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it was needed. Thanks to André Ferreirinha for the insights and years of friendship, inside and

outside the department walls. Thanks to Rafael Duarte for the help getting acquaintance to the

operating system and for being a real firefighter when was needed. It was a good place to develop

this work and achieve my master degree.

Lastly, I would like to thank all my other friends and family for believing in me even when

I didn’t. You all define the person I am today and this work is, in one way or another, a

contribution of you all.

Form the bottom of my heart, thank you all.





Abstract

Over the past decade, traffic surveillance systems development have attracted the interest of many

in the computer vision community. Mainly due to possible improvement of drivers security such

as implementations in systems capable of predict real-time accidents, detection of infractions on

roads or even time and fuel reduction by selecting the right way of traveling. The use of computer

vision techniques to monitoring traffic as proven to be a non-invasive, cost effective, automated

option when it comes to traffic surveillance. The challenge today is to efficiently develop an

Intelligent Transportation System capable of real-time detecting roads with high affluence of

traffic and for example, sending that information so that drivers can choose another way in

advance, make an efficient and autonomous management of traffic lights, or in extreme scenarios,

like a car accident, a system that automatically notifies authorities to provide quicker medical

assistance.

The purpose of this work is to implement some visual domain adaptation based approaches when

it comes to identify the existence or not of a vehicle in an intersection. To accomplish the purpose

of adapting dynamic events on traffic surveillance, or similar tasks, we conducted along this thesis

several approaches with holistic classification exploring domain adaptation of evolutionary events

to some GIST features extracted from the dataset images and also apply the same approaches

on AlexNet neural networks features of the same dataset images. This approaches are being

implemented in order to be used on situations where a dynamic evolution of domains is needed

and where we have an unlabeled target data.

Keywords: Traffic Surveillance, Domain Adaptation, Smooth Interpolation, Subspace Up-

date, Holistic Classification.





Resumo

Durante a última decada, o desenvolvimento de sistemas direcionados para controlo e manutenção

de trafego tem desplotado imenso interesse na comunidade de visão por computadores. Isto

deve-se muito ao facto do grande número de oportunidades no melhoramento de técnicas para

segurança dos condutores, como por exemplo, predição em tempo real de acidentes, deteção de

comportamentos ilegais nas estradas ou até aplicar estas técnicas a aplicações que permitam

poupar tempo e combust́ıvel ao escolher o melhor caminho. A utilização destas técnicas para

monitorização de trafego tem provado ser uma opção não invasiva, barata e autonoma. Hoje em

dia é bastante desejado um sistema inteligente capaz de monitorizar em tempo real densidade de

tráfego para que com antecedência se possam calcular novas rotas para que condutores evitem

tráfego indesejado, outra aplicação será a gestão automática de semáforos, ou até em casos mais

extremos, fazer a predição de acidentes e em caso de acidente notifique as autoridades para que

possam as pessoas envolvidas possam receber cuidados médicos o mais rápido posśıvel.

Este trabalho tem como propósito a implementação de abordagens de adaptação de domı́nios

visuais para a detecção de véıculos em imagens na aproximação de um cruzamento. Para atin-

gir os nossos objectivo de adaptar dinamicamente eventos relacionados com monitorização de

trafego, implementámos algumas abordagens baseadas em classificação hoĺıstica para explicar

a adaptação evolutiva de domı́nios, inicialmente aplicadas a caracteristicas GIST extráıdas das

imagens inclúıdas no dataset utilizado. Posteriormente aplicamos as mesmas abordagens a car-

acteŕısticas extráıdas com a ajuda da rede neuronal AlexNet. Estas abordagens que estamos a

implementar pretendem ser aplicadas em situações onde se seja necessária uma evolução dinâmica

de domı́nios e onde temos dados sem labels no treino.

Palavras-Chave: Monitorização de Tragego, Adaptação de Domı́nios, Interpolação Suave,

Classificação Hoĺıstica.





Acronyms and symbols

Abbreviation Meaning

2D Two-dimensional space

3D Three-dimensional space

CMA Continuous Manifold Adaptation

DA Domain Adaptation

GFK Geodesic Flow Kernel

KNN K-Nearest Neighbor

MDA Marginalized Denoised Autoencoder

ML Machine Learning

PCA Principal Components Analysis

SA Subspace Alignment

SIC Smooth Interpolation Curve

SS Semi-Supervised DA

SU Subspace Update

SVD Single Vector Decomposition

SVM Support Vector Machine

TDA Transductive Domain Adaptation

TL Transfer Learning

US Unsupervised DA
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Chapter 1

Introduction

1.1 Motivation

The wheel was one of the great inventions of humankind, some even say it was THE invention.

With it the world became an open road to the nomad tribes that could finally walk for hundreds

of miles a lot faster than before and were able to take with them more food and cloth to survive

in harsh weathers.

Since then, the world has vastly evolve and now we have a lot of vehicles circulating the roads

of our cities. The invention of the automobile has transformed modern life by being a beacon of

freedom, mobility and comfort. However due to the population exodus to big cities there’s been

an exponential increasing on traffic affluence within those cities.

Due to this ever-increasing traffic demand, modern societies with well-planned road management

systems, and sufficient infrastructure for transportation still face the problem of traffic conges-

tion. This results in loss of travel time, and societal and economic costs. One of the solutions

for this problem might be the construction of new roads but due to political and environmental

concerns, that is often the less feasible possibility. A more elegant way would be to make more

efficient use of the existing infrastructure. This latter approach is getting a lot of interest in the

computer vision community, due to its high number of possibilities.

Traffic management and control approaches are used to control the traffic flows and to prevent

or reduce traffic jams, or more generally to improve the performance of traffic systems. Possible

performance measures in this context are travel time, safety, fuel consumption, emissions, etc.

In recent years there was also a rapidly increasing of digital cameras, computation power, and

1
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new techniques in video compression standards has led to a recent growth of video digital

content. Additionally, in the last few years there has been a fast increase of Internet-connect

cameras, not only for personal but also for commercial use. A significant amount of them are

being used around the world for traffic surveillance cameras. The data received from these

cameras can be analyzed in order to prevent traffic jams, road kills and overall improve road

safety. Several developed countries have already adopted many real-time technology approaches

to address this issue that is road safety. Today’s challenge is to have more and more developed

countries doing the same and replicate it in underdeveloped ones.

The objective of this work is to identify the existence or not of a vehicle within a certain

image, in this specific case, an oncoming intersection. Doing this classification will allow future

implementation such as management of traffic or traffic lights in intersections.

Fig. 1.1: Intersection used for the experiment

This can be achieved with the traditional vehicle detection methods using descriptors such

as HOG (Histogram of Oriented Gradients), SIFT (Scale-Invariant Feature Transform), etc.

Normally this methods are embedded within certain approaches usually divided into two dis-

tinguished stages, which consists in first detecting the vehicle and then analyze, if needed, the

classification of the vehicle or an abnormal behavior. This is how the traditional computer vision

techniques work when it comes to detection of an object, in this case, a vehicle. Every one of



Chapter 1. Introduction 3

this approaches can be implemented in a real-time continuous environment but there’s a main

drawback caused by the problem this approaches have from the acquisitions variation such as

illumination, light saturation, fog, snow, etc. This non interrupting time domain as well as the

constant variation of the environment, causes the need for domain adaptation methods that can

counter those variations and differences. Unless the detection method is robust and can extract

features capable of mitigate those domain variation,i.e., those features are invariant to variations

of the domain, we have to use approaches that, as time goes by, based on new observations can

change and adapt their detection features (e.g. dynamic background subtraction).

In recent years, there has been an increase on holistic1 approaches. In this case, instead of

trying to detect the car and extract the features, we extract the features of the whole image

and all the environment within the image. This approaches basically receives an image, which

we say that’s positive (with car) or negative (without car), extract the features of the all scene

and then understand within those features what differs and what really distinguish one image

from the other.In other words, instead of detection and tracking these approaches try to make a

pattern recognition with all the image.

Fig. 1.2: Examples of images with and without cars with only 12 minutes apart. This small timespan

allows us to limit the environmental differences on the environment.

1Holistic means to be concern with wholes or with complete system rather than with the analysis of only parts

of the system.
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If we apply any of those approaches to these two images we get a vector of features for each

one of them. In our thesis we will be using a descriptor called GIST.

Given an input image, a GIST descriptor is computed by

1. Convolve the images with 32 Gabor filters at 4 scales, 8 orientation, producing 32 features

maps of the same size of the input image.

2. Divide each feature map into 16 regions (4ˆ4 grid), and then average the feature values

within each region.

3. Concatenate the 16 averaged values of all 32 feature maps, resulting in a 16 ˆ 32 “ 512

GIST descriptor.

The discriminative ability of GIST for one of those 512 feature vectors can be expressed with the

help of a bar plot. If we see the following image, the differences are pretty clear.

Fig. 1.3: GIST features extracted from images above in form of a graphic

As we can see in the graphic 1.3, the vector for an image with car (red bars) is not so far

apart from the vector without a car (green bars), this was expected since the images are not

very different. However, if we look closely to the region between 350 and 512 we can see a clear

difference between the red and green bars, as ones go higher to the positive side and others go
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lower to the negative side.

Neural networks trained with a great number of images (thousands or millions of pictures) can

usually make a robust descriptor since it can arrange a generalization from all the training data.

Due to the lack of training data and the temporal requirements for the method to function,

this approaches require new methods for domain adaptation in order to dynamically adapt the

classifiers to the intrinsic changes within the descriptors.

This line of thought gives us our objective for this thesis. The main objective is to explore a

bunch of approaches capable of dynamic domain adaptation in a temporal interval.
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1.2 Summary of the work developed

In the pursuing of this goals, having an approach capable of classifying in real-time and with

domain variation, we are going to use as foundation the work proposed by Judy Hoffman et

al. at [14]. This work was possibly one of the groundbreaking works in evolutionary domain

adaptation. It explores the representation of feature points into a subspace that in turn is a

single point on a Grassman manifold. The theory behind subspaces and the Grassam manifold

is explained further on the thesis.

Basically, their approach is to represent a dynamic adaptation between two subspaces, one for

training data and another for testing data, and there’s a continuously adaptation of the testing

subspace (see figure 1.4).

Fig. 1.4: Training and Adapting Target Subspaces on a Grassman Manifold.
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This approach is much more generalist and the objective is to, with this adaptation of the

testing subspace, find a geodesic2 that better represents the testing subspace on the target

subspace.

Hoffman’s work is based on the notion that only the target subspace is being adapted. Our

work is a little divergent from theirs.

Taking into consideration that the application we want to achieve has a cyclical meta-

descriptor3 and the objective is to classify a set of images during an whole day, what we are

going to do is, instead of having only one training subspace, with the help of this meta-descriptor

we can group samples into distinct subspaces. What we hope to achieve with this is that each

subspace can be more representative accordingly to the samples within it, something we think

can never happen if we have only one subspace representing all the distinct samples from an

whole day.

With this multiple training subspaces, we’ll use an approach developed at the Institute of Sys-

tem and Robotics consisting of a smooth interpolation between all those source subspaces [1].

Basically, we propose a different approach from Hoffman (adaptation of target subspace only),

we propose a continuously adaption of the four training subspaces computed with the help of

Time, our meta-parameter (as we can see in figure 1.5). This will require each time to compute

new interpolations in order to project the new samples and proceed to the classification of those

same samples.

2A geodesic is a generalization of the notion of a ”straight line” to ”curved spaces”. In this case, a geodesic is

the shortest line between two points on a Grassman manifold
3In our case, Time. (the hours of a day)
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Fig. 1.5: Figure representing the four training subspaces and the smooth interpolation line

Finally we take a look at a method called Transductive Doman Adaptation [5], explained

further in the thesis, that basically allows us from a unsupervised testing environment extract

labels that we can later incorporate into the source subspaces, thus increasing the variety of those

same sources which we hope will improve the performance of the classifier for new samples.

1.3 Outline of the thesis

• Chapter 2: State of the Art. Goes over relevant research related to Visual Domain Adap-

tation and Deep Learning oriented for domain adaptation.

• Chapter 3: Math Used on the Different Approaches. It presents the math theory on which

we support our approaches. It gives us an insight on how the methods theory works,

mathematical speaking.

• Chapter 4: Description of the Used Approaches. Is similar to chapter 3 but here we give

an insight on how the methods and approaches really work and how they are implemented.

Additionally we also have some code and pseudo-code to make it easier to understand the

functionality of the code itself.

• Chapter 5: Development and Results. How it was developed, the dataset used with figures

examples as well as the results obtained from the experiments and an evaluation of those

same results.



Chapter 1. Introduction 9

• Chapter 6: Conclusions and Future Work. Presents the final conclusions from the work

and suggested some possible future work.
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Chapter 2

State of the Art

In recent years, video monitoring and surveillance systems have been widely used in traffic man-

agement, extracting useful information such as traffic density and vehicle types. Development of

intelligent systems that extract traffic density and vehicle classification information from traffic

surveillance systems is crucial in traffic management.

It is important to know the traffic density of the roads real time especially in mega cities for

signal control and effective traffic management. Time estimation of reaching from one location to

another and recommendation of different alternative routes using real time traffic density infor-

mation is extremely valuable for residents of mega cities. Furthermore, classification of vehicles

is also very important for traffic control centers.

Domain adaptation has received a lot of attention in computer vision[2, 3, 6, 7, 8, 9, 10,

12, 13, 16, 18, 21, 22] where domain variation is a consequence of changing conditions, such as

background, location and pose, etc. and, more generally, a strong bias between datasets.This

kind of domain shift is very common in real-life applications, in particular in outdoor traffic

surveillance tasks.

Having a classifier robust and reliable requires a lot of labeled samples that will train that said

classifier. Even nowadays, the acquisition of these data labels has a high cost since there’s

gigantic volumes of unlabeled data generated in many distinct domains. Trying to overcome

that issue of exploiting unlabeled data, alternative solutions have been proposed in literature.

Domain Adaptation (DA) is a particular case of transfer learning (TL) (see figure 2.1) that

uses labeled data from one or many source domains, to learn a classifier for unlabeled data. The

source domains, although it doesn’t have to be the same as the target domains, must be somehow

11



12 2.1. Visual Domain Adaptation

similar. Thus, this ”problem” becomes a standard machine learning (ML) where the test data is

drawn from a similar distribution as the training data.

Fig. 2.1: An overview of different transfer learning approaches.[19]

2.1 Visual Domain Adaptation

In visual applications, there can be a lot of domain shift, such as background, location, pose

changes, but the domain mismatch might be more severe when the source and target domains

contain images of different types, for example comparing photos with sketches. In surveillance

and urban traffic understanding, pretrained models on previous locations might need adjustment

to the new environment. This adjustment needs either the acquisition of labeled data in the

the location or the adaptation of those pretrained models to achieve the performance needed in

the new situation. However, the first solution (data labeling), is expensive and time consuming

due to the human effort involved. Therefore, the latter solution is preferred when possible. This

can be achieved by adapting the pretrained models taking advantage of the unlabeled (and if

available labeled) target data.

DA methods are transductive TL solution (see figure 2.1), where is assumed that the tasks are

the same. In general they refer to a categorization task, where both the set of labels and the

conditional distributions are assumed to be shared between the two domains. However, the

assumption that the conditional distributions are the same does not always hold in real-life
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applications. Therefore, only the assumption that the labels are the same is required.

The DA can be distinguish between semi-supervised(SS) case where a small set of target samples

are labeled and unsupervised(US) case where the labels are available only for the source domain.

In this thesis we’ll be focus on the unsupervised approach.

2.1.1 Feature Augmentation

Gopalan et al. at [13] proposed one of the simplest method for DA, where the original repre-

sentation x is augmented with itself and a vector of the same size filled with zeros as follows:

the source become

»

—

–

xs

xs

0

fi

ffi

fl

and the target features

»

—

–

xt

0

xt

fi

ffi

fl

, for the detailed work see [13]. Then a

Support Vector Machine (SVM) is trained on these augmented features to figure out which parts

of the representation is shared between the domains and which are the domains specific ones.

The idea of feature augmented is also behind the Geodesic Flow Kernel1 (GFK)[12], where do-

mains are embedded in d-dimensional linear subspaces that can be seen as points on the Grassman

manifold2 corresponding to the collection of all d-dimensional subspaces. GFK proposes a kernel

that makes the solution equivalent to integrating over all common subspaces lying on the geodesic

path.

These methods use cross-domain representations and can be used either to train a classifier or

to label the target samples, in both scenarios unsupervised and semi-supervised.

2.1.2 Feature Space Alignment

Instead of augmenting the features, these methods tries to align the source features

with the target ones. As such, the Subspace Alignment (SA)[8] learns an align-

ment between the source subspace obtained by PCA3 and the target PCA subspace,

where the PCA dimensions are selected by minimizing the Bregman divergence be-

tween the subspaces. It advantage is its simplicity, as shown in the algorithm 1.

1GFK is explained furthermore in the thesis
2Grassman manifolds are also explain in the following chapters
3Principal Component Analysis. Explain in detailed in the next chapters.
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Algorithm 1: Subspace Alignment (SA) [8]

Input: Source data Xs, target data Xt, subspace dimension d

Output: Aligned source, Xsa and target Xta data

1 Ps Ð PCApXs, dq, Pt Ð PCApXt, dq;

2 Xsa “ XsPsP
T
s Pt, Xta “ XtPt;

2.1.3 Unsupervised Feature Transformation

Chen et al. at [4] exploits the correlation between the source and target set to learn a robust rep-

resentation by reconstructing the original features from their noised counterparts. The method,

called Marginalized Denoising Autoencoder (MDA), is based on a quadratic loss and a drop-out

noise level that factorizes over all feature dimensions. This allows the method to avoid explicit

data corruption by marginalizing out the noise and to have a closed-form solution for the fea-

ture transformation. These method can be used with only one layer or with a stack of several

layers with the option of non-linearity between layers to obtain a multi-layer network with the

parameters for each layer obtained in a single forward pass (see algorithm 2).

Algorithm 2: Stacked Marginalized Denoising Autoencoder (sMDA) [4]

Input: Source data Xs, target data Xt

Input: pÐ noise level, w Ð regularizer and k Ð number of layers

Output: Denoised features Xk

1 X “ rXs, Xts, S “ XTX, X0 “ X;

2 P “ p1´ pqS and Q “ p1´ pq2S` pp1´ pqdiagpSq

3 W “ pQ` wIDq
´1P

4 (Optionally), stack K layers with Xpkq “ tanhpXpk´1qW
pkqq

Our thesis has in its foundation, the work proposed by Hoffman4 et al. at [14], where they take

advantage of both Subspace Alignment and GFK approaches adding an approach of their own

called continuous manifold adaptation (CMA). This latter approach tries to classify streaming

data drawn from a continuously evolving visual domain. This is a space alignment unsupervised

method, ie, utilizes PCA to reduce the dimension of its features and assumes labeled source

data but unlabeled target data. CMA assumes each target sample has been extracted from a

distribution corresponding to a PCA subspace on the Grassman manifold of subspaces. Since

the data arrives in a continuous sequentially stream, the target subspace is constantly changing

and is found by a variant of the Karhunen-Loeve method [15].

4Hoffman method explained later on the thesis



Chapter 3

Theory Behind The Approaches

In this chapter we take a look at the theory behind the algorithms used for the different approaches

we tested. The theories used were essentially three: Interactive Subspace Estimation, Smooth

Subspace Interpolation and Transductive Domain Adaptation. In the next sections we try to take

a deep look at each one of them. Additionally we take a look at the classifiers used to make the

predictions that are used to ascertain the accuracy of each method.

3.1 Principal Component Analysis

The Principal Component Analysis (PCA), as the name suggests, is the analyses of a set of

observations into their principal components. PCA is one method to reduce the number of

features used to represent data. The benefit of this dimension reduction include providing a

simpler representation of the data, reduction in memory, and faster classification. We accomplish

this with sophisticated underlying mathematical principles to transform a number of possibly

correlated variables into a smaller number of variables called principal components (see figure

3.1). In general terms, PCA uses a vector space transform to reduce the dimensionality of large

data sets. Using mathematical projection, the original dataset, which may have involved many

variables, can often be interpreted in just a few variable (principal components). Therefore it is

often that the use of this reduction in the dimension of data allows to find trends and patterns

far more easily than would have been possible with the whole data set.

Given data points x1, x2, . . . , xn P Rp.

15
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Fig. 3.1: PCA of a multivariate Gaussian distribution. Image from Wikipedia

We define the reconstruction of data in Rq Ñ Rp as

fpλq “ µ` vqλ (3.1)

In this rank q model, the mean is µ P Rp and vq is a pˆ q matrix with q orthogonal unit vectors.

Finally, λ P Rq is the low-dimensional data points we are projecting.

Creating a good low-dimensional representation of the data requires that we carefully choose

µ, vq, and λ. One is by minimizing the reconstruction error given by

min
N
ÿ

n“1

||xn ´ µ´ vqλn|| (3.2)

In Equation 3.2, µ is the intercept of the lower space in the higher space. Next, λ1...N is the Rq

coordinate of x. Last, the quantity inside the sum is the distance between the original data and

the low-dimensional representation reconstruction in the original space.
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3.1.1 Single Value Decomposition (SVD)

Consider

X “ UDV T (3.3)

where

• X is an nˆ p matrix

• U is an nˆ p orthogonal matrix and the columns of U are linearly independent

• D is a positive pˆ p diagonal matrix with d11 ě d22 ě ¨ ¨ ¨ ě dpp

• V is a pˆ p orthogonal matrix

We represent each data point as linear combinations.

x1 “ u11d1v̄1 ` u12d2v̄2 ` ¨ ¨ ¨ ` u1pdpv̄p

x2 “ u21d1v̄1 ` u22d2v̄2 ` ¨ ¨ ¨ ` u1pdpv̄p

. . .

We can embed x into an orthogonal space via rotation. D scales, V rotates, and U is a perfect

circle.

PCA cuts off SV D at q dimensions. U is a low-dimensional representation, D reflects the variance

and V are the principal components.

3.2 Geodesic Flow Kernel (GFK)

The GFK approach was first proposed by Gong et al. at [12].

Let PS , PT P RDˆd denote the two sets of basis of the subspaces for the source and target

domains. Let RS P RDˆpD´dq denote the orthogonal complement to PS namely RT
SPS “ 0. Using

the canonical Euclidean metric for the Riemannian manifold, the geodesic flow is parameterized

as Φ : t P r0, 1s Ñ Φptq P c|Gpd,Dq under the constraints Φp0q “ PS and Φp1q “ PT . For other t,

Φptq “ PSU1Γptq ´RSU2Σptq, (3.4)
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where U1 P Rdˆd and U2 P RpD´dqˆd are orthonormal matrices. They are given by the following

pair of SV Ds,

P T
S PT “ U1ΓV T , RT

SPT “ ´U2ΣV T . (3.5)

Γ and Σ are dˆd diagonal matrices. The diagonal elements are cos θi and sin θi for i “ 1, 2, . . . , d.

Particularly, θi are called the pricipal angles between PS and PT :

0 ď θ1 ď θ2 ď ¨ ¨ ¨ ď θd ď
π

2
(3.6)

They measure the degree that subspaces ”overlap”. More over, Γptq and Σptq are diagonal ma-

trices whose elements are cosptθiq and sinptθiq respectively.

3.2.1 Computation of GFK

Consider the subspace Φptq for a t P p0, 1q and compute ΦptqTx, ie, the projection of a feature

vector x into this subspace. If x is from the source domain and t is close to 1, then the projection

will appear more likely coming from the target domain and conversely for t close to 0.

For two original D-dimensional feature vectors xi and xj, we compute their projections into Φptq

for a continuous t from 0 Ñ 1 and concatenate all the projections into infinite-dimensional feature

vectors z8i and z8j . The inner product between them defines their geodesic-flow kernel,

xz8i , z
8
j y “

ż 1

0

pΦptqTxiq
T
pΦptqTxjqdt “ xTi Gxj (3.7)

where G P RDˆD is a positive semidefinite matrix. This is precisely the ”kernel trick”, where a

kernel function induces inner products between infinite-dimensional features.

The matrix G can be computed in a closed-form from previously defined matrices:

G “ rPSU1 RSU2s

«

Λ1 Λ2

Λ2 Λ3

ff«

UT
1 P T

S
UT

2 RT
S

ff

(3.8)

where Λ1 to Λ3 are diagonal matrices, whose diagonal elements are

λ1i “ 1`
sinp2θiq

2θi
, λ2i “

cosp2θiq ´ 1

2θi
, λ3i “ 1´

sinp2θiq

2θi

3.3 Interactive Subspace Estimation

For this estimation we used the model proposed by [20] where they approach the problem with

some resemblance to the classic filter algorithms, but with a more informative representation
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through the use of an eigenbasis. Their approach is constantly update the eingenbasis using a

computationally efficient algorithm.

3.3.1 Incremental Update of Eigenbasis

The Ross et al [20] method is a variant of the efficient sequential Karhunen-Loeve algorithm to

update the eignbasis ([15]), which in turns is based on the classic R ´ SV D method1 [11].

Let X “ UΣV T be the SV D of a data M ˆ P matrix X where each column vector is an

observation. The R ´ SV D algorithm provides an efficient way to carry out th SV D of a

larger matrix X˚ “ pX|Eq, where E is a M ˆK matrix consisting of K additional observations

(incoming samples) as follows.

• Use and orthonormalization process on pU |Eq to obtain an orthonormal matrix U 1 “ pU |Ẽq.

• Form the matrix V 1 “

˜

V 0

0 IK

¸

, where IK is a K dimensional identity matrix.

• Let Σ1 “ U 1TX˚V 1 “ pU
T

ẼT qpX|Eq

˜

V 0

0 IK

¸

“

˜

UTXV UTE

ẼTXV ẼTE

¸

“

˜

Σ UTE

0 ẼTE

¸

since

Σ “ UTXV and ẼTXV “ 0. Notice that the K rightmost columns of Σ1 are the new

samples, represented in the update orthonormal basis spanned by the columns of U 1.

• Compute the SV D of Σ1 “ ŨΣ̃Ṽ T and the SV D of X˚ is

X˚
“ U 1pŨΣ̃Ṽ T

qV 1T “ pU 1ŨqΣ̃pṼ TV 1T q (3.9)

By exploiting the orthonormal properties and block structure, the SV D computation of X˚ can

be efficiently carried by using the smallet matrices, U 1,V 1,Σ1 and the SV D of smaller matrix Σ1.

The computational complexity analysis and details of R´ SV D algorithm are described in [11].

Based on the R ´ SV D method, the sequential Karhunen-Loeve algorithm further exploits the

low dimensional subspace approximation and only retains a small number of eigenvectors as new

data arrive. See [20] for details of an update strategy and the computational complexity analysis.

1Recursive Singular Value Decomposition
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3.4 Smooth Subspace Interpolation

The Smooth Subspace Interpolation approach was developed by Batista et al. at [1] and aims to

generate a smooth interpolation curve intrinsically on the Grassman manifold, by means of the

Casteljau algorithm.

3.4.1 Grassman Manifold

Let spnq and sopnq denote the set of all n ˆ n real symmetric matrices and the set of all n ˆ n

real skew-symmetric matrices respectively.

The (real) Grassman manifold ζn,k is the set of all k-dimensional linear subspace in the Rn, where

n ě k ě 1. This manifold has a matrix representation

ζn,k :“ tP P spnq : P 2
“ P and rankpP q “ ku (3.10)

so that it is considered a sub-manifold of Rnˆn with dimension kpn´ kq. For P P ζn,k, define

soP pnq :“ tX : X P sopnq an XP ` PX “ Xu (3.11)

The tangent space to a point P P ζn,k is given by

TP ζn,k “ trX,P s : X P soP pnqu (3.12)

The Grassman manifold will be equipped with the metric inherited from the Euclidean space

Rnˆn

xrX1, P s, rX2, P sy “ trpXT
1 X2q (3.13)

A geodesic γ in ζn,k starting from P with initial velocity 9γp0q “ rX,P s is given by

γptq “ etXPe´tX (3.14)

It has been proven that the geodesic joining a point P to a point Q is of the form 3.14, with

X “ 1
2
logppI ´ 2Qq ¨ pI ´ 2P qq where ’log’ stands for the principal logarithm of a matrix, so that

if the orthogonal matrix pI ´ 2Qq ¨ pI ´ 2P q has no negative real eigenvalues then this geodesic

is unique.
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3.4.2 The Casteljau Algorithm

3.4.2.1 Generating a 2nd-order geometric polynomial

Given a set of three points xi
2
i“0 in ζn,k let t Ñ σ1pt, xi, xi`1q be geodesic curves joining xi to xi`1,

for i “ 0, 1. Define a family of curves γ : r0, 1sˆr0, 1s Ñ ζn,k as follows. For a fixed t0 P r0, 1s, the

map t Ñ γpt, t0q is a smooth curve joining σ1pt0, x0, x1q to σ1pt0, x0, x2q. Then σ2 : r0, 1s Ñ ζn,k

given by σ2ptq “ γpt, tq is a smooth curve joining x0 Ñ x2, as illustrated in Figure 3.2. This is a

second order geometric polynomial produced by the Casteljau algorithm.

Fig. 3.2: Illustration of the two-step Casteljau algorithm [1]

It turns out that the initial and final velocities of the curve σ2 are related to the initial and

final velocities of the curves σ1. More precisely:

9σ2p0q “ 2 9σ1p0, x0, x1q and 9σ2p1q “ 2 9σ1p1, x0, x1q (3.15)

3.4.2.2 Piecing together polynomial

Using the Casteljau algorithm in each time interval ri, i ` 1s, starting with an arbitrary control

point in the first interval, and computing the control points for the remaining intervals so that

we can compute spline curves that are differentiable and obtained by piecing together quadratic

polynomials. With this kind of process we can fine the whole C1-smooth curve between all in-

tervals.

The curve σ may be generated by piecing together quadratic polynomials defined on each subin-

terval ri, i` 1s and joining Pi to Pi`1 with control point Ci, that is

σptq |ri,i`1s“ σ2pt´ i, Pi, Ci, Pi`1q (3.16)
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Each control point is calculated as

Ci “ eΩiPie
´Ωi (3.17)

and represents the end point of the geodesic σ that starts at the point Pi with the initial velocity

equal to rΩi, Pis. In order to ensure that σ is C1-smooth, the initial velocity Ωi`1 of each

subsequent spline segment must equal the final velocity of the previous segment, i.e.

Ωi`1 “
logppI ´ 2Pi`1q ¨ pI ´ 2Ciqq

2
(3.18)

To find the points σptq on the spline, first compute 3.17 to find the control point Ci, for the

segment σpri, i` 1sq, where t P ri, i` 1s. Then with the triplet Ci,Pi and Pi`1 we can find a set

of K intermediate subspaces σptq and the final velocity Ω.

3.5 Transductive Domain Adaptation

The TDA approach is used in the case of source classifiers available as a black box. These

classifiers can only be used for predicting labels, including for target domain instances. Such an

unsupervised domain adaptation is of high interest for us because we can get new labels to use

as new training labels and features for posterior classification with some reliability.

In this method we consider class predictions fkpxnq as relevant but corrupted. Hence, we can

exploit the correlation between the target data xn and the source predictions fpxtnq to reconstruct

both the target data and the source classifiers predictions of these target data. We then apply

the sMDA(see algorithm 2) to the augmented dataset U t
n “ rx

t
n; fpxtnqs and compute W .

W is the linear mapping matrix which tries to minimize the corruption. The basic form of this

method is a one-layer denoising autoencoder where a set of inputs xn are corrupted M times

by random feature dropout probability p and reconstructed with W by minimizing the square

reconstruction loss:

LpW q “
N
ÿ

n“1

M
ÿ

m“1

||xn ´Wx̃nm||
2 (3.19)

The mapping W can be expressed in closed form as W “ ErP sErQs´1, where

ErQsij “

$

’

’

&

’

’

%

Sijqiqj if i ‰ j

Sijqi if i “ j

(3.20)

and

ErP sij “ Sijqi (3.21)
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where Erxs is the mathematical expectation, q “ r1 ´ p, ..., 1 ´ p, 1s P RD`1, p is the dropout

probability, D is the feature dimension and S “ XXT is the covariance matrix of the uncorrupted

data X.

As said before, the basic form of this method is one-layered. However we can stack several MDA

layers and create a deep architecture with pl ´ 1qth denoising layer as input to the lth layer and

learn the transformation W l to reconstruct the previous output from its corrupted equivalent.

We can also extend the mapping beyond just a linear transformation between layers, for each

output we can apply a hyperbolic tangent function hl “ tanhpW lhl´1q or a rectified linear units

hl “ maxpW thl´1, 0q.

After this computation, we can get denoised class predictions for xt as yt “
ř

W:,D`1:D`Cfpxq

and use these to reconstruct class predictions f̂pxtnq to make the classification decisions. Our set

F includes a single source classifier f1 with one prediction per class, the class with the maximum

reconstructed value, c˚ “ argmaxcty
t
c|y

tu.

The main advantage os this method is that it doesn’t require class labels; hence we can take

advantage of the unlabeled target data and apply it for unsupervised domain adaptation.

To marginalized the corrupted features, a corrupting distribution is first defined to transform

observations x into corrupted versions x̃. The corrupting distribution is assumed to factorize

over all feature dimension and, each individual distribution is assumed to be a member of a

natural exponential family, ppx̃|xq “
śD

d“1 P px̃d|xd; θdq,where x “ px1, ..., xdq and θd, d “ 1, ..., D

is a parameter of the corrupting distribution on dimension d.

The corrupting distribution can be unbiased or biased. Known examples of distribution P are

the blankout [23], Gaussian, Laplace and Poisson noise [17].

3.6 Classifiers

3.6.1 K-Nearest Neighbors

KNN is a non parametric lazy learning algorithm which means that it does not make any

assumptions on the underlying data distribution. This is pretty useful, as most of the practical

data does not obey the typical theoretical assumptions made (eg gaussian mixtures, linearly

separable, etc).



24 3.6. Classifiers

It is also a lazy algorithm. This means it does not use the training data points to do and

generalization, i.e., there is no explicit training phase or it is very minimal. This means the

training phase is pretty fast. Lack of generalization means that KNN keeps all the training

data. More exactly, almost all the training data is needed during the test phase.

The dichotomy is pretty obvious here ´ There is a non existent or minimal training phase but a

costly testing phase. The cost is in terms of both time and memory. More time might be needed

as in the worst case, all data points might take point in decision. More memory is needed as we

need to store all training data.

KNN assumes that the data is in a metric space. The data can be scalars or possibly

multidimensional vectors. Since the points are in feature space, they have a notion of distance

´ This need not necessarily be Euclidean distance although is the one commonly used.

Each of the training data consists of a set of vectors and class labels associated with each vector.

In the simplest case (our case), it will be either positive or negative classes.

We are also given a single number ”k”. This number decides how many neighbors influence

classification. This is usually an odd number if the number of classes is 2. This neighbors are

defined based on the metric distance.

Fig. 3.3: Example of a 2D KNN classification [24]

As we can see in figure 3.3 the test sample (green circle) should be classified either to the first

class of blue squares or to the second class of red triangles. If k “ 3 (solid line circle) it is assign

to the second class because there are two triangles and only one square inside the area bounded

by that solid line circle. If k “ 5 (dashed line circle) it is assign to the first class, like the first

case, here we have three squares and two triangles inside the circle bounded by the dashed line.
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The choice of k is very critical ´ A small value of k means that noise will have a higher influence

on the results. A large value make it computational expensive and defeats the basic philoso-

phy behind KNN . A simple approach to select k is set k “
?
n, where n is the number of features.

3.6.2 Support Vector Machine

The idea behind SVM is that it creates a hyperplane to separate a set of data. This hyperplane

is chosen as to provide the largest distance possible to the nearest data points of the different

classes. With this separation it is possible to classify unknown points depending on which side

of the hyperplane they fall on. This simple and intuitive yet powerful concept has made SVM

one of the standards methods for data classification.

3.6.2.1 Linear SVM

Let us assume we have some training dataset of n points pÝÑx 1, y1q, ..., pÝÑx n, ynq,where yi are either

1 or ´1, each indicating the class to which the point ÝÑx i belongs. Each ÝÑx i is a p-dimensional

real vector. Note that SVM deals only with binary classification, i.e., classification between

two classes (positive and negative). We want to find the ”maximum-margin hyperplane” that

divides the group of points ÝÑx i for which yi “ 1 from the group of points for yi “ ´1, which is

defined so that the distance between the hyperplane and the nearest point ÝÑx i from either group

is maximized.

The goal of SVM (finding those margins) can be better seen in the following figure 3.4.
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Fig. 3.4: Visualization of the margins for 2D data [25]

An hyperplane can be described as:

ÝÑw.ÝÑx ´ b “ 0 (3.22)

where ÝÑw is the normal vector to the hyperplane and b

||
ÝÑw ||

represents the offset of the hyperplane

from the origin.

Supposing the training data is linearly separable then we can define:

ÝÑw.ÝÑx ´ b “ 1 (3.23)

ÝÑw.ÝÑx ´ b “ ´1 (3.24)

that represents the boundaries of the hyperplane. This means that any point in our training data

satisfying

ÝÑw.ÝÑx ´ b ě 0 (3.25)

belongs to class 1, and points satisfying

ÝÑw.ÝÑx ´ b ď 0 (3.26)

belongs to class -1.
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We then want to maximize the distance between these two boundaries. This distance is given

by

width “ pÝÑx ` ´ÝÑx ´q
ÝÑw

||ÝÑw ||
(3.27)

where ÝÑx ` is a positive sample in the boundary, ÝÑx ´ is a negative sample in the boundary and
ÝÑw
||
ÝÑw ||

is the normalized normal vector of the hyperplane. From

ÝÑw.ÝÑx “ 1` bÝÑw.ÝÑx “ ´1` b (3.28)

we then get

width “ pÝÑw.ÝÑx ` ´ÝÑw.ÝÑx ´q
1

||ÝÑw ||
“

2

||ÝÑw ||
(3.29)

We conclude that, in order to maximize the width we need to minimize ||ÝÑw ||. Since this mini-

mization problem involves the norm it is necessary to determine a square root. As a mathematical

convenience we can minimize for 1
2
||ÝÑw || since we’ll arrive at the same answer. This minimization

can be achieved using Lagrange multipliers:

L
1

2
||ÝÑw ||2 ´

ÿ

αiryipÝÑw.ÝÑx ´ bq ´ 1s (3.30)

where αi “ pα1, α2, ..., αnq are the Lagrange multipliers. Since we want to find an extreme of the

function we need to find the zeros of its derivatives:

BL

BÝÑw
“ ÝÑw ´

ÿ

αiyiÝÑx i ùñ
ÝÑw “

ÿ

αiyiÝÑx i (3.31)

BL

Bb
“ ´

ÿ

αiyi “ 0 ùñ
ÿ

αiyi “ 0 (3.32)

From this we were able to come up with a value of ÝÑw . By using this value on equation 3.30 we

get

L “
ÿ

αi ´
1

2

ÿÿ

αiαjyiyjÝÑx i.ÝÑx j (3.33)

At this stage quadratic programming techniques have to be employed. Once the vector

α˚ “ pα˚1 , ..., α
˚
Nq solution of the maximization problem has been found, the optimal separat-

ing hyperplane is given by,

w˚ “
N
ÿ

i“1

α˚i yixi

b˚ “ ´
1

2
pw˚, xr ` xsq

where xr and xs are any support vector from each class satisfying, αr, αs ą 0 and yr “ ´1, ys “ 1.
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Chapter 4

Description of the Used Approaches

We reserved this chapter to explain how our approaches really work a part from the theory.

Here we show how the math explained before (chapter 3) is implemented into our approaches’

algorithms.

4.1 Initial Parameters

First we start with a function that is transversal to all approaches. This function is called

config caltran.m and is responsible for the configuration of the train and test parameters. These

parameters are presented in the following table 4.1.

Parameter Value Description

norm type l1 zscore normalization method utilized

ns 480 number of labeled training points

alpha 1.5 forgetting factor for online subspace learning

Tmax 480 or 2400 number of test images to use

block size 5 number of test images seen at each time step

classes [1 -1] label classes, in this case either positive or negative

start start index index of the first training image

dim 10 dimension of the principal components

Table 4.1: Table summarizing the initial parameters

All these parameters are then stored like a structure on a variable (expt) to facilitate the use

of them throughout the code

.

29
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The normalization method is composed by two different techniques, L1 Normalization and

Z-Score Normalization.

4.1.1 L1 Normalization

L1 norm of x is defined as

||x||1 “
ÿ

|xi|

L1 norm is the sum of absolute differences between the target value and the estimated values.

This norm is quite commong and is known as the Manhattan norm. If the L1 norm is computed

for a difference between two vectors or matrices, that is

SADpx1, x2q “ ||x1 ´ x2||1 “
ÿ

|x1i ´ x2i |

it is called Sum of Absolute Difference (SAD).

In more general cases, it may be scaled to a unit vector by:

MAEpx1, x2q “
1

n
||x1 ´ x2||1 “

1

n

ÿ

|x1i ´ x2i |, where n is a size of x.

This unit vector is also known as Mean-Absolute Error (MAE).

4.1.2 Z-Score Normalization

Z-Score is a measure of how many standard deviation above or below the dataset mean a data

point is. It’s also known as a standard score and it can be placed on a normal distribution curve.

Z-Scores range from ´3 standard deviations (which would fall to the far left of the normal

distribution curve) up to `3 standard deviations (which would fall to the far right of the normal

distribution curve), but it doesn’t always have to be those values for standard deviation.

x̄i “
xi ´ µ

σ

where

σ “

d

1

pn´ 1q

n
ÿ

i“1

pxi ´ µq2

µ “
1

n

n
ÿ

i“1

xi
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4.1.3 Initial PCAs

After getting those initial parameters and compute both training and testing pair of features

and labels (rXs, Yss for training; rXt, Yts for testing), the next step we take in order to achieve

our objective is compute those first PCAs with the training components. Basically, we separate

those 480 images1 from training into 4 groups of 120 images, leaving us with 4 separate groups

of images that will be the computed into our initial 4 PCAs.

The way we do this is by simply apply a MatLab function called myPCA which receives our

initial parameters (see table 4.1) and the features of the training data we wish to use in order

to compute each PCA. In this function we start by using the MatLab’s svd function to compute

the singular value decomposition of those input features given. This allows us to extract three

matrices but we’ll only use two: S, which is a matrix containing the diagonal non-negative values

in decreasing order and V , are the right singular vectors fo corresponding singular values. With

these two matrices we then compute four variables that will make the structure of our PCA to

be used later.

For better understanding, myPCA algorithm is presented next (see algorithm 3).

Algorithm 3: myPCA algorithm. Adapted form Hoffman code.
Input: Initial Parameters expt, features Xs

Output: PCA structure pca

1 dimÐ expt.di

2 r„, Ss, V s Ð svdpXsq

3 P Ð V p:, 1 : dimq

4 UtÐ P

5 mÐ minpsizepS, 1q, dimq

6 S Ð diagpSsp1 : m, 1 : mqq

7 Sppm` 1q : dimq Ð 0

8 muÐ meanpXsq

9 nprev Ð sizepXs, 1q

10 pcaÐ Ut, S,mu, nprev

11 return pca

1Images extracted from Hoffman’s Dataset, explained further
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4.1.4 Initial Interpolation

Now that our Training PCAs are computed we can progress to the computation of two segments

that make the interpolation curve between all those four PCAs. To compute each segment we

needed three points (as explain in chapter 3). The first segment is computed with the first three

PCAs as points, we achieved this first segment with the following algorithm (see algorithm 4):

Algorithm 4: Initial Curve algorithm. [1]
Input: K,P,C,R, where P is the initial point, R is the final point and C is the control point

Output: Z,Ω1

1 Calculate velocity components Ω and Ω1 for the geodesics σpt, P, Cq and σ1pt, C,Rq, respectively:

Ω “
logppI´ 2Cq ¨ pI´ 2P qq

2

Ω1 “
logppI´ 2Rq ¨ pI´ 2Cqq

2

2 for k Ð 0 to K do

3 t “ k{K

4 Calculate first step end points M1 and M2 at t:

M1 “ etΩ ¨ P ¨ e´tΩ

M2 “ etΩ1 ¨ C ¨ e´tΩ1

5 Compute the point on the geodesic from M1 to M2 at t:

Θ1 “
logppI´ 2M2q ¨ pI´ 2M1qq

2

Zrks “ etΘ1 ¨M1 ¨ e
´tΘ1

6 end

7 return Z,Ω1

To compute the next segment of the interpolation curve we have to previously compute one

control point between the last two PCAs in order to apply a similar algorithm like the previous

one. This control point is calculated with the following algorithm:

Having this linking point we can now proceed to compute the second segment. This new

algorithm is very much alike with algorithm 4 just with some minor changes. See the following
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Algorithm 5: Control Point Calculation. [1]

1 and open t Input: Q,Ω

Output: C

2 Calculate the control point C:

C “ eΩ ¨Q ¨ e´Ω

return C.

algorithm:

Algorithm 6: Compute the second segment. [1]
Input: Multiple domain data Xd, d “ 1, ..., D, subspace dimension k, number of intermediate samples per

curve segment K

Output: Sampled points S “ P pjq, j “ 1, ..., J . Each point represents an intermediate subspace.

1 Perform PCA on each Xd to obtain the orthogonal k-frame in Rn, and compute Pd.

2 Perform ordering (indexation) of Pd

sortpPdq Ð min
ÿ

´trpΩ2q|ri,i`1s

3 and open t Consider P1 as the control point for 1st curve segment.

4 Get K sample points and velocity components (for first segment)

rS,Ωs “ Alg4pK,P0, P1, P2q

5 for iÐ 2toD ´ 1 do

6 Get control point for next segment

C “ Alg5pPi,Ωq

7 Get K sample points and velocity components (next segments)

rS1,Ωs “ Alg4pK,Pi, C, Pi`1q

8 Concatenate rSs Ð rS, S1s

9 end

10 return S

4.2 Continuous Manifold Adaptation with Subspace Up-

date

Continuous Manifold Adaptation is the approach used by Hoffman et al. at [14]. This approach

was the foundation of our thesis and is the baseline to our results. Their objective is more

generic than ours. Having a source subspace fixed and limited in time that characterizes all



34 4.2. Continuous Manifold Adaptation with Subspace Update

the source samples, with the computation of a geodesic curve they can project the features of

this source subspace into intermediate subspaces between the source and target subspaces. This

target subspace is time-variant and aims to simulate the variations on the testing domain.

Suppose that at test time, we receive a stream of observations z1, . . . , znT P RD, which arrive

one at a time2. Assuming the distribution of possible points arriving at t can be represented by

a lower dimensional subspace Pt.

To align the training and test data, we seek to learn a time-varying transformation, Wt,

between source and target points, where t indexes the order in which the examples are received.

This transformation can be obtained by learning two time-varying embeddings that map between

points of the two lower dimensional subspaces, Ãt and B̃t, with the mapping in the original space

being defined as Wt “ ÃTUTPtB̃t. This transformation is the correspondent G in equation 3.7

and it is computed with the GFK algorithm explained in the previous chapter. This Since we have

a continuously changing target subspace, we must simultaneously learn the lower dimensional

subspace, Pt, representing the distribution from which the data was drawn at each time t. We

will search for a subspace that minimizes the projection error of the data:

Rerrpzt, Ptq “ ||zt ´ PtpP
T
t ztq||

2 (4.1)

This allows us to apply a smoothness to the subspace learning, with the assumption that the

target subspace does not change quickly.

At each step, the goal is to optimize the following equation:

min
PT
t Pt“I,Ãt,B̃t

rpPt´1, Ptq `Rerrpzt, Ptq ` ψpUÃt, PtB̃tq (4.2)

where rp¨q is a regularizer that encourages the new subspace learned at time t to be close to the

previous subspace of time t´ 1.

Equation 4.2 is non-convex and because of that they chose to solve it by alternating between

three steps:

1. Receive data zt

2. Given Ãt´1 and B̃t´1 compute Pt

2On our case, we have a batch of samples
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3. Given Pt compute Ãt and B̃t

To optimize step 2, they fixed Ãt´1 and B̃t´1 and then examined the third term of the optimization

function. Grouping the first and third term into a single regularizer of Pt, we can solve this

problem. Doing this enforces a smoothness between the subsequent learned subspaces. Fianlly,

we can express this subproblem as:

min
Pt

rpPt´1, Ptq `Rerrpzt, Ptq, P T
t Pt “ I (4.3)

Solving Equation 4.3 for rp¨, ¨q “ constant would result in Pt which is equal to the d largest

singular vectors of the data zt, which can be obtained via SV D. Due to the lack of enough data

at time t to compute a robust SV D, this optimization problem was solved with a variant of

sequential Karhunen-Loeve [15], which adapts a subspace incrementally (see algorithm 3).

4.3 Cyclic Temporal Clusters

This section has three subsection because is one approach but with three variants.

What these variants have in common is that all utilize two base concepts: smooth interpolation

and clustering the train and test data.

Starting from the latter, both, training and test data, are divided into groups of 6 hours (120

images), the train side has 4 divisions and the test side has also 4 divisions if we are testing 480

images (1 day) and has 20 divisions if testing for 2400 images (5 days).

This data clustering was thought and conceived with the idea that if we group together images

from those 6 hours the probability of the scene conditions being nearly the same was higher and

when testing images from those same time periods the accuracy of the test was greater, trying to

mitigate the problems mention early (image resolution, different light and weather conditions).

The second concept, Smooth Interpolation, as explain deeper on chapter 3 utilizes those clusters

(PCAs) and with the computation of a control point creates a smooth polynomial curve that will

serve as the base of the testing. That curve, in our case two curves for the training part and one

for the testing part, is divided into K intervals (10 in our work) and each point is then projected

into all the remaining points given us a training vector, which later is gonna be used for testing.
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4.3.1 Smooth Interpolation with Target Subspace Update

This is the first method we applied the smooth interpolation.

Even though this approach is inside this section, we only made clusters from the training data

and the only subspace that’s being updated is the target subspace. This training data clusters

allows us to compute the first two segments of the interpolation curve and get the interpolation

samples needed to make the classification (see algorithms [4,5,6]).

Here we assume the target data as a whole and use a continuous adaptation of the target PCA,

each step advancing a fixed number (block size see 4.1) and computing a new PCA with the help

of skml.m function which uses a variant of the efficient sequential Karhunen-Loeve algorithm to

update the eignbasis ([15]). This function receives as input the new batch of blocksize images

as well as the old PCA structure (see algorithm 3) and returns new elements for a new PCA

structure. After this subspace update we compute an interpolation curve from the last training

PCA to the one created with those new elements (using algorithm 6) and use that curve to classify

those new features. The process is then iterated until all the training images are classified and

the accuracy of that classification is stored to be analyzed after.

Fig. 4.1: Smooth interpolation with Target Subspace Update

As we can see in figure 4.1, after computing the initial source PCA (black dots), the new

samples arrive (green dots) form a target PCA and the first target segment of the curve is
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drawn. As the source data stays fixed and unchanged, the interpolation segments stay the same

and with the arriving of the new batch of samples (purple dots), it is required another target

interpolation segment and so on. We repeat the same process until all the images are classified.

4.3.2 Smooth Interpolation with Training Subspace Update

This method is very much alike with the previous one. However in this one at each batch of

new images arrive, those points are being projected onto both interpolation segments and store

that information for classification purposes. After this projection, those same samples are used

to update the training PCA to which those samples correspond to.

As the previous one, we start by computing four training PCAs and with the help of algorithm

3 and then with those same three algorithms ([4,5,6]) we compute the first two segments of

the interpolation curve. After this is done, we then proceed to project those samples on those

segments. With the help of sklm.m function to extract the new elements for that PCA, we

update the training PCA with the new samples. The difference between this approach and the

previous one is that we have the target data with clusters of 6 hours (120 images) each. This

allows us to correspond each of those clusters to one of the four training clusters (either 0h´ 6h,

6h´ 12h, 12h´ 18h or 18h´ 0h). When we have that correspondence we can then update that

corresponding training PCA by adding the new elements of the target PCA. Thus, adding more

information to the training part and, hopefully,get better results as time goes by. As we can see,

the following figure tries to explain what is happening with this approach.

Figure 4.2 shows us how this approach works. Initially we have 4 sources (black dots) corre-

sponding to the 4 initial PCA with the first interpolation curve, transversal to all approaches.

The new samples arrive (green dots) after they are projected onto this first curve, those green

dots are going to change the initial PCA and a new curve is compute between this new PCA and

the other previous ones. The next batch arrives (purple dots) do exactly the same to the second

training PCA and a new curve is drawn with the two new subspaces and the last two initial ones.

Similarly, the same occurs with the 3rd and 4th initial subspace and it continues until all the

samples are analyzed.
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Fig. 4.2: Smooth interpolation with Source Subspace Update

4.3.3 Smooth Interpolation with Training Subspace Update and TDA

The Smooth Interpolation with Training Subspace Update and TDA is the same as the last one

but with a little difference. This assumes that the dataset samples have some kind of noise3 and

tries to mitigate that noise. This allows us to predict labels from unlabeled data with a relatively

high probability of being correct.

The advantage of this method, compared to the previous one, is that we can choose which of the

samples to incorporate onto the existing training PCA. We can only add, for example, samples

that scored an accuracy above 90%. This allows us to only have good samples in our training

subspace.

The following figure tries to demonstrate this process.

3In this case, blankout noise
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Fig. 4.3: TDA process for selecting new samples

As we can see in figure 5.6, the black dots represent the original samples, the ones this method

assumes to have noise and to be corrupted. After applying the method, there were same of those

samples (now with mitigated noise) that meet the criteria of accuracy and are flagged with the

red circles around them. Those flagged samples (red dots) were originally unlabeled samples but,

with the help of algorithm 7, we can predict with a reliable probability the label of each one of

them. After this labeling we include those samples onto corresponding training subspace.

Algorithm 7: Transductive Domain Adaptation with mSDA.[5]

Input: Target dataset Xt P RNxD without labels, Source classifiers fk P RD Ñ r0..1sC

Output: Labels target Y t

1 Generate class predictions fpxt
nq for all xtn P X

t

2 Compose an augmented dataset U with utn “ rx
t
n; fpxtnqs

3 Estimate rW,hs “ Alg2pX
t, pq

4 Get denoised class predictions for xt as yt “
ř

W:,D`1:D`Cfpxq

5 Get Y t with c˚ “ argmaxcty
t
c|y

tu

6 return Y t
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Chapter 5

Development and Results

5.1 Development of the work

Succinctly, our work was based on the development of different algorithms trying to discover

which one was better. All these algorithms have the same initial data and the same separation

of train and test data, only differentiating when it comes on how to manipulate that previously

computed separation. As explain, in detail, in chapter 4, one of the developed algorithm utilizes

all the train data and all the testing data. Another one of those algorithms, uses PCA to reduce

the training and testing data to their principal components and then make an continuously

update of the training PCA. The next one, does exactly the same thing but with the slightly

difference that the test data is arranged in clusters of 6 hours each. And finally, the last one

which is divided into three sub-algorithms, aims to update no only the testing PCA but also

the training PCA, with the help of the labels received from TDA. In all of these, we compute

a TDA-free approach and a TDA approach trying to visualize if it improves the final accuracy

results.

5.1.1 Dataset

Since this work was meant to compare and try to find an improvement over the work done by

Hoffman et al. in [14], we had to used the same dataset they used, in order to maintain the

integrity and objective conclusions of the test results.

The dataset images were captured from a fixed traffic camera observing an intersection. Frames

41
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were updated at intervals of 3 minutes each with a resolution of 320x240. This resolution posted

a problem because conventional detection methods were unable to identify most of the cars. They

collected images for a period of two weeks which gives us the possibility of testing in different

conditions, which is also a challenging problem for domain adaptation because the changes include

illumination, shadows, fog, snow, light saturation, night time infra-red mode, etc. Because of the

resolution problem as well as this environment changes, insted of using conventional methods

(eg scanning-window car detection or deformable parts model) they (and we) opted for a scene

labeling, i.e., we compute features from over the whole image and create a label of the scene

instead of focusing only on the vehicles.

After getting all these images from the intersection, labels were human-handed input into a vector

as two classes: positive (label “ 1) and negative (label “ ´1). The following figure 5.1 shows

five positive and negative images from the used dataset, in different environment scenarios.

Fig. 5.1: Dataset images used for intersection traffic classification. Positive images in the top row,

negative images in the bottom row.

5.1.2 Experiment Setup

When it came to the setup of the experiment, here we didn’t use the same training time as them.

They only used 50 labeled images (the equivalent of 2.5 hours) for training and then evaluate

each of their algorithms on the immediately following 24 hours (480 images) ad 5 days (2400

images).

We, however, used one day of training (480 images) because we predicted that with the informa-

tion of a whole day (passing by the different stages of light) we’d have a better training dataset

for the following evaluation of the next 480 images (one day) and 2400 images (5 days).

As said before, this task is extremely challenging and cannot be solved with conventional ap-
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proaches because the images (and especially the cars within those images) are of very low reso-

lution.

They use GIST and SIFT-SPM features to test their CMA algorithm, based on two approaches:

Geodesical Flow Kernel (GFK) and Subspace Alignment (SA). We, as the feature dimension is

so extensive, first tested our approaches with GIST (512 features) and after tested with features

extracted from AlexNet neural network (4096 features).

5.2 Results and Evaluation

We reserved this section to present the results of our work. The idea was to, for each approach,

test it with the two set of features, GIST1 and AlexNet2. Unfortunately, that was not possible

for the Smooth Interpolation approaches due to the highly computation requirements and the

exorbitant time consuming it took to compute each segment. Thus, we test the differences

between these two features without adaptation and with the adaptation proposed by Hoffman,

CMA algorithm. The rest of the approaches were only tested with GIST features.

5.2.1 First Test - Influence of feature type and number of training

samples

The first test we did had two practical objectives: (1) see the influence of the feature type either

on approaches with no adaptation as well as on CMA approach; (2) see if the number of training

samples influences the accuracy of those methods due to the application of PCA techniques with

a lot of distinct information.

Our hypothesis for this latter objective is that a classification method that uses PCA to lower its

features dimension has a better performance when that PCA is composed with samples relatively

similar (eg. samples from only 3 hours of a day) instead of a PCA composed with distinct samples

(eg. samples from a whole day). We can see the difference in figure 5.2. The results of this test

are presented in table 5.1.

1GIST has 512 features
2AlexNet has 4096 features
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(a) (b)

Fig. 5.2: Two images showing the difference between 5.2a PCA with similar samples and 5.2b PCA

with distinct samples. As can be seen, in the left figure the center of the axis falls inside the point cloud,

this implies that it’s easier to associate new samples if it fall near that area. Contrariwise, in the figure

on the right, the center of the axis is placed outside any point cloud, being tougher to associate new

samples to any of the point clouds.

50 train samples 480 train samples

480 test samples 2400 test samples 480 test samples 2400 test samples

N
O

C
M

A

G
IS

T SVM 82.12 58.52 73.60 81.51

KNN 47.19 51.10 76.30 74.84

A
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et SVM 88.98 76.88 67.50 78.63

KNN 75.05 64.51 71.10 81.13
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T

SVM
GFK 83.37 60.27 81.29 81.67

SA 83.99 59.68 81.29 81.63

KNN
GFK 46.57 51.44 77.55 79.38

SA 46.57 51.35 77.55 79.51

A
le

x
N

et SVM
GFK 81.50 84.09 88.98 84.59

SA 81.50 84.05 89.19 84.80

KNN
GFK 74.22 77.93 89.39 80.51

SA 74.43 77.97 89.61 80.59

Table 5.1: First test: Accuracy Percentages of Hoffman’s Approach with different number of training

and testing samples, as well as with different feature type.

From table 5.1 we can withdraw some pertinent conclusions concerning the objectives we

wanted to achieve with this test. In response to our first hypotheses, see if the feature type is

influential, we can see that when there’s no adaptation, the neural network extracted features

dominated when less training samples on both tests (either 480 and 2400 samples) but was

somewhat precarious when the training samples are vast. In the presence of adaptation, the
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neural network features are the overwhelmingly winners. For our second hypothesis, understand

the role of training samples, we can see that the accuracies are way higher when we have a bigger

number of training samples.

In short

• Choosing the type of feature is essential

• If there’s enough training samples, the more we use to train the classifier the better

5.2.2 Second Test - Smooth Interpolation Approaches

This second test is reserved to the approaches we tried to implement. As explained earlier, we

proposed three approaches based on cyclical clusters and a smooth interpolation curve to make

the classification.

We are going to ascertain four statistical measures to better analyze the performance of our

methods. Those measures are: Accuracy, Precision, Sensitivity and Specificity.

• Accuracy: the degree to which the result of a measurement conforms to the correct value

or the standard. Our algorithms already return the accuracy, so we get the value for this

measurement directly from MatLab.

Accuracy “
True positives` True Negatives

True Positives` False Positives` True Negatives` False Negatives
(5.1)

• Precision: the degree to which repeated measurements under unchanged conditions show

the same results. Precision has to be calculated apart from accuracy and with the help of

confusion matrices. We use equation 5.2 to calculate the precision for each case.

Precision “
True positives

True Positives` False Positives
(5.2)

• Sensitivity: measures the proportion of positives that are correctly identified as such.

Sensitivity also needs the help of confusion matrices to be calculated. We use equation 5.3

to calculate the precision for each case.

Sensitivity “
True Positives

True Positives` False Negatives
(5.3)



46 5.2. Results and Evaluation

• Specificity: measures the proportion of negatives that are correctly identified as

such.Specificity also needs the help of confusion matrices to be calculated. We use equation

5.4 to calculate the precision for each case.

Specificity “
True Negatives

True Negatives` False Positives
(5.4)

We define the variables used on these equations as:

• True Positives: The number of images with vehicles that were correctly classified as

having at least one vehicle.

• True Negatives: The number of images without vehicles that were correctly classified as

not having any vehicle.

• False Positives: The number of images without vehicles classified as having vehicles.

• False Negatives: The number of images with vehicles classified as not having any vehicle.

(a) SVM Classifier (b) KNN Classifier

Fig. 5.3: Confusion matrix for no adaptation method

Adaptation Method Classifier Accuracy Precision Sensitivity Specificity

No Adaptation
SVM 82.80 78.03 82.28 83.18

KNN 80.88 75.82 80.10 81.45

SI+TgSU
SVM 81.42 80.65 73.47 87.20

KNN 80.42 83.07 73.73 86.46

SI+TrSU
SVM 79.43 73.45 80.00 79.01

KNN 80.05 73.73 81.68 78.86

Table 5.2: Second Test: Smooth Interpolation approaches and their results
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(a) SVM Classifier (b) KNN Classifier

Fig. 5.4: Confusion matrix for the Target Subspace Update approach

(a) SVM Classifier (b) KNN Classifier

Fig. 5.5: Confusion matrix for the Train Subspace Update approach

The results on table 5.2 have for comparison the no adaptation computed with the Hoffman’s

algorithm. As we can see, for our first approach (Smooth Interpolation plus Target Subspace

Update) in terms of accuracy the results were just a little bit worse but the precision was con-

siderably higher (˘8%) for the KNN classifier and just a little higher (˘2.5%) when the SVM

classifier was used. These results weren’t accordingly to our expectations since we expected them

to be much higher than the ones we got. This may be due to a lack of classifier optimization.

Unfortunately, we couldn’t test the TDA approach with the other ones because of how the

classifier models are trained on Hoffman’s method and we couldn’t implement those models on

the TDA algorithm. Instead, we used the KNN and SVM from MatLab to train new models and
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compared the TDA approach with those new models.

(a) SVM Classifier (b) KNN Classifier

Fig. 5.6: Confusion matrix for TDA approach

Adaptation Method Classifier Accuracy Precision Sensitivity Specificity

No Adaptation
SVM 75.47 65.47 88.22 66.21

KNN 78.88 75.99 85.94 71.48

SI+TDA
SVM 76.09 66.17 88.32 67.22

KNN 79.13 71.73 83.17 76.20

Table 5.3: Results from Smooth Interpolation plus TDA

As expected and shown by table 5.3, the TDA method improved the classification for both

classifiers. However, it wasn’t a significantly improve, comparing to the time consuming com-

putation it took to compute the results. We ran some more tests and the TDA almost always

increased the performance of the classification. It’s safe to say that TDA approach should be

used as complement when classifying on an unsupervised domain.
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Conclusions and Future Work

6.1 Conclusions

With the development of this work it is possible to conclude that choosing the right type of fea-

ture is of the utmost importance since it has been revealed that the performance of the classifiers

greatly improves when comparing both features (GIST and AlexNet. See table 5.1). Apart from

this conclusion, we could also see that the number of training samples to train the classifiers

models is also an important part for the classification process.

Regarding our approaches, the results shows that there is no great improvement relatively to

the no adaptation approach. The TDA approach was tested independently from the other two

approaches and we conclude that it is helpful since it improves a little the classification perfor-

mance. However, with our dataset, the time it took to generate all the results, the approaches

tested are not beneficial. This is due to the great amount of time needed for each test.

Ultimately, we could conclude that the GIST features though weaker than neural networks, are an

excellent descriptors for holistic methods since they have considerably less features (512 vs 4096)

and the computation time associated with it is much lower. Our approaches, although not

achieving the results we were expecting, performed well and with a considerably reliable accu-

racy for vehicle existence or not. Down the line, hopefully, this work could be done with other

circumstances and achieve even greater results.

49
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6.2 Future Work

As future work, there are several new tasks that can be implemented in an intelligent system as

well as other ones that can be improved. Some of them are listed bellow.

• Optimize this method and implement an efficient algorithm that uses real-time video ac-

quisition. This will allow the method to be used on traffic surveillance cameras and return

accurate information.

• Add to the method a vehicle classification and a counter algorithms in order to give a more

discriminative idea of the traffic being analyzed instead of only giving the existence or not

of car.

• Optimize classifiers models, in order to design a more robust and accurate model for image

classification.

• It would be very interesting, although time-consuming, to see how the neural networks

would perform when applying the smooth interpolation approaches. In our case was not

possible due to the great amount of time needed.
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