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Abstract

In recent years, a significant amount of effort has been dedicated to the field of human-

computer interaction, particularly regarding the topic of gesture recognition. These develop-

ments aim to improve the quality of life of elderly and disabled people, through the creation

of a new communication interface between humans and computers. More precisely, these

researches explore the electric nature of the human nervous system and attempt to apply it

to the control of human-assisting devices. As such, the goal of these systems is to translate

hand and arm motions into commands, through the detection, processing and classification

of biosignals, namely Electromyography signals (EMG).

This work focuses on Sign Language Recognition (SLR), an intricate and challenging

problem which has yielded different approaches in the past. This is due to the inherent

complexity of these types of gestures, which can either be static or dynamic, when more

than one stage of motion is required. Thus, there are different classification method suitable

for these types of signals such as Hidden Markov Models (HMMs), Finite State Machines

(FSM), particle filtering and Artificial Neural Networks (ANNs). However, while the use of

ANNs is very common in the classification of simple arm/hand movements it’s use in sign

language recognition is still being explored. In fact, most efforts at SLR are employed with

HMMs due to the fact that they are more effective at recognizing signals which vary over

time.

Therefore, this study presents a step-by-step development of an EMG pattern recognition

system, based on the classification of a discriminatory set of features by an ANN. Moreover,

it evaluates the performance of the aforementioned system by applying it to the classification

of 10 sign language gestures. As such, this document includes an analysis on the optimal

parameters of the network’s architecture as well as a study on the influence of the sampling

population and the representation of the input data on the system’s performance.
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Moreover, the obtained classification results support the efficacy of an artificial neural

network as a classifying tool for complex sign language gestures. The developed system can

classify 10 sign language gestures, from 4 subjects, with a classification accuracy of 95.4%.

Not only, this system is also suitable for the classification of simple movements, achieving

an accuracy rate of 92.7% for the classification of 10 hand and arm movements, performed

by 4 subjects.

Keywords

Sign language recognition, Gesture recognition, Electromyographic signals, Biosignals, Arti-

ficial neural network

vii



Resumo

Recentemente, o campo de interação humana-computador tem sido o foco de bastante

interesse, particularmente o tópico de reconhecimento gestual. Estas pesquisas procuram

melhorar a qualidade de vida de idosos e indivíduos com necessidades especiais, através da

criação de uma nova interface de comunicação entre humanos e computadores. Mais especifi-

camente, estes estudos exploram a natureza elétrica do sistema nervoso humano, procurando

aplicá-lo ao controlo de aparelhos assistivos. Deste modo, o objetivo destes sistemas passa

pela tradução de movimentos simples em comandos através da deteção, processamento e

classificação de bio-sinais, nomeadamente sinais electromiográficos (EMG).

Este trabalho foca-se no reconhecimento de língua gestual (SLR), um problema desafi-

ante e complexo com várias abordagens de resolução. Esta multiplicidade de abordagens

é causada pela complexidade inerente a estes tipos de gestos, que podem ser classificados

como gestos estáticos ou como gestos dinâmicos, onde mais do que uma fase de movimento

é diferenciável. Assim, há diferentes tipos de métodos de classificação que podem ser aplica-

dos a estes tipos de sinais, nomeadamente "Hidden Markov Models" (HMMs), máquinas de

estado finito, filtragem de partículas e redes neuronais artificiais. Contudo, apesar do uso de

redes neuronais artificiais ser bastante comum na classificação de movimentos simples, o seu

uso no reconhecimento de língua gestual ainda está a ser explorado. De facto, a maioria dos

esforços em SLR é empregue com o uso de HMMs, dada a sua eficácia no reconhecimento de

sinais que variam ao longo do tempo.

Esta dissertação tem como objetivo o desenvolvimento de um sistema de reconhecimento

de língua gestual, através da medição de sinais EMG. Deste modo, a metodologia proposta

baseia-se na extração de um conjunto discriminatório de características ("features") e na sua

classificação através de uma rede neuronal artificial.
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O método desenvolvido foi aplicado á classificação de 10 sinais gestuais, de maneira a

determinar os parâmetros ótimos da arquitetura da rede neuronal. Deste modo, o presente

documento inclui um estudo sobre os parâmetros do modelo escolhido e os resultados de

classificação correspondentes. Não só, apresenta uma análise sobre a influência de certos

fatores na performance do sistema, nomeadamente o tamanho da população de amostra e o

conjunto de "features" utilizado na representação.

Por sua vez, os resultados obtidos apoiam o uso de uma rede neuronal artificial como

ferramenta de classificação, na área de reconhecimento de língua gestual. Neste caso, o

sistema desenvolvido classifica 10 sinais gestuais, provenientes de 4 sujeitos, com uma taxa de

precisão de 95.4%. Não só, o sistema também é adequado para a classificação de movimentos

simples, alcançando uma precisão de 92.7% na classificação de 10 movimentos efetuados por

4 sujeitos.

Palavras Chave

Reconhecimento de língua gestual, Reconhecimento de gestos, Sinais electromiográficos, Bio-

sinais, Rede neuronal artifical
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Chapter 1. Introduction 1.1. Motivation

In the last decade, there have been tremendous developments, made both in technology

and science, which have led to the proliferation of computerized machines in society. Conse-

quently, the subsequent need to interact with communication and display technologies has

sparked an interest in intuitive interfaces that can recognize the user’s body movements and

translate them into commands. Gesture recognition can be defined as “the recognition of

meaningful expressions of motion, involving hands, arms, face, and/or body” [6]. This is a

natural and convenient way of interacting, which allows the development of an intelligent

and efficient human-computer interface. Gestures can be static, in which the user assumes a

certain configuration that does not vary in time, or dynamic when it is possible to perceive

different stages of motion. Moreover, gestures are often language and culture specific and

therefore ambiguous and incompletely defined [7].

This work focuses on hand gestures, which play an important role in non-verbal commu-

nication and have wide-ranging applications such as rehabilitation engineering, gesture based

control and Sign Language Recognition (SLR). Furthermore, it centers on the development

of a simple sign to speech system that can be used later on to improve the quality of life of

deaf or non-vocal persons.

1.1 Motivation

Hand gesture identification is an intricate problem, where a large number of muscles is

involved even for a simple hand movement. Therefore, there are different approaches to

handle this problem, ranging from statistical modeling, computer vision, image processing

and soft-computing [6].

The most common approach to SLR is statistical modeling, specifically Hidden Markov

Models (HMMs), which are effective in the recognition of signals that change over time

[8]. This variation derives from the inability to exactly replicate a gesture, due to inter-

individual differences and subject specific differences, when the same subject performs a

gesture differently in separate instances [9]. Nonetheless a soft-computing approach through

Artificial Neural Networks (ANNs) can also be used in gesture recognition, especially for large

data sets. This approach is commonly used in gesture based control, where the classification

regards simple hand and arm movements. As such, its efficiency in the classification of

complex sign language gestures is still debatable when compared to other methods such as

HMMs [10] [9].
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Chapter 1. Introduction 1.2. Objectives

Additionally, there are different sensing technologies that can be used to capture ges-

tures, each one with its own accuracy, resolution and range of motion. Generally, methods

of extracting data in SLR can be divided into two groups: sensing devices, where sensors

are attached to the user’s arm, and computer vision-techniques which don’t interfere with

the user [6]. Although computer-vision approaches offer the advantage of no interference,

they have the downside of being extremely sensitive to the testing environment, more pre-

cisely to its lighting, color and background texture [10]. Hence, for this research, data was

obtained through Surface Electromyography (sEMG), a technique which measures the elec-

trical current generated by the contraction of muscles and directly represents neuromuscular

activity.

1.2 Objectives

The goal of this thesis is to develop a pattern recognition system capable of classifying 10

sign language gestures, with the use of an ANN. Moreover, this research aims to determine

the optimal conditions, for which the classification accuracy is maximized, through a study

of the network’s architecture and the representation of the input data. Also, it focuses on

the relation between classification accuracy and data inter-variability, particularly the effect

of increasing the sampling population.

1.3 Dissertation Outline

This thesis is organized in 5 chapters, starting with an introductory chapter, where the

reader is presented with the aim of the dissertation and a brief review on SLR. The 2nd

chapter corresponds to the state of the art, which provides background information regarding

sign language, surface electromyography and ANNs.

The following chapter details the methodology of the pattern recognition system, pro-

viding information about each element of the aforementioned system. Moreover, section 4

presents the experimental results of the classification of sign language gestures and simples

arm/hand movements. Finally, the conclusion of this research is presented on chapter 5

along with some suggestions of improvement for future work.
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Chapter 2. State of the Art 2.1. Sign Language and Sign Language Recognition

2.1 Sign Language and Sign Language Recognition

Sign language is a complex visual language that employs gestures to convey words as

an alternative to acoustic sound, commonly used by the hearing impaired community. As

with any language, it is composed of words, which follow specific grammatical rules, and

are combined to form sentences [7]. Moreover, sign language has three major components:

world-level sign vocabulary, finger-spelling and non-manual features which consist of facial

expression and body positioning [11].

To the contrary of normal belief, sign language is not universal, each country has its spe-

cific sign language with its own roots and history. In Portugal, the majority of the deaf com-

munity uses the Portuguese sign language, known as “Língua Gestual Portuguesa" (LGP),

whose origins date back to 1823 [12]. Each sign of the LGP can be described by 5 main

parameters such as: hand configuration (symbolic information), articulation location (spa-

tial information), hand movement (phatic information), hand orientation and non-manual

components (body/facial expression) [13].

Given the importance of sign language in today’s society, there is an ever-growing need

for a practical device that can facilitate this type of communication. Therefore, this research

aims to develop a robust pattern-recognition system that can accurately identify the sign

conveyed by a subject’s hand. In this case, data was extracted through sEMG, a method

which has recently gained popularity in the SLR research area [14].

As previously mentioned, data extracting methods can be based on either computer vision

techniques or data sensing devices. Computer based recognition systems capture gestures

through a fixed set of cameras, which makes this technology very sensible to the properties

of the external environment, namely its background texture, color and lighting [8]. Another

problem associated with these types of system is the occlusion of parts of the user’s body,

particularly the hands as this can lead to missing gestures during tracking [10].

On the other hand, computer based methods do not restrict or interfere with the user’s

motion, thereby allowing a more natural interaction with the system, as opposing to sensing

devices, which require the connection of cables or the use of a tracking device. Moreover,

sensing devices encompass different devices such as magnetic field trackers, data gloves, body

suits and bioelectric signals [6].

6



Chapter 2. State of the Art 2.1. Sign Language and Sign Language Recognition

This research focuses on the bioelectric field, where signals are created by an alter-

ation of electric current, due to a difference of potential across a specialized tissue, organ

or cell [14]. Furthermore, these signals can be classified according to the source of mea-

surement: Electroencephalography (EEG), Electrooculography (EOG), Electrocardiography

(ECG), Electromyography (EMG) and Electroneurography (ENG) [15]. In the context of

the SLR problem, the EMG stands out as an ideal method, since it measures the electri-

cal activity induced by the user’s arm/hand muscle thereby allowing the interpretation of

the movement. In addition to that, EMG signals also offer better signal to noise ratio, in

comparison to other signals such as the EEG or the ENG [14].

Subsequently, the popularity of this method sparked an abundance of studies on the

subject of classifying EMG signals. The earliest research dates back from 1975, when Graupe

and Cline [6] classified EMG signals to obtain command signals for prosthetic control. This

was pioneer work for the time, having achieved 85% on the classification of data from a single

channel, using Autoregressive (AR) coefficients as features.

However, this system was not able to identify complex gestures, a goal achieved in 1993

by William Putnam et. al [16]. Their research developed a real time system for pattern

recognition of EMG signals, capable of controlling a graphical computing environment, based

on AR coefficients. The system used neural networks to identify two gestures, bicep flexion

and bicep extension, in order to move a slider in different directions (upward or downward)

and achieved a 95% accuracy in classification.

In addition, another important milestone occurred in 2006, when G. Tsenov et al. dis-

covered that the classification performance of hand/finger movements depends considerably

on feature extraction [17]. In their research they concluded that identification methods

cannot help the accuracy classification if the selected features are not relevant. Therefore,

the determination of a complete set of discriminatory features is of great importance to

the performance of pattern-recognition systems. Moreover, they were able to obtain 98%

accuracy with a Multi-layer Perceptron and the use of the following time-domain features:

Mean Absolute Value (MAV), Variance, Waveform Length (WL), Norm, Number of Zero

Crossings (ZC), Absolute Maximum, Absolute Minimum, Maximum minus Minimum and

Median Value.

Since then, much of the recent research has focused on increasing the number of gestures

whilst improving the classification accuracy, by designing new ways of feature representation

and by applying different gesture classifying techniques, which will be briefly described in

the following paragraphs.
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Chapter 2. State of the Art 2.2. Neurons and the EMG acquisition system

The most common classification methods in SLR are HMMs, Finite State Machines (FSM),

particle filtering and ANNs [6] [10]. Firstly, in the FSM approach, gestures are viewed as a

set of trajectories, each one corresponding to a group of points in 2-D space. Therefore, a

gesture is modeled as an ordered sequence of states, where each state has a set of parameters

that specify the spatial-temporal information captured by it [18].

Particle filtering is directed towards real-time estimation of nonlinear non-Gaussian sys-

tems, through the approximation of probability densities by weighted samples [6]. This

system uses particles, random variables sampled directly from the state space, to represent

posterior probability. These filters can also be viewed as a sample-based variant of Bayes

filters, as the particle system is propagated recursively according to the Bayesian rule [19].

Another well recognized method is the HMM, which can be defined as “a statistical model

capable of modeling spatial-temporal time series” [10]. More precisely, an HMM model is

a collection of finite states ruled by transitions, whose outputs depend on the probability

distribution of the associated state [20]. Therefore, there are 2 sets of probabilities: the

transition probability which gives the probability of undergoing the transition and the output

probability, which defines the probability of emitting an output symbol [6]. In this case,

HMM based recognition uses multidimensional HHMs to represent a set of gestures, and

each trained model is used to evaluate new incoming gestures after the proper training.

Finally, ANNs are a specific type of network, characterized by its ability to learn in

a similar way to working biological systems. Thus, an artificial neuron can be seen as

computational model inspired by natural neurons, which connects to other computational

units forming a complex system with powerful processing capabilities [21]. These systems

are example-based learners, that do not require explicit programming and can generalize and

associate data [1]. Consequently, they can find acceptable solutions for problems for which

they were not explicitly trained which makes them robust to noisy input data. This was the

method of choice for classifying data, due to its advantage of learning relationships directly

from measured data and capability of generalization.

2.2 Neurons and the EMG acquisition system

This chapter explores the characteristics of electromyography, a common technique in

the area of medical robotics, used mainly for controlling prostheses and rehabilitation ap-

plications [8]. As stated by J.V Basmajian in his book “Muscles Alive”, electromyography

can be defined as “an experimental technique concerned with the development, recording
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and analysis of myoelectric signals”, where the term myoelectric refers to signals caused by

physiological variations in muscle fiber membranes [22] More precisely, this technique uses

electrodes to measure electrical potentials generated by muscle cells as a byproduct of con-

traction, which is generated due to the reception of signals.

These measuring devices can be classified as surface electrodes, which offer the advantage

of convenience and simplicity during application, or wire/needle electrodes which although

being intrusive are the preferred choice when analyzing deeper muscles that cannot be mea-

sured superficially [2].

In order to understand the process by which EMG signals are measured, it is necessary

to review some principles regarding the human nervous system and the way movements are

produced. The nervous system is the body’s processing unit, responsible for coordinating

movements through the transmission of signals. This system can be divided in two regions:

the Central Nervous System (CNS), where information is stored and processed by the brain

and spinal cord, and the Peripheral Nervous System (PNS). The PNS is a branched and

complex network comprised by the peripheral nerves, the Autonomic Nervous System (ANS),

related to the innervation of the blood vessels and internal organs, and the Enteric Nervous

System (ENS) which controls the activity of the gut [23].

Moreover, the spinal cord gives origin to a pair of spinal nerves formed by the fusion of

nervous segments known as the dorsal and ventral roots. To clarify, the term nerve refers to

an enclosed, cable-like bundle of nerve fibers, whereas each nerve fiber consists of an axon

and the myelin sheath that encloses it. In addition, there are 31 pairs of spinal nerves, each

one made from the combination of nerve fibers which can either be afferent nerve fibers,

that carry information from sensory organs to the spinal cord, or efferent nerve fibers, which

carry motor information from the spinal cord to muscles and effectors [23].

As a whole, the nervous system is composed by billions of cells, which communicate con-

tinuously in a coordinated fashion, yielding enormous processing capacity. These processing

units, named neurons, are cells found in nerves that behave in a similar way to a switch,

that when in presence of enough stimuli from other neurons outputs a pulse. The cell’s nu-

cleus, or soma, is in charge of the accumulation of activating and inhibiting signals, received

through the dendrites, branched projections of the soma. Conversely, the axon is responsible

for conducting an output impulse from the neuron’s cell body, to other neurons, muscles or

glands. (Figure 2.1) [14] .

As previously mentioned, the soma accumulates the signals it receives until a certain

threshold is exceeded, which activates the nucleus and triggers the transmission of an elec-

9
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Figure 2.1: Illustration of a biological neuron, from the book "A Brief Introduction to Neural

Networks", chapter 2, page 17 [1].

trical pulse to other cells (action potential). Moreover, it is important to mention that

above this threshold, each nerve impulse has the same amplitude and duration, which is

independent from the intensity of stimulus. This phenomenon is referred to as the law of

“all-or-nothing”, and states that impulses have a standard duration of 0.5 to 1ms, in the case

of mammals [23].

The reception of these signals occurs through the synapses, structures designed for inter-

neuron communication, between the axon terminals of a presynaptic cell and the dendrites of

postsynaptic cell. In addition, these synapses can be electrical, where neurons are physically

connected to one another via gap junctions, or chemical where neurotransmitters are released

into a synaptic cleft which separates the transmitter and receiver sides [1]. This communi-

cation has a great impact on the neuron’s membrane and it leads to a set of phenomenons

which generate the EMG signal. Therefore, it is interesting to analyze the behavior of the

membrane during a resting period, when no signals are received.

In the stationary phase, each neuron has a difference in electrical charge compared to

the environment, called membrane potential. This potential is created by different concen-

trations of specific ions within and outside the neuron, as shown by Figure 2.2. In this case,

the inside of the neuron has a high concentration of negative ions (collectively represented

by A−) and positive potassium ions (K+). Therefore, the concentration gradient leads to

the diffusion of K+ to the outside of the membrane, whereas the A− ions remain unmoved

due to the impermeability of the membrane to this specific type of ions. Consequently, the

inside of the neuron becomes negatively charged, creating an electrical gradient that attracts

positive K+ and sodium (Na+) ions. It is important to mention that while the concentration
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of Na+ is higher on the outside, the cell’s membrane is not permeable to this type of ion and

it pours very slowly into the cell.

In addition to this mechanism, generated by the permeability of the membrane to specific

ions, ATP proteins transport ions against the direction they want to take. Therefore, Na+

is pumped out of the cell and K+ is pumped back in, hence the name “sodium-potassium

pump”. This pump maintains the concentration gradient for the sodium and potassium,

creating a steady state equilibrium and a resting potential of -70mv [1].

Figure 2.2: Ions and their effect on the membrane’s potential, adapted from the book "The

ABC of EMG, A Practical Introduction to Kinesiological Electromyography", page 17 [2].

However, when a stimulus reaches a cell, it opens channels which lead to the diffusion of

Na+ to the inside of the cell. Consequently, this slowly increases the intracellular charge until

the threshold of -55mv is exceeded and the action potential is initiated. Next, depolarization

starts and more potassium channels open, which quickly increases the membrane’s potential

from -55 to +30 mv, generating an electrical pulse. The following stage is Repolarization,

sodium channels close and potassium channels open, and positive ions diffuse to the outside

of the membrane, making the interior of the cell negative. Lastly, during Hyper-polarization

sodium and potassium channels close, and the membrane is slightly more negative than

the resting potential due to the fact that potassium channels close more slowly. After a

refractory period, during which the neuron cannot react to new stimuli, the resting state is

reestablished [1] [2].
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As shown by Figure 2.3, the polarization cycles come together to form an electrical dipole,

which defines the EMG signal. This signal is used to detect neuromuscular activations, trig-

gered by certain movements and postures, through the measurement of action potentials of

muscle fiber membranes. This detection requires a pair of bipolar electrodes, which measure

two potentials in the muscle tissue each with respect to a reference electrode, positioned on

an electrically neutral area. After this process, the two signals are fed to a differential am-

plifier which amplifies the difference of the two signals, canceling out external interferences,

which are equal in phase and amplitude [2].

Figure 2.3: Variation of the membrane’s potential during activation, adopted from the book

"A Brief Introduction to Neural Networks", chapter 2, page 22 [1].

The previous paragraphs study the components of the nervous system, focusing on the

neuron and its role in the EMG acquisition system. Thus, the next step is to understand

how the nervous system is linked to the motor system, namely how the exchange of nerve

impulses controls the body’s movements.

The human motor system is comprised by the elements of the central nervous system

related to motor control. More specifically, this includes the primary motor cortex, an area of

the brain which generates neural impulses to control the execution of movements, and other

regions of the cortex by the name of secondary motor cortices (Posterior Parietal Cortex, Pre-

Motor Area, and Supplementary Motor Area). Therefore, signals from the primary motor

12



Chapter 2. State of the Art 2.2. Neurons and the EMG acquisition system

cortex travel from the body’s midline in order to activate skeletal muscles of the opposite

side of the body, hence the known phrase “the left hemisphere of the brain controls the right

side of the body” [24].

Furthermore, neurons in the primary motor cortex, supplementary motor area and pre-

motor cortex come together to form the fibers of the corticospinal tract, a pathway of the

spinal cord which descends through the brainstem. This tract is the main pathway for the

control of voluntary movements in humans, and it transports upper motor neurons which are

responsible for the activation of muscle cells. These motor neurons travel until they reach

the appropriate spinal nerve root, where they synapse directly with lower motor neurons, as

shown by Figure 2.4.

Figure 2.4: Anatomical diagram of the corticospinal tract.

Each lower motor neuron branches out and innervates different skeletal muscle fibers,

forming a motor unit. Moreover, while the nerve fiber (neuron’s axon) penetrates the muscle

belly and stimulates different muscle fibers, each muscle fiber is only innervated by one

neuron, which when fired makes all of its muscle fibers contract [4].
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2.3 The EMG signal

After clarifying the concept of a motor unit, it is clear that the signal registered by a pair of

electrodes does not correspond to a single muscle fiber. This is due to the fact that electrodes

can detect the potential of all innervated muscle fibers within a motor unit. Therefore, the

electrical signal measured by the electrodes corresponds to a sum of different fiber potentials,

named Motor Unit Action Potential (MUAP) which constitutes the fundamental unit of the

EMG signal. Thus, the EMG is formed by the electrical superposition of all the MUAPs, of

all the active motor units, detectable under the electrode’s position [25].

Figure 2.5: Electrical signal composed by a superposition of MUAPS, adapted from the book

"The ABC of EMG, A Practical Introduction to Kinesiological Electromyography", pg 9 [2].

The EMG signals obtained directly from the acquisition system are referred to as raw

EMG signals due to their non-processed nature, represented in Figure 2.6. These signals are

composed of a noise-free baseline, during which the muscle is relaxed, and EMG spikes of

non-reproducible shapes, which correspond to contractions.

This type of bioelectrical signal has the disadvantage of being very susceptible to noise,

as it is affected by the anatomical and physiological properties of muscles, and by the charac-

teristics of the instrumentation used to detect and measure it. Therefore there are external

factors, that influence the quality of this signal such as: the quality of the electrodes and

internal amplifier, physiological cross talk due to neighboring muscles, changes in the po-
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Figure 2.6: Raw EMG recording, retrieved from the book "The ABC of EMG, A Practical

Introduction to Kinesiological Electromyography", page 11 [2].

sitioning of the electrodes and electrical noise [2]. In order to improve the quality of the

extracted data one should apply electrodes in parallel to the muscle fiber direction, clean the

skin where the electrodes will be placed, choose a suitable position for the electrodes and

verify their positioning during data acquisition.

2.4 Artificial Neural Networks

For this thesis, the development of a sign language recognition system required a study

of the different approaches to this problem, in order to choose a suitable extraction and

classification methods. As such, the previous chapter focused on the chosen extraction

method and the characteristics of the EMG signal. Thus, the next step is to analyze the

classification method: Artificial Neural Networks.

Networks rely on the principle that simple elements can be gathered to produce complex

systems. They are composed by a set of nodes, whose connections leads to a global behavior

which surpasses the ability of each element. These nodes are computational units that receive

and process inputs, in order to obtain an output. Furthermore, the connections between

them determine the information flow between nodes, which can either be unidirectional or

bidirectional [21].

ANNs are a type of network which models nodes after the biological behavior of a neuron,

as shown by Figure 2.7. The artificial node is an abstract representation of a neuron, it

receives inputs, which are multiplied by weights, and requires a mathematical function to

determine its activation.

As previously mentioned, the study of these types of systems is motivated by their capac-

ity to learn from training samples, and generalize and associate data. The network is trained

to obtain desired outputs for specific inputs, by adjusting the weights of the connections be-

tween its nodes. More precisely, the higher the weight, the stronger the input multiplied by
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Figure 2.7: Diagram of the basic components of an artificial neural network.

it will be, and in the case of negative weights the more inhibited it will become.

Generally speaking, an artificial network can be reduced to four basic components:

Connection weights

A neural network has a set of neurons N, a set of connections V, between neuron i and

j where (i,j) | i,j ∈ N, and a set of connection weights. These weights can be defined as

W : V → R where wij represents the connection weight between neuron i and j [1].

Propagation Function

This function receives the outputs of the neurons connected to j, represented by xij, and

transforms them into the network input according to the connecting weights. Generally it is

given by the weighted sum of the inputs [21]:

net(j) =
m∑
i=1

wijxij, where m stands for the number of connections. (2.1)

Activation Function

The activation function transforms the network input and the previous activation state

(on/off) in a new activation state, according to a specific threshold. This value indicates

the point at which a neuron starts firing and marks the maximum gradient value of the

activation function. In addition, this function is usually global for all neurons whereas the

threshold values are specific to each neuron. The following are simple activation functions

[26]:
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� Step Function – If the input is above a certain threshold the function changes from

one value to another, but otherwise remains constant. This function has the downside

of being non differentiable at the threshold, which makes backpropagation learning

impossible.

� Sigmoid Function - This type of function is commonly used in artificial network due to

its differentiability. Moreover, two popular sigmoid functions are the Fermi function

(2.2), which maps values to the range of (0, 1), and the Hyperbolic tangent (2.3) which

maps values to (1, 1).

f(x) =
1

1 + e−x
(2.2) f(x) =

1 + e−x

1− e−x
(2.3)

Output Function

According to the activation state, the output function calculates the value transferred to

the other neurons connected to j. Generally, this corresponds to the identity function and

therefore the output is equal to the activation.

There are different ways to combine these elements into an artificial neural network,

which depend of its design or topology. Generally speaking, neural networks can be divided

into three types: feed-forward, recurrent or completely linked [1]. The most widely used

is the feed-forward topology, where neurons are grouped in: one input layer, one or more

hidden processing layers and one output layer. Moreover, each neuron in one layer has direct

connections to the neurons of the next layer and no other connections are permitted.

On the other hand, recurrent networks allow neurons to influence themselves by any

connections and therefore do not have explicit input or output neurons. In addition, this

recurrence can be direct, where neurons connect to themselves, indirect, where neurons use

indirect forwards connections to influence themselves, or lateral where each neuron inhibits

the neurons of his layer in order to strengthen himself. Lastly, completely linked networks

allow symmetric connections between all neurons, with the exception of direct recurrences.
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Chapter 3. Methodology

The goal of this work is to develop a sign language recognition system, which can with-

stand the noisy nature of the EMG acquisition system and deliver an accurate reading of

a sign language gesture, made by an untrained user (with no previous knowledge of sign

language). To do so, this thesis builds upon the work of two previous dissertations, devel-

oped by students of the same faculty, whose main objective is motion classification of EMG

acquired data [24, 4].

The pattern recognition system was developed in two stages. The first step required

developing a motion classification system, based on the knowledge gained by the previous

dissertations. During this initial learning phase, the system was applied to the classification

of 6 simple movements, used in one of the aforementioned thesis [4]. This was done in order

to facilitate the familiarization with the software, as simple motions are more easy to measure

and interpret. As such, the results of this classification helped to establish the different steps

of the methodology, which was developed by taking into account the efficiency achieved in

the previous researches [24, 4].

The second and final step involved fitting the developed system for sign language classi-

fication and acquiring new data to test its performance.

Therefore, Figure 3.1 represents the different elements of the proposed pattern recognition

system, which will be described in the following sub-chapters.

Figure 3.1: Block diagram of the EMG pattern recognition system.
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3.1 Data Extraction

Data was acquired with BITitalino Plugged, from PLUX®, and the OpenSignals (r)evolution

software. In addition, the first 4 analog input channels of the device were connected to 4

EMG sensors, whose specifications are represented by Table 3.1.

Vcc Bandwidth Sensor Gain Nº of bits

3.3V 10 - 400Hz 1000 10

Table 3.1: Specifications of the EMG sensors, retrieved from the electromyography sensor

data sheet [5].

As recommended by the OpenSignal’s Revolution manual [27], a sampling rate suitable for

processing EMG signals was selected. Therefore, after amplification and analog filtering, data

is sampled to a rate of 1000HZ and transferred by Bluetooth to a computer, paired with the

bitalino device. Simultaneously, the Open Signals software shows a real time visualization of

the multichannel EMG signals. In addition, at the end of the recording session the extracted

data is saved to a text file which is fed to Matlab R2014a, where it is processed and classified.

This text file shows the acquisition parameters (sampling frequency, sampling resolution

and time/date), the device (mac address and device type) and the extracted data, which

follows a specific structure:

� The first column indicates the sequential number of the sample.

� The second to fifth column correspond to digital channels.

� The sixth to ninth column indicates the amplitude values of the EMG signal, where

each column represents one of the 4 available channels.

Therefore, one EMG measurement corresponds to a vector of 4 analog signals, one from

each channel, where each signal has a resolution of 10 bits.

3.2 Data Pre-processing

The first step of processing the extracted digital data is converting it to analog, according

to Equation 3.1, fron the EMG sensor’s data sheet [5]:

EMG(V ) =

(ADC
2n
− 1

2

)
× V cc

GEMG

(3.1)
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where Vcc stands for the operating voltage in volts, ADC refers to the digital value to be

converted, n is the number of bits of the channel and GEmg corresponds to the amplifier’s

gain. These values are converted to microvolts and their direct current component is removed,

by subtracting each signal by its mean, with the use of the Matlab function detrend.

Generally, the following step is to obtain the linear envelope of the signal, which requires

full wave rectification and some sort of low pass filtering within the 5-100 Hz range [9, 28, 29].

In this case, the low pass filtering was achieved by a 2nd order Butterworth filter, with a

cutoff frequency equal to 22Hz, applied in both forward and backward directions in order

to minimize the phase shift phenomenon [2, 29]. This was achieved with the use of the

Matlab function filtfilt, which filters the data in the forward direction, reverses the filtered

sequence and filters it again. Consequently, this double filtration requires the adjustement

of the cutoff frequency by 25%, in order to obtain the desired cutoff fequency of 22Hz (fco):

fcoadj = fco× 1.25 = 27.5 (3.2)

Therefore, the amplitude response of the filter is represented in Figure 4.2.

Figure 3.2: Amplitude response of the 2nd order Butterworth filter.

However, it is important to mention that this step exists purely as an auxiliary visual-

ization tool, which when activated displays the linear envelope of the acquired signals to

the user, for post-processing analysis. This is because at a practical level such processing

generated less informative EMG signals which consequently decreased the accuracy of data

classification. This alteration of methodology occurred during the classification phase, as
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opposed to the choice to avoid notch filters, which was made initially. Moreover, this was

due to the advice found in the book “The ABC of EMG”, which stated that notch filtering

would destroy too much signal information.

3.3 Muscle Contraction Detection

The next step is to conduct signal windowing, in order to select the signal intervals with

relevant information, namely the activity spikes generated during muscle contraction. This

requires an accurate identification of the onset time of the EMG burst, in order to correctly

determine the amount of relevant information transmitted to the classifier. Moreover, this

step was applied to all four raw signals because the potential flow might reach different

muscles at different times, leading to different windows of contraction.

The simplest approach to this problem is the single threshold method, where muscle

contraction is determined when the amplitude of the signal exceeds a fixed threshold [2].

However, this method often leads to false positives and as such it requires the addition of a

second threshold to improve the detection’s sensitivity [4]. Therefore, the double threshold

methods detects signal onset when a predefined number of samples (2nd threshold) consec-

utively exceeds the first fixed threshold. In addition, the first threshold can be defined by:

T = µ + h × σ, where µ and σ refer to the mean and standart deviation of the baseline of

the signal, during a period of inactivity, and h is a preset variable which defines the level of

the threshold.

Besides the threshold-based methods, there are other popular algorithms for onset detec-

tion such as visual determination, where individuals set the boundaries of the EMG burst

with the aid of a Matlab graphical user interface, and approximated generalized likelihood,

an advanced statistical method where the raw EMG is presumed to be a Gaussian white

noise signal, filtered by tissues or electrodes [29].

In this case, the chosen method was a combination of the double threshold method and

the Teager-Kaiser energy operator (TKEO). This operator measures instantaneous energy

changes of signals, composed of a single time varying frequency, and it was proposed by Li

et al. (2007) in order to improve the signal-to-noise ratio (SNR) and EMG onset detection

accuracy [28].

The decision to combine these two methods was based on a research by Solnik et al.(2008),

who reported that TKEO improves all three onset detection methods when TKEO condi-

tioning is applied beforehand. Therefore, the discrete form of the Teager’s energy operator

23



Chapter 3. Methodology 3.4. Feature Selection

can be defined by Equation 3.3:

ψ[x(n)] = x2 − x(n+ 1)x(n− 1) (3.3)

where x refers to the sample vector and n is the sequence index. Moreover, this equation

shows how the calculated energy is derived from the instantaneous amplitude and instanta-

neous frequency of the signal. Thus, this operator improves the ability to analyze muscle

activity, as it incorporates main characteristics of muscle contractions, namely rapid fluctu-

ations in a signal’s amplitude and frequency [29].

According to the research made by Solnik et al [29], the TKEO operator is applied to the

digital EMG signal and the envelope of the TKEO signal is used to detect muscle contraction,

according to the double threshold method. More precisely, this envelope is calculated in the

same way as the one previously described during pre-processing, the signal is rectified and

then double filtered by a 2nd order Butterworth filter.

After the onset point is determined, it is necessary to choose the window size and delim-

itate its boundaries. In order to measure the potential action at 1KHz sampling rate, the

window size was set to 1000 samples, as a bigger size lead to no improvement on classification

accuracy. In addition, the boundaries of the window were determined experimentally, and

the window was set to begin 10 samples before the onset point.

In this case, there is no need for offset detection as each EMG segment has a fixed size

throughout the entirety of the measuring procedures. This choice was made in the interest

of decreasing the inter-individual variability of gestures, as the inability to replicate gestures

with the same intensity, namely the amount of applied force, can often lead to different

ending points for muscle contraction.

3.4 Feature Selection

This research fits in the realm of statistical pattern recognition, a science which aims to

find, learn and recognize patterns in complex data, where each pattern is represented in

terms of d features, and it is viewed as a point in a d-dimensional space.

These features must be chosen in a way that allows pattern vectors of different categories,

to occupy disjoint regions of the d-dimensional feature space [30], meaning that given a set

of training samples, the model should be able to establish decision boundaries who correctly

separate patterns from different classes.
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Therefore, the following step is mapping the large EMG vector to a lower dimension vector

according to a set of discriminatory features, through a process named feature selection.

Generally, features regarding EMG analysis can be divided into three main groups: time

domain, frequency domain and time-frequency domain features [31]. For this thesis, only

the first two groups were considered due to the fact that time-frequency domain features

such as Fourier transform, discrete wavelet transform and wavelet packet transform, require

much more complicated processing.

Furthermore, the majority of the selected features are time-domain features, a popular

choice in the field of EMG classification due to the fact they provide high classification

accuracies at a low computational cost [4, 31]. In addition, this research also analyses

autoregressive model coefficients (AR), a frequency-domain feature, as it has yielded good

classification results in previous researches [8, 16, 24]. As such, the selected features are as

follows:

3.4.1 AR Coefficients

These coefficients are used to characterize an auto-regressive model, a prediction model

which describes each sample of the EMG signal as a linear combination of the previous

samples xk−i, plus a white residual noise ek [31]. It can be mathematically defined as:

xk =

p∑
i=1

aixk−i + ek (3.4)

where ai represents the auto-regressive coefficients and p is the AR model order.

There are a number of different techniques for computing AR coefficients which approxi-

mately give the same coefficients. For this research, the chosen algorithm is the Burg method

due to its computational efficiency and stability [4].

Consider a discrete signal xn, with n ∈ [0, N ] where N corresponds to the length of the

signal. This signal can be approximated by k coefficients (an) through a forward linear

prediction: a weighted sum of the previous k known values (yn), and a backward linear

prediction: a weighted sum of the next k known values (zn), defined by Equations 3.5 and

3.6 respectively [4].

yn = −
k∑

i=1

aixn−i (3.5)

zn = −
k∑

i=1

aixn+i (3.6)
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The Burg method minimizes the sum of the forward and backward prediction errors,

defined by Equations 3.7 and 3.8, while satisfying the Levinson-Durbin recursion 1. There-

fore, instead of minimizing the forward or backwards prediction error individually with a

"covariance-like" error method, this method minimizes the sum of these errors and finds a

more stable model.

Fk =
N∑

n=k

(xn − yn)2 (3.7)

Bk =
N∑

n=k

(xn − zn)2 (3.8)

Finally, this function was implemented with the use of Matlab’s function AR, after se-

lecting an adequate order for the AR model. Moreover, this parameter should be carefully

chosen as it greatly impacts the fidelity of the reconstructed signal and the computational

cost of the algorithm. According to the research done by André Ferreira in his master thesis

[4], the model’s order was set to 7, a compromise between the quality of the reconstructed

data and the number of components of the feature.

3.4.2 Hjorth Parameters

Introduced by Bo Hjorth in 1970, the Hjorth parameters are indicators of statistical prop-

erties based on time domain properties [4]. These consist of the following: an "Activity"

parameter (Eq. 3.9), which measures the variance of the amplitude of the signal, a "Mo-

bility" parameter (Eq. 3.10), which indicates the dominant frequency and a "Complexity"

(Eq. 3.11) parameter, that represents the change in frequency, by quantifying the signal’s

deviation from the sine shape. These values can be defined by the following equations:

A = σ2
0 (3.9)

M =
σ1
σ0

(3.10)

C =
σ2σ0
σ2
1

(3.11)

1The Levinson-Durbin is a specific procedure commonly used in linear algebra to calculate the solution

of an equation involving a diagonal-constant matrix [32]
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where σ0 is the standard deviation of the signal contained in the EMG segment and σ1, σ2

correspond to the standard deviation of the first and second derivative of the aforementioned

signal, respectively.

3.4.3 Integral Absolute Value

The Integral Absolute Value (IAV) is defined as the summation of the absolute values of

the EMG segment [31], that can be defined by the following equation:

IAV =
N∑
i=1

|xi| (3.12)

where xi corresponds to the amplitude of sample i and N represents the length of the EMG

segment.

3.4.4 Mean Absolute Value

The Mean Absolute Value (MAV) is one of the most popular features used in EMG signal

analysis, it is defined by the mean absolute value of the signal contained in the data segment

[31]. This value can be given by the following equation:

MAV =
1

N

N∑
i=1

|xi| (3.13)

where xi represents the ith sample of the segment and N is the signal’s length.

3.4.5 Root Mean Square

The Root mean square (RMS) is the square root of the arithmetic mean of the signal’s

squared values [31]. In addition, the mathematical definition of this feature can be given by:

RMS =

√√√√ 1

N

N∑
i=1

|x2i | (3.14)

where xi is the ith sample of the segment and N corresponds to the signal’s length.

3.4.6 Skewness

This feature measures the asymmetry of the data around the sample mean, thus if the data

is perfectly symmetric then the skewness of the normal distribution is zero [4]. Moreover,
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this value was calculated with the aid of the Matlab function skewness, according to the

following equations:

s =
E(x− µ)3

σ3
=

1

N

N∑
i=1

(xi − x̄)3

(√ 1

N

N∑
i=1

(xi − x̄)2
)3 (3.15)

where E(t) represents the expected value of the quantity t, x corresponds to the EMG

segment and µ, σ and N are its mean, standard deviation and length, respectively.

3.4.7 Slope Sign Changes

The Slope Sign Changes (SSC) is defined by the number of times the slope of the EMG

waveform changes sign, within an analysis window. This feature reduces noise-induced counts

trough the use of a threshold value according to the following equations [33]:

SSC =
N−1∑
i=2

f
[
(xi − xi−1)× (xi − xi+1)

]
(3.16)

f(t) =

1, if t ≥ threshold

0, otherwise
(3.17)

where xi corresponds to the nth sample of the EMG segment, N is the signal’s length and

f(t) is the auxiliary function used to screen noise induced slope changes.

3.4.8 Waveform Length

The Waveform Length (WL) measures the complexity of the EMG signal, and is defined

by the cumulative length of the EMG waveform during the time segment [4]. It can be

calculated using Equation 3.18.

WL =
N−1∑
i=1

|(xi+1 − xi)| (3.18)

where xi corresponds to the ith sample of the EMG segment and N represents the signal’s

length.
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3.4.9 Zero Crossings

This feature is defined as the number of times the amplitude values of the EMG signal

cross the zero amplitude level [33]. Furthermore, in order to avoid low voltage fluctua-

tions or background noises, a threshold condition is implemented according to the following

equations:

ZC =
N−1∑
i=1

g
[
(xi × xi+1)

]
f
[
|xi − xi+1|

]
(3.19)

g(t) =

1, if t < 0

0, otherwise
(3.20) f(t) =

1, if t ≥ threshold

0, otherwise
(3.21)

where xi corresponds to the nth sample of the EMG segment, N is the signal’s length, f(t)

is the auxiliary function that enforces the threshold value and g(t) is the function used to

detect slope sign changes.

3.5 Dimensionality Reduction

Taking into account all of the features previously described, one can conclude that the

size of the system’s input vector will be very high. Furthermore, each EMG segment will

result in: 7 time-domain features composed by 1 element, 1 time-domain feature formed by 3

elements (Hjorth Parameters) and one frequency-domain feature formed by 7 elements (AR

coefficients). Consequently, this leads to an overly complex model, with an input vector of

68 features (17× 4 EMG channels) and complicated decision boundaries.

Consequently, this level of complexity has a negative impact on the model’s ability to

provide good generalization, even if it might lead to a perfect classification of training samples

[30]. This is explained by the "peaking phenomenon", who states that adding features may

degrade the classifier’s performance if the number of training samples, used to design the

classifier, is small compared to the number of features [34].

Moreover, the exact relationship between the probability of misclassification, the number

of training samples and the number of features is very difficult to determine. Thus, the

general guideline is that one should use at least ten times as many training samples per class
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as the number of features: nc/d > 10, where nc is the number of training samples per class

and d is the number of features [34].

Therefore, the minimum number of training samples per class is 680 samples, a very

high amount considering the small scale of this research. Hence, it is is necessary to perform

dimensionality reduction in order to establish a subspace of dimensionality m, of the original

feature space of dimensionality d, where m < d.

This can be done by different methods such as: principal component analysis, factor

analysis, linear discriminant analysis, among others. In addition, it is important to mention

that these functions achieve dimensionality reduction by creating new features, based on

transformations or combinations of the original feature set, instead of selecting a smaller

subset of features.

For this thesis, the chosen method was Principal Component Analysis (PCA), an al-

gorithm which calculates the dimension-reduced matrix Y , by determining the m largest

eigenvectors of the d × d covariance matrix of the n d-dimensional data [4]. Thus, this

relationship can be expressed by the following equation:

Y = XH (3.22)

where X is the n× d original data matrix, Y is the desired n×m reduced matrix and H is

the d×m matrix whose columns correspond to the eigenvectors.

Finally, the linear transformation matrix (H) was constructed by taking the m highest

eigenvectors (as columns), of a list of eigenvectors calculated by the Matlab function pca,

and by multiplying it by the original data matrix (X).

3.6 Data Normalization

Before classification, the full data set should be scaled so that each feature vector has the

same unit variance and zero mean. Therefore, the data is standardized to fit the range of

[0,1],through the use of the following equation:

m∑
i=1

Xi − µi

σi
(3.23)

where m is the reduced number of features, X i corresponds to the components of feature

i, and µi and σi are the mean and standard deviation of Xi. This step helps to ensure a

uniform learning procedure and to improve the classification accuracy, while shortening the

training time [4] [30].
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3.7 Classification with Neural Network

After the previous processing steps, the resulting input vector will have the following

format:

InputV ector =


f(1,1) f(1,2) f(1,3) . . . f(1,m)

f(2,1) f(2,2) f(2,3) . . . f(2,m)

...
...

... . . . ...

f(n,1) f(n,2) f(n,3) . . . f(n,m)

 (3.24)

where each line of the matrix corresponds to an m-dimensional representation of an EMG

signal and n is the total number of measured EMG signals.

As previously mentioned, the aim of this thesis is to develop a sign language recognition

system based on previously established work [24, 4]. As such, the system was developed

in two main stages. First it was applied to the classification of six simple arm movements

and a methodology for motion recognition was established. Then, its was applied to the

classification of 10 sign language gestures, and its parameters were tuned accordingly.

3.7.1 Selected Movements

In order to test the system aptitude for discriminating simple EMG signals, the following

six movements were chosen:

Figure 3.3: Hand abduction and adduction, wrist flexion and extension. Retrieved from the

book "Kinesiology: Scientific Basis of Human Motion" [3], chapter 6.
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Figure 3.4: Hand supination and pronation, adapted from the website www.gustrength.com

Furthermore, the following muscles were chosen for sensor monitoring:

Muscle Function Nº of Sensor

Extensor Digiti Minimi Wrist and litle finger extension. 1

Extensor Digitorum Phalanges and wrist extension. 2

Flexor Carpi Radialis Wrist flexion, forearm over arm flexion. 3

Flexor Carpi Ulmaris Wrist flexion, forearm over arm flexion, hand adduction. 4

Table 3.2: Targeted muscles during movement classification.

In order to measure the desired muscles the placement of the sensors follows a specific

layout, depicted in Figure 3.5. It is important to mention that each movement was performed

from a neutral position, with the left arm flexed at 90 degrees by the side of the trunk [24].

Figure 3.5: Electrode placement during movement classification, where the 5th sensor cor-

responds to the reference electrode. [4].

32



Chapter 3. Methodology 3.7. Classification with Neural Network

3.7.2 Selected Sign Language Gestures

For this thesis, static and dynamic gestures were selected from the LGP to test the system’s

ability to classify both simple and complex gestures, where different stages of movement are

distinguishable.

In order to do so, the following gestures were selected: 4 static gestures, representative

of cardinal numbers (Figure 3.6), and 6 dynamic gestures regarding word-level vocabulary

(Figure 3.7). Furthermore, the dynamic gestures were chosen in pairs according to their

similarity in movement, in order to test the systems ability to distinguishing similar patterns.

Figure 3.6: Static sign language gestures chosen for classification.

Figure 3.7: Dynamic sign language gestures chosen for classification.

These gestures were performed from the same starting position as the one previously

described, with the same configuration of sensors except for sensor nº4. This electrode
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needed to be placed in another area due to the combination of the sensor’s location and

its cable length, as it limited the range of motion demanded by specific dynamic gestures

and eventually lead to the breakage of the aforementioned cable. As such, the sensors were

placed in a different layout, described in Figure 3.8.

Figure 3.8: Electrode placement during gesture classification, where the 5th sensor corre-

sponds to the reference electrode.

3.7.3 Neural Network’s Parameters

In order to maximize the system’s performance during classification, different types of

feed-forward artificial neural networks were tested. More precisely, this was done by varying

certain parameters, which will be described shortly, until an optimal architecture was found.

These types of networks are based on the backpropagation (BP) algorithm, a theorem used

to minimize the error between the output data and the target data [26]. This algorithm

requires a supervised learning, thus the network was provided with a set of inputs and the

expected corresponding outputs. Therefore, the artificial neurons propagate their signals

“forward” and the errors (difference between actual and expected results) are propagated

backwards [21]. As such, the analyzed parameters were the following:

Number of hidden neurons

While the number of input and output neurons are determined by the input vector’s size

and the number of categories, the number of hidden neurons is variable and does not follow
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any observable rule [30]. Furthermore, an increase in the number of hidden units does not

necessarily mean an increase in classification accuracy. Therefore, a high number of hidden

neurons may lead to a very small training error at the cost of an unacceptably high test

error, caused by overfitting.

Data Division

The training procedure requires the division of the extracted data into three sets, namely

a training set, a validation set and a testing set. This allows for an objective evaluation,

as the network performance is analyzed with a test set for which it was not trained before.

Therefore, the training data is used to train the network, the validation data monitors the

network’s performance and the testing set evaluates the predictive ability of the trained

network [1].

Thus, besides the general data sectioning ratio (80% training data, 10% validation data

and 10% test data), other ratios were tested in order to analyze the classifier’s performance

in different scenarios.

Training algorithm

In order to obtain the desired outputs, the ANN adjusts the connection weights between

its neurons during a process commonly refereed to as training or learning. This behavior

can be implemented by different algorithms: modifications of the BP algorithm which aim

to overcome some of its disadvantages, namely its slow convergence [35].

Furthermore, it is difficult to pinpoint a specific algorithm which works best for a certain

problem, as multiple factors such as the network’s size, the training goal and the computation

complexity influence its performance [26]. Therefore, in order to find the optimal method

for the problem at hand, different training algorithms were tested with the artificial neural

network:

� Scaled conjugate gradient BP (trainscg)

From an optimization point of view, learning in a neural network is equivalent to min-

imizing a global error function. Therefore, the goal of these algorithms is to minimize a

function by adjusting several thousands of the network’s weights.

This can be done by a scaled conjugate gradient method, which differs from the standard

gradient method due to the fact that it does not perform a line search at the end of each
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iteration. A line search involves several calculations of either the global error function or

its derivative, which consequently increases the complexity of the algorithm [36]. This tech-

nique bypasses these calculations and it is used as the default learning algorithm in pattern

recognition neural networks, by Matlab’s neural network toolbox. Thus, this method was

tested as a possible contender the network’s learning algorithm.

� Conjugate gradient BP with Powell-Beale restarts (traincgb)

Normally, for all conjugate gradient algorithms the search direction is periodically reset

to the negative of the gradient. In addition, this occurs when the number of iterations is

equal to the number of network parameters (weights and biases). However, by searching

along the steepest descent direction the immediate reduction in the objective function is

usually smaller than it would be without this restart. Thus, there are other reset methods

that can improve the efficiency of training, namely the Powell-Beale algorithm [37].

This technique uses the Powell-Beale algorithm by restarting when the orthogonality be-

tween the current gradient and the previous gradient is small, without restricting the search

direction to the steepest descent direction. In this case, this algorithm was tested due to its

use as a training algorithm, in the master thesis developed by Luis Marques [24].

� Levenberg-Marquardt BP (trainlm)

This algorithm is a combination of the steepest descent method and the Gauss-Newton

(GN) method, developed by Kenneth Levenberg and Donald Marquardt. Moreover, it per-

forms a combined training process: near an area with a complex curvature, evaluated by

second-order derivatives of the error function, the LM switches to the steepest descent al-

gorithm. Then, when the curvature is suitable for quadratic approximation the algorithm

becomes the GN method, which speeds up the convergence significantly [35].

Therefore, this method is strongly recommended as a first-choice supervised algorithm

for the training of small and medium-sized neural networks, due to its stability and speed

of convergence.

� Bayesian regularization BP (trainbr)

While the LM method was especially developed for faster convergence in BP algorithms,

the Bayesian Regularization algorithm aims to improve the generalization capacity of the
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model. In order to do so, this method includes a term with the residual sum of the squared

weights in the minimization function, thus it minimizes a linear combination of the squared

errors and the squared weights. In addition, it modifies this combination to obtain good

prediction abilities at the end of the training [38]. Besides, it has a better performance than

conventional methods in terms of overfitting, which makes it a suitable candidate for testing.
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Chapter 4. Results Analysis 4.1. Classification of Gestures

While previous researches have stated the efficiency of neural networks in the classifica-

tion of simple motions [24, 17, 39], the application of these networks to sign language is still

debatable when compared to other mechanisms of classification [10]. This can be attributed

to the complexity of these types of signals, as sign language gestures are often produced by

dynamic gestures where different stages of motion can be differentiated.

Therefore, this thesis approaches the classification of both simple arm motions and com-

plex sign gestures through the use of an ANN. Hence, the pattern recognition system uses a

2-layered artificial network with a tangent-sigmoid activation function and a linear output

function to classify EMG patterns offline.

4.1 Classification of Gestures

In order to evaluate the system’s ability to classify complex gestures, data was acquired

from 4 able bodied subjects with no previous knowledge of sign language. In addition, each

subject was submitted to an initial learning session due to their inexperience and lack of

consistency during gesturing. Thus, after learning the proper form each person was asked

to perform 30 repetitions of 10 sign language gestures.

Furthermore, after some data acquisition sessions this number was increased to 35±5

due to breakages in the sensor’s cables. These cables introduced high levels of noise and

flat-lining signals, making some samples unfit for classification. Consequently, although the

ANN is known for its robustness to noise, such an introduction may have had a negative

impact on the system’s performance.

This potential loss in performance is due to the contraction detection mechanism, a pro-

cessing step which precedes the neural network’s classification and is highly susceptible to

noise. Therefore, in order to partially solve this problem, when background noise overshad-

ows muscle contraction and the onset contraction point is not detected, the EMG samples

are automatically discarded.

4.1.1 Model selection

As previously mentioned, this research aims to find the optimal architecture for sign

language classification. Therefore, different ANNs were tested in order to determine which

parameters result in the highest classification accuracy. The study focused on influential

parameters such as the training function of the ANN, number of hidden neurons and number
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of features used to represent the input data. par In order to achieve a valid conclusion and

select an optimal model, every ANN was run under the same conditions. More specifically,

the randomness associated to their execution was fixed through the use of the Matlab function

rng. This was necessary in order to enforce the same random weights initialization for all

ANNs and to make sure that their performance was analyzed on equal groups of data (test

data).

Moreover, the performance of each ANN was measured through the classification accuracy

of the test data, according to the following equation:

η(%) =
Number of correct labels
Total number of labels

× 100 (4.1)

The goal of this process is to obtain a final model with good generalization abilities,

capable of predicting correct outputs for previously unseen data. In order to do so, one must

avoid overfitting the ANN to the training data as this results in a model with no practical

application, whose use is limited to memorizing samples [40].

Due to the small size of the test data it is important to take into consideration the effect

of tuning the network’s parameters around 10% of its total data. Although this may result

in high accuracy results, they are not a true reflection of the networks performance. More

specifically, while certain parameters can increase the classification accuracy of a small set

of test data, the same isn’t true for other sets. Therefore, in order to avoid these pitfalls a

10-fold cross-validation technique was used to determine the classification accuracy of each

ANN. This techniques is commonly used when the size of the test data is limited, to ensure

a stable and confident estimate of the model’s performance [41].

In this case, the classification accuracy of each architecture was calculate with an adapted

form of the 10-fold cross-validation algorithm, represented by Algorithm 1. The dataset was

randomly divided into 10 subsets of approximately the same size (T1...T10) and the network

was tested on each subset of data. More precisely, the network was trained 10 times and in

each iteration, one subset was chosen for testing (Gte), another for validation (Gv) and the

remaining subsets formed the training set (Gtr).

As a consequence of this algorithm, the proportion of the training, testing and validation

subsets is strictly restricted by the number of folds, which in this case was set to 10. However,

while each training had a sectioning ratio of 80% training, 10% test and 10% validation,

the network’s architecture was tested with the entirety of the data, allowing for a better

estimation of its performance.
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Algorithm 1 10-fold cross-validation

Divide the data in 10 disjoint subsets of the same size: T = {T1, T2.....T10}

Create an extra subset to account for the validation data: T11 ← T1

for i = 1...10 do

Form the testing, validation and training sets:

Gte ← Ti, Gva ← Ti+1, Gtr ← T\{Gte, Gva}

Train the model using Gtr and Gva, and assess its performance with Gte:

Acc(i)← Model(Gte)

end for

Calculate the performance by averaging the previously obtained test accuracies:

Total Accuracy =

∑10
i=1Acci

10

To confirm the necessity of this method, the accuracy was determined with and without

10-fold cross-validation, and the following results were obtained:

Number of Neurons 10-fold

10 20 30 40 50 60 70 80 90 100 Cross-validation

77.60 89.60 89.60 92.00 99.20 92.80 91.20 92.00 95.20 92.80 No

73.62 90.08 90.35 94.24 93.98 93.80 93.98 93.62 94.95 94.95 Yes

Table 4.1: Test accuracy for 10 sign language gestures, with a feedforward network trained

by trainbr, a 80/10/10 sectioning and 20 features.

According to the previous table, without 10-fold cross-validation, the results suggest that

it is possible to obtain a test accuracy of 99.2% with 50 hidden neurons, 20 features and

the use of the training function trainbr. However, this percentage is not a true reflection

of the networks performance and it would lead to a wrong choice of optimal parameters.

Consequently, when this optimal model is applied to the classification of a different set of

test data, with the same size, the classification accuracy drops to 93.6%. As expected, this

value is closer to the one provided by 10-fold cross validation, therefore this technique will

be used to calculate all the test accuracies from this point on.

Tables 4.2 to 4.5 represent the test classification results for 1250 data samples, in function

of the number of hidden neurons, the type of training algorithm and the number of features

used to represent the input data. Each accuracy was calculated with the adapted 10-fold

validation algorithm, and each fold classified a test set of 125 samples.
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Number of Neurons Nº of

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Features

73.62 90.08 90.35 94.24 93.98 93.80 93.97 93.62 94.95 94.95 93.97 93.98 93.98 94.24 94.24 94.24 94.06 94.33 94.51 94.59 20

72.99 89.29 92.47 94.15 94.51 94.07 93.71 94.77 93.80 95.04 93.80 94.33 94.51 95.04 94.68 94.77 95.13 93.97 94.86 95.40 18

72.64 87.16 91.15 92.83 94.07 94.24 94.06 93.54 93.09 94.07 94.25 93.89 94.07 94.06 93.62 92.92 94.07 93.71 94.60 93.80 16

70.96 86.81 91.94 92.48 92.29 93.71 93.62 92.65 93.36 93.53 93.00 93.27 92.56 93.44 93.89 93.71 93.44 93.53 92.47 93.54 14

65.63 85.21 87.87 90.43 91.32 91.85 91.94 92.03 92.12 91.85 91.85 92.03 91.23 91.94 92.29 92.03 91.76 91.76 92.03 91.94 12

64.83 79.81 86.45 87.60 88.39 89.38 90.79 89.19 90.08 88.66 89.91 90.88 89.37 89.64 89.99 90.61 90.35 90.34 89.55 89.64 10

Table 4.2: Test accuracy for 10 sign language gestures, with a feedforward network trained by trainbr and a 80/10/10 sectioning.

Number of Neurons Nº of

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Features

71.21 86.28 91.23 91.06 93.54 93.44 93.62 94.24 93.18 94.33 93.80 94.24 93.71 94.86 94.24 93.71 93.09 93.18 94.06 93.98 20

72.64 87.51 91.23 92.29 92.29 94.15 94.42 93.89 94.42 94.15 93.80 93.53 94.33 94.16 93.80 93.63 94.33 93.62 92.91 93.89 18

69.99 85.20 89.72 91.50 92.92 94.06 93.36 93.98 93.98 93.18 93.80 93.00 92.74 94.24 93.98 92.56 92.47 92.92 93.71 93.27 16

69.10 85.29 88.39 90.34 91.41 92.20 92.82 93.00 91.85 93.71 93.09 93.18 92.30 92.74 91.94 92.30 91.41 92.21 91.85 91.77 14

63.70 81.84 86.53 87.24 90.34 91.23 91.23 90.88 91.94 91.86 91.94 91.41 90.70 92.30 91.06 90.97 90.70 90.71 90.17 90.97 12

62.00 77.77 82.37 86.63 86.89 89.02 87.61 89.73 88.57 89.46 89.55 89.02 87.95 88.75 89.64 88.93 89.02 88.84 89.02 89.02 10

Table 4.3: Test accuracy for 10 sign language gestures, with a feedforward network trained by trainlm and a 80/10/10 sectioning.



Number of Neurons Nº of

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Features

67.76 83.88 88.22 88.31 89.73 91.14 91.49 92.47 92.82 91.06 90.26 91.41 90.43 92.20 91.41 90.88 91.59 90.17 92.03 90.87 20

66.01 83.44 87.33 90.17 90.87 90.43 89.99 90.97 90.43 91.41 90.97 90.70 90.35 91.59 92.74 89.46 91.15 91.50 91.23 91.67 18

61.83 82.37 85.29 87.60 89.73 89.64 90.44 90.97 90.61 90.97 89.46 91.23 89.46 90.96 90.44 88.84 88.93 90.09 89.99 90.43 16

58.55 79.80 83.17 84.23 85.66 86.90 87.78 88.05 87.96 87.69 88.58 89.20 87.69 87.51 88.32 88.23 88.57 89.10 88.67 88.22 14

54.37 73.95 81.85 82.55 83.36 84.95 86.28 85.65 86.54 86.19 87.51 85.92 86.71 86.90 87.51 85.57 88.05 85.75 87.43 88.49 12

49.71 68.63 73.68 78.75 78.40 81.40 81.85 82.03 83.35 84.06 82.37 84.41 83.62 85.38 84.05 84.95 84.86 84.23 84.95 85.21 10

Table 4.4: Test accuracy for 10 sign language gestures, with a feedforward network trained by traincgb and a 80/10/10 sectioning.

Number of Neurons Nº of

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 Features

66.28 82.55 89.91 85.83 85.92 89.02 90.61 89.20 89.99 89.02 89.46 89.99 88.75 89.90 89.82 89.55 89.81 89.47 89.02 89.64 20

62.11 84.77 82.91 90.18 88.57 90.44 89.81 89.64 89.10 89.47 87.96 88.75 89.28 89.29 87.87 88.84 88.75 89.02 90.44 89.90 18

61.65 82.04 86.80 87.52 86.28 86.80 88.93 85.38 86.45 86.72 84.68 85.57 86.72 88.75 88.31 85.74 84.07 87.96 84.67 88.31 16

57.93 78.74 83.88 82.81 85.47 84.23 84.33 81.93 84.69 86.27 84.94 85.57 84.86 87.25 85.66 86.01 86.63 86.98 85.83 86.89 14

52.43 72.18 82.30 77.85 75.40 78.93 81.40 82.90 82.47 82.46 82.91 81.94 81.85 83.62 85.31 83.27 84.25 83.62 85.13 83.79 12

50.94 70.14 71.74 74.77 75.11 76.97 79.72 77.51 78.83 79.36 79.10 79.99 79.54 76.08 80.42 81.50 80.61 79.27 83.00 80.17 10

Table 4.5: Test accuracy for 10 sign language gestures, with a feedforward network trained by trainscg and a 80/10/10 sectioning.
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The following graphic represents the optimal accuracy in function of the training algo-

rithm and number of features. Each optimal accuracy was determined by the highest test

accuracy from each line of the previous tables. In addition, when equal accuracies were de-

tected, a preference was given to the smallest number of hidden neurons in order to decrease

the complexity of the system.

Figure 4.1: Optimal classification accuracy for 10 sign language gesture, in function of the

training algorithm and the number of features used to represent the data.

As expected, the training algorithms which lead to higher accuracies are the Levenberg-

Marquardt BP algorithm (trainlm) and the Bayesian regularization BP algorithm (trainbr).

Furthermore, the influence of the number of features on the performance of these techniques

is very small when compared to the scaled conjugate gradient (trainscg) and conjugate

gradient with Powell-Beale restarts (traincgb) algorithms. While these algorithms achieve

lower accuracies, their performance strongly benefits from an increase in the number of

features.
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Although the use of trainlm and trainbr results in similar performances, the Bayesian

technique achieves slightly higher classification accuracies. This method causes the network

to have smaller weights and biases, which forces it’s response to be smoother and less likely

to overfit. Hence, as this advantage is not offered by the Levenberg-Marquardt technique,

Bayesian regularization was chosen as the training method.

As shown by the previous graph, the performance of the system reaches its peak with

a data representation composed by 18 features. After this value, the optimal accuracies

obtained with the different training algorithms either remain constant or slightly decrease.

This behavior is commonly known as the "peaking phenomenon", previously mentioned on

Chapter 3.4, and it occurs when the addition new features degrades the system’s perfor-

mance.

Thus, according to the previous results, the number of reduced features chosen to rep-

resent the input data was 18. After selecting the two main parameters of the network’s

architecture, namely the training function and the size of the input data, the next step

involved choosing the number of hidden neurons.

Furthermore, it is important to mention that this number was limited to maximum of

200 hidden neurons, in order to keep the network’s complexity at a minimum. This is due

to the fact that a high number of neurons results in a loss of generalization abilities, and

a poor performance in the presence of new inputs patterns. In addition, a potential real-

time implementation of the developed pattern recognition system would only benefit from a

smaller architecture.

Therefore, taking into account the set of previously selected parameters, the chosen

number of hidden neurons was 200. This number resulted in an architecture, which achieved

the highest classification accuracy out of all the experimental results (95.4%).

4.1.2 Evaluation of the proposed method

After the determination of the model’s parameters, the next step is to evaluate the recogni-

tion accuracy of the proposed system. This can be achieved by a brief study of the confusion

matrix, a specific table layout where each row represents the instances in a predicted class

and each column represents the actual class. Hence, Figure 4.2 represents the confusion

matrix, obtained for the classification of 10 sign language gestures.

For this research, the performance of the proposed system was measured by the overall

classification accuracy of the 10 tests sets, determined by an adapted 10-fold cross validation
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Figure 4.2: Confusion matrix for the classification of 10 sign language gestures. Gestures are

numbered in the following order: (1)Yes (2)No (3)Hello (4)Goodbye (5)Thank You (6)At-

tention (7)Zero (8)One (9)Two (10)Three

algorithm. This accuracy is determined by the values in the diagonal of the confusion matrix,

which correspond to correct predictions. Therefore, it can be calculated by the following

equation:

η(%) =
Number of correct labels
Total number of labels

× 100 = 95.39%

Moreover, not only does this matrix allow the calculation of the classification accuracy of

each gesture, but it also makes it possible to identify specific confusions between any two

classes of gestures. However, in this case the misclassification of gestures does not follow a

specific pattern, suggestive of similarities between any pairs of gestures.
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Table 4.6 represents the classification accuracy of each sign language gestures, where each

accuracy is determined by the proportion of correct classifications of the target class:

Yes No Hello Goodbye Thank you Attention Zero One Two Three

92.45% 94.78% 91.38% 98.30% 96.26% 99.12% 93.55% 98.26% 93.63% 96.15%

Table 4.6: Classification accuracy of each sign language gesture, for a sampling population

composed by 4 subjects.

As expected, certain gestures are better discriminated than others. For instance, the

gestures more prone to misclassification were "Yes" and "Hello". In addition, the highest

classification rates were achieved by the signs "Attention" and "Goodbye", a surprising

behavior considering they both belong to the class of dynamic gestures.

In order to gain a further understanding on the recognition of these gestures, the devel-

oped system was trained and tested for each one of the 4 subjects. The aim of this reduction

was to study the effects of inter-individual differences (differences between subjects) in the

overall system performance, in order to assess its scalability. Therefore, the following table

presents the average of the 4 classification accuracies, obtained at an individual level:

Yes No Hello Goodbye Thank you Attention Zero One Two Three

95.89% 95.92% 98.44% 98.61% 97.45% 97.82% 97.28% 98.6% 97.73% 91.33%

Table 4.7: Average of the individual classifications, in function of the sign language gesture.

In addition, Figure ?? represents the graph bar diagrams formed by the classification

accuracies of each gesture, obtained with different sampling populations.
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Figure 4.3: Bar graph for the classification of 10 sign language gestures.
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According to the results, the raise in the number of samples per class is not enough

to compensate the increase of data variability, introduced by a higher number of subjects.

Consequently, for the majority of the sign language gestures, the classification accuracy with

4 individuals is lower than the average classification with individual subjects.

As such, the only gestures that benefited with the increase in population where:

� Attention - The classification with 4 individuals is very high, even when compared to

the highest classifications achieved at an individual level. More precisely, the misclas-

sification error introduced by subject three (91.27%) is reduced, when the network is

trained with more samples of this specific class. This means that the "Attention" sign

is less prone to inter-subject differences, which can be explained by the fact that it is

based on a strong pointing movement which is easy to replicate.

� Three - In this case, the accuracy achieved with 4 subjects is higher than the average

individual classification. Therefore, one can conclude that the classification of samples

from subject 1 and 2 has considerably improved due to the increase in population.

This gesture is characterized by a configuration which resembles a closed fist, which

might explain its low inter-individual variability.

Furthermore, the gestures which were not affected by the sampling population where:

� Goodbye - This gesture renders high classification accuracies for a majority of the

sampling populations. In addition, the increase in population has no impact on the

classification of samples from subject 2 and therefore the average individual classifica-

tion is quite similar to the one achieved with 4 subjects.

� One - The same behavior is demonstrated by this gesture, where the classification for

4 subjects is lowered by the introduction of gestures concerning a specific subject.

Finally, the gesture which was most affected by inter-individual variability was the sign

for Hello. As shown by the bar graphs, the accuracy achieved with 4 subjects is lower

than any classification obtained at an individual level. This suggests that further increases

in population might lead to a decrease in the ability to discriminate this type of gesture.

However, this effect might be counter-acted by an increase in the number of training samples

of this type of gesture.
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4.2 Classification of movements

Although the development of the aforementioned pattern recognition system was directed

towards the recognition of sign language gestures, this tool was also applied to the classifi-

cation of arm and hand movements in an initial stage. Thus, an interesting way to evaluate

the range of the developed signal recognition system is to apply it to the classification of

movements. It is important to note that while this classification was a useful tool for building

the methodology on which this system is based, several parameters were altered to allow the

recognition of sign language gestures, namely the size of the sampling window, the thresholds

of muscle contraction detection, among others.

For the first stage of data acquisition 4 able bodied subjects were asked to perform 42

repetitions of 6 simple movements. However, due to the presence of high amounts of noise,

several EMG samples were discarded and each subject was required to perform additional

measurements. Therefore, the language recognition system was applied to 1000 valid samples

and the following classification accuracies were obtained:

Number of Neurons

10 20 30 40 50 60 70 80 90 100

83.00% 90.33% 90.78% 90.11% 92.67% 91.67% 92.44% 91.33% 91.44% 90.67%

Number of Neurons

110 120 130 140 150 160 170 180 190 200

91.44% 92.11% 91.78% 92.44% 91.56% 91.56% 91.33% 91.67% 92.33% 91.22%

Table 4.8: Test accuracy for 6 movements, with a feedforward network trained by trainbr, a

80/10/10 sectioning and an 18-feature data representation.

The previous results suggest that the pattern recognition system is not necessarily limited

to the classification of sign gestures. Moreover, when the right number of hidden neurons

is selected, this system can classify movements with an accuracy rate of 92.7%. Due to

the simplicity of these signals and the reduction in the number of classes (from 10 to 6),

this value might seem low when compared to the one achieved in sign gesture classification

(95.4%). This can be attributed to damaged extraction material, namely the sensor cables,

which introduced a considerable amount of noise in the input data. Consequently, at the

end of the movement’s measuring sessions, up to 3 EMG sensor cables had been replaced.
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Chapter 5. Conclusion

On the basis of the results of this research, it can be concluded that the proposed hand

gesture recognition system is capable of correctly classifying a range of sign language gestures,

which encompasses both static and dynamic signals. Moreover, the data supports the use of

an ANN as a classification method for sign language recognition. This method has provided

a classification accuracy of 95.4% for 10 sign language signals, produced by four different

subjects. These results were based on a small subset of gestures and as such the data does

not fairly reflect the reliability of this system as a real world application. However, as long

as the training procedure is extended the system should be applicable to a wider range of

vocabulary.

In this case, the system performs similarly for static and dynamic gestures, a behavior

which was not expected as the temporal relations contained in dynamic signals makes these

signals more difficult to classify. On the other hand, the system’s performance is highly

influenced by the repeatability of a gesture, namely if it can be replicated in a similar manner

by different individuals, in separate instances. Consequently, when the size of the population

increases the classification accuracy of specific gestures decreases considerably. In the worst

case, the classification accuracy of the signal "Hello" decreases 7.1% when the population

size increases from 1 to 4 subjects. This behavior is due to inter-individual differences,

which can result of kinematic differences, the gesture’s trajectory, or kinetic differences,

when subjects exert different amounts of force. Additionally, there are other sources of

subject specific variability such as the amount of subcutaneous fat, muscle fiber composition,

amount of hair, among others [9]. Due to these factors, the system’s performance is hindered

when the sampling population increases, however this effect might be counter-acted with a

corresponding increase in the number of training samples per subject.

While the classification of specific gestures is hampered by an increase in the sampling

population, other gestures benefit from the consequent increase in training samples. As such,

the scalability of the system can not be determined at such a small scale, further studies

are required to determine the effects of a diverse population on the system’s discrimination

abilities. In this case, it is important to compensate these individual differences in order to

provide a consistent classification rate independently of the user.

Another aspect of the developed system is its versatility. Although the aforementioned

system was developed towards SLR it is also suitable for motion classification. According to

the experimental data, the system achieved an accuracy rate of 92.7% for the classification

of 6 arm/hand movements, with a simple readjustment of the networks size (number of
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hidden neurons) to account for the reduction in input data and classes. This accuracy might

seem low, taking into consideration the reduction in the number of classes (10 sign language

gestures to 6 movements), and in the complexity of the input signals. This can be attributed

to the physical condition of the EMG sensor cables, which introduced high amounts of noise

during the first stage of data acquisition, concerning simple movements. Moreover, during

data extraction some cables had to be replaced, which introduced a high degree of variability

in the arm and hand movements data. This problem was fixed for the second stage of data

acquisition, concerning sign language gestures.

5.1 Future Work

The biggest limitation of the developed system is its isolated nature, namely the fact that

each gesture needs to be fed separately to be recognized. True human gestures are continuous

and as such a continuous recognition system is highly desirable in communication practices

between the deaf community. Therefore, the next step of development is to extend the scope

of the proposed system, and to create a practical continuous recognition system, useful to

the hearing impaired community.

Another point of improvement concerns the system’s limited range of vocabulary and

small sampling population. Further data extracting sessions are required, in order to increase

the number of recognizable sign language gestures, and to determine the system’s scalability.

In this case, the biggest challenge will be the reproducibility of the EMG measurements,

which can cause a big drop in the system’s performance. A possible solution is an approach

based on combined sensing, namely the combination of Accelerometer (ACC) and EMG

sensors. Several studies indicate that this approach can improve the performance of hand

gesture recognition significantly, and as such this is a technique that could be explored in

future researches [8].
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