to-utf8/
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation
https://docs.microsoft.com/en-us/sql/sql-server/sql-server-technical-documentation
https://github.com/vesse/passport-ldapauth
https://github.com/vesse/passport-ldapauth
http://ldapjs.org/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/compat-table/es6/
https://babeljs.io/
https://webpack.js.org/
http://yaml.org/
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Regular_Expressions
https://developer.mozilla.org/en/docs/Web/JavaScript/Guide/Regular_Expressions
https://tools.ietf.org/html/rfc4122
https://chrisbateman.github.io
https://www.getpostman.com/
https://jmeter.apache.org/
https://tools.ietf.org/html/rfc4180

Appendices

A Detailed requirements

This appendix describes in detail the full requirements of our the proposed platform.

01.01 Login
Primary Actors Unauthenticated user
Secondary Actors -

Description
Users with a DEEC email must be able to login on the platform using their
email and password.

Flow

1. Fill the user email using either @alunos.deec.uc.pt or @deec.uc.pt
email

2. Fill the password
3. Click the submit button

Pre-conditions
User is not authenticated. User is on the login page. The login details inserted
are valid.

Post-conditions User becomes authenticated.
Priority Must have
Specificity Sea level (user goal)
Source Authentication

Table 21: Use case specification 01.01 - Login

01.02 Logout
Primary Actors Authenticated user
Secondary Actors -
Description Authenticated users must be able to logout from any application screen.

Flow 1. Click the logout button

Pre-conditions User is authenticated. User is on any page

Post-conditions User becomes unauthenticated
Priority Must have
Specificity Sea level (user goal)
Source Authentication

Table 22: Use case specification 01.02 - Logout

02.01 Assign user to a role
Primary Actors System Administrators
Secondary Actors Any user

Description
System administrators must be able to assign a person to a certain role. Users
must be able to have more than one role.

Flow

1. Open the desired role from the role list
2. Click the button to add new user
3. Type the user name
4. Click the user

Pre-conditions There is at least one role available.

Post-conditions Role is assigned to the user.
Priority Must have
Specificity Sea level (user goal)
Source Authorization

Table 23: Use case specification 02.01 - Assign user to a role

101

02.02 Create role
Primary Actors System administrators
Secondary Actors -
Description System administrators must be able to create a new role in the platform.

Flow

1. Click the add role button in role list
2. Fill the role name
3. (Optional) Fill the role description
4. Click the create button

Pre-conditions The name of the role does not exist.

Post-conditions Role is created

Priority Should have
Specificity Sea level (user goal)
Source Authorization

Table 24: Use case specification 02.02 - Create role

02.03 Delete role
Primary Actors System administrators
Secondary Actors -

Description System administrators must be able to delete roles previously created.

Flow

1. Open the role details in the role list
2. Click the delete button
3. Accept the confirmation dialog

Pre-conditions The role was previously created and is not a default role from the platform.

Post-conditions Role is deleted.

Priority Should have
Specificity Sea level (user goal)
Source Authorization

Table 25: Use case specification 02.03 - Delete role

02.04 Change role permissions
Primary Actors System administrators
Secondary Actors -

Description
System administrators must be able to change role permissions. This includes
the creation or deletion of rules from a role. Those rules dictate if that role
can access a certain feature of the platform.

Flow

1. Choose the role from the list
2. (optional) Choose the features that must be allowed to that particular

role from the list
3. (optional) Remove permissions from the role list
4. Permissions are automatically saved

Pre-conditions There is at least one role on the platform.

Post-conditions The permissions for that role are modified.

Priority Should have
Specificity Sea level (user goal)
Source Authorization

Table 26: Use case specification 02.04 - Change role permissions

102

03.01 List dissertations
Primary Actors Authenticated users
Secondary Actors -

Description

Users must be able to list all the dissertations in the platform. Disserta-
tions can be filtered by active status (available for application, in progress,
concluded), course specialization, semester and title search.
Results for dissertations are paginated, having a certain amount of them per
page.

Flow

1. Be in the dissertation list page
2. Dissertations are automatically shown
3. (optional) Search by name/content
4. (optional) Filter by semester
5. (optional) Filter by specialization
6. (optional) Filter by status (available or not)

Pre-conditions There is at least one dissertation on the platform.

Post-conditions -

Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 27: Use case specification 03.01 - List dissertations

03.02 View dissertation details
Primary Actors Authenticated users
Secondary Actors -

Description

Users must be able to view the details of the dissertations, including all the
relevant information:

• Title
• Supervisors (internal and external)
• Status (available, in progress, finished, abandoned)
• Assigned student (if applicable)
• Description
• Remarks
• Work place
• Specialization
• Semester

Flow 1. The user sees the details

Pre-conditions The dissertation exists

Post-conditions -

Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 28: Use case specification 03.02 - View dissertation details

103

03.03 Insert/edit dissertation
Primary Actors Professors
Secondary Actors Student

Description

Professors must be able to insert/edit a new dissertation in the platform.
The platform must enable the insertion of the Portuguese and English infor-
mation. Furthermore, a student can be assigned to the dissertation by the
professor when inserting it. Dissertations do not have an assigned semester,
the semester is automatically filled when a student is selected.

Flow

1. Insert Portuguese title
2. Insert Portuguese description
3. Insert English title
4. Insert Portuguese title
5. Choose the specialization
6. Insert the work place
7. (optional) Add associated internal supervisors from the list
8. (optional) Add associated external supervisors information (name,

institution, role, email, phone number)
9. (optional) Select a student from the list to whom the dissertation is

assigned
10. Click the save button

Pre-conditions Only eligible students can be assigned.

Post-conditions
Dissertation is created. If a student is assigned, a notification is sent to
him/her.

Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 29: Use case specification 03.03 - Insert/edit dissertation

03.04 Delete dissertation
Primary Actors Professors/Dissertation managers
Secondary Actors -

Description
Professors must be able to delete their own dissertations. Dissertation man-
agers can delete any dissertation.

Flow
1. Click the remove button on dissertation details
2. Accept the confirmation dialog box

Pre-conditions The dissertation belongs to the professor.

Post-conditions Dissertation is deleted from the platform.

Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 30: Use case specification 03.04 - Delete dissertation

03.05 Toggle dissertation visibility
Primary Actors Professors/Dissertation managers
Secondary Actors -

Description
Professors must be able to toggle the visibility of their own dissertations.
Invisible dissertations do not appear on the dissertations list. Dissertation
managers can toggle any dissertation.

Flow 1. Click the toggle visibility button on dissertation details

Pre-conditions The dissertation belongs to the professor.

Post-conditions Dissertation visibility is changed.

Priority Should have
Specificity Sea level (user goal)
Source Dissertations

Table 31: Use case specification 03.05 - Toggle dissertation visibility

104

03.06 Clone dissertation
Primary Actors Professors/Dissertation managers
Secondary Actors -

Description
Professors must be able to clone their own dissertations. Dissertation man-
agers can clone any dissertation.

Flow
1. Click the clone dissertation button on dissertation details
2. Accept the confirmation dialogue

Pre-conditions The dissertation belongs to the professor.

Post-conditions A new dissertation is created with all the field of the cloned one.
Priority Should have
Specificity Sea level (user goal)
Source Dissertations

Table 32: Use case specification 03.06 - Clone dissertation

03.07 Apply to dissertation
Primary Actors Students
Secondary Actors Professor

Description Eligible students must be able to apply to an available dissertation.

Flow
1. Click the apply button on any available dissertation details
2. Accept the confirmation dialog box

Pre-conditions The student is eligible for application.

Post-conditions
Student is applied to the chosen dissertation. A notification is sent ft the
professor.

Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 33: Use case specification 03.07 - Apply to dissertation

03.08 Accept applied student
Primary Actors Professors / Dissertation Managers
Secondary Actors Student

Description

Professors must be able to accept students that apply to their own disserta-
tion. Dissertation managers must be able to accept students that apply to all
dissertations.
When a student is accepted, the status of the dissertation is automatically
changed to ”in progress” and can no longer accept applications from the
students.

Flow

1. Be on the dissertation details
2. Click the assign button on the student application
3. Click the confirm button on the dialog box

Pre-conditions
The professor is the owner of the dissertation. There is at least one student
applied to the dissertation.

Post-conditions
The student is assigned to the dissertation. A notification is sent to the
student.

Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 34: Use case specification 03.08 - Accept applied student

105

03.09 Update eligible students
Primary Actors Dissertation managers
Secondary Actors Student

Description
The platform must enable the upload of a file containing the eligible students
of each semester. This file is in CSV format[74]. There must be a template
CSV file that dissertation managers can download to check the required fields.

Flow

1. Click the upload button
2. Select the CSV file containing the eligible students
3. Click the submit button

Pre-conditions Valid CSV file

Post-conditions Students in the file become eligible.
Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 35: Use case specification 03.09 - Update eligible students

03.10 List applications
Primary Actors Students
Secondary Actors -

Description
Students must be able to list dissertations they have applied to and remove
that application.

Flow

1. Click the list applications button on the navigation bar
2. (optional) Click the remove application on a dissertation
3. (optional) Click accept on the confirmation dialog box

Pre-conditions The student has at least on application to a dissertation

Post-conditions Application to the dissertation is deleted (if applicable).

Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 36: Use case specification 03.10 - List applications

03.11 List owned dissertations
Primary Actors Professors
Secondary Actors -

Description
Professors must be able to view their inserted dissertations including their
status.

Flow 1. Click the list owned dissertations button on the navigation bar

Pre-conditions The professor has at least one dissertation.

Post-conditions -

Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 37: Use case specification 03.11 - List owned dissertations

03.12 View assigned dissertation
Primary Actors Student
Secondary Actors -
Description Students must be able to view the dissertations they are assigned to.

Flow 1. Click on the dissertation view menu

Pre-conditions The student has a dissertation assigned.

Post-conditions -
Priority Must have
Specificity Sea level (user goal)
Source Dissertations

Table 38: Use case specification 03.12 - View assigned dissertation

106

03.13 Submit dissertation suggestion
Primary Actors Students
Secondary Actors -
Description Students must be able to submit dissertation suggestions.

Flow
1. Fill the suggestion text area
2. Click the submit button

Pre-conditions -

Post-conditions Suggestion is saved.

Priority Should have
Specificity Sea level (user goal)
Source Dissertations

Table 39: Use case specification 03.13 - Submit dissertation suggestion

03.14 Read dissertation suggestions
Primary Actors Professors/Dissertation managers
Secondary Actors -

Description
Professors and dissertation managers must be able to read suggestions sub-
mited by the students.

Flow

1. Click the view submited suggestions in the menu
2. (Optional) Select a suggestions to view its details (suggestion, student

details, date)

Pre-conditions -

Post-conditions -

Priority Should have
Specificity Sea level (user goal)
Source Dissertations

Table 40: Use case specification 03.14 - Read dissertation suggestions

04.01 Manage card access groups
Primary Actors System Administrators
Secondary Actors -

Description

The platform must enable the creation and removal of access groups. For
each group, rules can be created or removed. Those rules include the granted
doors for that particular group.
The card access management page has a list of the groups available.

Flow

This flow is divided into 2 steps:
• Create access group

1. Click the create access group button
2. Insert group name
3. Click save button

• Add/remove rule to access group
1. Click the manage rules button on the access group
2. (optional) Select doors which are accessible to the group
3. (optional) Remove accessible door to the group
4. Click the save changes button

Pre-conditions Be at the card access management page.

Post-conditions Changes are saved
Priority Can have
Specificity Sea level (user goal)
Source Card access management

Table 41: Use case specification 04.01 - Manage card access groups

107

04.02 Edit card rules
Primary Actors System Administrators
Secondary Actors Any user

Description

The platform must enable the possibility of changing rules associated with
a user’s card. This includes the granting or denying of access to doors for a
certain card. Those rules override the ones from the access group the card
is associated with. Changes are automatically saved upon the toggle of any
rule.

Flow
1. Select a card from the user profile/card list view
2. (optional) Toggle a rule relative to a certain door (authorize/deny it)

Pre-conditions Be at a user profile/card list view.

Post-conditions Custom rules to the user are saved.
Priority Must have
Specificity Sea level (user goal)
Source Card access management

Table 42: Use case specification 04.02 - Edit card rules

04.03 Create a new card
Primary Actors System Administrators
Secondary Actors Any user

Description
The platform must enable the creation of user’s cards. Every card is identified
by its RFID number and optionally, a name.

Flow

1. Click on the create new card button on the user profile
2. Fill the card number
3. (optional) Fill the name
4. Click the save button

Pre-conditions Be at the user profile.

Post-conditions The new card is created.
Priority Must have
Specificity Sea level (user goal)
Source Card access management

Table 43: Use case specification 04.03 - Create a new card

04.04 Delete user’s card
Primary Actors System Administrators
Secondary Actors Any user

Description System administrators must be able to delete any card.

Flow
1. Click on the delete card button on the desired card
2. Accept the confirmation dialog

Pre-conditions Be at the user profile.

Post-conditions The card is deleted

Priority Must have
Specificity Sea level (user goal)
Source Card access management

Table 44: Use case specification 04.04 - Delete user’s card

108

04.05 View unauthorized card accesses
Primary Actors System Administrators
Secondary Actors Any user

Description

System administrators must be able view unauthorized card accesses to any
door of the department. This list must include the time of event, the door
where it occured, the card number, and if possible, the person who triggered
that event.

Flow

1. Click on the view unauthorized accesses sub menu under card
management menu

2. (Optional) Click other pages to load more results

Pre-conditions -

Post-conditions -

Priority Must have
Specificity Sea level (user goal)
Source Card access management

Table 45: Use case specification 04.05 - View unauthorized card accesses

04.06 View user’s last accesses
Primary Actors System Administrators
Secondary Actors Any user

Description
System administrators must be able to view a list of the last access events for
a certain user. This list of events is displayed on the user profile and contains
the time of event, the door where it occured and the card used.

Flow 1. Scroll into the last events section in the user profile

Pre-conditions -

Post-conditions -
Priority Must have
Specificity Sea level (user goal)
Source Card access management

Table 46: Use case specification 04.06 - View user’s last accesses

04.07 View door’s last accesses
Primary Actors System Administrators
Secondary Actors Any user

Description
System administrators must be able to view a list of the last access events for
a every door. This is very similar to the unauthorized card accesses.

Flow
1. Choose the door from the door list
2. (Optional) Click other pages to get more results

Pre-conditions -

Post-conditions -

Priority Must have
Specificity Sea level (user goal)
Source Card access management

Table 47: Use case specification 04.07 - View door’s last accesses

109

04.08 View/export list of whom has access to which door
Primary Actors System Administrators
Secondary Actors Any user

Description
System administrators must be able to view a list of whom is authorized to
access which door. This is to be represented as a matrix where the rows are
users and the columns are the doors. This list must be also exportable.

Flow
1. Click the door report sub menu under the card management menu
2. (Optional) Click the export data button

Pre-conditions -

Post-conditions
If that is exported, a CSV file is downloaded containing all the finromation
on the page.

Priority Should have
Specificity Sea level (user goal)
Source Card access management

Table 48: Use case specification 04.08 - View/export list of whom has access to which
door

05.01 View courses
Primary Actors Authenticated users
Secondary Actors -

Description

All authenticated users must be able to search for courses and view their
detailed information.
Details shown include:

• Course name
• Code
• Scientific area
• Course
• Status
• Year
• Goals
• Schedule

Flow

1. Click the list courses button on the navigation bar
2. (optional) Search by name
3. (optional) Filter by year
4. (optional) Click the show details button

Pre-conditions There is at least one course.

Post-conditions -

Priority Can have
Specificity Sea level (user goal)
Source Academic

Table 49: Use case specification 05.01 - View courses

110

05.02 Manage courses
Primary Actors Secretary
Secondary Actors -

Description
Secretary must be able to manage courses. This includes, creation, deletion
and edition.

Flow

The flow is divided into 3 distinct steps:
• Create:

1. Click the create course button
2. Insert the course name
3. Insert the course code
4. Select the scientific area
5. Select the course
6. Select the status
7. Select the year
8. Insert the goals
9. Insert the schedule

10. Click the save changes button
• Modify:

1. Click the edit button on a course in the list
2. Change any field
3. Click the save changes button

• Delete:
1. Click the delete button on a course in the list
2. Click the confirm button in the dialog box

Pre-conditions The user is on the list courses page.

Post-conditions Course changes are saved.
Priority Can have
Specificity Sea level (user goal)
Source Academic

Table 50: Use case specification 05.02 - Manage courses

06.01 View personal information
Primary Actors Any authenticated user
Secondary Actors -

Description

Any user must be able to view their and other people’s personal information
at any time. This includes their email, phone number, photo and biography if
applicable. The ideia is that when a name appears anywhere on the platform
it is accompanied with the user’s photo and links to the user profile.

Flow
1. Click the name or photo when a user is mentioned anywhere on the

platform

Pre-conditions -

Post-conditions -
Priority Must have
Specificity Sea level (user goal)
Source Information

Table 51: Use case specification 06.01 - View personal information

111

06.02 View organization contacts
Primary Actors Any authenticated user
Secondary Actors -

Description

A page with important contacts that anyone must be able to view.
Contacts include.

• Name of the service
• Person(s) in charge of the service
• Email
• Other relevant contacts
• Contact photo

Flow

1. Click on the view contacts on the navigation bar
2. Click on a contact name to view the details (this links to the view

personal information requirement)

Pre-conditions -

Post-conditions -

Priority Must have
Specificity Sea level (user goal)
Source Information

Table 52: Use case specification 06.02 - View organization contacts

06.03 View building information
Primary Actors Any authenticated user
Secondary Actors -

Description
A page with the different department places and details about them must be
present on the platform.

Flow

1. Click on the view department information menu
2. A map of the department appears with the different rooms
3. (optional) Change the floor
4. (optional) Click on a room and relevant information about it is shown

Pre-conditions -

Post-conditions -
Priority Must have
Specificity Sea level (user goal)
Source Information

Table 53: Use case specification 06.03 - View building information

06.04 Email notifications
Primary Actors Any user
Secondary Actors -

Description
Any important action affecting a user, must issue an email that will be sent
to that user.

Flow
1. An important action that affects a user occurs
2. Email is sent to that user

Pre-conditions Important action occurs

Post-conditions Email is sent

Priority Must have
Specificity Sea level (user goal)
Source Information

Table 54: Use case specification 06.04 - Email notifications

112

06.05 Web notifications
Primary Actors Authenticated users
Secondary Actors -

Description

Any important action affecting a user, must issue a notification that will be
sent to that user. If the user is online on the platform, the notification must
be delivered instantly, otherwise the notification will be stored and will be
sent when the user comes back online.

Flow
1. An important action involving a user occurs
2. Real-time notification is sent to that user

Pre-conditions Important action occurs

Post-conditions Real-time notification is sent
Priority Can have
Specificity Sea level (user goal)
Source Information

Table 55: Use case specification 06.05 - Web notifications

06.06 Read notification
Primary Actors Authenticated users
Secondary Actors -

Description Users must be able to read received notifications.

Flow

1. Click on the notification
2. The notification redirects the user to the page containing the infor-

mation relative to the action

Pre-conditions Received notification.

Post-conditions Notification is marked as read.
Priority Can have
Specificity Sea level (user goal)
Source Information

Table 56: Use case specification 06.06 - Read notification

07.01 Create new user
Primary Actors System Administrators
Secondary Actors Any user

Description

The platform must enable the creation of new user accounts
To note that creation of student accounts is made by external scripts and will
not be addressed on this document. The fields here represented are susceptible
to modification.

Flow

1. Fill the name
2. Fill the email
3. Fill the user number
4. (Optional) Fill the username
5. (Optional) Fill the internal phone number
6. (Optional) Choose the groups that person belongs to from the list
7. (Optional) Choose the office that person belongs to
8. Click save changes button

Pre-conditions -

Post-conditions User data saved
Priority Should have
Specificity Sea level (user goal)
Source Information management

Table 57: Use case specification 07.01 - Create new user

113

07.02 Edit building information
Primary Actors Secretary/System Administrators
Secondary Actors -

Description
The platform must allow creation and deletion of department places and their
respective information.

Flow

This can be divided into 2 flows:
• Creation

1. Click on the create building item button
2. Select the floor
3. Select the tower
4. Insert the item name
5. Choose place type (room, door, stairs, etc)
6. Select the position (click on a point in the floor map)
7. (optional) Choose the person in charge
8. (optional) Insert the telephone
9. (optional) Insert the area

10. (optional) Insert the number of chairs
11. (optional) Insert the number of tables
12. (optional) Choose the Access Point accessible in that place
13. Click the save place button

• Deletion
1. Click the remove button on the place of the list
2. Click the confirm button on the box dialog

Pre-conditions Be on the building information page

Post-conditions Place changes are updated

Priority Should have
Specificity Sea level (user goal)
Source Information management

Table 58: Use case specification 07.02 - Edit building information

07.03 Edit personal information
Primary Actors Any user
Secondary Actors -
Description Any user can change their personal information.

Flow

1. Click the change personal information button on user’s profile
2. (Optional) Change phone number
3. (Optional) Change office
4. (Optional) Change description
5. Click the update information button

Pre-conditions -

Post-conditions User information is updated.

Priority Should have
Specificity Sea level (user goal)
Source Information management

Table 59: Use case specification 07.03 - Edit personal information

07.04 Upload user photo
Primary Actors Any user
Secondary Actors -

Description
Any user can upload their profile photo. This photo is used to easily identify
the user on the platform.

Flow

1. Click the upload photo button on the user profile
2. Choose the photo wanted
3. Click the upload button

Pre-conditions -

Post-conditions User photo is uploaded and updated.

Priority Should have
Specificity Sea level (user goal)
Source Information management

Table 60: Use case specification 07.04 - Upload user photo

114

07.05 Insert external activity
Primary Actors Secretary
Secondary Actors -

Description
The system must be hable to provide a way to register external activity
relative to the DEEC.

Flow

1. Fill who was responsible for the activity
2. Fill where the activity took place
3. Choose a category from the list (Newspaper mention, External di-

vulgation)
4. Choose when the activity took action
5. Fill the scope of the activity
6. Draw some comments about the activity
7. Click save button

Pre-conditions -

Post-conditions External activity information is saved.
Priority Should have
Specificity Sea level (user goal)
Source Information management

Table 61: Use case specification 07.05 - Insert external activity

07.06 View external activity
Primary Actors Secretary
Secondary Actors -

Description
The system must be able to provide a way to list and view external activity
inserted.

Flow
1. Click view external activity on the menu bar
2. (Optional) click any activity to see its details

Pre-conditions -

Post-conditions -
Priority Should have
Specificity Sea level (user goal)
Source Information management

Table 62: Use case specification 07.06 - View external activity

08.01 Be another user
Primary Actors System Administrators
Secondary Actors Any user

Description
System Administrators must be able to view and act in the platform as an-
other user (excluding another system administrator).

Flow

1. Click on the be another user button
2. The administrator is automatically logged out
3. A page of the login is displayed
4. Administrator inserts the email of the other user
5. Administrator clicks on the login button
6. Login does not require password and bypasses the user authentication
7. Administrator is browsing the application as another user

Pre-conditions User is on the system administration page.

Post-conditions -

Priority Should have
Specificity Sea level (user goal)
Source Utilities

Table 63: Use case specification 08.01 - Be another user

115

08.02 System logging
Primary Actors System Administrators
Secondary Actors Any user

Description
All important actions in the system must be logged and available to be ac-
cessed by the system administrators. This includes the possibility of different
levels of logging (configurable by the system administrators).

Flow

This can be divided into 2 different flows:
• Change log settings

1. Click the system logs settings button
2. Select the logging level
3. Click the save button

• View logs
1. Click the system logs button
2. (Optional) Apply queries to the logs

Pre-conditions User is on the system administration page.

Post-conditions Settings are changed.
Priority Should have
Specificity Sea level (user goal)
Source Utilities

Table 64: Use case specification 08.02 - System logging

08.03 Change language
Primary Actors Authenticated users
Secondary Actors -

Description
Users must be able to change the language of the page. They can choose
between Portuguese and English. The default will be Portuguese.

Flow 1. Click the language name on the top of the screen

Pre-conditions -

Post-conditions Language is changed
Priority Can have
Specificity Sea level (user goal)
Source Utilities

Table 65: Use case specification 08.03 - Change language

09.01 Request key
Primary Actors Authenticated users
Secondary Actors -

Description
All authenticated users must be able to request a key on the platform. Re-
quests are associated with a single door, and can be authorized or denied by
key managers.

Flow

1. Select the room from the list
2. Select the start date from the list
3. Select the end date from the list
4. Fill the justification for the request
5. Click the submit request button

Pre-conditions -

Post-conditions Request is saved and a notification is sent to all key managers.

Priority Must have
Specificity Sea level (user goal)
Source Key request

Table 66: Use case specification 09.01 - Request key

116

09.02 Change the status of a key request
Primary Actors Key managers
Secondary Actors -

Description

Key managers must be able to change the status to authorized or denied.
Furthermore, when a request is authorized, key managers can change the
status of the request to lent and finally to returned.
Note: Once the status is changed to denied or returned, it cannot be
changed anymore.

Flow

1. Select the request
2. Change the status accordingly with the status rules
3. Confirm the action in the confirmation dialogue

Pre-conditions There is at least one request.

Post-conditions Request status is changed and the request issuer is notified.
Priority Must have
Specificity Sea level (user goal)
Source Key request

Table 67: Use case specification 09.02 - Change the status of a key request

09.03 Directly lend a key
Primary Actors Key managers
Secondary Actors -
Description Key managers must be able to directly lend a key without prior authorization.

Flow

1. Select the room from the list
2. Select the user to whom the key will be lent
3. Selected the limit date to return the key
4. Click the save button

Pre-conditions -

Post-conditions Request is saved.

Priority Must have
Specificity Sea level (user goal)
Source Key request

Table 68: Use case specification 09.03 - Directly lend a key

117

B Functional tests to the API

This appendix contains test cases for the API testing. Each test case states the use case,
API method, its description, the expected outcome and the final result of the test.

Api Endpoint User
Test Id Use case Method Description Expected output Result
User#001 #01.01 POST /user/lo-

gin
Login using valid
credentials

200: Returns the
access token

200: Passed

User#002 #01.01 POST /user/lo-
gin

Login using in-
correct password

401: Error 401: Passed

User#003 #01.01 POST /user/lo-
gin

Login using
empty creden-
tials

400: Error 400: Passed

User#004 #01.02 POST /user/lo-
gout

Logout using ac-
cess token

200: Empty mes-
sage

200: Passed

User#005 #01.02 POST /user/lo-
gout

Logout using in-
valid/empty ac-
cess token

400: Error 400: Passed

User#006 #07.04 POST /user/u-
ploadPhoto

Upload a valid
image

200: Return new
photo url

200: Passed

User#007 #07.04 POST /user/u-
ploadPhoto

Upload an in-
valid image

400: Error 400: Passed

User#008 #07.04 POST /user/u-
ploadPhoto

Upload an over-
sized image

400: Error 400: Passed

User#009 #06.01 GET /user/[id] View user profile
using a a valid
user id

200: User infor-
mation

200: Passed

User#010 #06.01 GET /user/[id] View user profile
using a a non ex-
isting user id

404: Not found 404: Passed

User#011 #07.03 PATCH /user-
s/updateOwn-
Info

Update infor-
mation using
valid fields
(phoneNumber,
biography, office)

200: Information
updated

200: Passed

User#012 #08.01 POST /user-
s/beAnoth-
erUser

Send a valid user
id

200: Access to-
ken to access the
user account

200: Passed

User#013 #08.01 POST /user-
s/beAnoth-
erUser

Send an invalid
user id

404: Not found 400: Passed

User#014 #06.02 GET /users/-
contacts

Retrieve user
contacts

200: Returns an
array of contacts

200: Passed

User#015 #07.01 POST /users/ Create user with
the valid fields

200: User is cre-
ated

200: Passed

User#016 #07.01 POST /users/ Create user with
the invalid fields

422: Validation
error

422: Passed

Table 69: Tests for the User model.

119

Api Endpoint AuthRule
Test Id Use case Method Description Expected output Result
AuthRule#001 #2.04 POST /au-

thRules/{id}
Create a rule re-
lated to a feature
passing the role
id and feature
name as params

200: Rule is
added

200: Passed

AuthRule#002 #2.04 POST /au-
thRules/{id}

Create a rule re-
lated to a fea-
ture passing the
role id and a non
existent feature
name as params

400: Error 400: Passed

AuthRule#003 #2.04 POST /au-
thRules/{id}

Create a rule re-
lated to a feature
passing a non ex-
istent role id and
a feature name
as params

400: Error 400: Passed

AuthRule#004 #2.04 DELETE /au-
thRules/{id}

Delete a rule re-
lated to a role

200: Rule is
deleted

200: Passed

Table 70: Tests for the AuthRule model.

Api Endpoint AuthRole
Test Id Use case Method Description Expected output Result
AuthRole#001 #02.02 POST /au-

thRoles/
Creating a new
role passing a
valid name and
a description

200: Role is
added

200: Passed

AuthRole#002 #02.02 POST /au-
thRoles/

Creating a new
role passing an
already existen
name and a
description

409: Conflict er-
ror

409: Passed

AuthRole#003 #02.03 DELETE /au-
thRoles/{id}

Delete a role
passing an id for
a non default
role

200: Role is
deleted and
all the rules
associated with
it

200: Passed

AuthRole#004 #02.03 DELETE /au-
thRoles/{id}

Delete a role
passing an id for
a default role

400: Error 400: Passed

Table 71: Tests for the AuthRole model.

120

Api Endpoint AuthRoleMapping
Test Id Use case Method Description Expected output Result
AuthRoleMapping
#001

#02.01 POST /au-
thRoleMap-
pings/

Create a new
association be-
tween a user and
a role

200: Association
is added

200: Passed

AuthRoleMapping
#002

#02.01 POST /au-
thRoleMap-
pings/

Create a new
association be-
tween a non
existent user and
a role

400: Error 400: Passed

AuthRoleMapping
#003

#02.01 POST /au-
thRoleMap-
pings/

Create a new
association be-
tween a existent
user and a non
existent role

400: Error 400: Passed

AuthRoleMapping
#004

#02.01-extra DELETE /au-
thRoleMap-
pings/{id}

Delete an exist-
ing relation be-
tween a user and
a role using a
existent mapping
id

200: Association
is deleted

200: Passed

AuthRoleMapping
#005

#02.01-extra DELETE /au-
thRoleMap-
pings/{id}

Delete an exist-
ing relation be-
tween a user and
a role using a non
existent mapping
id

404: Not found
error

404: passed

Table 72: Tests for the AuthRoleMapping model.

Api Endpoint Feature
Test Id Use case Method Description Expected output Result
Feature#001 #02-general GET /fea-

tures/allowed/
Get the allowed
features being
unauthenticated

200: Only the lo-
gin feature is al-
lowed

200: Passed

Feature#002 #02-general GET /fea-
tures/allowed/

Get the allowed
features being in
a role with all
permissions

200: All the fea-
tures are avail-
able

200: Passed

Feature#003 #02-general GET /fea-
tures/allowed/

Get the allowed
features being
in a role that
only can per-
form the ”list
dissertations”
feature

200: Only the
”list disserta-
tions” feature is
available

200: Passed

Table 73: Tests for the Feature model.

121

Api Endpoint AccessCard
Test Id Use case Method Description Expected output Result
AccessCard#001 #04.03 POST /access-

cards/
Create a new
card with a non
existent card
number

200: Card is
created and re-
turned

200: Passed

AccessCard#002 #04.03 POST /access-
cards/

Create a new
card with an
existent card
number

409: Conflict 409: Passed

AccessCard#003 #04.04 DELETE /ac-
cesscards/{id}

Delete a card us-
ing a valid id

200: card is
deleted

200: Passed

AccessCard#004 #04.04 DELETE /ac-
cesscards/{id}

Delete a card us-
ing an valid id

400: Error 400: Passed

AccessCard#005 #04.03-extra PATCH /access-
cards/{id}

Update card
name

200: Success 200: Passed

AccessCard#006 #04.02 GET /access-
Cards/{id}

Get card in-
formation with
valid id

200: Return the
card info

200: Passed

AccessCard#007 #04.02 GET /access-
Cards/{id}

Get card infor-
mation with in-
valid id

404: Card not
found

404: Passed

Table 74: Tests for the AccessCard model.

Api Endpoint AccessRule
Test Id Use case Method Description Expected output Result
AccessRule#001 #04.02 POST /access-

rules/
Add a new rule
associated with a
card and a door

200: Rule is
added

200: Passed

AccessRule#002 #04.02 POST /access-
rules/

Add a new rule
associated with a
card using an in-
dexistent door

400: Error 400: Error

AccessRule#003 #04.02 POST /access-
rules/

Add a new rule
associated with a
non existent card
using and a door

400: Error 400: Error

Table 75: Tests for the AccessRule model.

Api Endpoint AccessHolder
Test Id Use case Method Description Expected output Result
AccessHolder#001 #04.06 GET /accessH-

olders/{id}/
filter={include:
[accessEvents]}

Get events from
an access holder

200: Returns ac-
cess holder and
its events

200: Passed

AccessHolder#002 #04.06 GET /accessH-
olders/{id}/
filter={include:
[accessEvents]}

Get events from
an invalid access
holder

404: AccessH-
older not found

404: Passed

Table 76: Tests for the AccessHolder model.

122

Api Endpoint AccessAlarm
Test Id Use case Method Description Expected output Result
AccessAlarm#001 #04.05 GET /ac-

cessAlarms/
filter={
where: {door:
[doorId]}}

Get unautho-
rized card events
for a door

200: Returns the
events

200: Passed

AccessAlarm#002 #04.05 GET /ac-
cessAlarms/
filter={
where: {door:
[doorId]}}

Get unautho-
rized card events
for a non existing
door

200: Returns
0 events (does
not throw a 404
because we are
querying the
AccessAlarm
object)

200: Passed

Table 77: Tests for the AccessAlarm model.

Api Endpoint AccessEvent
Test Id Use case Method Description Expected output Result
AccessEvent#001 #04.07 GET /accessEv-

ents/ filter={
where: {door:
[doorId]}}

Get events for a
door

200: Returns the
events

200: Passed

AccessEvent#002 #04.07 GET /accessEv-
ents/ filter={
where: {door:
[doorId]}}

Get events for a
non existing door

200: Returns
0 events (does
not throw a 404
because we are
querying the
AccessEvent
object)

200: Passed

Table 78: Tests for the AccessEvent model.

Api Endpoint AccessDoor
Test Id Use case Method Description Expected output Result
AccessEvent#001 #04.08 GET /ac-

cessDoor/ fil-
ter={include:
”accessHold-
ers”}

Get all the doors
and access hold-
ers who have ac-
cess to it

200: Returns the
doors

200: Passed

AccessEvent#002 #04.07 GET /accessEv-
ents/ filter={
where: {door:
[doorId]}}

Get events for a
non existing door

200: Returns
0 events (does
not throw a 404
because we are
querying the
AccessEvent
object)

200: Passed

Table 79: Tests for the AccessDoor model.

123

Api Endpoint Dissertation
Test Id Use case Method Description Expected output Result
Dissertation#001 #03.01, #03.15 GET /disserta-

tions/
Get all the dis-
sertations

200: Returns the
dissertations

200: Passed

Dissertation#002 #03.01 GET /dis-
sertations/?
filter={offset,
limit}

Get dissertations
by offset and
limit

200: Returns the
dissertations be-
ginning at off-
set, the array re-
turned is the size
of the limit

200: Passed

Dissertation#003 #03.01 GET /dis-
sertations/?
filter={ where:
{semester:
[semester]}}

Get dissertations
for a semester

200: Returns the
dissertations for
that semester

200: Passed

Dissertation#004 #03.01 GET /dis-
sertations/?
filter={ where:
{specialization:
[specializa-
tionId]}}

Get dissertations
for a specializa-
tion

200: Returns
the disserta-
tions for that
specialization

200: Passed

Dissertation#005 #03.01 GET /disserta-
tions/? filter={
where: {status:
[status]}}

Get dissertations
that have a sta-
tus

200: Returns
the dissertations
with status =
status

200: Passed

Dissertation#006 #03.02 GET /disserta-
tions/[id]

Get dissertation
by valid id

200: Returns the
dissertation

200: Passed

Dissertation#007 #03.02 GET /disserta-
tions/[id]

Get dissertation
by invalid id

404: Not found 404: Passed

Dissertation#008 #03.03 POST /disserta-
tions/

Create a disser-
tation with all
required fields

200: Created 200: Passed

Dissertation#009 #03.03 POST /disserta-
tions/

Create disser-
tation without
some required
fields

422: validation
error

422: Passed

Dissertation#010 #03.03 POST /disserta-
tions/

Create disserta-
tion passing the
id of an eligible
student

200. Created
and student is
associated

200: Passed

Dissertation#011 #03.03 POST /disserta-
tions/

Create disserta-
tion passing the
id of non eligible
student

400: Error 400: Passed

Dissertation#012 #03.03 POST /disserta-
tions/

Create disser-
tation passing
the id of stu-
dent associated
with another
dissertation

400: Error 400: Passed

Dissertation#013 #03.04 DELETE /dis-
sertations/[id]

Delete disserta-
tion by id

200: Disserta-
tion is deleted

200: Passed

Table 80: Tests for the Dissertation model - part I.

124

Api Endpoint Dissertation
Dissertation#014 #03.04 DELETE /dis-

sertations/[id]
Delete disserta-
tion by non exis-
tent id

404: Not found 404: Passed

Dissertation#015 #03.03 PATCH /disser-
tations/[id]

Change disserta-
tion fields

200: Patched 200: Passed

Dissertation#016 #03.03 PATCH /disser-
tations/[id]

Change the dis-
sertation, pass-
ing the id of an
eligible student

200: Patched
and student is
associated

200: Passed

Dissertation#017 #03.03 PATCH /disser-
tations/[id]

Change the dis-
sertation, pass-
ing the id of a
non eligible stu-
dent

400: Error 400: Passed

Dissertation#018 #03.05 PATCH /disser-
tations/[id]

Change the dis-
sertation visibil-
ity to false

200: Disserta-
tion does not ap-
pear on disserta-
tions list

200: Passed

Dissertation#019 #03.05 PATCH /disser-
tations/[id]

Change the dis-
sertation visibil-
ity to true

200: Disserta-
tion appears on
the dissertations
list

200: Passed

Dissertation#020 #03.06 POST /disserta-
tions/

Send a disserta-
tion object to be
cloned

200: Created.
Dissertation
semester and
student are
empty

200: Passed

Dissertation#021 #03.11 GET /dis-
sertations/?
filter={ where:
{supervisorId:
[supervisorId]}}

List dissertations
by supervisor

200: Disserta-
tions from that
supervisor are re-
turned

200: Passed

Dissertation#022 #03.11 GET /dis-
sertations/?
filter={ where:
{studentId:
[studentId]}}

Get the disserta-
tion by a student
id that is associ-
ated with a dis-
sertation

200: Disserta-
tion is returned

200: Passed

Dissertation#023 #03.11 GET /dis-
sertations/?
filter={ where:
{studentId:
[studentId]}}

Get the disserta-
tion by a student
id that is associ-
ated with a dis-
sertation

200: Empty re-
sult

200: Passed

Table 81: Tests for the Dissertation model - part II.

Api Endpoint ExternalSupervisor
Test Id Use case Method Description Expected output Result
ExternalSupervisor
#001

#03.03 POST /external-
Supervisors/

Create an exter-
nal supervisor
assigned to a
dissertation

200: Created 200: Passed

ExternalSupervisor
#002

#03.03 POST /external-
Supervisors/

Create an exter-
nal supervisor
not passing a
valid dissertation
id

400: Not created 400: Passed

ExternalSupervisor
#003

#03.03 DELETE /ex-
ternalSupervi-
sors/[id]

Delete external
supervisor by id

200: Deleted 400: Passed

ExternalSupervisor
#004

#03.03 DELETE /exter-
nalSupervisors/
filter={ where:
{dissertationId:
[disserta-
tionId]}}

Delete all exter-
nal supervisors
belonging to the
dissertation id

200: Deleted 200: Passed

Table 82: Tests for the ExternalSupervisor model.

125

Api Endpoint InternalSupervisor
Test Id Use case Method Description Expected output Result
InternalSupervisor
#001

#03.03 POST /internal-
Supervisors/

Create an inter-
nal supervisor
assigned to a
dissertation

200: Created 200: Passed

InternalSupervisor
#002

#03.03 POST /internal-
Supervisors/

Create an inter-
nal supervisor
not passing a
valid dissertation
id

400: Not created 400: Passed

InternalSupervisor
#003

#03.03 DELETE /in-
ternalSupervi-
sors/[id]

Delete internal
supervisor by id

200: Deleted 400: Passed

InternalSupervisor
#004

#03.03 DELETE /inter-
nalSupervisors/
filter={ where:
{dissertationId:
[disserta-
tionId]}}

Delete all inter-
nal supervisors
belonging to the
dissertation id

200: Deleted 200: Passed

Table 83: Tests for the InternalSupervisor model.

Api Endpoint DiApplication
Test Id Use case Method Description Expected output Result
DiApplication
#001

#03.07 POST /diAppli-
cations/

Create an ap-
plication for a
dissertation be-
ing an eligible
student

200: Created 200: Passed

DiApplication
#002

#03.08 POST /diAppli-
cations/

Create an appli-
cation for a dis-
sertation not be-
ing an eligible
student

400: Error 400: Passed

DiApplication
#003

#03.09 POST /diAp-
plications/al-
lowed?id=[id]

Accept the appli-
cation for a dis-
sertation

200: Student
is assigned to
the dissertation.
The application
is deleted

200: Passed

DiApplication
#004

#03.08 POST /diAp-
plications/al-
lowed?id=[id]

Accept the ap-
plication for a
dissertation that
has already an
assigned student

400: Error 400: Passed

DiApplication
#005

#03.10 GET /diAp-
plications/?
filter={ where:
{dissertationId:
[id]}}

Return applica-
tion for a speci-
fied dissertation

200: Returns ap-
plications

200: Passed

Table 84: Tests for the DiApplication model.

126

Api Endpoint Eligible
Test Id Use case Method Description Expected output Result
Eligible#001 #03.09 POST /eli-

gibles/eligi-
bles/updateEli-
gible

A valid csv file
with valid fields
is uploaded

200: Created 200: Passed

Eligible#002 #03.09 POST /eli-
gibles/eligi-
bles/updateEli-
gible

An invalid file is
uploaded

400: Error 400: Passed

Eligible#003 #03.09 POST /eli-
gibles/eligi-
bles/updateEli-
gible

A valid csv file
is uploaded with
invalid fields

400: Error 400: Passed

Table 85: Tests for the Eligible model.

Api Endpoint Proposal
Test Id Use case Method Description Expected output Result
Proposal#001 #03.13 POST /propos-

als/
Create a sugges-
tion with the re-
quired fields

200: Created 200: Passed

Proposal#002 #03.13 POST /propos-
als/

Create a sugges-
tion without re-
quired files

422: Validation
error

422: Passed

Proposal#003 #03.14 GET /propos-
als/

Get all the sug-
gestions

200: Suggestions
are returned

200: Passed

Proposal#004 #03.14 GET /propos-
als/[id]

Ge suggestion in-
formation by id

200: Suggestion
info is returned

200: Passed

Proposal#005 #03.14 GET /propos-
als/[id]

Get suggestion
information with
an invalid id

404: Not found 404:Passed

Table 86: Tests for the Proposal model.

Api Endpoint Specialization
Test Id Use case Method Description Expected output Result
Specialization#001 #03.01, #03.03 GET /specializa-

tions/
Get all special-
izations

200: Special-
izations are
returned

200: Passed

Table 87: Tests for the Specialization model.

127

Api Endpoint Place
Test Id Use case Method Description Expected output Result
Place#001 #06.03 GET /places/ Get all the places 200: All places

are returned
200: Passed

Place#002 #06.03 GET /places/?
filter={ where:
{floor:[floor]}}

Get all the places
from that floor

200: Only places
from that floor
are returned

200: Passed

Place#003 #06.03 GET /places/?
filter={ where:
{name:[name]}}

Get all the places
filtered by name

200: Only places
that contain
that name are
returned

200: Passed

Place#004 #06.03 GET /places/[id] Get a place by its
id

200: Place in-
formation is re-
turned

200: Passed

Place#005 #06.03 GET /places/[id] Get a place with
an invalid id

404: Not found 404: Passed

Place#006 #07.02 POST /places/ Create a new
place with all
required fields

200: Created 200: Passed

Place#007 #07.02 POST /places/ Create a new
place without
some required
fields

422: Validation
error

404: Passed

Place#008 #07.02 DELETE
/places/[id]

Delete place by
its id

200: Deleted 200: Passed

Place#009 #07.02 PATCH
/places/[id]

Update place
fields

200: Information
is changed

200: Passed

Table 88: Tests for the Place model.

Api Endpoint ExternalActivity
Test Id Use case Method Description Expected output Result
ExternalActivity
#001

#07.06 GET /exter-
nalActivities/

Get all external
activities

200: All external
activities are re-
turned

200: Passed

ExternalActivity
#002

#07.05 POST /exter-
nalActivities/

Create a new
external activity
with all required
fields

200: Created 200: Passed

ExternalActivity
#003

#07.05 POST /exter-
nalActivities/

Create a new
external activity
with invalid
fields

422: Validation
error

422: Passed

Table 89: Tests for the ExternalActivity model.

Api Endpoint Log
Test Id Use case Method Description Expected output Result
Log#001 #08.02 GET /logs/ Get all logs 200: All logs are

returned
200: Passed

Table 90: Tests for the Log model.

128

Api Endpoint KeyRequest
Test Id Use case Method Description Expected output Result
KeyRequest#001 #09.01, #09.03 POST /keyRe-

quests/
Create a new re-
quest with re-
quired fields

200: Request is
created

200: Passed

KeyRequest#002 #09.01, #09.03 POST /keyRe-
quests/

Create request
without required
fields

422: Validation
error

422: Passed

KeyRequest#003 #09.01, #09.03 POST /keyRe-
quests/

Create request
for an invalid
place

400: Error 400: passed

KeyRequest#004 #09.02 GET /keyRe-
quests/

List all key re-
quests

200: Key re-
quests are
returned

200: Passed

KeyRequest#005 #09.02 PATCH /keyRe-
quests/[id]

Change the sta-
tus of a key re-
quest

200: Status is
changed

200: Passed

KeyRequest#006 #09.02 PATCH /keyRe-
quests/[id]

Change the sta-
tus of a key re-
quest with an in-
valid id

404: Status is
changed

404: Passed

Table 91: Tests for the KeyRequest model.

129

	Introduction
	Context
	Motivation
	Goals
	Document organization

	State of the art
	Web applications background
	Summary of the technologies that must be used
	Node.js
	LoopBack
	AngularJS
	LoopBack + AngularJS SDK

	Comparison of front-end frameworks
	Bootstrap
	Foundation
	Materialize

	Web Communication
	WebSocket
	Socket.io

	Comparison of web servers
	Node.js Process Managers

	Planning
	Tasks performed in the first part of the project
	Life cycle
	Development plan
	Effort estimation
	Schedule
	Work done in the second half

	Risk management

	Current platform
	Current features
	Overall architecture
	Database structure
	Flaws of the old system

	Requirements analysis
	New needs
	System Actors
	Use Cases
	Prioritization
	Functional requirements
	Quality attributes
	QA01 - Platform Availability
	QA02 - Platform Scalability
	QA03 - Security (Code Injection)
	QA04 - Security (Cross-Site Request Forgery)
	QA05 - Security (Broken Access Control And Session Management)
	QA06 - Security (Missing Function Level Access Control)
	QA07 - Ease Of Module Development

	Wireframes
	Login screen
	Basic navigation menus
	Dissertation list screen
	Course creation screen
	Building view screen
	Screen flow

	Architecture
	Architecture overview
	Server architecture
	Client architecture
	Modularization
	Database

	Implementation
	Database
	Migrating data
	Database encoding
	Integration with the card management database

	API Server
	Making the LoopBack Framework modular

	Handling authentication
	Handling dynamic authorization

	Web application
	AngularJS and ES6
	Dealing with authorization
	Multiple language support
	Location selector and browser
	Monitor web application usage and statistics

	Notifications server
	Content server
	Overall performance
	Optimizing build file sizes
	Web server configurations

	Deployment
	Web application showcase

	Testing and results
	Functional testing
	Usability testing
	Performance testing
	Availability testing
	Security testing
	Platform usage and statistics

	Conclusions
	Appendices
	Detailed requirements
	Functional tests to the API

