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Resumo

Sensores virtuais são modelos inferenciais baseados em software que usam variáveis de
processo (disponíveis através de sensores), também conhecidas como variáveis “fáceis de me-
dir”, para estimar o valor de variáveis de qualidade (variáveis “difíceis de medir”), que não
podem ser facilmente medidas, ou o seu processo de medição tem um alto custo associado
(p.e. apenas pode ser feito esporadicamente, ou com atrasos temporais elevados). Os pro-
cessos industriais estão geralmente equipados com um elevado número de sensores, medindo
uma grande variedade de quantidades diferentes (p.e. temperatura, fluxo, abertura de vál-
vulas, etc), disponíveis em tempo real a uma frequência constante. No entanto, em algumas
circunstâncias, o valor das variáveis de qualidade só pode ser obtido através de análises la-
boratoriais, levando a uma frequência de medição não-fixa e atrasos temporais substanciais.
Estes problemas podem levar a degradação de qualidade do produto final. Os sensores virtu-
ais podem, nestes casos, possibilitar um maior grau de controlabilidade do processo através
da disponibilização de estimações precisas dessas variáveis de qualidade.

A frequência de amostragem significativamente elevada das variáveis “fáceis de medir”
quando comparada com a das variáveis “difíceis de medir” leva a que muitas amostras sejam
descartadas na etapa de obtenção e filtragem de dados da modelação de sensores virtuais. Isto
acontece já que a maior parte dos modelos usam abordagens de aprendizagem supervisionada,
nas quais apenas as amostras com respetiva etiqueta (i.e. amostras para as quais as variáveis
de processo têm correspondentes variáveis de qualidade) são usadas no processo de treino.
Abordagens de aprendizagem semi-supervisionada, no entanto, usam tanto amostras com
e sem etiqueta no processo de treino. Nesta dissertação, um método semi-supervisionado
baseado em aprendizagem usando múltiplas vistas, regressão de mínimos quadrados co-
regularizada (coRLSR), é implementado, usando também dados sem etiqueta para melhorar
o desempenho de previsão.

Outra etapa muito importante na modelação de sensores virtuais é a seleção de caracte-
rísticas. O elevado número de sensores numa planta de produção leva a um elevado número
de possíveis características de entrada, aumentando a complexidade global do problema de
regressão. Na maior parte dos casos, muitas características apresentam correlações com ou-
tras, e o uso de todas para treino do modelo pode causar a deterioração do desempenho de
previsão. De facto, a maior parte do trabalho de pesquisa científica neste tópico sugere que,
em muitos casos, poucas características são precisas para estimação suficientemente precisa.
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As abordagens descritas na literatura para classificação e seleção de características partilham
um grau relativamente elevado de complexidade, que pode tornar o seu uso proibitivo em
cenários em que o desempenho temporal é importante. Um método geral para classificação
de características baseado em análise de sensibilidade é proposto nesta dissertação, de modo
a que, de forma eficiente, a relevância de cada característica seja calculada sem a necessidade
de retreinar o modelo.

Os testes foram efetuados num processo real de polimerização, de forma a avaliar ambas
as técnicas de aprendizagem semi-supervisionada e de classificação/seleção de característi-
cas. Os resultados mostraram que o modelo de regressão semi-supervisionada foi competitivo
com os métodos de aprendizagem supervisionada mais populares de sensores virtuais quando
nenhum procedimento de seleção de características foi efetuado. No entanto, usando o pro-
cedimento de seleção de características, o método de regressão semi-supervisionada imple-
mentado não ultrapassou as alternativas supervisionadas em desempenho de predição. Por
outro lado, o procedimento de classificação e seleção de características proposto aumentou
substancialmente o desempenho de predição de todos os modelos de regressão estudados.
Para além disso, o conhecimento obtido pela classificação de características permite um
subsequente aumento de desempenho de predição, quando usado explorando a natureza de
múltiplas vistas do método coRLSR.
Palavras-chave: Sensores Virtuais, Inteligência Computacional, Aprendizagem Compu-
tacional, Aprendizagem Semi-Supervisionada, Estimação, Classificação de Características,
Seleção de Características.



Abstract

Soft sensors are software-based inferential models that use process variables (available
from online sensors), also known as easy-to-measure variables, to predict quality variables
(hard-to-measure variables), which cannot be easily measured, or its measurement has high
associated cost (e.g. can be only done sporadically, or with high delays). Industrial processes
are generally equipped with a large number of sensors measuring a large variety of different
quantities (e.g. temperature, flow rate, valve openings, etc), available in real-time at a con-
stant frequency. However, in some settings, quality variables are only available by laboratory
analysis (for example), leading to non-fixed measurement frequency and substantial delays.
These issues can lead to quality degradation of the final product. Soft sensors can, in such
cases, enable a higher degree of controllability of the process by providing accurate online
estimations of those quality variables.

The significantly higher sampling rate of the easy-to-measure variables when comparing
to that of the hard-to-measure variables leads to many samples being discarded at the data
collection and filtering stage of soft sensor modeling. This happens since most models use
supervised learning approaches, in which only the labeled samples (i.e. samples for which the
process variables have corresponding quality values) are used in training. Semi-supervised
learning approaches, however, use both labeled and unlabeled samples in training. In this
dissertation, co-regularized least squares regression (coRLSR), a semi-supervised method
based on multi-view learning, is implemented, using also unlabeled data to improve predictive
performance.

Another very important stage in soft sensor modeling is feature selection. The large
number of online sensors in a processing plant equates to a large number of possible input
features, raising the overall complexity of the regression problem. In most cases, many
features have correlations with one another, and the use of the entire available feature set
for model training can deteriorate predictive performance. In fact, most of the research
performed on this topic suggests that, in many cases, only few features are needed for
sufficiently accurate predictions. The approaches described in the literature for feature
ranking and selection share a relatively high degree of complexity, which can be prohibitive in
time-sensitive scenarios. A general method for feature ranking based on sensitivity analysis is
proposed in this dissertation, in order to efficiently compute each feature’s relevance without
retraining the model.
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Testing was performed on a real-world polymerization batch process, in order to evaluate
both techniques of semi-supervised learning and feature ranking/selection. Results showed
that the semi-supervised regression model was competitive with the most popular soft sensor
supervised model approaches when no feature selection procedure was performed. However,
when performing feature selection, the implemented semi-supervised regression method did
not surpass the supervised approaches in predictive performance. On the other hand, the
proposed feature ranking and selection procedure substantially improved the predictive per-
formance of all regression models considered. Furthermore, its capabilities were extended
when using the feature ranking knowledge with the multi-view nature of coRLSR, enabling
a subsequent improvement in predictive performance.
Keywords: Soft Sensors, Computational Intelligence, Computational Learning, Supervised
Learning, Semi-Supervised Learning, Estimation, Feature Ranking, Feature Selection.



Symbols and Abbreviations

List of Acronyms
ANN Artificial Neural Network
coRLSR co-Regularized Least Squares Regression
EM Expectation Maximization
FIR Finite Impulse Response
kNN k Nearest Neighbors
LS-SVM Least Squares Support Vector Machine
MSE Mean Squared Error
NN Neural Network
NRMSE Normalized Root Mean Squared Error
PLS Partial Least Squares
RFE Recursive Feature Elimination
RLSR Regularized Least Squares Regression
RMSECV Root Mean Square Error of Cross Validation
RMSE Root Mean Squared Error
SSL Semi-Supervised Learning
SS Soft Sensor
SVM Support Vector Machine

State of The Art and Background
n number of samples
X set of samples
xi sample at instant i
yi label at instant i
X distribution of X
Y distribution of Y

vii



viii

Co-Regularized Least Squares Regression
att ∈ RM×d logical matrix that contains the attribute/feature split for all views
C vector containing the solution coefficients for all views
cv vector containing the solution coefficients for view v

d number of input variables/features
fv ∈ R(Nv+Z) vector of predictions (by predictor fv) for all labeled and unla-

beled samples of view v
fv predictor of view v

Gv regularization matrix of view v

inst ∈ RM×(N+Z) logical matrix that contains the instance/example split for all
views

K kernel matrix of view v

kv(·, ·) kernel function of view v

Lv labeled sub-matrix of the kernel matrix Kv

M total number of views
N number of labeled samples
Nv number of labeled samples in view v

Uv unlabeled sub-matrix of the kernel matrix Kv

Xj j-th feature/variable of X

Xest matrix of samples used to compute the estimations ŷ

X ∈ R(N+Z)×d matrix of training samples
xi ∈ Rd input vector at instant i
ŷ estimates for the Xest matrix of samples
y ∈ R(N+Z) vector of training labels
yv ∈ RNv vector of labels in view v

yi label at instant i
Z number of unlabeled samples
Γ set of labeled samples
H Hilbert Space of functions
L(·, ·) convex loss function
λ tunable parameter
ν regularization parameter
νv regularization parameter of view v

Ω[·] regularization term
Φ set of training data
Φ∗z set of unlabeled samples
Φv set of samples of view v

σ ∈ RM vector containing a kernel parameter for all views (standard devia-
tion)
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Feature Ranking and Selection
d number of input variables
E performance metric computed on the predictions of f
E(j) performance metric computed on the predictions of f(j)
f predictor trained with the X set
f(j) predictor trained with the permuted X(j) set
J(Xj) rank of the j-th feature
X input set of variables
Xj j-th input variable
X(j) input set with the j-th variable permuted
X−j input set without the j-th variable
xi ∈ Rd input vector at instant i
ŷ estimates computed using the intact X set
ŷ(j) estimates computed using the perturbed X(j) set
y output variable
ε threshold

Test and Results
fv predictor of view v

kv(·, ·) kernel function of view v

M total number of views
Nv number of labeled samples in view v

n number of samples
xi vector of input data at instant i
y average observed value of y
yi label at instant i
ymax maximum observed value of y
ymin minimum observed value of y
L(·, ·) convex loss function
λ tunable parameter
νv regularization parameter of view v

σv kernel parameter of view v (standard deviation)
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Chapter 1

Introduction

1.1 Motivation and Context

Industrial processes are generally equipped with a large number of online sensors that
measure a multitude of process variables (e.g. temperature, flow rate, etc) whose values can
be obtained at a constant frequency with low cost. However, in many cases, quality variables
are not available in real time, being measured sporadically, at a non-fixed frequency or
with high delays (e.g. laboratory measurements). Soft sensors are software-based inferential
models that use process variables to predict quality variables (for example), making them
available at a higher frequency. This is particularly useful in settings that require laboratory
analysis in order to measure product quality. The delay associated with these analysis can
lead to quality degradation of the final product, proving the value that a soft sensor can
have by providing accurate online estimates.

Most soft sensors use supervised methods to construct the above mentioned relation-
ship between process (often easy-to-measure) and quality (often hard-to-measure) variables.
These approaches only use labeled data (i.e. samples for which the process variables have
corresponding quality value(s)) during the training stage. Semi-supervised methods, on the
other hand, use both labeled and unlabeled data (i.e. samples for which the process variables
do not have corresponding quality value(s)) in order to construct the model. Since the sam-
pling rate of the process variables is much higher than the frequency of laboratory analysis,
the number of unlabeled samples far exceeds the number of labeled ones, creating a setting
that can favor semi-supervised methods.

The large number of different process variables in the industrial context can cause not
only the discrepancy in the number of available labeled and unlabeled samples, but also the
rising complexity of the regression problem. One of the simplest techniques for dimensionality
reduction is to select a subset of the input variables/features, and discard the remaining ones.
Frequently, there are features which carry little to none useful information for the solution
of the problem. Also, some sets of features can show very strong correlations between each

1



2 CHAPTER 1. INTRODUCTION

other so that the same information is repeated in several features. For this reason, feature
selection is a very important step in soft sensor design, as the presence of irrelevant features
can decrease a model’s predictive performance. The feature selection approaches in the
literature frequently require a heavy computational effort, increasing the model development
time. Focusing on lower computational cost, a feature ranking and selection method is
devised. Based on sensitivity analysis, the rank of a feature can be obtained by perturbing
a specific variable/feature and measuring the variation of the output, without the need of
retraining the model. Then, a procedure of feature selection can be performed to select the
subset that guarantees the best performance.

In this dissertation, co-Regularized Least Squares Regression (coRLSR), a semi-supervised
approach based on Regularized Least Squares Regression (RLSR), is used to compare against
some of the most popular supervised methods, such as Partial Least Squares (PLS), Support
Vector Machines (SVM) and Neural Networks (NN). Furthermore, the devised algorithm of
feature ranking and selection is used to improve not only coRLSR’s performance but also
the remaining mentioned approaches.

1.2 Goals

This dissertation aims to explore techniques of semi-supervised learning and feature rank-
ing and selection to the soft sensor modeling context, inferring on the advantages brought
by the studied approaches to predictive performance. The goals of the work are:

1. To implement an algorithm based on a semi-supervised multi-view approach capable
of performing regression on a set of training data;

2. To develop and implement a feature ranking and selection method focusing on flexible
adaptation and low computational cost;

3. To conduct tests on a real-world dataset in order to evaluate the effectiveness of the
implemented algorithms.

1.3 Implementations and Key Contributions

All required practical work was done in the MATLAB® computation environment. Sev-
eral scenarios were tested in order to analyze and validate the relevance of not only the
methods for semi-supervised regression learning presented in Chapter 3, but also other su-
pervised methods for regression in the soft sensor context. CoRLSR was implemented as a
set of MATLAB® functions, in order to test and compare its predictive performance. Some
coding optimizations were performed, leading to a decrease in runtime when compared to
the original paper’s results, further expanding coRLSR’s applicability. Moreover, a feature
ranking approach was devised, as presented in Chapter 4, constituting the most prominent
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contribution of this dissertation. The proposed approach, based on sentitivity analysis, fo-
cuses on low complexity, leading to a computationally efficient procedure to rank features.
The general nature of the procedure enables its use with any regression method, widening
its applicability. The introduction of a parameter in the feature selection step lowers the
computational demand when compared to the methods for feature ranking proposed in the
literature. A real-world scenario was considered in order to infer the effectiveness of both the
methods for semi-supervised regression learning and the feature ranking/selection techniques
in the industrial context. The studied process belongs to the chemical industry field, where
the advantages of soft sensors are well known. Furthermore, the nature of chemical indus-
trial processes usually leads to the presence of large amounts of unlabeled data and many
candidate input variables for regression. This setting allows for a deeper understanding on
how the considered techniques improve the current state of soft sensor development.

From the work of this dissertation it also resulted the paper “Semi-Supervised Soft Sen-
sor and Feature Ranking Based on Co-Regularised Least Squares Regression Applied to a
Polymerization Batch Process” [Ferreira et al., 2017], which is included in Appendix A, and
that was published in the “IEEE 15th International Conference on Industrial Informatics
(INDIN 2017)”, that was held on July 24-26, 2017, in Emden, Germany.

1.4 Structure

This dissertation is divided into six chapters, the content of each being the following:

• In Chapter 1, the context and motivation about the studied topic is stated, as well as
the main goals of the dissertation;

• In Chapter 2, a brief background on semi-supervised learning, co-learning and multi-
view approaches is provided and a deeper insight into soft sensor modeling is given;

• In Chapter 3, the semi-supervised approach to soft sensor modeling is described, as
well as its implementation;

• In Chapter 4, the devised method for feature ranking and selection is explained, along
with its theoretical proof and practical implementation;

• In Chapter 5, several experiments for testing and validation of the methods stated in
Chapters 3 and 4 are performed and their results are presented and discussed;

• In Chapter 6, the general conclusions are presented and the possible future work is
discussed.





Chapter 2

State of the Art and Background

This chapter gives an overview of different types of paradigms in machine learning, as
well as a brief history of semi-supervised learning, in order to clarify its key concepts. Then,
a more in-depth look to co-training and multi-view methods is presented as it provides the
theoretical basis to the semi-supervised method coRLSR. Finally, an insight on soft sensor
development and state of the art model approaches is presented.

2.1 Machine Learning Paradigms

In machine learning there are two main entities: the teacher and the learner. The teacher
has the knowledge required to perform a given task, and the learner’s goal is to learn the
knowledge to perform the task [Lampropoulos and Tsihrintzis, 2015]. The effort is then
typically divided by these two entities: the more the inference capabilities of the learner the
less the effort of the teacher and vice-versa. The most important type of learning is Learning
from Examples, in which the teacher provides a set of observations to the learner so that he
can infer on new samples. This type of learning can be discriminated in three categories:
unsupervised learning, supervised learning and reinforcement learning.

Consider X = (x1, . . . , xn) a set of n samples (or examples), assuming that all samples
are drawn i.i.d. (independently and identically distributed) from a common distribution on
X. The goal of the learner in unsupervised learning is to find interesting structure in the data
X. This problem can be either that of discovering groups of similar examples within the
data (clustering), determining the distribution of data that could have generated X (density
estimation), among others [Bishop, 2006].

The goal of the learner in supervised learning is to find a mapping from x to y, given
a training set of pairs (xi, yi) [Chapelle et al., 2010]. The yi are denominated labels of the
samples xi, with Y = (y1, ..., yn) ∈ Y being a set of labels. As before, it is assumed that the
pairs (xi, yi) are sampled i.i.d. from some distribution which in this case ranges over X× Y.
This task is well defined, as a mapping can be evaluated in terms of its predictive performance
on test samples. When the labels are continuous, the task is called regression. On the other

5
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hand, when labels take values in a finite set (discrete), the task is called classification.

Reinforcement learning is fundamentally different from supervised learning. Here the
learner does not have a priori knowledge of what to do. Instead, it must take actions
to achieve a goal, and a reward is given by the teacher at each state according to the
defined goal [Sutton and Barto, 1998]. Therefore, the learner must evolve through trial and
error, balancing between exploration of possible new actions and exploitation of its current
knowledge.

Semi-supervised learning (SSL) merges concepts from both unsupervised learning and
supervised learning. The data used in training is made up of both labeled examples and
unlabeled ones. In this sense, the most common approach is to see SSL as supervised
learning with additional information on the distribution of the examples xi(i = 1, ..., n), as
the goal is shared with supervised learning: to predict a label for a given xi [Chapelle et al.,
2010].

2.2 Brief Background of Semi-Supervised Learning

One of the first ideas of using unlabeled data in the training stage dates as back as the late
1960s, with [Scudder, 1965], along with later developments by [Fralick, 1967] and [Agrawala,
1970], to give a few examples. This method/approach developed in these references, used for
classification, is called self-learning, also known as self-training or self-labeling. It consists
in the repeated use of a supervised method. After training on the labeled data only, in
each step a part of the unlabeled examples is labeled according to the current decision
function. These newly labeled examples are then used to retrain the supervised method and
the process repeats. A big disadvantage of self-learning is that its effect is highly dependent
on the supervised method chosen, as it can lead to the unlabeled data having no effect on
the solution, being unclear what it is really being done. The SSL paradigm can be further
sub-divided into transductive learning and inductive learning. In the transductive learning,
or transduction, paradigm [Vapnik and Kotz, 1982], given a labeled training set, and an
unlabeled test set, the goal is to perform predictions only for the unlabeled test points. Many
methods developed later operate on this setting, while the rest rely on inductive learning,
where the goal is to find a prediction function defined on the entire space of samples. The
interest in SSL increased in the 1990s, in great part due to applications in natural language
problems and text classification [Nigam et al., 1998], [Blum and Mitchell, 1998], related to the
expansion of the Internet. The majority of the developments were focused on classification
problems, leaving regression as a fairly untouched area. From the late 2000s semi-supervised
regression gained more popularity among researchers. These efforts were mostly based on
co-training and multi-view learning (concepts explained later on), by [Zhou and Li, 2005],
[Sindhwani et al., 2005] and [Brefeld et al., 2006], the later being the ones who proposed the
coRLSR, the semi-supervised method used throughout this dissertation.
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2.3 Co-Training and Multi-View

The co-training paradigm, proposed by [Blum and Mitchell, 1998], contributed to the
rising interest in SSL, being an important achievement in the field, as a departure from the
highly appraised Expectation Maximization (EM) algorithm [Dempster et al., 1977]. Co-
training uses two classifiers, training them separately on two views (i.e. two attribute sets,
each of which sufficient for learning and conditionally independent given the class). Then,
after classifying the unlabeled examples, each classifier provides the other with the unlabeled
examples (and respective labels) they feel most confident about. The process repeats, but
now, each classifier’s training set is augmented by the examples given by the other. The
fundamental idea here is that the two classifiers must agree on the labeled data as well as the
unlabeled data. Hypertext classification is a common application of this approach, in which
setting it is considered that the links and text of each web page constitute two independent
views of the same data. As can be noted, the requirements for co-training to operate are
quite strict. Nevertheless, [Brefeld and Scheffer, 2004] found that in many domains, even
when there is no natural split of the attributes, simply splitting them at random into different
views can still be quite effective.

Multi-view learning is similar in concept to co-training, as the focus is the agreement
among different (in this case not necessarily two, but multiple) learners. Most multi-view
methods do not require the particular assumptions of co-training. Instead, multiple hy-
pothesis are trained from the same labeled set of example, and at the same time aiming to
minimize the disagreement on the unlabeled data. Zhou and Li [2005] applied these concepts
to kNN regression, using two distinct measures for the two hypotheses (instead of two disjoint
attribute sets). Sindhwani et al. [2005] proposed an approach similar to the non-parametric
version of coRLSR for classification. The underlying framework is co-regularization, the goal
of which is optimizing measures of agreement and smoothness over labeled and unlabeled
data.

2.4 Soft Sensors

Soft sensors are software-based sensors that can perform a multitude of tasks in process
control. They can be developed using many different techniques, and have been successfully
applied to a number of different industrial settings, such as refineries [Yuan et al., 2017b],
semi-conductor manufacturing [Lee and Kim, 2015], chemical processes [Li et al., 2016],
batch fermentation processes [Jin et al., 2014], to name a few examples.

Industries nowadays more than ever are faced with the challenging task of producing the
highest quality products at the lowest cost possible in order to stay competitive. These two
competing factors are relevant in determining the market success of an industry [Fortuna
et al., 2006]. Power and raw materials consumption are directly tied to the final product
cost, while process variables can be used to determine product quality. Moreover, some other
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factors have to be taken into consideration, such as pollution emissions, safety rules, device
faults and malfunction, contributing to a higher complexity of the industrial control system.

All the above-mentioned factors constitute a big challenge to handle, as good solutions
require a profound knowledge of the process and of its key parameters. Therefore, a large
number of process variables must be monitored by installing measuring systems across all
of the production facility. The environment on which these measuring devices operate is
generally quite hostile, leading to unexpected faults to occur. Furthermore, a significant
delay can be introduced by some measuring tools, possibly leading to an efficiency drop on
the control system. It is obvious that the installment and maintenance of a large plant’s
measuring network is almost always costly and affects the productions’ total running cost.
For this reason, in some settings, the total number of monitored process variables and/or
their measuring sample frequency is reduced. This, however, is not the norm. In many
cases, the problem lies on the infrequent sampling of some process variables due to the
lack of online sensors. When those process variables that directly affect product quality are
only available by laboratory analysis (for example), high delays are introduced, reducing the
overall controllability of the process [Facco et al., 2009].

Well-designed soft sensors can solve the issues above, as they:

• have lower cost compared to hardware devices, and can easily be implemented on
existing hardware (e.g. microcontrollers);

• work in conjunction with hardware sensors, providing information for fault detection
tasks;

• overcome the time delays introduced by slow hardware sensors or offline analysis by
estimating data in real-time.

2.4.1 Applications

Soft sensors have a wide range of applications, allowing their deployment in practically all
industrial fields. As many industrial plants are equipped with real-time systems for the pur-
pose of collecting online process information (e.g. obtained from sensors) or digital systems
in charge of process monitoring/control, SSs have gained popularity among researchers and
process control engineers in the last decades, nowadays being regarded as a valuable tool in
the industrial context. The most common applications of SSs are online prediction, process
monitoring and fault detection, and sensor fault detection and reconstruction [Kadlec et al.,
2009].

2.4.1.1 Online Prediction

In most industrial settings, some key process variables and quality variables are essential
to ensure high production quality. In some cases, technical or economical limitations can
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render infeasible the online measurement of these variables. Alternatively, they may only
be available through laboratory analysis. The scarce availability of these measurements de-
creases the controllability of the associated process. Well designed soft sensors can provide
real-time predictions of the desired variables, and can even be incorporated into the auto-
mated control loops of the process, if the predictions are accurate enough. Most chemical
industrial processes share this issue, being the most common application for soft sensor on-
line prediction, as their dynamics are intricate and there is often no way of obtaining the
required information online. In [Jin et al., 2014], a SS is developed to estimate substrate con-
centration in a chlortetracycline fermentation process, a kind of broad-spectrum antibiotics
widely used in pharmaceutical, agriculture and animal husbandry. A general SS approach
for estimating product composition from the temperature profile of a distillation processes
is devised in [Rani et al., 2013]. In polymerization processes, SSs are used to e.g. estimate
resin quality (through acidity number and viscosity values) [Facco et al., 2009] or melt index
(MI) of a propylene production process [Shang et al., 2014]. In [Yuan et al., 2017b,a], SSs
are developed for prediction of butane content in a debutanizer column (refinery process).

2.4.1.2 Process Monitoring and Fault Detection

At the base of an industrial control system is the control level, which implements the
actual control loop. Above this is the supervision level, in charge of monitoring the pro-
cess’ operation almost without relying on the presence of human operators. Fault detection
and diagnosis are part of the supervision tasks accomplished by modern industrial control
systems. Supervision functions evolved from a simple check of important variables (raising
a alarm upon a threshold value trespass) to the use of advanced techniques of computa-
tional intelligence, mathematical modeling, signal processing, etc. Modern fault detection
and diagnosis systems aim to:

• detect faults in the components of the system in advance, while providing all the
information available about the fault which is occurring (or has occurred);

• provide insight to maintenance and repair needs, enabling more efficient scheduling;

• provide a basis for the development of fault-tolerant systems.

Redundancy is a key aspect of fault detection and diagnosis strategies. By having two
or more ways of determining the same quantity (e.g. variables, parameters), detection and
diagnosis actions can be more effective. The underlying concept being redundancy in fault
detection strategies is the comparison of information from the monitored system and a
redundant source. A fault can then be detected when these two sources provide different
sets of information. The redundant source can be of three main kinds: (i) physical, by
physically replicating the component to be monitored; (ii) analytical, through the use of a
mathematical model for the component; (iii) knowledge, consisting of heuristic information
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about the process. In industrial applications, a fault detection and diagnosis algorithm
should use more than one source of redundancy in order to effective. In [Huang, 2008]
Bayesian methods are proposed for control loop monitoring and diagnosis. These methods are
flexible in the presence of missing variables or missing data, and can be applied to problems
with industrial application background, including soft sensors. A soft sensor capable of not
only online prediction but also adaptive process monitoring is proposed in [Grbić et al., 2013].
Based on the Gaussian mixture model and Gaussian process regression, the soft sensor uses
a procedure for variable selection to reduce the dimensionality of the input space. In [Zhang
et al., 2016], a decentralized version of kernel partial least-squares is applied to nonlinear
process monitoring, being applied to a continuous annealing process, strip steel producing.

2.4.1.3 Sensor Fault Detection and Reconstruction

Sensor validation is a specific case of fault detection in which the actual sensor (or set of
sensors) is the system being monitored. While its basic purpose is to evaluate the reliability
of a specific hardware sensor’s measurement, it can also provide estimates in case of its mal-
function. This way, soft sensors can be used as a source of analytical redundancy. Operating
in parallel with hardware sensors, any difference between the outputs of the two can be used
to detect any possible fault. Moreover, soft sensors can also act as a back-up measuring
device once a fault has been detected without the need of ceasing a process’ operation.

2.4.1.4 Other Applications

Soft sensors can have yet more possible applications than the ones mentioned so far. For
example, the use of a soft sensor instead of a hardware sensor can be motivated by economical
reasons. In some cases, a software tool is a more viable solution than an actual sensor.
Still, without any form of redundancy, much care should be taken in assessing predictive
performance, and periodic model validation should be performed by using measuring devices
and retuning the soft sensor. The need for soft sensor maintenance is a well known issue,
and can have different causes, such as a change to a new process working point, or a change
in system parameters, in the case of slowly time-varying systems. This will be explored in
greater detail later.

Another possible application is related to what-if analysis. As soft sensors are designed
with either theoretical basis or historical process data, they may be able to predict the system
output for any input trend. This can be used to simulate the system dynamics corresponding
to input trends of interest, providing both a deeper understanding of the process and/or
insight into adopting more suitable control policies. As expected, when using soft sensors
purely based on previous data, the designer must ensure that the SS is trained on data
representative of the whole system dynamics. Furthermore, the choice of the synthetic input
must also be done according to the system dynamics itself.



2.4. SOFT SENSORS 11

2.4.2 Soft Sensor Design

A soft sensor developer faces many challenges during the different stages of SS design.
There are critical choices to be made, influenced by the nature of most industrial settings, in
order to obtain a reliable and useful source of additional information that, in many scenarios,
only soft sensors can provide. Soft Sensor design is typically composed of the following
main steps: data collection and filtering, feature selection, model choice and training, model
validation, and model maintenance [Fortuna et al., 2006; Kadlec et al., 2009]. As the arrows
in Figure 2.1 suggest, the process is not always linear. In fact, if issues arise at any stage of
SS development, the designer must reconsider on the choices made so far in order to solve
such issues.

Data collection and filtering

Model validation

Model maintenance

Feature Selection

Model choice and training

Data collection and filtering

Model validation

Model maintenance

Feature Selection

Model choice and training

Figure 2.1: Typical stages of soft sensor design.
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2.4.2.1 Data Collection and Filtering

Processing plants are generally heavily instrumented for the purpose of process control,
resulting in a large set of operation data with many different sources (from all available
online sensors). Real-world industrial data is not easy to work with, as some well-known
problems arise with its collection and processing. In this first stage of development, plant
experts and/or operators can provide a deeper insight into the process’ nature, so as to
mitigate the effect of issues such as the presence of outliers, sampling time disparity and
missing data. These issues can be caused by malfunctioning measuring devices, for example,
or by measuring limitations of the process itself. Moreover, the data used in training must
be carefully chosen so that it can adequately represent the whole system dynamics.

2.4.2.1.1 Outliers Outliers are inconsistent observations in relation to the majority of
stored data. Industrial data are usually corrupted by the presence of outliers, caused by,
for example, sensor malfunction, communication errors or hardware degradation. After
performing any procedure for outlier detection, the designer must evaluate the candidate
outlier list in order to track possible false positive/negative detections) with the help of a
system expert. This evaluation must be careful, as important information could be lost if
observations labeled as outliers were to be removed from the data wrongly.

2.4.2.1.2 Missing Data In some cases, particular observations might have missing data
for one or more features. As most models cannot handle such scenarios, this issue can be
solved by one of two different approaches. One approach is to remove the observations that
contain missing data, also known as listwise deletion. This approach is quick and simple, but
should not be overused. When the number of samples with missing data is large relatively to
the total number of samples, important information for the other features could be lost. In
such cases, the recommended approach is to fill-in the missing values using some imputing
method. In these kind of methods, the missing values are replaced by the mean value or
a randomly selected value for the remaining observations of that feature. More complex
methods involving feature modeling can also be applied.

2.4.2.1.3 Sampling Rates As mentioned before, in industrial applications, some vari-
ables have different sampling rate than others. This is particularly clear when considering
the acquisition rates of easy-to-measure and hard-to-measure variables, as that of the easy-
to-measure variables is typically much higher [Souza et al., 2016]. Such phenomenon is
illustrated in Figure 2.2. In order to use such data, it is required that the variables must be
synchronized. This synchronization can be performed by:

• down-sampling the easy-to-measure data samples according to the slower sampling
rate of the hard-to-measure variables, essentially excluding those that do not have a
corresponding target value [Lu et al., 2004; Kadlec and Gabrys, 2011]. This, however,
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can lead to the development of inaccurate models, as some information is lost during
the process, more if the sampling rate of the hard-to-measure variable is too low;

• estimating the hard-to-measure variables by using a finite impulse response (FIR)
model. This approach tackles the information loss stated before, but has the drawback
of requiring fine tuning of some parameters (namely the filter’s length and weighting
values) to be effective;

• using a method designed to operate on such a setting, based on semi-supervised learn-
ing, requiring no action on the data at this stage. These methods use both labeled and
unlabeled data in the training stage, eliminating both the information loss problem of
down-sampling and reliability issue related to the use of FIR models. Nonetheless, the
choice of the specific model is a key factor on the overall effectiveness of the method.
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variable

hard-to-measure
variable

NaN

NaN
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NaN
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NaN

Figure 2.2: Different sampling rates between easy-to-measure and hard-to-measure variables.

2.4.2.2 Feature Selection

In most industrial settings, there are frequently many online sensors used for process
control and monitoring. This equates to a large number of candidates for input vari-
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ables/features, increasing the overall complexity of the system. System experts can, in most
soft sensor applications, select a set of the most relevant features in order to efficiently train
the model. Still, there are scenarios in which that selection is not straightforward, namely
physically large and highly integrated processes, or can even be infeasible. In these settings,
the soft sensor designer might have little knowledge about the process, resorting to black-box
model approaches to map the input-output relationship. Most of the research work done
suggests that usually only a small number of features is needed to efficiently compose the
soft sensor model. Moreover, using only a few relevant features as several advantages, such
as the reduction of the model development time, improvement of the model’s predictive per-
formance and maintainability, subsequently reducing the characteristic high dimensionality
and complexity of real-world data. This is imperative, as in most industrial settings there
are time constraints that can only be met if the number of features considered is kept low
[Schmitt et al., 2008].

On a basic level, four strategies can be distinguished [Nelles, 2013]:

• Use all inputs - this leads to high-dimensionality issues, such as longer development and
training time. It can be practical if the number of potential inputs is small. However,
it becomes cumbersome with the increase in the number of features;

• Try all input combinations - this approach would result in the best combination of
features. Nevertheless, the high computational demand is obvious, since the number
of combinations would increase rapidly with the number of considered features;

• Unsupervised feature selection - the typical tool for unsupervised input selection is
based on principal component analysis (PCA) [Jolliffe, 2002]. With this approach
non-relevant features can be discarded with low computational cost. The relevance
criterion, however, can cause a highly relevant feature for the model performance to
be discarded;

• Supervised feature selection - the goal here is to obtain the highest possible predictive
accuracy, evaluated on each possible subset of features. Therefore, two components
must be defined [Bishop, 1995]: (i) search procedure - a subset of features must be
obtained using any type of procedure, such as random selection, since exhaustive search
is infeasible for most scenarios; (ii) selection criterion - the quality of a subset of
features must be evaluated in order to compare with the other subsets, usually by
computing the estimation accuracy (sum of squares error in the case of regression
tasks). Supervised feature selection methods represent the most powerful but also
computationally expensive approaches.

Many strategies for feature selection have been proposed in conjunction with soft sensor
design to various industrial settings, such as fabric textile [Schmitt et al., 2008], refining
process [Wang et al., 2010], semiconductor manufacturing [Lee and Kim, 2015], chemical
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polymerization [Lin et al., 2015], and chemical process control [Li et al., 2016]. In [Wang
et al., 2010], for example, a feature selection approach is devised to function along PLS re-
gression. Here, a large number of feature subsets is randomly created, iteratively testing each
feature subset through PLS and cross-validation in order to reach the one which guarantees
the highest prediction power (measured by the root mean square error of cross validation,
RMSECV). Similarly, [Li et al., 2016] uses the regression vector of PLS to sort input features
by their significance (given by their weights in the mentioned vector). A test of correlation
is then performed. Starting with the less relevant features, if a certain feature has significant
correlation with others, that feature is canceled, repeating the process until all features have
been taken into consideration. A recursive feature elimination technique (RFE) is used with
a SVM in [Lee and Kim, 2015]. A SVM is firstly used to rank all features. Then, the individ-
ual features’ contribution is evaluated based on the support vectors of the trained SVM and
weights are assigned to each one. The feature with the smallest weight is removed, and the
process repeats iteratively. Fuzzy systems can also be involved into feature selection leading
to more efficient and easy learning [Schmitt et al., 2008; Lin et al., 2015]. These approaches
while effective can be computationally costly, as methods of cross-validation or techniques
like SVM (that require parameter tuning) are somewhat complex. In high dimensionality
scenarios, some of the most effective methods can even be prohibitive [Bravi et al., 2017].

2.4.2.3 Model Choice and Training

There are, at a general level, two categories of soft-sensors: model-driven (also known
as white-box) and data-driven (also known as black-box) [Kadlec et al., 2009]. Model-
driven soft sensors rely on mathematical models to describe the process in study. Thus, they
require the knowledge of the physical and/or chemical properties in order to provide valuable
information. The development of such models is not a straightforward task, and as they are
usually designed with ideal conditions in mind, the sheer nature of the industrial noisy
data can render them unusable. As a way to circumvent this disadvantage, data-driven
soft sensors are constructed on the data measured within the processing plant, therefore
staying more true to the process’ real operating conditions. The large volume of process
data available in industrial plants contributed to the rising popularity of data-driven soft
sensor approaches, the most popular methods being based on partial least squares (PLS)
[Zhang et al., 2016], artificial neural network (ANN) [Rani et al., 2013], and support vector
machine (SVM) [Shang et al., 2014]. The choice of the model to use is not a obvious one,
since every method has its advantages and disadvantages, and possible scenarios in which
to apply. Nevertheless, the existence of unlabeled data on some industrial settings might
favor semi-supervised approaches, as they are able to incorporate such information to better
map the relationship between inputs and outputs. Recently, semi-supervised versions of the
above-mentioned methods were developed, showing the potential of the underlying concept
in soft sensor modeling [Ge and Song, 2011; Ge et al., 2014; Zhou et al., 2014; Zhu et al.,
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2015].

2.4.2.4 Model Validation

The model validation step aims to infer on the generalization capabilities of the trained
model. This way, its ability of estimating accurately on previously unseen samples is eval-
uated. When training on large datasets, they are usually split into two sets: the training
set, and the test set. The model is learned using the training subset, and its predictive
performance is evaluated on the test set. Often, it is also used a validation set, which is
used to evaluate the performance of the learning structure inside the learning procedure
itself (e.g. as part of an intermediary assessment or a final termination condition). In con-
trast to the validation set, the test set is used to evaluate the performance of the learned
structure, after and outside the learning algorithm (i.e. to evaluate the learning outcome).
In the case of small datasets, cross-validation techniques like K-fold cross-validation and
leave-one-out cross-validation are employed to evaluate the model’s performance. In K-fold
cross-validation, the training subset is split randomly into K folds, training the model using
the samples from (K − 1) folds and evaluating its performance on the remaining fold. The
process repeats for all K folds, and the performance metrics’ values are averaged. The leave-
one-out cross-validation technique is used more frequently on very small datasets, operating
on the same principle as the K-fold one, with K being equal to the number of samples.
The most used performance metrics are mean squared error (MSE) and its variants, root
mean squared error (RMSE) and normalized root mean squared error (NRMSE). NRMSE
can be expressed in percentage form, providing a more intuitive performance analysis. These
performance values can be paired with the scores from another performance metric like the
R-squared, also known as coefficient of determination, R2, enabling a deeper insight on pre-
dictive performance. The R2 metric represents the amount of variability of the data that is
explained by the model. Further explanation on the metrics used will be provided in Section
5.2.

2.4.2.5 Model Maintenance

After the soft sensor is developed and deployed, it needs to be regularly maintained and
tuned. As drifts in process data are likely to occur over time (due to process variations, for
instance), the soft sensor must be retuned in order to keep its performance from degrading.
Most soft sensor models do not include an automated process of maintenance. This requires
the maintenance to be performed manually, increasing the overall cost for the SS application.
Adaptive soft sensors can mitigate this issue. As they are designed to adapt to process
variations, they may lead to far less need of maintenance and retuning. In [Ma et al., 2009],
an adaptive sensor is applied to a industrial o-xylene distillation column. The statistical
identification of key variables allows for the soft sensor to choose the best variables needed
at a given period. An automated mechanism for an adaptive soft sensor is proposed in [Grbić
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et al., 2013], designed to operate in highly nonlinear time-varying processes. The devised
approach acts on different levels of Gaussian models, retuning parameters as new samples
are acquired. In [Xiong et al., 2017], a moving-window approach is used in an adaptive SS,
tested in both a sulfur recovery unit and an industrial debutanizer column. In this type of
approach, the data used for model training changes as new samples are available, discarding
the older ones.





Chapter 3

Co-Regularized Least Squares Regression

This chapter describes the theoretical background of the semi-supervised method used
throughout this dissertation. In Section 3.1, the theoretical basis of the method is stated,
and both its non-parametric exact version and semi-parametric approximation are derived,
in Sections 3.2 and 3.3, respectively. CoRLSR’s relation to RLSR is explained in Section
3.4. Finally, the practical implementation is presented in Section 3.5.

The methodologies developed in the work of this dissertation were presented in the paper
“Semi-Supervised Soft Sensor and Feature Ranking Based on Co-Regularised Least Squares
Regression Applied to a Polymerization Batch Process” [Ferreira et al., 2017].

3.1 Semi-Supervised Regularized Regression

The coRLSR algorithm [Brefeld et al., 2006] is based on casting co-training [Blum and
Mitchell, 1998] as a regularized risk minimization problem in Hilbert spaces. As in other
kernel approaches, the optimal solution can be described by a linear combination of kernel
functions “centered” on the set of labeled and unlabeled examples. Given a set of training
data Φ , the goal is to find the following solution

f(·) = arg min
f∗(·)∈H

{
N∑

i=1

L(yi, f
∗(xi)) + νΩ[f ∗(·)]

}
(3.1)

where H is a Hilbert space of functions, L(·, ·) is a convex loss function, ν > 0 is a parameter
and Ω[f ∗(·)] is a regularization term.

Assuming that the examples can be represented in M different ways (e.g. defined by
different features and/or different kernel functions), M predictors can be learned f1, . . . , fM
that simultaneously depend on each other, satisfying an optimization criterion involving all
views. The final prediction is then the average of all fv predictors (v = 1, . . . ,M).

Given a set with M subsets containing labeled samples Γ = {Φ1, . . . ,ΦM}, where Φv =

{xi, yi}Nv
i=1, Nv ≤ N , and v = 1, . . . ,M , and a set of unlabeled samples Φ∗z = {xz}Zz=1, the

objective is to find functions f1 : Γ → R, . . . , fM : Γ → R from different Hilbert Spaces
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H1, . . . ,HM that minimize

Q(f1, . . . , fM) =
M∑

v=1

[
i=Nv∑

i=1,xi∈Φv

L(yi, fv(xi)) + νv‖fv(·)‖2
]

(3.2)

+ λ

u,v=M∑

u,v=1

z=Z∑

z=1,xz∈Φ∗z

L(fu(xz), fv(xz))

where, L(·, ·) is the loss function, ‖fv(·)‖2 is the regularization term, νv is the regularization
parameter and λ is a parameter that weighs the influence of pairwise disagreements. The
optimization problem (3.2) focuses on minimizing both the labeled error (first part of the
sum) and the unlabeled error (second part of the sum). Every view predictor is intended to
have small training error on the labeled examples, i.e. small labeled error. Furthermore, the
disagreement between views over unlabeled examples should also be minimized, i.e. small
unlabeled error.

A function k is a kernel function if it is symmetric and positive semi-definite, generating
a kernel matrix K with the same characteristics, through an inner product operation on x.
Choosing a kv for each fv (v = 1, . . . ,M) allows the use of the representer theorem [Wahba,
1990; Schölkopf et al., 2001] to obtain the predictions for each v view (i.e. the solutions of
Eq. (3.2)) as

f ∗v (xi) =
∑

x∈⋃Φv∈Γ Φv
⋃

Φ∗z

αv(x)kv(x,xi), (3.3)

where kv(·, ·) is the reproducing kernel of the Hilbert Space Hv, and αv(x) is a coefficient
associated with x.

In this way, the vector fv =
[
. . . , fv(xi), . . .

]T
xi∈Φv

⋃
Φ∗z

, for all Φv ∈ Γ, can be expressed as

Kvcv, and ‖fv(·)‖2 can be expressed as cT
v Kvcv, where [Kv]ij = kv(xi,xj) and [cv]i,1 = αv(xi).

Kv is a strictly positive definite kernel matrix, i.e. it is symmetric and has no negative, and no
zero eigenvalues. The notation used for each view’s labels is [yv]i = yi for i = 1, . . . , Nv. For
standard kernel methods like Eq. (3.1), defining the loss function as the squared difference
between real and predicted output, L(yi, fv(xi)) = (yi − fv(xi))

2 gives the ridge regression
[Saunders et al., 1998] or regularized least squares regression (RLSR) solutions.

3.2 Non-Parametric Least Squares Regression

With Nv training examples in view v and Z unlabeled examples, Eq. (3.2) can be
rephrased as the following coRLSR optimization problem, in which the goal, for fixed
λ, νv ≥ 0, is to minimize the following cost function

Q(C) =
M∑

v=1

(
‖yv − Lvcv‖2 + νvc

T
v Kvcv

)
+ λ

M∑

u,v=1

‖Uucu −Uvcv‖2 (3.4)
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over C = [c1, . . . , cM ] ∈ RN1+Z × . . . × RNM+Z . Lv ∈ RNv×(Nv+Z) and Uv ∈ RZ×(Nv+Z) are
computed from a strictly positive definite kernel function and form a positive definite kernel
matrix Kv ∈ R(Nv+Z)×(Nv+Z) as

Kv =

(
Lv

Uv

)
. (3.5)

Getting the derivative of (3.4) with respect to cv, yields

∇cvQ(C) = 2Gvcv − 2LT
v yv − 4λ

∑

u:u6=v

UT
v Uucu.

where
Gv = LT

v Lv + νvKv + 2(M − 1)λUT
v Uv.

At the optimum the following relation holds

[∇c1Q(C), . . . ,∇cMQ(C)]T = 0,

and then the exact solution for the optimum of (3.4) can be found as




G1 −2λUT
1 U2 · · ·

−2λUT
2 U1 G2 · · ·

...
... . . .







c1

c2

...


 =




LT
1 y1

LT
2 y2
...


 . (3.6)

The solutions can be found in time O((M ·N +M ·Z)3) (further details can be found in
the original paper [Brefeld et al., 2006]). This cubic time complexity in the number of labeled
examples is shared with the most common supervised learning algorithms such as SVMs,
RLSR, etc. However, cubic time complexity in the number of unlabeled examples renders
coRLSR unusable, as in some industrial settings (as discussed in Section 2.4.2.1) the number
of unlabeled examples far exceeds the number of labeled ones (i.e., Z � N). Then, a semi-
parametric approximation was also devised in order to reduce the complexity in the number
of unlabeled examples. This approximation was achieved by optimizing over functions that
can be expanded in terms of training (labeled) instances only, and it is presented next.

3.3 Semi-Parametric Approximation

With Nv training examples in view v and Z unlabeled examples, Eq. (3.2) can be
rephrased [Brefeld et al., 2006] as the following coRLSR optimization problem, in which
the goal, for fixed λ, νv ≥ 0, is to minimize the following cost function:

Q(C) =
M∑

v=1

(
‖yv − Lvcv‖2 + νvc

T
v Lvcv

)
+ λ

M∑

u,v=1

‖Uucu −Uvcv‖2 (3.7)

over C = [c1, . . . , cM ] ∈ RN1 × . . . × RNM . Lv ∈ RNv×Nv and Uv ∈ RZ×Nv are computed
from a strictly positive definite kernel function and form a positive definite kernel matrix
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Kv ∈ R(Nv+Z)×(Nv+Z) as

Kv =

(
Lv UT

v

Uv ∗

)
(3.8)

where the part marked by * is not needed.
Getting the derivative of (3.7) with respect to cv, yields

∇cvQ(C) = 2Gvcv − 2Lvyv − 4λ
∑

u:u6=v

UT
v Uucu

where
Gv = L2

v + νvLv + 2(M − 1)λUT
v Uv.

At the optimum the following relation holds

[∇c1Q(C), . . . ,∇cMQ(C)]T = 0,

and then the exact solution for the optimum of (3.7) can be found as



G1 −2λUT
1 U2 · · ·

−2λUT
2 U1 G2 · · ·

...
... . . .







c1

c2

...


 =




L1y1

L2y2
...


 . (3.9)

The solutions can be found in time O((M · N)3 + M2 · Z) (further details can be found
in the original paper [Brefeld et al., 2006]). The reduction in complexity achieved by this
approximation means that the proposed method is able to scale linearly with the number of
unlabeled examples, being a lot more usable in real-world case scenarios.

3.4 Relation to Regularized Least Squares Regression

The solutions of Regularized Least Squares Regression can be found by using any of
the above-mentioned methods, as both the non-parametric and semi-parametric versions
of coRLSR are natural generalizations of regular RLSR. Considering the two optimization
problems stated in Sections 3.2 and 3.3 one can obtain M independent RLSR solutions for
Z = 0. Moreover, in the semi-parametric version, M independent RLSR solutions can also
be obtained for λ = 0. Using only one view, M = 1, the second part of the Eq. (3.7)
disappears and a single regularized least squares solution is obtained. This will be useful in
testing in order to validate the predictive performance gains by using the semi-supervised
methods stated in this chapter.

3.5 Practical Implementation

For the purpose of testing and validating the models, a set of MATLAB® functions was
developed to implement both coRLSR’s variants and regular RLSR as well. In designing
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these functions, expandability and flexibility were regarded as key factors, as well as opti-
mization, in order to reduce its runtime. The first function developed computes the optimal
solutions of Eqs. (3.4) and (3.7), its required parameters being the following:

function[model] = coRLSR(X,y,M, λ, option, inst, att)

X is a matrix of training examples X ∈ R(N+Z)×d and y is a vector of training labels
y ∈ R(N+Z), with N labeled examples and Z unlabeled examples (the unlabeled examples in
vector y typically consist of NaN values, as mentioned before and illustrated in Figure 2.2).
M and λ are the parameters present in the definitions of both variants of coRLSR. Finally,
option refers to the specific method used, as this function is able to obtain the solutions for
non-parametric coRLSR, semi-parametric coRLSR and regular RLSR, and inst and att are
optional parameters. The specific instance/example split between views can be configured
by inst ∈ RM×(N+Z), a logical matrix that indexes/selects the examples that constitute each
of the M views. Similarly, the attribute/feature split can be configured by att ∈ RM×d,
a logical matrix that indexes/selects the features that constitute each of the M views. A
logical matrix contains zeros and ones, where the ones correspond to the elements that are
extracted from some other matrix in order to form a sub-matrix. If undefined, all examples
will be included in all views, and the features will be sequentially split amongst all views.
The function outputs a struct model, containing the solution vector C (as it appears in
Sections 3.2 and 3.3) as well as other variables and parameters (3.1).

Table 3.1: Fields description of the output struct.

struct model
Field Description
N number of labeled examples
Z number of unlabeled examples
X∗ rearranged X so that the labeled examples come first
att logical matrix containing the attribute/feature split
inst logical matrix containing the instance/example split
σ vector containing parameters used in the kernel function
C vector containing the solution coefficients for all views

In this work a Gaussian kernel was used (the definition is presented later in Section 5.3.
For this reason, there is the need to save a parameter for each view. The vector σ ∈ RM

contains these parameters for each of the M views.
The use of a struct as the function output was chosen in order to simplify the process

of obtaining the solution coefficients and the model’s actual predictions. A second function
was developed to provide estimates for any input matrix:

function[ŷ] = estimatecoRLSR(Xest,model)
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Xest is a matrix of examples for which to calculate estimations (Note that here Xest

need not be the same X used in training), and model is the struct outputted by the previous
function.

Figure 3.1 illustrates the general structure of both functions. The operation of the
coRLSR() function can be explained by the following steps:

• X and y rearrangement - both input matrix and input vector must be rearranged so
that all labeled examples come first and then the unlabeled ones. This is done in order
to accommodate for the kernel matrix compositions for both methods, stated in (3.5)
and (3.8);

• view creation -M views are created, by example split, by feature split, or a combination
of both. Examples can be randomly chosen for each view, can be split sequentially,
or all views can share all available examples. Features, in a similar manner can be
randomly or sequentially split, creating either disjoint or joint sets. If inst and/or att
are defined, the splits are performed accordingly. By default all instances are assigned
to all M views, and the features are split sequentially;

• kernel computation - the kernel is computed using a positive definite function. Any
type of positive definite kernel can be used. In this work, a Gaussian kernel is used, so
its required parameters are also computed;

• coefficient solution - the required matrix is assembled and inverted in order to solve
the linear equations stated in (3.6) and (3.9).

In a similar manner, the estimatecoRLSR() function performs the following steps:

• kernel computation - the kernel is computed using the examples in Xest and the ones
in X from the model struct;

• estimation computation - the estimations are computed using the kernel and the coef-
ficient solutions C from the model struct, using the formulation stated in (3.3).
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coRLSR()

X
y
λ
option
inst (optional)
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X → Xlabeled

Xunlabeled
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yunlabeled
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



1st view: [X1, ..., Xd/M ]
...

Mth view: [Xd−d/M , ..., Xd]

kernel computation

K1, ...,KM
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
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c1
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...


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
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G1 −2λUT
1U
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2 · · ·

−2λUT
2U

T
1 G2 · · ·

...
...

. . .


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ŷ1st view = K1 · c1
...

ŷM -th view = KM · cM

ŷ = avg(ŷ1st view , · · · , ŷM -th view)

ŷ

Figure 3.1: General structure of the coRLSR() and estimatecoRLSR() functions.





Chapter 4

Feature Ranking and Selection

This chapter describes the devised method for feature ranking and selection. In Section
4.1, the theoretical background of the feature ranking method is presented. Then, in Section
4.2, the practical implementation of feature ranking and selection is explained, using coRLSR.
Finally, in Section 4.3, a comparison to the feature selection methods stated in Subsubsection
2.4.2.2 is presented.

The methodologies developed in the work of this dissertation were presented in the paper
“Semi-Supervised Soft Sensor and Feature Ranking Based on Co-Regularised Least Squares
Regression Applied to a Polymerization Batch Process” [Ferreira et al., 2017].

4.1 Feature Ranking Method Based on Sensitivity Anal-

ysis

As the most common model approaches are data-driven (coRLSR being one), the rel-
evance of an individual feature on the output is not easily perceivable. Moreover, most
industrial processing plants are heavily equipped with online sensors, further increasing this
task’s difficulty. Feature selection approaches existing in the literature have a high compu-
tational cost in that development stage. The method proposed in this chapter aims to rank
features with low computational cost. It is based on sensitivity analysis, which is the study
of how the uncertainty in the output of a mathematical model or system can be explained by
different sources of uncertainty in its inputs. In this sense, the importance of an input can be
measured by computing the variation of the output when the input is perturbed. This way,
the influence of an individual feature can be measured without resorting to retraining the
model. The proposed methodology is theoretically justified based on common assumptions,
presented below.

Assume that the output of a regression model, defined as f(xi), is achieved by the

27
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following conditional mean [Bishop, 2006]:

f(X = xi) =

∫

Y

y p(y|X = xi) dy. (4.1)

Assume that X−j = X \Xj. From Yang et al. [2009], the following theorem is stated:
Theorem 1:

P (y|X(j)) = P (y|X−j) (4.2)

where X(j) is defined as
X(j) = {X1, . . . , X

∗
j , . . . , Xd}

with X∗j being a random permutation of Xj applied across all samples.
By applying Theorem 1 into equation (4.1), the following relation holds

f−j(X) =

∫
yP (y|X−j) dy (4.3)

=

∫
yP (y|X(j)) dy.

Eq. (4.3) means that permuting a variable j in the trained model, is similar to having
the output of the same model without the variable j. This brings several advantages, since
instead of completely removing a feature and retraining the model, a random permutation
is applied to mimic the output of the model without the respective variable, while the other
features are kept unchanged.

The rank of a feature j is then defined by the absolute normalized difference between the
prediction error of the model trained with the perturbed set X(j) and with the ‘intact’ set
X:

J(Xj) =
|E(j) − E|

E
, (4.4)

where E(j) and E are performance metrics computed from the predictions using X(j) and X
as input set, respectively.

4.2 Practical Implementation

The general structure of the feature ranking algorithm applied to coRLSR is illustrated
in Figure 4.1. First, the model is trained with all features. Then, for each feature, a random
permutation is applied, the estimates are computed and its rank is obtained from (4.4), using
the estimates computed for the undisturbed set.

In order to select the most relevant features, a recursive feature elimination (RFE) ap-
proach is applied to delete the most irrelevant features. First, the model is trained using all
features available and the rank of each individual feature is then obtained as stated above.
Then, the least important feature is progressively eliminated and the performance of the
estimation is computed. To speed up the process, a threshold ε is defined such that features
j with J(Xj) < ε will be considered with no importance, being immediately discarded.
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4.3 Method Comparison

The presented method can be classified as a supervised feature selection method, as
stated Subsubsection 2.4.2.2. The search procedure consists in, after ranking all features,
obtaining the first subset by applying the defined threshold. Subsequent subsets are created
by removing the least relevant variable. The selection criterion used is a performance metric
such as RMSE, in this case. When comparing with the other approaches mentioned, the
proposed method’s complexity appears to be equal or lower. For example, in [Wang et al.,
2010] a large number of feature subsets is randomly created, and its evaluation is done
iteratively. This requires retraining the model for each of the feature subset. Considering
there is a large number of feature subsets, this process can be very demanding, as there can
be many possible subsets from the available set of features. In [Li et al., 2016], a correlation
test is performed for each feature in relation to the others, which can be a long process.
In [Lee and Kim, 2015], a SVM is used to rank all features, which in of itself is a costly
procedure. Then, a process of RFE (similarly to the proposed method) is applied. The
devised feature ranking approach is inherently simple and cost effective (time-wise). The
random permutation of an input feature and estimate computation is a relatively easy task
since the model is already trained on data. However, the RFE procedure is dependent on the
required time for the specific method. For this reason, the threshold is defined to speed up
the process. In scenarios with a large number of input features the gap between the devised
method and the others can be expanded since frequently few features are required for accurate
prediction. The threshold then plays an important role in the proposed method, and when
adequately defined can substantially decrease the possible feature subset size. The general
nature of the devised feature selection method enables its use with any regression/prediction
method. Furthermore, since the actual regression method is used in the feature ranking
procedure a deeper evaluation is performed. Not only the relevance of a feature to the
problem is evaluated, but also it is also evaluated its relevance within the context of its joint
application with the specific employed regression approach, as it is expected that the ranking
of features varies when different model approaches are used.
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j = 1, ..., dfor
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ŷŷ(j)
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-th feature permutationj
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J(Xj) =
|E(j) − E|

E

Figure 4.1: General structure of the feature ranking algorithm.



Chapter 5

Test and Results

This chapter presents all the tests performed in order to verify and validate the proposed
methods. In Section 5.1, the real-world data set is introduced. Next, the performance
metrics are presented in Section 5.2, and the experimental setup is presented in Section 5.3.
The improvement to the RLSR method is shown in Section 5.4. In Section 5.5, the full tests
and comparisons are presented. Firstly, the parameter tuning process and results of coRLSR
are shown in Subsections 5.5.1 and 5.5.2, respectively. Then, these results are compared to
the other methods in Subsection 5.5.3. The proposed feature ranking and selection method
is applied to coRLSR in Subsection 5.5.4 and the to the remaining studied approaches in
Subsection 5.5.5. Finally, view creation is explored in Subsection 5.5.6, and the value of soft
sensors is stated in Subsection 5.5.7.

5.1 Real-World Industrial Dataset

The industrial setting explored in this dissertation is the production of a polyester resin,
via a batch polymerization process. There are two quality variables measured along the
process (hard-to-measure variables): NA (acidity number) and µ (viscosity). The plant is
equipped with several sensors for online measurement, connected to a process computer that
records the values every 30 [s]. In total, 34 variables are collected and recorder, either by
simply obtaining the measurements from sensors (temperatures, pressures, valve openings,
etc.) or in controller setpoints, adjusted manually by the process operators. Each batch
then contains anywhere between 4500 and 7500 recordings of each process variable (each
batch takes 40-70 [h]). Product quality variables (NA and µ) are not measured online.
Instead, product samples are taken manually, quite infrequently and unevenly (once every
1.5 - 2[h], depending on the evolution of the batch), and are sent for laboratory analysis,
which takes approximately 20 [min] to be completed, with the accuracy being ∼ 10% of
the reading. Moreover, the quality measurements are only available 8-10 [h] after the batch
starts (i.e. after at least 1000 time instants have elapsed). This equates to only 15-20 quality
measurements being available for each batch.
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The assembled dataset (kindly provided by [Facco et al., 2009]) contains data from 33
batches (16 months of operating effort), split into two subsets: 27 batches constitute the
training set, and the remaining 6 represent the test set. From the over 200000 samples
collected, only 663 are labeled, and the detailed distribution is illustrated in Table 5.1. This
challenging real-world setting allows semi-supervised algorithms like coRLSR to possibly
exploit the huge number of unlabeled examples available. From Figure 5.1, the scarcity of
labeled samples is quite evident. Only 19 samples of the first training batch records are
labeled, the remaining being unlabeled (6242 samples total).

Table 5.1: Distribution of labeled/unlabeled samples in the dataset.

Training subset Test subset
(163094 samples) (37886 samples)

labeled unlabeled labeled unlabeled
530 162564 133 37753
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Figure 5.1: First batch of the training subset.

5.2 Performance Metrics

The metrics used to measure the model predictive performance of all approaches tested
were: Root Mean Square Error (RMSE), Normalized Root Mean Square Error (NRMSE)
and R-squared, also known as coefficient of determination (R2). All formulations are stated
below.

5.2.1 Root Mean Square Error

Root Mean Square Error, also known as standard error of the regression, is one of the
most widely used statistical measures to assess average model performance error. For a total
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of n samples, the formulation is the following:

RMSE =
√
MSE =

√∑n
i=1(yi − f(xi))2

n
. (5.1)

The higher the difference in both sets of data (estimated and real output) the higher the
RMSE. So, the fit is more useful for prediction as its RMSE is closer to 0.

5.2.2 Normalized Root Mean Square Error

Normalized Root Mean Square Error, as its name implies, is a normalized variant of
RMSE. It is defined as:

NRMSE =
RMSE

(ymax − ymin)
, (5.2)

where ymax and ymin are the maximum and minimum observed values, respectively. Similarly
to the RMSE, the closer to 0 the more useful the fit is. It ranges from 0 to 1, allowing an
easier comparison between different datasets.

5.2.3 Coefficient of Determination

The coefficient of determination measures how successful the fit is in explaining the
variation of the data. The formulation used is [Jin et al., 2001]:

R2 = 1−
∑n

i=1(yi − f(xi))
2

∑n
i=1(yi − y)2

, (5.3)

where y is the average observed value. Its value ranges from 0 to 1. Higher values of R2

(closer to 1) translate to a better explanation of the variation in the data by the fit.

5.3 Experimental Setup

5.3.1 Co-Regularized Least Squares Regression

The co-Regularized Least Squares Regression formulation stated in Chapter 3 has some
parameters/variables/functions that must be chosen in order for it to operate. These are:

• M - number of views used;

• L(·, ·) - loss function;

• νv - regularization parameter for view v (v = 1, . . . ,M);

• λ - parameter that weighs the influence of pairwise disagreements;

• kv(·, ·) - reproducing kernel of the Hilbert Space Hv, computed from a kernel function.
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Some of these changed values during testing, others were kept constant. For instance,
the loss function used was the squared difference

L(yi, fv(xi)) = (yi − fv(xi))
2. (5.4)

A Gaussian kernel was used, computed from

kv(xi,xj) = exp

(−‖xi − xj‖2
σv

)
, (5.5)

where for view v

σv =
1

Nv
2

Nv∑

i,j=1

‖xi − xj‖2. (5.6)

Finally, the regularization term, νv (for view v) was computed as

νv =

(
Nv∑

i=1

‖xi‖/Nv

)−1
. (5.7)

Both νv and σv were computed from the labeled examples of each view. In the testing,
2 views were used, achieved with a sequential split of features. Since every view provides
its estimation on the data, the final model’s estimation is obtained by averaging the values
for the 2 views. The remaining parameters/variables were changed according to the specific
test conducted.

5.3.2 Other Methods

The other popular soft sensor model approaches used for comparison purposes were:

• Partial Least Squares (PLS) - model training was done using the function plsregress()
(MATLAB®’s implementation of the SIMPLS algorithm), with 34 (total number of
features) components;

• Support Vector Machines (SVM) - using the Least-Squares Support Vector Machines
implementation [Suykens et al., 2002] through the LS-SVM Lab Toolbox [Suykens
et al., 2011]. The tuning parameters were computed by the function tunelssvm() us-
ing leave-one-out cross-validation, and the training was performed using the function
trainlssvm();

• Neural Networks (NN) - using the function fitting neural network functionality provided
by MATLAB®’s Neural Network Toolbox. A neural network was created with one
hidden layer with 10 neurons by the fitnet() function, and trained by the function
train().
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Figure 5.2: Acidity number predictive performance comparison between the RLSR and the
semi-supervised and non-supervised variants of coRLSR.

5.4 Improvement to RLSR

The first set of tests was conducted in order to infer on the influence of unlabeled examples
on the overall model predictive performance. Both forms of the coRLSR (non-parametric
exact solution and semi-parametric approximation), both semi-supervised learning methods,
were compared to RLSR, a supervised learning method, according to the RMSE metric. A
fixed number of 100 labeled examples and a varying number of unlabeled examples (ranging
from 0 to 1000) were taken at random from the training dataset. The RMSE was computed
on the test dataset using the trained models, averaging its values from 25 runs. In both
variants of coRLSR, 2 views were used (M = 2), with λ = 0.1.

The results for the acidity number prediction are shown in Figure 5.2, where the vertical
lines on each data point represent the standard deviation of the RMSE metric. For 100
labeled examples and no unlabeled examples both variants of coRLSR outperform RLSR,
confirming the advantage of the multi-view algorithms over the single-view approach. With
the increase in the number of unlabeled examples, the distance between multi-view and
single-view increases as well. As expected, the non-parametric (exact) solution of coRLSR
had the lower RMSE of the methods compared. However, for higher number of unlabeled
examples the semi-parametric approximation of coRLSR had RMSE of 3.1001 for 5000 and
3.0975 for 10000 unlabeled examples. The non-parametric variant of coRLSR, for these high
numbers requires huge computational effort (as it will be explained bellow) and in some
cases did not even run due to insufficient computer memory.

Regarding the computational time required to run each of the three methods, the results
in Figure 5.3 confirm the theoretical findings. The regular RLSR, as expected, did not make
use of unlabeled examples, so its computational cost was constant. The non-parametric
coRLSR had the higher cost, as its complexity in the number of unlabeled examples is
cubic. Finally, the semi-parametric coRLSR scaled linearly with the number of unlabeled
examples, with its time being comparable to that of RLSR. These tests rendered the semi-
parametric variant of coRLSR as the most favorable method in its ratio between predictive
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Figure 5.3: Evolution of the required computational time for a fixed number of labeled
examples and a varying number of unlabeled examples.

performance and computational cost, being the one used in the comparison against other
popular methods.

5.5 Full Tests and Performance Comparison

5.5.1 Parameter Tuning

The λ parameter, as it appears in (3.7), weighs the disagreement between the predictions
of different views. In order to minimize the mentioned cost function, it is expected that the
higher the value of λ the smaller the prediction disparity between views. A quick test was
conducted to verify this expectation, varying the values of λ from 0 to 10000 (an exaggerated
value for illustrative purposes only). The RMSE between the predictions of both views was
computed for each λ, and as expected, the disparity between the prediction of the 2 views
decreases as λ increases, as illustrated in Figure 5.4. While a high λ guarantees that all views
will have more similar predictions, those predictions might lose accuracy. Then, λ must be
tuned so that different views may complement one another without decreasing each other’s
performance.

To find the optimal value of λ for each output variable, the following test was conducted
for each output variable: for a fixed λ, considering only the training set, the model is trained
by using 80% of its labeled examples (as well as 1000 unlabeled examples), and the RMSE
on the remaining (labeled) examples is computed. This process was repeated for 25 runs
(for each λ), each run with random unlabeled examples taken from the entire training set.
As seen on Figure 5.5, the tests performed resulted in the optimal values of λ = 0.9 for the
acidity number scenario and λ = 0.3 for the viscosity. Again, the vertical lines on each data
point represent the standard deviation of the RMSE metric.
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Figure 5.4: Effect of λ on the prediction disparity between views. The disparity is measured
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Figure 5.5: Influence of the λ parameter on the predictive performance.

5.5.2 Predictive Performance of CoRLSR

After the initial parameter tunning, the model was trained using all labeled examples from
the training set, as well as 10000 unlabeled ones. The performance metrics were computed
on the test set, and the values are shown in Table 5.2.

Table 5.2: Predictive performance of coRLSR (overall).

coRLSR
Acidity number Viscosity

R2 RMSE NRMSE R2 RMSE NRMSE
0.86366 2.3394 0.082459 0.88295 0.9863 0.10526

Even though the overall performance results were decent, as the R2 score indicated that
the trained model explains approximately 86% (acidity number) and 88% (viscosity) of the
variability of the data, and the NRMSE was at most a little over 0.10, they were not ideal.
As the studied scenario is a batch process, and the test subset has data from 6 different
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batches, the performance analysis per batch seems relevant. The performance metrics were
then computed for each individual batch that constitutes the test subset, as seen in Table.
5.3.

Table 5.3: Predictive performance of coRLSR (per batch).

coRLSR
Acidity number Viscosity

R2 RMSE NRMSE R2 RMSE NRMSE
#1 0.65162 4.2624 0.15472 0.69604 1.6923 0.18178
#2 0.93479 1.477 0.073557 0.91441 0.85487 0.097145
#3 0.95757 1.2356 0.054239 0.98199 0.40646 0.044252
#4 0.90056 2.1368 0.081837 0.92754 0.8243 0.088539
#5 0.90953 1.7501 0.079552 0.9297 0.73566 0.085572
#6 0.93725 1.52 0.067647 0.85226 0.85482 0.1014

Here it can be seen that coRLSR’s estimates for both outputs on batch #1 were not
sufficiently accurate, with R2 scores as low as 0.65 and NRMSE as high as 0.18. This is
backed up by Figure 5.6. Here, the coRLSR’s estimation for all 6 batches is shown, and the
ticks in the x axis represent the begining of a batch. Still, predictive performance on the
rest of the batches was quite good, as the performance metrics were quite favorable, except
for the viscosity prediction of batch #6.
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Figure 5.6: Predictive performance of coRLSR.

5.5.3 Predictive Performance Comparison

Comparing with the other popular soft sensor model approaches, on an overall perspec-
tive, coRLSR had the most favorable scores for the acidity number prediction, and falling
behind only LS-SVM on the viscosity prediction, as Tables 5.4 and 5.5 show.
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Table 5.4: Predictive performance comparison (overall) - Acidity number.

Acidity number
coRLSR PLS

R2 RMSE NRMSE R2 RMSE NRMSE
0.86366 2.3394 0.082459 0.84306 2.5099 0.08847

LS-SVM NN
R2 RMSE NRMSE R2 RMSE NRMSE

0.67251 3.6256 0.1278 0.57322 4.1056 0.14472

Table 5.5: Predictive performance comparison (overall) - Viscosity.

Viscosity
coRLSR PLS

R2 RMSE NRMSE R2 RMSE NRMSE
0.88295 0.9863 0.10526 0.70608 1.563 0.16681

LS-SVM NN
R2 RMSE NRMSE R2 RMSE NRMSE

0.90939 0.86779 0.092614 0.69595 1.5384 0.16418

Similarly to Subsection 5.5.2, a performance analysis per batch was also performed.
Considering first the acidity number prediction, all the approaches were able to produce
good results for batches #2-6, with higher than 0.9 R2 scores and lower than 0.1 NRMSE,
as Table 5.6 shows. The struggling task of producing accurate predictions for batch #1
spans across all methods tested, quite evident from the R2 scores in Table 5.6 and the
general inaccuracy visible in Figure 5.7.

Regarding viscosity prediction, the values of which are present in Table 5.7, the per-
formance values for batches #2-4 were generally quite good. PLS and NN achieved worse
scores for batch #5, and for batch #6 all methods have decreased accuracy. Moreover, the
reoccurring inaccuracy in batch #1 continued, highly evident in Figure 5.8. A possible cause
for this could be the presence of irrelevant features, as their influence on the model train-
ing stage can decrease predictive performance. Therefore, the devised method for feature
ranking and selection was used to hopefully improve the overall predictive performance of
coRLSR, as will be described in below in Subsection 5.5.4.

5.5.4 Feature Ranking and Selection Applied to CoRLSR

Following the procedure stated in Section 4.1, after the previous training of the coRLSR
model, a random permutation was applied to all time samples of a feature (for all available
features), and its ranking was computed according to (4.4). The performance metric used
was the RMSE on the training set, using a threshold of ε = 10−2 to discard non-relevant
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Table 5.6: Predictive performance comparison (per batch) - Acidity number.

Acidity number
coRLSR PLS

R2 RMSE NRMSE R2 RMSE NRMSE
#1 0.65162 4.2624 0.15472 0.55708 4.8061 0.17445
#2 0.93479 1.477 0.073557 0.96026 1.1531 0.057423
#3 0.95757 1.2356 0.054239 0.89347 1.9577 0.08594
#4 0.90056 2.1368 0.081837 0.90762 2.0595 0.078879
#5 0.90953 1.7501 0.079552 0.94476 1.3675 0.062159
#6 0.93725 1.52 0.067647 0.95872 1.233 0.054872

LS-SVM NN
R2 RMSE NRMSE R2 RMSE NRMSE

#1 0 8.1697 0.29654 0 10.037 0.36434
#2 0.98651 0.67181 0.033457 0.96101 1.1422 0.056881
#3 0.95782 1.2319 0.054079 0.96088 1.1863 0.052078
#4 0.96241 1.3137 0.050312 0.97392 1.0942 0.041907
#5 0.96338 1.1135 0.050612 0.93521 1.481 0.06732
#6 0.95143 1.3374 0.059518 0.96913 1.0662 0.04745
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Figure 5.7: Predictive performance comparison - Acidity number.

features. This process was performed for both output variables, and the rank for each
individual feature is shown in Figure 5.9, sorted by relevance (only a few labels are visible for
the sake of clarity) for the features for which the rank is higher than the defined threshold.
For the acidity number estimation, the defined threshold deemed irrelevant 17 features,
confirming what was stated above. On the other hand, for the viscosity only 10 features
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Table 5.7: Predictive performance comparison (per batch) - Viscosity.

Viscosity
coRLSR PLS

R2 RMSE NRMSE R2 RMSE NRMSE
#1 0.69604 1.6923 0.18178 0 3.192 0.34286
#2 0.91441 0.85487 0.097145 0.93835 0.72551 0.082444
#3 0.98199 0.40646 0.044252 0.96443 0.57118 0.062186
#4 0.92754 0.8243 0.088539 0.92447 0.84158 0.090395
#5 0.9297 0.73566 0.085572 0.82975 1.1448 0.13317
#6 0.85226 0.85482 0.1014 0.81188 0.96458 0.11442

LS-SVM NN
R2 RMSE NRMSE R2 RMSE NRMSE

#1 0.78461 1.4246 0.15302 0 3.0718 0.32994
#2 0.92085 0.82206 0.093416 0.91203 0.86665 0.098483
#3 0.98297 0.39522 0.043028 0.97311 0.4966 0.054067
#4 0.9614 0.60165 0.064624 0.94074 0.74549 0.080074
#5 0.9465 0.64179 0.074653 0.80143 1.2364 0.14382
#6 0.83787 0.89547 0.10622 0.77468 1.0556 0.12522
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Figure 5.8: Predictive performance comparison - Viscosity.

were discarded, from which it was concluded that the features had generally more relevance
on this setting. For both cases the most relevant features were by a fair margin the 21st,
9th and 13th, following the thought that only a few features might be needed for sufficiently
accurate estimation.

The next step of the procedure was the feature removal through a recursive feature
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Figure 5.9: Feature ranking computed on the training set.

elimination approach. For both scenarios the least relevant feature was progressively removed
in order to reach the minimum RMSE. Figure 5.10 illustrates the RMSE obtained for each
feature set size. It can be seen that, for the acidity number estimation, few features are
needed in order to achieve higher predictive accuracy. The RMSE’s rapid decrease seen in
Figure 5.10(a) when less than 7 of the best features are used indicated that the optimal
number of required features in this case is quite low. In fact, the minimum was reached
when only the 4 best features were used. On the viscosity case, the overall higher relevance
of features translated to a very different scenario in Figure 5.10(b). The decrease seen when
using less than 5 of the best features was not enough to surpass the lower RMSE of the
model trained with a higher number of features. The minimum was achieved with the best
14 features used to train the model.
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Figure 5.10: Effect of feature removal on the RMSE - coRLSR.

The effect of the proposed feature ranking and selection method on both the overall
and per batch predictive performances can be seen in Tables 5.8 and 5.9 and visualized in
Figure 5.11. On these tables, the “%(R2)” column represents the performance improvement
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(in the form of percentage of increase) of the R2 metric, and the “%(NRMSE)” column repre-
sents the performance improvement (in the form of percentage of decrease) of both RMSE
and NRMSE metrics (since the improvement values are the same), when going from the
situation where all features are used to the situation where only the optimal subset of fear-
tures is used. Positive percentage values correspond to a performance improvement of the
considered metric (R2 or RMSE/NRMSE). In the case of R2, a performance improvement
corresponds to higher scores for the retrained model (the model using feature selection),
while for RMSE and NRMSE a performance improvement corresponds to lower values for
the retrained model. The improvement in overall performance of the acidity number esti-
mation is notorious, with an increase of 6% on the R2 score and a reduction in NRMSE of
21%. The difficult task of estimating batch #1 was surpassed, as a NRMSE lower than 0.1

was achieved (equating to a reduction of 43%), while the other batches either saw a increase
or a decrease in performance. They all still had good values of NRMSE and R2, translating
to a more balanced predictive performance when considering a per batch analysis. Results
on the viscosity prediction indicated that the performance gains while present were small in
this case. Here, the gain in overall predictive performance was explained by the increased
estimation accuracy for batches #2-5. Batches #1 and #6 saw a decrease in performance,
rendering coRLSR unusable for this scenario.

Table 5.8: Feature ranking and selection effect on predictive performance of coRLSR - Acidity
number.

Acidity number
coRLSR retrained coRLSR

R2 RMSE NRMSE R2 %(R2) RMSE NRMSE %(NRMSE)

overall 0.86366 2.3394 0.082459 0.91384 6 1.8597 0.065552 21
#1 0.65162 4.2624 0.15472 0.88574 36 2.4411 0.088605 43
#2 0.93479 1.477 0.073557 0.90078 -4 1.8219 0.090734 -23
#3 0.95757 1.2356 0.054239 0.94664 -1 1.3856 0.060824 -12
#4 0.90056 2.1368 0.081837 0.9076 1 2.0597 0.078885 4
#5 0.90953 1.7501 0.079552 0.92611 2 1.5816 0.071893 10
#6 0.93725 1.52 0.067647 0.9265 -1 1.6451 0.073212 -8

5.5.5 Feature Ranking and Selection Applied to All Methods

The general nature of the underlying concept used in feature ranking makes it so that
it can be applied not only to coRLSR, but to any regression method. Therefore, a similar
feature ranking procedure was performed for all methods, and the least relevant features
were removed in order for the minimum RMSE to be reached for both output variables. The
improvement in the curve-fitting is quite substantial and it can be seen in Figure 5.12 for all
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Table 5.9: Feature ranking and selection effect on predictive performance of coRLSR - Vis-
cosity.

Viscosity
coRLSR retrained coRLSR

R2 RMSE NRMSE R2 %(R2) RMSE NRMSE %(NRMSE)

overall 0.88295 0.9863 0.10526 0.88911 1 0.96003 0.10246 3
#1 0.69604 1.6923 0.18178 0.67953 -2 1.7377 0.18665 -3
#2 0.91441 0.85487 0.097145 0.94404 3 0.69121 0.078546 19
#3 0.98199 0.40646 0.044252 0.985 0 0.37097 0.040389 9
#4 0.92754 0.8243 0.088539 0.92809 0 0.82116 0.088202 0
#5 0.9297 0.73566 0.085572 0.96554 4 0.51508 0.059914 30
#6 0.85226 0.85482 0.1014 0.83928 -2 0.89157 0.10576 -4
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Figure 5.11: Feature ranking and selection effect on predictive performance - coRLSR.

methods and output variables.

Considering a quantitative look, an analysis similar to the one performed for coRLSR in
Subsection 5.5.4 was done. Looking at the results of the acidity number prediction, the values
on Table 5.10 showed that all methods were able to greatly benefit from the feature ranking
and selection approach, with overall R2 scores greater than 0.9 and NRMSE lower than 0.1.
In Table 5.10 (and also in Table 5.11, below), the “%” columns represent the performance
improvement of the performance index shown in the column to the left of the respective “%”
sign. The performance improvement takes the form of a percentage of increase for the R2

index, and a percentage of decrease for the cases of the RMSE and NRMSE and indexes.
The overall performance improvement was explained mostly by the very large decrease in
prediction error in batch #1. The NN model saw the greatest reduction in NRMSE of about
89%, followed by LS-SVM, with 77%, and PLS, with 44%. On the R2 metric, the∞ symbol
for both NN and LS-SVM is justified by their scores of 0 for this batch in the case without
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(c) LS-SVM - Acidity number.
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(d) LS-SVM - Viscosity.
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Figure 5.12: Feature ranking and selection effect on the predictive performance of all meth-
ods.

feature selection. This constitutes a very important increase in performance, since their
improved R2 scores were greater than 92% on NN and LS-SVM. On the remaining batches
a more balanced performance variation was seen, with some scores improving and others
decreasing by not so great amounts, yielding an overall performance improvement tendency.
The methods that took most advantage of the devised feature selection method were clearly
LS-SVM and NN. NN was able to achieve R2 greater than 0.95 across all batches, constituting
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a nearly-perfect estimation, as it can be seen in Figure 5.12(e). LS-SVM followed with a
still impressive predictive performance, as observed in Figure 5.12(c). Following the thought
that in most cases few features are in fact relevant, these retrained models used at most 10
features (in the case of NN), reinforcing the importance of feature selection in soft sensor
modeling.

Table 5.10: Feature ranking and selection effect on predictive performance of all methods -
Acidity number.

Acidity number
retrained coRLSR retrained PLS

R2 % RMSE NRMSE % R2 % RMSE NRMSE %

overall 0.91384 6 1.8597 0.065552 21 0.90355 7 1.9676 0.069354 22
#1 0.88574 36 2.4411 0.088605 43 0.86321 55 2.6709 0.096948 44
#2 0.90078 -4 1.8219 0.090734 -23 0.94069 -2 1.4086 0.07015 -22
#3 0.94664 -1 1.3856 0.060824 -12 0.86186 -4 2.2293 0.097863 -14
#4 0.9076 1 2.0597 0.078885 4 0.89337 -2 2.2127 0.084745 -7
#5 0.92611 2 1.5816 0.071893 10 0.95284 1 1.2635 0.057433 8
#6 0.9265 -1 1.6451 0.073212 -8 0.94694 -1 1.3978 0.062206 -13

retrained LS-SVM retrained NN
R2 % RMSE NRMSE % R2 % RMSE NRMSE %

overall 0.95711 42 1.3121 0.046249 64 0.97317 88 1.0378 0.036581 76
#1 0.92938 ∞ 1.9192 0.069661 77 0.97799 ∞ 1.0715 0.038891 89
#2 0.97127 -2 0.98045 0.048827 -46 0.98319 2 0.74987 0.037344 34
#3 0.9684 1 1.0662 0.046804 13 0.98975 3 0.60733 0.026661 49
#4 0.94706 -2 1.5591 0.059713 -19 0.96482 -1 1.2709 0.048675 -16
#5 0.96849 1 1.0328 0.046946 7 0.96758 3 1.0476 0.047618 29
#6 0.97591 3 0.94181 0.041914 30 0.95056 -2 1.3492 0.060046 -27

Considering the viscosity prediction, the statement in the previous section on the general
greater relevance of features remains true in this scenario. Performance index results for
the viscosity case are shown in Table 5.11. The retrained models used most of the features
from the total feature set, possibly leading to a smaller performance gain by using feature
selection. Still, PLS saw a decrease of 46% on the NRMSE value and LS-SVM a decrease of
9%, on the overall perspective. PLS and LS-SVM represent the best candidates for accurate
estimation, with favorable scores of R2 and NRMSE, the LS-SVM being the most balanced
across all different batches.

CoRLSR fell behind the other methods in terms of predictive performance. While on
the acidity number the prediction performance scores were good, on the viscosity case the
estimation was not sufficiently accurate. This means that, for this dataset, coRLSR was not
able to exploit the large number of unlabeled examples available, not reaching to the levels of
predictive performance of SVM or NN approaches. On the other hand, the proposed method
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Table 5.11: Feature ranking and selection effect on predictive performance of all approaches
- Viscosity.

Viscosity
retrained coRLSR retrained PLS

R2 % RMSE NRMSE % R2 % RMSE NRMSE %

overall 0.88911 1 0.96003 0.10246 3 0.91558 30 0.83765 0.089397 46
#1 0.67953 -2 1.7377 0.18665 -3 0.95685 ∞ 0.63766 0.068492 80
#2 0.94404 3 0.69121 0.078546 19 0.94377 1 0.69288 0.078736 4
#3 0.985 0 0.37097 0.040389 9 0.9718 1 0.50859 0.055372 11
#4 0.92809 0 0.82116 0.088202 0 0.91902 -1 0.87142 0.0936 -4
#5 0.96554 4 0.51508 0.059914 30 0.81488 -2 1.1938 0.13886 -4
#6 0.83928 -2 0.89157 0.10576 -4 0.78736 -3 1.0255 0.12165 -6

retrained LS-SVM retrained NN
R2 % RMSE NRMSE % R2 % RMSE NRMSE %

overall 0.92539 2 0.78744 0.084039 9 0.85932 20 1.0813 0.1154 30
#1 0.86988 11 1.1073 0.11893 22 0.7931 ∞ 1.3962 0.14997 55
#2 0.9143 -1 0.85541 0.097205 -4 0.6889 -24 1.6298 0.1852 -88
#3 0.97971 -0 0.43136 0.046963 -9 0.959 -1 0.61324 0.066766 -23
#4 0.95887 -0 0.62107 0.06671 -3 0.92638 -2 0.83089 0.089247 -11
#5 0.94913 0 0.62582 0.072795 2 0.93861 17 0.68746 0.079966 44
#6 0.84248 1 0.88265 0.1047 1 0.837 8 0.89786 0.10651 15

for feature ranking and selection showed great potential as the improvement in predictive
performance is substantial across all methods tested. As it relies on random permutation
of a feature after the model is trained, the relevance of the feature for both the problem
in question and the specific prediction method used is taken into consideration. Following
this, the multi-view nature of coRLSR was combined with the existence of feature ranking
information in order to infer on possible further improvements to its predictive performance.

5.5.6 Strategy of View Creation for Multi-View Methods

So far, in all testing, the 2 views used in coRLSR were created by sequentially splitting
the available feature set, forming two disjoint sets of features. In order to briefly infer
on the influence of certain types of view splits, a quick test was devised using the acidity
number scenario, as only 4 features were needed to achieve the minimum RMSE. The feature
indexes of the these 4 features are, in decreasing order of importance, {21, 9, 13, 33}, and
they were split in the following manner: 1st view: {9, 13}, 2nd view: {21, 33}. After some
empirical evaluation and rearranging of the constitution of the views using the same features
as before, the following split was considered: 1st view: {21, 13}, 2nd view: {9, 33, 13}. The
split was achieved not sequentially, but by assigning the features according to their relevance
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alternating between the two views (neither the view’s external order nor the internal order
matter to the final result). Additionally, the 13th feature was also assigned to the 2nd

view, creating two sets that are not disjoint. Retraining was then performed with the
mentioned view split, and the model’s prediction yet again obtained by averaging both
views’ estimations.

Table 5.12: Influence of a different view creation strategy on predictive performance.

Acidity number
retrained coRLSR newly retrained coRLSR
R2 RMSE NRMSE R2 RMSE NRMSE

overall 0.91384 1.8597 0.065552 0.93034 1.6721 0.058941
#1 0.88574 2.4411 0.088605 0.89139 2.38 0.086388
#2 0.90078 1.8219 0.090734 0.92233 1.6119 0.080276
#3 0.94664 1.3856 0.060824 0.96432 1.133 0.049739
#4 0.9076 2.0597 0.078885 0.92429 1.8645 0.071409
#5 0.92611 1.5816 0.071893 0.9416 1.4062 0.063916
#6 0.9265 1.6451 0.073212 0.95587 1.2748 0.056733

The results are presented in Table 5.12 and show that there was a substantial improve-
ment in predictive performance using the newly retrained version of coRLSR. For all batches,
the R2 scores increased, and the RMSE/NRMSE values were reduced, leading to a better
overall predictive performance, as measured by the R2 and RMSE/NRMSE. This superfi-
cial testing was performed to further extend the applicability of the proposed algorithm as
multi-view methods can take advantage of the additional feature information. Results also
showed that future developments in the algorithm could be done in order to accommodate
this deeper connection between multi-view methods and feature ranking/selection.

5.5.7 On the Value of Soft Sensors

One of the advantages of soft sensors, as mentioned in Section 2.4, is that they can provide
real-time estimates of the desired/target variable(s) (when their accuracy is good). This is
particularly useful in scenarios such as the one described in Section 5.1, since quality variables
are only available through laboratory analysis, with delays of up to 20 [min]. In contrast, after
the training stage, the soft sensor can provide estimates for the target variables as quickly
as process/input variables are made available (in this case, every 30 [s]). The difference in
the number/frequency of values of quality variables available is noticeable. Considering, for
example, batch #3, Figure 5.13 illustrates this discrepancy in number the number of samples
available of the target variable. For this batch only, the soft sensor lead to an increase from 25
measurements to approximately 5000 measurements, which could greatly benefit the process
control, as immediate (while accurate) estimations provide more controllability capabilities
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than 20 [min] delayed measurements.
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Figure 5.13: Soft sensor output vs. laboratory analysis for batch #3 - Viscosity.





Chapter 6

Conclusion and Future Work

6.1 Conclusion

This dissertation presented a semi-supervised regression method that is able to benefit
from the existence of unlabeled data, as its improvement in predictive performance with
the increase in number of unlabeled examples was notorious. Moreover, a new approach to
feature ranking and selection based on sensitivity analysis was proposed, focused on flexibility
and low computational cost. A real-world dataset was used in order to more accurately
test the proposed method and compare it with the most popular approaches used in soft
sensing. With no feature ranking and selection procedure performed, coRLSR’s predictive
performance was competitive with the other approaches. Using the proposed method for
feature ranking and selection produced substantial improvements in performance for all
methods. Here, coRLSR’s results were not as good as LS-SVM and NN, for example, being
in some cases an inadequate method for use in soft sensor modeling. Still, a look in the multi-
view nature of coRLSR allowed for a deeper connection with the feature ranking method,
showing that it is possible to further improve its performance by adequately defining the
views. The relevance of soft sensors was yet again stated, as the capability of providing real-
time estimations is of the utmost importance in process control, specially in scenarios where
quality information is not readily available (such as in the presented real-world industrial
setting).

6.2 Future Work

Further experimentation on coRLSR’s could improve its performance. In this work only
Gaussian kernels were used, and so other types of kernels could be investigated and the
corresponding influence measured. The quick testing done on view creation hinted that the
influence of the design of the views on multi-view methods like coRLSR could be explored,
since feature ranking information is available. The method for feature ranking and selection
presented can also be improved, as a way to automatically select the direct feature rejection
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threshold value for each different scenario could improve the performance of the method.
Semi-supervised learning is an exciting field of machine learning, and as research interest
grows, more methods will be developed with stronger predictive capabilities.



Appendix A

Published Paper

This appendix includes a paper that resulted from the work of this dissertation. The
paper is entitled “Semi-Supervised Soft Sensor and Feature Ranking Based on Co-Regularised
Least Squares Regression Applied to a Polymerization Batch Process” [Ferreira et al., 2017],
and was published in the “IEEE 15th International Conference on Industrial Informatics
(INDIN 2017)”, that was held on July 24-26, 2017, in Emden, Germany.
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Abstract—In this paper a semi-supervised regression model
based on co-training is applied on the soft sensor context, together
with a feature ranking approach which has the purpose of
removing irrelevant features. The description of both the methods
of semi-supervised regression and feature ranking, as well as the
theorethical foundation of the proposed feature ranking approach
are also given. To evaluate the proposed methodology, a real-
world polymerization industrial process was used as example.
The results demonstrate that the devised feature ranking and
selection improves the semi-supervised regression model.

I. INTRODUCTION

Soft sensors are inferential/predictive models that use on-

line available sensors, also called as easy-to-measure variables

(e.g. temperature, flow rate, etc) to predict quality variables

which cannot be automatically measured at all, or can only be

measured at high cost, sporadically, or with high delays (these

are also refereed as hard-to-measure variables; e.g. laboratory

measurements) [1]. They are important tools for application

in many industrial processes, such as pulp and paper mills,

cement kiln, just to give a few examples.

In traditional approaches, a plenty of available unlabeled

data (i.e. samples where the easy-to-measure variables do not

have a corresponding hard-to-measure value) is not used dur-

ing the model learning. The presence of unlabeled data comes

from the fact that the frequency at which the easy-to-measure

variables are made available is usually much higher than the

measurement frequency of the hard-to-measure variables such

as laboratory measurements, and the synchronization between

the easy-to-measure and hard-to-measure variables is done in

accordance to the slow sampling rate of the hard-to-measure

variables, usually by excluding the unlabeled data [2], [3].

Other approaches usually make use of FIR (finite impulse

response) filters to sincronize the unlabeled and labeled data

[4], [5]. However, the use of both the labeled and unlabeled

data (partially labeled data) for soft sensors applications has

shown to be an effective approach when compared to the

model trained with only the labeled data [6], [7]. Despite

this fact, there are currently few methodologies to deal with

irrelevant features in such kind of settings. Then, following

the idea that a variable ranking approach might improve the

performance accuracy in the semi-supervised context, as it

does in supervised learning, this paper proposes a new general

algorithm for variable ranking and its application in the semi-

supervised learning area with application to the soft sensors

context.

There are two types of soft-sensors: model-driven and data-

driven, the key difference being that on data-driven (also

known as black-box) the relationship between the input and

output is constructed based on empirical data, while on model-

driven (also known as white-box) such relationship is based

on mathematical/physical models [1]. The large volume of

process data available in industrial plants contributed to the ris-

ing popularity of data-driven soft sensor approaches, the most

popular methods being based on partial least squares (PLS)

[8], principal component regression (PCR) [9], artificial neural

network (ANN) [10], and support vector machine (SVM)

[11]. The choice of the model to use is not straightforward,

since every method has its advantages and disadvantages,

and possible scenarios in which to apply. The existence of

unlabeled data on some industrial settings might favor semi-

supervised methods, as they are able to incorporate such infor-

mation to better map the input-output relationship. Although

all above-mentioned methods are supervised, semi-supervised

versions have been developed, showing the potential of the

concept in soft sensor modeling [6], [7], [12], [13], [9]. Feature

selection is a fundamental stage in soft sensor development.

As the number of features/variables to be considered in the

modeling stage is rather high, selecting only the most relevant

ones can lower the complexity of the problem at hand. This

is imperative, as in most industrial settings there are time

constraints that can only be met if the number of features

considered is kept low [14]. Many strategies for feature

selection have been proposed in conjunction with soft sensor

design to various industrial settings, such as fabric textile

[14], refining process [15], semiconductor manufacturing [16],

chemical polymerization [17], and chemical process control

[18]. Most methods involve an intricate number of steps in

order to evaluate all features and select the most relevant.

Some use cross-validation to evaluate subsets of features [15],

obtaining those subsets randomly. Others are based on methods
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like SVM [16] and PLS [18]. These approaches can be quite

expensive on a computational perspective, and can even be

prohibitive in a high-dimensionality scenario [19].

To further improve the predictive performance of semi-

supervised learning, this paper resorts to a strategy of feature

ranking and selection based on sensitivity analysis. In sensitiv-

ity analysis, the importance of an input is measured by com-

puting the variation of the output when the input is perturbed.

The proposed methodology is theoretically justified based on

common assumptions. This method allows the measurement of

the influence of an individual feature without resorting to re-

training the model, lowering the potential computational com-

plexity. The experiments, performed on a real-world industrial

batch polymerization process, show that ranking the feature set

and selecting only some of the most relevant features from it,

leads to a substantial improvement in predictive performance,

allowing for a more accurate representation of the problem in

question while keeping the complexity and computational cost

low.

Section II defines notation. In section III the coRLSR and

its semi-parametric approximation is detailed. The method of

feature selection and ranking is discussed in section IV. A brief

explanation on the real-world application used in experiments

is provided in Section IV. Finally, Section VI contains the

experimental results and Section VII the final remarks.

II. NOTATION

The notation used here is defined as follows. Assume

that finite random variables are represented by capital letters

and their values for the corresponding lowercase letters, e.g.

random variable A, and corresponding value a. Matrices and

vectors are represented by boldface capital letters, e.g. A and

boldface lowercase letters, e.g. a, respectively.

The input and output/target variables are defined as X =
{X1, . . . , Xd} and Y , respectively. The variables X1, . . . , Xd

can take N different values as {xij ∈ Xj |j = 1, . . . , d ∧ i =
1, . . . , N}, and similarly for Y as {yi ∈ Y |i = 1, . . . , N}.

The input and output vector at instant i are defined as xi =
[xi1, . . . , xid]

T and yi, where X, with elements Xij = xij ,

and y, with elements yi,1 = yi are the input matrix and output

vector containing all the N examples, respectively. The set of

examples is defined as Φ = (xi, yi)
N
i=1. The probability that

a random variable takes the value a, i.e. {A = a}, is defined

as p(a).

III. EFFICIENT CO-REGRESSION

The Co-Regression algorithm, proposed by Brefeld et al.

[20], is based on a kernel approach. In those methods, given

set of training data Φ , the goal is to find the following solution

f(·) = argmin
f∗(·)∈H

{

N
∑

i=1

L(yi, f∗(xi)) + νΩ[f∗(·)]
}

(1)

where H is a Hilbert space of functions, L(y, ·) is a convex

loss function, ν > 0 is a parameter and Ω[f(·)] is a regular-

ization term.

For M -view learning (M ≥ 1), the objective is to find

M new functions from different Hilbert Spaces Hv, indexed

by v, where each Hv is defined by different instances, de-

scriptions, features, and/or different kernel functions, such

that the error of each function on the training data and the

disagreement between the functions on the unlabeled data

is as small as possible. Hence, given a set with M sets

containing labeled samples Γ = {Φ1, . . . ,ΦM} ⊆ M, where

Φv = {xi, yi}Nv

i=1 and v = 1, . . . ,M , and a set of unlabeled

samples Φ∗
z = {xz}Zz=1, the objective is to find functions

f1 : Γ → R, ..., fM : Γ → R from different Hilbert Spaces

H1, ...,HM that minimize

Q(f1, ..., fM ) =
M
∑

v=1





Nv
∑

i=1,xi∈Φv

L(yi, fv(xi)) + νv‖fv(·)‖2




(2)

+ λ

M
∑

u,v=1

Z
∑

z=1,xz∈Φ∗
z

L(fu(xz), fv(xz))

where, L(·) is the loss function, ‖fv(·)‖2 is the regularization

term, νv is the regularization parameter and λ is a parameter

that weights the influence of pairwise disagreements. Accord-

ing to the representer theorem (Wahba [21]; Schölkopf et al.

[22]), the solutions of Eq. (2) have always the following form

f∗
v (xi) =

∑

x∈
⋃

Φv∈Γ
Φv

⋃
Φ∗

z

αv(x)kv(x,xi), (3)

where kv(·, ·) is the reproducing kernel of the Hilbert Space

Hv, and αv(x) is a coefficient associated with x.

In this way, the vector [fv]i,1 = fv(xi), composed of the

elements xi ∈
⋃

Φv∈Γ Φv

⋃

Φ∗
z , can be expressed as Kvcv

and ‖fv(·)‖2 as cTv Kvcv, where [Kv]ij = kv(xi,xj) and

[cv]i,1 = αv(xi). Kv is a strictly positive definite kernel

matrix, i.e., it is symmetric and has no negative, and no

zero eigenvalues. The notation used for each view’s labels is

[yv]i = yi for i = 1, . . . , Nv. For standard kernel methods like

Eq. (1), defining the loss function as the squared difference

between real and predicted output, L(yi, fv(xi)) = (yi −
fv(xi))

2 gives the ridge regression (Sauders et al. [23]) or

regularised least squares regression (RLSR) solutions.

A. Semi-Parametric Approximation of coRLSR

This paper focuses on the semi-parametric approximation

of coRLSR proposed in [20], where the authors also proposed

a exact solution of the (non-parametric) coRLSR, but such

solution has cubic time complexity in the number of unlabeled

examples, which is unfeasible in semi-supervised soft sensors

applications, since the number of unlabeled samples is large.

On the other hand, the semi-parametric solution is able to scale

linearly with the number of unlabeled examples, and provides

the same performance solution as the exact solution.

With Nv training examples in view v and Z unlabeled

examples, Eq. (2) can be rephrased as the following coRLSR
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optimization problem, in which the goal, for fixed λ, ν ≥ 0,

is to minimize the following cost function

Q(C) =

M
∑

v=1

(

‖yv − Lvcv‖2 + νcTv Lvcv
)

+λ

M
∑

u,v=1

‖Uucu −Uvcv‖2
(4)

over C = [c1, ..., cM ] ∈ R
N1× . . .×R

NM . Lv ∈ R
Nv×Nv and

Uv ∈ R
Z×Nv are computed from a strictly positive definite

kernel function and from a positive definite kernel matrix

Kv ∈ R
(Nv+Z)×(Nv+Z) as

Kv =

(

Lv UT
v

Uv ∗

)

where the part marked by * is not needed.

Getting the derivative of (4) with respect cv, yields

∇cv
Q(C) = 2Gvcv − 2Lvyv − 4λ

∑

u:u6=v

UT
v Uucu.

where

Gv = L2
v + νLv + 2(M − 1)λUT

v Uv.

At the optimum the following relation holds

[∇c1
Q(C), . . . ,∇c2

Q(C)]
T
= 0,

and then the exact solution for the optimum of (4) can be

found as






G1 −2λUT
1 U2 · · ·

−2λUT
2 U1 G2 · · ·

...
...

. . .











c1

c2
...



 =







L1y1

L2y2
...






.

The solutions can be found in time O(M3N2Z) (assuming

Z ≥ N = maxv Nv). Further details on coRLSR can be found

in the original paper [20].

IV. FEATURE RANKING AND SELECTION

The coRLSR method, similarly to other kernel methods,

aims to find the optimal solution in the Hilbert space. It is

given by a linear combination of kernel functions “centered”

on the set of training instances (labeled and unlabeled). In

this sense, the direct relationship between input and output is

not straightforward. This means that there is no direct way to

assess the influence that a variable has in the output.

Assume that the output of a regression model, defined as

f(xi), is achieved by the following conditional mean [24]:

f(X = xi) =

∫

Y

y p(y|X = xi) dy. (5)

Assume that X−j = X \ Xj . From (Yang et. al [25]), the

following theorem is stated

Theorem 1:

P (y|X(j)) = P (y|X−j) (6)

where X(j) is defined as

X(j) = {X1, ..., X
∗
j , ..., Xd}

with X∗
j being a random permutation of Xj applied across all

samples.

By applying Theorem 1 into equation (5), the following

relation holds

f−j(X) =

∫

yP (y|X−j) dy (7)

=

∫

yP (y|X(j)) dy.

Eq. (7) means that permuting a variable j in the trained model,

is similar to having the output of the same model without

the variable j. This brings several advantages, since instead

of completely removing a feature and retraining the model,

a random permutation is applied to mimic the output of the

model without the respective variable, while the other features

are kept unchanged.

The rank of a feature j is then defined by the absolute

normalized difference between the prediction error of the

model trained with the perturbed set X(j) and with the ’intact’

set X :

J(Xj) =
|E(j) − E|

E
, (8)

where E(j) and E are performance metrics computed from

the predictions using X(j) and X as input set, respectively.

In this work the mean square error (RMSE) is used as the

performance metric.

In order to select the most relevant features, a recursive

feature elimination (RFE) approach was applied to delete the

most irrelevant features. First, the model is trained using all

features available and the rank of each individual feature

is then obtained as stated above. Then, the least important

feature is progressively eliminated and the performance of the

estimation is computed. To speed up the process, a threshold

ǫ is defined such that features j with J(Xj) < ǫ will be

considered with no importance, being immediately discarded.

V. POLYMERIZATION PROCESS

This section describes the industrial process used in the

experiments. This is a batch process from the polymerization

industry. The process under study is the production of a

polyester resin, there are two quality variables measured along

the process (hard-to-measure variables): NA (acidity number)

and µ (viscosity). The plant is equipped with several online

sensors, connected to a process computer that records their

measurements every 30 [s]. In total, there are 34 variables

(features) being recorded at a fairly high frequency (when

compared to the total batch duration, which ranges between

40 and 70 h). Each batch then contains 4500-7500 recordings

of each process measurement. Quality variables (NA and µ)

are not measured online. Instead, product samples are taken

manually, quite infrequently and unevenly (one sample per

1.2− 2 [h]), and are only collected about 8 − 10 [h] after the

batch starts. In this way, only a few quality indicators are

available for each batch (15− 20 measurements).

The assembled dataset contains process and quality mea-

surements from 33 batches, equating 16 months of operation.
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Two subsets were created: 27 batches constitute the training

dataset, while the other 6 batches represent the testing dataset.

In total, 200980 samples were collected, where only 663 of the

samples have labels (quality indicators). This challenging real-

world setting allows semi-supervised algorithms to exploit the

huge number of unlabeled examples available. More details

about the process can be found at (Facco et al. [26]).

VI. EXPERIMENTAL RESULTS

The training dataset (containing data from 27 batches) was

used in the experiments to train the model, while the testing

dataset was used to compute estimation accuracy. The train-

ing dataset has 530 labeled examples and 162564 unlabeled

examples. In our testing, all the labeled examples were used

as well as 10000 unlabeled ones. Three performance metrics

where used: root-mean-square error, RMSE =
√

MSE =
√

∑n

i=1(yi − f(xi))2, its normalized variant, NRMSE =
RMSE/(ymax − ymin), and the R-square (R2) coefficient of

determination, where ymax and ymin are the maximum and

minimum observed output values, respectively. The RMSE is

also known as the standard error of the regression, allowing

the quantification of the predictive error. The closer the value

is to 0, the more useful is the fit for prediction. The NRMSE

is similar to the RMSE, facilitating the comparison between

different types of variables (e.g. viscosity and acidity). Finally,

R2 measures how successful the fit is in explaining the

variation of the data. The formulation used is [27]:

R2 = 1−
∑n

i=1(yi − f(xi))
2

∑n

i=1(yi − y)2
,

where y is the average observed value. Higher values of R2

(closer to 1) translate to a better explanation of the variation

in the data by the fit.

A Gaussian kernel was used (for each view),

kv(xi,xj) = exp(−‖xi − xj‖2/σv)

with

σv =
1

n2

n
∑

i,j=1

‖xi − xj‖2,

and

νv =

(

n
∑

i=1

‖xi‖/n
)−1

as a regularization parameter (σv and νv were computed from

the labeled examples of each view). Two views were used

in all experiments, in these the features were split sequen-

tially among them, creating two disjoint sets. The optimal λ
was found by considering only the training set, using cross-

validation across 25 trials, being the one which guaranteed the

smallest RMSE.

To evaluate the proposed approach, the following method-

ology was considered. For all datasets, the coRLSR model

was trained with all variables, then the variables were ranked

according to Eq. (8), on the training set using RMSE as the

performance metric, and using a threshold of ǫ = 10−2 to

discard non-relevant features.
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Figure 1: Estimation accuracy of coRLSR and re-trained coRLSR -
acidity number.
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Figure 2: Estimation accuracy of coRLSR and re-trained coRLSR -
viscosity.

Table I: Performance metrics - without feature ranking vs. with
feature ranking

Variable Metric Without With

RMSE 2.675 1.727
acidity NRMSE 0.137 0.095

R2 0.735 0.903

RMSE 0.940 0.915

viscosity NRMSE 0.112 0.107

R
2 0.849 0.851

The first stage of estimation, without feature ranking, pro-

vided the estimations that can be seen in Fig. 1 for acidity

number (NA) and in Fig. 2 for viscosity (µ). The results have

shown a good overall performance, except in the first batch,

represented by the first section of the curve in both figures.

The actual performance metrics values are shown in Table I.

In both cases (acidity and viscosity estimation) the most

relevant features were the 21st, the 9th and the 13th as indi-

cated in Fig. 3, and Fig. 4 which shows the ranking given

by Eq. (8), with respect to the feature; the labels for the

other features were removed from the chart for the sake of

clarity. The random permutation of the other features did not

impact the model’s predictive performance nearly as much.

The defined threshold deemed irrelevant 14 features in the
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Figure 3: Feature ranking computed on the training set - acidity
number.
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Figure 4: Feature ranking computed on the training set - viscosity.

acidity estimation and 8 features on the viscosity side, from

which it was concluded that the features had generally more

relevance on the viscosity estimation. The feature removal

process was performed in order to reach the minimum RMSE.

In the acidity number, the minimum was achieved when the

model was retrained with the 31 worst (least relevant) features

removed (being used only the 3 most relevant). Regarding

viscosity, the minimum was reached with the removal of

the 10 worst features (being used the 24 most relevant),

confirming the higher relevance of the individual features in

this case. The model performance while removing the features

are demonstrated in Figs. 5 and 6. The overall improvement

can be seen by analyzing the values on Table I. The use of

feature ranking lowered the RMSE and normalized RMSE

(NRMSE) in both the acidity and viscosity cases, providing

a higher R2, improving the curve fitting. This improvement

was more noticeable on the acidity number prediction (Fig. 1)

versus the viscosity prediction (Fig. 2).

VII. CONCLUSION

In this paper, the CoRLSR was used as a semi-supervised

soft sensor model, and was applied in a real case polymer-

ization process. Moreover, a simple feature ranking method
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Figure 5: Effect of feature removal on the RMSE - acidity number.
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Figure 6: Effect of feature removal on the RMSE - viscosity.

was proposed to deal with the presence of irrelevant features

during the modeling. Empirical results on the batch process

under study showed that there is an improvement in prediction

accuracy, as the method is able to not only use the extra data

points from the unlabeled examples to produce good results

but also to benefit from a computationally inexpensive strategy

to rank and select features to further improve the results.

The proposed method for feature ranking helped in discarding

irrelevant features, therefore reducing the high-dimensionality

of the data commonly found in industrial settings. Following

on that, the capabilities of the feature ranking method can

be applied to several other methods, as the general underlying

concept has low associated computational cost when compared

to most of the alternatives. Furthermore, it can provide crucial

knowledge to construct views in multiple-view methods like

coRLSR.
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